
Computer Science Department
University of Crete

Design and Evaluation of a Task-based Parallel H.264 Video
Encoder for the Cell Processor

Master’s Thesis

Michail Alvanos

June 2010

Heraklion, Greece

University of Crete
Computer Science Department

Design and Evaluation of a Task-based Parallel H.264 Video Encoder
for the Cell Processor

Thesis submitted by
Michail Alvanos

in partial fulfillment of the requirements for the
Master of Science degree in Computer Science

THESIS APPROVAL

Author:
Michail Alvanos

Committee approvals:
Angelos Bilas
Associate Professor, Thesis Supervisor

Dimitrios S. Nikolopoulos
Associate Professor

Manolis G.H. Katevenis
Professor

Departmental approval:
Panos Trahanias
Professor, Director of Graduate Studies

Heraklion, June 2010

Abstract

Modern multi-core processors with explicitly managed local memories, such as
the Cell Broadband Engine (Cell) constitute in many ways a significant departure
from traditional high performance CPU designs. Such CPUs, on one hand bear the
potential of higher performance in certain application domains and on the other
hand require extensive application modifications.

We design and implement x264, a complete H.264 video encoder for the Cell
processor, based on an open source H.264 library, c264 . Our implementation
achieves speedups of 4.5x on six synergistic processing elements (SPEs), compared
to the serial version running on the power processing element (PPE). Our work
considers all parts of the encoding process and reveals related limitations. x264
constitutes an extensive redesign of the original c264 code to employ fine-grain
parallelization to cope with the small size of the local memory in the SPEs and
achieve replication and privatization of shared data structures due to the non-
coherent Cell architecture.

Our analysis allows us to identify the main limitations for further scaling H.264
video encoding on future multi-cores: (a) overheads for task management cause a
heavy burden on the single master processor, (b) complex control flow in the code
limits effective parallelism, and (c) small on–chip memories limit the overlap of
communication and computation.

Supervisor professor: Angelos Bilas

i

PerÐlhyh

ontèrnoi polupÔrhnoi epexergastèc me rht� diaqeirizìmenec topikèc mn mec, ìpwc
o epexergast c Cell Broadband Engine (Cell), apoteloÔn apì pollèc apìyeic èna
shmantikì shmeÐo sthn sqedÐash epexergast¸n gia uyhlèc epidìseic. O en lìgw
epexergast c, apì thn mÐa pleur� prosfèrei uyhlèc epidìseic se sugkekrimènec e-
farmogèc kai apì thn �llh pleur� apaiteÐ ektetamènec tropopoi seic sthn efarmog .

Sqedi�same kai ulopoi same thn efarmog c264 gia ton epexergast Cell. H
efarmog c264 apoteleÐ mia pl rh ulopoÐhsh gia sumpÐesh bÐnteo H.264, basismènh
sth biblioj kh anoiktoÔ logismikoÔ x264. H ulopoÐhsh mac epitugq�nei epit�qun-
sh 4.5x se èxi synergistic processing elements (SPEs), se sÔgkrish me th seiriak
ektèlesh thc efarmog c sthn kentrik epexergastik mon�da power processing el-
ement (PPE). H ulopoÐhsh mac lamb�nei upìyin ìla ta komm�tia thc sumpÐeshc kai
apokalÔptei sunafeÐc periorismoÔc. H efarmog c264 eÐnai apotèlesma anasqedia-
smoÔ thc arqik c efarmog c x264, ¸ste na epitÔqoume parallhlopoÐhsh me leptì
katamerismì upologism¸n metaxÔ ergasi¸n gia na antimetwpÐsoume to mikrì mège-
joc thc topik c mn mhc twn SPEs kai sthn allag twn koin¸n dom¸n lìgw thc mh
sunektik c mn mhc tou epexergast Cell.

H an�lus mac epitrèpei na entopÐsoume touc kÔriouc periorismoÔc gia thn perai-
tèrw klim�kwsh thc par�llhlhc sumpÐeshc bÐnteo H.264 gia mellontikoÔc epexerga-
stèc poll¸n pur nwn: (A) h epib�runsh gia th diaqeÐrish twn ergasi¸n mporeÐ na
prokalèsei meg�lh meÐwsh epidìsewn kentrikoÔ epexergast , (B) sÔnjeth ro elèg-
qou ston k¸dika periorÐzei ton bajmì tou diajèsimou parallhlismoÔ, kai (G) mikrèc
on–chip mn mec periorÐzoun thn epik�luyh thc epikoinwnÐac me ton upologismì.

Epìpthc kajhght c: 'Aggeloc MpÐlac

iii

Acknowledgments

I would like to thank all the people who made this work possible. First, i would
like to thank my supervisors Dr. Angelos Bilas and Dimitris Nikolopoulos for their
assistance and guidance during this work. I would like to extend my gratitude to
all the people of the laboratory that help me during the various stages of my
thesis. George Tzenakis for the endless hours of debugging, Konstantinos Koukos
for performance debugging and Polyvios Pratikakis for useful discussions during
the course of this work. I would also like to thank the staff members Manolis
Marazakis, Stavros Passas and Michalis Ligerakis, for providing their technical
expertise on many issues.

I would like to thank the people that surrounded me in the CARV Labora-
tory all these years: Yiannhs Klonatos, Zoe Sebepou, Yiannis Manousakis Thanos
Makatos, Markos Fountoulakis, Yiannis Kessapidis, Dimitris Tsaliagos, George
Nikiforos, and Dimitris Apostolou. I would also like to thank all of my friends for
the encouragement given in the hard times: Matthaios Kavalakis, Maria Zaharaki,
and Michaella Likopanti. Last but not least, I would like to thank my family for
their support in many aspects.

I would like to thank the Barcelona Supercomputing Center (BSC) and the
Polytechnic University of Catalonia (UPC) for making available the QS20/QS21
boards for performance debugging experiments. Finally, i would also like to men-
tion that this work was supported by the European Commission through the SARC
IP (Contract No. SARC-27648) and HiPEAC NoE (Contract No. IST-004408 and
IST-217068) projects.

Michail Alvanos
Heraklion, June 2010

v

Contents

1 Introduction 1
1.1 H.264 and x264 overview . 3
1.2 The Cell processor . 5
1.3 Runtime system . 5

2 Design and Implementation 7
2.1 Parallelization approaches . 8
2.2 Identifying dependencies . 9
2.3 Exploting parallelism . 10
2.4 Task scheduling . 11
2.5 Addressing memory limitations . 11
2.6 SPE code vectorization and optimization 12
2.7 Implementation of c264 . 12

3 Experimental Evaluation 15
3.1 Experimental Platform and Methodology 15
3.2 SPE code optimizations . 17
3.3 Overall speedup and scalability . 17
3.4 Impact of optimizations . 20
3.5 Available task parallelism . 23
3.6 Impact of task queue size . 24
3.7 Comparison with Other Platforms 25
3.8 Programmer effort . 25

4 Related Work 27

5 Discussion and Conclusions 31
5.1 Discussion . 31
5.2 Future Work . 32
5.3 Conclusions . 32

vii

List of Figures

1.1 Block diagram of H.264 video encoding. 3

2.1 Normalized execution time breakdown of x264 for different resolu-
tions and motion estimation algorithms. 7

2.2 Design of c264 , arrows inside frames express the dependencies among
different tasks. 10

2.3 Code size breakdown for the SPE executable. 13

3.1 Impact of motion estimation algorithm and search range on blue
sky input sequence with the large resolution. 18

3.2 Normalized execution time breakdown for blue sky using UMH and
128×128 range. 18

3.3 Speedup of c264 calculated over PPE-only execution time (left)
and for different number of B-frames for blue sky with the large
resolution (right). 19

3.4 Breakdowns of c264 PPE time using six SPEs and different motion
estimation algorithms and resolutions. 19

3.5 Impact of optimizations on c264 execution time using the blue sky
input sequence, UMH motion estimation algorithm, and the large
resolution. 20

3.6 Timeline with all executed tasks and their respectively task execu-
tion time, collected from one SPE when all six SPEs are active. . . 22

3.7 Average number of tasks in each SPE at task dequeue for blue sky,
small (left) and large (right) resolutions. 23

3.8 PPE execution time breakdown with one queue slot per SPE (left),
with one slot and entropy encoding thread (middle) and with four
slots (right). 24

ix

List of Tables

3.1 Input video sequences. 16
3.2 Achieved speedup of different kernels. 17
3.3 c264 and x264 achieved fps using the blue sky video sequence and

the UMH algorithm with 128×128 search region. 25
3.4 Programming effort expressed in lines of code added to or modified

from the original x264 application. 26

xi

Chapter 1

Introduction

Multi-core processors with many, relatively simple cores and explicitly managed
memories are becoming an important design pattern for high performance com-
puting architectures [16, 19]. These processors present three important problems
to software developers: First, software needs to manage explicitly and efficiently
the memory hierarchy, preferably with little or no involvement from programmers.
Second, the existence of many, simpler cores, often requires fine-grain task paral-
lelism with simpler units of work, as opposed to the coarse-grain parallelization
used so far. This implies parallelization using small units of work and often ex-
traction of more parallelism than using coarse-grain approaches. Third, exploiting
fine-grain parallelism necessitates efficient runtime system support that minimizes
overheads on the critical path and maximizes the utilization of the available on–
chip memory bandwidth. All three problems remain challenging despite the effort
that has been invested on them in the recent past.

We address the three problems in the context of a video encoder. Video en-
coders are essential components for real-time video processing on portable devices,
such as cell phones, PDAs, and video cameras, as well as on personal computers
and servers. With increasing application requirements on video resolution and
frame rates, video encoding has become an extremely demanding application.

H.264 video encoding is a complex, multi-phase process, with high memory
bandwidth requirements, challenging to parallelize efficiently both at the algo-
rithmic and system level. H.264 video encoding has been parallelized in the
past for shared memory multiprocessors, using coarse-grain parallelization strate-
gies [36, 24]. These strategies are not appropriate for multi-core processors with
small explicitly managed memories, due to their large memory requirements. On
the other hand, fine grain parallelism is architecture independent because it is
expressed in terms of the application and problem size. Furthermore, it achieves
good load balancing by issuing a large number of tasks per core. Modern multi-core
processors with explicitly managed memories have fast on–chip communication
mechanisms, that allow efficient exploitation of fine-grain parallelism.

This work is the first to present a full system implementation of a H.264 video

1

2 CHAPTER 1. INTRODUCTION

encoder using task-based parallelism on the Cell processor. Our parallel implemen-
tation uses a master-worker execution model, which maps efficiently to the hetero-
geneous Cell processor architecture: Control code for generating tasks, tracking
task dependencies, and scheduling runs on the control-efficient PowerPC core,
whereas the computationally-intensive components are offloaded on the compute-
efficient synergistic processing elements. The Cell is a heterogeneous multi-core
processor with explicitly managed local memories. The limited size of these mem-
ories prevents the frame-level parallelization of x264 [31], the encoder on which
our implementation of H.264 relies. We address this using fine-grain, intra-frame
parallelization, which allows efficient management of local memories by privatiz-
ing and replicating data structures, but makes it challenging to maximize available
parallelism due to the complex control flow and data flow in the application.

Overall, our results show that although c264 achieves speedups of about 4.5x
on six SPEs for many realistic scenarios compared to the PPE-only serial execu-
tion, this requires a number of application and architecture-specific optimizations.
Our implementation of c264 achieves up to 65 and 13 frames per second (fps)
for 720×576 and 1920×1080 input resolutions respectively, while running the full
encoding process with six SPEs. Performance is sensitive to the input and algo-
rithmic choices, and occasionally incurs significant idle times and communication
overhead in the SPEs, as well as task wait and stall time in the PPE. Finally,
we show that using dynamic scheduling can increase achievable speedup up to 3.5
compared to the PPE-only. In addition to scheduling and offloading serial code,
different memory optimizations such as using large memory pages, can improve
the speedup up to 4.5x compared to the PPE-only.

This thesis makes the following contributions:

1. We present c264 , a complete, running version of the encoder for the Cell
processor.

2. We describe the difficulties caused by explicitly managing memory in the
Cell processor, as well as the solutions we tried.

3. We tested our implementation thoroughly, and we present a quantitative
analysis of the main bottlenecks of the application and memory optimizations
that affect c264 performance.

4. We estimate the programming effort associated with building c264 . Privati-
zation of data structures requires significant programmer effort and discour-
age the port of complex applications on the Cell, despite its computational
power.

The rest of this thesis is organized as follows. Chapter 2 presents the design
and implementation of c264 . Chapter 3 presents and discusses our experimental
platform and results. Chapter 4 refers to related work. Finally, we summarize our
work and draw conclusions in Chapter 5.

1.1. H.264 AND X264 OVERVIEW 3

Figure 1.1: Block diagram of H.264 video encoding.

1.1 H.264 and x264 overview

H.264 [1] is a video compression standard, also known as MPEG-4 Advanced Video
Coding (AVC). Video encoders take as input a raw, uncompressed video stream
and process it picture by picture. For each picture (or frame), the encoder identifies
differences from one or more previously processed frames, called reference frames.
The resulting output is an encoded video stream including the reference frames
and the differences required to reconstruct all dependent frames. H.264 imposes
a structure on each frame, as follows. Each frame is divided into non-overlapping
macroblocks (MBs). A typical size for macroblocks is 16×16 pixels. Within each
frame, macroblocks are grouped into slices. The output, encoded stream contains
information about frames, slices, and macroblocks.

Like most MPEG video encoders, H.264 consist of three main functional units:
a temporal model, a spatial model, and an entropy encoder. Figure 1.1 shows
the H.264 video encoder block diagram. The temporal model identifies similarities
between macroblocks in a single or multiple neighboring frames using motion esti-
mation (ME). Motion estimation determines motion vectors that describe how one
macroblock is derived by transforming one or more reference macroblocks. Motion
estimation algorithms vary both in the way they select motion vectors as well as
the shape of the region they explore in each reference frame. Motion estimation
identifies a region in the reference frames that minimizes a matching criterion and
marks it as the “best match”. The H.264 standard allows the use of up to 16
reference frames for motion estimation. The encoder, in addition to the temporal
model, also employs intra-frame analysis and selects intra-frame encoding when
its bitrate cost is lower than that of inter-frame analysis, to improve the over-
all coding efficiency. Intra-frame analysis tries to locate similarities between the
current macroblock and its neighbors within the same frame. The video encoder
subtracts the selected, best matching region in the reference frame(s) from the

4 CHAPTER 1. INTRODUCTION

current macroblock to produce a new macroblock (motion compensation), which
in turn is encoded and transmitted together with a motion vector describing the
position of the best matching region.

The spatial model transforms macroblock differences using the discrete cosine
transformation (DCT) and generates a set of coefficients that are then quantized.
In addition, the spatial model includes a H.264 decoder for the following reason:
If an encoded frame needs to be used as reference for encoding other frames, it
is better to use a version of the frame that is derived by decoding the encoded
frame, rather than the original raw input frame. This leads to better quality video
streams. Thus, the spatial model after encoding each frame, decodes and stores
the reconstructed frame in memory to use it as reference for subsequent frames.
A deblocking filter is applied to every decoded macroblock to reduce blocking
distortion, created from quantization. This filter aims at improving visual quality
and prediction performance by smoothing sharp edges between macroblocks.

Macroblocks encoded using only macroblocks of the same frame are called intra
coded (I-type) macroblocks, while macroblocks that are encoded using macroblocks
of other frames also are called either predicted-type (P-type) or bidirectionally-
predictive (B-type) macroblocks. P-type pictures use temporal redundancies from
a past I- or P-frame, whereas B-type macroblocks use both past and future refer-
ence frames, and consequently achieve the highest compression rate. Each P- and
B-type frame can contain I-type macroblocks.

Finally, an entropy encoder combines the quantized coefficients and motion
vectors in a single stream and encodes it using one of two approaches: Either
context-based adaptive variable length coding (CAVLC) or context-based adaptive
binary arithmetic coding (CABAC). Entropy encoding has multiple probability
modes for different contexts. For each bit, the encoder selects which probability
model to use and then applies arithmetic coding to compress the data. The video
encoder then encapsulates the output stream in H.264 packets, called Network
Abstraction Layer (NAL) units.

Overview of x264 The x264 [31] is an open source library for encoding H.264
video streams. The x264 uses raw input in YUV color space with 4:2:0 chroma
subsampling. YUV color space encodes a color image or video taking human per-
ception into account, and is typically used as intermediate representation between
different stages of a video pipeline. The encoder supports constrained baseline
and main profiles of H.264. Moreover, x264 supports matching blockings of dif-
ferent size during motion estimation: 16×16, 16×8, 8×16, 8×8, 4×8, 8×4, and
4×4. The x264 supports several optimized motion estimation algorithms, such
as diamond (DIA), hexagon (HEX), uneven multi-hexagon (UMH), and exhaus-
tive search [21]. The encoder performs mostly integer operations and has been
optimized, using vector instructions, for various architectures, including PowerPC
(altivec extensions) and x86 (streaming SIMD extensions, SSE).

1.2. THE CELL PROCESSOR 5

1.2 The Cell processor

The Cell processor contains a general purpose PowerPC processing element (PPE)
that implements the PowerPC ISA and eight special purpose synergistic process-
ing elements (SPEs) implementing a vector ISA. Both the PPE and SPEs support
SIMD extensions. Each SPE has a 128-bit datapath, 128 128-bit registers, and
256KB of software-managed local store. The SPE is a dual-issue, in-order, vector
processor, designed to achieve high performance for straight-line vectorized code.
The PPE and each SPE have a peak performance of 25.2 and 25.6 GFLOPS re-
spectively for single-precision floating point operations, for a total of 230 GFLOPS.

The PPE has a conventional memory hierarchy with a two-level cache on–chip
kept coherent with off–chip DRAM. SPEs transfer data from and to DRAM us-
ing DMAs. The DMA engine on each SPE is capable of contiguous transfers and
scatter/gather operations and supports up to 16 outstanding transfers. The lo-
cal stores of the SPEs are mapped to a global address space that includes off–chip
memory; the PPE can access all local stores using regular load and store operations.
The PPE and SPEs can also communicate with messages via small mailbox reg-
isters. Given the multiple available mechanisms for communication among SPEs
and the PPE, software needs to assess the trade-offs between core-to-memory and
core-to-core communication alternatives in order to use them effectively. All com-
munication on the Cell processor flows through an on–chip element interconnect
bus (EIB) that consists of four bi-directional rings. Finally, PPE has 1024-entry
and each SPE has 256-entry translation lookaside buffer (TLB), however only PPE
can resolve TLB misses.

1.3 Runtime system

In our design and implementation of c264 we use Tagged Procedure Calls(TPC) [30],
a task-based programming model and runtime that has been designed for the Cell
processor. We use a runtime library to assist our porting of the application, for
two reasons. First, we avoid the usage of IBM SDK [18] that usually requires
higher programming effort than runtime environment or library. Second, we want
high performance and efficient usage of available hardware characteristics.

The TPC runtime system creates a task using a function descriptor and ar-
guments descriptors as input and identifies the task using a unique task ID. The
programmer uses library calls to identify certain procedure calls as concurrent
tasks and specify properties of the data accessed by them, to facilitate their trans-
fers to and from local memories. Each argument descriptor is formed in a triplet
containing the base address, the argument size, and the argument type that can
be either IN, OUT or INOUT. he programming model allows both contiguous
and fixed-stride arguments that we both use extensively in our implementation.
The sizes of task arguments define the granularity of parallelism within a region
of straight–line code or a subset of the iteration space of a loop. The program-
mer implements synchronization by using either point–to–point or collective wait
primitives. Task arguments and their sizes are determined before task issue. Tasks

6 CHAPTER 1. INTRODUCTION

have no return values and all arguments are passed by referenc
Currently, we issue tasks only from the PPE and only SPEs execute tasks. The

PPE prepares task descriptors and places them in SPE task queues for execution.
Each SPE has a private task queue, an array of task descriptors. Furthermore
runtime maintains a completion queue for each SPE. The PPE polls each com-
pletion queue for task status notifications from the SPEs. When the PPE issues
a task, that task executes asynchronously to an SPE, while the PPE continues
with program execution. When issuing an asynchronous task, the runtime returns
a handle which can be used later to check the status of the specific instance of
the issued task, while the issuing task continues with program execution. The
issuer may wait for completion of issued tasks using point-to-point or collective
synchronization primitives. When a task completes, SPE updates the completion
queue of PPE, and releases the entry of the corresponding task in the comple-
tion queue. The runtime system uses only on–chip operations when initiating and
completing tasks, although argument data may require off–chip transfers. Finally,
runtime uses task prefetching and outstanding writebacks techniques in order to
hide DMA latencies.

Chapter 2

Design and Implementation

720x576
DIA

1920x1088
DIA

720x576
UMH

1920x1088
UMH

0

20

40

60

80

100

 %
 T

im
e

Metadata
Analyse
Encode
Entropy
Deblocking
Other

Figure 2.1: Normalized execution time
breakdown of x264 for different resolu-
tions and motion estimation algorithms.

This section presents in detail the de-
sign of c264 . We first examine ap-
proaches to parallelizing the H.264 en-
coding algorithm and then discuss our
design choices.

Figure 2.1 shows an execution pro-
file for x264 using manual code instru-
mentation, using one reference frame,
128×128 motion estimation search area
and the UMH search algorithm. Pro-
filing is done using the time base reg-
ister of the Cell processor running at
79.8MHz, which provides adequate ac-
curacy. Figure 2.1 shows that most
of the execution time is spent in the
analysis (temporal model) and encod-
ing (spatial model) phases. We also
observe that the input video resolution
does not affect significantly the percentage of the execution time spent in analysis
and encoding for the same motion estimation algorithm. When using macroblock-
based parallelism, the potential parallel section of the code covers about 70% and
85% of the serial execution time on the PPE for DIA and UMH motion estimation
algorithms respectively. Entropy encoding accounts for an additional 5–15% of the
total execution time of the encoder. The deblocking filter accounts for 3–5% of
total execution time and can be easily parallelize. The remaining execution time
on the PPE is for task metadata handling, frame initialization, and memory copy
operations between buffers.

7

8 CHAPTER 2. DESIGN AND IMPLEMENTATION

2.1 Parallelization approaches

A coarse grain parallelization is to decompose the video sequence into groups of
pictures (GOPS) [29], then every GOP is independently processed by a dedicated
processor. However we opted not to use GOP parallelization because it has high
memory consumption making it unsuitable for embedded processors with small on–
chip memory. A typical group of pictures is around 100 frames. Encoding full high
definition (1920x1088) video requires 6 MBytes for the input and reconstructed
frame, plus 3 MBytes for each reference frame. Thus, the memory required for
encoding a group of pictures is 600 MBytes for each task.

The x264 uses coarse grain, frame-based parallelization, where different threads
process different frames. When processing a frame, the master thread determines
the frame type, calculates rate control, and then spawns a thread for this frame.
Each worker thread proceeds to process all macroblocks through the phases, in-
cluding entropy encoding. The worker thread synchronizes at the beginning of
each line of macroblocks, when a frame requires referencing a not-yet complete
part of another frame. In this case, the thread must wait for the completion of the
appropriate macroblock line. Each thread updates a counter with the lines that
the encoding process has completed. At the end of the each line of macroblocks,
the thread also applies the deblocking filter. The master thread is responsible
for final encapsulation in network abstraction layer (NAL) packets of the output
streams of different threads. This coarse-grain approach is not appropriate for
multi-core architectures with small, explicitly managed memories, due to memory
requirements per thread (task). Encoding a full high definition frame requires
6 MBytes plus 3 MBytes for each reference frame. Thus, the memory required
for encoding a frame is at least 9 MBytes, significantly higher than the per SPE
local store on the Cell. Available parallelism is limited by the motion estimation
window. High values in motion estimation range and advanced features, such as
weighted prediction and adaptive B-frame decision, limits the available scalability.
For example, Meenderinck et al. [11] using the default encoder parameters for the
motion estimation range (16 pixels), they achieve 10.54X and 16.4X speedup when
they use 16 threads and 32 threads respectively.

A more appropriate, fine grain approach for processors with small local stores is
parallelization at the macroblock-level [6], where a single frame is being processed
in parallel by multiple cores. Although this approach reduces memory requirements
it increases communication significantly: the search region is required by all cores
when processing a single macroblock, resulting in replication of data in multiple
local stores over time. However, increased communication needs can be mitigated
by the high on–chip and off–chip memory bandwidth available in modern multi-
core processors.

A fourth parallelization alternative that lies between frame- and macroblock-
based approaches is slice-based parallelization [28]. First, slice-based paralleliza-
tion is less appropriate for the Cell processor due to the limited intra-frame par-
allelism and the increased memory requirements compared to a macroblock-based

2.2. IDENTIFYING DEPENDENCIES 9

approach. Second, having multiple independent slices increases the bitrate for a
specific video quality, as a result of adding extra bits to the slice header and the
reset of entropy contexts. Finally, slices can have arbitrary size from one mac-
roblock up to a frame. Thus, in full high definition and using four slices, each task
requires 1.5 MBytes of memory.

Parallelization at a granularity finer than the macroblock is feasible, for exam-
ple by parallelizing motion estimation process for a single macroblock. However,
this increases communication significantly; The search region is required by all
cores when processing a single macroblock, resulting the need to transfer the same
data to multiple local stores.

Macroblock-based parallelization requires addressing the following issues: Iden-
tifying dependencies, exploiting parallelism, offloading serial sections of code, task
scheduling, overcoming memory limitations, and optimizing SPE code. Next, we
discuss in more detail how we address each of these issues in our design.

2.2 Identifying dependencies

For a given macroblock, the following operations need data from neighboring mac-
roblocks.

• Inter-frame prediction defines the predicted motion vector as the search cen-
ter of motion estimation. Motion vectors of neighboring macroblocks deter-
mine the final motion vector.

• Intra-frame prediction that uses pixels from neighboring blocks of the current
macroblock.

• The deblocking filter uses the pixel values of neighboring left and upper
macroblocks.

• Entropy encoding selects one out of four look-up tables to use for encod-
ing coefficients. The selection of table depends on the number of non-zero
coefficients in previously coded upper and left neighboring macroblocks.

Macro-block level parallelization can theoretically increase the available de-
gree of concurrency by exploiting parallelism across frames, using 3D-wavefront
parallelization. Although, intra- and inter-frame macroblock-level parallelization
are orthogonal approaches we must address some challenges to preserve data de-
pendencies. First, there are control dependencies: allowing tasks across frames
to execute concurrently would require postponing (moving) on the next frame the
metadata handling of issued tasks from current frame. Second, runtime limitations,
such as efficient multi-threading support, prevent the issue of tasks from different
threads. Finally, issuing tasks from different frames to the same SPE would re-
quire using quantization matrices different frame types, which is prohibitive given
the small local store memory size. The quantization matrices used in the encoder
are typically around 84 KBytes. Thus, transferring entire matrices to local stores

10 CHAPTER 2. DESIGN AND IMPLEMENTATION

Task

issue Completion

Entropy

encoding

Encoding

Deblock FilterEncoded

To be

encoded

Dependency Table
Entropy

encoded

Reconstructed

To be

reconstructed

Deblocked
Input Frame Reconstructed Frame

DMA IN DMA OUT

...
SPE workers

DMA IN

Dependencies

check

Figure 2.2: Design of c264 , arrows inside frames express the dependencies among
different tasks.

of each SPE is not possible. Instead, we transfer smaller portions of each matrix,
each about 6 KBytes. For these reasons, we wait for all outstanding tasks to com-
plete at the end of each frame before proceeding to the next frame and we leave
for future work the inter-frame parallelism.

Figure 2.2 depicts the set of dependencies between macroblocks within a frame.
Arrows show dependencies of outstanding macroblocks to previously encoded mac-
roblocks on an antidiagonal manner.

2.3 Exploting parallelism

To take advantage of macroblock-level parallelism we create tasks that are related
to macroblock processing for the three models (phases) of encoding: analyze and
encode, entropy encoding, and deblocking. The rest of the application code is
mostly serial code that cannot be parallelized. Some parts of this code can run in
parallel with other tasks, whereas other parts are dependent on all tasks and need
to run between groups of concurrent tasks. We offload the first type of code to
an SPE as a single task that runs concurrently to other tasks, whereas the PPE
executes the second type of code.

The simplest way to manage task dependencies is to issue all macroblocks
in an antidiagonal-based manner and wait before issuing the next antidiagonal.
This technique is also know as 2D-wavefront parallelism [15]. This leads to the
maximum number of outstanding tasks, which is equal to the number of tasks on
the antidiagonal. In this approach the number of independent macroblocks in each
frame depends on frame resolution. Although motion estimation is independent,
x264 reads the results from neighboring macroblocks and uses them as “tips” for
searching nearby to minimize the overall search time.

We create an other task for entropy encoding, the final step of the encoder
before the encoder encapsulates the output stream in NAL packets. A main issue
when creating tasks is to preserve control and data dependencies in macroblock
processing within and across frames. The entropy encoding task is issued after
the analyze and encode tasks, are completed, due to data dependencies. Entropy

2.4. TASK SCHEDULING 11

encoding is offloaded as a single task to an SPE but can run concurrently to other
tasks of the same frame. Entropy encoding is control-intensive and runs slightly
faster on the PPE than the SPE, since the PPE is more control-efficient due to
the use of dynamic branch prediction. Thus, the performance gain from offloading
entropy encoding on SPEs arises from running the entropy encoding in parallel
with other analyze/encode tasks, when dependencies are satisfied. However, for
this reason, towards the end of each frame, when there are no additional available
parallel tasks to execute, we execute the entropy encoding on the PPE. Moreover,
when we issue a task for entropy encoding, the PPE can not issue a new task of
the same type due to dependencies.

The third task for each macroblock performs deblocking. There are two vari-
ants of this task, one for the luminance component and one for the two chrominance
components. Each task applies the deblocking filter in the macroblock line of the
reconstructed frame. Deblocking tasks are issued when two dependencies are sat-
isfied: first the completion of deblocking tasks on the previous line and second the
analyze/encode tasks of all macroblocks in the current line.

Finally, we offload concurrent and independent memcopy operations to SPEs to
allow for multiple outstanding transfers between application buffers and structures
in off–chip memory. For example, we copy the input raw frame, from the read
buffer to memory aligned buffers of the encoder.

2.4 Task scheduling

The first approach to enforcing dependencies among the analyze/encode tasks is
to statically issue all tasks in an antidiagonal and then wait for all tasks to com-
plete with a collective synchronization primitive. This static scheduling approach
makes the assumption that each task has the same execution time. Unfortunately,
heuristics in the motion estimation algorithms and non-predictable encoding time
may introduce load imbalance and significant idle time.

An alternative approach to processing macroblocks, which we use in our im-
plementation, is dynamic scheduling. We use per-macroblock state to maintain
dependencies in the PPE. For this purpose, we issue tasks from next antidiagonals
as soon as their individual dependencies are satisfied. We achieve this via a simple
dependency table that represents all tasks within the frame.

2.5 Addressing memory limitations

The Cell processor requires attention to several aspects of memory management.
Although data prefetching through multi-buffering is a common optimization for
Cell code, the space available in the local stores for data prefetching in c264 is
limited. The SPE binary file of the application is about 156 KBytes, which does
not leave space for storing both the working set of the active task and prefetched
data. Also, the application has a large memory footprint due to the replication of
data structures.

First, we reduce the memory latency of DMA transfers, using addresses aligned

12 CHAPTER 2. DESIGN AND IMPLEMENTATION

at 128-bytes boundaries. Although DMA addresses in the SPE need to be 16-
byte aligned, communication performance improves significantly when the data
transfers are done from and to addresses aligned at cache line size boundaries.
Moreover, we align strided arguments whenever possible to increase the efficiency of
the DMA controller. In addition, we adjust the stride of non contiguous arguments
to reduce the number of possible memory bank conflicts. For example, by using a
slightly longer stride in the 1920×1080 video sequence we avoid 2-KByte strided
access that introduce bank conflicts [23].

Second, c264 shows high numbers of TLB misses, on SPE and PPE, due to
wavefront parallelism. Wavefront parallelism requires irregular strided access pat-
terns that harm TLB performance. To reduce the number of TLB misses we
use large page sizes of 16 MBytes for the raw, uncompressed frame data via the
hugetlbfs facility provided by the Linux kernel. We allocate the aforementioned
large pages in the initialization phase of the encoder, thus removing the overhead
of continuously allocating and freeing pages during the encoding phase.

Finally, replication of data structures required for parallelization (due to the
multiple outstanding macroblocks in the analyze and encode process) increases
significantly the memory footprint, causing TLB misses for high resolutions. To
mitigate the impact of the increased memory requirements we use a custom, pre-
allocated memory pool to recycle application data structures, reverting to the
standard libc allocator only when the pool is empty.

2.6 SPE code vectorization and optimization

x264 already provides vectorized versions of the kernels for the PPE using the Al-
tivec extensions. In addition, we manually vectorize SPE code, eliminate branches
and partially unroll loops in the encoder kernels. We manually enforce unrolling
because the automatic loop unrolling done by the compiler produces code that
does not fit in the local store. We also expand kernel variables to vectors, where
possible, which works well with the wide SPE datapath. This reduces the over-
head of loads and stores to local variables, because narrow loads require that data
is rotated into the preferred vector element, and narrow stores require a read, a
scalar insert, and a write operation.

2.7 Implementation of c264

Figure 2.3 shows the code size breakdown. The final SPE binary file is about
155 KBytes, including the DIA, UMH, hexagon (HEX), and exhaustive search
motion estimation algorithms; the code segment is about 140 KBytes, the data
segment is 1.2 KBytes, and the BSS segment is 12.8 KBytes. Macroblock analyze
requires about 60 KBytes, macroblock encode 43 KBytes and entropy encoder
19 KBytes. Finally, runtime system requires about 12.7 KBytes, 5.1 KBytes for
code and 7.6 KBytes for the BSS segment.

2.7. IMPLEMENTATION OF C264 13

SPE code size

180

0

50

100

150

K
B

yt
es

 Bss section
 Entropy
 Encode
 Analyse
 Runtime

Figure 2.3: Code size break-
down for the SPE executable.

Limitations of c264 . The main limitation
of c264 is that it does not allow the same flexi-
bility in encoding parameters as x264 due to the
limited size of the local stores: c264 supports
only 16×16 block size for motion estimation and
compensation and only inter-frame encoding in
B-frames. The encoding of I-frames is done by
the PPE to support smaller than 16×16 mac-
roblocks, which is necessary for high quality. We
modify the calculation of the limits for motion
vector search to avoid producing motion vectors
out of the reference region, which limits search
window sizes to 128×128. We ported only the
CAVLC encoder, although x264 supports both
the CABAC and the CAVLC algorithms. Fi-
nally, although the runtime system we use sup-
ports automatic prefetching of the arguments for
enqueued tasks, this is effectively not used due
to the limited amount of memory available in each SPE.

14 CHAPTER 2. DESIGN AND IMPLEMENTATION

Chapter 3

Experimental Evaluation

This section presents experiments and results. We measure the impact of optimiza-
tions, speedup of our implementation, the available task parallelism, the impact
of queue size, performance with other platforms, and the programming effort.

3.1 Experimental Platform and Methodology

We present results from experiments on a Playstation3 console with one 3.2 GHz
Cell processor and 256-MBytes of main memory. In this platform, user programs
have access to only six of the eight SPEs on the Cell processor. We use several
video sequences from HD-VideoBench [7] that are listed in table 3.1.

In our evaluation we vary three H.264 parameters that affect application be-
havior significantly:

• Resolution affects the number of tasks. All input video sequences are avail-
able in two resolutions: 720×576 (small), and 1920×1080 (large). Each video
stream consists of 100 frames at 25 fps.

• Motion estimation algorithms affect the computational workload of each
task. We use two motion estimation algorithms one less and one more com-
putationally intensive: diamond (DIA) and uneven multi-hexagon (UMH).

• Motion estimation range affects the size of data transfers for each task and
the computational workload. We use two search ranges: 64×64 and 128×128
pixels.

For the rest of the encoding parameters, we keep the quantization constant
at 26, we use four B-frames between I- and P-frames, we do not use B-frames as
reference frames; all these are typical for the videos included in HD-VideoBench.
We disable the adaptive selection of B-frames number, because the code responsible
for the decision is computationally intensive and becomes the bottleneck. Finally,
we use one reference frame for P-frame encoding and two for B-frame encoding
due to local store size limitation.

15

16 CHAPTER 3. EXPERIMENTAL EVALUATION

Test Sequence Resolution No. frames Comments

Blue sky
720x576 Top of two trees against blue sky. High

1920x1088 100 contrast, small color differences in the
sky, many details and camera rotation.

Pedestrian
720x576 Shot of a pedestrian area. Low camera

1920x1088 100 position, people pass by very close to
the camera. Static camera.

Riverbed
720x576 Riverbed seen through the water.

1920x1088 100 Very hard to code.

Rush hour
720x576 Rush-hour in Munich city. Many cars

1920x1088 100 moving slowly, high depth of focus.
Fixed camera Shot.

Table 3.1: Input video sequences.

In addition, we vary the number of outstanding tasks per SPE. We always
distribute tasks in a round-robin manner across SPEs, provided that there is a
free slot available in the SPE task queue; otherwise the SPE is skipped.

In our analysis we present three metrics: speedups, concurrency characteriza-
tion, and execution time breakdowns. We compute two types of speedups, using
the execution time of the application: PPE-based only, where we compare c264
execution time with the x264 serial version running only on PPE and SPE-based,
where we compare the execution time using c264 with one SPE. To characterize
the type of tasks and the resulting concurrency, we present a timeline with all
executed tasks and their respective task execution times.

We show execution time breakdowns from both the PPE and SPEs. We break
execution time on the PPE in four sections: (a) PPE issue: time spent in the
runtime system for issuing tasks, (b) Sync wait: time waiting for specific task
or tasks to complete, (c) Queue stall: time waiting for an empty queue slot in
the task queues of SPEs, and (d) Application: time spent running application
code. Similarly, SPE breakdowns consist of (a) SPE Task: compute time, (b)
SPE transfer: runtime library and communication time, and (c) SPE Idle: idle
time. Moreover in some PPE breakdowns we analyze further the application part
to: (a) Task management: execution time of the main loop for dependency checks
and issuing tasks in a wavefront manner. (b) Memory allocator: time to update
offsets/pointers for the recycling of data structures. (c) Metadata: time for the
management of motion vectors, number of coefficients, and calculating pointers
to reference pictures. (d) Entropy Parallel: time spent executing tasks in PPE
instead of SPE, if there are no empty slots in any SPE. Finally, (e) entropy: time
spent at the end of each frame, when there are no additional available parallel
tasks to execute and we execute the entropy encoding on the PPE.

In general, PPE application time is similar to the average SPE execution time,
however, due to overlapping of the initiation of asynchronous tasks with task pro-
cessing on SPEs, the match is not always exact. Also, as a reference point, we

3.2. SPE CODE OPTIMIZATIONS 17

Kernel Speedup Kernel Speedup
sad 16x16 21.06 quant 4x4 2.15
sad 8x8 8.30 dequant 4x4 1.39
ssd 16x16 1.74 quant 4x4 dc 1.68
satd 4x4 1.67 dequant 4x4 dc 1.58
avg 16x16 22.59 zigzag 4x4 2.89

Table 3.2: Achieved speedup of different kernels.

include in our results application execution time on the PPE only. Note that we
omit I/O time spent in reading the input from and writing the output to the disk.
Finally, SPE code is transfered to each SPE once at application startup, as is
typical for performance critical applications.

Next, we discuss four main issues: overall speedup and scalability, available
task parallelism, and impact of task queue size and prefetching.

3.2 SPE code optimizations

To establish an appropriate baseline, we first discuss the impact of optimizations
on the SPE application kernels. Table 3.2 shows the speedup achieved by each SPE
optimization. The optimizations improve execution time between 1.39x and 22x,
compared to the scalar version running on a single SPE. These results indicate the
importance of kernel optimizations when running code on SPEs, before exploiting
more parallelism. The SAD (sum of absolute differences) and AVG (average) ker-
nels benefit most from these optimizations, since the SPE instruction set includes
specific vector operations for both. Note that not all kernels, e.g. dequant 4x4
(dequantization for 4×4 transform blocks), are fully vectorized, due to irregular
data access pattern. However, starting with maximally optimized SPE code, leads
to a more fair evaluation of c264 . For this reason, all our results from this point
on include these optimizations.

3.3 Overall speedup and scalability

Figure 3.1 shows results for different motion estimation algorithms and different
search ranges, using the blue sky stream and the large resolution. We note that
using less computationally intensive algorithms, such as DIA, or a smaller search
range (64 vs. 128) increases idle time on the SPEs by 52% and 33%, respectively
on six SPEs. We also see that even with smaller search regions the computational
requirements for UMH are considerably higher than DIA, leading to increased
application execution time.

In Figure 3.2 we can see the normalized execution time breakdown for blue sky
using uneven multi-hexagon and 128×128 motion estimation range. For this
run, we observe that sync wait time on the PPE is between 0.5% and 2% of
PPE execution time. SPE idle time is between 11% and 28% of SPE execu-
tion time. SPE library time, that includes communication time is about 30%.

18 CHAPTER 3. EXPERIMENTAL EVALUATION

PPE 1 2 3 4 5 6 PPE 1 2 3 4 5 6 PPE 1 2 3 4 5 6
0

20

40

60

 S
ec

on
ds

single PPE

PPE issue
Queue stall
Sync Wait
Application

SPE Idle
SPE Lib
SPE Task

UMH 128x128 DIA 128x128 UMH 64x64
SPEs SPEs SPEs

Figure 3.1: Impact of motion estimation algorithm and search range on blue
sky input sequence with the large resolution.

Finally, application time on the PPE is between 16% and 63%, whereas task
time on the SPEs is between 65% and 43% of the corresponding execution time.

1 2 3 4 5 6

SPUs

0

20

40

60

80

100

 %
 N

or
m

al
iz

ed

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

Figure 3.2: Normalized execution time
breakdown for blue sky using UMH and
128×128 range.

Less computational tasks, such as dia-
mond motion estimation algorithm or
smaller search window, increases idle
time up to 50% of SPE total time when
using six SPEs.

Figure 3.3(a) shows overall c264
speedups as the execution time of the
serial version running on the PPE only,
divided by the execution time of the
parallel version running on the PPE
and a variable number of SPEs. The
maximum speedup is between 3.9 and
7.1 on six SPEs and depends on the in-
put stream and its resolution. We ob-
serve that the Riverbed video achieves
super-linear speedup. The riverbed
video sequence fails to perform well using the PPE only. In this input set, the
temporal model fails to effectively reduce redundancy information, since there are
limited similarities between neighbouring video frames. When inter-frame encod-
ing cost is high, the encoder uses intra-frame only encoding. Intra-frame encoding
is expensive due to irregular memory accesses in the current frame. Moreover,
intra-frame encoding increases significantly the bitrate of the output video and

3.3. OVERALL SPEEDUP AND SCALABILITY 19

1 2 3 4 5 6

SPEs

2

4

6

8
Sp

ee
du

p

 720x576 blue_sky
 720x576 pedestrian
 720x576 riverbed
 1920x1088 blue_sky
 1920x1088 pedestrian
 1920x1088 riverbed

(a)

1 2 3 4 5 6

SPEs

0

2

4

6

Sp
ee

du
p

0 B-frames
2 B-frames
4 B-frames
8 B-frames

(b)

Figure 3.3: Speedup of c264 calculated over PPE-only execution time (left) and
for different number of B-frames for blue sky with the large resolution (right).

creates extra computation overhead at the final phase of processing, the entropy
encoder.

We measure scalability for high resolution video and UMH motion estimation.
For out tests with four B-frames between I-and P-frames scalability is approxi-
mately the same, up to 4x for six SPEs. We note that scalability is independent
of the input stream because the serial part of the application remains independent
of the computation requirements of the task.

576
DIA

1088
DIA

576
UMH

1088
UMH

0

20

40

60

80

100

 %
 T

im
e

Issue
Queue Stall
Sync Wait
Metadata
Entropy
Entropy Parallel
I-Frame
Manage
Allocator
Other

Figure 3.4: Breakdowns of c264 PPE
time using six SPEs and different motion
estimation algorithms and resolutions.

Figure 3.3(b) shows speedups us-
ing different number of B-frames be-
tween I- and P-frames, from 0 up
to 8. Overall, the speedup increases
when increasing the number of B-type
frames. Analyse/encode tasks in a P-
frame are less computationally expen-
sive than the tasks of a B-frame. The
two reference frames used in B-frames
increase the execution time of motion
estimation. In contrast, motion estima-
tion in a P-frame is applied only to one
frame, decreasing significantly the exe-
cution time of the serial version when
only P-frames are used.

Figure 3.4 presents PPE execution
time breakdowns for different resolu-
tion and motion estimation algorithms
using 6 SPEs. We see that issue time is 1% and 3% of the PPE execution time
in DIA and UMH respectively and that different input resolution has a limited

20 CHAPTER 3. EXPERIMENTAL EVALUATION
P

P
E

P
P

E
 H

TL
B

st
at

ic
dy

na
m

ic
of

flo
ad

in
g

m
em

or
y

st
at

ic
dy

na
m

ic
of

flo
ad

in
g

m
em

or
y

st
at

ic
sy

na
m

ic
of

flo
ad

in
g

m
em

or
y

st
at

ic
dy

na
m

ic
of

flo
ad

in
g

m
em

or
y

st
at

ic
dy

na
m

ic
of

flo
ad

in
g

m
em

or
y

st
at

ic
dy

na
m

ic
of

flo
ad

in
g

m
em

or
y

st
at

ic
dy

na
m

ic
of

flo
ad

in
g

m
em

or
y

st
at

ic
dy

na
m

ic
of

flo
ad

in
g

m
em

or
y

st
at

ic
dy

na
m

ic
of

flo
ad

in
g

m
em

or
y

st
at

ic
dy

na
m

ic
of

flo
ad

in
g

m
em

or
y

st
at

ic
dy

na
m

ic
of

flo
ad

in
g

m
em

or
y

st
at

ic
dy

na
m

ic
of

flo
ad

in
g

m
em

or
y

0

20

40

60

80

Se
co

nd
s

single PPE

PPE issue
Queue stall
Sync Wait
Application

SPE Idle
SPE Lib
SPE Task

1 SPE

2 SPEs

3 SPEs
4 SPEs

5 SPEs 6 SPEs

Figure 3.5: Impact of optimizations on c264 execution time using the blue sky
input sequence, UMH motion estimation algorithm, and the large resolution.

impact. Task management costs take about 20% and 17% of PPE execution time
using DIA and UMH for the large resolution. Memory allocation takes 3% and
4.5% of the PPE execution time when using small and large resolution respectively,
for the UMH. In high resolutions the number of outstanding tasks and metadata in-
crease, which increases overall memory utilization. The metadata section includes
the management of motion vectors, number of coefficients, and calculating point-
ers to reference pictures. Finally, the metadata accounts for 9% to 12% of PPE
total execution time. Although, the number of memory accesses in this module is
small, the access pattern is irregular and causes many cache misses.

Overall, c264 achieves significant speedups compared to the serial version run-
ning on the PPE. However, it still exhibits high task management overhead, that
includes dependencies check, allocator and meta-data, from 30% up to 35%, and
high communication overhead, up to 30% of the SPE exeuction time.

3.4 Impact of optimizations

In this section we evaluate the impact of each group of optimizations, using the
baseline, selective, offloading, and memory versions, as described in our design.

Figure 3.5 shows the impact of each group of optimizations on execution time.
We group optimizations in four different categories: (i) Static scheduling issues all
tasks in an antidiagonal and then waits for all tasks to complete with a collective
synchronization primitive; (ii) Dynamic scheduling includes the improved, selec-
tive dependence checking and issue; (iii) Offloading introduces offloading of serial
tasks from the PPE in addition to dynamic scheduling on SPEs; (iv) Memory
includes memory optimizations, dynamic scheduling and offloading. We use the
blue sky input with the high resolution, UMH motion estimation, and a 128×128
search range. We derive similar results with other video sequences and algorithms.
Smaller resolutions usually decrease the benefits of memory optimizations.

3.4. IMPACT OF OPTIMIZATIONS 21

Dynamic scheduling improves execution time over static scheduling on aver-
age by about 10% and reduces synchronization time 55%–80% on the PPE. Fur-
thermore, idle time on the SPE decreases slightly compared to static scheduling.
Dynamic scheduling issues tasks faster than the traditional 2D-wavefront algo-
rithm and achieves better load balancing between SPEs. Overall execution time
decreases by 9% using six SPEs compared with the static scheduling.

Offloading serial code from the PPE to SPEs increases available parallelism and
reduces application and idle time on the PPE/SPE by 15% and 30% on six SPEs,
respectively. However, the creation of more tasks slightly increases communication
time on SPEs by about 5%.

Memory optimizations improve PPE execution time by up to 33% on six SPEs.
We observe that memory optimizations reduce significantly communication time
from 49% up to 60% on the SPE. Also stall time on the PPE decreases between
30% and 42%. Recycling application metadata and buffers does not have a sig-
nificant impact on performance. However, it allows c264 to run larger input res-
olutions. Huge pages have the biggest impact of all memory optimizations and
reduce communication time by up to 50% compared to the offloading version. For
example, using normal page sizes of 4 KB, SPE occurs about 9140 TLB misses
using large resolution, 128×128 search range and blue sky for input. In contrast
using 16 MBytes pages the number of TLB misses decreases to 180. One side effect
of the usage of large pages is that, for each TLB miss in SPE sends an interrupt to
PPE for handling. Using larger TLB pages decreases the execution time of control
code about 5% in large resolutions. Moreover, we observe the minor impact in the
execution time, of the serial application running on PPE using large pages (PPE
HTLB).

22
C

H
A

P
T

E
R

3.
E

X
P

E
R

IM
E

N
T
A

L
E

V
A

L
U

A
T

IO
N

300000000 400000000 500000000 600000000

Aplication Time (Core cycles)

0

50000

100000

150000

200000

250000

SP
U

 t
as

k
ti

m
e

(C
or

e
C

yc
le

s)

Encode
Entropy
Deblock
Other

P-Frame B-Frame B-Frame B-Frame B-Frame

Figure 3.6: Timeline with all executed tasks and their respectively task execution time, collected from one SPE when all
six SPEs are active.

3.5. AVAILABLE TASK PARALLELISM 23

1 SPE 2 SPE 3 SPE 4 SPE 5 SPE 6 SPE
0

5000

10000

15000
1 Task in Queue
2 Tasks in Queue
3 Tasks in Queue
4 Tasks in Queue

(a)

1 SPE 2 SPE 3 SPE 4 SPE 5 SPE 6 SPE
0

20000

40000

60000

80000

D

eq
ue

s
(

x1
00

0
)

1 Task in Queue
2 Tasks in Queue
3 Tasks in Queue
4 Tasks in Queue

(b)

Figure 3.7: Average number of tasks in each SPE at task dequeue for blue sky,
small (left) and large (right) resolutions.

3.5 Available task parallelism

Next, we examine the number of tasks that are outstanding during different c264
configurations. We are mainly interested in examining the impact of input resolu-
tion.

Figure 3.6 shows elapsed time in the x-axis and execution time of different
task types in the y-axis. In this run we use the blue sky video, small resolution,
and 6 SPEs. Results are collected from only one SPE. File reading and writing is
subtracted from the total time and is separated by dotted lines in the graph.

Between two frames the number of tasks executing on SPEs is limited. We
issue some tasks, for example copying of frames in the encoder’s buffers and ini-
tialization of different structures. About 5–10% of total execution time of PPE is
spent in frame initialization and finalization. We see that the deblocking filter of
the luminance component is the most computationally intensive task, taking up to
180000 core cycles. Next we see that analyze/encode tasks have significant varia-
tion in execution time. Furthermore, the application issues many small tasks, such
as entropy encoding, that have execution time of about 1500 core cycles. These
differences in execution time of tasks lead to load imbalance.

Figures 3.7(a) and 3.7(b) show the number of outstanding tasks in each SPE
queue (average across all SPEs), when a new task is dequeued for execution. The
SPE queue size has a maximum capacity of four tasks. At small resolutions and
large SPE counts, there is typically one more task in the SPE queue when a task is
dequeued for processing and rarely more than one. At larger resolutions, there is
frequently three more tasks outstanding. At such resolutions, larger SPE queues
would allow the PPE to create more tasks and could possibly reduce PPE task
stall time as well.

24 CHAPTER 3. EXPERIMENTAL EVALUATION

3.6 Impact of task queue size

Queue = 1 Queue = 1 +
Entropy thread

Queue = 4 +
Entropy thread

1200012000

9000

6000

3000

 T
im

e
(m

s)

Issue
Queue Stall
Sync Wait
Metadata
Entropy
Entropy Parallel
Manage
Allocator
Other

Figure 3.8: PPE execution time break-
down with one queue slot per SPE
(left), with one slot and entropy encod-
ing thread (middle) and with four slots
(right).

We observe that performance improves
if the entropy encoding task is issued
as soon as its dependencies are satis-
fied. The performance gain from en-
tropy encoding task arises from run-
ning in parallel with other tasks. How-
ever, at the end of each frame, when
there are no additional available paral-
lel tasks to execute, encoder executes
the entropy encoding on the PPE.

An entropy task may be delayed
behind other tasks in the SPE task
queues, which are served FIFO. This is
a problem of scheduling priority, how-
ever our runtime does not support dif-
ferent priorities in task execution. On
the other hand, the PPE has a two-way
SMT architecture. To compensate for
priorities we spawn another thread for
entropy encoding, to address the pri-
ority issue. The spawned thread is re-
sponsible only for entropy encoding. A macroblock is encoded as soon as the
analyze/encode phases finish. For the synchronization we used a spinlock primi-
tive.

Figure 3.8 shows the PPE execution time breakdown with six SPEs and varying
queue sizes in three configurations: the optimized version with one queue slot on
each SPE (left), using a PPE thread for entropy encoding (middle), and using a
PPE thread for entropy encoding together with four task slots per SPE (right). In
the right configuration, serial part of the entropy encoding is the time waitting in
synchronization point the entropy thread to finish.

We observe that the allocator time increases due to locking, as a result of
concurrent accesses to data structures. Metadata handling time increases because
of memory accesses from the two PPE threads on the shared PPE L2 cache.
Note that the issue time is lower due to overlapping and most queue stall time
is converted in synchronization time. However, the total sum of synchronization,
issue, and stall time is larger than when using one task slot per SPE queue. Finally,
the serial part of entropy encoding is lower as expected, due to the additional
thread that executes only this task. Overall, differences in task execution time
can cause significant imbalance and decrease the performance of the encoder. We
enforce load balancing, using one slot per SPE queue, although this increases issue
time and stall time.

3.7. COMPARISON WITH OTHER PLATFORMS 25

Resolution c264 1 thread AMD SIMD 2 threds AMD SIMD
720x576 45.7 40.27 60.97

1920x1088 8.5 7.12 12.51

Table 3.3: c264 and x264 achieved fps using the blue sky video sequence and
the UMH algorithm with 128×128 search region.

3.7 Comparison with Other Platforms

To place our result in context, we also present x264 results on two more traditional,
x86-based multi-core platforms: A dual-processor system, with two 64-bit Dual-
Core AMD Opteron Processor 2216 running at 2.4GHz, with 64KB L1-D cache,
64KB L1-I cache, and 1024KB L2 cache per core. The CMOS technology is at
90nm. We use six SPEs when we run c264 on the Cell processor. Table 3.3
shows that the Cell outperforms the x86 processor by 14% and 20%, for small and
large resolutions, respectively using one only thread. However, x264 outperforms
c264 when two threads are active 33% and 45% for small and large resolutions
respectively. We have similar results using different input video sequences.

3.8 Programmer effort

To estimate the programming effort associated with building c264 we count the
lines of code added or modified in c264 compared to x264. Table 3.4 shows the
programming effort measured in line counts and programming complexity. The
programming complexity is related to the implementation time.

We category the modifications into:

• SPE code for privatization of data structures includes all code required in
SPEs to access data structures in local memory

• PPE task management refers to dependencies management and the memory
recycling mechanism.

• PPE task metadata handling refers to preparation of motion vectors and
calculation of pointers to reference(s) frame(s).

• Task PPE issue and SPE entry code refers to preparing and issuing a task
on the PPE and the SPE entry code that executes the appropriate task.

• SPE kernel optimization accounts for the code transformation of kernels,
such as kernel vectorization and branch elimination.

The privatization of data structures was the most time consuming of all, be-
cause we must restrict access to global memory. The x264 encoder, during to
encoding process has memory read and updates global arrays that contain infor-
mation about he current encoding frame. This forces us to modify almost all

26 CHAPTER 3. EXPERIMENTAL EVALUATION

Type Lines of code Programming effort
SPE privatization of data structures 4194 10–12 months
PPE task management 629 2–4 weeks
PPE task metadata handling 1299 4–6 days
PPE task issue and SPE entry code 1244 1–2 days
SPE kernel optimization 667 3–4 days
Total 8033 -

Table 3.4: Programming effort expressed in lines of code added to or modified
from the original x264 application.

source code that runs in SPEs. Task management required effort due to the im-
plementation of dynamic scheduling using the data dependency table. Metadata
handling, task issue, and entry code in SPE were trivial and minimal effort is
needed. Kernel optimizations, such as vectorization or branch elimination, that
are critical for exploiting the processing power of SPEs, has minor programming
effort but higher performance gains. The programming effort for porting complex
applications, such as x264, is significant despite the computational power of Cell
processor.

Chapter 4

Related Work

In this chapter, we examine related work concerning parallelization and perfor-
mance of H.264 video encoding, decoding on the Cell processor and other plat-
forms. Related work falls into three broad areas: parallelization of H.264 video
encoding and decoding on Cell, SPE kernel vectorization, parallelizaion in other
architectures, and hardware implementations.

Park and Ha [22] analyze the expected performance of x264 parallelization
at the macroblock-level for the Cell processor. They offload only the first phase
of the encoder, the analysis to SPEs, whereas the rest of the encoder remains
on the PPE. Wu et Al. [14] present a real-time encoder of H.264, however, their
effort is focused on kernel optimization rather than parallelization. They ignore
the entropy encoding and other auxiliary parts of the encoder, such as frame
initiation and rate control. In contrast, we present a full implementation for the
Cell processor that parallelizes or offloads every phase of the encoder and show
that the task management can occur significant overheads. Xun et al. [34] use a
decentralized pipelined parallel encoding algorithm to achieve real-time encoding
for high definition H.264 streams using eight SPEs. They achieve to decrease
communication overhead by carefully optimize DMA transfers for each module
of the encoder and decrease the task management overhead using decentralized
task creation. For efficient communication they use multi-buffering and on–chip
communication for data transfers between different modules of encoder. Their
encoder uses no runtime and they implement it using directly the Cell SDK library.

The impact of SPE-vectorization in the computational intensive kernels have
bee extensively analyzed. Vectorization of kernels used in video encoding include:
motion estimation [35], deblocking filter [9], discrete cosine transformation [5],
and interpolation [12]. Vectorization usually produces additional overhead in for
packing and unpacking data into vectors, but lower overall execution time than the
scalar version of kernels. In c264 we use SPE-vectorization for macroblock analysis
and encoding, but not for deblocking. We vectorize SPE kernels for macroblock
analysis and encoding and achived speedups from 1.39 up to 22x. Our profiling
shows that impact of vectorization of deblocking filter yield comparably small

27

28 CHAPTER 4. RELATED WORK

performance gains, given the portion of execution time spent in this specific part
of the code.

Previous research has also examined video decoding of H.264 on Cell proces-
sor. Macroblock-level parallelism can be exploited in intra- and inter-frame and
is extensively analyzed by Meenderinck et al. [11]. They use an master-worker
programming model similar to ours. Meenderick et al. also investigates different
scheduling policies for macroblock-level parallelism, including a static scheduling
approach to preserve locality [10]. One of the problems of 3D-wavefront paral-
lelism, is the artificial delays that creates, that can be solve using different priority
to tasks [8]. Baik et al. [17] parallelize an H.264 decoder for the Cell processor
based on per-module profiling, yielding a speedup of 3.5x on four SPEs, compared
to the PPE-only version. Baker et al. [2] present a scalable parallel H.264 decoder
for the Cell processor. In contrast to us, they do not parallelize or offload the
entropy encoder, although they do present the computational requirements for en-
tropy CABAC decoding. Other work that has looked into parallel decoding for
the Cell processor includes [37, 15]

H.264 video encoding parallelization was presented for other platforms as well.
Zhao et al. [38] present simulation results for wavefront parallelization of H.264
video encoding, however they ignore possible overheads that may occur from par-
allelization, such as of communication, management and synchronization. The
authors in [24] propose a hierarchical parallelization for H.264 video encoding for
large scale clusters, using message passing and multi-threading programming mod-
els. They use coarse-grain parallelism, at the grain of group of frames, combined
with slice parallelization. Although real-time operation can be achieved with such
an approach, the latency is very high. Slice-based parallelization using balanc-
ing algorithms int the encoding to improve scalability of decoder has been also
proposed [25]. Parallelization of video decoder using Intel hyper-threaded archi-
tectures has been proposed by Chen et al [36]. They propose two implementations,
one using slice queues and one using task queues, and achieve speedup ranging from
3.74x to 4.53x. Streaming techniques have been also proposed [32] for real-time
H.264 video encoding,

Finally, previous work has proposed specialized hardware for H.264 video en-
coding, while exploiting many levels of parallelism. The authors in [33] present
a parallel, fine-grain implementation of the CAVLC entropy encoding for a 167-
core (MIMD) processor. They partition entropy encoding into two phases, called
scanning and encoding, and fine-grain parallelize the encoding phase. In c264 we
do not parallelize the encoding phase of entropy encoding, but rather offload it
from the PPE to a single, dynamically chosen SPE. We find this to be an effec-
tive approach that reduces significantly the code complexity, while it results in
good scalability. Authors in [27] present an architecture for de-blocking filter in
H.264. They use several techniques to avoid redundant data transfers and reduce
processing latency, such as classification of de-blocking filters and usage of bus
interleaved architectures. The single chip encoder for H.264 presented in [3] uses a
four-stage macroblock pipeline architecture that encodes 720p 30fps HDTV videos

29

in rea-time. The biggest drawback of the hardware approaches, is that they usu-
ally offer limited flexibility compared to the software approach c264 employs. For
instance, new motion estimation algorithms can not be easily introduced, because
this would require architecture changes.

30 CHAPTER 4. RELATED WORK

Chapter 5

Discussion and Conclusions

In this chapter we discuss some issues that programmers or programming model
should deal with. We also present some future work and possible directions for
continuing research. Finally we discuss our overall conclusions.

5.1 Discussion

Besides the issues we address in this work, we believe that programmers will need to
deal with three additional, broad issues: Minimization of data transfers, scheduling
of fine-grained tasks, local store memory size limitations, and code management.

Fine-grain task parallelism may increase the amount of data transferred be-
tween local store and global memory. Small tasks may require transferring mul-
tiple times the same data that could otherwise be transferred only once for each
coarser-grained task. For example, in c264 the data of search window for motion
estimation, are overlapping between tasks of neighbouring macroblocks. Thus,
there is a need for mechanisms that will minimize unnecessary data transfers trans-
parently. Although, solution for software management cache in SPEs exists [20],
requires major code modifications and have some computational overhead.

Fine-grained task-based scheduling can be used to avoid synchronization and
task management overhead in the application side. With proper scheduling, task
dependencies can be forced using without occurring additional overhead in the PPE
side. Dynamic scheduling creates significant overhead in c264 , caused mostly from
the dependencies checking.

Local store memory size limitation has undesirable effects in many aspects on
the c264 . First, we have quality decrease of output stream, because the search
window for motion estimation is reduced and the disabled advanced algorithms
for analysis and encoding. Second, the performance of SPE code suffers, beacause
we cannot enable advanced compiler optimizations and practically eliminates the
prefetching of arguments. Finally, programming effort increase to address the
challenges of limited memory.

Code management for future multicores with explicitly managed memories is
an important issue. The large number of cores may require multiple copies of a

31

32 CHAPTER 5. DISCUSSION AND CONCLUSIONS

code region wasting memory resources. Storage management for code and data
is undesirable for programmers and significantly increases complexity and effort.
Although transparent solutions to these problems exits [13, 26, 4], they rely on
knowledge of the programmer for efficient usage.

5.2 Future Work

In our work we examine many aspects the performance of the cell processor, how-
ever there are still areas for further research that include:

A detail analysis of trade-offs between the local-store and cache-based ap-
proached using complex and bandwidth demanding applications such as x264.
Our preliminary results show that multi-core x86 processors can provide compu-
tational and communication resources to overcome the Cell processor. Moreover,
an detailed comparison architectural comparisons across a broad range of multi-
core systems and parallelization algorithms and parallelization approaches, is lack-
ing. Finally, in our work we do not address the power considerations for varying
technologies. A detailed analysis that compared the local-store and cache-based
processors should be interesting.

Increase parallelism and scalability using inter-frame parallelism. This requires
for the programmer to address the challenges, that we report in section 2.2. More-
over hierarchical parallelization, using more coarse grain methods such as group
of pictures, can be used to exploit further more the data parallelism that exists in
video encoding.

5.3 Conclusions

Our intention is to explore the available parallelism and possible overheads of a
parallel H.264 video encoder on Cell processor. We start from an existing, thread-
based parallel encoder, x264, that uses frame-based parallelism. We redesign the
encoder to use master-worker, task-based parallelism with appropriate scheduling.
We employ fine-grained macroblock-level parallelism and we deal with memory
limitations in the Cell processor.

Our results show that our implementation achieves speedup of about 4.5x on
six SPEs for many realistic scenarios compared to the PPE-only execution time.
However, PPE and SPE still incur significant task management and communica-
tion overheads, up to 35% and 30% of PPE and SPE execution time, respectively.

We conclude that the task management overhead, communication and the size
of local store memory is significant and affects the overall performance and scala-
bility despite of optimizations. Overall, we believe that is possible to improve c264
performance significantly, however it is still challenging to scale to large numbers
of cores due to control flow complexity and task management overhead.

Bibliography

[1] ITU-T H.264: Advanced video coding for generic audiovisual services, Novem-
ber 2009.

[2] Michael A. Baker, Pravin Dalale, Karam S. Chatha, and Sarma B.K. Vrud-
hula . A scalable parallel H.264 decoder on the cell broadband engine archi-
tecture. In Proceedings of the 7th IEEE/ACM international conference on
Hardware/software codesign and system synthesis (CODES+ISSS ’09), pages
353–362, New York, NY, USA, 2009.

[3] Yu-Wen Huang, Tung-Chien Chen, Chen-Han Tsai, Ching-Yeh Chen, To-Wei
Chen, Chi-Shi Chen, Chun-Fu Shen, Shyh-Yih Ma, Tu-Chih Wang, Bing-Yu
Hsieh, Hung-Chi Fang, Liang-Gee Chen . A 1.3 TOPS H.264/AVC single-chip
encoder for HDTV applications. In Proceedings IEEE International Solid-
State Circuits Conference, volume 1, pages 128–588, February 2005.

[4] A. E. Eichenberger, J. K. O’Brien, K. M. O’Brien, P. Wu, T. Chen, P. H.
Oden, D. A. Prener, J. C. Shepherd, Z. Sura, A. Wang, T. Zhang, P. Zhao,
M. K. Gschwind, R. Archambault and Y. Gao and R. Koo. Using advanced
compiler technology to exploit the performance of the Cell Broadband Engine
architecture. IBM Systems Journal, 45(1):59–84, 2006.

[5] A. Shahbahrami and B.H.H. Juurlink . Performance Improvement of Mul-
timedia Kernels by Alleviating Overhead Instructions on SIMD Devices. In
Proceedings of the 8th International Symposium on Advanced Parallel Pro-
cessing Technologies (APPT ’09), pages 389–407, August 2009.

[6] S. M. Akramullah, I. Ahmad, and M. L. Liou. A data-parallel approach
for real-time MPEG-2 video encoding. Journal of Parallel and Distributed
Computing, 30(2):129–146, 1995.

[7] M. Alvarez, E. Salami, A. Ramirez, and M. Valero. HD-VideoBench. A
Benchmark for Evaluating High Definition Digital Video Applications. In
Proceedings of the 10th International Symposium on Workload Characteriza-
tion (IISWC ’07), pages 120–125, Washington, DC, USA, 2007.

1

2 BIBLIOGRAPHY

[8] A. Azevedo, B. Juurlink, C. Meenderinck, A. Terechko, J. Hoogerbrugge,
M. Alvarez, A. Ramirez, and M. Valero. A Highly Scalable Parallel Implemen-
tation of H.264. In The 4th International Conference on High-Performance
Embedded Architectures and Compilers (HiPEAC’09), 2009.

[9] A. Azevedo, C. Meenderinck, B. H. H. Juurlink, M. Alvarez, and A. Ramı́rez.
Analysis of video filtering on the cell processor. In International Symposium on
Circuits and Systems (ISCAS ’08), 18-21 May 2008, Sheraton Seattle Hotel,
Seattle, Washington, USA, pages 488–491, 2008.

[10] Chi Ching Chi, Ben Juurlink, Cor Meenderinck . Evaluation of Parallel H.264
Decoding Strategies for the Cell Broadband Engine. In Proceedings Interna-
tional Conference on Supercomputing (ICS ’10), June 2010.

[11] Cor Meenderinck and Arnaldo Azevedo and Ben H. H. Juurlink and Mauri-
cio Alvarez, Alex Ramirez. Parallel Scalability of Video Decoders. Signal
Processing Systems, 57(2):173–194, 2009.

[12] Cor Meenderinck and Ben Juurlink. Intra-Vector SIMD Instructions for Core
Specialization. In Proceedings of the IEEE International Conference on Com-
puter Design (ICCD ’09), October 2009.

[13] I. Corp. An introduction to compiling for the Cell Broad-
band Engine architecture, Part 5: Managing memory, 2006.
http://www.ibm.com/developerworks/edu/pa-dw-pa-cbecompile5-i.html.

[14] Di Wu, Boonshyang Lim, Johan Eilert and Dake Liu. Parallelization of
High-Performance Video Encoding on a Single-Chip Multiprocessor. In IEEE
International Conference on Signal Processing and Communications, 2008.

[15] Erik B. Van Der Tol, Egbert G. T. Jaspers, Rob H. Gelderblom E.B. van
der Tol, E.G.T. Jaspers and R.H. Gelderblom. Mapping of H.264 decoding
on a multiprocessor architecture. In Image and Video Communications and
Processing, pages 707–718, 2003.

[16] H. P. Hofstee. Power Efficient Processor Architecture and The Cell Proces-
sor. In 11th International Conference on High-Performance Computer Archi-
tecture (HPCA ’05), 12-16 February 2005, San Francisco, CA, USA, pages
258–262, 2005.

[17] Hyunki Baik, Kue-Hwan Sihn, Yun-il Kim, Sehyun Bae, Najeong Han, and
Hyo Jung Song. Analysis and Parallelization of H.264 decoder on Cell Broad-
band Engine Architecture. In IEEE International Symposium on Signal Pro-
cessing and Information Technology (ISSPIT), pages 791–795, Washington,
DC, USA, 2007. IEEE Computer Society.

[18] IBM. Cell Broadband Engine resource center, 2008.
http://www.ibm.com/developerworks/power/cell/downloads.html.

BIBLIOGRAPHY 3

[19] Intel Corporation. Intel Single-Chip Cloud Computer.
http://techresearch.intel.com/UserFiles/en-us/File/terascale/SCC-
Overview.pdf.

[20] Lee, Jaejin and Seo, Sangmin and Kim, Chihun and Kim, Junghyun and
Chun, Posung and Sura, Zehra and Kim, Jungwon and Han, SangYong.
COMIC: a coherent shared memory interface for cell be. In Proceedings of
the 17th international conference on Parallel architectures and compilation
techniques (PACT ’08), pages 303–314, New York, NY, USA, 2008. ACM.

[21] L. Merritt and R. Vanam. Improved Rate Control and Motion Estimation
for H.264 Encoder. In Proceedings of the International Conference on Image
Processing (ICIP 2007), September 16-19, 2007, San Antonio, Texas, USA,
pages 309–312, 2007.

[22] J. Park and S. Ha. Performance Analysis of Parallel Execution of H.264
Encoder on the Cell Processor. In Workshop on Embedded Systems for Real-
Time Multimedia (ESTIMedia ’07), pages 27–32, 2007.

[23] Redbooks, IBM. Programming the Cell Broadband Engine Architecture: Ex-
amples and Best Practices, chapter 4, page 325. 2008.

[24] A. Rodriguez, A. Gonzalez, and M. P. Malumbres. Hierarchical Parallelization
of an H.264/AVC Video Encoder. In Proceedings of the international sympo-
sium on Parallel Computing in Electrical Engineering (PARELEC ’06), pages
363–368, Washington, DC, USA, 2006.

[25] M. Roitzsch. Slice-balancing H.264 video encoding for improved scalability
of multicore decoding. In Proceedings of the 7th ACM & IEEE international
conference on Embedded software (EMSOFT ’07), pages 269–278, New York,
NY, USA, 2007.

[26] Ron Cytron and Paul G. Loewner. An automatic overlay generator. IBM
Journal of Research and Development, 30(6):603–608, 1986.

[27] Shih-chien Chang, Wen-hsiao Peng, Shih-hao Wang, Tihao Chiang. A Plat-
form Based Bus-interleaved Architecture for De-blocking Filter. In Proceed-
ings IEEE International Conference on Consumer Electronics (ICCE ’05),
volume 51, pages 249–255, 2005.

[28] S.M. Akramullah, I. Ahmad, M.L. Liou. Performance of a software-based
MPEG-2 video encoder on parallel and distributed systems. In IEEE Trans-
actions on Circuits and Systems for Video Technology (TCSV ’97), volume 7,
pages 687–695, 1997.

[29] T.Olivares, F.Quiles, P.Cuenca, L.Orozco-Barbosa and I.Ahmad. Study of
data distribution techniques for the implementation of an MPEG-2 video

4 BIBLIOGRAPHY

encoder. In Proceedings IEEE International Conference on Parallel and Dis-
tributed Computing and System (PDCS ’99), pages 537–542, November 1999.

[30] G. Tzenakis, K. Kapelonis, M. Alvanos, K. Koukos, D. S. Nikolopoulos, and
A. Bilas. Tagged Procedure Calls (TPC): Efficient runtime support for task-
based parallelism on the Cell Processor. In The 2010 International Conference
on High-Performance Embedded Architectures and Compilers (HiPEAC ’10),
Jan. 2010.

[31] Videolan. x264: A free H.264/AVC encoder,
http://www.videolan.org/developers/x264.html.

[32] N. Wu, M. Wen, W. Wu, J. Ren, H. Su, C. Xun, and C. Zhang. Streaming
HD H.264 encoder on programmable processors. In Proceedings of the 17th
ACM international conference on Multimedia (MM ’09), pages 371–380, New
York, NY, USA, 2009.

[33] Z. Xiao and B. M. Baas. A High-Performance Parallel CAVLC Encoder on a
Fine-Grained Many-core System. In International Conference on Computer
Design (ICCD ’08), pages 248–254, Oct. 2008.

[34] Xun He, Xiangzhong Fang, Ci Wang, and Satoshi Goto. Parallel HD encoding
on cell. In International Symposium on Circuits and Systems (ISCAS ’09),
pages 1065–1068, 2009.

[35] Xun He, Yunfei Zhang, Xuewen He, Haicheng Wu, Yao Zou, Shanghai Jiao
Tong. An efficient block motion estimation method on CELL BE. In In-
ternational Conference on Audio, Language and Image Processing (ICALIP
’08), July 7-9, Shanghai, China, pages 1672–1676, 2008.

[36] Yen-Kuang Chen and Xinmin Tian and Steven Ge and Milind Girkar. Towards
Efficient Multi-Level Threading of H.264 Encoder on Intel Hyper-Threading
Architectures. In 18th International Parallel and Distributed Processing Sym-
posium (IPDPS ’04), 26-30 April, Santa Fe, New Mexico, USA, page 63,
2004.

[37] Yuan, Yu and Yan, Rong and Li, Huoding and Liu, Xing and Xu, Sheng.
High definition H.264 decoding on cell broadband engine. In MULTIMEDIA
’07: Proceedings of the 15th international conference on Multimedia, pages
459–460, New York, NY, USA, 2007.

[38] Zhuo Zhao and Ping Liang. A Highly Efficient Parallel Algorithm for H.264
Video Encoder. In International Conference on Acoustics, Speech and Signal
Processing, 2006, volume 5 of Acoustics, Speech and Signal Processing, pages
489–492, May 2006.

	Introduction
	H.264 and x264 overview
	The Cell processor
	Runtime system

	Design and Implementation
	Parallelization approaches
	Identifying dependencies
	Exploting parallelism
	Task scheduling
	Addressing memory limitations
	SPE code vectorization and optimization
	Implementation of c264

	Experimental Evaluation
	Experimental Platform and Methodology
	SPE code optimizations
	Overall speedup and scalability
	Impact of optimizations
	Available task parallelism
	Impact of task queue size
	Comparison with Other Platforms
	Programmer effort

	Related Work
	Discussion and Conclusions
	Discussion
	Future Work
	Conclusions

