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Contact State Estimation for Legged Robots

Abstract

Legged robot locomotion in unstructured and slippery terrains relies heavily on
accurately identifying the contact state between the robot’s feet and the ground.
Contact state estimation poses significant challenges, typically addressed by lever-
aging force measurements, joint encoders as well as robot kinematics and dynam-
ics. This thesis introduces two novel approaches for accurately estimating the
contact state in real-time, namely, a deep learning approach and a probabilistic
model-based method.

To address the challenges of leg contact detection in bipedal walking gaits, a
deep learning framework is proposed. This framework accurately and robustly
estimates the contact state probability for each leg, distinguishing between stable
contact, slip, or no contact. Notably, the framework relies solely on propriocep-
tive sensing and demonstrates generalizability across diverse friction surfaces and
legged robotic platforms. Comprehensive evaluations, including comparisons with
state-of-the-art methods, have been performed using ATLAS, NAO, and TALOS
humanoid robots. Furthermore, the framework’s efficacy is demonstrated in real-
world base estimation tasks with a TALOS humanoid robot.

The second proposed approach is model-based and relies solely on Inertial
Measurement Units (IMUs) mounted on the robot’s end effectors. It offers a ver-
satile approach that can be implemented in any legged robot without the necessity
of training data. By capitalizing on the uncertainty of IMU measurements, this
novel probabilistic method is capable of estimating the probability of stable con-
tact. The method approximates the multimodal probability density function using
Kernel Density Estimation, providing reliable contact state estimation. Extensive
evaluations of the proposed method have been conducted on both real and simu-
lated scenarios, demonstrating its effectiveness on various bipedal and quadrupedal
robotic platforms, including ATLAS, TALOS, and Unitree’s GO1.

Finally, this thesis introduces an application of the aforementioned probabilistic
contact state estimator that further demonstrates its efficacy. More specifically, an
adaptive trajectory tracking controller is presented, which was developed by peers
in the Computational Vision and Robotics Laboratory. This controller consists of
two prioritized layers of adaptation aimed at preventing leg slippage when stepping
on partially or globally slippery terrains. The primary emphasis is placed on the
results, as the first layer of adaptation effectively utilizes the contact probability
to distribute the effort among each leg. Therefore, the accuracy of this controller
is directly correlated to the ability to estimate the contact state in real-time which
validates the robustness of the proposed contact estimator.





Εκτίμηση Κατάστασης Επαφής σε Βαδίζοντα

Ρομπότ

Περίληψη

Η κίνηση των βαδίζοντων ρομπότ σε ανώμαλα και ολισθηρά εδάφη εξαρτάται

σε μεγάλο βαθμό από την ακριβή αναγνώριση της κατάστασης επαφής μεταξύ των

ποδιών του ρομπότ και του εδάφους. Ο τομέας της εκτίμησης της κατάστασης

επαφής αντιμετωπίζει σημαντικές προκλήσεις, οι οποίες προσεγγίζονται συνήθως μέσω

της εκμετάλλευσης μετρήσεων δυνάμεων, κωδικοποιητών αρθρώσεων καθώς και της

κινηματικής και δυναμικής του ρομπότ. Στην παρούσα διατριβή παρουσιάζονται δύο

νέες προσεγγίσεις για την ακριβή εκτίμηση της κατάστασης επαφής σε πραγματικό

χρόνο: ένα μοντέλο βαθιάς μάθησης και ένα πιθανοτικό μοντέλο.

Για την αντιμετώπιση των προκλήσεων της ανίχνευσης επαφής ποδιού κατά τη

βάδιση δίποδων ρομποτ, προτείνεται κατάρχήν μία αρχιτεκτονική βαθιάς μάθησης. Η

αρχιτεκτονική αυτή εκτιμά με ακρίβεια και αξιοπιστία την κατάσταση επαφής για κάθε

πόδι, διακρίνοντας μεταξύ σταθερής επαφής, ολίσθησης ή μη επαφής. Σημαντικό

είναι ότι το πλαίσιο αυτό βασίζεται αποκλειστικά στην αισθητηριακή αντίληψη του

ρομπότ και επιδέχεται γενίκευση σε ποικίλες επιφάνειες τριβής αλλά και ρομποτικών

πλατφόρμων. Πραγματοποιήθηκαν εκτενείς αξιολογήσεις, συμπεριλαμβανομένων συγ-

κρίσεων με προηγμένες μεθόδους, χρησιμοποιώντας ανθρωποειδή ρομπότ, όπως τα

ATLAS, NAO και TALOS. Επιπλέον, η αποτελεσματικότητα της προτεινόμενης μεθό-
δου αποδεικνύεται σε πραγματικές συνθήκες εκτίμησης κατάστασης με ένα δίποδο

TALOS.

Η δεύτερη προτεινόμενη προσέγγιση μοντελοποιεί τα χαρακτηριστικα της επαφής

και βασίζεται αποκλειστικά σε μονάδες μέτρησης αδράνειας (IMUs) που τοποθετούνται
στα άκρα του ρομπότ. Η μέθοδος αυτή προσφέρει μια ευέλικτη προσέγγιση που μπορεί

να εφαρμοστεί σε οποιοδήποτε βαδίζον ρομπότ χωρίς να απαιτούνται δεδομένα για εκ-

παίδευση. Αξιοποιώντας την αβεβαιότητα των μετρήσεων αδρανείας, παρουσιάζεται

ένας νέος πιθανοτικός τρόπος για την εκτίμηση της πιθανότητας σταθερής επαφής.

Η μέθοδος προσεγγίζει την πολυμεταβλητή πυκνότητα πιθανότητας χρησιμοποιών-

τας την μέθοδο Kernel Density Estimation, παρέχοντας αξιόπιστη εκτίμηση της
κατάστασης επαφής. ΄Εχουν πραγματοποιηθεί εκτενείς αξιολογήσεις της προτεινό-

μενης μεθόδου σε πραγματικά και προσομοιωμένα σενάρια, αποδεικνύοντας την αποτε-

λεσματικότητά της σε διάφορες ρομποτικές πλατφόρμες, συμπεριλαμβανομένων των

ATLAS, TALOS και GO1 της Unitree.

Τέλος, αυτή η διατριβή παρουσιάζει μια εφαρμογή του προαναφερθέντος πι-

θανοτικού εκτιμητή κατάστασης επαφής που επιδεικνύει περαιτέρω την αποτελεσ-

ματικότητά του. Συγκεκριμένα, παρουσιάζεται η εφαρμογή σε ένα προσαρμόσιμο

ελεγκτή τροχιάς που αναπτύχθηκε από συναδέλφους στο Εργαστήριο Υπολογιστικής

΄Ορασης και Ρομποτικής. Αυτός ο ελεγκτής αποτελείται από δύο επίπεδα προσαρ-

μογής με στόχο την αποφυγή ολίσθησης των ποδιών σε μερικώς ή ολικώς ολισθηρές

επιφάνειες. Κυρίωςς, δίνεται έμφαση στα αποτελέσματα, καθώς το πρώτο επίπεδο



προσαρμογής χρησιμοποιεί την πιθανότητα επαφής για την κατανομή της προσπά-

θειας σε κάθε πόδι. Επομένως, η ακρίβεια αυτού του ελεγκτή σχετίζεται άμεσα με

την ικανότητα εκτίμησης της κατάστασης επαφής σε πραγματικό χρόνο, καθιστώντας

έτσι τον προτεινόμενο εκτιμητή επαφής αξιόπιστο.
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Chapter 1

Introduction

The field of robotics has experienced significant progress in recent years, revo-
lutionizing industries from manufacturing and surveillance to transportation and
agriculture. As robots become more advanced, they are able to perform tasks
that were previously deemed impossible or too dangerous for humans to under-
take. Furthermore, the integration of artificial intelligence and machine learning
in robotics has enabled them to adapt and learn autonomously, increasing their ef-
ficiency and usefulness, while at the same time fostering human-robot interaction.
In the future, the field of robotics is expected to continue making significant con-
tributions towards improving productivity, enhancing safety, and solving complex
problems in various fields.

1.1 Legged Robots Landscape

Legged robots in particular, are becoming increasingly important in various fields
such as search and rescue, exploration and logistics operations. Unlike wheeled
and flying robots, legged robots have the ability to discretize space which enables
them to traverse rough terrains and navigate through unstructured and dynamic
environments, for instance sewers or construction sites. The dynamic human-
centric environment, that is imperative for robots to navigate into, constitutes
their deployment in real-world scenarios generally challenging. Environments such
as multi-level buildings or construction sites consist of discontinuous terrains, such
as stairs and obstacles. The morphology of legged robots is by design appropriate
of such terrains, enabling them to strategically plan and execute discrete footholds
in order to traverse them.

In recent years, significant advancements have been made in legged robot tech-
nology, particularly in hardware and sensory equipment, which have led to the de-
velopment of increasingly capable and robust robotic platforms (Fig. 1.1). Modern
legged robots are also equipped with numerous sensors for reliable perception of
the environment such as depth and stereo camera systems, Light Detection And
Ranging (LiDAR) and ultrasonic sensors. Moreover, within the realm of hardware,

1



2 CHAPTER 1. INTRODUCTION

(a) Spot: Quadrupedal robot by Boston
Dynamics1

(b) Digit: Bipedal robot by Agility
Robotics2

Figure 1.1: State-of-the-art legged robots

notable progress has also been made in actuation and battery autonomy, while
feedback sensory has evolved into a more sophisticated technology with faster and
more accurate proprioceptive sensors, namely, Inertial Measurement Units (IMU),
force/torque sensors (F/T) and joint encoders. These sensors provide essential
information for dynamic legged locomotion and state estimation.

Nowadays, and despite the increasing interest in legged robots, only a limited
number of companies are engaged in the development of multi-legged robots, and
even fewer specialize in the design and commercialization of bipedal robots. The
latter offers several advantages over other k-legged robots (k > 2). In compar-
ison, humanoids exhibit greater ability to interact with their environment and
manipulate objects, due to their anthropomorphic design. The world we live in
is designed by humans for humans, making humanoid robots’ morphology opti-
mal for navigation, interaction and manipulation of their surroundings. Moreover,
the similarity with humans facilitates better human-robot interaction, enabling
their seamless cooperation. Additionally, humanoid robots can take advantage of
human tools and devices, which constitutes them even more versatile and useful
in various applications. These advantages make humanoid robots a desirable op-
tion in various fields, including healthcare, logistics and manufacturing, by helping
humans optimize their workflow and avoid performing labor intensive repetitive
tasks. Nevertheless, the domains of legged locomotion and state estimation are
becoming profoundly competitive, being actively pursued by a limited number of
research groups worldwide. Despite the fact that legged robots are considered
as one of the most promising robotic platforms for collaborating and cooperating
with humans in a work environment, there are still several challenges that need to
be addressed.

1https://www.bostondynamics.com/products/spot
2https://agilityrobotics.com/robots

https://www.bostondynamics.com/products/spot
https://agilityrobotics.com/robots


1.1. LEGGED ROBOTS LANDSCAPE 3

1.1.1 Challenges

As stated previously, the main advantage of legged robots over other mobile robots
is the ability to traverse an environment by planning and executing discrete foot-
steps, thus enabling their navigation in unstructured and cluttered terrains. Con-
sequently, this characteristic inherently introduces instability to the robot, which
requires to be addressed by employing complex and interdisciplinary approaches.
The main challenges and open research problems in the field of legged robotics are
outlined below:

• Gait Planning and Control: Legged robots require complex and adaptive
control strategies to achieve stable and efficient motion. Designing effective
gait patterns that can be executed in real-time and adapting them to var-
ious environmental conditions is a significant challenge [4]. Contemporary
approaches [5, 6, 7] explore reinforcement learning for tackling this challenge
and demonstrating resilient gaiting behavior and stability.

• State Estimation: It is the process of estimating the robot’s current state,
which includes its position, orientation, velocity, contact state and other
relevant variables. This is typically accomplished by fusing both proprio-
ceptive and exteroceptive sensory information as well as previous estimates.
For legged robots, state estimation can be challenging due to the complex
dynamics and the multiple contact points between the robot’s feet and the
ground [8, 9, 10]. The robot’s state can change rapidly and unpredictably
as it moves, and it must be estimated in real-time for the robot to main-
tain stability and perform complex tasks. Most commonly, state estimation
approaches utilize various sensors, such as IMUs, encoders, and other propri-
oceptive sensors. However, these sensors tend to be noisy and prone to errors,
which can lead to inaccurate state estimates and eventually instability.

• Sensing and Perception: Legged robots require accurate, fast and reli-
able sensing in order to navigate through complex and dynamic environ-
ments [11, 12, 13]. They must possess the ability to perceive and respond to
obstacles and sudden changes in their surroundings, which can be challeng-
ing in outdoor or unstructured environments. The main drawback is that
exteroceptive sensors (cameras, LiDARs etc.) usually operate in low refresh
rates which constrains the response time of the robot when an obstacle is
detected. Moreover, such sensors are greatly affected by the structure of the
surrounding environment (glass doors/windows, poor light conditions etc.).

• Simultaneous Localization and Mapping (SLAM): Mobile robots, in
general, usually rely on SLAM in order to navigate autonomously in complex
environments. In the case of legged robots, every link of the robot is both
translating and rotating with respect to a world frame/map origin during
locomotion. The changing pose of the sensor (which needs to be attached at
a link) makes it challenging to perform SLAM, adding significant complexity
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to the process. To address this problem, it is necessary to consider the current
state of the robot, the gait phase [14], impact oscillations resulting from large
Ground Reaction Forces (GRFs), and the robot’s quality of contact with
ground.

1.1.2 Legged Locomotion Scheme

Legged locomotion is an interdisciplinary field that requires fast sensors, real-
time computations and data processing. The outline of the pipeline for achieving
dynamic legged locomotion is graphically illustrated in Fig. 1.2. The main nodes
from this graph, which depend on each other, are the Motion Planner, Feedback
Controller and State Estimation, while the generic Dynamic System represents the
robot.

Figure 1.2: Legged Locomotion Scheme

The Motion Planner is responsible for generating a reference trajectory that
the robot needs to follow in order to achieve the goal. In legged robotics, the
motion planner contains many layers and one of them is the step planner. The step
planner’s purpose is to generate six-dimensional goal poses in space that represent
desired position and orientation of each foothold. In Fig. 1.3, a visualization of
multiple planned steps is provided for the Atlas humanoid robot, alongside with a
sparse heatmap that illustrates how the robot perceives its surroundings.

The Feedback Controller is responsible for communicating with the actuators
and by taking into account the current state, produce the desired motion. There
are many feedback controller designs for ensuring that the robot will perform the
commanded action. Some widely used model-based techniques are Proportional
Integral Derivative (PID), Model Predictive Control (MPC) and linear quadratic
regulator. Contemporary research endeavours introduced the deployment of ma-
chine learning for extracting the dynamics of the system and automatically tune
the controller, for instance reinforcement learning and fuzzy control.

Finally, State Estimation techniques provide the necessary feedback to the
controller by estimating vital variables in real-time. It does so by fusing erroneous
sensor measurements into more accurate estimates while considering the previous
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Figure 1.3: Visualization of robot’s perception and step planner for Atlas humanoid
robot [1].

state of the system. The state of the robot is of arbitrary dimension while the bare
minimum includes the pose of the base frame or in some cases, a frame attached to
the Center of Mass (CoM). Information regarding the exact position of the CoM
is generally unobtainable due to the heterogeneity of the mass distribution in the
torso (e.g. battery located to one side and computer board to the other). On the
contrary, the base frame is an arbitrary frame that is attached somewhere in the
robot’s torso. Although its pose is user-defined, it is most of the times attached
to a suitable place in order to facilitate the relative transformations between the
base and every other link and joint. Other useful state variables that usually need
to be estimated is the position of the CoM paired with the forces acting on it, the
gait phase and the contact state.

1.2 Thesis Motivation

Legged robots rely solely on discrete contacts between their feet and the ground
to interact with the environment and induce motion to their base, thereby, accu-
rately generating the required forces on the CoM is essential in attaining functional
locomotion. The main challenges that the field of legged robotics is currently fac-
ing were concisely described in section 1.1.1. Most of these challenges/research
areas directly depend on accurate and real-time knowledge of the contact state.
For instance, the lack of knowledge regarding whether the foot has slipped in the
preceding step can induce catastrophic consequences since the motion planner will
produce a trajectory based on false foot pose. As a consequence, the controller
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might try to perform an action that is restricted either by the environment (e.g.
collision with the ground) or its mechanical constraints. Finally, in the event of
slippage, the robot will experience significant drift in odometry, ultimately result-
ing in the loss of position tracking. An extensive analysis regarding the necessity
of accurate contact state estimation is presented in Chapter 3.

1.3 Thesis Scope and Contribution

The objective of this thesis is to explore the issue of contact state estimation for
bipedal and quadruped robots and suggest proper methods to cope with that.
While determining the contact state is crucial for the development of locomotion
and state estimation algorithms, its significance extends beyond these applications.

The main contributions of this thesis are two novel approaches for estimating
the contact state in quadruped and bipedal robots. The first approach utilizes ma-
chine learning to classify the contact state on bipedal robots while the second one
introduces a probabilistic method for extracting the quality of contact (probability
the contact is stable) of k-legged robots . Both proposed approaches rely solely
on proprioceptive sensing and operate in real-time. Moreover, the proposed ap-
proaches were extensively tested and compared against other approaches in both
real and simulated legged robots. Finally, an adaptive controller developed by
peers in the Computational Vision and Robotics Laboratory, utilized the prob-
abilistic approach as the basis of the adaptive control law for the joint weights.
The specific contributions to the state-of-the-art of each method will be stated
explicitly in the respective chapters.

1.3.1 Contributed Papers

Most parts of this thesis have been published and presented in high-impact con-
ferences in the relevant scientific field:

• Michael Maravgakis, Despina-Ekaterini Argiropoulos, Stylianos Piperakis
and Panos Trahanias, ”Probabilistic Contact State Estimation for Legged
Robots using Inertial Information”, 2023 International Conference on Robotics
and Automation (ICRA), London, England. [15]

• Stylianos Piperakis, Michael Maravgakis, Dimitrios Kanoulas, and Panos
Trahanias, ”Robust Contact State Estimation in Humanoid Walking Gaits”,
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Kyoto, Japan. [16]

• Despina-Ekaterini Argiropoulos, Dimitrios Papageorgiou, Michael Mar-
avgakis, Drosakis Drosakis and Panos Trahanias, ”Two-layer adaptive tra-
jectory tracking controller for quadruped robots on slippery terrains” (under
preparations to be submitted at ICRA 2024).



1.4. THESIS OUTLINE 7

1.3.2 Open-source Software

To reinforce further research endeavors, both proposed approaches and the adap-
tive controller are offered as open-source projects to the community by visiting the
following public repositories:

• ROS/Python: Legged Contact Detection (LCD)
Author: Michael Maravgakis
https://github.com/michaelMarav/lcd

• ROS/Python: Probabilistic Contact Estimation (PCE)
Author: Michael Maravgakis
https://github.com/MichaelMarav/ProbabilisticContactEstimation

• ROS/C++: Two-Layer Adaptive Controller (Maestro)
Author: Despina-Ekaterini Argiropoulos
https://github.com/despargy/maestro/

1.4 Thesis outline

This thesis is organized as follows:

• Chapter 2 presents the contemporary related work in the field of contact state
estimation while also explicates the most widely used heuristic approaches
in the field.

• Chapter 3 provides a qualitative and analytical exploration of the significance
of contact estimation within the domain of base state estimation, bipedal
locomotion, and CoM estimation.

• Chapter 4 proposes a supervised deep learning framework for estimating the
contact state in bipedal robots.

• Chapter 5 introduces a model-based probabilistic approach for extracting
the stable contact probability in legged robots.

• Chapter 6 briefly presents an adaptive controller that utilizes the proposed
model-based approach to suitably adapt the joint weights for trajectory plan-
ning. This chapter mainly emphasizes on the results which are directly cor-
related with the robustness of the proposed contact state estimator.

• Chapter 7 concludes this thesis outlining the main contributions to the rel-
evant research field and discusses possible future research objectives.

https://github.com/michaelMarav/lcd
https://github.com/MichaelMarav/ProbabilisticContactEstimation
https://github.com/despargy/maestro/
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Chapter 2

Related Work

To achieve truly agile and dexterous locomotion, possessing the ability to ac-
curately estimate the contact state in real-time is indispensable. To this end,
accurate and robust foot contact detection entails a vital role in locomotion con-
trol [17, 18, 19], gait planning [20, 21, 22], base state estimation [23, 24, 25, 26]
and Center of Mass (CoM) estimation [27, 28, 29]. However, this topic remains
largely unexplored and many approaches assume that the contact will be stable
apriori with some notable exceptions. Contemporary contact detection approaches
can be broadly categorized into two groups:

1. Learning-based approaches: Employment of machine learning techniques,
either supervised or unsupervised, to estimate the contact state.

2. Model-based approaches: Definition of a deterministic model of the system
by exploiting the contact dynamics.

Moreover, the aforementioned categories either directly employ the measured ground
reaction wrenches by using a dedicated F/T sensor or they incorporate kinemat-
ics and dynamics to estimate the Ground Reaction Forces (GRFs). In the next
two sections, the most frequently deployed approaches for dealing with contact
estimation are outlined.

2.1 Simple Threshold

By far the simplest and most widely used approach is to threshold empirically the
vertical GRF. The main underlying idea is, instead of assuming that the contact
is stable, one can either measure or estimate the vertical GRF and define an em-
pirical threshold to binary classify the contact state. This threshold is robot and
controller dependent. The former is due to the fact that the mass of each platform
is different and thus the measured GRF will be larger for heavier robots. The con-
troller dependence is a direct consequence of the intensity of the exerted force from
the robot to the ground. Aggressive gaiting induces large impacts between the feet

9
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Figure 2.1: Smoothed vertical ground reaction force of Atlas’ left foot for five steps
with simple threshold

and the ground resulting in greater reaction forces. In Fig. 2.1, the smoothed verti-
cal GRF for five consecutive steps of the left foot of the Atlas simulated humanoid
robot is illustrated with blue color. The vertical red line represents the threshold
which is set, in this case, at 390N to also include the double support phase. So, in
every time stamp that the vertical GRF (blue line) is greater than the threshold
(red line), the contact is categorized as stable which is a valid classification under
the assumption that there is enough friction to prevent slippage. However, this
heuristic is deemed to fail in cases where a foot slips and yet the vertical GRF is
larger than the employed threshold. The latter inevitably leads to catastrophic re-
sults, and thus calls for more sophisticated approaches for contact state estimation.
In the majority of instances, when developing a controller or a state estimator, this
approach is typically employed owing to its straightforwardness and rapid imple-
mentation. Throughout this thesis, the aforementioned approach is utilized as a
baseline and will be referred to as the ”Simple Threshold”.

2.2 Schmidt-Trigger

Another widely-used thresholding approach coined as Schmidt-Trigger, is consid-
ered as slightly more advanced alternative to Simple Thresholding as described in
the previous section. Schmidt-Trigger relies on hysteresis thresholding with two
thresholds (Fig. 2.2), namely a low and a high vertical GRF threshold. The core
principle guiding the classification of the contact is as follows: When the GRF
measurement is below the low limit, it is classified as unstable. When it is greater
than the high limit it is considered stable and, finally, when it lies between the
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Figure 2.2: Smoothed vertical ground reaction force of Atlas’ left foot for five steps
with Schmidt-Trigger

two limits it is classified as the same class as the previous classification. The main
advantages over simple thresholding are, the robustness against outliers that occur
due to disturbances (force fluctuations) and an overall smoother representation of
the contact states. The latter owns to the fact that the threshold is not a rigid
boundary, and measurements near the lower limit are more likely to be classified
as unstable. Although this approach is more sophisticated, it encounters similar
shortcomings as simple thresholding while it also fails to detect slippage when the
vertical GRF assumes large values.

2.3 State-of-the-art

2.3.1 Model-based approaches

Bloesch et al. [30] proposed a state estimation framework that fuses inertial mea-
surements with leg kinematics by employing an Extended Kalman Filter (EKF).
The absolute position of each foothold is included in the state vector and the con-
tact classification occurs by determining whether the pose of the foot is constant.
Capitalizing on this work, the same group extended their research [31] by sub-
stituting the EKF with an Unscented Kalman Filter and reformulating the state
vector to be expressed in the base frame. In order to robustify the filter, they
also introduced an outlier rejection method in the update step. They evaluated
their approach on a StarlETH quadruped robot, proving its robustness to a certain
amount of foot slippage. Towards this direction, in [32] a linear Kalman Filter is
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utilized to estimate each leg state (swing or contact) for quadruped robots. The lat-
ter employs Gaussian probabilistic models for the contact forces and the terrain’s
ground height to infer the gait-phase. Although a very high estimation accuracy is
recorded, the scheme relies on prior knowledge from pre-planned contacts and gait-
phases and thus directly couples the control and estimation processes. Hwangbo
et al. [33] estimated the GRFs by exploiting kinematic and dynamic models. They
introduced a one-dimensional probabilistic framework to binary classify the con-
tact state which is exported from a Hidden Markov Model that takes advantage of
kinematics, differential kinematics and dynamics. This approach does not rely on
F/T sensors, but effectively exploits joint position, velocity, and torque measure-
ments to estimate the GRFs. In [1, 34], a Schmitt-trigger is utilized (Section 2.2)
to classify the measured vertical GRFs from a F/T sensor mounted on the feet
of an Atlas humanoid robot. Once the contact state is determined, they decide
which leg should be used for state estimation. Similarly, in [35], the contact status
of a quadruped robot is inferred from the GRFs by thresholding the robot dynam-
ics. Finally, Focchi et al. [36], utilized the differential kinematics of a simulated
quadruped robot on the velocity level. They directly compared the relative ve-
locity between each foot and the base to detect and recover stability in slippage
events. Moreover, they exploited the contact state transition in order to extract
a rough estimate of the kinetic friction coefficient which is later used not only for
recovering from slippage but also preventing it. However, this approach has never
been tested in a real-world scenario.

2.3.2 Learning-based approaches

Rotella et al. [3] proposed an unsupervised learning framework that employs F/T
and IMU measurements to perform clustering using fuzzy c-means. The sensors
were mounted on the feet of a humanoid robot and they estimated the probability
of contact for each one of the six Degrees of Freedom (DoFs) of the end effector.
Moreover, the authors used the obtained contact probabilities in base estimation by
adapting accordingly the kinematic measurement uncertainty. Likewise, in [37] the
authors approach the quality of contact prediction by using unsupervised learning.
In order to estimate the contact state, they measured the static friction coefficient
by using haptic exploration of the ground with the robot’s feet. Unsupervised
learning was also employed to estimate the gait-phase probability in [38]. The
authors utilized solely proprioceptive sensing, namely, joint encoders, IMU and
F/T, and prior to clustering, they performed Principal Component Analysis (PCA)
in order to reduce the dimensionality of the data and extract a more compact
representation. A high accuracy for all three gait-phases was demonstrated with
a simulated Valkyrie robot, but only stable walking was examined.

Contemporary supervised learning based approaches have been shown efficient
in practice, but they require ground truth labels during the training process. Ca-
murri et al. [39], used a one-dimensional logistic regression framework in order to
specify dynamic GRF thresholds. More specifically, this one-dimensional classifier
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utilized the estimated GRF from dynamics, joint position, and torque measure-
ments to encode different GRF thresholds for different type of gaits. The learnt
threshold was applied only on the vertical GRF while the other components were
ignored under the assumption of sufficient friction to prevent slippage. Neverthe-
less, to perform the training, the ground-truth base velocity is needed. Recently,
Lin et al. [40] introduced a deep convolutional neural network that utilizes IMUs
and joint encoders to classify individual contacts as stable/unstable ones. Their
approach was assessed on a Mini Cheetah robot and across various terrains where
they reported an overall 97% accuracy. Despite the fact that the results indicate
high classification accuracy, the framework is coupled with a specific robot and
controller and it is unable to generalize to different platforms without new ground-
truth labeled data. On the contrary, Ortenzi et al. [41] proposed an approach to
estimate the contact constraints the robot experiences with the environment based
only on joint position measurements.

Most of the aforementioned approaches from contemporary literature focus
on classifying the contact as a binary state, with some notable exceptions such
as [3, 37]. In order to exploit maximum information regarding the state of a
foot, the contact state should not be treated as a categorical variable (contact/no
contact), but rather as a continuous one. In many scenarios in uneven and/or
slippery terrains, it is possible for a foot to be in touch with the ground regardless
of the fact that the contact is unstable, giving rise to devastating consequences if
this is not taken into account during locomotion.
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Chapter 3

Significance of Contact State
Estimation

This chapter explores the crucial role of contact state estimation in base state
estimation, CoM estimation and bipedal locomotion. In Section 3.1, we describe
how the knowledge of the contact state enhances legged odometry’s pose estimates
and how it affects the over-time drift. Following that, in Section 3.2, we introduce
the mathematical modelling of bipedal locomotion and how the contact state is
embedded in the equations that describe the time evolution of the dynamic system.

3.1 Base State Estimation

Base State Estimation serves as a broad term encompassing all types of mobile
robots, including legged robots. In the context of legged robots, it is occasion-
ally referred to as ”legged odometry” without any loss of its intended significance.
Legged odometry based on proprioceptive sensing refers to estimating the position
and motion of a legged robot by solely utilizing internal sensor measurements,
such as joint encoders and IMUs without relying on external visual or depth sen-
sors. This approach is particularly useful in situations where visual information
is limited or unreliable, such as in low-light environments or when dealing with
occlusions.

In the realm of legged robots, contact state estimation holds immense signifi-
cance. Legged robots operate by making and breaking contacts with the ground
or other surfaces to achieve stable locomotion. Accurately estimating the contact
state is essential in order to determine when and where the robot’s legs are in con-
tact with the ground and if the foot in contact is ready to support weight. This
information is crucial for various reasons. First, it helps in determining the robot’s
support polygon, which aids in maintaining stability during locomotion. Second,
it enables the robot to plan and execute appropriate foot placements, ensuring
secure and balanced movements.

The success of legged odometry heavily relies on the accurate estimation of the

15
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Figure 3.1: Simulated GO1 quadruped robot with base, foot and world frames

contact state. Incorrect or imprecise estimation can lead to errors in motion track-
ing and pose estimation, ultimately compromising the robot’s stability and overall
performance. By precisely acquiring the contact state, the legged odometry system
can effectively incorporate the information into its motion estimation algorithms,
resulting in more reliable and robust navigation. Moreover, accurate contact state
estimation enables legged robots to dynamically adjust their gait patterns, control
strategies, and stability mechanisms, enhancing their adaptability and agility in
complex and dynamic environments. Thus, contact state estimation plays a piv-
otal role in enabling legged robots to achieve accurate odometry and successfully
traverse challenging terrains.

In Fig. 3.1, a simulated quadruped robot is depicted alongside with the base,
world and feet frames. The goal of base state estimation is to estimate the po-
sition and orientation of the base frame with respect to an inertial frame of ref-
erence (world frame). In the case when one of the feet is rotating Counter Clock
Wise (CCW), according to the respective joint encoder readings, either the foot
is moving backward or the base forward. When the contact state is unknown, it
is impossible to deterministically state which one of the possible actions occurs.
Without knowing if the aforementioned constraint is satisfied, the update of the
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base estimate is unfeasible. Furthermore, the accuracy of the kinematic measure-
ments will be compromised, resulting in the failure of any module that relies on
them.

To this end, most approaches assume that the contact is fixed with the ground
and slippage doesn’t occur. This is a key assumption for base state estimation
since it enables the constraining of the relative pose between the foot and the
ground. The aforementioned assumption is essential for updating the state when
the estimation relies solely on proprioceptive sensing. Although this assumption
is valid most times, even a small dynamic contact event will result in drifting
estimates over time or a spontaneous error spike if the foot velocity is significant.
For example, during gaiting in an unstructured environment, the robot might step
on small objects that will shift the desired foot position. Consecutively small
undetected foot displacements will result in enormous drifts over time and finally
track loss.

3.2 Bipedal Locomotion & CoM Estimation

One way of describing the dynamics of a rigid body (or in this case a bipedal
robot) is by employing the Newton-Euler equations of motion. These consist of
two parts, the linear and angular or Newton and Euler respectively. This mathe-
matical formulation is widely used in the literature for CoM estimation and bipedal
locomotion. In figure 3.2, a bipedal robot is depicted alongside with the friction
cones of each contact points to assist in the visualization of the following mathe-
matical formulation. Note that these equations are always expressed in an world
frame.

Linear Motion

When there are not any external forces applied to the robot and under the assump-
tion that the mass of the robot is concentrated at the CoM, the linear equation
of motion for a rigid body that is in contact with the ground can be modelled
according to Newton’s second law of motion:

mc̈ = mg +
∑
i

fi (3.1)

where m is the total mass of the robot, c̈ = [c̈x, c̈y, c̈z]T is the center of mass
acceleration, g = [0, 0,−gz]T is the gravity acceleration vector and fi ∈ R3 are
the 3D ground reaction forces that are applied at the contact point i. Notice that
there are no friction forces in (3.1) because they are incorporated in fx

i and fy
i .

Angular Motion

The part that describes the angular dynamics is formulated as:
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Figure 3.2: Humanoid robot walking [2]

L̇ = τ =
∑
i

(si − c)× fi (3.2)

where L̇ is the angular momentum rate, si are the contact points and c is the
position of the center of mass. The vector (si − c) starts from contact point si
and ends at the Center of Mass. So, (si − c) × fi is the torque that the contact
force fi at si generates to the CoM.

Adding External Forces

When a robot interacts with the environment, external forces are usually applied
to the robot and it is essential to be included in the dynamic model described in
the previous section. So by adding external forces at (3.1) we will get:

mc̈ = mg + fe +
∑
i

fi (3.3)

We multiply the above equation by the cross product of c:

mc× c̈ = mc× g + c× fe +
∑
i

c× fi (3.4)

And by reorganizing:

mc× (c̈− g) = c× fe +
∑
i

c× fi (3.5)
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Now by adding (3.5) to (3.2) we get:

mc× (c̈− g) + L̇ = c× fe +
∑
i

c× fi +
∑
i

(si − c)× fi (3.6)

or
mc× (c̈− g) + L̇ = c× fe +

∑
i

si × fi (3.7)

In order to find the accelerations, we need to solve equation (3.7) for c̈x and c̈y.
First, we need to calculate every term of Eq. (3.7).

c× (c̈− g) =

cy(c̈z + gz)− cz c̈y

cz c̈x − cx(c̈z + g)
cxc̈y − cy c̈x

 (3.8)

L̇ =

L̇x

L̇y

L̇z

 (3.9)

c× fe =

cyfz
e − czfy

e

czfx
e − cxfz

e

cxfy
e − cyfx

e

 (3.10)

si × fi =

syi fz
i − szi f

y
i

szi f
x
i − sxi f

z
i

sxi f
y
i − syi f

x
i

 (3.11)

By substituting (3.8)-(3.11) in (3.7) and solving for c̈x and c̈y we get the following
two equations for the x̂ and ŷ directions:

c̈x =
1

mcz

(
mcx(c̈z + gz) + L̇y − cxfz

e + czfx
e −

∑
i

sxi f
z
i +

∑
i

szi f
x
i

)
(3.12)

c̈y =
1

mcz

(
mcy(c̈z + gz) + L̇x − cyfz

e + czfy
e −

∑
i

syi f
z
i +

∑
i

szi f
y
i

)
(3.13)

Also by solving (3.1) we can get the z-component of the acceleration:

c̈z =
1

m
(fN + fz

e )− gz (3.14)

with fN ≜
∑

i f
z
i , the vertical ground reaction force. Finally, we substitute c̈z from

(3.14) into (3.12) and (3.13):

c̈x =
1

mcz

(
cxfN + czfx

e − L̇y +
∑
i

szi f
x
i −

∑
i

sxi f
z
i

)
(3.15)

c̈y =
1

mcz

(
cyfN + czfy

e + L̇x +
∑
i

szi f
y
i −

∑
i

syi f
z
i

)
(3.16)



The above equations can be utilized either to estimate the CoM acceleration or as a
control input to achieve the desired accelerations. The only problem is that fx

i and
fy
i can not be measured directly since the friction resistance force is incorporated
in them. In order to overcome this limitation, we make a key assumption: The
foot doesn’t slip. This assumption enables the elimination of the x − y plane
forces since they cancel out with friction and thus, fx,y

i = 0 for every contact point
i.

c̈x =
1

mcz

(
cxfN + czfx

e − L̇y −
∑
i

sxi f
z
i

)
(3.17)

c̈y =
1

mcz

(
cyfN + czfy

e + L̇x −
∑
i

syi f
z
i

)
(3.18)

Finally, we define the Center of Pressure (CoP) as:

px =

∑
i s

x
i f

z
i∑

i f
z
i

=

∑
i s

x
i f

z
i

fN
, fN > 0 (3.19)

py =

∑
i s

y
i f

z
i∑

i f
z
i

=

∑
i s

y
i f

z
i

fN
, fN > 0 (3.20)

By using the CoP definition and refactoring (3.17) and (3.18) we get the final
equations:

c̈x =
cx − px

mcz
fN − L̇y

mcz
+

1

m
fx
e (3.21)

c̈y =
cy − py

mcz
fN +

L̇x

mcz
+

1

m
fy
e (3.22)

c̈z =
1

m
(fN + fz

e )− gz (3.23)

Equations (3.21)-(3.23) effectively model the motion of a legged robot and are the
foundation upon which, many controllers and estimators are based on to describe
the dynamics of the system. These equations were derived under the assumption
that the contact is stable. When this assumption is false, unmodelled dynamics are
encountered which will result in devastating consequences for the robot’s stability
and controllability.
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Chapter 4

Robust Contact State
Estimation in Humanoid
Walking Gaits

In this chapter, we introduce a deep learning framework based on proprioception,
specifically a F/T and an IMU sensor in each leg, to determine the contact state
probabilities, namely stable or slip/no contact probabilities for dynamic walking
gaits over variable friction surfaces that can further benefit the legged locomotion
problem. Our contribution to the state-of-the-art regards:

• A supervised approach for contact detection. We demonstrate that a model
trained with walking gaits over a specific friction coefficient, generalizes to
a very large range of frictions. Additionally, the model also generalizes to
different robotic platforms. Although our model is trained with the ATLAS
robot, the same model provides highly accurate contact estimation in NAO
and TALOS walking gaits.

• A framework that relies solely on proprioceptive sensing that is readily avail-
able in contemporary humanoids.

• A demonstration that, although the model is trained in simulation with the
ground-truth contact states as labels, it can be employed to infer the contact
state with a real TALOS humanoid.

• A framework that has been extensively evaluated against state-of-the-art
approaches in contact estimation and it’s efficiency is demonstrated both in
simulation and real robot experiments.

• The release of an open-source module implementation in ROS/Python, named
Legged Contact Detection (LCD) module [42].

We directly compare our approach with [3], since IMUs and F/T in the legs
are also considered. In this case a shortcoming is that 12 fuzzy c-means clustering
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models must be individually trained, one for each of the three translational and
rotational DoFs of both legs, to collectively estimate the feet contact states.

In this work we follow a radically different approach. Firstly, we consider
data to be received by F/T and IMU sensors in the robot’s feet. Secondly, we
explore contact model training using a single robot (e.g., ATLAS) in simulation
for just a single surface friction value. Our data collection and training method:
1) achieves highly accurate and robust surface contact detection, 2) generalizes
the contact estimation to surfaces of friction that were not in the training dataset,
3) generalizes well in different simulated robotic platforms (from light to heavy
weighted), and 4) can be applied directly to real-robots. We, thus, propose a novel
friction- and robot- invariant method for accurate and robust contact estimation,
based only on GRF and IMU sensory data.

4.1 Training Data Acquisition

Training data is an important aspect of machine learning. Instead of blindly
employing all available sensory data in a training session, we provide a physical
interpretation to a particular choice of features that are directly correlated to the
contact state. The datasets used for LCD training and testing are released in [42].

4.1.1 Contact State in the Centroidal Dynamics

The centroidal dynamics of a humanoid during locomotion can be described by
the Newton-Euler equations as described in the previous chapter:

m(c̈+ g) =
∑
i

fi (4.1)

mc× (c̈+ g) + L̇ =
∑
i

si × fi + τi (4.2)

where c and c̈ are the CoM position and acceleration, L̇ is angular momentum rate
around the CoM, fi and τi are the Ground Reaction Forces (GRFs) and Torques
(GRTs), si are the contact points, g is the gravity vector, and m is the robot’s
mass.

Subsequently, in order for a leg to maintain contact and neither slip nor rotate,
the friction constraints must apply:√

(fx
i )

2 + (fy
i )

2 ≤ µx,yfz
i (4.3)

−τyi /f
z
i ≤ px (4.4)

τxi /f
z
i ≤ py (4.5)

|τ zi | ≤ µzfz
i (4.6)

where p is the center of pressure and µx,y, µz are the planar and rotational contact
friction coefficients, respectively.
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As evident there is a direct correlation of the contact points and, thus, the
contact state with the ground reaction wrenches and the centroidal dynamics.
Although we can measure the left and right leg contact wrenches lfl,

lτl and
rfr,

rτr
with F/T sensors in the local leg frames and also compute the CoM velocity bċ and
angular momentum rate bL̇ in the base frame with kinematics, friction depends
on the environment and prohibits the analytical derivation of the contact state.

4.1.2 Contact State in the Leg Kinematics

The contact state is also directly linked to the leg kinematics namely, the left and
right leg spatial linear and angular velocities lvl,

lωl and
rvr,

rωr. More specifically,
for the left leg to experience a stable contact with the environment and not slip in
the tangential directions, the following conditions must apply:

lfz
l > 0 (4.7)

lvxl = 0 (4.8)
lvyl = 0 (4.9)
lωz

l = 0 (4.10)

Furthermore, when the leg is stationary on the ground and is not breaking the
contact by lifting nor rotating, then:

lvzl = 0 (4.11)
lωx

l = 0 (4.12)
lωy

l = 0 (4.13)

Accordingly, the same conditions apply to the right leg.

In the above, the spatial rotational velocities l,rωl,r can be directly measured
with an IMU attached to the foot links. On the contrary, the spatial linear ve-
locities l,rvl,r cannot be measured and must be estimated. To avoid introducing
correlations between the base and the contact state estimation, we employ the leg
spatial linear accelerations l,rαl,r, which can also be measured by the leg IMUs.

4.2 Robust Contact Estimation with Deep Learning

To accurately infer the leg’s contact state we devised a supervised learning frame-
work, termed Legged Contact Detection (LCD), depicted in Figure 4.1. The data
employed for the training procedure were the leg F/T measurements, namely lfl,

lτl
and the leg IMU data, namely lωl,

lαl, as measured in the local leg frame. A single
model is trained with the left and right leg F/T and IMU data and is used to infer
the contact states for both legs.

23



Figure 4.1: LCD Deep Learning Architecture.

4.2.1 Preprocessing

For the F/T measurements the following model was considered:

lfl =
lf̄l + bf +wf (4.14)

lτl =
lτ̄l + bτ +wτ (4.15)

where the lf̄l,
lτ̄l are the true GRFs and GRTs, bf , bτ and wf , wτ are the F/T

measurement biases and zero-mean Gaussian noises, respectively. Similarly, for
the IMU measurements the following model was employed:

lαl =
lᾱl +

lRwg + bα +wα (4.16)
lωl =

lω̄l + bω +wω (4.17)

where the lᾱl,
lω̄l are the true linear acceleration and angular velocity, lRw is the

rotation from the world to the left leg frame, g is the gravity vector, bα, bω andwα,
wω are the IMU measurement biases and zero-mean Gaussian noises. Evidently,
the same models apply for the right leg F/T and IMU measurements. During the
data preprocessing all measurements exceeding 3σ were identified as outliers and
eliminated from the dataset.

All data have been normalized in each dimension with their maximum value
to avoid large scale measurements such as the vertical GRF lfz

l dominating the
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learning procedure. Subsequently, the absolute value was taken since slip is bidi-
rectional and does not depend on measurement signs. Moreover, all data have
been synchronized and downsampled to 100Hz since the contact state commonly
changes when the robot takes a step which contemporary humanoids accomplish
with a slower rate, e.g., 1− 2Hz.

4.2.2 Architecture

The LCD network, illustrated in Figure 4.1, consists of 2 hidden layers with 128
neurons followed by a 30% dropout layer to prevent overfitting. Subsequently, two
more hidden layers were added with 64 and 128 neurons, respectively, to feed an
output layer of 2 units, one for each contact probability, namely stable contact or
unstable/no contact. For all hidden layers the ReLU activation was used, while for
the output layer the sigmoid was employed to guarantee that the output is a valid
probability. The overall architecture was determined experimentally while aiming
to maximize the accuracy of the classifier on data acquired from other robotic
platforms than the one employed for training. Hyperparameter grid search was
performed to optimize the efficiency of the network. Overall, LCD was trained for
30 epochs, with a batch size of 16 and the adam optimizer.

Accordingly, we formulate a supervised classification problem by minimizing
the binary cross-entropy loss:

L = − (ysc log(psc) + (1− ysc) log(1− psc)) (4.18)

where psc is the stable contact probability, puc = 1−psc is the unstable/no contact
probability and ysc is the ground truth stable contact label obtained by evaluating
Eqs. (4.3) - (4.6) as well as Eqs. (4.8) - (4.13) in simulation, as also outlined in the
next section.

4.3 Results

In the current section, we present quantitative and qualitative results that demon-
strate the accuracy and efficacy of the proposed framework both in simulation
and real world experiments. LCD was implemented in ROS/Python and is pub-
licly available at [42]. A snapshot of the experimental setup is illustrated in Fig-
ure 4.2. In addition all of our experiments are presented in high resolution at
https://youtu.be/csUIadkT7OM.

4.3.1 Simulation Results

To conduct a quantitative and qualitative assessment, we employed an ATLAS and
a NAO humanoid robot in RaiSim [43] –a high-accuracy multi-contact simulator for
articulated robots– and the TALOS humanoid in Gazebo [44]. Accordingly, to gen-
erate walking patterns, we’ve implemented a robot generic omnidirectional walking
motion planning [45] and a real-time gait stabilization module [46], both based on
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(a) Simulated ATLAS experimental setup (b) Simulated NAO experimental setup

(c) Simulated TALOS experimental setup (d) Real TALOS robot

Figure 4.2: Experimental setup for variable friction surfaces.

the Linear Inverted Pendulum (LIPM) dynamics [47, 48]. Subsequently, to realize
the desired trajectories in each humanoid, we’ve also developed a real-time whole
body control module [49] based on stack of tasks at the velocity level [50]. In
our formulation, higher priority was given to the desired leg trajectories, then to
the desired CoM position and torso orientation, and finally to a standing posture
joint configuration task to maintain postural balance. Regarding the feedback of
the motion planning, real-time stabilization and whole-body inverse kinematics,
the ground-truth values were employed. The latter modules are also released as
open-source ROS/C++ packages to reinforce further research endeavors.

Next, we’ve commanded each robot to continuously walk over multiple surfaces
with varying friction coefficients from 0.05 to 1.2, for approximately 10 minutes,
to record the needed dataset. Overall, the above sessions resulted in an average
distribution of the labels as follows: 60% for Stable Contact (SC) and 40% for
Unstable Contact (UC) (30% for no contact and 10% for slip). The legs’ IMU
and F/T measurements were available at 500Hz for ATLAS and TALOS and at
100Hz for NAO. In all measurements, i.i.d Gaussian noise was added to provide
realistic noise levels according to Table 4.1.

Subsequently, the LCD model is trained with a 10 minute omni-directional
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walking gait via the ATLAS robot and over a 0.2 friction coefficient surface. This
model is then used to infer the contact state for every walking gait performed with
the ATLAS, NAO, and TALOS robot over variable friction surfaces. To compute
the necessary training labels, we evaluate Eqs. (4.3)–(4.6) and Eqs. (4.8)–(4.13)
using the ground-truth values at every discrete time instant. If the latter is true,
the contact label is characterized as SC, otherwise it is a UC. Note that UC includes
the slip and no contact states.

To quantitatively assess the proposed framework in terms of accuracy, we em-
ploy several state-of-the-art contact detection methods. More specifically, we have
implemented a) the vertical GRF thresholding (T), b) the Schmidt Trigger [1]
(ST), which relies on hysteresis thresholding with a low and a high vertical GRF
threshold, and c) the fuzzy c-means (FCM) contact detector [3]. The first two
are binary contact classification methods while the third is a contact probability
detector based on leg F/T and IMU data clustering. The thresholds employed for
each robot were finely tuned for each dataset to yield the best results, while for
FCM the fuzziness parameter was set to 1.2 and a batch size of 20 input samples
was used for all robots.

4.3.2 Comparison to Thresholding methods

The quantitative results (Table 4.2) from the comparison between LCD, T, and
ST indicate that LCD outperforms every thresholding model in identifying the
UC state. Although the difference is between 3-7%, this is rather significant be-
cause slip occurs rarely and for a short period of time and, thus, the no contact
class dominates in size the UC labels. Figure 4.3 demonstrates how the vertical
force of the left foot varies during gait and the ground truth labels for SC (1.0)
and UC (0.0). The latter presents two rows whereby the top row refers to the
basic thresholding methods, namely T and ST, and the bottom row presents our
own results. The depicted gait pattern is extracted from the ATLAS robot while
walking on surfaces with varying friction coefficients. Each peak represents a step,

Table 4.1: Simulation noise standard deviations.

Continuous Discrete (100Hz)

σα 0.0008m/s2/
√
Hz 0.008m/s2

σω 0.0005rad/s/
√
Hz 0.005rad/s

σbα 0.0001m/s3/
√
Hz 0.001m/s3

σbω 0.0006rad/s2/
√
Hz 0.006rad/s2

σf 0.07N/
√
Hz 0.7N

στ 0.003Nm/
√
Hz 0.03Nm

σbf 0.0001N/s/
√
Hz 0.001N/s

σbτ 0.0001Nm/s
√
Hz 0.001Nm/s
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Table 4.2: LCD evaluation on variable friction datasets

LCD Simple Threshold Schmidt Trigger
Dataset SC(%) UC(%) SC(%) UC(%) SC(%) UC(%)

ATLAS µ = 0.6 (15k) 97 96 97 93 96 92
ATLAS random µ(50k) 96 84 95 79 94 81
NAO random µ (15k) 96 80 94 73 89 75
TALOS random µ (50k) 92 70 98 64 99 65

more specifically the first step is on terrain with µ = 0.5, where µ stands for the
terrain-foot friction coefficient. Similarly, the second peak regards a case with
µ = 0.05 (refers to walking on almost ice-like surfaces), and the third and forth
peaks refer to µ = 0.1 and µ = 0.5, respectively. Note that the gait phase in the
initial part of the first step (peak) and the final part of the last step is Double
Support. It is interesting to observe that during the second step, although the
robot has transferred its weight to perform the next step, the foot is slipping and
hence T and ST are misclassifying the corresponding data points (purple region)
since lF z

l is greater than the threshold. On the contrary, this is not the case with
the proposed LCD framework, which identifies the UC state of the gait. Similar
observations also hold true for the subsequent steps that are illustrated in the same
figure.

Figure 4.3: Thresholding and LCD predictions for SC on ATLAS walking gaits
with varying friction coefficient surfaces
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4.3.3 Comparison to unsupervised learning

In Figure 4.4 we demonstrate a qualitative comparison between unsupervised learn-
ing (FCM) and the proposed model (LCD) on the same gaits. The top graph
illustrates the probability of stable contact (psc) as computed by the FCM versus
the ground truth labels. FCM accurately predicts the first step and, although it
recognises the instability at the beginning of the second step, it quickly converges
to the incorrect label. On the other hand, the bottom graph illustrates the pre-
dictions of LCD which successfully captures most of the data samples classified as
UC (0.0) but also SC (1.0) according to the ground truth labels.

Figure 4.4: Unsupervised learning and LCD predictions on normal and low friction
gaits.
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4.3.4 LCD with feature reduction

In order to test the robustness of LCD and its transferability to point feet robotic
platforms (such as quadrupeds), we removed all the F/T measurements from the
training dataset except the vertical force Fz. Next, we trained the model by
using only Fz and IMU measurement. After training, the model was able to make
successful predictions on test datasets with different but not extremely low friction
coefficients, as shown in Table 4.3.

Table 4.3: LCD performance with reduced features

dataset SC(%) UC(%)

ATLAS, µ = 0.5 91 98
ATLAS µ = 0.4 92 99

4.3.5 Experimental Results: Application to Base Estimation

Finally, we employed LCD to predict the stable contact state probability for an
actual TALOS humanoid and facilitate base state estimation with the State Esti-
mation Robot Walking (SEROW) framework [29]. The latter fuses effectively the
contact state, kinematics, and the base IMU measurements to provide estimates
for the base position, velocity and orientation. A vicon motion capture system
was used to provide the ground-truth base pose every 200Hz. Figure 4.5 illus-
trates the 3D-base position error over time, whereby a slight drift is observed in
the x and z axes for this 60s gait. The measured root mean square error was
particularly small, namely 0.0245m, 0.0101m, 0.0123m for the base position and
0.7058deg, 1.2035deg, and 1.8426deg for the orientation, validating the employed
stable contact state probabilities.

4.3.6 Discussion

We have demonstrated that an LCD model trained on a single dataset with the
ATLAS robot walking over specific friction surfaces in RaiSim, achieves highly
accurate contact detection. Additionally, the model generalizes well to contact
estimation a) over surfaces with variable friction not previously included in the
training dataset, b) with different robotic platforms scaling from small size light-
weight robots such as NAO to full size heavy robots such as TALOS, and c)
with different simulation platforms namely RaiSim and Gazebo. Consequently,
it is rather straightforward to claim that the LCD architecture ought to have
captured some robust contact features which are invariant to friction and to robot
characteristics such as weight and height. Subsequently, we presented that the
same architecture provides accurate contact estimation only with the GRF and the
IMU data as input. The latter implies that this method can be readily adopted for
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Figure 4.5: 3D-Base position error of the estimated base position with SEROW
from the corresponding ground-truth base position.

robots with point feet, such as modern quadruped robots. These results pave the
way for a holistic contact detection mechanism that is robot and contact agnostic.

4.4 Conclusions

In this chapter we introduced LCD, a supervised deep learning framework that
provides a solution to contact detection by accurately and robustly estimating the
leg contact state based solely on proprioceptive sensing. Although the latter rely
on simulated ground-truth contact data for the training process, LCD generalizes
across robotic platforms and can be readily transferred from simulation to real
world setups. To reinforce further research endeavours we released LCD as an
open-source ROS/Python package [42].

Finally, we have shown that contact invariant features exist between different
robotic platforms that can further facilitate the contact estimation problem. LCD
has been experimentally validated in terms of accuracy in simulation and has
been compared against state-of-the-art approaches for contact detection with a
simulated ATLAS, TALOS, and NAO robot. Additionally, its efficacy has been
demonstrated in base estimation with an actual TALOS humanoid.
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Chapter 5

Probabilistic Contact State
Estimation for Legged Robots
using Inertial Information

In this chapter we present yet another novel contact state estimation approach
that, unlike the approach presented in the previous chapter, it does not rely on F/T
measurements and also does not require ground truth data and labels. According
to the Coulomb’s model for dry friction (Eq. 5.3), the contact state depends directly
on the Ground Reaction Force (GRF) and the friction coefficient between the foot
and the ground. The former is typically acquired directly from a F/T sensor while
the latter needs to be experimentally measured either by a human or a dedicated
sensor. Often these sensors are impractical due to various reasons. For example,
reliable force sensors are expensive and tend to degrade over repetitive use, as
consequence of high speed motions and large impact wrenches. For the particular
case of quadruped robots a further limitation regards the sensor’s mass. An average
F/T sensor weights 100 g, thus accounting of approximately 50% of the overall leg
inertia, resulting to reduced acceleration capability [33].

In this model-based approach, we utilize only inertial information, more specif-
ically, an IMU mounted on each individual foot of the robot. We explore the dy-
namics of the contact event and by capitalizing on the uncertainty of the sensor
measurements, we are able extract the stable contact probability. Moreover, we
treat the contact state as a six Degrees of Freedom (DoF) continuous variable
and estimate each individual contact probability which is then fused into the final
estimation. Our main contributions can be summarized as follows:

• To the best of our knowledge this is the first work that estimates the contact
probability by considering solely inertial measurements.

• The proposed stable contact detection module is robot agnostic. In other
words, it can be employed on any legged robot that is equipped with mid-
range IMUs mounted on its feet. By executing a few steps on a surface with
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sufficient friction (ensure stable contact), the module can trivially be fine
tuned for the employed robotic platform.

• To further facilitate and promote research in the sector, both the code and
the datasets that the proposed method was tested upon are released as an
open-source project at [51].

5.1 Problem Formulation

Figure 5.1: Static and Kinetic friction force.

5.1.1 Background

Static friction is the force that prevents an object from moving when the relative
speed between the object and the supporting surface is zero. Frictional force offers
the resistance to the applied force opposing its motion:

Ts = µsFz (5.1)

where Ts is the static friction force, µs is the static friction coefficient and Fz is
the normal to the plane GRF. On the contrary, when an object is moving and is
in touch with a surface, the resisting force is the kinetic friction Tk:

Tk = µkFz (5.2)

where µk is the kinetic friction coefficient. As a general rule, µk is smaller than µs

and hence Tk < Ts, indicating that once the object starts moving it is harder to
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stop because the resistance friction force is smaller. Although most contemporary
approaches assume that the friction force is constant, in practice this is not the
case. In Fig. 5.1, we depict how the resistance force varies when the applied
force assumes larger values. In legged robot locomotion, when the threshold of
motion is surpassed, the resistance force instantly reduces and the foot begins to
accelerate for a certain period of time until either the robot loses balance entirely
or deceleration occurs and the foot comes to rest. Although it is possible for
an object to be moving with constant velocity (ax = ay = az = 0 m/s2) when
the applied and resistance forces are equal, for the reasons stated previously it is
infeasible to occur on the robot’s foot during dynamic locomotion. Consequently,
we explore the cases when the foot is completely still or it accelerates after the
threshold of motion is surpassed.

According to the Coulomb’s model for dry friction, in order for a contact to be
classified as stable, i.e. the relative speed between two objects in contact is zero,
the following condition must hold true:√

F 2
x + F 2

y ≤ µsFz, Fz > 0 (5.3)

where Fx and Fy are the lateral forces at each contact point. Although in physics
Eq. (5.3) describes the contact state deterministically (stable or unstable), a prob-
lem arises during impact when vibrations occur between the foot and the ground
while simultaneously the robot transfers its weight towards the support leg. These

fluctuations between the two terms of Eq. (5.3), namely
√

F 2
x + F 2

y and µsFz, are

illustrated in Fig. 5.2, where if the blue line is greater than the red one, the con-
tact is considered stable otherwise unstable. As can be observed, during impact
the contact state oscillates between stable and unstable until the robot transfers
its weight and the absolute difference between the two terms becomes significant.
Accordingly, in this work we aim at detecting this part of the gait phase as will
be illustrated in the experimental results section.

5.1.2 Measurement Model

Similarly to the previous work (Chapter 4), the following model was considered
for the IMU measurements:

αf = ᾱf + fRwg + bα +wα (5.4)

ωf = ω̄f + bω +wω (5.5)

where αf ϵ IR3 and ωf ϵ IR3 are the linear acceleration and angular velocity
measurement vectors for the corresponding foot as measured by the IMU in the
local foot frame, respectively. For a humanoid, f ϵ {L,R} (left or right), while
for a quadruped f ϵ {RL,RR,FL, FR} (rear left, rear right, front left and front
right). ᾱf and ω̄f are the respective true values, fRw is the rotation from world
to the corresponding leg frame, g is the gravity vector and finally bα, bω, wα,
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Figure 5.2: Force fluctuations during impact for the ATLAS simulated robot.

and wω are the biases and the zero-mean normally distributed noises respectively.
Additionally, biases and the gravity constant are removed from the accelerometer
and gyroscope in real-time by estimating the rotation (fRw) with a complementary
filter on the IMU measurements [52]. This simplifies the measurement model to
the following:

αf = ᾱf +wα (5.6)

ωf = ω̄f +wω (5.7)

5.1.3 Complementary Filter

A complementary filter is a signal processing technique used to combine the in-
formation from multiple sensors or measurements to obtain a more accurate es-
timation of a desired variable or state. It effectively fuses measurements from
various sensor measurements by deploying a low- and a high- pass filter. The low-
pass filter allows the smooth and gradual changes in the signal to pass through,
filtering out high-frequency noise or rapid fluctuations. On the other hand, the
high-pass filter amplifies the high-frequency components, which are typically noise
or short-term variations, and attenuates the slower changes. By appropriately ad-
justing the cut-off frequencies and gains of the filters, the complementary filter
effectively combines the strengths of each sensor: the low-pass filter retains the
long-term trend and the high-pass filter captures the short-term dynamics. This
integration results in an improved estimate of the desired variable, reducing noise
and eliminating the drift typically associated with individual sensors.

The complementary filter is often employed to remove biases and gravity effects
from the measurements of an IMU. IMUs consist of sensors like accelerometers

36



and gyroscopes, which are prone to biases and gravitational influences that can
degrade the accuracy of the measurements. By utilizing a complementary filter,
the low-pass filtered accelerometer readings can provide an estimate of the gravity
component of the sensor’s measurements, while the high-pass filtered gyroscope
readings can capture the dynamic motion information. The estimated gravity
component is then subtracted from the accelerometer measurements to eliminate
the gravitational bias. This corrected accelerometer data is then fused with the
gyroscope data to produce a more accurate representation of the IMU’s orientation
or motion.

5.1.4 Stable contact definition

As stated previously, at the moment of impact between the foot and the ground,
and for a small period of time after that, the forces fluctuate and micro-movements
of the foot occur. The same issue arises during the transition from support leg to
swing. In this thesis’ scope, a contact is defined as tangentially stable when the
following conditions are satisfied:

v̄fx = 0 (5.8)

v̄fy = 0 (5.9)

ω̄f
z = 0 (5.10)

where v̄fx ,v̄
f
y are the true velocities of the f foot in the x and y axes, respectively.

In the same manner, for the rotational stable state:

v̄fz = 0 (5.11)

w̄f
x = 0 (5.12)

ω̄f
y = 0 (5.13)

As already explained in Section 5.1.1, constant velocity is infeasible in the event
of breaking contact. Accordingly, Eqs. (5.8)–(5.13) can be reformulated to fit the
IMU measurements as:

āfx = āfy = āfz = 0 (5.14)

ω̄f
x = ω̄f

y = ω̄f
z = 0 (5.15)

5.2 Mathematical Modeling

Assuming an ideal scenario with no uncertainties in the measurements, Eqs. (5.14)
and (5.15) are sufficient to classify the contact state between the robot’s foot and
the ground deterministically. However, this assumption is far from being true in
real cases. In this work, we exploit the probabilistic nature of involved uncertain-
ties to extract the stable contact probability at each time step. For the relevant
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formulation we start with Eqs. (5.6) and (5.7) which can be re-written as:

ᾱf = αf −wα (5.16)

ω̄f = ωf −wω (5.17)

Since the uncertainty w is modelled as a zero-mean normally distributed random
variable (r.v.), w ∼ N(0, σ2), the equations above describe the ground truth mea-
surements as normally distributed r.v. too. In this context, ᾱf ∼ N(αf , σ2) and
ω̄f ∼ N(ωf , σ2), where αf and ωf stand for the erroneous measurements from
the accelerometer and gyroscope respectively. Accordingly, the goal of the pro-
posed approach can be defined as to find the probability of the ground values to
be approximately zero for all six axes.

To this end, we employ a Kernel Density Estimator (KDE) to approximate the
Probability Density Function (PDF) that describes a batch of samples. In this
work, the batch size has been experimentally set to 50. A good rule of thumb
is to set the batch size to be an order of magnitude smaller than the sensor’s
refresh rate. By integrating the estimated PDF over a symmetrical interval, the
stable contact probability for each axis is calculated. Finally, since the per axis
probabilities are independent, the final estimate is obtained by multiplying the
individual probabilities:

P (stable|mt,mt−1, ...,mt−d) =
6∏

i=1

P (|mt
i| < δi) (5.18)

where m ϵ IR6 is the measurement vector, d is the batch size and δ ϵ IR6 is
the empirical range vector for each axis of the IMU (red lines in Fig 5.3) that
indicates the interval at which the estimated PDF will be integrated. When a new
measurement is acquired, we use it along with the previous ones to estimate the
updated PDF. KDE is a non-parametric estimator of univariate or multivariate
densities with well-defined properties [53]. The reason we employed KDE over
Maximum Likelihood Estimation (MLE) to approach the PDF is to take into
consideration the transition from support leg to swing, which is only possible if
the PDF is multimodal.

By employing the Markov assumption and the measurement model that is
presented in Section II we can formulate KDE in order to fit our case. Let
m1,m2, ...mn be independent and identically distributed IMUmeasurements,m ϵ IR6.
The density function is described as follows:

f̂h(m) =
1

nh

n∑
i=1

K

(
m−mi

h

)
(5.19)

where f̂ is the PDF, n is the number of samples, h is termed bandwidth and K is
the Gaussian kernel:

K(u) =
1√
2π

exp

(
−u2

2

)
(5.20)
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Figure 5.3: Example of estimated PDF for 100 ax samples.

The bandwidth parameter h describes how wide the PDF of every individual nor-
mally distributed sample will be represented. Naturally, we’ve chosen this param-
eter to be equal to the standard deviation that each sensor’s specification sheet
provides. After the PDF is estimated we integrate over a small interval ([−δ, δ])
to compute the probability.

In Fig. 5.3, we present the 1-axis PDF that was estimated over a batch of 100 ax
samples of the ATLAS humanoid robot in simulation. These samples are carefully
selected to depict the beginning of the foot’s transition from support to swing. In
any instance, that the foot is completely still and all measurements are gathered
around zero, the PDF is roughly a normal distribution with mean µ ≈ 0. It is
worth stating that KDE is outlier robust since few measurements do not greatly
affect the overall distribution.

5.3 Results

The current section is dedicated to the experimental evaluation of the proposed
method. Detailed testing and evaluation has been conducted by employing three
different robotic platforms as well as various terrains and friction conditions. More
specifically, two humanoids and one quadruped robot were used, demonstrating
the generality and broad applicability of our method. For each robotic platform
a number of experiments were performed which are reported and documented in
the following. In addition, we have exploited the simulation environment in order
to quantitatively and comparatively assess our method. In addition to the above,
a more detailed illustration of our experiments is presented in high resolution
at https://youtu.be/2CEkifEAQEc. Throughout this section, we explore the
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contact state of one foot. Since each foot of the robot is identically constructed,
the same process can be readily applied to the rest of the feet.

5.3.1 Simulation Results

The first set of experiments was conducted with a simulated ATLAS humanoid
robot in a highly accurate multi-contact simulation environment namely RaiSim [43].
We generated omni-directional walking patterns by employing a stabilization mod-
ule [46, 48, 49] based on Linear Inverted Pendulum (LIP) dynamics. The re-
fresh rate of the IMU that is mounted on the sole of the robot is 1000Hz. The
standard deviations of the zero-mean Gaussian noises are σa = 0.02467m

s2
and

σω = 0.01653 rad
s for linear acceleration and angular velocity, respectively.

In the first experiment, the friction coefficient was assumed constant (µs = 0.1)
and we explored the following gait pattern: Double Support (DS) and three con-
secutive right footsteps, i.e. Right Single Support (RSS). In Fig. 5.4 we illustrate
the vertical GRF as a point of reference, the tangential stable contact probability
(parallel to the walking plane), the vertical probability and finally in the same sub-
figure the total predicted probability with the ground truth labels. The ground
truth labels (stable/unstable) are extracted by taking into account the velocity of
the sole and the vertical GRF. When the vertical GRF is greater than zero and
the velocity norm of the sole is zero then the contact is classified as stable. Notice
that the amplitude of the stable probability waveform for Pz(stable) is larger than
the Pxy(stable)’s one. This occurs because the foot is stable in the vertical plane,
while this is not the case for the tangential one. Since the total probability is
extracted via multiplication the small probabilities of stable contact dominate the
final result.

Figure 5.4: ATLAS walking on stable surface.
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Figure 5.5: Estimated stable contact probabilities for ATLAS gaits on slippery
terrain.

Next, we added a slippery surface with µs = 0.03 and we commanded the robot
to walk over it. The robot starts at DS, then the first RSS is on a stable surface
with µs = 0.1 while the last two are on a slippery one (µs = 0.03). In Fig. 5.5,
purple region, we demonstrate the behavior of the stable contact probability when
the foot is slipping. It is clear that the smooth waveform pattern from Fig. 5.4 gets
disturbed in the purple region where the robot slips. Our predictions are confirmed
by the ground truth labels. Note that by simply thresholding the vertical GRF,
the purple region steps would be misclassified as they are identical to the first one.

5.3.2 Real experiments

The current section presents experimental evaluation of the proposed method with
two robotic platforms, namely a TALOS humanoid and a GO1 quadruped robot.
In a first experiment, the TALOS robot walked a few steps on a flat surface with
sufficient friction coefficient to prevent slippage. The gait pattern is almost indis-
tinguishable to the simulated ATLAS, since both robots are full sized humanoids
with LIP-based walking pattern generation. The obtained results are presented
in Fig. 5.6. As can be observed, the contact estimation probabilities follow the
expected pattern which also happens to be very similar to the one observed in the
case of the ATLAS robot (Fig. 5.4).

Subsequently, we evaluated extensively our method with the quadrupedal GO1
in various scenarios such as soft terrain and extremely slippery surface. In the first
experiment, we commanded the robot to walk over a mattress with the default
controller as provided by Unitree, to test the behavior of the contact probability
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Figure 5.6: TALOS walking on a stable surface.

when the vertical GRF decreases due to low restitution. The GRF measurement
was acquired from a pressure sensor mounted on the robot’s end effector and
was used just as a point of reference. The inertial measurements that were used
for estimating the contact probability were acquired by a low-end IMU sensor
(LSM6DSOX) that was manually mounted on the GO1’s end effector. The purple
region in Fig. 5.7 signifies the steps on the soft terrain. As verified by the bottom
plot, the contact probability estimates remain unaffected by the terrain change.
On the contrary, it is worth noting that approaches that utilize GRF measurements
to classify the contact state would be greatly affected by the decrease of Fz.

Figure 5.7: GO1 walking on soft terrain/low restitution.
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For our final experiment, we greased the smooth surface that the robot was
walking on to provoke extreme foot slippage. The purple region of Fig. 5.8 contains
the extreme unstable steps of the robot before the grease wears out and the contacts
are stable again. As Fig. 5.8 clearly shows, the contact probabilities in the greasy
area are way lower indicating slippery behavior.

The proposed method can be employed in real-time with over 500 Hz refresh
rate (performance measured in our implementation with a mid-range PC). We used
the vertical GRF measurements to distinguish the following cases. First, when the
stable probability prediction is small, the foot can be either in (a) swing phase
(Fz = 0) or (b) in unstable contact with the ground (Fz > 0). Second, when the
stable probability prediction is substantial, the foot (a) might be experiencing very
small (close to zero) linear acceleration and angular velocity during swing (Fz = 0)
or (b) is in stable contact state (Fz > 0). Nevertheless, since the vertical GRF
is only considered to determine if the foot is in contact with the ground or not,
an alternative would be to employ pressure or haptic sensors, even gait planning
information e.g. when the leg is planned to be in swing or stance.

Figure 5.8: GO1 walking on slippery terrain for 3 consecutive steps.

5.3.3 Comparative evaluation

In order to quantitatively assess our method we have conducted comparative evalu-
ation against a state of the art approach that probabilistically addresses the contact
estimation problem [3]. Fig. 5.9 illustrates the contact probability estimations for
the ATLAS simulated robot over a gaiting session that involved 22,000 discrete
data points. The employed dataset is an extended version of the one previously
used in Section 5.3.1. Overall, the experiment involved five footsteps with the
middle three ones exhibiting highly unstable contact. Evidently, our method suc-
ceeded in correctly estimating the relevant probabilities, whereas the [3] approach
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Figure 5.9: Comparative results; top row: vertical GRF; middle row: Contact
probabilities as computed by proposed method; bottom row: Contact probabilities
as computed by [3].

only partially accomplished the task. The latter can be interpreted by the fact
that [3] depends on the full F/T measurements which undermine the estimation
when the vertical GRF assumes large values. The results shown in Fig 5.9 can be
compactly represented by their RMSE values, indicating superior performance for
our method:

• FCM approach [3]: RMSE = 0.6076

• Proposed method: RMSE = 0.3529

Figure 5.10: Histograms of the difference between predicted contact probability
and ground truth labels.
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To better appreciate the quality of the estimated contact probabilities for both
approaches, Fig. 5.10 illustrates the obtained histograms of the absolute differences
between ground truth and predicted probabilities. As can be observed, the number
of correct predictions is significantly larger for the proposed method whereas more
erroneous predictions are exhibited in [3].

In a conclusive experiment, we assessed the efficacy of this approach in a real-
world slip and fall scenario using a quadruped robot. To simulate the challenging
conditions, we applied a layer of grease on a flat surface and instructed the robot to
traverse this terrain. Through programmed instructions, the robot was equipped
with the ability to detect slippage and respond accordingly.

In the first case, when slippage was detected, the robot executed a freeze com-
mand, effectively halting its motion and preventing a potential fall. In the second
case, the robot was programmed to re-initialize its posture upon slippage detec-
tion, allowing it to regain stability and continue its movement. Significantly, in
both cases, the robot successfully avoided falling, showcasing the effectiveness of
the active slippage detection mechanism. In contrast, when the slippage detection
module was not activated, the robot faced difficulties in maintaining balance and
experienced falls.

These findings underscore the critical role of slippage detection in ensuring the
stability and safety of the quadruped robot in challenging terrains. The successful
execution of freeze and re-initialization commands further validates the potential
of this approach in mitigating slip-induced accidents and enhancing the overall
performance of legged locomotion systems.

5.4 Conclusions

We have demonstrated that the proposed probabilistic contact estimator predicts
successfully the contact state of legged robots, both in simulation and in real
platforms. By employing only inertial measurements, we have shown that it can
generalize in different scenarios, even in cases with extremely low static friction
coefficient and successfully estimate the quality of contact. Our presentation has
revealed a number of important features that are inherent in our method:

• Proprioceptive sensing is the sole information source that is employed; specif-
ically, measurements from low-cost IMUs constitute the sensory input.

• No training data and ground truth labels are required, hence facilitating the
operation of the method in practically any scenario.

• Equally important, the method is robot agnostic, making it a compelling
contact estimation module for legged robots.

Overall, this approach provides a unified solution to the quality of contact detection
problem, being at the same time robot and environment agnostic.
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Chapter 6

Two-layer adaptive trajectory
tracking controller for
quadruped robots on slippery
terrains

This chapter introduces a trajectory tracking controller (developed by peers in
the Computational Vision and Robotics Laboratory), that utilizes the probabilis-
tic contact estimation from Chapter 5, as the basis of the controller’s adaptive
effort distribution. This work proposes a novel trajectory tracking control scheme
for quadruped robots, incorporating two prioritized layers of adaptation for min-
imizing possible slippage of one or multiple legs. The proposed control scheme
involves two layers of adaptation, as it accounts for partially or globally slippery
terrains. Both simulation and real-world experiments indicate its ability to main-
tain stability and controllability of the system over time. In this chapter, the
controller scheme will be briefly presented while emphasising how the stable con-
tact probability is utilized. Finally, the qualitative and quantitative results for the
trajectory tracking are presented which are directly correlated with the quality
and robustness of the contact estimator.

6.1 Problem Formulation

Consider the quadruped robot depicted in Fig. 6.1, having n ∈ N joints in each
leg and let qi,j ∈ R, i = 1, ..., 4, j = 1, ..., n be the joint position variables of the
i-th leg. Let q ≜ [q1,1 q1,2 ... q4,n−1 q4,n]

⊺ ∈ R4n be the vector of the total joint
variables of the robot. Furthermore, let {C} be the frame placed at the Center of
Mass (CoM) of the robot (as depicted in Fig. 6.1) and cpi(qi,1, ..., qi,n) ∈ R3 be the
position of the tip of i-th leg with respect to {C}. The position and orientation of
{C} with respect to the world frame {0} is denoted by pc ∈ R3 and Rc ∈ SO(3)
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Figure 6.1: Force distribution among the legs of the quadruped robot.

respectively. World frame {0} could refer to a known inertial frame, or (in most
of the cases) to the initial pose of the robot (i.e. {C} at t = 0). When all four
tips are in contact with the supporting surface, the mapping between the forces
fi ∈ R3, i = 1, ..., 4 applied to the tips of the legs and the corresponding generalized
force, Fc ≜ [f⊺c τ ⊺

c ]⊺ ∈ R6 at the CoM, with fc ∈ R3 and τc ∈ R3 being the force
and torque at the CoM respectively, is the following:

Fc = G(q)Fa, (6.1)

where

G(q) ≜

[
I3 I3 I3 I3

S(pc1) S(pc2) S(pc3) S(pc4)

]
(6.2)

and

Fa ≜


f1
f2
f3
f4

 ∈ R12, (6.3)

with pci(qi,1, ..., qi,n) ≜ Rc
cpi(qi,1, ..., qi,n), i = 1, ..., 4, I3 ∈ R3×3 the identity ma-

trix and S(.) : R3 → R3×3 the skew symmetric mapping. Notice that G(q) belongs
to R6×12, and therefore the problem of solving (6.1) with respect to Fa, i.e. finding
Fa for a given Fc, is redundant.

Based on the given system representation, our objective is to determine the
appropriate forces to apply at the center of mass (CoM) in order to keep the forces
at the tip of each leg within the boundaries of the friction cone. The friction
cone is defined by Equation 5.3, and when the force remains within this cone, the
contact is considered stable. Since the exact value of the static friction coefficient
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is unknown, we implement measures to address slippage and maintain control over
the system, while ensuring uninterrupted progress towards the desired task.

6.2 Proposed Scheme

Building on the probabilistic contact estimator as formulated in Chapter 5, a novel
trajectory tracking control scheme incorporating a two-layer on-line adaptation is
proposed. In particular, the probability of a contact being stable is estimated
in real-time, based on a set of IMU sensors mounted on the robot’s feet. This
probability is counter proportional to the probability of slippage. Based on this
estimate, we firstly propose an adaptation law for the weights of distribution of the
control effort among all the directions of forces that should be applied by each leg
of the robot. The rationale behind the adaptation law is to append less tangential
to the surface forces to the legs for which the slippage probability is high, attracting
in this way the appended force towards the friction cone. Furthermore, when the
aforementioned force distribution cannot guarantee the elimination of slippage, we
propose the dynamic time-scaling of the trajectory (e.g. to slow down the motion),
which will consequently yield a reduced control effort magnitude in general.

6.2.1 First layer of adaptation: Adaptive effort distribution

Based on the above, we propose the following adaptive law for the weights wi,m,m =
1, 2 (the x− y coefficients) of the tangential force directions of the i-th leg:

ẇi,1 = ẇi,2 ≜ αPi ,

wi,1(0) = wi,2(0) ≜ w0

(6.4)

where α ∈ R+ is a tunable constant adaptation gain, w0 ∈ R+ the initial value of
the weights in x− y direction and Pi ∈ [0, 1] the probability of slippage of the i-th
leg.

Given (6.4), the weights will increase only as long as slippage is estimated,
which means that the weights will eventually reach the value in which the control
effort appended to the specific leg does not yield any slippage. The increase of these
weights (i.e. the weights corresponding only to the tangential forces) will result in
decreasing the magnitude of forces appended towards these directions. Therefore,
the appended force fi will converge to the friction cone C, as graphically depicted
in Fig.6.2.

6.2.2 Second layer of adaptation: Trajectory time-scaling

The first layer of adaptation could fail when all the legs of the robot are contacting
a terrain with a relatively low static friction coefficient. Hence, to handle this
type of occasions, we propose the time-scaling of the trajectory, i.e. to sacrifice

49



Figure 6.2: Convergence of the control effort of each leg towards the friction cone.

the temporal accuracy of the task for guaranteeing stability and controllability,
maintaining however accuracy with respect to the spatial properties of the path.

To incorporate the trajectory time scaling layer, we must initially establish a
parameter that quantifies the extent of this scaling. So, in order to tackle the
problem of global slippage, we propose the utilization of the following time-scaling
coefficient:

β(t) ≜
w0

min(w1,1, w2,1, w3,1, w4,1)
. (6.5)

The evolution of the scaled time parameter is characterized by ṫv(t) = β(t). For in-
stance, setting a constant β = 1 would result in tv = t and consequently would lead
to the execution of the trajectory on a nominal speed, while setting β < 1 would
slow down the motion. The core idea behind (6.5) is to reduce the speed (reflected
by β) when slippage has occurred in all four legs, an occasion which is signified
by the increase of the weights of all four legs due to (6.4). For instance, if at least
one of the legs does not face any slippage, then min(w1,1(t), w2,1(t), w3,1(t), w4,1(t))
will be equal to w0 and therefore β will be 1, which means that no time scaling
would occur.
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6.3 Simulation study

To assess the performance of the proposed adaptive control scheme we consider
three simulation scenarios: a) A simple point-to-point motion to evaluate the
trajectory tracking performance, b) a scenario involving the tracking of a periodic
motion with the rear right foot contacting a slippery surface and c) a scenario
involving the tracking of a periodic motion with global slippage, i.e. all four legs
are contacting a slippery surface. For the simulations, the model of a Unitree
Go1 robot is utilized in the Gazebo environment and a control cycle of 2ms is
considered. In Fig. 6.3 the simulation environment is shown, with the yellow area
representing the slippery terrain considered in the second scenario (slippage of the
rear right foot).

Figure 6.3: The initial configuration of the simulations. Yellow area: The slippery
area considered for the second scenario.

6.3.1 Scenario 1: Point to point motion

For this scenario, a terrain with a static friction coefficient of 1.4 is considered,
representing a non-slippery terrain. The desired trajectory is generated online
by the following first order dynamical system: ṗd(t) = pd(t) − pT , with pT =
pd(0)+[0.1 0.05 −0, 005]⊺ being the constant target. The initial actual and desired
values are p(0) = [−0.043 −0.0037 0.356]⊺m and pd(0) = [−0.023 0.0063 0.355]⊺m
in order to impose an initial position error of ep = [−2 −1 0.1]⊺cm. In Fig. 6.4 the
actual position evolution is compared to the desired trajectory, in which one can
notice the tracking performance. Notice that the tracking performance is affected
by the unmodelled joint friction that acts as a disturbance to the system, with the
z-direction being the most disturbed direction, due to the manipulability ellipsoid
of the given robot’s configuration. One could possibly reduce this steady state
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Figure 6.4: [Scenario 1: Point-to-point motion] Time evolution of the actual and
desired position.

error by further tuning the control gains (as no extensive tuning was performed),
or by incorporating an additional integral term to the controller.

6.3.2 Scenario 2: One-foot slippage

For the second scenario, the rear right foot of the robot (i = 3) is considered
to contact a slippery surface having a static friction coefficient of 0.4, which is
considered to be unknown for the controller. For the rest of the feet a non-slippery
surface is considered. For comparison, two tests are performed, namely one with
the adaptive mechanism and the other without it. The desired trajectory involves a
periodic sinusoidal motion, executing an ellipse on the x−z plane, for position and
a periodic rotation around the x-axis for orientation. The weights of distribution
along the x direction of each leg (which is equal to the ones along the y direction),
i.e. wi,1, are depicted in Fig. 6.5, alongside with the stable contact probability
provided by the estimator, i.e. 1 − Pi. Notice the rise of the value of w3,1 (the
leg that slips), which results in appending less force along the x − y directions of
the third leg. Further notice that the third leg stops slipping after the adaptation
which means that the force converged to a value within the friction cone and
the system reaches a stable steady-state condition. In Fig. 6.6, the position and
orientation errors are depicted, with and without the proposed adaptive scheme for
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comparison purposes. Notice that without the proposed adaptation mechanism,
the system is not able to maintain its stability, as the robot loses contact with the
environment at t ≈ 4.5s. Last, notice that β = 1 during the whole simulation, due
to equation (6.5) and the fact that wi,1 = 35,∀i = 1, 2, 4, which means that the first
adaptation layer can sufficiently provide a solution by dynamically distributing the
control effort.
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Figure 6.5: [Scenario 2: One-foot slippage] Weight adaptation due to the first layer
(the second layer is not enabled).
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Figure 6.6: [Scenario 2: One-foot slippage] Position and orientation error norms
with and without adaptation.
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6.3.3 Scenario 3: Global slippage

Figure 6.7: [Scenario 3: Global slippage] Weight adaptation due to the first and
second layer.

For this scenario, all four legs of the robot are considered to contact the slippery
surface having a static friction coefficient of 0.4. For comparison, we performed
two tests, namely one with the adaptive control scheme and one without it and
the same trajectory with that of the second scenario is considered. The weights of
distribution along the x direction of each leg (which is equal to the ones along the
y direction), i.e. wi,1, as well as the time-scaling parameter β(t) are depicted in
Fig. 6.7, alongside with the stable contact probability provided from the estimator.
Notice the rise of the values of all wi,1, i = 1, ..., 4, which results in slowing down
the motion, which is reflected by the reduction of β(t) which converges to the value
of β ≈ 0.77 after t ≈ 5s.

In Fig. 6.8, the evolution of the position of the CoM in time is depicted both
with and without the proposed control scheme. Notice that without the proposed
adaptation mechanism, the system is, also in this case, not able to maintain the
stability of the system as the robot, signified by the drop of the CoM. Last, notice
the smooth on-line time-scaling of the trajectory occurred after t ≈ 5s.
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Figure 6.8: [Scenario 3: Global slippage] Evolution of the position of the CoM in
time, with and without adaptation.

6.4 Experimental validation

Figure 6.9: The experimental setup and initial configuration of the robot.
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Figure 6.10: The second weight during the experimental validation.

The real world experimental validation is performed on a Unitree Go1 robot, to
validate the adaptation performed by the first layer of the adaptation mechanism.
In particular, a 6DOF IMU is attached to the second leg of the robot, as shown
in Fig. 6.9, which is in contact with a slippery surface, (i.e. lubricant is utilized
to emulate the slippery area below the second leg), while the pose of the robot is
found on-line via an external camera with an off-the-shelf visual odometry system
and therefore initial robot’s pose is considered as the world frame for the experi-
ment. The robot was commanded to move along the x-axis with a similar to the
second simulation periodic trajectory for the axis of motion, having a frequency of
0.4Hz. In Fig. 6.10, the weight corresponding to the x− y directions of the second
leg is given, alongside with the slippage probability estimate; the weights of the
rest of the legs remained unaltered during the experiment. In Fig.6.11 the evolu-
tion of position in time is depicted utilizing the adaptive scheme and without its
utilization, for comparison. Notice that the activation of the first adaptation layer
results in maintaining stability, while when executing the same scenario without
enabling the adaptation mechanism the robot is not able to maintain stability at
t ≈ 14.6s. Further, notice that without the adaptation mechanism the tracking
performance is affected by the slippage of the second leg, as it triggers unmodelled
dynamics.
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Figure 6.11: Evolution of the position of the CoM in time, with and without
adaptation.

6.5 Conclusions

In this chapter, an adaptive trajectory tracking controller is presented for quadruped
robots, which involves two prioritized layers of adaptation for minimizing the slip-
page of one or multiple legs. The first adaptation layer considers the dynamic
distribution of the control effort among the legs, given the slippage probability
for each leg. The second layer, which is enabled only if the problem cannot be
solved by the dynamic distribution of the effort, which may occur when all for
legs slip, acts on the time-scaling of the trajectory by dynamically and smoothly
slowing down the motion, without affecting the spatial properties of the task. The
proposed method is proven to be asymptotically stable. Furthermore, it is shown
through simulations and experiments that the method equips the system with
robustness, as it is able to minimize the slippage of the legs and it ensures the
stability and controllability of the robot. Finally, the real-time weight adaptation
which results in robust trajectory tracking, indicates the robustness of the model-
based probabilistic contact estimation module which can accurately predict the
slippage probability in real-time.
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Chapter 7

Conclusions

7.1 Summary

This thesis explores the challenges associated with contact estimation for legged
robots, aiming to address these challenges by proposing two novel approaches. De-
ploying legged robots in real-world environments poses a significant and intricate
challenge due to the unpredictable and harsh conditions they inevitably encounter.
To effectively and reliably operate in real-world scenarios, improvements are re-
quired in enhancing the resilience, stability, and efficiency of legged locomotion in
unstructured and dynamic environments. This research pushed the limits of exist-
ing approaches in the relevant field and contributed to advancing the capabilities
of legged robots.

One of the proposed approaches is a supervised deep learning framework,
coined as LCD, designed specifically to achieve accurate and robust contact de-
tection in bipedal robots. LCD leverages the strengths of proprioceptive sensing,
incorporating F/T and IMU measurements, to predict the quality of contact. By
analyzing the data from these sensors, LCD can successfully estimate the contact
state and provide valuable insight into the stability and reliability of the robot’s in-
teractions with the environment. The main advantage of LCD is its ability to gen-
eralize across different robotic platforms, making it applicable to various bipedal
robots. Furthermore, LCD demonstrates a seamless transition from simulation to
real-world setups, contributing to its practicality and applicability in real-world
deployment scenarios. Experimental validation conducted in both simulated and
real environments confirms the effectiveness of LCD in accurately estimating the
contact state and assessing the quality of contact. However, it should be noted
that the utilization of LCD requires training data with appropriate noise modeling
and ground truth labels, which are typically obtained from simulation environ-
ments. This reliance on simulated data is a limitation that should be considered
for practical implementation.

To this end, another approach is presented in this thesis, focusing on contact
estimation solely through inertial measurements. This approach offers a promising
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alternative that can be deployed for legged robots with different configurations
without the need for prior training. By utilizing IMU sensors mounted on each
end-effector of the robot, this method successfully predicts the contact state in both
simulated and real-world scenarios. The exclusivity of inertial measurements as the
information source provides notable advantages, including generalizability across
different scenarios, even in cases involving extremely low static friction coefficients.
The reliance on low-cost IMUs as the primary sensing modality eliminates the need
for extensive training data and ground truth labels, making this approach more
practical and accessible for real-world implementation.

In conclusion, to further evaluate and validate the model-based approach, an
adaptive trajectory tracking controller is presented, leveraging the contact prob-
ability to adapt the joint weights. The adaptive nature of this controller, which
relies on accurate contact state estimation, enhances the overall robustness and
performance of the legged robot. By effectively utilizing the estimated contact
state, the controller can dynamically adjust the joint weights to achieve optimal
stability and controllability. This integration of contact estimation with the tra-
jectory tracking controller demonstrates the critical role of accurate contact state
information in achieving robust locomotion.

7.2 Future Work

In our future work, we plan to develop a base state estimation framework for k-
legged robots while considering the contact state in every update step. This is
typically accomplished through slip rejection, where kinematics measurements are
discarded when the robot experiences slipping. However, our objective is to delve
deeper into the phenomenon of slippage and utilize these measurements in the
update step, rather than rejecting them. There are various possible approaches
to accomplish this objective. One approach involves estimating both the direction
and velocity of slippage and incorporating these variables into the update step.
By accurately determining the direction and velocity of slippage, the controller
can adjust the robot’s actions and generate appropriate forces to counteract and
prevent further slippage in subsequent steps. This estimation of slippage parame-
ters adds valuable information to the control loop, enabling the controller to make
informed decisions and adapt its actions accordingly.

Additionally, another potential state variable that can be incorporated into
the system is an estimation of the static friction coefficient. By estimating this
coefficient, the controller gains insight into the surface characteristics and can
generate the necessary forces to ensure sufficient traction and prevent slippage.
The accurate estimation of the static friction coefficient allows the controller to
optimize its actions based on the specific surface conditions and dynamically adjust
the generated forces to maintain stable and non-slip motion.

Moreover, our plan entails the development of a dynamic locomotion scheme
that can adapt in real-time based on the aforementioned state estimate. The goal
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7.2. FUTURE WORK 61

is to achieve robust and agile locomotion across various terrains. Unlike existing
controllers that often freeze or halt in the presence of slippage, our locomotion
scheme has the potential to effectively address slip detection to prevent falls and
mitigate potential damage to the robot’s hardware. This approach aims to avoid
catastrophic events and enhance the overall capabilities and functionality of legged
robots in real-world applications.

In summary, our future work focuses on a novel perspective of slippage detec-
tion, utilizing the measurements rather than discarding them, and aims to create
a dynamic locomotion scheme that can adapt and excel in challenging terrains. By
doing so, we aim to significantly enhance the capabilities of legged robots, enabling
them to operate more effectively and safely in real-world scenarios.
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