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Abstract

Accurate per-application network traffic characterization is becoming in-
creasingly difficult in the face of emerging applications that use dynami-
cally negotiated port numbers. At the same time, information about the
contribution of different network applications and services to the traffic mix
is highly demanded by network administrators for facilitating effective net-
work management and traffic engineering.

In this thesis we present appmon, a passive monitoring application for
per-application network traffic classification. Appmon uses deep packet
inspection to accurately attribute traffic flows to the applications that gen-
erate them, and reports in real time the network traffic breakdown through
a Web-based GUI. Appmon manages to classify traffic up to Gigabit speeds
and shows a steady performance when monitoring a real network environ-
ment. Appmon is easy to configure and deploy, and is publicly available as
an open source application.

Using appmon deployed sensors we were able to collect a large amount
of traffic data. We present the results extracted from the analysis of data
collected from the academic networks of three different countries and try to
understand the trends in real world networks.

Supervisor: Professor Evangelos Markatos
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Περίληψη

Ο ακριβής χαρακτηρισµός της κυκλοφορίας του δικτύου ανά την εφαρµογή
που τη δηµιούργησε, γίνεται όλο και πιο δύσκολος µε την εµφάνιση όλο
και περισσότερων εφαρµογών που χρησιµοποιούν δυναµικές ϑύρες. Ταυ-
τοχρόνως, πληροφορίες για τη συµβολή των διαφορετικών εφαρµογών δικτύου
στο µίγµα κυκλοφορίας απαιτούνται από τους διαχειριστές δικτύων για τη
διευκόλυνση και πιο αποτελεσµατική διαχείριση τόσο του δικτύου όσο και της
κυκλοφορίας του.

Σε αυτήν την εργασία παρουσιάζουµε το appmon, µια εφαρµογή πα-
ϑητικής επίβλεψης για την ταξινόµηση της κυκλοφορίας του δικτύου ανά-
εφαρµογή. Το Appmon κάνει ϐαθιά εξέταση των πακέτων για να αποδώσει
ακριβώς τις ϱοές κυκλόφοριας στις εφαρµογές που τις παράγουν, και εκθέτει
σε πραγµατικό χρόνο την ανάλυση της κυκλοφορίας του δικτύου µέσω ενός
WEB GUI. Το Appmon κατορθώνει να ταξινοµήσει την κυκλοφορία ακόµη
και σε Gigabit ταχύτητες και παρουσιάζει σταθερότητα κατά της επίβλεψη
ενός πραγµατικού δικτύου. Το Appmon είναι εύκολο να εγκατασταθει και να
επεκταθεί, και είναι διαθέσιµο ως εφαρµογή ανοικτού κώδικα.

Εγκαθιστώντας το appmon σε αρκετά συστήµατα εποπτείας είµαστε σε
ϑέση να µαζέψουµε ένα µεγάλο αριθµό πληροφοριών για τη κυκλοφορίας
του δικτύου. Παρουσιάζουµε αποτελέσµατα από την ανάλυση πληροφοριών
που συλλέκτικαν από τα ακαδηµαϊκά δίκτυα τριών διαφορετικών χωρών και
προσπαθούµε να καταλάβουµε τις τάσεις στα πραγµατικά δίκτυα.

Επόπτης : Καθηγητής Ευάγγελος Μαρκάτος
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Chapter 1

Introduction

Over the last years network traffic usage increases dramatically. Latest
studies show that network traffic grows with rates of about 50% every year 1.
Beside the growth on traffic rates, the number of users, hosts, domains and
enterprise networks connected to the Internet has been also growing ex-
plosively. Along with these continusly increasing numbers of the Internet
traffic and usage, comes the deployment of new and massively used appli-
cations. The emergence of the Internet came with the deployment of the
World Wide Web; since then numerous applications made their appearance
and are massively used by Internet users. Applications for distributed file
sharing (Peer-to-Peer systems) appeared at the beginning of the 21th cen-
tury, and also applications for chatting combined with Voice over IP and
live streaming of real video, in the last two years.

With these traffic and population increases, network administrators
came upon of great difficulties in their everyday task of monitoring their
networks. At the early days things where a lot easier, since each applica-
tion used a predefined port number that gave the way of classifying, rate
limiting and/or dropping. But as the users where not satisfied by these
administration policies, they came up with new protocols that use random
ports in order to communicate and that leaves administrators without the
knowledge of what is running in their network.

In this thesis, we present an application for accurate per-application

1MINTS:www.dtc.umn.edu/mints/home.html
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2 CHAPTER 1. INTRODUCTION

network traffic classification. Our application manages to distinguish net-
work traffic by the application that generates it and presents the results in
an easy to use and manage web interface. Our application, called appmon,
manages to classify traffic up to Gigabit speeds and shows a steady perfor-
mance when monitoring a real network environment. Appmon is easy to
configure and deploy, and is publicly available as an open source applica-
tion.

Appmon has been deployed in about 15 sensors worldwide, where it is
up and running for a sufficient period of several months. Using appmon

deployed sensors we were able to collect a large amount of traffic data. We
present the results extracted from the analysis of data collected from the
academic networks of three different countries and try to understand the
trends in real-world networks.

1.1 The Emerging Need for Network Traffic Charac-

terization

Both the research community and network administrators lack of publicly
available tools able to distinguish network traffic by the application that
generates it. Researchers in the traffic classification area need a refer-
ence application in order to evaluate new classification approaches. Most
researches tend to build customized tools in order to evaluate their ap-
proaches, which may result into inconsistent results among different clas-
sification methods. On the other hand, one of the most frequent requests of
network administrators is to identify the applications and hosts that gen-
erate the largest amount of network traffic.

The emergence of peer-to-peer file sharing, multimedia streaming, and
conferencing applications has resulted to a substantial increase in the traf-
fic volume, since they transfer a large amount of data. However, monitoring
the traffic generated from such applications is becoming increasingly diffi-
cult.

Traditionally, traffic attribution to the corresponding applications is per-
formed using the statically assigned port numbers. Widely used network
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Figure 1.1: Traffic distribution of the University of Wisconsin-Madison for
the last five years. The figure shows that while port-based traffic classifi-
cation was effective back in 2002, nowadays it limits classification only in
HTTP traffic and leaves a large amount of unaccounted-for traffic, about
50%.

services, like the Web, Telnet, SSH, and many others, are associated with
well-known port numbers which can be used for identifying the traffic re-
lated with each application. However, many major new applications, in-
cluding popular, bandwidth-hungry file sharing applications and widely
used video and voice conferencing applications, do not use well-known port
numbers. Instead, they allocate and use dynamically negotiated ports.
Furthermore, some applications masquerade their traffic using pervasive,
firewall-friendly protocols, like HTTP, in order to bypass firewall restrictions
and make the identification of their traffic harder. Indeed, several widely
used applications like BitTorrent [16] and Skype [36] can be configured to
operate through port 80, which is usually left open even in environments
with strict firewall configurations. Nowadays, the assumption that port 80
traffic is solely HTTP Web traffic is hardly true.

As an example take a look at Figure 1.1. The Figure shows traffic dis-
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tribution as seen by the University of Wisconsin-Madison 2, based on infor-
mation gathered from sampling flow-level summaries over a period of five
years. The classification shown on the figure is performed using the stati-
cally assigned port numbers. Each application is assumed to operate in one
or more well-known ports; and thus all the traffic destined to, or originating
from, those ports is assumed to be associated with this application. It is
interesting to see that while back in 2002 port based traffic classification
managed to separate traffic into several protocols, nowadays the vast ma-
jority of traffic is declared as unaccounted-for. Even worse, the classified
traffic is limited only to few protocols, that are mostly HTTP and FTP traffic.

It is clear from the above that traditional network monitoring methods
for determining per-application network usage are not effective anymore
for accurate traffic categorization [29]. Having identified this issue, sev-
eral researchers have conducted significant work towards alternative ways
for network traffic classification. Due to the popularity and high band-
width demands of peer-to-peer file sharing applications, a significant body
of work has focused on the identification and categorization of peer-to-peer
application traffic. Initial approaches used deep packet inspection and ap-
plication signatures for attributing traffic flows to the corresponding appli-
cations [24,34]. Recent approaches identify the applications that generate
the traffic either by deriving statistical models for certain protocols [13] or
by characterizing the behavior of the host generating this traffic [26].

Motivated by the significance of traffic categorization for effective net-
work management and traffic engineering and aiming at gaining a better
understanding of Internet traffic, we have developed appmon, a passive
network monitoring application for accurate per-application traffic identi-
fication and categorization. Appmon uses three different approaches for
attributing flows to the applications that generate them. First, it searches
inside application messages for characteristic application protocol patterns.
For certain applications that dynamically negotiate the ports that are go-
ing to be used, appmon fully decodes the applications protocol to identify
the new, dynamically generated port number and then tracks further traffic

2http://wwwstats.net.wisc.edu/
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flows through these ports. Finally, legacy applications that do not match
above filters are categorized based on well-known port numbers and proto-
cols using BPF filters.

1.2 Contributions

This thesis presents an application for accurate network traffic classifica-
tion. Our application manages to distinguish network traffic by the applica-
tion that generates it and presents the results in an easy to use and manage
web interface. The application is tested both in a testbed and real network
environments, where it appears able to classify traffic in high speeds, even
at 1 Gb/s with specialized hardware. The application has been installed to
more than 15 sensors worldwide and shows stability in its performance and
accuracy in the classification done.

Furthermore, in this thesis, we present real world statistics of network
traffic usage, collected from three academic networks located at three differ-
ent countries. We present the most common applications, classified by the
number of active IP addresses, and the applications that contribute the ma-
jority of the traffic exchanged through the network. Furthermore we explore
the existence of ‘‘elephant’’ IP addresses, that is addresses that exchange a
vast percentage of the total traffic.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 presents the ap-
plication we have developed for accurate per-Application Network Traffic
Classification. It gives the details for of the classification algorithm and the
format we used for presenting the results. Chapter 3 outlines our exper-
imental evaluation both in a controlled environment and in a live sensor
where the application is deployed. Chapter 4 presents statistics from real
network environments, collected with appmon for a period of a few months
from some of our sensors. Chapter 5 presents related work on traffic clas-
sification. Finally Chapter 6 concludes the thesis.
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Chapter 2

Application Design

Appmon passively monitors traffic passing trough a monitored link and
categorizes active network flows (identified by the 5-tuple) according to the
application that generated them. A network flow is defined as a set of IP
packets with the same transport layer protocol, source and destination IP
address, and source and destination port (also known as a 5-tuple). Traffic
categorization is performed using information from both the packet header
and payload.

In this chapter, we present the design of our traffic classification ap-
plication. First we describe the classification algorithm used by appmon.
The algorithm is based on the concept of network flows which tries to cat-
egorize to the application that generated them. Following we describe the
structures we used for storing and displaying traffic statistics

2.1 Classification Algorithm

The classification algorithm operates as follows: appmon processes each
captured network packet sequentially. For each captured packet, it first
checks if the packet belongs to an already categorized network flow. In-
formation about the network flows seen so far is stored into a hash table,
along with information about the matching application. Appmon keeps the
minimal state required in order to reduce the packet processing time. This
allows for a ‘‘fast path’’ processing of subsequent packets of an already

7
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Figure 2.1: Appmon Application Architecture Overview. After capturing and
decoding, packets traverse the classification structures (trackers) which
‘‘colorize’’ the packets according to the application that generated them.
Database and statistics are then updated accordingly.

categorized flow, since they will only result to a look up in the hash ta-
ble for finding the record of the network flow in which they belong, and,
consequently, the matching application, without the need for any further
processing.

Packets that do not have a matching entry in the hash table are passed
down to the next processing level, where each packet is sequentially pro-
cessed by a set of modules called application trackers. Each tracker is
responsible for identifying the traffic of a particular application or protocol.
There are three different types of application trackers, depending on the
traffic classification method: packet inspection trackers, protocol decoding

trackers, and header filtering trackers. Figure 2.1 visualizes the packet flow
through the application structure from the moment it is captured from the
network device.

Packet inspection trackers: Packet inspection trackers are used for
tracking application-level protocols, mainly used in peer-to-peer file shar-
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ing applications such as Gnutella [22] and BitTorrent. Each packet inspec-
tion tracker searches inside packet payloads for characteristic application
messages or binary byte sequences that are used by application proto-
cols. These application messages where selected by extensively reverse-
engineering the network traffic of popular file sharing applications, as well
as by studying the related work on signature-based traffic classification [7,
24,34]. Although pattern matching inside packet payloads is a quite CPU
intensive operation, in most cases the characteristic application patterns,
usually protocol control messages, are present in the first 100 bytes of the
packet payload, and thus the pattern matching is performed only to this
portion of the payload, reducing significantly the processing overhead.

As an example consider the BitTorrent application. For two BitTor-
rent peers to be able to exchange data, they first must perform the protocol
handshake. The handshake starts with number nineteen (decimal) followed
by the string ’BitTorrent protocol’. In our inspection tracker for classifying
BitTorrent traffic, we search the beginning of each packet for number nine-
teen followed by the ’BitTorrent protocol’ string. This is one of the payload
signatures used for BitTorrent classification.

Protocol decoding trackers: Protocol decoding trackers are used for
publicly documented application level protocols that operate through well
known control ports, but use a dynamically assigned ports for data ex-
change. For example, in passive FTP, control messages are exchanged
through port 21, but actual data transfers are made through a dynamically
negotiated port. Protocol decoding trackers operate by fully decoding the
application-level messages exchanged through the well-known control port,
trying to identify the messages related with the negotiation of port numbers
that will be used for future data transfers. When such a message is identi-
fied, the number of the dynamic port is extracted and then the tracker will
correctly classify the new network flow that is going to be used for the data
transfer, since the flow will use this dynamically negotiated port.

Header filtering trackers: If none of the above groups of trackers suc-
ceeds in identifying a given packet, then the packet is passed to the header
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filtering trackers. Filtering trackers classify traffic based on packet header
information such as identifying predefined registered ports [4] and other
protocol information. Filtering trackers are implemented using BPF fil-
ters [27]. As an example the BPF filter ‘‘tcp and (port 80 or port 443)’’ will
classify web traffic, since this are the common ports used by HTTP and
HTTPS respectively.

As we have already discussed, several applications masquerade their
traffic using widely used, firewall-friendly protocols, like HTTP, in order to
bypass firewall restrictions and make identification of their traffic harder.
To avoid potential traffic misclassification due to such tricks, trackers are
prioritized, with packet inspection trackers applied first, then the protocol
decoding trackers, and finally header filtering trackers. When a packet
is matched by a tracker, then it is not processed further by subsequent
trackers. For example, the BitTorrent tracker has higher priority than the
HTTP Web tracker. Thus, the flow of a BitTorrent packet through port 80
will be correctly attributed to the BitTorrent protocol, and not to Web traffic.

If none of the above methods manages to classify the flow in which the
packet belongs, then the packet is temporarily considered as unknown, and
the application waits for more packets of the same flow in order to classify
it.

It is worth mentioning that since most of the application specific pat-
terns are located at the beginning of a flow, the vast majority of the mon-
itored packets will belong to an already active – and thus categorized –
network flow. As a result, expensive deep packet inspection operations are
performed only to a small subset of the traffic, and appmon manages to
process traffic loads of several hundred Mbit/s.

We have implemented tracker functions for the majority of applica-
tion protocols we observe in our monitoring sensors. These tracker func-
tions include widely used Peer-to-Peer protocols, such as BitTorrent [10],
Gnutella [3], DirectConnect [1], eDonkey [2], and also the more common
Internet applications like HTTP, FTP SSH and others. Latest additions
of tracker functions include two streaming P2P application used mostly
in China. These are BlueSky and PPStream [6]. Table 2.1 presents the
currently implemented protocol trackers in appmon. The table contains
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Application Protocols

BitTorrent eDonkey Gnutella
Direct Connect FTP HTTP

Bluesky PPStream SSH
SMTP DNS NetBIOS
RTSP OpenVPN GRID FTP
BDII GRIS

Table 2.1: Application-Level Protocols classified by appmon. These protocols
include the most known client-server protocols and also widely used P2P
protocols, specialized for file sharing and live streaming.

only the application-level protocols, including those used by several popu-
lar traffic-dominating peer-to-peer applications.

2.2 Long-term Statistics

Appmon outputs results for the traffic generated from each protocol every
10 seconds. At every 10 seconds appmon reports the incoming and out-
going traffic rates observed for each protocol during the last measurement
interval. It also reports the 10 most bandwidth consuming IP addresses.
Although this reporting period is configurable through the appmon com-
mand line arguments, there is also the need for long-term statistics of the
traffic distribution among applications. To fulfill this need, we decided to
store appmon results in a database.

Our first approach was to use the high-performance data logging and
graphing system, rrdtool [8]. Rrdtool is used for storing time series data
and is fully appropriate for the data we want to store. Using rrdtool we
manage to store data for the traffic distribution, up to the period of the last
year using day averages.

During the deployment phase of appmon and after discussing with sev-
eral network administrators came the need for more specific data statistics.
We needed a way to answer to more specific questions, like the distribution
of a specific IP/subnet during a certain measurement period, that could be
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a specific day/week/month or even hours of a specific day.
In order to be able to answer these kind of questions we decided to add

extra logging capability to our application. Every one minute we store the
traffic distribution for each distinct active IP address in a separate database.
In this way using the aggregation and retrieval mechanisms offered by the
database we are able to answer to a lot more of questions about the traffic
of a specific network, subnet or IP.

2.3 Graphical User Interface

Appmon reports the classification results through two different user inter-
faces, depending on the requirements of the user. For quick and easy
network monitoring, there is a console-mode version which can report the
results either through a batch text mode printout, or a more user-friendly
ncurses [12] version. For long-term usage, appmon provides a powerful GUI
accessible using any web browser. The following subsections describe the
two different user interfaces.

2.3.1 Web Interface

Appmon reports the per-application traffic distribution through the web in-
terface presented in Figure 2.2. The main page is split into three frames.
The central frame presents a graph of the incoming and outgoing traffic por-
tion of each categorized application with a different color, while any remain-
ing non-categorized traffic is shown in light gray. The topmost/bottommost
line represents the total observed traffic load.

The information of this frame is better viewed in Figure 2.3 which
presents the per-application distribution of the incoming and outgoing traf-
fic at the University of Crete in Greece. The values are expressed in Mb/s,
and the graph is updated every 10 seconds. A detailed per-application
breakdown of the traffic load, for the last updated time-period, is presented
underneath the graph.

The application offers five different time period views of the traffic dis-
tribution. The main view presents the per-application traffic distribution of
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Figure 2.2: Appmons’ Web Interface. The central frame presents the incom-
ing and outgoing per-Application traffic distribution graph, while the right
frame shows the TOP 10 bandwidth consuming IP addresses. The left frame
provides a menu for specific protocol view.

the last hour. Links also exist for the time period of the last three hours,
last day, last week, last month and last year. In this way, one can instantly
observe the time-period of interest and make diurnal observations about
the per-application traffic behavior along several time continuum.

Besides traffic classification, appmon also reports the K top bandwidth
consuming IP addresses. This is done by accumulating the traffic of each
IP address after every packet is categorized at a specific application. In
order to achieve this some extra state is needed. For every protocol we
keep a hash table with all the IP addresses that belong to flows marked
as belonging to this protocols. For every IP address we keep the number
of bytes it transmitted, and the addresses are sorted in descending order
according to the amount of traffic seen so far.

The top bandwidth consuming IP addresses are shown in three tables
in the right frame of the Web interface. The first two tables contain the IP
addresses of the K (10 by default) flows that consumed the largest portion
of bandwidth during the last measurement period. Each record contains



14 CHAPTER 2. APPLICATION DESIGN

Figure 2.3: Per-Application Bandwidth Usage for the last hour as presented
by appmon. Each categorized application is shown with a different color.
The legend also gives the incoming and outgoing traffic rate of the last
measurement interval.
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Figure 2.4: Top 10 incoming traffic IP addresses as presented by appmon.
For each IP the traffic belonging to a specific application is aggregated.

information about the application in which the flow belongs to and the exact
amount of bandwidth that it consumed. The third table presents the same
information at the IP level, which corresponds to the top K IP addresses
that consumed the largest portion of bandwidth irrespective of application.
Figure 2.4 shows an example of how the top 10 IP addresses are presented
through the web interface.

Since information about IP addresses is sensitive and in some cases
it may not be desirable to be exposed, appmon can anonymize all the IP
addresses presented by the Web interface. Address anonymization is per-
formed using prefix-preserving anonymization [40], which preserves subnet
information. A non-anonymized version of the TOP IP address is also avail-
able for view only by authorized personnel using a login procedure.

Finally, the left frame of the Web interface gives the user the ability to
view the traffic of only a selected protocols of interest through a menu with
all available protocols.

2.3.2 Batch text mode interface

Since appmon is a (network) monitoring application one might want to use it
to have instant results in order to solve problems appearing in the network
at the given time, and not be interested in keeping long-term statistics. In
order to fulfill this requirement we provide a second batch mode interface
for appmon results. This console-mode version reports the results either
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Figure 2.5: Appmon ncurses console mode interface. The left frame shows
the traffic rate for each application during the last measurement interval.
The right frame shows the list of TOP 10 incoming and outgoing IP ad-
dresses.

through a batch mode printout, or an ncurses version.
Figure 2.5 shows the ncurses console-mode interface. The left half of

the screen shows the current (updated every 10 seconds) per-application
traffic distribution while the right half shows the TOP K IP addresses.

2.4 Implementation

To be freely available and easy installable, we have implemented appmon

using only a few external libraries. Appmon is build in C language and uses
the libpcap packet capturing library [28], which supports live traffic capture
using standard Ethernet interfaces, as well as DAG cards.

The crucial pattern matching operation within the packet payload is per-
formed using an implementation of the Boyer-Moore [15] string searching
algorithm.

Appmon uses the RRDtool suite [8] for storing measurement data and
graphing the traffic distribution. The Round Robin Database provided by
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RRDtool efficiently stores time-series data for very long periods in very little
space using data aggregation. The database used by appmon has a size
of few megabytes and can store measurements for a period as long as one
year.

The installation of the Web interface requires a web server like Apache
with no extra packages. The results are rendered using simple CGI scripts
and plain html code.

2.4.1 Implementation within the Monitoring API

Appmon can also operate on top of the Monitoring Application Programming
Interface (MAPI) [37]. MAPI is an expressive programming interface for net-
work monitoring that has been developed in the context of the SCAMPI [33]
and LOBSTER [11] Projects. MAPI gives the ability for both local, remote
and distributed monitoring [39] without the need of user access to the re-
mote monitoring sensors.

MAPI is based on the abstraction of a network flow, which gives the
ability to the user to capture all the traffic from a monitoring interface. Then
using the functionality provided by MAPI it can filter out the traffic of its’
interest. MAPI provides a variety of functions; from simple BPF filters and
string searching to regular expression matching and packet anonymization.

The core functionality of Appmon has been implemented as a new MAPI
function library. The Tracker MAPI function library (trackflib) provides
implementation of the packet inspection and decoding tracker functions de-
scribed in Section 2.1 inside the Monitoring API. A description of all avail-
able tracker functions implemented in trackflib is presented in Appendix
C.

For each application protocol, appmon creates a new network flow and
applies the appropriate function from the trackflib library. It then ap-
plies a BYTE_COUNTER function and retrieves the results needed for visu-
alization to take place. Appmon also makes use of the TOP function of MAPI
to find the top bandwidth-consuming IP addresses for each protocol. The
TOP function is located in extraflib library.

The following pseudo-code shows how a typical MAPI flow created by
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appmon looks like.

1 /* **********************************************
2 * This sample MAPI program monitors a network
3 * interface for Gnutella traffic, measures the
4 * transfered bytes and sorts IP addresses by
5 * the amount of Gnutella traffic they exchanged.
6 ************************************************/
7
8 /* Create the monitoring flow. This flow captures all the
9 * traffic from the regular nic interface ‘‘eth1’’.

10 * A flow consists of a change of functions where each
11 * packet is passed to the next applied function if it
12 * satisfies the condition of its’ previous function.
13 */
14 fd = mapi_create_flow("remote.sensor:eth1");
15
16 /* Apply the tracker function for gnutella.
17 * If a packet is classified to be originated by
18 * a Gnutella application is then passed to the
19 * next function; else it is discarded.
20 */
21 mapi_apply_function(fd, "TRACK_GNUTELLA");
22
23 /* Apply byte counter function. This function
24 * aggregates the number of bytes for the packets
25 * provided to it. Since only Gnutella packets are
26 * passed to this function (from the previous one)
27 * it aggregates all Gnutella traffic seen in ‘‘eth1’’
28 */
29 fid = mapi_apply_function(fd, "BYTE_COUNTER");
30
31 /* Apply the TOP function. For each unique source IP address
32 * it counts the bytes it transfered into the network. Again
33 * it receives only Gnutella packets.
34 */
35 top_fid = mapi_apply_function(fd, "TOP",
36 10, TOPX_IP, TOPX_IP_SRC_IP, SORT_BY_BYTES, 0);
37
38 while(1) {
39 /* read results every 1 second */
40 sleep(1);
41
42 /* Read the current value of the BYTE_COUNTER function */
43 res = mapi_read_results(fd, fid);
44
45 /* Read the current TOP list of IP addresses */
46 res = mapi_read_results(fd, top_fid);
47
48 /* report results */
49 }



Chapter 3

Experimental Evaluation

In these chapter we present an experimental evaluation of appmon appli-
cation. The evaluation is based on three directions. First we examine the
performance of our application on a controlled environment (Section 3.1).
Following we present performance results observed while the application
was running on some of our sensors monitoring real live traffic (Section 3.2).
Finally we present some tests done to assess the number of false positives
reported by the application (Section 3.3).

3.1 Performance

Our first experiment aims at exploring the performance of our application.
We used a local testbed consisting of three PCs connected to a gigabit
switch, as shown in Figure 3.1. The ‘‘Sender’’ PC generates traffic destined
to the ‘‘Receiver’’ PC using the nttcp [5] tool. The traffic from both hosts is
mirrored to the third monitoring machine which is running appmon.

The configuration of the measurement machine is as follows. We used
an Intel Xeon 2.4 MHz, with 512 KB cache and 512 MB memory. The
Operating System was Debian Linux with 2.6.15 kernel version. Two kinds
of network interfaces were used. A regular Gigabit Ethernet interface (NIC),
and a specialized DAG 4.3GE packet capturing card [12].

It is important to mention that nttcp produces artificial traffic by filling
the packet payload with random bytes. This is a worst-case traffic load

19
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Figure 3.1: The testbed environment used for the performance measure-
ments. Appmon runs on a separate machine and traffic created by two
different machines is mirrored to the network device monitored by the ap-
plication.

Figure 3.2: CPU usage of appmon when tested with various traffic rates

for appmon since none of the packets matches any of the monitored proto-
cols. Thus, every packet passes through the ‘‘slow’’ processing path, going
through all tracker functions, since none of the packets has a matching
entry in the hash table, and none of the trackers is able to find a matching
packet.

We stressed appmon by sending traffic in various speeds. Figure 3.2
shows the results for both NIC and DAG interfaces. As Figure 3.2 implies
appmon can process up to 500 Mbit/s without any packet loss when run-
ning on a regular NIC interface, while it is able to process all 900 Mbit/s
when running on top of the DAG card. The results imply that the application
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Figure 3.3: Appmon CPU Load Vs. Traffic Load while running on a live
monitoring sensor at University of Crete for a period of four days. Each
point corresponds to a five minute interval.

can fully monitor a Gigabit link using a DAG card.

3.2 Real World Experiments

Despite the encouraging results about the performance of appmon when
running on a controlled testbed environment, we wanted to see how the ap-
plication will behavior in a real network monitoring environment. Aiming at
verifying the performance results of the previous section, we deployed app-

mon in several sensors monitoring various amounts of traffic and measured
the performance of the application in terms of cpu usage.

Appmon was running on a sensor at the University of Crete, monitoring
the incoming and outgoing traffic from the campus to the Internet. The
monitoring machine was an Intel Xeon 3.2GHz, with 2MB cache memory
and 1GB main memory, running a Debian Linux, kernel version 2.6.15.
The traffic is captured using a DAG 4.2GE passive monitoring card. Along
with the traffic load reported by the application, we measured the CPU load
of the machine. A new measurement result was produced every 5 minutes
for a measurement period of four days.

Figure 3.3 presents the CPU load (y-axis) of the monitoring sensor as
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a function of the monitored traffic load (x-axis). Each point corresponds
to a five minute interval, computed as the average of the measurements
performed every 10 seconds in that interval. The measurement period was
four days. Appmon has a steady behavior, since the CPU load increases as
the traffic load increases. Some corner cases in which the load is increased
significantly while the traffic load is low are probably caused due to the
almost simultaneous arrival of many new traffic flows that have not yet
been categorized.

3.2.1 Comparison with port classification

One of the motivations for this work was that port-based traffic classifica-
tion is not enough nowadays. It is not able to identify the application that
originated the traffic, since most of the applications do not use a predefined
standard port. Among appmons’ goals was to overcome the limitations of
port-based classification and manage to ‘‘colorize’’ the traffic distribution.
Figure 3.4 shows the fulfillment of this goal. We deployed a version of mod-
ified version of appmon monitoring traffic from collected from SEEREN [9]
beneficiary countries , running in parallel with the original appmon appli-
cation. In this modified version of appmon we have replaced the Packet
Inspection and Protocol Decoding tracker functions with simple BPF filters
for the default port(s) of the corresponding applications, as these are re-
ported from applications’ documentation. Figure 3.4(b) shows the traffic
classification we would have if only port classification was used. As we
can see only a small portion of the traffic is classified while about 90% re-
mains unclassified. On the other hand using appmons’ functionality the
unclassified traffic limits to 30%. Figure 3.4(a) shows the ‘‘colorized’’ traffic
distribution that is produced by appmons’ classification algorithm. As we
can see, using appmon the classified traffic for BitTorrent and eDonkey has
increased and traffic from other protocols, like Direct Connect and Gnutella,
not classified by the port-based classification, has been identified.
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(a) Appmon Classification (b) Port-based Classification

Figure 3.4: Appmon Classification Vs. Port-based Classification. Port-
based classification is not enough nowadays.

3.3 False Positives

For the appmon application we define as false positives the flows that belong
to a different protocol than the one categorized by appmon. We limit our
evaluation regarding false positives only to the heavy tracker functions.
Those are the trackers for following P2P protocols (Bittorrent, Gnutella,
DirectConnect, eDonkey, Bluesky and PPStream) and for the FTP protocol.
These tracker functions are the ones searching for specific protocol strings
in the packet payload.

As a first step we used three HTTP traces. The traces were captured
on a machine monitoring the traffic of the ICS-FORTH Web Server and
contain only the traffic originating and designating to the web server. Since
the traffic on the traces is explicitly HTTP we do not expect to have any
matching entries for other protocols. We passed the traces through each
tracker function separately and also through the application as it would be
run in a monitoring environment, with all trackers enabled. As expected
none of the trackers reported any categorized traffic for any of the traces.
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As a second step we used some application specific traces collected by
capturing traffic on a host running the application of interest. We used
traces captured from BitTorrent, Gnutella, eDonkey, DirectConnect and
FTP applications. Before we proceed we have to make clear that these
traces were not used during the signature creating procedure and were not
used for calibrating appmon classification accuracy. This process was done
before with different traces and these traces are used only for exposing false
positives.

We passed these traces through the same appmon tracker functions
mention in the previous paragraphs and look for traffic misclassification.
The only tracker that reported classified traffic was the tracker for the cor-
responding application the traces was created from. None of the other
trackers reported any traffic.

In both cases, using web traces and application specific traces, appmon

did not exposed any false positive. Although we expect to have a small per-
centage of false positives when the application is deployed in real networks.
Though, we did our best during the development period to assure that the
signatures used where only present in traffic of their corresponding protocol
and eliminated signatures that where prone in creating false positives. Nev-
ertheless this result assures us that our application will accurate categorize
traffic and would not export any misleading classification results.

3.4 Evaluation Remarks

In this chapter we evaluated our application in terms of performance and
classification accuracy. From our controlled performance measurements
we can see that appmon can classify traffic without any problems up to 500
Mb/s using a regular NIC, while it reaches Gigabit speeds when using a
specialized DAG interface.

When used on a real network, appmon did not encounter any prob-
lems, and was able to to classify the monitored traffic without stressing the
monitoring machine.

Finally the accuracy of appmon is explored by using some HTTP and
application specific traces. In all cases appmon categorized traffic to the
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corresponding application without any miss-classifications.
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Chapter 4

Real World Observations

Among the world-wide appmon sensors, and through the cooperation of
two projects, Lobster [11] and Seeren [9], we have established a sensor
monitoring the network of three institutions; The Academic & Research

Network of Serbia and Montenegro (AMRES), the Macedonian Academic &

Research Network (MARNET) and the Montenegro Research & Education

Network (MREN). The sensor is monitoring a total of 152320 IP addresses,
using appmon. The database feature of our application was used. Every
minute we log into the database the traffic volume created by each IP ad-
dress. In order to reduce the space requirements we keep records only for
the active IP addresses in each measurement time interval.

In the analysis of this Chapter, we illustrate some observations extracted
from the data during a measurement period of two months. Apart from the
traffic distribution we present data for the number of IP addresses partic-
ipating in an ‘‘application network’’. We also try to quantify whether the
traffic volumes observed are produced equally by all the IP addresses and if
the concept of ‘‘mice and elephants’’ is present in the different protocols.

4.1 Data Description

The data presented in this document were selected for a period of two
months, from July 06/2007 15:00 to September 07/2007 20:10. Dur-
ing this period appmon processed about 63 Terra-bytes of data, originated

27
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TBytes
Received

TBytes
Trans-
fered

Total IP
Range

Incoming
Active
IPs

Outgoing
Active
IPs

Total 17.2 46.2 152320 150957 13933
AMRES 10.5 32.9 139776 138865 10506
MARNET 5.1 12.0 8448 7996 1873
MREN 1.6 1.2 4096 4096 1554

Table 4.1: Number of Incoming and Outgoing traffic observed during the
measurement period and number of monitored and active IP addresses

from about 150000 IP addresses. Table 4.1 summarizes the data received
and transfered from each network during the measurement period and also
gives the number of IP addresses monitored and the number of active IP
addresses.

Appmon does not keep any information about the packets exchanged.
For each IP address it stores into the database the incoming and outgoing
traffic rate experienced in the last measurement interval (1 minute in this
case). For each of these IP addresses an analysis of which application
protocol originated the traffic is also kept in the database. Extra information
about the network flows, like the duration and participating host is not kept.

4.2 Traffic Distribution

Figures 4.1 and 4.2 show the per application distribution of incoming and
outgoing traffic, respectively, for each of the three organizations separately.
For the first month results are only present for the P2P protocols due to a
collection problem we had and overcame afterward. We plot the different
protocols using stacked areas, that is the contribution of each protocol is
given by getting the difference with the previous protocol. The black line
shows the total IP traffic rate. The order that the protocols are presented
can be found by following the legend.

As we see BitTorrent and HTTP are the most traffic consuming protocols
followed by eDonkey. Other protocols contribute only a small percentage
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Figure 4.1: Per Application Incoming Traffic distribution for each of the
three organizations during the measurement period

in the traffic distribution. In both AMRES and MARNET networks outgoing
traffic is observed in larger rates (some times even doubled) than incoming
traffic. Also, the two main traffic contributing P2P protocols (Bittorent and
eDonkey) are responsible for a greater portion of the outgoing traffic than
for the incoming traffic. This can be explained by the fact that a user of the
application contributes to the protocol for the whole time it is connected
to the application network, by seeding other users, even if she does not
receives any data at the time.

4.3 Active IP Addresses

In this section we study the percentage of active IP addresses for both in-
coming and outgoing traffic on the three monitored networks. An IP address
is characterized as active if it received or transmitted traffic for at least one
time interval during the whole measurement period.

Figure 4.3 shows the number of active IP addresses for each organization
separately. The red line shows IP addresses that had incoming traffic, while
the green line presents addresses that produced outgoing traffic. As we
can see the number of active incoming IP addresses is, at least, an order
of magnitude larger than the number of active outgoing IP addresses. We
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Figure 4.2: Per Application Outgoing Traffic distribution for each of the
three organizations during the measurement period

believe the large difference in the number of active IP addresses concerning
incoming and outgoing traffic to be due to a large portion of scans and/or
backscatter traffic.

Figure 4.4 shows the percentage of IP addresses that where active for
each separate application during the measurement period. As we can see
from the plots, common protocols (HTTP, MAIL, FTP, NetBIOS, SSH) have
a high percentage of incoming active IP addresses (Fig. 4.4(a)). Since the
percentages are not the analogous in the case of outgoing active IP ad-
dresses, we suspect that these high percentages are due to scanning probes
or backscatter traffic. From both figures we can see that WEB, MAIL and
FTP are the most common protocols regarding usage from distinct IP ad-
dress, while among the Peer-to-Peer Protocols BitTorrent seems to be the
most used protocol, followed by eDonkey. On the other hand, by looking
at Figures 4.1 and 4.2, we see that the P2P applications contribute a vast
amount of the traffic generated and received compared to the most popular
protocols. This result comes comes to fulfill our forthcoming analysis that
a small percentage of IP addresses is responsible for the vast majority of
traffic.
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Figure 4.3: Active IP Addresses for each of the three networks. The red line
shows Incoming Active IP addresses and red line give Outgoing Active IPs.
The large difference in the Incoming versus Outgoing Active IP addresses is
believed to be due to scanning activities or backscatter traffic
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Figure 4.4: Per-Application Percentage of Active IP Addresses. Client-Server
protocols are used by the majority of IP Addresses while Peer-to-Peer proto-
cols appear to be used by 20-40% of the IP Addresses
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Figure 4.5: Percentage of traffic received by each unique IP address (red
bars). The (green) line gives the cumulative percentage of traffic while the
number of IP addresses increases.

4.4 ‘‘Elephants’’ in Traffic Contribution

In this section we look at the traffic from the granularity of an IP address.
We explore whether the contribution of each IP address, as a function of the
total traffic distribution, is similar to the other IP addresses. The results we
get is that for most of the protocols a very small portion of the IP Addresses
contributes the majority of the traffic while the rest generate only a small
percentage.

Figure 4.5 shows the number of bytes received from each IP address as a
percentage of the total incoming traffic transfered during our measurement
period. The X axis presents the number of distinct IP address in descending
order, with the IP that transfered the larger amount of bytes as number 1.
The (red) bars present the percentage of traffic received by each unique IP
addresses, while the (green) line gives the total percentage of traffic received
as the number of IP addresses increases. We noticed incoming traffic pres-
ence for 150957 distinct IP addresses for the whole network. About 91.99%
(138865) of these IP addresses belong to the AMRES Network, 2.71% (4096)
belong to MREN Network and 5.31% (7996) to the MARNET Network. The
first IP, which is the IP address that transfered the largest amount of traffic,
accounts for about 19.55% of the whole number of bytes transfered, while
the first 50 IP addresses (that is 0.033% of the total number of distinct IPs)
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(c) MARNET

Figure 4.6: Percentage of traffic transfered by each unique IP address (red
bars). The (green) line gives the cumulative percentage of traffic while the
number of IP addresses increases.

cumulatively account for nearly the 65% of the total number of bytes.

For the AMRES network the TOP IP addresses contributes the 32% of
the traffic while the first 50 (0.036%) IP addresses accept the 83.23% of the
incoming bytes. In the case of the MREN network ‘‘elephants’’ contribute
a large portion of the total incoming traffic since 87.3% is received by 50
(1.2%) IP adresses; while the top IP address receives 17.04%. Finally, in the
case of MARNET Network the first IP address receives about 6.65%, while
the first 50 (0.63%) IP addresses account for the 74.87% of the incoming
traffic.

Figure 4.6 shows the outgoing traffic per IP for the three organiza-
tions separately. Outgoing traffic was produced from 13933 distinct IP
addresses. 75.4% (10506) of these IP addresses belongs to the AMRES
Network, 11.15% (1554) to the MREN Network and 12.44% (1873) to the
MARNET Network. The top IP address outputs about 8.41% of the total
traffic, while the top 50 IP addresses (0.36%) account for 65.77% of the
total traffic.

Looking at each organization separately we see that for the AMRES
Network the top IP address transfers 11.8% of the networks’ outgoing traffic,
while the first 50 (0.48%) IP addresses output 72.7% of the traffic. For
the MREN Network 94.3% of the traffic is originated from 50 (3.22%) IP
addresses and the top ranked IP address outputs 11.36%. Finally, in the



34 CHAPTER 4. REAL WORLD OBSERVATIONS

% of Traffic
50 60 70 80 90 100

%
 o

f 
IP

 A
d
d
re

ss
e
s

0.1

1

5

10

20

30
40
50

AMRES
MREN
MARNET

(a) Incoming Traffic

% of Traffic
50 60 70 80 90 100

%
 o

f 
IP

 A
d
d
re

ss
e
s

0.1

1

5

10

20
AMRES
MREN
MARNET

(b) Outgoing Traffic

Figure 4.7: Percentage of IP addresses that contribute the corresponding
percentage of incoming (4.7(a)) and outgoing (4.7(b)) traffic

case of the MARNET organization number 1 IP address contributes the
18.42% of the traffic while the 50 (2.67%) first IPs accounts for the 92.3%
of the traffic.

To have a better view of the observation done in the previous paragraphs,
we decided to examine what percentage of the IP addresses is responsible
for what percentage of the traffic. In Figure 4.7 we plot the number of IP
addresses (as a percentage of the total active IP address) that contributed
the 50% - 99.9% percent of the traffic bytes received (Fig. 4.7(a)) or trans-
mitted (Fig. 4.7(b)). The results extracted from the figures are impressive.
For both MREN and MARNET networks the 80% of Incoming and Outgoing
traffic is received (transfered) from less than 1.0% of the IP addresses. In
the case of the AMRES network this percentage is even smaller, especially
for the incoming traffic where 99% of the traffic is received by 0.3% of the IP
addresses. A large increase in the IP percentage is observed when moving
from 99.0% of the traffic to 99.9%; where the contributing IP addresses are
up to 8 times more. This indicates that the majority of the IPs transfer a
very small number of bytes in compare with the top IP addresses.

In the same concept, Figure 4.8 analyzes the relationship between IP
address percentage and traffic percentage in a per-Application basis. We
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use the sum from the three networks for the traffic portion given in these
figures. The left bar group in each sub-figure shows IP percentage for
incoming traffic and the right one for outgoing traffic. We choose to show
the relationship for only three traffic percentage; the two edge cases of our
analysis, 50% and 99.9%, and the active IP addresses for 90% of traffic. The
last value is chosen since we observe the largest change in the percentage
of active IP address. From 50 to 90 percent the number of IPs contributing
to the traffic experiences only small increases.

With an exception from the Netbios Incoming traffic; where about 5%
of the IPs are responsible for the 50% of the traffic; for all other protocols
we have portions smaller than 2% of the IP addresses (Fig. 4.8(a)). For the
most used protocols (HTTP, FTP, BitTorrent and eDonkey) the 50% of the
traffic is produced by about 0.1% of the IP address, with an exception for
BitTorrent where 0.3% of the IPs are responsible for this amount of traffic.

For all the protocols the 99.9% of the traffic is always produced by
less than 60% of the IP addresses (Fig. 4.8(c)). Particularly, for BitTorrent,
eDonkey and FTP this amount of outgoing traffic is produces by about 14
– 18%, while the corresponding percentage for HTTP traffic is 30%. On the
other hand incoming traffic is produced by about 3.5% of the IP addresses
for HTTP and BitTorrent, while for FTP just the 0.45% is responsible this
traffic.

The results from this section show the existence of ‘‘elephant’’ IP ad-
dresses corresponding to network traffic usage in all the protocols we are
able to classify with appmon. The vast majority of the IP addresses has
a very small participation in the applications’ network traffic. This might
be due to limited usage of the application, inconsistent application caches
(that is a host that previously participated in the application network has
now a different IP address and other host prompt for it), or attack traffic.

4.4.1 Incoming Versus Outgoing Traffic

An interesting question is whether the IP addresses that contribute the
most traffic are symmetric. That is, if they have the same contribution
both for incoming and outgoing traffic. Figure 4.9(a) plots the relationship
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Figure 4.8: Per-Application Traffic Vs. Active IP addresses. Figure shows
the percentage of IP addresses that contributes to the respective portion of
traffic. The left group of bars shows results for Incoming traffic and the
right one those from Outgoing traffic

between incoming and outgoing percentage for the top 50 incoming traffic
IP addresses, for each of the monitored networks. Note that the plot is
cumulative, that is the percentage transferred from each IP address is the
value shown by the corresponding symbol minus the value shown by the
preceding symbol. As we can see the portion of traffic transfered by each
IP address is not analogous to the traffic received by the same IP address.
If we look at the rank that each of the incoming traffic top IPs has in the
outgoing traffic distribution we see that only 14 out of 50 IP address are in
the TOP 50 of the outgoing traffic rank in the case of the AMRES network
(and only 6 in the top 10). In the case of MREN and MARNET the results are
different since 38 out of 50 IP addresses are in both incoming and outgoing
high ranks, in the case of MREN and 32 out of 50 for MARNET network.

Figure 4.9(b) plot the relationship between outgoing and incoming traffic
percentage for the top 50 outgoing traffic IP addresses. The results are
similar to the case of the incoming traffic top 50 in-out relationship.
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Figure 4.9: Incoming and Outgoing traffic percentage for the top 50 Incom-
ing traffic IP addresses. Symbols are cumulative (actual traffic of an IP is
the difference of the corresponding symbol from the preceding one). Figures
shows that only a few IP addresses have both large incoming and outgoing
traffic percentage, while most upload a dis-analogous number of bytes as it
compares with the bytes they download.
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4.5 Summary

In this chapter we presented a large scale analysis of network traffic data
for a period of two months from three academic institutions located in three
different countries. The observations from this analysis show HTTP, Bit-
Torrent and eDonkey to be the three protocols contributing to the most to
the traffic rates observed. HTTP is still the most used protocol since it has
the larger number of active IP address. On the other hand, although not so
popular (in terms of active IP addresses) BitTorrent and eDonkey produce
a larger portion of traffic.

We identified the existence of ‘‘elephant’’ IP addresses in all the protocols.
A small portion of IP addresses is responsible for most of the traffic while
the vast majority of IPs is limited to only a small portion of the total traffic
exchanged.



Chapter 5

Related Work

Although the research community has given great interest in traffic clas-
sification the late years, there does not exist a free application that accu-
rately classifies network traffic. Most of the network administrators use
the MRTG [31] application that monitors SNMP network devices and shows
how much traffic has passed through each interface. MRTG is a useful tool
for capturing traffic outbreaks but does not give any information about the
application that generated the traffic. FlowScan [32] analyzes and reports
on Internet Protocol flow data exported by routers. Flowscan provides clas-
sification only for well-known services by using port-based classification
and such cannot accurately categorize traffic belonging to protocols that
use dynamic port numbers.

Several researchers have conducted significant work towards alternative
ways for network traffic classification. Due to the popularity and high band-
width demands of peer-to-peer file sharing applications, a significant body
of work has focused on the identification and categorization of peer-to-peer
application traffic. Authors in [29] and [24] identified the inaccuracy of port-
based classification, by comparing it with a payload based classifiers. Both
papers use packet payload signatures for classifying traffic. Approaches
presented in [23,34] use deep packet inspection and application signatures
for attributing traffic flows to the corresponding applications. Some of the
signatures presented in these papers where also used by our tool, others
where refined and new ones where created.
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Recent approaches try to identify the applications that generate the
traffic by not looking at the packet payload, but only at the transport
layer [17,25] or the statistical characteristics of the network flow, like packet
sizes and Round Trip Times [13,18,19,41]. A different approach presented
by Karagianis et. al. at [26] tries to classify traffic by characterizing the
behavior of the host generating this traffic. Though promising, work has
still to be done for these approaches to be able to classify and present the
traffic distribution in real time.

Traffic analysis has always been of interest for the networking research
community. In the analysis provided by [20], the authors also find HTTP
to be the dominant client-server application. Sen in [35] and Gerber et.
al. in [21] also show that the majority of traffic is generated by small per-
centages of the total IP addresses. The most popular P2P protocol vary
according to the region and time of the study.



Chapter 6

Conclusions and Future Work

This thesis presents appmon, an application for real time per-application
network traffic categorization. The main goal of the application is to visu-
alize the network traffic usage in order to help in effectively monitoring the
network traffic usage. Appmon uses a large set of protocol trackers for the
classification of traffic from many emerging applications, while its module
design allows for the easy addition of more protocol trackers in the future.

Through our experimental evaluation we show that appmon is able to
categorize traffic in speeds that reach 1 Gbit/s, using specialized network
hardware and up to 500 Mb/s using commodity network interfaces. Also
when deployed in a real network monitoring environment, appmon behaves
steadily and presents no problems even in high traffic speeds. Though we
expect to have a very small percentage of false positives on real network
monitoring circumstances, we show that using application specific traces
no false positives wheres reported for our classification structures.

Appmon overcomes port-based traffic classification methods, and through
its structure is able to identify applications that masquerade their traffic
through well-known port numbers; i.e. BitTorrent traffic over HTTPs’ port
80.

Furthermore we present a large scale analysis of network traffic data for
a period of two months from three academic institutions located in three
different countries. The observations from this analysis show HTTP, Bit-
Torrent and eDonkey to be the three protocols contributing to the most to

41
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the traffic rates observed. HTTP is still the most used protocol since it has
the larger number of active IP address. On the other hand, although not so
popular (in terms of active IP addresses) BitTorrent and eDonkey produce
a larger portion of traffic.

We also identify the existence of ‘‘elephant’’ IP addresses in all the pro-
tocols. A small portion of IP addresses is responsible for most of the traffic
while the vast majority of IPs is limited to only a small portion of the total
traffic exchanged.

An initial goal of our study was to classify as much traffic as possible and
build classification functions for a large number of application protocols.
This proved to be a difficult task, since in real world exist applications
we where not aware off. An example of these applications were Bluesky
and PPSstream, two P2P streaming applications used mainly in China. We
became aware of these applications only when we installed a monitoring
sensor in Singapore. The process, followed by appmon, for creating an
application tracker function is manual. Since we identify unknown traffic
in one of our sensors we capture the traffic and try to isolate the flows
responsible for this traffic; by excluding all known traffic. Then we look at
the packets of each of those flows, and try to extract a payload signature that
will identify the traffic. If succeeded, the signature will be tested for false
positives using known protocol traces and eventually added to appmon. As
described the process of extracting new signatures is 100% manual and
time consuming. To minimize the time needed for this process we plan to
look at automated or semi-automated signature generation algorithms that
would inform the sensors administrator (and if the organizations policy
accepts it, us), for the existence of a new application protocol that needs its’
attention in order to be added to the classified protocols.

One of the limitations of our application is the inability to classify en-
crypted traffic. With several ‘‘bandwidth-hungry’’ applications increasingly
trying to make their traffic difficult to detect, the use of encrypted traffic is
expected to overcome plain text traffic. In order to address this problem,
we plan to explore whether non payload traffic classification methods can
be used to identify and classify network traffic. Since the payload is en-
crypted, signature-based classification methods can not be used. Having
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this in mind we plan to explore flow inspection methods for classifying the
traffic. By flow inspection we mean methods that try to extract common
properties among flows of the same application protocol. This properties
may vary from packets sizes, round trip times (RTT), to traffic rates expe-
rienced by the flows. Work in this field, not limited in encrypted traffic
classification, has be done by [14,30], but none of these approaches is able
to classify and report traffic in real time; functionality that would enable
network administrators to take action by prioritizing the flows.

Another critical issue, that needs to be addresses in the future, is the
use of tunneling. That is multiplexing several applications over a single
NetFlow. For example a user, in order to traverse a traffic shaping policy,
may encapsulate traffic shaped protocols, such as BitTorrent and eDonkey,
inside a commonly allowed protocol such as SSH. In this case to classify
traffic correctly, we need to distinguish the different protocol encapsulated
in the SSH traffic. This is a very difficult task but worth been explored.
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Appendix A

Appmon Installation and

Configuration Instructions

Appmon is a tool build over the Packet Capture Library (libpcap). It monitors
the traffic of a network and tries to identify application specific patterns
inside network packets. In this way it manages to categorize traffic into the
application it belongs to.

This is a preliminary version of appmon so it does not come with any
configure scripts.

In order to compile you first need to install:

libpcap0.8-dev

librrd2-dev

libncurses5-dev

Appmon can be run in three different modes:

1 With simple text output

./appmon -w -d eth0 net

2 With ncurses output

./appmon -d eth0 net

3 Exporting a web interface

45
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./appmon -c -d eth0 net

In order to configure appmon with a web interface you need to install
apache and rrdtool.

To setup appmon files simply run the provided script:

./setupdirs <path_to_public\_dir>

eg:

./setupdirs /home/me/public\_html

The script will create all the necessary directories and links.
You also need to configure the apache web server to execute the cgi files

in appmons’ specified directory. To do this add the following lines to your
http.conf file

<Directory /home/*/public\_html/appmon/cgi-bin>

Options +ExecCGI

SetHandler cgi-script

</Directory>

and uncomment the following line in order to activate the cgi handler

AddHandler cgi-script .cgi .sh .pl

A.1 Database Installation and Configuration

To use the database logging functionality offered by appmon you first need
to install postgres SQL database.

postgresql-8.1

The communication with the database is done using some simple perl

scripts. For them to function properly the following packages are needed:

libpg-perl

postgresql-plperl-8.1

install libdbd-pg-perl
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The first step, after installing the needed packages, is to create the
appmon database user, who will add and retrieve data from the database.

Create the database user:

sudo su postgres -c ’createuser appmon’

You will be prompt with the next question:

Shall the new role be a superuser? (y/n)

Answer YES(y) since the appmon db-user must be a superuser in order to
copy files into the database.

Add some configuration for the user, so he can connect to the database

edit /etc/postgresql/8.1/main/pg_hba.conf

and add the following line

local all appmon md5

This will allow the db-user appmon to access the database locally.

Then we need to create the database for appmon and create the needed
tables to it. The tables are created using the script create_appmondb.sql

provided with appmon. You need to run the following.

createdb -O appmon -U appmon appmon

psql -U appmon -f create_appmondb.sql

Now that the database and the user for appmon are created the fi-
nal step is to set a cron job that will collect the data exported by appmon

into the database. Add the following line to your cron configuration file
(/etc/crontab):

*/5 * * * * root /path/to/appmon/appmon-sa/php/collect_data.pl

The script will be run every 5 minutes.
Now you are ready to run appmon with the -b and -c command line

options in order to start exporting data for the database (-b) and create the
necessary web pages for viewing the results (-c).
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Appendix B

Appmon Manual Page

NAME

appmon - Per-Application Network Traffic Classification Tool

SYNOPSIS

appmon [-hvVwcstb] [-d device] [-r file] [-i num] [-l file] [-n string] [-u num]
[ expression ]

DESCRIPTION

Appmon passively monitors traffic passing trough a monitored link and
categorizes active network flows (identified by the 5-tuple) according to the
application that generated them. A network flow is defined as a set of
IP packets with the same protocol, source and destination IP address, and
source and destination port (also known as a 5-tuple). Traffic categorization
is performed using information from both the packet header and payload.

OPTIONS

-h display a short help text.
-d use the given network device instead of eth0.
-r file

read from tcpdump formated file instead of live traffic.
-i num

time in seconds for exporting the results (default: 10 sec).
-v verbose output.
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-n string

Give the monitor name to be displayed in the web-page.
-w Use simple batch format instead of ncurses.
-u num

time in seconds to reset the top bandwidth consuming IPs structs (de-
fault: 100 sec). This is done to avoid classifying as TOP an IP address that
transfered a large amount of bytes in the past but is not that active in the
present.

-c Create and update web-pages instead of using ncurses output.
-t Do not collect data for the TOP IP addresses.
-V Verbose output for the RRD Traffic distribution graph.
-s Print total traffic statistics when program ends.
-b Output files for logging data in a database.

EXAMPLES

Run with simple text output separating incoming/outgoing traffic to/from
192.0.0.1

./appmon -w -d eth0 192.0.0.1

Run with ncurses output, reading from tcpdump trace tracefile.pcap sepa-
rating incoming/outgoing traffic to/from 10.0/16 subnet

./appmon -r tracefile.pcap 10.0/16

Run with web interface for network device /dev/dag0

./appmon -c -d /dev/dag0

AUTHOR

Demetres Antoniades (danton@ics.forth.gr)

SEE ALSO

pcap(3) bpf(4) tcpdump(8)
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Monitoring API Tracker

Library

The Tracker MAPI function library (trackflib) provides a set of prede-
fined functions for per-application traffic monitoring, even for hard-to-track
applications that use dynamically negotiated ports or use existing protocols
and port numbers (e.g., non-web traffic using HTTP through port 80) to
masquerade their traffic.

Each tracker function scans the network traffic for packets that belong
to some specific application-level protocols. If such a packet is found, then
the traffic of the flow in which the packet belongs to is attributed to the
identified application. All tracker functions operate as network filters, for
example in a similar way to the BPF_FILTER function. Thus, applying a
tracker function to a network flow will result to capturing only the traffic
of the particular application. For example, a network flow on which the
TRACK_GNUTELLA function has been applied, will receive only traffic that
belongs to Gnutella P2P file sharing applications.

A detailed description and evaluation of the Tracker MAPI function li-
brary (trackflib) is presented in [38].

TRACK_FTP The TRACK_FTP function, when applied to a network flow,
filters the network traffic by keeping only packets that belong to the FTP
protocol. The function supports both active and passive FTP modes.
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TRACK_DC The TRACK_DC function, when applied to a network flow, fil-
ters the network traffic by keeping only packets that belong to the DC++ file
sharing application/protocol.

TRACK_GNUTELLA The TRACK_GNUTELLA function, when applied to a
network flow, filters the network traffic by keeping only packets that belong
to the Gnutella file sharing application/protocol.

TRACK_EDONKEY The TRACK_EDONKEY function, when applied to a
network flow, filters the network traffic by keeping only packets that be-
long to the eDonkey file sharing application/protocol.

TRACK_TORRENT The TRACK_TORRENT function, when applied to a net-
work flow, filters the network traffic by keeping only packets that belong to
the BitTorrent file sharing protocol.

TRACK_GRID_FTP The TRACK_GRID_FTP function, when applied to a
network flow, filters the network traffic by keeping only packets that belong
to the File Transfer Protocol used by GRID systems.
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