
UNIVERSITY OF CRETE
DEPARTMENT OF COMPUTER SCIENCE

FACULTY OF SCIENCES AND ENGINEERING

Interactive Analytics over RDF Knowledge
Graphs

by

Maria-Evangelia Papadaki

PhD Dissertation

Presented

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

Heraklion, December 2023

UNIVERSITY OF CRETE

DEPARTMENT OF COMPUTER SCIENCE

Interactive Analytics over RDF Knowledge Graphs

PhD Dissertation Presented

by Maria-Evangelia Papadaki

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

APPROVED BY :

Author: Maria-Evangelia Papadaki

Supervisor: Yannis Tzitzikas, Professor, University of Crete

Committee Member: Dimitrios Plexousakis, Professor, University of Crete and Director, ICS-FORTH

Committee Member: Nikolaos Spyratos, Professor, University of Paris-South

Committee Member: Grigorios Antoniou, Professor, University of Huddersfield

Committee Member: Kostas Magoutis, Associate Professor, University of Crete

Committee Member: George Papagiannakis, Associate Professor, University of Crete

Committee Member: Christos Papatheodorou, Professor, National and Kapodistrian University of Athens

Department Chairman: Antonis Argyros , Professor, University of Crete

Heraklion, December 2023

To the boundless realms of the freedom of mind.

Abstract

Today, numerous Knowledge Graphs, expressed in RDF, play a crucial role in consolidat-

ing and integrating data from diverse sources. It would be very valuable to delve into the

analysis of these graphs for enhanced insights and understanding. However, formulating

analytical queries over Knowledge Graphs in RDF is a challenging task due to the com-

plexity and scale of these graphs that presupposes familiarity with the syntax of the cor-

responding query language (i.e. SPARQL) and the contents of the graph. To alleviate this

problem, we introduce an interactive model to assist users in formulating analytic queries

over complex RDF Knowledge Graphs, irrespective of their schema structure. This is par-

ticularly crucial, since in non-star-schema-based knowledge graphs, the presence of non-

star-schema relationships requires a more complex querying approach. To provide an in-

tuitive interface, we leverage users’ familiarity with Faceted Search systems, and we extend

it for enabling the formulation of analytic queries in a user-friendly way. In particular, we

start from a general model for Faceted Search over RDF data, and we extend it with actions

that empower users to formulate simple and complex analytic queries, as well. These ac-

tions correspond to queries of a high-level query language for analytics, named HIFUN,

that we then translate to SPARQL. Most, the proposed interactive model serves a dual pur-

pose, addressing not only the formulation of analytic queries, but also the formulation of

exploratory queries; it lets users transition seamlessly from locating resources in a Faceted

Search manner to performing in-depth analyses of the underlying RDF Knowledge Graph.

This accommodates the diverse needs of users, enabling both flexible and dynamic explo-

ration and analysis of the graph. Additionally, the formulation of queries, including nested

ones, is gradual acknowledging the iterative nature of data analysis. This process involves

repeated and refining steps, allowing users to deepen their queries as they gain insights

into the graph’s structure and content. Overall, the main contributions of this disserta-

tion are: (i) we present a user-friendly interface for intuitively analyzing RDF Knowledge

Graphs, and (ii) we formally define the state-space of the interaction model as well as the

algorithms needed to produce user interface actions. We also describe and provide a com-

plete implementation of the model and the relating algorithms, showcasing its feasibility

in real-world scenarios. This emphasizes the practical applicability of our approach, mak-

ing it valuable both for analysts and ordinary users dealing with RDF Knowledge Graphs.

Finally, we discuss the results of a user evaluation, providing evidence of the method’s ac-

ceptance. This empirical validation not only underscores the effectiveness of our model,

but also sheds light on future development. In essence, our research not only tackles the

vii

complexities of formulating analytic queries over RDF Knowledge Graphs, but also em-

phasizes the friendliness and acceptance by users.

Keywords: Knowledge Graphs, Analytics, Faceted Search

Supervisor: Yannis Tzitzikas

Professor

Computer Science Department

University of Crete

Περίληψη

Σήμερα, πολλοί Γνωσιακοί Γράφοι, εκφρασμένοι σε RDF, διαδραματίζουν κρίσιμο
ρόλο στην συγκέντρωση και ενοποίηση δεδομένων από διαφορετικές πηγές. Θα ήταν
πολύτιμο να μπορούμε να εμβαθύνουμε στην ανάλυση αυτών των γράφων για να
ενισχύσουμε την κατανόησή μας και την εξαγωγή συμπερασμάτων. Ωστόσο, η δια-
τύπωση αναλυτικών επερωτήσεων σε Γράφους Γνώσης RDF είναι δύσκολη αφού
προϋποθέτει εξοικείωση και με το συντακτικό των αντίστοιχων γλωσσών επερώτη-
σης (ήτοι την SPARQL) και με τα περιεχόμενα του Γνωσιακού Γράφου. Για να
απαλύνουμε αυτό το πρόβλημα, προτείνουμε ένα διαδραστικό μοντέλο για να βοη-
ϑήσουμε τους χρήστες να διατυπώνουν αναλυτικά ερωτήματα σε πολύπλοκους RDF
Γράφους Γνώσης, ανεξάρτητα από τη δομή του σχήματός τους. Αυτό είναι ιδιαίτερα
σημαντικό, καθώς σε γνωσιακούς γράφους που δεν βασίζονται σε Star σχήματα, η
παρουσία περίπλοκων συνδέσεων απαιτεί μια πιο σύνθετη προσέγγιση διατύπωσης
επερωτήσεων. Για να προσφέρουμε μια διαισθητική διεπαφή, αξιοποιούμε την εξοι-
κείωση των χρηστών με τα συστήματα Πολύπλευρης Αναζήτησης (Faceted Search),
επεκτείνοντας ένα τέτοιο μοντέλο που ϑα προσφέρει και δυνατότητες ανάλυσης με
έναν προσιτό και φιλικό προς τον χρήστη τρόπο. Συγκεκριμένα, ξεκινώντας από ένα
γενικό μοντέλο για Πολύπλευρη Αναζήτηση επί δεδομένων RDF, το επεκτείνουμε με
ενέργειες που δίνουν τη δυνατότητα στους χρήστες να διατυπώνουν και σύνθετα α-
ναλυτικά ερωτήματα. Αυτές οι ενέργειες αντιστοιχούν σε επερωτήσεις μιας γλώσσας
επερωτήσεων υψηλού επιπέδου για ανάλυση δεδομένων, που ονομάζεται HIFUN, τις
οποίες κατόπιν μεταφράζουμε σε SPARQL. Μάλιστα, το προτεινόμενο διαδραστικό
μοντέλο εξυπηρετεί διττό σκοπό, απευθυνόμενο όχι μόνο στη διατύπωση αναλυτικών
ερωτημάτων, αλλά και στην εξερεύνηση των δεδομένων αφού επιτρέπει στους χρή-
στες να μεταβαίνουν απρόσκοπτα από τον εντοπισμό πόρων με τρόπο Πολύπλευρης
Αναζήτησης στην εκτέλεση εις βάθος αναλύσεων του υποκείμενου Γράφου Γνώσης
RDF. Αυτό καλύπτει τις διαφορετικές ανάγκες των χρηστών, προσφέροντας ευέλι-
κτη και δυναμική εξερεύνηση και ανάλυση του γράφου. Επιπροσθέτως, η διατύπωση
ερωτημάτων, συμπεριλαμβανομένων των εμφωλευμένων, είναι σταδιακή αναγνωρί-
ζοντας τον επαναληπτικό χαρακτήρα της ανάλυσης δεδομένων. Αυτή η διαδικασία
περιλαμβάνει επαναλαμβανόμενα βήματα εκλέπτυνσης, επιτρέποντας στους χρήστες
να εμβαθύνουν τα ερωτήματά τους καθώς αποκτούν πληροφορίες για τη δομή και
το περιεχόμενο του γράφου. Συνολικά, οι κύριες συνεισφορές της διατριβής αυτής
είναι: (ι) προτείνουμε φιλική προς το χρήστη διεπαφή για διαισθητική ανάλυση Γρά-

ix

φων Γνώσης RDF και, (ιι) ορίζουμε τυπικά τον χώρο καταστάσεων του μοντέλου
αλληλεπίδρασης καθώς και τους αλγόριθμους που απαιτούνται για την παραγωγή
ενεργειών για τη διεπαφή χρήσης. Παρέχουμε επίσης μια λεπτομερή περιγραφή και
πλήρη υλοποίηση του μοντέλου και των σχετικών αλγορίθμων, καταδεικνύοντας τη
εφικτότητά του σε σενάρια πραγματικού κόσμου. Αυτό τονίζει την πρακτική εφαρ-
μογή της προσέγγισής μας, καθιστώντας την πολύτιμη τόσο για τους αναλυτές όσο
και για τους απλούς χρήστες που ασχολούνται με Γράφους Γνώσης RDF. Τέλος,
σχολιάζουμε την αξιολόγηση του συστήματος από χρήστες, της οποίας τα αποτελέ-
σματα ήταν πολύ ϑετικά αναφορικά με την αποδοχή και την αποτελεσματικότητα
της μεθόδου. Αυτή η εμπειρική επικύρωση όχι μόνο τονίζει την αποτελεσματικότητα
του μοντέλου μας, αλλά έδωσε και ανατροφοδότηση για τη μελλοντική επέκτασή του.
Ουσιαστικά, η έρευνά μας όχι μόνο αντιμετωπίζει την πολυπλοκότητα της διατύπω-
σης αναλυτικών ερωτημάτων σε Γράφων Γνώσης RDF, αλλά δίνει επίσης έμφαση
στην αποδοχή των χρηστών.

Λέξεις κλειδιά: Γράφοι Γνώσης, Ανάλυση, Πολύπλευρη Αναζήτηση

Επόπτης: Τζίτζικας Γιάννης
Καθηγητής

Τμήμα Επιστήμης Υπολογιστών
Πανεπιστήμιο Κρήτης

Contents

Abstract . vii

Περίληψη (Abstract in Greek) . ix

Table of Contents . xi

List of Figures . xv

List of Tables . xvii

1 Introduction . 1

1.1 General Objective . 1

1.2 Motivation and Vision . 1

1.3 Research Question . 3

1.4 The Approach . 3

1.5 Contributions of this Dissertation . 5

1.5.1 Publications produced in the context of this dissertation 5

1.6 Outline of Dissertation . 7

2 Background . 9

2.1 The Resource Description Framework (RDF) 9

2.2 The Spectrum of Access Methods over RDF 11

2.3 Analytical Query . 13

2.4 SPARQL Protocol and RDF Query Language (SPARQL) 13

2.5 HIFUN: A Functional Query Language for Analytics 14

2.5.1 Using HIFUN as an Interface to RDF Dataset 18

2.6 Faceted Search . 18

3 Related Work . 21

3.1 Past Surveys: Integration, Querying and Visualization of RDF Knowledge

Graphs . 21

3.2 RDF and Analytics: Challenges and General Approaches 22

3.2.1 Challenges . 22

3.2.2 Categories of Works (related to RDF and Analytics) 22

3.2.3 Categories of Analytic Queries . 22

3.3 Survey of works and Systems . 24

3.3.1 Methodology and Statistics . 24

3.3.2 C1. Formulation of Analytic Queries directly over RDF 25

3.3.3 C2. Definition of Data Cubes over RDF 28

3.3.4 C3. Domain-specific Pipelines over RDF 32

xi

3.3.5 C4. Publishing of Statistical Data in RDF 33

3.3.6 C5. Quality Analytics Over Multiple RDF Datasets 35

3.4 Efficiency and Visualization . 37

3.4.1 Efficiency . 37

3.4.2 Visualization of Results . 39

3.5 Summary . 39

3.6 Our Positioning and Focus . 40

4 On Applying HIFUN over RDF . 43

4.1 Applicability of HIFUN over RDF . 43

4.1.1 Prerequisites for Applying HIFUN over RDF Data 43

4.1.2 Methods to Apply HIFUN over RDF . 44

4.2 Translation of HIFUN Queries to SPARQL . 46

4.2.1 Simple Queries . 46

4.2.2 Attribute-Restricted Queries. 47

4.2.3 Results-Restricted Queries. 48

4.2.4 Complex Grouping Queries. 48

4.2.5 The Full Algorithm for Translating a HIFUN Query to a SPARQL Query 50

4.2.6 Cases where the Prerequisites of HIFUN are not Satisfied 53

5 The Proposed Interaction Model for Analytics over RDF 59

5.1 The Interaction Model in Brief . 59

5.2 The Required Extensions of the Formal Model for FS over RDF for support-

ing Analytics . 64

5.2.1 Background: The Core Model for FS over RDF 64

5.2.2 The Extension of the Model for Analytics (Formally) 64

5.3 The Interaction Model Formally and the Related Algorithms 65

5.3.1 Notations . 65

5.3.2 Defining the State Space of the Interaction 66

5.3.3 Loading AF as a new Dataset . 68

5.4 The Algorithm that Implements the State Space 69

5.4.1 Starting Points . 69

5.4.2 Computing the Objects in the Right Frame 69

5.4.3 Computing the Facets corresponding to Classes 70

5.4.4 Computing the Facets that correspond to Properties 71

5.5 Expressing and Computing the Intentions of the States 72

6 Implementation . 75

6.1 Architecture . 75

6.2 System Demonstration . 76

6.3 3D Visualization . 77

6.4 Efficiency . 80

7 The Expressive Power of the Model . 85

7.1 Expressible HIFUN queries . 85

7.2 OLAP Operators Supported . 86

8 Evaluation . 91

8.1 Task-based Evaluation with Users . 91

8.2 Testing Implementability . 95

9 Conclusion . 97

9.1 Future Work and Research . 98

Bibliography . 101

List of Figures

1.1 From Disparate and Fragmented Datasets to Knowledge Graphs 2

1.2 The schema of the running example . 3

1.3 Expression in SPARQL of the query “average price of laptops made in 2021

from US companies that have 2 USB ports and an SSD drive manufactured

in Asia grouped by manufacturer”. 4

2.1 Context and main elements . 9

2.2 Example of an RDF triple . 10

2.3 Example of an RDF graph . 10

2.4 Example of an RDFS schema about products 11

2.5 An Overview of the Access Methods over RDF 13

2.6 Expression in SPARQL of the query “total quantities of products released by

company”. 14

2.7 Representation of Invoices Dataset in HIFUN 15

2.8 An analytic query and its answer . 16

2.9 Example of an Analysis Context in HIFUN . 17

2.10 Faceted search system . 19

2.11 Examples of Faceted Search Systems . 20

3.1 The spectrum of related works in 5 different categories 23

3.2 The number of surveyed works per category 24

3.3 The publication year of the surveyed papers 24

3.4 Indicative Screenshots of Visualization of analytical results for Categories

C1-C2: (a) column chart (C1, C2), (b) bar chart (C2), (c) line chart (C2), (d)

pie chart (C2), (e) bubble chart (C2), (f) geo chart (C2), (g) area (C2), (h)

treemap (C1, C2), (i) graph (C2), (j) table (C2) 38

3.5 Indicative Screenshots of Visualization of analytical results for Categories

C3-C5: (a) graph chart (C3), (b) pie chart (C3), (c,d) bar charts (C4,C5), (e)

graph chart (C5) . 39

4.1 Running Example . 46

5.1 The core elements of the GUI for Faceted Search and Analytics 60

xv

5.2 Example 3: Exploring the results of an analytic query with faceted search . . 61

5.3 Data of our running example . 66

5.4 (a): class-based transition markers, (b): class-based transition markers ex-

panded, (c): property-based transition markers, (d): property-based transi-

tion markers and grouping of values, . 67

5.5 (a): Property-based transition markers, (b): Property Path-based transitions

markers . 69

6.1 The architecture of the system RDF-ANALYTICS 77

6.2 GUI of the system RDF-ANALYTICS for formulating the query ”Average, sum

and max price of laptops that have 2 to 4 USB ports, group by manufacturer

and the origin of manufacturer” . 78

6.3 (a) Tabular visualization of the results and (b) Loading of the results as a new

dataset . 78

6.4 2D and 3D visualization of results . 79

6.5 3D visualization of results . 80

7.1 Correspondence with OPAP operations . 88

7.2 An example of roll-up and drill-down . 89

8.1 Task-based evaluation with users: task completion and user rating 93

8.2 Task-based evaluation with users: total task completion and total user rating 94

8.3 An alternative implementation of the proposed model 96

List of Tables

3.1 Overview of Approaches and Systems for Category C1 (analytical queries A) 25

3.2 Overview of Approaches and Systems for Category C2 (analytical queries A) 29

3.3 Overview of the introduced Works of Category C4 (supporting mainly ana-

lytical queries of Category B) . 35

3.4 Overview of the introduced Works of Category C5 (supporting analytical

queries of Category B) . 36

3.5 Comparing the functionalities of related systems 40

4.1 Feature Creation Operators . 45

5.1 SPARQL-expression of the model’s notations, assuming that the extension

of the current state (either Eor s.Ext) is stored in temporary class temp . . . 73

5.2 For SPARQL-only evaluation approach . 73

6.1 Efficiency - peak hours . 81

6.2 Efficiency - off-peak hours . 82

xvii

Chapter 1

Introduction

1.1 General Objective

Numerous Knowledge Graphs, expressed in RDF (Resource Description Framework), play

a crucial role in consolidating and integrating data from diverse sources. In the realm of

data analytics, the complexity and scale of these graphs continue to grow, highlighting

an increasing demand for tools that facilitate analysis. However, the current provision

of analytic services and systems that are effective, efficient, and user-friendly remains a

challenge.

This thesis aims to address this challenge by developing a comprehensive method that

delves into the intricacies of RDF Knowledge Graph analysis. The proposed method is

destined to achieve two primary objectives: (i) prioritizing accessibility: the method (and

the corresponding system) empowers ordinary users to analyze complex RDF Knowledge

Graphs without requiring specialized technical expertise, (ii) alleviating the burden on

experts: recognizing the time-intensive nature of analyzing RDF Knowledge Graphs, the

method incorporates advanced features to enable experts to navigate and analyze these

structures more efficiently, ultimately enhancing their productivity. By leveraging sophis-

ticated design principles, user-centric interfaces and innovative features, the method aims

not only to simplify but to enhance the entire process of analyzing RDF Knowledge Graphs.

Its features collectively contribute to an environment where users can delve into the analy-

sis without being burdened by the technical intricacies associated with RDF data. By com-

bining accessibility for ordinary users and efficiency for experts, the envisioned method

aims at establishing a new standard for inclusive and productive analytical environments

in the realm of data integration and analysis.

1.2 Motivation and Vision

To leverage large scale data for gaining new insights, a recent and very promising practice

in various domains (e.g. environment, health, economy, culture, economics and others),

that has been adopted by both academia and industry is to construct a Knowledge Graph

1

2 Chapter 1. Introduction

(KG) [49] that aggregates and integrates data from several datasets, as illustrated in Fig 1.1.

Figure 1.1: From Disparate and Fragmented Datasets to Knowledge Graphs

Several such graphs expressed in the W3C standard RDF (Resource Description Frame-

work) exist, from general purpose KGs (like DBpedia [23] and Wikidata [120]) to domain

specific semantic repositories, like Europeana [52] and [35] for the cultural domain, Drug-

Bank [123] for drugs, GRSF [115] for the marine domain, WarSampo [59] for historical data,

ORKG [54] for scholarly works, and [30, 91, 121] for COVID-19 related datasets. There are

also Markup data through schema.org expressed in RDF as well as Knowledge Graphs pro-

ducible from plain file systems [113]. Finally, Knowledge Graphs (KGs) are currently being

employed for validating and enriching the responses generated by Large Language Mod-

els, such as ChatGPT (as in [78]).

Plain users can (i) browse such graphs (i.e. the user can start from a resource, inspect

its values and move to a connected resource, and so on, or even decide to move to the

more similar resources, (e.g. as in [25]), (ii) search them using keyword search where the

emphasis is on the ranking of the resources according to their relevance to the submit-

ted query (e.g. as multi-perspective keyword search approach described in [81]), or (iii)

use interactive query formulators that aim at aiding users in the formulation of structured

queries (e.g. A-QuB [60], FedViz [31], SPARKLIS [39], and SPARQL-QBE [5]).

However, the analysis of big and complex KGs via structured query formulation is still

very challenging for ordinary users and time-consuming as well as laborious for experts.

This is due to their: (i) complexity: RDF kGs can be complex with large numbers of nodes

and relationships. This can make it difficult for ordinary users to understand the structure

of the graph and the relationships between the nodes, (ii) lack of standardization: there

is no standard way to represent RDF knowledge graphs, which can make it difficult for

users to interpret the data. This can lead to inconsistencies and errors in the analysis,

(iii) technical skills: analyzing RDF knowledge graphs often requires technical skills such

as programming and data analysis. Ordinary users may not have these skills, which can

make it difficult for them to work with the data, (iv) lack of tools: there are a few user-

friendly tools available for analyzing RDF knowledge graphs, which can make it difficult

1.3. Research Question 3

for ordinary users to interact with the data. Most of the tools that exist are geared towards

developers and require a high level of technical expertise. Furthermore, from a system per-

spective, efficiency is hard to achieve for very big KGs, while from an application/domain

perspective users usually face completeness and freshness issues [122].

To emphasize these difficulties, let’s consider a KG with information about products

and its related entities (companies, persons, locations, etc.) with schema as shown in Fig.

1.2 (for reasons of brevity namespaces are not shown).

Figure 1.2: The schema of the running example

Suppose that we wanted to find “the average price of laptops made in 2021 from US

companies that have 2 USB ports and an SSD drive manufactured in Asia grouped by man-

ufacturer”. This information need would be expressed in SPARQL as shown in Fig. 1.3.

Obviously, the formulation of such a query is quite difficult for ordinary users who do not

have the required technical background knowledge.

For that, there is a need for an intuitive interactive model that will let any user regard-

less of expertise, to effortlessly formulate analytic queries without having any knowledge

of the vocabulary (schema, ontology, thesauri) the actual contents of the dataset, or the

syntax of the corresponding query language.

1.3 Research Question

This thesis centers around the following core research question: Is it possible to come up

with a general purpose method that enables interactive formulation of analytic queries over

any RDF graph, that is appropriate for both ordinary and expert users?

1.4 The Approach

We leverage the familiarity of users with Faceted Search [97] since this model allows ex-

pressing complex conditions through simple clicks. As illustrated in Fig. 2.1, our approach

originates from a foundational model for faceted search over RDF data. Specifically, we

build upon the core model for faceted exploration of RDF datasets, as introduced in [114].

To empower users with the capability to express both simple and complex queries seam-

4 Chapter 1. Introduction

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

Prefix ex:<http://www.ics.forth.gr/example#>

SELECT ?m (AVG(?p) as ?avgprice)

WHERE {

?s rdf:type ex:Laptop.

?s ex:manufacturer ?m.

?m ex:origin ex:USA.

?s ex:price ?p.

?s ex:USBPorts ?u.

?s ex:hardDrive ?hd.

?hd rdf:type ex:SSD.

?hd ex:manufacturer ?hdm.

?hdm ex:origin ?hdmc.

?hdmc ex:locatedAt ex:Asia.

FILTER (?u >= 2).

?s ex:releaseDate ?rd .

FILTER (?rd >= "2021-01-01T00:00:00"ˆˆxsd:dateTime &&

?rd <= "2021-12-31T00:00:00"ˆˆxsd:dateTime)

} GROUP BY ?m

Figure 1.3: Expression in SPARQL of the query “average price of laptops made in 2021 from
US companies that have 2 USB ports and an SSD drive manufactured in Asia grouped by
manufacturer”.

lessly, we extend this model with interactive actions, facilitated by simple clicks. These

actions correspond to a high-level query language for analytics, named HIFUN.

The expressive queries formulated in HIFUN are subsequently translated into SPARQL

queries. These SPARQL queries are then executed against the relevant SPARQL endpoints

to retrieve the desired results. To facilitate user understanding and interpretation, the ob-

tained results are presented in the form of 2D and 3D charts. These visualizations serve to

provide users with meaningful insights derived from the analytics conducted on the RDF

data.

The proposed model is distinguished by the following characteristics: (i) applicabil-

ity to any RDF dataset: it can be applied to any RDF dataset, independent of whether it

follows a star-schema, (ii) query guidance: it provides guidance by supporting only an-

swerable queries, ensuring that it never produces empty results due to lack of data, (iii) ex-

pressive power: it offers expressive power by supporting arbitrarily long paths in queries,

(iv) count information: the model provides count information, enriching the analytical in-

sights, (v) result restriction: it supports the interactive formulation of HAVING clauses for

1.5. Contributions of this Dissertation 5

restricting the final results, (vi) nested analytic queries: the model allows for the formu-

lation of nested analytic queries, enabling users to explore data at various levels of com-

plexity, and (vii) dual support: it accommodates both faceted search and analytic queries,

offering flexibility in exploration techniques.

1.5 Contributions of this Dissertation

The key contributions of this thesis are the following:

(a) we propose a generic user interface for intuitively analyzing RDF Knowledge Graphs

without pre-supposing any technical knowledge, (b) we extend the typical interfaces of

faceted search systems with actions used for forming analytical queries of a high-level

query language (called HIFUN) which is translatable to SPARQL, (c) we survey the ap-

proaches, systems and tools that enable the formulation of analytic queries over KGs ex-

pressed in RDF, (d) we define formally the state-space of the interaction model, we present

the detailed steps of the algorithms used for producing the UI and we present an imple-

mentation of the model that showcases its feasibility, (e) we investigate the applicability

of HIFUN over RDF KGs, we describe the data transformations that may be required and

we show how the queries are translated from HIFUN to SPARQL, (f) we discuss about the

expressive power of the proposed model, (g) we present an implementation of the model

that showcases its feasibility, and (h) we report the results of a task-based evaluation with

users which shows that the proposed model aid ordinary users in analyzing RDF KGs intu-

itive without having any technical background knowledge.

1.5.1 Publications produced in the context of this dissertation

The research activity related to this thesis has so far produced the following publications

(ordered by publication date).

• [88] Papadaki, Maria-Evangelia, Yannis Tzitzikas, and Nicolas Spyratos. “Analytics

over RDF graphs.” International Workshop on Information Search, Integration, and

Personalization. Springer, Cham, 2019.

This paper sketched an approach for applying analytics to RDF data, based on a high-

level functional query language, called HIFUN. According to that language, each an-

alytical query is considered as a well-formed expression of a functional algebra and

its definition is independent of the nature and structure of the data. It also details

the required data transformations, the translation of analytical queries from HIFUN

to SPARQL and it introduces the primary implementation of a tool, developed for

these purposes.

• [84] Papadaki, Maria-Evangelia, Nicolas Spyratos, and Yannis Tzitzikas. “Towards

6 Chapter 1. Introduction

interactive analytics over RDF graphs.” Algorithms 14.2 (2021): 34.

This paper is an extension of [88]. It provides the concrete algorithms for translating

analytical queries from HIFUN to SPARQL and it details the steps for developing a

user-friendly interface for interactive analytics over any RDF graph. In particular, it

describes a unified logical interface for letting users to (i) select the RDF file or triple

store they want to analyze, (ii) specify and change the analysis context on the fly, (iii)

formulate analytical queries using a high-level language for analytics (HIFUN), and

(iv) shows how the queries will be translated from HIFUN to SPARQL.

• [116] Tzitzikas, Yannis, Maria-Evangelia Papadaki, and Manos Chatzakis. “A spiral-

like method to place in the space (and interact with) too many values.” Journal of In-

telligent Information Systems 58.3 (2022): 535-559.

This paper focuses on the problem of placing a set of values in the 2D (or 3D) space.

It presents a novel family of algorithms that produces spiral-like layouts where the

biggest values are placed in the center of the spiral and the smallest in the peripheral

area, while respecting the relative sizes. The derived layout is suitable not only for the

visualization of medium-sized collections of values, but also for collections of values

whose sizes follow power-law distribution, since it makes evident the bigger values

(and their relative size) and it does not leave empty spaces in the peripheral area

which is occupied by the majority of the values which are small. The algorithm has

linear time complexity (assuming the values are sorted), very limited main memory

requirements, and produces drawings of bounded space, making it appropriate for

interactive visualizations, and visual interfaces in general.

• [87] Papadaki, Maria-Evangelia, Yannis Tzitzikas, and Michalis Mountantonakis.

“A Brief Survey of Methods for Analytics over RDF Knowledge Graphs.” Analytics 2.1

(2023): 55-74.

This paper surveys the approaches, systems and tools that enable the formulation

of analytic queries over KGs expressed in RDF. It identifies the main challenges, it

distinguishes two main categories of analytic queries (domain specific and quality-

related), and five kinds of approaches for analytics over RDF. Also, it describes in brief

the works of each category and related aspects, like efficiency and visualization.

• [85] Papadaki, Maria-Evangelia, and Yannis Tzitzikas. “RDF-ANALYTICS: Interactive

Analytics over RDF Knowledge Graphs.” EBDT 2023.

This paper introduces a novel system, called “RDF-ANALYTICS”, that enables ordi-

nary users to formulate analytic queries over complex RDF knowledge graphs with-

out requiring from them to have any background knowledge. It leverages the famil-

iarity of users with Faceted Search (FS) systems and extends such a system with ac-

1.6. Outline of Dissertation 7

tions that let users formulate analytic queries, intuitively by exploiting a high-level

language for analytics, called HIFUN, i.e. it builds upon [88], and demonstrates a

particular GUI.

• [86] Papadaki, Maria-Evangelia, and Yannis Tzitzikas. “Unifying Faceted Search and

Analytics over RDF Knowledge Graphs.” (2023) (Submitted to journal Knowledge and

Information Systems (KAIS), currently under revision).

This paper is an extended version of [85], it details all algorithms, it describes the ex-

pressive power of the model, it details the implementation, and includes the results

of an evaluation with users.

Systems and Models
In the context of this thesis, the following systems and models were developed.

(1a) http://62.217.127.128:8080/3dvisualization/ is a system that visualizes the progress

of COVID-19 virus over time by country in an interactive 3D environment. Adopting

the metaphor of an urban area, it represents each country with a multi-storey cube.

Each segment of the cube corresponds to a feature of the country and its volume is

proportional to the value of that feature. The proposed system includes interactions

and modification of the visualization parameters aiding users to explore the data,

extract more details, and create new insights in an intuitive way.

(1b) http://62.217.127.128:8080/3dvisualization_v2/ is an extension of the aforemen-

tioned system that lets users upload and visualize their own statistical data. The data

is imported as a .csv file where the headers correspond to the attributes of analysis

and the cells to the measure of it.

(2) http://demos.isl.ics.forth.gr/rdf-analytics/

is a system that enables plain users to formulate analytic queries over complex RDF

knowledge graphs. It leverages the familiarity of users with faceted search and is ex-

tended with actions which are translated to a high-level query language for analytics,

called HIFUN.

(3) http://62.217.127.128:8080/Interactive-RDF-Knowledge-Graphs-Analytics/ rep-

resents an enhanced and extended iteration of its predecessor (i.e. system (2)), focus-

ing on improvements in user-friendliness and efficiency.

1.6 Outline of Dissertation

This thesis is organized as follows: Chapter 2 presents the background of this work. Chap-

ter 3 describes the related work. Chapter 4 discusses about the applicability of HIFUN

over RDF, the translation of HIFUN queries to SPARQL, and the algorithms used for the

translation. Chapter 5 describes the proposed model. Chapter 6 delves into the model’s

implementation. Chapter 7 discusses about the expressing power of the model. Chapter 8

8 Chapter 1. Introduction

describes the evaluation process of the model. Finally, Chapter 9 concludes the paper and

identifies issues for further research.

Chapter 2

Background

Here, we describe in brief the principles of (i) the Resource Description Framework (RDF)

(in §2.1), (ii) the access methods over RDF data (in §2.2) (iii) analytical queries (in §2.3),

(iv) the SPARQL Protocol and RDF Query Language (SPARQL) (in §2.4), (v) a high-level

language for analytics, called HIFUN (in §2.5) and (vi) the Faceted Search (or Faceted Ex-

ploration) systems (in §2.6). A visual representation of their interconnections (and the

general context) is given in Figure 2.1.

Figure 2.1: Context and main elements

2.1 The Resource Description Framework (RDF)

The Resource Description Framework (RDF) [12,75] is a graph-based data model for linked

data interchanging on the web. It uses triples i.e. statements of the form subject−predicate−
object, where the subject corresponds to an entity (e.g. a product etc.), the predicate to a char-

acteristic of the entity (e.g. price of a product) and the object to the value of the predicate for

9

10 Chapter 2. Background

the specific subject (e.g. “1000”), as shown in Fig. 2.2. The triples are used for relating Uni-

form Resource Identifiers (URIs) or anonymous resources (blank nodes) with other URIs,

blank nodes or constants (Literals). Formally, a triple is considered to be any element of

T = (U∪B)× (U)× (U∪B∪L), where U,Band Ldenote the sets of URIs, blank nodes and

literals, respectively. Any finite subset of T constitute an RDF graph (or RDF dataset).

Figure 2.2: Example of an RDF triple

RDF Knowledge Graph A collection of RDF triples about related entities constructs an

RDF knowledge graph that shows how these entities are related, as shown in Fig. 2.3.

Figure 2.3: Example of an RDF graph

RDF Schema. RDF Schema1 is a special vocabulary that enables the definition of

schemas, that can be used for describing the resources in a more expressive, semantic, way.

Its intention is to structure RDF resources, since even though RDF uses URIs to uniquely

identify resources, it lacks semantic expressiveness. It uses classes to indicate where a re-

source belongs, and properties to build relationships between the entities of a class and to

model constraints. A class C is defined by a triple of the form<C rdf:type rdfs:Class>using

the predefined class “rdfs:Class” and the predefined property “rdf:type”. For example, the

triple <ex:Laptop rdf:type rdfs:Class> indicates that “Laptop” is a class, while the triple

<ex:laptop-1 rdf:type ex:Laptop> indicates that the individual “laptop − 1” is an instance

1https://en.wikipedia.org/wiki/RDF_Schema

2.2. The Spectrum of Access Methods over RDF 11

of class Laptop. A property can be defined by using the predefined class “rdf:Property”. Op-

tionally, properties can be declared to be applied to certain instances of classes by defining

their domain and range using the predicates “rdfs:domain” and “rdfs:range”, respectively.

For example, the triples<ex:manufacturer rdf:type rdf:Property>,<ex:manufacturer rdfs:domain

ex:Product>, <ex:manufacturer rdfs:range ex:Company>, indicate that the domain of the

property “manufacturer” is the class “Product” and its range the class “Company”. The

RDF Schema is also used for defining hierarchical relationships among classes and prop-

erties. The predefined property “rdfs:subclassOf” is used as a predicate in a statement

to declare that a class is a specialization of another more general class, while the special-

ization relationship between two properties is described using the predefined property

“rdfs:subPropertyOf”. For example, the triple <ex:Laptop rdfs:subClassOf ex:Product> de-

notes that the class “Laptop” is sub-class of the “Product” class. And the triple<ex:manufacturer

rdf:subPropertyOf ex:producer> indicates that the property “manufacturer” is sub-property

of “producer”. In addition, RDFS offers inference functionality2 as additional information

(i.e. discovery of new relationships between resources) about the data it receives. For ex-

ample, if <ex:laptop-1 rdf:type ex:Laptop> and <ex:Laptop rdf:subClassOf ex:Product>,

then it can be deduced that “ex:laptop-1 rdf:type ex:Product”, i.e. that ex:laptop-1 is also a

Product.

Figure 2.4: Example of an RDFS schema about products

2.2 The Spectrum of Access Methods over RDF

Access methods over RDF data are techniques used to retrieve and manipulate data stored

in Resource Description Framework (RDF) format. There are several access methods that

can be used to retrieve data from RDF stores, including:

2https://www.w3.org/standards/semanticweb/inference

12 Chapter 2. Background

Structured Query Languages. RDF data is mainly accessed using the SPARQL query

language which is used to retrieve and manipulate data stored in Resource Description

Framework (RDF) format. Apart from SPARQL, there are also a few other languages gener-

ally for KGs such as Cypher [42] (a declarative language implemented as part of the Neo4j

graph database), Gremlin [9] (a combination of SQL, SPARQL and Cypher which focuses

on navigational queries rather than matching patterns), PGQL [119] (an SQL-like pattern-

matching query language), and G-CORE [10] (a graph query language that integrates the

features provided by the graph query languages Cypher [42] and PGQL [119]) for querying

property graphs.

Keyword Search systems. Such systems [81] allow users to search for documents, web

pages, or other types of data by entering one or more keywords or search terms. The sys-

tems then retrieve and displays a list of documents or items that match the search criteria.

While keyword search systems are useful for finding specific information quickly, they may

also produce a large number of irrelevant results if the search terms are too general or if

the system is not properly optimized.

Interactive Information Access. These methods aim to go beyond the traditional key-

word search systems by allowing users to interact with the system and provide feedback on

the relevance of the search results. Some common interactive information access methods

include: (a) query reformulation: this method allows users to refine their search queries

by suggesting alternative search terms or by providing a list of related concepts that can

help users narrow down their search, (b) faceted Search: this method allows users to fil-

ter search results based on different criteria such as date, company, location etc., (c) rec-

ommender systems: these systems use machine learning algorithms to analyze a user’s

search history and provide personalized recommendations for content that might be of

interest to the user, (d) collaborative filtering: this method uses data from multiple users

to identify patterns and make recommendations based on the preferences of other users

who have similar search histories or interests, (e) visual analytics: this method uses in-

teractive visualizations to help users explore and analyze large datasets. It allows users

to interact with the data and to discover patterns and insights that might not be immedi-

ately apparent from a traditional keyword search, and (f) Query-By-Example (QBE): this

method enables users to refine their search queries interactively by providing examples

or templates, allowing for a more intuitive and user-friendly approach to information re-

trieval (as in [5, 13, 28, 62].)

Natural language interfaces. These interfaces provide a more intuitive and accessible

way for users to interact with computer systems using natural language, such as spoken or

written language, as in [29]. Such interfaces use natural language processing (NLP) tech-

niques to understand the meaning of user input and to generate appropriate responses.

Figure 2.5 illustrates the above methods and the distinctive characteristics of each one.

2.3. Analytical Query 13

Figure 2.5: An Overview of the Access Methods over RDF

2.3 Analytical Query

An analytical query is a type of query designed to extract insights, patterns, or summaries

from a dataset, often involving complex computations or aggregations. Analytical queries

go beyond simple data retrieval and typically involve operations such as grouping, filter-

ing, and statistical analysis to uncover meaningful information within the dataset. These

queries are commonly used in data analysis and business intelligence to gain a deeper

understanding of the underlying data.

An analytical query over RDF (Resource Description Framework) data extends this con-

cept to the context of semantic data. It involves querying and analyzing this graph-based

data model to extract patterns, relationships, and meaningful insights. In the context of

RDF data, an analytical query may include operations such as aggregations over proper-

ties, exploration of relationships between entities, and statistical analysis to uncover pat-

terns within the linked data. These queries enable users to gain a more comprehensive

understanding of the semantic relationships and structure embedded in RDF datasets,

making them valuable for knowledge discovery and exploration in various domains such

as the Semantic Web and linked data environments.

2.4 SPARQL Protocol and RDF Query Language (SPARQL)

SPARQL3 is the standard query language used to retrieve and manipulate data stored in

Resource Description Framework (RDF) format. It allows you to write queries that can be

executed against RDF data stores, such as RDF databases or triple stores. These queries

can be used to retrieve data, perform complex data manipulation, and perform advanced

graph analysis. SPARQL includes a variety of features, including the ability to query for

patterns, filter results, perform aggregation, and perform subqueries. From version 1.1,

3https://www.w3.org/TR/rdf-sparql-query/

14 Chapter 2. Background

SPARQL supports also complex querying using regular path expressions, grouping, aggre-

gation, etc. In particular, and as regards analytic queries, SPARQL supports the modifier

GROUP BY and supports various aggregate functions including COUNT, SUM, AVG, MIN,

MAX, and GROUP CONCAT. In general, it is a powerful tool for working with RDF data

and can be used in a variety of applications, including semantic web applications, data

integration, and data analysis.

As an example, consider the KG of Figure 2.4 and suppose that we would like to ex-

press the query “total quantities of products released by company”. This query would be

expressed in SPARQL as shown in Fig. 2.6.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

Prefix ex:<http://www.ics.forth.gr/example#>

SELECT ?m (COUNT(?p) as ?total_products)

WHERE {

?p rdf:type ex:Product.

?p ex:manufacturer ?m.

} GROUP BY ?m

Figure 2.6: Expression in SPARQL of the query “total quantities of products released by com-
pany”.

However, even though SPARQL is a highly expressive query language (it supports a

wide range of query operations, including pattern matching, filtering, aggregation, and

subqueries), (i) it is a complex query language that requires significant expertise to use

effectively (users must have a deep understanding of RDF data modeling, as well as the

syntax and semantics of the SPARQL language itself), (ii) it can become extremely difficult

to use (as RDF datasets grow in size and complexity, SPARQL queries can become increas-

ingly difficult to manage and optimize), (iii) it may be necessary to use specialized query

optimization techniques, such as query rewriting or materialization.

2.5 HIFUN: A Functional Query Language for Analytics

HIFUN [103] is a high-level functional query language for defining analytic queries over

big datasets, independently of how these queries are evaluated. It can be applied over

a dataset that is structured or unstructured, homogeneous or heterogeneous, centrally

stored or distributed. To apply that language over a dataset D, two assumptions should

hold: The dataset should i) consist of uniquely identified data items, and ii) have a set

of attributes each of which is viewed as a function associating each data item of D with

2.5. HIFUN: A Functional Query Language for Analytics 15

a value, in some set of values. For example, if the dataset D is a set of tweets, then the

attribute “character count” (denoted as cc) is seen as a function cc : D → Integers such

that, for each tweet t, cc(t) is the number of characters in t. Let D be a dataset and A be

the set of all attributes (a1, ..., ak) of D. An analysis context over D is any set of attributes

from A, and D is considered the origin (or root) of that context, as shown in Fig. 2.9. The

attributes of a context are divided into two groups, the direct and the derived. The first

group contains the attributes with originD: these are the attributes whose values are given.

The second group contains the attributes whose origins are different than D and whose

values are computed based on the values of the direct attributes.

Consider a scenario where we have a dataset, D, comprising all delivery invoices from

a distribution center (e.g., Walmart) over a year. These invoices provide details such as

a unique identifier, delivery date, branch information, product type (e.g., CocaLight), and

the quantity of units delivered for that product. Each type of product has its own dedicated

invoice, and all the data for the year is stored in a database for analysis.

In a more abstract representation, the information in each invoice can be seen as a set

of four functions: d for the date the product delivered, b for branch the delivery took place,

p for the type of the product, and q for the quantity delivered for that type of product. This

abstraction is illustrated in Fig. 2.8, where D denotes the set of all invoice numbers, and

arrows indicate the attributes associated with each invoice.

Figure 2.7: Representation of Invoices Dataset in HIFUN

Let’s say our objective is to determine the total quantity of products delivered to each

branch over the entire year. For this computation, we only need information from two out

of the four functions: b (branch) and q (quantity). A simplified dataset, as shown in Fig. 2.8

(a), illustrates the mappings returned by b and q for a set of seven invoices (numbered 1 to

7). To find the total quantity delivered to each branch, we can follow a three-step process:

Grouping. During the grouping step, we consolidate invoices that pertain to the same

branch by utilizing the function b. This results in distinct groups of invoices for each

branch, as illustrated below:

Branch b1: Invoices d1, d2

Branch b2: Invoices d3, d4

Branch b3: Invoices d5, d6, d7

Measuring. Next, in the measurement phase within each group, we identify the quan-

16 Chapter 2. Background

tity associated with each invoice, leveraging the function q:

Branch b1: Quantities 200, 100

Branch b2: Quantities 200, 400

Branch b3: Quantities 100, 400, 100

Reduction. Subsequently, in the reduction stage within each group, we aggregate the

identified quantities:

Branch b1: Total quantity = 200 + 100 = 300

Branch b2: Total quantity = 200 + 400 = 600

Branch b3: Total quantity = 100 + 400 + 100 = 600

The resulting association of each branch with its corresponding total quantity, as de-

picted in Fig. 2.8 (a), represents the desired outcome:

Branch-1→ 300

Branch-2→ 600

Branch-3→ 600

The ordered triple Q = (b, q, sum) serves as a query over the dataset D, while the func-

tion ansQ : Branch → TotQty in Fig. 2.8 (b) stands as the answer to Q. The entire process

outlined in Fig. 2.8 (a) constitutes the evaluation of the query. It’s noteworthy that the as-

sociation of branches with total quantities is made possible by the common source shared

by b and q, which is D.

Figure 2.8: An analytic query and its answer

2.5. HIFUN: A Functional Query Language for Analytics 17

Consequently, a query in HIFUN is defined as an ordered triple Q = (g,m, op) such that

g and m are attributes of the dataset Dhaving a common source and op is an aggregate op-

eration (or reduction operation) applicable on m-values. The first component of the triple

is called grouping function and it specifies how the data should be grouped or partitioned

for analysis. The second component is called measuring function (or the measure) and it

is the data value that is being analyzed or aggregated. The third component is called ag-

gregate operation (or reduction operation) and it specifies the function used to summarize

the data within each group or partition, such as sum, average, or count.

The grouping and the measuring function can also be more complex using the follow-

ing four operations on functions: composition, pairing, restriction and Cartesian product

projection. These operations form the so called functional algebra [102]. In addition, one

can restrict the three components g,m, op of a HIFUN query. The general form of a HI-

FUN query is q = (gE/ rg,mE/ rm, opE/ ro), where gE is the grouping expression, mE the

measuring expression, and opE the operation expression, whereas rg is a restriction on the

grouping expression, rm is a restriction on the measuring expression, ro is a restriction on

the operation expression.

Roughly speaking, an analytical query Q is a path expression over an analysis context

C; a well formed expression whose operands are arrows from C and whose operators are

those of the functional algebra. It is formulated using paths starting at the root and is

evaluated in a three-step process, as follows: i) items with the same g-value gi are grouped,

ii) in each group of items created, the m-value of each item in the group is extracted from

D and iii) the m-values obtained in each group are aggregated to obtain a single value vi.
Actually, the aggregate value vi is the answer of Q on gi. This means that a query is a triple

of functions and its answer AnsQ is a function, too.

Figure 2.9: Example of an Analysis Context in HIFUN

18 Chapter 2. Background

2.5.1 Using HIFUN as an Interface to RDF Dataset

There are several ways in which HIFUN can be used, such as for studying rewriting of

analytic queries in the abstract [103] or for defining an approach to data exploration [104].

In this work, we use HIFUN as a user-friendly interface for defining analytic queries over

RDF datasets. To understand the proposed approach, consider a data source S with query

language L (e.g. S could be a relational dataset and L the SQL language). In order to use

HIFUN as a user interface for S, we need to (a) define an analysis context, that is a subset

D of S to be analyzed and some attributes of D that are relevant for the analysis and (b)

define a mapping of HIFUN queries to queries in L.

Defining a subset Dof S can be done using a query of Land defining D to be its answer

(i.e. D is defined as a view of S); and similarly, the attributes that are relevant to the analysis

can be defined based on attributes of Dalready present in S. However, defining a mapping

of HIFUN queries to queries in L might be a tedious task. In [104] such mappings have

been defined from HIFUN queries to SQL queries and from HIFUN queries to MapReduce

jobs.

The main objective of this work is to define a user-friendly interface allowing users to

perform analysis of RDF datasets. To this end, we use the HIFUN language as the interface.

In other words, we consider the case, where the dataset S mentioned above is a set of RDF

triples and its language L is the SPARQL language.

The application of HIFUN over RDF will be detailed in Chapter 4.

2.6 Faceted Search

Faceted Search (or Faceted Exploration) [32, 90, 96] is a widely used interaction scheme

for Exploratory Search. It is a type of search technique that allows users to filter and

refine search results based on specific attributes or characteristics, known as facets as

shown in Fig. 2.10. Facets are predefined categories or metadata that are associated with

each search result, such as price range, product brand, released date, location, and so

on. Faceted search typically presents users with a list of available facets and their cor-

responding values, which they can use to narrow down their search results. As the user

selects or deselects different facets, the search results are dynamically updated to reflect

their choices, as shown in Fig. 2.10. Faceted search is often used in e-commerce web-

sites [95, 97, 112], online libraries [58, 107], and other digital collections that contain large

amounts of heterogeneous data [14, 37, 68, 72, 114]. These systems can improve user ex-

perience by making it easier to find relevant information and reduce the amount of time

spent searching through irrelevant results. Informally we could define Faceted Search as

a session-based interactive method for query formulation (commonly over a multidimen-

sional information space) through simple clicks that offers an overview of the result set

2.6. Faceted Search 19

(groups and count information), never leading to empty result sets.

Figure 2.10: Faceted search system

Below, we show some of the most popular Faceted Search systems. Fig. 2.11 (a) shows

eBay, which is another major online marketplace, employs faceted search to enable users

to narrow down their search results for products and auctions, offering filters like price

range, condition, and seller location. Fig. 2.11 (b) shows Amazon.com which is a promi-

nent e-commerce platform that utilizes faceted search to enhance user experience by al-

lowing customers to refine their product searches based on various criteria such as price,

brand, and customer ratings. Fig. 2.11 (c) shows LinkedIn Corporation that integrates

faceted search into its professional networking platform, assisting users in finding job op-

portunities by refining searches based on factors like industry, location, and experience

level. Finally, Fig. 2.11 (d) shows Booking.com, utilizes faceted search to streamline the

process of hotel and travel reservations, allowing users to filter results based on criteria

like price, location, and amenities. These platforms showcase the effectiveness of faceted

search in various domains, providing users with tailored and efficient search experiences.

20 Chapter 2. Background

(a) eBay Inc. (b) Amazon.com

(c) LinkedIn Corporation (d) Booking.com

Figure 2.11: Examples of Faceted Search Systems

Chapter 3

Related Work

Section 3.1 describes in brief a few surveys about RDF Knowledge Graphs focused in in-

tegration, querying and visualization. Section 3.2 identifies the major challenges of RDF

analytics. section 3.3 outlines the methodology we followed for finding the papers of this

thesis, it reports their statistics and describes these works. Section ?? compares Faceted

Search systems with a paradigm for interactive query formulation, named “Query-By-Example”.

Section 3.4 discusses about the efficiency of the analytical approaches the surveyed papers

propose and their ability to support visualization of the analytical results. Section 3.5 sum-

marizes the related work. Finally, section 3.6 states the position and contribution of this

thesis.

3.1 Past Surveys: Integration, Querying and Visualization of RDF
Knowledge Graphs

There are several surveys related to RDF KGs, each addressing specific aspects of seman-

tic data integration, querying techniques, and visualization approaches. For instance, [76]

surveys approaches for large scale semantic integration of linked data emphasizing strate-

gies for integrating multiple RDF datasets. [19] presents vocabularies dedicated to pub-

lishing RDF statistical data, while [8] surveys techniques and systems for querying RDF

datasets focusing on the storage, the indexing and the query processing techniques for

evaluating SPARQL queries. [118] introduces approaches for generating RDF graphs from

heterogeneous data emphasizing mapping languages for schema and data transforma-

tions. Additionally, [2] categorizes OLAP approaches leveraging semantic web technolo-

gies according to several criteria including materialization, transformations and extensi-

bility. Some surveys [11, 27] presents approaches for RDF KGs visualization and summa-

rization for semantic RDF graphs [24].

These surveys play a crucial role in generating, integrating, querying, and visualizing

RDF KGs, serving as prerequisite steps for producing analytics over RDF KGs. However,

a significant gap in the literature exists - a survey specifically providing an overview of

21

22 Chapter 3. Related Work

analytics over RDF KGs, which is the core objective of our work.

3.2 RDF and Analytics: Challenges and General Approaches

In this section we identify the major challenges of analytics over RDF (Section 3.2.1), we

provide a categorization of the existing works on RDF analytics (Section 3.2.2), and we

present a classification for analytic queries by providing indicative examples (Section 3.2.3).

3.2.1 Challenges

A KG that integrates data from several datasets tends to have a complex structure in com-

parison to multi-dimensional data, since: (i) different resources may have different sets of

properties (from different schemas), (ii) properties can be multi-valued (i.e. triples where

the subject and predicate are the same but the objects are different) and (iii) resources

may or may not have types. The typical methods for analytics that exist (i.e. over multidi-

mensional data) are not adequate, since they presuppose a single homogeneous dataset,

which in many cases requires prior transformations of the data. Furthermore,the seman-

tics of RDF(S) are not always leveraged i.e. the inference based on rdfs:subClassOf and

rdfs:subPropertyOf, and in many cases quality, completeness and freshness issues come

across.

3.2.2 Categories of Works (related to RDF and Analytics)

We categorize the works related to RDF analytics in five basic categories, as illustrated in

Figure 3.1. In particular, we classify them in: (C1) works that focus on the formulation of

analytic queries directly over RDF (Section 3.3.2), (C2) works that first define data cubes

over RDF data and then analyze it (Section 3.3.3), (C3) works that define domain-specific

pipelines for producing RDF data and provide specific analytic services (Section 3.3.4),

(C4) works that focus on publishing statistical data in RDF format (Section 3.3.5), and (C5)

works that combine data from multiple sources for producing quality analytics (Section

3.3.6).

3.2.3 Categories of Analytic Queries

Here, we present the two main categories that analytic queries could be classified by pro-

viding some indicative examples:

(A) Domain specific analytic queries related to the core information needs for which the

KG was constructed, and they are expressible in SPARQL. These queries are mainly

used in categories (C1)-(C3). Some indicative examples of such queries, from various

domains expressed in natural language follow:

3.2. RDF and Analytics: Challenges and General Approaches 23

Figure 3.1: The spectrum of related works in 5 different categories

– E-Commerce: “average price of laptops made in 2022 from US companies that

have 2 USB ports and an SSD drive manufactured in Asia grouped by manufac-

turer”

– Cultural domain: “all paintings of El Greco grouped by exhibition country”

– Health/Covid: “top countries with daily new covid19 cases per 1 million of pop-

ulation”

– Energy: “energy spent at the University of Crete in the winter months group by

hour”

– Transportation: “average number of vehicles on Athens avenues during the morn-

ing peak hours (from 7 a.m. to 10 a.m.) in December of 2022”

– Education: “average time spent on a task group by the frequency of participa-

tion in the course and the social status of the student”

– Sports: “total goals and clean sheets of players of Spanish and England UEFA

Champions League teams from 2021 to 2022”

(B) Quality-related analytics (e.g., connectivity, data uniqueness, data verification) of

one or more KGs, e.g., through statistics or specialized metrics. These queries are

mainly used in categories (C4)-(C5). Some indicative examples of such queries are

given below:

– Coverage of a dataset: “How many unique triples DBpedia offers for the entity

Aristotle?”

– Connectivity between Datasets: “Give me the number of common entities among

DBpedia, Wikidata and National Library of France”

24 Chapter 3. Related Work

– Distribution of specific elements, such as properties, classes, namespaces, for

detecting power-law cases in a KG or at the whole Linked Open Data (LOD)

Cloud: “Is there a power-law distribution for the ontologies that are used from

the LOD Cloud datasets?”

– Dataset Discovery: “Which dataset is the most relevant for the entity Socrates

(e.g., offering the most triples)?”

– URI Quality: “What is the percentage of URIs that are dereferenceable and not

broken?”

3.3 Survey of works and Systems

In this section, we detail the methodology we followed for finding papers that belong to

the five basic categories of RDF analytics (C1-C5), we provide their statistics (Section 3.3.1),

and we describe them in more details (Sections 3.3.2-3.3.6).

Figure 3.2: The number of surveyed works per category

Figure 3.3: The publication year of the surveyed papers

3.3.1 Methodology and Statistics

For finding the related surveys we used Google Scholar in the period of June 2022 to Novem-

ber 2022 without any restriction on the publication date. Then, we typed on the search

3.3. Survey of works and Systems 25

Table 3.1: Overview of Approaches and Systems for Category C1 (analytical queries A)

Work/System EvaluationOffers Visualiza-
tion

Visualization
Type

Year

Sridhar et al [105] X - 2009
Ravindra et
al [93]

X - 2010

Bikakis et al [22] X Treemap, bar
chart

2014

Zou et al [126] X - 2014
Ibragimov et al
[50]

X - 2015

Ibragimov et al
[51]

X - 2016

Sherkhonov et al
[100]

- 2017

Abdelaziz et al [1] X - 2017
Ge et al [43] X - 2021
FerrG• et al [41] X X Table, map 2021
Papadaki et
al [84]

- 2021

bar the following queries: (i)“RDF analytics tool”, (ii) “Interactive RDF analytics”, (iii) “RDF

Data cube analytics”, (iv) “Efficiency of RDF data analytics”, (v) “Knowledge graph ana-

lytics” and (vi) “LOD Cloud analytics”. For each query, we analyzed manually the papers

(from the first pages of Google Scholar results), i.e, by checking their title, abstract and

body. We also found relevant papers from past surveys, e.g., for analytics over multiple

datasets belong to the LOD Cloud [76]. Figure 3.2 shows some statistics about the num-

ber of the selected papers that fall in each category (C1-C5) and Figure 3.3 illustrates the

publication year of these papers. We can see that the majority of the works we surveyed

relates to the categories C1 and C2 and that most of the surveyed papers have been pub-

lished between 2013-2017 (i.e., the most common case for the two mentioned categories).

In addition, we can see that the most recent papers (i.e., between 2018-2022) relate mainly

to domain-specific pipelines (i.e., category C3) and to approaches over multiple datasets

at LOD scale (i.e., category C5).

3.3.2 C1. Formulation of Analytic Queries directly over RDF

Table 3.1 lists in chronological order some approaches relate to the formulation of analytic

queries directly over RDF.

• [105] presents a language, called RAPID, for efficient expression of complex ana-

26 Chapter 3. Related Work

lytical queries over RDF data. The approach is based on integrating RDF-sensitive

and advanced analytical query operators for analytical processing, called MD-join

(which decouples the grouping and the aggregation clauses in query expressions)

into Map-Reduce frameworks.

• [93] focuses on RDF data that includes several chain and star patterns. In particu-

lar, all patterns in the latter category can be processed concurrently using grouping-

based operators for minimizing the I/O costs by computing sequentially the individ-

ual star patterns.

• [22] introduces “SynopsViz”, a Web-based visualization tool for scalable multi-level

charting and visual exploration of very large RDF and Linked datasets. It performs

a hierarchical aggregation, it incrementally retrieves data and generates visualiza-

tions based on user interaction. It provides statistical information of the dataset (e.g.,

number of triples, blank nodes, classes, subclasses, etc.) but this information is usu-

ally listed in tabular format leaving their interpretation to analysts. It also obtains

computed statistics about the data being queried, such as: mean, variance, mini-

mum and maximum values, etc. However, aggregate functions such as SUM and

AVG are not supported. In the end, even though it is specialized in gathering statis-

tical data about the dataset, it is not meant for traversing the dataset. Information

displayed are not single resources, but a series of aggregated measures calculated

over them. In addition, there is no evaluation report of this tool.

• [126] proposes some techniques to handle SPARQL queries with aggregate opera-

tors over dynamic RDF datasets, efficiently. It stores RDF data as a large graph and

represents a SPARQL query as a query graph. To achieve efficient and scalable query

processing, it implements pattern matching queries with the help of two index struc-

tures: a VS*-tree, which is a specialized B+-tree, and a trie-based T-index.

• [50] proposes a set of query processing strategies for executing aggregate SPARQL

queries over federations of SPARQL endpoints by materializing the intermediate re-

sults of queries. However, the sources that participate in a federation might be un-

available at some point. The data and the schema of the sources might have evolved,

since the federation was created; thus, integration rules might no longer be valid or

history of the data will be lost.

• [51] shows how to process aggregate queries by using materialized views-named

queries whose results are stored in a system (since they are typically much smaller in

size than the original data and can be processed faster). These results are then used

for answering subsequent analytical queries.

3.3. Survey of works and Systems 27

• [100] describes a possible extension of SemFacet [56] to support numeric value

ranges and aggregation. The focus is on theoretical query management aspects, re-

lated to faceted search, however, it lacks an interface and implementation. From the

mockups of the GUI, it seems that no count information is provided, whereas explicit

path expansion is not supported. On the contrary, the authors use the notion of ”re-

cursion” to capture reachability-based facet restrictions. Since this approach is not

implemented, no evaluation results are available.

• [1] presents Spartex, a vertex-centric framework for complex RDF analytics, that ex-

tends SPARQL to combine generic graph algorithms (e.g., PageRank, Shortest Paths,

etc.) with SPARQL queries. It employs graph exploration and uses inter-vertex mes-

sage passing during the query evaluation.

• [43] mentions that the existing federated RDF systems support only basic queries in

SPARQL 1.0, and cannot be compatible with complex queries in SPARQL 1.1 well,

such as aggregate queries. For this reason, proposes a query decomposition op-

timization method, which allows to combine triple patterns with the same multi-

sources into one subquery. The schema can reduce the number of remote requests

to improve the query efficiency by reducing the number of subqueries.

• [41] proposes an approach for guided query building that supports analytical queries

in natural language and it can be applied over any RDF graph. The implementation is

over the SPARKLIS editor [40] and it has been adopted in a national French project1.

During the query formulation no count information is provided, reducing in this way

the exploratory characteristics of the process. The authors report positive evaluation

results as regards the expressive power of the interactive formulator which works well

on large datasets and is easier to use than writing SPARQL queries.

• [84] describes how a high-level functional query language, called HIFUN [103], can

be exploited for applying analytics over RDF data. Rules for translating analytical HI-

FUN queries to SPARQL queries are presented. However, the interactive formulation

of such queries and the evaluation part are missed from that work.

To the best of our knowledge, there is limited work regarding analytics directly over

RDF graphs in a user-friendly and interactive environment. We managed to find only two

such works [22, 41] that let users formulate analytical queries directly in such graphs by

specifying the attributes of analysis (i.e. dimensions, measures) and the operations us-

ing drop-down menus or natural language and defining their values via checkboxes. The

rest of the works [1, 43, 50, 51, 84, 93, 100, 105, 126] propose methods entangled with lower-

1http://data.persee.fr/explore/sparklis/?lang=en

28 Chapter 3. Related Work

level technicalities, which prevent ordinary users from exploiting them while they are time-

consuming and burdensome for experts.

Advantages. Analyzing directly an RDF graph (i) allows users to take full advantage of

this rich data model, enabling them to explore and analyze data across multiple dimen-

sions, (ii) allows users to leverage the semantics of RDF data improving the accuracy and

relevance of their analysis, (iii) can easily intergate RDF data with other data sources, en-

abling users to combine and analyze data from multiple sources in a single view.

Disadvantages. Analyzing RDF data directly have some limitations: (i) can be complex,

requiring a good understanding of the RDF data model and the SPARQL query language.

This complexity can make it challenging for less experienced users to work with RDF data,

(ii) can be computationally intensive, particularly for complex queries, (iii) there are cur-

rently no widely accepted standards for representing RDF data, which can make it difficult

to work with data from multiple sources. This can result in data quality issues, such as in-

consistencies or missing data, (iv) inaccurate or incomplete data can result in misleading

or unreliable analysis, (v) there are currently relatively few tools available for working with

RDF data directly, which can make it more difficult to analyze and visualize data.

3.3.3 C2. Definition of Data Cubes over RDF

To gap the mismatch between the relational data model and the graph data model there

are approaches that define a data cube over existing RDF graphs and then apply OLAP.

Table 3.2 lists such approaches in chronological order.

• [125] introduces Graph Cube to support OLAP queries effectively on large multi-

dimensional networks. However, it usually ignores semantic information in hetero-

geneous networks. The experimental study shows that this tool supports decisions

on large multi-dimensional networks, effectively.

• [48] introduces Linked Data Query Wizard, a web-based tool for displaying, access-

ing, filtering, exploring, and navigating Linked Data which are expressed in data

cube format and stored in SPARQL endpoints. The main innovation of the interface

is that it turns the graph structure of Linked Data into a tabular interface and pro-

vides easy-to-use interaction possibilities. It supports filtering of the columns (e.g.,

by a keyword or a numeric value), and simple aggregations. However, the tables are

limited to the presentation of the direct neighborhood of entities (columns are entity

properties, and column values are the objects of those properties) rather than results

of arbitrary queries. Table cells can contain sets of values but not multi-column ta-

bles. The results of the conducted user study showed that the tool had a few weak

spots that could be improved, but in general it is usable, both for experts and non-

experts in computer science.

3.3. Survey of works and Systems 29

Table 3.2: Overview of Approaches and Systems for Category C2 (analytical queries A)

System/Work EvaluationOffers Visu-
alization

Visualization type Year

Zhao et al [125] X - 2011
Hoefler et al [48] X X Tabular 2013
Payola [57] X X Various charts, i.e. line,

bar, column, area, polar, pie,
graph charts

2013

Vis-Wizard [111] X X Various charts, e.g. bubble,
pie, column, line, area, geo
etc.

2014

Azirani et al [16] - 2015
Jakobsen et al [53] X - 2015
CubeViz [69] X Various charts, e.g. pie, bar,

column, line
2015

Benetallah et al [20] X - 2016
Microsoft Power BI
[38]

X Various charts e.g. bar, col-
umn, pie, area, treemap ect.

2016

Tableau2 [63] X Various charts, e.g. column,
bar, pie, line, area, map etc.

2019

• [57] presents Payola, a framework for Linked Data analysis and visualization. The

goal is to provide end users with a tool enabling them to analyze Linked Data in a

user-friendly way and without having knowledge about the SPARQL query language.

This goal can be achieved by populating the framework with variety of domain-specific

analysis and visualization plugins. Although, it encourages collaboration between

users, e.g., experts can edit visualizations and SPARQL queries and lay-users can con-

sume a result, it neglects to provide a complete representation of the dataset that is

necessary for expressing the queries. At the same time, the amount of manual con-

figuration and the necessary transformation steps between different abstractions

might be considered a shortcoming by non-technical users. Regarding the evalua-

tion of this tool, there is a concise report where the test users asked a couple of ques-

tions regarding usability of it and concludes that work on the usability is needed.

• [111] presents Vis-Wizard, a Web-based visualization system able to analyze multi-

ple datasets using brushing and linking methods i.e. combining different visualiza-

tions to overcome the shortcomings of single techniques. The tool was designed for

two different tasks: (i) explore endpoints like DBpedia and (ii) explore datasets that

contain statistical data. Vis-Wizard allows users to group data and aggregate values

providing multiple interactive widgets. According to [21] the online version reports a

30 Chapter 3. Related Work

multitude of errors, that prevented users to analyze the different visualizations that

the tool offers. In fact, console errors rose and no charts appeared. Regarding end-

points like DBpedia, the tool works fine, but the tabular layout they implemented

results to be a little messy at first. The evaluation conducted regarding the usability

of the Vis-Wizard shows that while several usability issues still need to be fixed, the

overall advantage is observable.

• [16] proposes algorithms that use the materialized result of an RDF analytical query

to compute the answer to a subsequent query. The answer is computed based on the

intermediate results of the original analytical query. However, the approach does not

propose any algorithm for view selection. It is applicable for the subsequent queries

and not to an arbitrary set of queries [51]. In addition, no evaluation is reported.

• [53] studies the improvement of SPARQL queries over QB4OLAP [34] (an extension

the RDF Data Cube Vocabulary3 to fully support OLAP multi-dimensional models

and operators) data cubes. The idea behind the proposed approach is to directly link

facts (observations) with attribute values of related level members. Although prelim-

inary results in an evaluation study show an improvement in queries performance,

this approach prevents level members from being reused and referenced, breaking

the Linked Data nature of QB4OLAP data instances.

• [69] proposes CubeViz, a user-friendly exploration and visualization platform for

statistical data represented adhering to the RDF Data Cube vocabulary. If statistical

data is provided adhering to the Data Cube vocabulary, CubeViz exhibits a faceted

browsing widget allowing to interactively filter observations to be visualized in charts.

However, it does not support aggregate functions, such as SUM, AVG, MIN and MAX,

and blank nodes. Also, according to [3] if the created RDF Data Cube is sparse, it

is possible to receive an empty result set after using the data selection component

of CubeViz. As a consequence, CubeViz is not able to process all kinds of valid Data

Cubes. In a domain-agnostic tool such as CubeViz, it is not feasible to integrate static

mappings between data items and their graphical representations. Most of the chart

APIs have a limited amount of pre-defined colors used for colouring dimension el-

ements or select colors completely arbitrarily. Finally, this paper does not provide

any information about the evaluation of this tool. It contains only a link to an online

demonstrator letting users evaluate it.

• [20] presents multi-dimensional and multi-view graph data using MapReduce-based

graph processing. The goal is to facilitate the analytics over the ER graph through

summarizing the process graph and providing multiple views at different granulari-

ties. The technique, however, always materializes the result as paths with respect to a
3https://www.w3.org/TR/vocab-data-cube/

3.3. Survey of works and Systems 31

single entity identifier. The experiments conducted over real-world datasets, showed

that the proposed approach performs well.

• [38] introduces Microsoft Power BI, a business intelligence platform that provides

non-technical business users with tools for aggregating, analyzing, visualizing and

sharing data. The interface of that tool is intuitive mainly for users who are familiar

with Excel. It assumes that the ingested data has been cleaned up well in advance,

while there is also a limit on its size (cannot import large datasets). After the data hit

the limit, you have to upgrade to the paid version of Power BI. Also, the generated re-

ports and dashboards can be shared only with those users who have the same email

domains or the ones who have their email domains listed in your Office 365 tenant.

At last, regarding the evaluation of that tool, there are provided comparative studies

with other analytics tools as described in [94, 110].

• Tableau 4 [63] is a visualization tool capable of delivering interactive visualizations in

no time, by using drag and drop. It offers a wide variety of options including pie, bar

and bubble charts, maps, heat maps, scatter plots making use of which informative

dashboards can be created instantly from diverse datasets. It performs aggregations,

highlighting or drilling down in charts with much ease that even novice users can cre-

ate visualizations to illuminate facts in a huge dataset. Tableau can be used to define

and calculate new variables and perform simple data manipulations with usage of

mathematical formulae like excel. However, initial data processing is needed which

requires professional kit knowledge, while only column charts can be used for visu-

alizing the results for free. Finally, no evaluation report is provided, however, there

are available comparative studies with other tools [79, 92].

Overall, the aforementioned approaches follow common techniques in the formula-

tion of the analytical queries. They let users specify the attributes of analysis (i.e. di-

mensions, measures) and the operations interactively using drop-down menus and define

their values via check-boxes.

Advantages. Defining a Data Cube over RDF data have some advantages as: (i) enables

users to explore data across multiple dimensions and thus summarizing and analyzing

data at different levels of granularity, (ii) is designed for efficient querying, enabling users

to quickly and easily retrieve data that are most relevant to their analysis and (iii) can in-

tegrate data from multiple sources, enabling users to analyze data from disparate systems

or applications in a single view.

Disadvantages. Some of the disadvantages of defining a Data Cube over RDF data are:

(i) defining a Data Cube may be complex to implement, requiring a good understanding

of the RDF data model and the SPARQL query language, (ii) data must be transformed

4https://www.tableau.com/

32 Chapter 3. Related Work

into the RDF data model, which can be a time-consuming process. This may also be a

barrier to adoption for organizations with large, complex datasets, (iii) there are currently

relatively few tools available for working with RDF data cube data, which can make it more

difficult to analyze and visualize data, and (iv) inaccurate or incomplete data may result in

misleading or unreliable analysis.

3.3.4 C3. Domain-specific Pipelines over RDF

There are numerous works that focus on defining specific pipelines for constructing the

desired KG from various structured and unstructured sources, and then offer particular

analytic queries and visualizations to support domain-specific research purposes. Since

there is a large number of such available cases (e.g., [4] surveys more than 140 papers on

KGs from seven different domains), below we present a few number of indicative works

from the medical, publications and cultural domain:

• Medical Domain. PhLeGrA [55] intergrates data from several large scale biomedi-

cal datasets, for analyzing associations between drugs, i.e., for improving the accu-

racy of predictions of adverse drug reactions. [46] collects both structured and un-

structured data for creating an aggregated KG about cancer data. The objective is to

provide cancer data analytics through several services, such as treatment sequence

analysis, data discrepancy analysis and others. [70] creates a KG, from over 50,000 ar-

ticles related to corona viruses by using linked data techniques. The produced RDF

dataset can be used for producing analytics through several extraction and visualiza-

tion tools (e.g., it is feasible to analyze the number of articles that co-mention can-

cer types and viruses of the corona family). In addition, [98] describes a framework,

called Knowledge4COVID-19, that integrates several RDF sources of COVID-19 re-

lated data. The resulting KG is exploited by machine learning methods for providing

analytics and visualizations that are used for discovering adverse drug effects and for

evaluating the effectiveness and toxicity of COVID-19 treatments.

• Publications Domain. OpenAIRE [67] is a Research KG that aggregates a collection

of metadata and links, which are offered within the OpenAIRE Open Science infras-

tructure and provides several analytics and visualizations, such as for usage data

(https://usagecounts.openaire.eu/analytics). Moreover, Open Research Knowl-

edge Graph (ORKG) [15] exploits manual and automated techniques for creating

and processing a scholarly KG. The mentioned KG can be used for further analysis

through visualizations that are produced by the offered data science environments

(e.g., see https://orkg.org/visualizations).

• Cultural Domain. FAST CAT [35] is a collaborative system for data entry and curation

in Digital Humanities, and it can be exploited for performing historical analysis over

3.3. Survey of works and Systems 33

aggregated data. Moreover, [106] describes BiographySampo, an approach that pro-

vides analytics for biographical and prosopographical research by first transforming

textual resources (from the National Biography of Finland) to RDF data. Afterwards,

even users that are non-familiar with SPARQL can perform custom-made complex

data analysis through the offered tools.

Overall, domain-specific pipelines can help to automate and streamline tasks such as

data cleaning, transformation, integration, and analysis, which are specific to a particular

domain.

Advantages. Domain-specific pipelines: (i) allow users to define a set of processing

steps that extract, transform, and load RDF data into a more simplified form that make

it easier for users to work with complex data, (ii) can be customized to meet the specific

requirements of different users or applications, (iii) integrate data from multiple sources,

enabling users to combine and analyze data from a variety of different domains or sources,

(iv) can be automated, reducing the amount of manual effort required to process and an-

alyze data improving efficiency and reducing the risk of errors, (v) can be reused across

different projects or applications, enabling users to leverage existing pipelines and avoid

duplicating effort.

Disadvantages. Defining domain-specific pipelines over RDF data has some limita-

tions, as: (i) limited applicability since they are designed for specific domains or applica-

tion areas, which means that they may not be easily transferable to other domains or ap-

plications. They require domain-specific knowledge and expertise to develop, which can

limit their scalability and generalizability. (ii) complexity since developing such pipelines

requires multiple steps such as data cleaning, transformation, integration, and analysis.

This complexity can increase the risk of errors and require significant resources to im-

plement. (iii) maintenance since once a domain-specific pipeline has been developed,

it requires ongoing maintenance to ensure that it remains up-to-date and relevant. This

can be a resource-intensive process, particularly if the pipeline relies on data from exter-

nal sources that may change over time. (iv) interpretability since the results of a domain-

specific pipeline can be difficult to interpret, particularly if the pipeline involves multiple

steps or complex data transformations. This can make it challenging to identify errors or

understand the reasoning behind the pipeline’s outputs.

3.3.5 C4. Publishing of Statistical Data in RDF

This category relates to works for publishing statistical data. Publishing statistical data in

RDF typically involves representing the data using standard vocabularies and ontologies

that are designed for statistical data. Here, we present two vocabularies for publishing sta-

34 Chapter 3. Related Work

tistical data as linked data: (i) the RDF data cube vocabulary5, and (ii) the “Vocabulary of

Interlinked Datasets” (VoID [6]). The related works are listed in Table 3.3 in chronological

order.

• Works with RDF data cube vocabulary. [99] and [124] publish statistical data as linked

data using the RDF Data Cube vocabulary. They use this vocabulary to define a set

of classes and properties for describing the dimensions, the measures, the observa-

tions, and other elements of a multi-dimensional dataset.

• Works with VoID vocabulary. VoID is used for expressing metadata of one or more

RDF datasets, i.e., for representing and publishing statistics like the number of triples,

the properties or classes of the datasets or the number of links between different

datasets. [65] presents “Aether ” which generates, browses, measures and visualizes

such statistics. [71] introduces “Loupe”, a tool that provides summaries and analyzes

the vocabulary information of each RDF dataset (e.g., the classes and properties used

in each dataset). [73] proposes possible extensions of VoID for publishing and ana-

lyzing connectivity analytics of semantic data warehouses, while other works like

SPORTAL [47] and SPLENDID [44] compute and publish such statistics for aiding the

process of source selection of federated queries. Finally, [64] presents “KartoGraphI”,

a tool for publishing statistical data for SPARQL endpoints through VoID (and exten-

sions of VoID) and provides several kinds for visualizing the results.

Overall, void vocabularies provide a useful framework for organizing and describing

datasets in a standardized way. They are also used for expressing and publishing statistics

of RDF datasets providing thus valuable information about the structure, content, and

quality of datasets. Void statistics enable users to analyze and understand the properties

of datasets, which can help to identify potential errors, inconsistencies, or gaps in the data.

Advantages. Void vocabularies: (i) provide a standardized way to describe datasets,

which improves interoperability (enable different systems to work together and exchange

information seamlessly), (ii) provide metadata that helps to clarify the meaning and con-

text of data, reducing ambiguity, (iii) include metadata that can be used to discover datasets,

(iv) include information about the source and history of a dataset, which can be useful for

tracking the provenance of data and ensuring its quality, (v) enable data to be reused more

easily, by providing a standardized way to describe datasets, (vi) can be used to describe

datasets of different sizes and complexities, from simple spreadsheets to large, distributed

databases, (vii) can be extended with new terms and concepts as needed to describe spe-

cific types of data or domains.

Disadvantages. Void vocabularies (i) can be complex and difficult to understand for

users who are not familiar with RDF or linked data, (ii) even though they provide a stan-

5https://www.w3.org/TR/vocab-data-cube/

3.3. Survey of works and Systems 35

Table 3.3: Overview of the introduced Works of Category C4 (supporting mainly analytical
queries of Category B)

Work/System Analytical Queries for Vocabulary Publication Year

SPLENDID [44] Statistics for SPARQL end-
points

VoID 2011

Salast et al [99] Publication of Statistical
data

RDF data cube
vocabulary

2012

Zancanaro et al [124] Publication of Statistical
data

RDF data cube
vocabulary

2013

Aether [65] RDF Dataset Statistics VoID 2014
VoIDWH [73] Semantic Warehouse con-

nectivity
VoID (+exten-
sions)

2014

Loupe [71] RDF Dataset Statistics VoID 2016
SPORTAL [47] Statistics for SPARQL end-

points
VoID 2016

KartoGraphI [64] Statistics for SPARQL end-
points

VoID (+exten-
sions)

2022

dard way to describe datasets, there is still some variation in how different organizations

and communities use void. This can create inconsistencies in how datasets are described,

making it more difficult to integrate data from different sources, (iii) are subject to change

over time as new requirements emerge, and keeping up with these changes can require

ongoing maintenance and updates to applications and tools that use void, (iv) is challeng-

ing to be used in all aspects of the data in a consistent and meaningful way as the datasets

become larger and more complex.

3.3.6 C5. Quality Analytics Over Multiple RDF Datasets

This category relates to approaches that produce quality analytics over a single or multiple

RDF datasets (even over LOD-Scale). As we can see in Table 3.4, most approaches of cate-

gory C5 produce analytics either for measuring distributions (e.g., power-law cases) or for

discoverying datasets.

• Works that measure distributions (e.g., power-law). [108] measures and analyzes the

graph features of Semantic Web (SW) schemas with focus on power-law degree dis-

tributions. The main finding of that work was that the majority of SW schemas

(at 2008) having a significant number of properties (resp. classes) approximate a

power-law for total-degree (resp. number of subsumed classes) distribution. [18] in-

troduces “LOD-a-LOT”, an approach where 28 billion RDF triples from thousands

of RDF documents was collected for enabling the analysis and the querying of com-

bined data from multiple data sources, e.g., for analyzing the distribution of URIs

36 Chapter 3. Related Work

Table 3.4: Overview of the introduced Works of Category C5 (supporting analytical queries
of Category B)

Work/System Analytical
Queries for

Based on Number of
Sources

Publication
Year

Theoharis et al. [108] Power-Law Dis-
tributions

Graph Metrics 250 RDF
schemas

2008

LODVader [17] Exploration,
Dataset Discov-
ery

Indexes 491 RDF datasets 2016

LODStats [33] Coverage, Qual-
ity

Indexes 9,960 RDF
datasets

2016

LOD-a-Lot [18] Power-Law Dis-
tributions

Indexes 650K RDF docu-
ments

2017

LODsyndesis [75] Connectivity,
Dataset Discov-
ery, Coverage

Indexes and
Lattice-based
measure-
ments

400 RDF datasets 2018

Soulet et al. [101] Elements Distri-
bution

SPARQL
Queries

114 RDF triple-
stores

2019

Haller et al [45] Elements Distri-
bution, Quality
of URIs

SPARQL
queries

430 RDF datasets 2020

LODChain [75] Connectivity,
Dataset Discov-
ery

Real time
lattice-based
measure-
ments

A single RDF
dataset (con-
nected at real
time with 400
RDF datasets)

2022

and triples. [101] presents algorithms for computing analytical queries over Linked

Open Data by aggregating the results of queries from running SPARQL endpoints

(i.e., for producing analytics over multiple LOD datasets). This work measures the

property and class usage on the LOD cloud, and they estimate the number of the

available triples in the LOD Cloud. Finally, [45] presents an empirical analysis of

linkage among all the datasets of the LOD cloud, by focusing on automated methods

for analyzing different link types at scale. The objective was to analyze the avail-

ability and discoverability of LOD datasets, i.e., the most commonly used ontologies,

namespaces and classes, and many others, e.g., for discovering power-law distribu-

tions, and to analyze the quality of URIs, e.g., broken links, deferenacable URIs, etc.

• Works for Dataset Discovery. LODVader [17] is a system that produces LOD analyt-

ics over 491 RDF datasets, for supporting dataset exploration, analysis and dataset

3.4. Efficiency and Visualization 37

discovery. LODstats [33] is a service including some basic metadata and statistics

for over 9,000 RDF datasets, e.g., for measuring the number of datasets of specific

property and class elements. LODsyndesis [75] is a suite of services that provides an-

alytics for measuring the connectivity among hundreds of RDF datasets. The target is

the produced connectivity analytics to be exploited for improving the discoverability

and reusability of the underlying datasets, and for answering coverage queries. Fi-

nally, LODChain [77] is a research prototype the computes connectivity analytics for

a new RDF dataset at real time, to the rest of LOD Cloud through LODsyndesis, and

produces several visualizations (including graph visualizations, bar and pie charts,

etc.) and dataset discovery measurements. In particular, the target is the analytics to

be used for enriching and verifying the content of the input dataset.

Overall, quality analytics over multiple RDF datasets involves the analysis and assess-

ment of the quality of data across multiple RDF datasets. This process involves comparing

and evaluating data from different sources to identify patterns and inconsistencies, and

to determine whether the data meets a certain level of quality or not. The goal of quality

analytics over multiple RDF datasets is to ensure that the data is accurate, reliable, and

consistent, and that it can be used effectively for various purposes, such as data integra-

tion, analysis, and decision-making.

Advantages. Quality analytics over multiple RDF datasets, (i) can identify and correct

errors, inconsistencies, or gaps in the data, improving decision-making and the overall

quality of the data, (ii) enable users to combine and analyze data from different sources to

gain new insights.

Disadvantages. Quality analytics over multiple RDF datasets (i) can be complex and

difficult to implement and understand, especially for users who are not familiar with RDF

or linked data, (ii) can be challenging, especially if the data is heterogeneous or has differ-

ent formats or schemas, (iii) can be time-consuming and resource-intensive, especially if

the data is distributed across multiple sources, (iv) requires ongoing effort and resources

to ensure that the data is accurate and up-to-date. and (v) different datasets may use differ-

ent vocabularies or ontologies, which can create interoperability issues and make it more

difficult to integrate and analyze the data.

3.4 Efficiency and Visualization

This section discusses related aspects for the surveyed papers, i.e., efficiency (in Section

3.4.1) and visualization (in Section 3.4.2).

38 Chapter 3. Related Work

Figure 3.4: Indicative Screenshots of Visualization of analytical results for Categories C1-
C2: (a) column chart (C1, C2), (b) bar chart (C2), (c) line chart (C2), (d) pie chart (C2), (e)
bubble chart (C2), (f) geo chart (C2), (g) area (C2), (h) treemap (C1, C2), (i) graph (C2), (j)
table (C2)

3.4.1 Efficiency

First, for the category C1, in [93], the authors measure the efficiency of joining star patterns

with grouping operators for executing aggregating queries. They indicate that for com-

plex analytical tasks that combine generic graph processing with SPARQL, vertex-centric

graph processing frameworks are at least an order of magnitude faster than existing al-

ternatives [1], whereas they demonstrate significant performance improvements for an-

alytical processing of RDF data over existing Map-Reduce based techniques [105]. Also,

they show that decomposing the analytical queries and materializing the intermediate re-

sults [50, 51] improve the query response time by more than an order of magnitude, and

that in these cases the average query time increases linearly with the increase of dataset

size [43].

Concerning the category C2, in [20] the authors show that the size of the dataset as

well as the number of function operations in an analytical query influence the execution

time of such a query. Also, they prove that running queries on Virtuoso over data cubes

in the star pattern is faster than over cubes in the snowflake pattern, which is particularly

interesting since the snowflake pattern is the pattern in which most RDF data cubes are

available [53].

As regards category C3, in many cases the authors measure the execution time of the

3.4. Efficiency and Visualization 39

Figure 3.5: Indicative Screenshots of Visualization of analytical results for Categories C3-
C5: (a) graph chart (C3), (b) pie chart (C3), (c,d) bar charts (C4,C5), (e) graph chart (C5)

SPARQL queries that produce the analytics [46, 98], which are executed over the resulting

KG. Generally, these queries are executed quite fast, even in a few milliseconds. On the

contrary, the most time consuming task of such domain specific approaches is usually the

creation of the KG, which requires huge human effort [109].

Regarding the approaches of category C4, which produce statistics usually through

SPARQL queries [33, 65], their performance highly depends on the underlying SPARQL

endpoints, and the size of the datasets (number of triples, URIs, etc).

Concerning the category C5, for enabling the fast computation of analytics, in several

cases specialized indexes are created, e.g., see LODsyndesis [75] and LOD-a-Lot [18]. In-

dicatively, the indexes of LODsyndesis aggregated KG [75] (which contain more than 2

billion triples), are constructed once in approximately 7 hours. On the contrary, the con-

nectivity analytics are produced quite fast, i.e., even in a few seconds, by accessing the

mentioned indexes. Regarding LODChain, it can produce the analytics for hundreds of

thousands of triples in a few minutes (indicatively less than a minute for 50,000 triples), by

also exploiting the indexes of LODsyndesis.

3.4.2 Visualization of Results

As regards the visualization of analytic queries results, most of the existing systems use

popular types of charts. In particular, they use column charts, (e.g., [22, 38, 57, 69, 111]),

bar charts, (e.g., [38, 57, 63, 65, 69, 77]), line charts (e.g., [57, 63, 69, 111]), pie charts (e.g.,

[38, 57, 63, 69, 106, 111]), bubble charts (e.g., [111]), geo charts (e.g., [63, 111]), area charts

(e.g., [38,57,63,111]), and graph charts (e.g., [57,77,98]). Finally, a few of them that support

hierarchical data use treemaps (e.g., [22, 38]), while others follow more ordinary methods,

i.e. tables (e.g., [41, 48]).

40 Chapter 3. Related Work

3.5 Summary

In summary, there are relatively few tools (managed to find two) currently available for

working with RDF data directly in a user-friendly and interactive environment. Most of

these tools require defining a Data Cube over RDF data before analyzing it, which de-

mands a good understanding of the RDF data model and the SPARQL query language.

Some of these tools define domain-specific pipelines that enable users to extract, trans-

form, and load RDF data into a more simplified form, making it easier to work with com-

plex data. However, these tools have limited applicability since they are designed for spe-

cific domains or application areas. The rest of the related work mainly focuses on express-

ing and publishing statistics of RDF datasets (using vocabularies like ”Void”) or analyzing

the quality of data across multiple RDF datasets.

3.6 Our Positioning and Focus

In the realm of RDF Knowledge Graph analysis, we observe that are not so many works,

neither running systems, that facilitate the easy and intuitive analysis of RDF Knowledge

graphs. Our contribution falls within the domain of directly analyzing RDF Graphs (Sec-

tion 3.3.2). We address existing gaps by introducing a user-friendly model that can be eas-

ily used by non-technical users. It will let users apply analytics effortlessly to any RDF data

offering a familiar and gradual approach without requiring an in-depth understanding of

dataset contents or the technical intricacies of SPARQL. Table 3.5 evaluates the most rel-

evant systems, mentioned in Section 3.3.2, according to some important functionalities,

i.e. applicability (if they can be applied over star schemas or over any RDF graph), sup-

port of basic analytic queries, support of analytic queries with HAVING clause, support of

plain Faceted Search, support of property paths in Faceted Search and analytics, support

of results’ visualization, offer of running systems, and conduction of an evaluation.

Table 3.5: Comparing the functionalities of related systems

System Appli-
cability
(STAR
vs ANY)

Analytic
queries:
basic

Analytic
queries:
with
Having

Plain Faceted
Search

Property Paths
(in Faceted
Search and
analytics)

Visua-
lization

Running
system

Eva-
luation

[100] ANY Yes Yes Yes but with No
Count informa-
tion

Not explicitly,
reachability

No No No

[41] ANY Yes No No. Special in-
terface

Not clear No Yes Yes

[61] ANY Yes No Yes Yes with counts Yes Yes No

Our
ap-
proach

ANY Yes Yes by
AF

Yes Yes with counts Yes Yes Yes

Compared to existing systems, our approach distinguishes itself in several aspects: (i)

3.6. Our Positioning and Focus 41

applicability: our approach can be applied to any RDF graph, eliminating the need for

data pre-processing, unlike other systems limited to star-schema graphs, (ii) functional-

ity: it not only supports analysis of the graph but also facilitates plain graph browsing, (iii)

advanced features: the system supports result restrictions and property paths, enhancing

its analytical capabilities, (iv) visualization: we provide visualization of analysis results, (v)

user evaluation: our approach has undergone evaluation by users, validating its usability

and effectiveness. Moreover, we emphasize its support for nested queries and user guid-

ance, deriving from the inherent characteristics of Faceted Search.

42

Chapter 4

On Applying HIFUN over RDF

In this section, we discuss about the applicability of HIFUN over RDF (Section 4.1) and we

describe the process of translating HIFUN queries to SPARQL queries (Section 4.2).

4.1 Applicability of HIFUN over RDF

Here, we investigate if RDF principles comply with the assumptions of HIFUN. We discuss

about the prerequisites for applying HIFUN over RDF data (Section 4.1.1), and the possible

data transformations that may be required (Section 4.1.2).

4.1.1 Prerequisites for Applying HIFUN over RDF Data

HIFUN can be applied over any dataset that has (i) uniquely identified data items and (ii)

a set of attributes, where each attribute is seen as function that associates each data item

with a value.

RDF data. The first assumption, the unique identification of the data items, is satisfied

by the RDF data since each resource is identified by a distinct URI. The second assumption,

the set of functional attributes, is partially satisfied by the RDF properties. The functional

(i.e owl:FunctionalProperty) or the effectively functional properties (i.e. even if they are not

declared as functional, they are single-valued) satisfy this assumption since they do have

only one value for each instance. However, there are cases in RDF where the properties

may have (i) no or (ii) multiple values; a non-value property implies that a value may not

exist (or it is unknown even if it exists) or it is incomplete, while a multi-valued property

infers that the property has more than one values for the same resource. Hence, the exis-

tence of such properties require transforming the original data before applying HIFUN to

it. Such transformations can be made by exploiting the feature operators or the facilities

offered by the SPARQL language (Section §4.1.2).

RDF Schema. Each resource of an RDF schema is identified by a distinct URI; therefore,

its data items are uniquely identified. However, a property (e.g. rdf:type, rdfs:subClassOf

etc.) may appear more than once by relating different classes or classifying concepts in

43

44 Chapter 4. On Applying HIFUN over RDF

more than one classes (i.e. a class might be sub-class of several super-classes). Nev-

ertheless, these relationships are considered distinct, since they have different domain

and/or range. Therefore, HIFUN supports analytics not only over RDF data, but over RDF

schema(s), too.

Inference (i.e. discovering new relationships between resources) is supported, as well,

since this process depends on the relations between the underlying data, independently

if that data satisfies the assumptions of HIFUN.

4.1.2 Methods to Apply HIFUN over RDF

In this section, we describe how HIFUN can be applied over RDF data either (i) directly

over the original RDF data, or (ii) after transforming the original RDF data.

Applying HIFUN over the Original RDF Data

Any class (i.e. set of resources) and any set of properties can be selected as the root and as

the attributes respectively, of an analysis context. For example, any of the classes “Prod-

uct”, “Laptop”, “HDType”, “Company”, “Person”, “Location”, “Country”, “Continent” of our

running example Fig. 1.2 can be selected as the root of the context, and any of the prop-

erties “releaseDate”, “price”, “USBPorts”, “manufacturer”, “hardDrive”, “origin”, “founder”,

“size”, “birthplace”, “locatedAt”, “GDBPerCapita” as the attributes of it.

Note that, any set of classes can be selected as the roots of a context as well, if the RDF

graph consisted of more than one datasets. For example, both of the classes “Company”,

“Product” of Fig. 1.2 can be selected as the roots of the context and any of the properties

as the attributes of it.

Applying HIFUN over after Transforming the Original RDF Data

In case that RDF data does not satisfy the assumptions of HIFUN, a few feature operators

(indicated in Table 4.1) for transforming it can be used. That table lists the nine most

frequent Linked Data-based Feature Creation Operators (for short FCOs), as defined in [74],

and they are re-grouped according to our requirements. fi is a feature and fi(e) denotes the

value of that feature for an entity e ∈ E. Each fi(e) is actually derived by the data that are

related to e. T denotes a set of triples, P a set of properties and p, p1, p2 properties. In

detail,

• f co1 suits to the normal case and it can be exploited to confirm that all the properties

are functional e.g. the date that each product was delivered, the branch where each

invoice took place. The value can be numerical or categorical.

• f co2 and f co3 relate to issues that concern missing and multi-valued properties and

can be used for turning properties with empty values into integers.

4.1. Applicability of HIFUN over RDF 45

• f co4 can be used for converting a multi-valued property to a set of single-valued fea-

tures, e.g. one boolean feature for each nationality, that a founder may have.

• f co5 and f co6 concern the degree of an entity and can be used to find the set of triples

that contains a specific entity, defining its importance.

• f co7 to f co9 investigate paths in an RDF graph, e.g. whether at least one founder of a

brand is “French”. It can be used for specifying a path (i.e. a sequence of properties

p1, p2, ..., pn etc.) and treat it as an individual property p.

Table 4.1: Feature Creation Operators

id Operator defining fi Type fi(e)
Plain selection of one property
1 p.value num/categ fi(e) = { v | (e, p, v) ∈ T }
For missing values and multi-valued properties
2 p.exists boolean fi(e) = 1 if (e, p, o) or (o, p, e) ∈ T , otherwise

fi(e) = 0
3 p.count int fi(e) = |{ v | (e, p, v) ∈ T }|
For multi-valued properties
4 p.values.AsFeatures boolean for each v ∈ { v | (e, p, v) ∈ T } we get the

feature fiv(e) = 1 if (e, p, v) or (v, p, e) ∈ T ,
otherwise fiv(e) = 0

General ones
5 degree double fi(e) = |{(s, p, o) ∈ T | s = e or o = e}|
6 average degree double fi(e) = |triples(C)|

|C| s.t. C = { c | (e, p, c) ∈ T } and
triples(C) = {(s, p, o) ∈ T | s ∈ C or o ∈ C}

Indicative extensions for paths
7 p1.p2.exists boolean fi(e) = 1 if ∃ o2 s.t. {(e, p1, o1), (o1, p2, o2)} ⊆ T
8 p1.p2.count int fi(e) = |{ o2 | (e, p1, o1), (o1, p2, o2) ∈ T }|
9 p1.p2.value.maxFreq num/categ fi(e) = most frequent o2 in

{ o2 | (e, p1, o1), (o1, p2, o2) ∈ T }

These operators can be used for transforming the original RDF data via coding or by

exploiting the SPARQL Query Language, i.e. CONSTRUCT queries1” (used for deriving new

RDF datasets) or nested queries.

Suppose that the pair (R,F) expresses an analysis context, where R is a set of resources

and F the set of the features the objects in Rhave. Then, the resources R, as well as the fea-

tures F could be defined by the triple patterns, i.e., “?s ?p ?o”, in the CONSTRUCT clause

of a SPARQL query. Hereinafter, the bindings of “s” (or “o”) could correspond to the re-

1https://www.w3.org/TR/rdf-sparql-query/#construct

46 Chapter 4. On Applying HIFUN over RDF

sources, whereas the bindings of “p” to the set of features. In addition, nested queries2

could also be used for defining these features of the analysis context.

In general any query translation method for virtual integration [66] can be employed.

Please, note also that the list of feature operators can be expanded to cover any require-

ment that may arise.

4.2 Translation of HIFUN Queries to SPARQL

In this section, we detail the translation of HIFUN queries to SPARQL queries. Roughly,

the grouping function yields variable(s) in the GROUP BY clause, the measuring function

yields at least one variable in the WHERE clause, and the aggregate operation corresponds

to an aggregate SPARQL function in the SELECT clause (over the measuring variable). The

translation method is explained gradually below using examples based on the dataset of

Figure 4.1. Please note that, for reasons of brevity we omit the namespaces).

Figure 4.1: Running Example

4.2.1 Simple Queries

Suppose that, we would like to find the total quantities of products delivered to each

branch. This query would be expressed in HIFUN as (takesPlaceAt, inQuantity, SUM) and

in SPARQL as:

SELECT ?x2 SUM(?x3)

2https://en.wikibooks.org/wiki/SPARQL/Subqueries

4.2. Translation of HIFUN Queries to SPARQL 47

WHERE {

?x1 ex:takesPlaceAt ?x2 .

?x1 ex:inQuantity ?x3 .

}

GROUP BY ?x2

Therefore, a HIFUN query (g, m, op) is translated to SPARQL as follows: the function g is

translated to a triple pattern ?x1 g ?x2 in the WHERE clause and the variable ?x2 is added

to the SELECT clause and in the GROUP BY clause. The function m is translated to a triple

pattern ?x1 m ?xN in the WHERE clause. The function op is translated to op(right(m)) in the

SELECT clause, where right(m) refers to the “right” variable of the triple pattern derived by

the translation of m, i.e. ?xN, and op to the aggregate SPARQL function.

4.2.2 Attribute-Restricted Queries.

Suppose that, we would like to find the total quantities of products delivered to a particu-

lar branch, say “branch1”. This query would be expressed in HIFUN as

(takesPlaceAt/E, inQuantity, SUM), whereE= {i ∈ D/ takesPlaceAt(i) = branch1} and in SPARQL

as:

SELECT ?x2 SUM(?x3)

WHERE {

?x1 ex:takesPlaceAt ?x2 .

?x1 ex:inQuantity ?x3 .

?x1 ex:takesPlaceAt branch1 .

}

GROUP BY ?x2

Therefore a HIFUN query of the form (g/ v, m, op) is translated as follows: we translate

the restriction v by adding in the WHERE clause the triple pattern ?x1 g v. Please note that

in this example, the restriction value refers to a URI, i.e. branch1.

In case that the restriction referred to a literal value, then a FILTER statement “FIL-

TER(?x1 op v)” would replace the triple pattern “?x1 g v” in the WHERE clause. For ex-

ample, consider the following example, where the restriction is applied to the measuring

function “total quantities of products delivered to each branch by considering only those

invoices with quantity greater than or equal to 1”. This query would be expressed in HI-

FUN as (takesPlaceAt, inQuantity/E, SUM), where E = {i ∈ D/ inQuantity(i) ≥ 1} and in

SPARQL as:

48 Chapter 4. On Applying HIFUN over RDF

SELECT ?x2 SUM(?x3)

WHERE {

?x1 ex:takesPlaceAt ?x2 .

?x1 ex:inQuantity ?x3 .

FILTER(?x3 ≥ xsd:integer(“1”)) .

}

GROUP BY ?x2

Consequently, a literal-attribute restriction in a HIFUN query (g, m/ cond, op) would be

translated by adding in the WHERE clause the following constraint: FILTER(right(m) cond).

4.2.3 Results-Restricted Queries.

Suppose that, we would like to find the total quantities of products delivered to each

branch, but only for branches with total quantity greater than 1,000. This query would be

expressed in HIFUN as, (takesPlaceAt, inQuantity, SUM/F), whereF = {gi ∈ (g/E)/ ans(gi/E) ≥
1,000} and in SPARQL as:

SELECT ?x2 SUM(?x3)

WHERE {

?x1 ex:takesPlaceAt ?x2 .

?x1 ex:inQuantity ?x3 .

}

GROUP BY ?x2

HAVING (SUM(?x3) > 1000)

Therefore we translate a result-restricted HIFUN query (g, m, op/ cond) by adding a HAV-

ING clause with the following constraint: HAVING Right(m) cond at the end of the query.

4.2.4 Complex Grouping Queries.

A grouping as well as a measuring function in HIFUN can be more complex when the fol-

lowing operations on functions as defined in [103] are used: composition (◦) and pairing

(⊗). These operations form the so called functional algebra [102] and they are well known,

elementary operations.

Composition

As we have already mentioned an attribute in HIFUN can be direct (i.e. attributes connect

directly to the root of the analysis context) or derived (i.e. attributes computed from the

values of direct attributes).

4.2. Translation of HIFUN Queries to SPARQL 49

Direct attribute. Suppose that, we ask for the total quantities of products delivered by

brand. This query would be expressed in HIFUN as (brand ◦ delivers, inQuantity, SUM),

and in SPARQL as:

SELECT ?x3 SUM(?x4)

WHERE {

?x1 ex:delivers ?x2 .

?x2 ex:brand ?x3 .

?x1 ex:inQuantity ?x4 .

}

GROUP BY ?x3

Therefore, a HIFUN query (fk ◦ ,..., ◦ f2 ◦ f1, m, op), would be translated as follows:

For k = 1, the query would be considered as a simple query i.e. we would add the triple

pattern ?x1 f1 ?x2 to the WHERE clause and the variable right(f1) to the SELECT and to the

GROUP BY clause, as well.

For k = 2, i.e. composition of two functions (f2 ◦ f1), we would add the triple patterns

?x1 f1 right(f1) and right(f1) f2 ?xf2r to the WHERE clause, and the variable right(f2) to the

SELECT and to the GROUP BY clause.

For k = n, i.e. composition of n functions (fn ◦, ..., ◦ f2 ◦ f1), we would add the triple

patterns ?x1 f1 right(f1), right(f1) f2 right(f2), ..., right(fn−1) fn right(fn) to the WHERE clause,

and the variable right(fn) to the SELECT and to the GROUP BY clause.

For k = n + 1, i.e. composition of (n + 1) functions (fn+1 ◦ fn ◦, ..., ◦ f2 ◦ f1), we would

add the triple pattern right(fn) fn+1 ?xnew to the WHERE clause, and replace the variable

right(fn) with the right(fn+1) in the SELECT and in the GROUP BY clause.

Derived attribute. Suppose that, we ask for the total quantities of products delivered

by month. In this example, the attribute of “month” is considered a derived one. Such a

query would be expressed in HIFUN as (month ◦ date, inQuantity, SUM) and in SPARQL

as:

SELECT month(?x2) SUM(?x3)

WHERE {

?x1 ex:hasDate ?x2 .

?x1 ex:inQuantity ?x3 .

}

GROUP BY month(?x2)

50 Chapter 4. On Applying HIFUN over RDF

Therefore, a HIFUN query of the form (f ◦g,m, op), where f is an attribute derived from

g, would be translated as follows: we would add to the WHERE clause the triple pattern ?x1

g ?xf2r (where ?xf2r is a brand new variable), and then, f would be derived from right(g)
by adding to the SELECT and to the GROUP BY clauses a SPARQL build-in function i.e.

f(right(g)) (in our example month(?x2)); this function would extract the value f from that

of right(g).

Pairing.

Suppose that we would like to find the total quantities delivered by branch and product.

This query would be expressed in HIFUN as ((takesPlaceAt⊗delivers), inQuantity, SUM) and

in SPARQL as:

SELECT ?x2 ?x4 SUM(?x3)

WHERE {

?x1 ex:takesPlaceAt ?x2 .

?x1 ex:inQuantity ?x3 .

?x1 ex:delivers ?x4.

}

GROUP BY ?x2 ?x4

Therefore, a HIFUN query (fk ⊗ ,..., ⊗ f2 ⊗ f1, m, op) would be translated as follows: we

would add the triple patterns ?x1 f1 right(f1), ?x1 f2 right(f2), ..., ?x1 fk right(fk) to the WHERE

clause and the variables right(f1), right(f2), ..., right(fk) to the SELECT and to the GROUP BY

clauses. In other words, we would join the pairing functions i.e. f1, f2,..., fk on their shared

variable i.e. ?x1.

4.2.5 The Full Algorithm for Translating a HIFUN Query to a SPARQL Query

Let us now describe the full translation algorithm of HIFUN queries to SPARQL queries.

Let q = (gE/ rg,mE/ rm, opE/ ro) be a HIFUN query where

• gE is the grouping expression,

• mE is the measuring expression,

• opE is the operation expression, and

• rg is a restriction on the grouping expression,

• rm is a restriction on he measuring expression, and

4.2. Translation of HIFUN Queries to SPARQL 51

• ro is a restriction on the operation expression.

This query is translated in SPARQL as follows:

Q = “SELECT ” +retVars(gE) +“ ” +opE(mE) +“\n”

+ “WHERE {” +“ \n”

+ triplePatterns(gE) +“ \n”

+ triplePatterns(mE) +“ \n”

+ “}” +“ \n”

+ “GROUP BY ” +retVars(gE) +“ \n”

+“ HAVING ” +restr(Qans)

In order to formulate such a query, we create and concatenate the strings it consists of.

1. We start with the translation of the grouping expression gEby creating a string for the

triple patterns the terms gi of gEparticipates, i.e. triplePatterns(gE) += ?xi gi right(gi).
If gEcontains any restriction rg we supplementarily create a string for the triple pat-

tern which expresses that constraint:

1.1. if rg refers to a URI, then triplePatterns(gE) += ?xi gi rg,

1.2. if rg refers to a LITERAL, then triplePatterns(gE) += FILTER(right(gi) rg), (as de-

scribed in §4.2.2).

2. We proceed with the translation of the measuring expression mEby creating a string

for the triple patterns in which the termsmi ofmEparticipates, i.e. triplePatterns(mE)

+= xi mi right(mi).

If mE contains any restriction rm we supplementarily create a string for the triple

pattern which expresses that constraint:

2.1. if rm refers to a URI, then triplePatterns(mE) += ?xi mi rm,

2.2. if rm refers to a LITERAL, then triplePatterns(mE) += FILTER(right(mi) rm).

3. Then, we create a string for the returned variables, retVars(gE) += right(gi).

4. In the end, we translate the aggregate expression opEby creating a string for the ag-

gregate operation op which apply over the measuring function mE, i.e., opE(mE) =

op(right(mi)).

5. Optionally, if any restrictions re are applied to the final answer Qans, then we create a

string for expressing these restrictions, i.e. restr(Qans) = right(mi) re.

52 Chapter 4. On Applying HIFUN over RDF

Example. Suppose that we would like to find he total quantities by branch and brand

only for the month of January, by considering only (a) the invoices with quantity greater

than or equal to 2, and (b) the branches with total quantity greater than 1,000. This query

would be expressed in HIFUN as

(takesPlaceAt ⊗ (brand ◦ delivers))/month=01, inQuantity>=2, SUM/>1,000).
Following the translation steps described before, the corresponding query in SPARQL

would be:

SELECT ?x2 ?x5 SUM(?x3)

WHERE {

?x1 ex:takesPlaceAt ?x2 .

?x1 ex:inQuantity ?x3 .

?x1 ex:delivers ?x4 .

?x4 ex:brand ?x5 .

?x1 ex:hasDate ?x6 .

FILTER((MONTH(?x6) = 01) && (?x3 >= xsd:integer("2")))

}

GROUP BY ?x2 ?x5

HAVING (SUM(?x3) > 1000)

Pseudo-code of the algorithm

Here, we provide the pseudocode describing the aforementioned steps for translating a

HIFUN query to a SPARQL query.

Simple query: Algorithm 1 expresses the translation of queries with simple grouping

and measuring functions that may involve restrictions too; i.e., queries of the form Q =

(g/rg, m/rm, op).

Composition: Algorithm 2- Composition describes the translation of queries that in-

volve composition(s) in the grouping or the measuring function, e.g., queries of the form

(fk ◦ ,..., ◦ f2 ◦ f1, m, op). An extension of this algorithm for supporting derived attributes,

too, is given in Algorithm 3. Please, note that all predefined functions of SPARQL with one

parameter can be used straightforwardly as derived attributes.

Pairing: Algorithm 2- Pairing describes the translation of queries that involve pairing(s)

in their grouping or measuring function(s), e.g., queries of the form (fk ⊗ ,..., ⊗ f2 ⊗ f1, m,

op).

4.2. Translation of HIFUN Queries to SPARQL 53

Algorithm 1 Algorithm for computing the components of the translated query for the Sim-
ple Case

Require: A HIFUN query q = (g/ rg,m/ rm, op/ ro)
Ensure: retVars(g), op(m), triplePatterns(g), triplePatterns(m), retVars(g), and restr(Qans)

1: right(g)← newVariable()

2: triplePatterns(g).concat(?x1 g right(g)) .Grouping function

3: if rg <> ε then .if rg is not empty

4: if rg.endsWithURI() then .Group restriction involving a URI

5: triplePatterns(g).concat(?x1 g rg) .The restriction is expressed as a triple pattern

6: else .Group restriction involving a literal

7: triplePatterns(g).concat(FILTER(right(g) rg)) .The restriction is expressed as a filter

8: right(m)← newVariable()

9: triplePatterns(m).concat(?x1 m right(m) .Measuring function

10: if rm <> ε then .if rm is not empty

11: if rm.containsURI() then .Measuring restriction involving a URI

12: triplePatterns(m).concat(right(m) m rm) .The restriction is expressed as a triple pattern

13: else .Measuring restriction involving a literal

14: triplePatterns(m).concat(FILTER(right(m) rm)) .The restriction is expressed as a filter

15: retVars(g).concat(right(g)) .for the SELECT and the GROUP BY clauses

16: op(m) = op(right(m)) .for the SELECT clause

17: restr(Qans) = right(m) ro .for the HAVING clause

Pairing of compositions: Algorithm 2- PairingAndComposition describes the transla-

tion of queries that involve pairing(s) of composition(s), i.e., queries of the form (gc1⊗. . .⊗
gck, m, op), where each gci is an individual function or a composition of functions. Such ex-

pressions are translated as follows: translate(gE) = translatePairing(translateComposition(gc1)

⊗ . . .⊗ translateComposition(gck)).

General case: Algorithm 4 describes the translation of queries in the general case, where

composition(s) occur in the restrictions of the grouping or the measuring function(s), e.g.,

queries of the form Q = (g/gc1◦gc2◦gcn=rg,m/mc1◦mc2◦mcn=rm, op), where rg and rm are not neces-

sarily single URIs or literals, but path expressions that end with a URI or literal.

4.2.6 Cases where the Prerequisites of HIFUN are not Satisfied

In order to apply HIFUN over a dataset, it should consist of functional attributes. However,

in RDF data, (a) incomplete information or (b) multi-valued properties may exist.

Incomplete Information. Certain properties or attributes of a resource may have miss-

ing or unknown values. For example, consider that, the schema of Fig. 4.1 contained the

54 Chapter 4. On Applying HIFUN over RDF

Algorithm 2 Auxiliary algorithms for compositions and pairings

1: procedure COMPOSITION(f c = fk ◦ . . . ◦ f1) .returns the triplePatterns and the retVars for a

composition

2: tp← ””;

3: for i ∈ 1..k do

4: right(fi)← newVariable()

5: if k=1 then

6: tp.concat(?x1 f1 right(f1))

7: else

8: tp.concat(right(fi−1) fi right(fi))

9: return tp, right(fk)

1: procedure PAIRING(f p = f1 ⊗ . . . ⊗ f k) .returns the triplePatterns and the retVars for a pairing

expression

2: tp← ””; retVars← ””

3: for i ∈ 1..k do

4: right(fi)← newVariable()

5: tp.concat(?x1 fi right(fi))

6: retVars.concat(right(fi))

7: return tp, retVars

1: procedure PAIRINGOVERCOMPOSITIONS(f p = gc1 ⊗ . . . ⊗ gck) .Pairing over Compositions

2: tp← ””; retVars← ””

3: for i ∈ 1..k do

4: tp.concat(Composition(gci).tp)

5: retVars.concat(Composition(gci).retVars)

6: return tp, retVars

property “ex:birthYear”, with domain the class “ex:Person” and range an integer-typed lit-

eral. In that case, the problem of (a) incomplete information arises, i.e., since the dataset

may not contain information about all the birth year of all the persons (for a variety of rea-

sons, including missing data, privacy concerns, or simply because the information is not

known). However, handling incomplete information is an important consideration when

working with RDF data, as it can affect the accuracy and completeness of any analysis or

processing performed on the data. For that, we could exploit the feature operator FCO1
of Table 4.1; a feature that confirms that all the properties are functional. In particular, for

each triple < s, p, o >, if the value of p is null i.e., o = ∅, we replace it with 0 i.e., < s, p, 0 >,

otherwise, we replace it with 1, i.e., < s, p, 1 >.

4.2. Translation of HIFUN Queries to SPARQL 55

Algorithm 3 Algorithm for composition if derived attributes are involved

1: procedure COMPOSITIONSUPPORTINGDERIVED(f c = fk ◦ . . . ◦ f1)

2: tp← ””; retVars← ””;

3: for i ∈ 1..k do

4: if fi is not a derived attribute then

5: right(fi)← newVariable()

6: if i=1 then

7: tp.concat(?x1 fi right(fi))

8: else

9: tp.concat(right(fi−1) fi right(fi))

10: retVars← right(fi))
11: else .Is a derived attribute

12: retVars← fi(retVars) .No triple pattern will be produced

13: return tp, retVars

Multi-valued properties. In RDF, a resource can have multiple instances of a particular

property, each with a different value. For example, consider that a brand has been founded

by more than one persons. That means that the “founder” property is multi-valued, allow-

ing multiple persons to be associated with a brand. In order to associate each product with

only one birth year, we would define a feature that would compute the average birth year

of each individual product, i.e., each product would be associated with the average birth

year of its founder(s). This feature could be specified with several methods as described

in Section 4.1.2. This feature could also be embedded in a SPARQL query as a sub-query;

thus a feature can correspond to an inner-query that returns the value of that feature. For

instance, in our example we could find at first (i) the average birth year of the founders of

each individual product via a sub-query, and then (ii) use the returned results of it in the

outer query to calculate the average birth year of all the founders of all the products.

56 Chapter 4. On Applying HIFUN over RDF

Algorithm 4 Algorithm for computing the components of the translated query for the Gen-
eral case
Require: A HIFUN query q = (gE/ rg,mE/ rm, opE/ ro)
Ensure: retVars(gE), opE(mE), triplePatterns(gE), triplePatterns(mE), retVars(gE), and restr(Qans)

1: triplePatterns(gE) = PairingOverComposition(gE).tp .triplePatterns for Grouping

2: retVars(gE) = PairingOverComposition(gE).retVars .retVars for Grouping

3: if rg <> ε then .if rg is not empty

4: triplePatterns(gE).concat(Composition(rg.functions).tp) .For supporting restrictions by

compositions

5: t← last(triplePatterns(gE)) .the last triple pattern of triplePatterns(gE)

6: rgSuf f ix← rg.LastWord .The last token after the function composition

7: if isURI(rgSuf f ix) then .Group restriction involving a URI

8: Replace the object of t with rgSuf f ix
9: else .Group restriction involving a literal

10: Add “FILTER obj(t) rg.op rgSuf f ix”

11: triplePatterns(mE) = Composition(mE).tp .triplePatterns for Measuring

12: restr(Qans) = Composition(mE).retVars ro .for the HAVING clause

13: if rm <> ε then .if rm is not empty

14: triplePatterns(mE).concat(Composition(rm.f unctions).tp) .For supporting restrictions by

compositions

15: t← last(triplePatterns(mE))

16: rmSuf f ix← rm.LastWord .The last token after the function composition

17: if isURI(rmSuf f ix) then .Measuring restriction involving a URI .Measuring restriction

involving a URI

18: Replace the right variable t with rmSuf f ix
19: else .Measuring restriction involving a literal

20: Add “FILTER right(t) rm.op rmSuf f ix”

21: opE(mE) = opE(Composition(mE).retVars) .for the SELECT clause

4.2. Translation of HIFUN Queries to SPARQL 57

Proposition 1 (Completeness). The algorithm 4 is complete in the sense that every HIFUN

expression can be translated to a SPARQL query.

Proof. As we have seen in Alg. 4, all parts that a HIFUN expression can have, are con-

sidered as input of the algorithm and there is not any restriction in their form.

Proposition 2 (Soundness). The translation of a HIFUN query to SPARQL according to our

method is correct.

Proof. The semantics of a HIFUN query as defined in [103] are equivalent with the

semantics of its translation to SPARQL as defined in [89]. Let q be a HIFUN query and tr(q)
be its translation in SPARQL according to our method. We shall prove that the semantics

of q are preserved in tr(q) for any KG, i.e. that both have the same answer in any KG.

Let’s assume that q = (productType, price,AVG) and tr(q) be its translation in SPARQL.

GROUP BY Translation. In HIFUN, productType (i.e. grouping function) has the same

semantics as GROUP BY clause in tr(q), iff productType is a functional property, i.e., each

product has a single type because all components of a HIFUN expression are functional.

Thus, since all components in a HIFUN expression are functional, the translation to GROUP

BY in SPARQL is valid, iff applied to functional RDF properties.

Aggregate Function Translation: The expression AVG(price) in tr(q) has the same se-

mantics as the AVG function applied over the measuring function in HIFUN. Both repre-

sent the aggregation of the price property. The semantics of AVG(price) in SPARQL align

with the semantics for AVG aggregation in HIFUN.

Attribute Restriction Translation: Any restriction e in q is translated as a triple pat-

tern < s, p, o > in tr(q). For instance, if e is a restriction on a specific HIFUN component

i.e. grouping or measuring function, the corresponding triple pattern in tr(q) captures the

same semantic condition in SPARQL.

HAVING Restriction Translation: If restriction e in q pertains to the final results, it is

translated to the HAVING clause in SPARQL. This ensures that constraints on aggregated

values are correctly represented in the translation.

Thus, the translation of a HIFUN query to SPARQL according to our method preserves

the semantics of the original HIFUN query across any knowledge graph, confirming the

soundness of our translation approach.

58

Chapter 5

The Proposed Interaction Model for An-
alytics over RDF

This chapter takes you through the essential aspects of the interaction model for faceted

search analytics over RDF data. In Section 5.1, we give a quick overview of the proposed

model. Section 5.2 goes into the needed extensions for the formal model, specifically de-

signed to enhance faceted search for advanced analytics over RDF. Moving on to Section

5.3, we explain the interaction model more formally and walk through the associated algo-

rithms. In Section 5.4 , we introduce an algorithm designed to implement the state space.

Finally, in Section 5.5 we explore the process of expressing and computing intentions em-

bedded in the states.

5.1 The Interaction Model in Brief

GUI Extensions in Brief. The classical FS interface typically consists of two main frames:

the left frame for presenting facets and the right frame for displaying objects, illustrated

in Figure 5.1 (left). Our proposed model extends the user actions on the left frame by

incorporating actions necessary for formulating analytical queries. Notably, it is enriched

with two buttons i.e. G and ± next to each facet, as shown in Figure 5.1 (right). Additionally,

we’ve introduced an ’Answer Frame’ (abbreviated as AF) to display the results of analytic

queries in tabular or graphical format. To illustrate the concept, we provide below four

(4) indicative examples demonstrating how our model facilitates the formulation of both

simple and complex analytic queries. We assume that the data of the examples follows the

schema of Fig. 1.2.

Example 1 (an AVG query without GROUP BY). Suppose that, we would like to find

“the average price of laptops made in 2021 from US companies and have SSD and 2 USB

ports”. The part of the query that refers to specific laptops (i.e. laptops made in 2021 from

US companies that have SSD and 2 USB ports) could be expressed by using the classical

FS system. Notably, the condition “US companies” would be specified by expanding the

59

60 Chapter 5. The Proposed Interaction Model for Analytics over RDF

Figure 5.1: The core elements of the GUI for Faceted Search and Analytics

path of the property “manufacturer” till reaching the “origin” property. However, what is

missing is the specification of the aggregate function, in this case, “AVG”. To address this,

the ± button laid on the right on the “price” facet is offered letting the users click and select

the desired function from the displayed menu.

Example 2 (a COUNT query with GROUP BY). Suppose now that, the user would like to

find “the count of laptops that made in 2021 and have SSD and 2 USB ports grouped by

manufacturers’ country”. The part of the query that refers to specific laptops, i.e. “laptops

made in 2021 that have SSD and 2 USB ports” could be expressed by using the classical

FS system. As mentioned in the previous example, the aggregate function, in this case

“count”, would be defined by clicking on the ± button laid on the right of the “price” facet

and selecting the desired function from the displayed menu. What’s still missing is the

specification of the grouping condition. To address this, the G button laid on the right of

each facet lets the users group the results on any set of facets. In this case, the user would

click on the G button adjacent to the “origin” facet. It’s essential to note that, the condi-

tion “manufacturers’ country” would be specified by expanding the path of the property

“manufacturer” until reaching the “origin” property.

Example 3 (a query with range values). Suppose now that, the user would like to find

“the count of laptops that made in 2021 and have SSD and 2 or more USB ports grouped

by manufacturers’ country”. The only difference with the previous query is that the user

should specify a range for the values related to USB ports. To accomplish this, the� button

laid on the right of each facet, enables the users to filter the values based on the desired

range. In this case, the user would click on the � button laid next to the “USB ports” facet

and (s)he would specify the desired range using the provided form.

Example 4 (a query with restriction on groups, i.e. with HAVING). Suppose now that,

we would like to find ”the average price of laptops grouped by company and year, only for

5.1. The Interaction Model in Brief 61

the laptops that have average price above a threshold t ”. The aggregate function and the

grouping of the results would be specified using the G and ± buttons laid next to the de-

sired facets, as described in the previous examples. What remains is to restrict the results

over the specified threshold. For that, the answer of an analytical query can be loaded as

a new dataset onto the extended FS system allowing users to further restrict its values. For

example, suppose that the results of the first part of the query “average price of laptops

grouped by company and year”, correspond to the table shown in Figure 5.2(a). In order to

further restrict the answer, we have attached a button, called “Explore with FS” below this

table (as shown in Figure 5.1) which lets the users load the results as a new dataset on the

FS system as shown in Figure 5.2(b). As it is shown, each column of the table corresponds

to a facet of the system having instances the values of the corresponding column. Now,

the users can express the desired restriction over the average price by clicking on the “fil-

ter” button laid next to the “price” facet and specifying the intended range on the pop-up

window that is displayed.

(a)
DELL 2020 900
ACER 2021 820
DELL 2021 1000
ACER 2021 850

(b)
Manufacurers

DELL (2)
ACER (2)

Years
2020 (2)
2021 (2)

Avg Prices
820 (1)
850 (1)
900 (1)
1000 (1)

Figure 5.2: Example 3: Exploring the results of an analytic query with faceted search

Expressing the Queries of the Previous Examples in HIFUN. Having described the user

interactions, let’s show the HIFUN queries formulated during the interaction for the previ-

ous examples.

• Example 1: (ε, price/E,AVG), where ε is an empty grouping function and E = {i ∈
D/ releaseDate(i) = 2021∧origin◦manuf acturer(i) = US∧SSD = true∧USBPorts(i) = 2}

• Example 2: (g/E, ID,COUNT), where g = origin◦manuf acturer,E= {i ∈ D/ releaseDate(i) =
2021 ∧ origin ◦ manuf acturer(i) = US ∧ SSD = true ∧ USBPorts(i) = 2} and ID is the

identity function

• Example 3: g/E, ID,COUNT), where g = origin ◦ manuf acturer, E = {i ∈ D/ year ◦
releaseDate(i) = 2021 ∧ origin ◦ manuf acturer(i) = US ∧ SSD = true ∧USBPorts(i) ≥ 2}

62 Chapter 5. The Proposed Interaction Model for Analytics over RDF

and ID is the identity function

• Example 4: (g/E, price,AVG)/F, where g = (manuf acturer×({i | i ∈ D∧year◦releaseDate(i))}),
E = {i ∈ D/ releaseDate(i) = 2021 ∧ origin ◦ manuf acturer(i) = US ∧ SSD = true ∧
USBPorts(i) = 2} and F = {gi ∈ (g/E)/ ans(gi/E) ≥ t}

As we can see, expressing queries in a high-level functional query language like HI-

FUN might pose challenges for an ordinary user, since: (i) expressing queries in a more

concise and abstract manner may not be easy, may require documentation and can lead

to errors, and (ii) high-level functional query languages may not be as widely adopted or

supported as more popular query languages. This can make it harder for users to find

help and resources when they encounter issues or need assistance. Overall, while high-

level functional query languages can be powerful and flexible tools, they can also require

a higher level of expertise and familiarity with functional programming concepts, which

can make them more challenging to use effectively.

GUI Extensions. Below, we provide a brief overview of the UI extensions implemented

in the classical FS system. These extensions are designed to facilitate the formulation of

analytics in HIFUN and to present the results in 2D and 3D graphical formats enhancing

their exploration and interpretation.

• Facets: On the right side of each facet, there are two buttons: (i) the G button for

grouping the results of the analytical query by this facet and (ii) the ± button that lets

users select the function, i.e. avg, min, max, etc., that will be applied to each group

of the analytic results,

• States of G and ± buttons. If the user clicks on the G button of more than one facets,

then the system asks if (s)he wants to group the results by >1 attributes, or if (s)he

wants to remove some of them. Analogously, for ±: If the user clicks on the ± button

of more than one facets, then the system asks if (s)he wants to apply >1 aggregate

functions to each group of the analytic results or if (s)he wants to remove some of

them.

• Answer Frame. A frame is used for showing the results of the analytic query in (i)

tabular or (ii) graphical format.

Tabular results. The analytical results are displayed in a table, since it (i) is familiar to

users (ii) offers a clear and concise presentation, and (iii) makes it easy to compare

data side by side. However, presenting data in such a format may be dull and unap-

pealing to some readers. It may also result in the data being overlooked or ignored,

especially if the table is large or complex, may not be the best choice when present-

ing complex relationships between data, and may not be practical for displaying very

large datasets, as it can become difficult to read and understand.

5.1. The Interaction Model in Brief 63

Graphical results. The analytical results are also displayed both in (a) 2D and (b) 3D

plots.

(a) 2D plots: (i) are a widely used and familiar format, so they are easy for people

to understand and interpret, (ii) are comprehensive, even for people who are not

familiar with the underlying data or analysis, (iii) show relationships between two

variables more clearly, and (iv) can be used for many different types of data, includ-

ing numerical data, categorical data, and time-series data. However, these plots are

limited to show relationships between two variables, are not a good choice for show-

ing complex relationships between data, and can be misinterpreted if they are not

presented clearly or if the axes are not labeled correctly.

(b) 3D plots: the analytical results are displayed in 3D plots, too, since they: (i) can

show relationships between many variables, (ii) can visualize complex relationships

between data, (iii) provide more depth than 2D plots, which can make it easier to see

patterns and relationships in the data, and (iv) can be more engaging and visually

appealing than 2D plots. The 3D visualization of the results are based on a previous

work [83] that visualizes the data of the LOD Cloud and the connections them, and

its extension1, that visualizes the progress of COVID-19 virus over time by country.

Adopting the metaphor of urban area, each dataset is represented with a multi-store

cube. Each segment of the cube corresponds to a feature of the dataset and its vol-

ume is proportional to the value of that feature. The proposed system includes inter-

actions and modification of the visualization parameters aiding users to explore the

data, extract more details, and create new insights in an intuitive way.

• Michelanea. Extra Columns. The answer frame could let users add or remove columns

corresponding to the grouping attributes (i.e. display or remove attribute that corre-

sponds to the groups of the results).

Special cases. As stated in [84], there are scenarios where HIFUN is not applicable on

a dataset, i.e. if multi-valued attributes or empty values exist. To address such cases, we

propose the integration of an additional button, denoted as T, next to each facet name that

would let users apply transformation functions, i.e. the feature constructor operators, over

it. Such transformations will handle multi-valued attributes or empty values within facets.

In addition, such a button would be useful for defining derived attributes. For instance,

users may leverage it to decompose a date-based attribute into distinct components such

as Year, Month, Day, and so forth.

1http://62.217.127.128:8080/3dvisualization/

64 Chapter 5. The Proposed Interaction Model for Analytics over RDF

5.2 The Required Extensions of the Formal Model for FS over RDF
for supporting Analytics

Here, we describe in brief the basics of the underlying core model for FS over RDF data

(Section 5.2.1), and the required extensions of that model for supporting analytics (Section

5.2.2).

5.2.1 Background: The Core Model for FS over RDF

Our approach is based on the general model for Faceted Search over RDF described in

[114]. In brief, this model defines the state space of the interaction, where each state has

an intention (query), an extension (set of resources), and transitions between states facili-

tated by transition markers (user-clickable elements). The approach is generic in the sense

that it is independent from the particular Query Languages (QLs) (used for expressing the

intentions of the model). That work describes formally how the transitions of a given state

are determined and how each click is interpreted, i.e. how the new state is generated etc.

Key differentiation of this model, in contrast to classical Faceted Search systems, include

(i) its leverage of rdfs:subclassOf and rdfs:subPropertyOf relations, (ii) its support for

the formulation of path expressions (harnessing RDF principles), and the (iii) ability to

switch between entity types. These features empower the model to navigate and extract

meaningful insights from complex RDF graphs.

5.2.2 The Extension of the Model for Analytics (Formally)

Let Obj be the set of all objects (i.e., all individuals in our case). Let ctx represent the cur-

rent state, where ctx.Ext is the set of objects of the current focus (i.e., displayed objects),

and ctx.Int is a query whose answer is ctx.Ext. The question is “how a HIFUN query can

be formulated over such an FS system”? Initially, the user should specify the context of

analysis, i.e. the set of object in ctx.Ext, and the attributes to be analyzed, which are the

properties applicable to ctx.Ext. Next,(s)he should specify the grouping function, the mea-

suring function and the aggregate operation of the query. Recall that, the general form of a

HIFUN query is q = (gE/ rg,mE/ rm, opE/ ro). Each of the parts of the query can be specified

through the G and ± buttons laid next to each facet. In particular,

• clicking on f .G: when the user click on f .G the intention ctx.Intof the model is changed.

Specifically, the grouping function is defined as: gE′ = gE+ f , where f can denote a

facet or a property path. If f corresponds to a value, then this value is applied as a

restriction on the grouping function.

• clicking on f .±: when the user click on f .± the intention ctx.Intof the model is changed.

Specifically, the measuring function is defined as: mE′ = mE+f , where f can again de-

5.3. The Interaction Model Formally and the Related Algorithms 65

note a facet or a property path. If f corresponds to a value, then this value is applied

as a restriction on the measuring function.

In both cases, the extension, i.e. ctx.Ext as well as the transitions remain the same,

since these buttons do not affect neither the displayed objects on the right frame nor

the available transition markers. For HAVING queries support, the result set needs to be

loaded as a new dataset, enabling users to define analytical queries with unlimited nesting

depth. That will also enable users to define analytical queries of unlimited nesting depth.

5.3 The Interaction Model Formally and the Related Algorithms

In this section, we introduce the notations (Section 5.3.1) used to declaratively describe

the desired state space of the proposed interaction, (Section 5.3.2). Later, we provide the

procedural specification (Section 5.4) and we explain how a result set can be reloaded as a

new dataset (Section 5.3.3).

5.3.1 Notations

RDF. Let Kbe a set of RDF triples and let C (K) C(K) be its closure (i.e. the set containing

also the inferred triples). We shall denote C as the set of classes, Pr as the set of properties,

≤cl as the rdfs:subclassOf relation between classes, and ≤pr as the rdfs:subPropertyOf

relation between properties. We also define the instances of a class c ∈ C as inst(c) = {o |
(o, rdf : type, c) ∈ C(K)} and the instances of a property p ∈ Pr as inst(p) = { (o, p, o′) | (o, p, o′) ∈
C(K)}.

For the formal definition of transitions, we provide some auxiliary definitions. We

shall denote with p−1 the inverse direction of a property p, e.g. if (d, p, r) ∈ Pr then p−1 =
(r, inv(p), d), and with Pr−1 the inverse properties of all properties in Pr.

Below, we introduce notations for restricting the set of resources E; p is a property in Pr
or Pr−1, v is a resource or literal, vset is a set of resources or literals, and c is a class.

Restrict(E, p : v) = { e ∈ E | (e, p, v) ∈ inst(p)}
Restrict(E, p : vset) = { e ∈ E | ∃ v′ ∈ vset and (e, p, v′) ∈ inst(p)}

Restrict(E, c) = { e ∈ E | e ∈ inst(c)}

We also provide a notation for joining values, i.e. for computing values which are linked

with the elements of E:

Joins(E, p) = { v | ∃e ∈ E and (e, p, v) ∈ inst(p)}

66 Chapter 5. The Proposed Interaction Model for Analytics over RDF

5.3.2 Defining the State Space of the Interaction

Below, we describe the transitions between the states followed by examples, for under-

standing the sought interaction.

Interaction States. If s denotes a state, then we shall use s.Ext to denote its extension. Let

s0 denote an artificial (or default) initial state. We can assume that s0.Ext = URI ∪ LIT,

i.e. the extension of the initial state, contains (i) every URI and literal of the dataset i.e.,

all individuals2, or a subset of the dataset, e.g. the result of a keyword query [81], or of a

natural language query [80].

Initial Class-based transitions

Below we shall refer to examples assuming the schema of Fig. 1.2, in particular we consider

a few instances, specifically the ones illustrated in Fig. 5.3 showing just the most important

information.

Figure 5.3: Data of our running example

Initially, the top-level or maximal classes maximal≤cl(C) are presented, as illustrated in

Fig. 5.4 (a). Each of these classes corresponds to a “class-based transition marker” and

leads to a state with extension inst(c). These classes can be expanded to unfold their sub-

classes, as depicted in Fig. 5.4 (b) as well as their top-level or maximal properties repre-

sented by maximal≤pr(Pr), as shown in Fig. 5.4 (c). Each subclass c ∈ subclasses≤cl(C) corre-

sponds to a “class-based transition marker”. Each such transition yields again a state with

2i.e. the results of the SPARQL query ”select ?x where { ?x rdf:type owl:NamedIndividual . }”

5.3. The Interaction Model Formally and the Related Algorithms 67

(a)
Company (4)
� Location (5)

Person (3)
� Product (6)

(b)
Company (4)
� Location (5)

Continent (2)
Country (3)

Person (3)
� Product (6)

HDType (3)
NVMe (1)
SSD (2)

Laptop (3)

(c)
by manufacturer (2)

DELL (2)
Lenovo (1)

by releaseDate (3)
2021-06-10 (1)
2021-09-03 (1)
2021-10-10 (1)

by USBports (3)
2 (2)
4 (1)

by hardDrive (3)
SSD1 (1)
SSD2 (1)
NVMe1 (1)

(d)
by manufacturer (2)

DELL (2)
Lenovo (1)

by releaseDate (3)
2021-06-10 (1)
2021-09-03 (1)
2021-10-10 (1)

by USBports (3)
2 (2)
4 (1)

by hardDrive (3)
SSD (2)

SSD1 (1)
SSD2 (1)

NVMe (1)
NVMe1 (1)

Figure 5.4: (a): class-based transition markers, (b): class-based transition markers ex-
panded, (c): property-based transition markers, (d): property-based transition markers
and grouping of values,

extension inst(c). If the number of the subclasses is high, then they are hierarchically orga-

nized based on the subClass relationships among these classes. This hierarchical layout

illustrates the structure of the reflexive and transitive reduction3 of the restriction of ≤cl on

the applicable transition markers C, (i.e. on Rref l,trans(≤cl | C)). This approach provides a

visual representation of the reflexive and transitive reduction, showcasing the hierarchy of

transition markers that can be applied.

3The reflexive and transitive reduction of a binary relation R is the smallest relation R’ such as both R and
R’ have the same reflexive and transitive closure.

68 Chapter 5. The Proposed Interaction Model for Analytics over RDF

Property-based transitions

Having expanded the top-level classes, their maximal properties maximal≤pr(Pr) unfold,

too (Fig. 5.4 (c)). Each applicable value of these properties corresponds to a “property-

based transition marker”. Specifically, if E is the set of current objects, the property-based

transitions by p is the set Joins(E, p). By clicking on a value v in Joins(E, p) we transit to a

state with extension Restrict(E, p : v). If the number of the sub-properties is high, then they

are hierarchically organized based on the subproperty relationships among these proper-

ties.

Transitions for Path Expansion. Let p1, . . . , pk be a sequence of properties. We shall call

this sequence successive, if Joins(Joins(. . . (Joins(s.Ext, p1), p2) . . . pk) , ∅, i.e. if such a se-

quence does not produce empty results. Let M1, . . .Mk denote the corresponding sets of

transition markers at each point of the path. If we assume that M0 = s.Ext, then the transi-

tion markers for each i, where 1 ≤ i ≤ k, is defined as: Mi = Joins(Mi−1, pi).

Now suppose that the user selects a value vk from the transition marker Mk (i.e. one

value from the end of the path). Such an action will restrict the set of transitions markers in

the following order Mk, . . . ,M1 and finally it will restrict the extension of s. Let M′k, . . .M′1
be these restricted sets of transitions markers. They are defined as M′k = {vk} (this is the

value that the user selected from the end of the path), while for 1 ≤ i < k they are defined

as:
M′i = Restrict(Mi, pi+1 : M′i+1) (5.1)

The extension of the new state s′ is defined as s′.e = Restrict(s.Ext, p1 : M′1). Equiva-

lently, we can consider that M′0 corresponds to s′.e and in that case Eq. 5.1 holds also for

i = 0.

5.3.3 Loading AF as a new Dataset

The results of an analytic query can be loaded as a new derived (RDF) dataset, empowering

users to explore and impose further restrictions. Assume that the answer of the current an-

alytic query is a table with attributes A1, . . . ,Ak, comprising a set of tuples T = {t1, . . . , tn}.
We assign to each tuple (ti1, . . . , tnk) a distinct identifier, say ti, and we produce the fol-

lowing k RDF triples: (ti,Aj, tij) for each j = 1 . . . k. These n ∗ k triples are loaded to the

system and they can be explored as if they were an ordinary RDF dataset. Any subsequent

restrictions expressed over this dataset correspond to HAVING clauses over the original

data.

5.4. The Algorithm that Implements the State Space 69

(a)
by manufacturer

(2)
DELL (2)
Lenovo (1)

by releaseDate (3)
2021-06-10 (1)
2021-09-03 (1)
2021-10-10 (1)

by USBports (3)
2 (2)
4 (1)

by hardDrive (3)
SSD1 (1)
SSD2 (1)
NVMe1 (1)

(b)
by manufacturer (3) B by origin (2)

DELL (2) US (1)
Lenovo (1) China (1)

by releaseDate (3)
2021-06-10 (1)
2021-09-03 (1)
2021-10-10 (1)

by USBports (3)
2 (2)
4 (1)

by hardDrive (3) B by manufacturer (2) B by origin
(2)

SSD1 (1) Maxtor (2) Singapore
(1)

SSD2 (1) AVDElectronics (1) US (1)
NVMe1 (1)

Figure 5.5: (a): Property-based transition markers, (b): Property Path-based transitions
markers

5.4 The Algorithm that Implements the State Space

Here, we provide the exact algorithm for building the GUI of the proposed model that will

be in compliance with the state space described in Section 5.3.2.

5.4.1 Starting Points

The function Startup initiates the interaction can start in two ways: (i) from scratch, or

(ii) by exploring a set, denoted as Results, obtained from an external access method, such

as a keyword search query. In both cases, the function ComputeNewState is called. The

responsibility of this function is to compute and display the facets of the left frame and the

corresponding objects of the right frame.

5.4.2 Computing the Objects in the Right Frame

The computation of the objects in the right frame is detailed in Part A of algorithm Alg. 5.

The parameter Filt can take values such as, ”CLASS c”, ”PVALUE p:v”, ”PVALUE p:vset”, or

empty (ε). When empty, the current set E is defined as all objects in the Knowledge Graph

(KG). If nonempty, it restricts the current set of resources E according to the notations

provided in Section 5.3.1.

70 Chapter 5. The Proposed Interaction Model for Analytics over RDF

Algorithm 5 Computing Active Facets, Zoom points (Filters) and Analytics

1: function Startup .Two ways to start the exploration process
2: ComputeNewState (∅, ε, s0) .Initial call if we want to explore the entire KB
3: ComputeNewState (Results, ε, s0) .Initial call if we want to explore a particular set of objects

(Results) coming from an external access method

4: function ComputeNewState(E:set of objects, Filt: Restriction spec, s: current state)
.Part A: Computation of the objects for the right frame

5: if E= ∅ then .meaning that we have to explore the entire KB
6: E← Obj .E is set to the set of all objects
7: else if Filt , ε then .if we have to compute a restriction of the current state
8: switch (Filt): .Computation of the restricted E for the right frame
9: case ”CLASS c”: E← Restrict(s.Ext, c)

10: case ”PVALUE p : v”: E← Restrict(s.Ext, p : v)
11: case ”PVALUE p : vset”: E← Restrict(s.Ext, p : vset)
12: endSwitch
13: Show E .Display the objects in E in the right frame

.Part B: Computation of the facets for the left-frame

.Part B.1: Computation of class-based restrictions
14: FacetsClasses← TMcl(E) .The applicable class-based transition markers
15: for each c ∈ FacetsClasses do .Creation of the nodes for the transition markers (with names,

counts, and onClick)
16: Node node← new Node();
17: node.name← c.name ; .The name that will be displayed
18: node.count← | Restrict(s.Ext, c) | .The count that will accompany the name
19: node.onClick← ComputeNewState(E, ”CLASS c”, s) .the onClick behavior

20: Part B.2 see Alg. 6

5.4.3 Computing the Facets corresponding to Classes

The part of the algorithm for computing the facets of classes is Part B.1 of Alg. 5. Being at

a state s with extension E, the classes that can be used as class-based transition markers,

defined by TMcl(E), are those that the entities in Ebelong, and they are defined as:

TMcl(E) = {c ∈ C | Restrict(E, c) , ∅} (5.2)

If the user clicks on a class-based transition marker i.e., c ∈ TMcl(E), then the extension

of the targeting state s′ is defined as s′.e = Restrict(E, c). For each such transition marker

a node is created. Each node has a name, i.e. the name of the corresponding subclass, a

count information, i.e. the number of entities that belong to this subclass, and an on-click

behavior. Clicking on the node, the function “ComputeNewState” is called. In that case,

where the objects are restricted to a class, the filtering condition that is passed to the call

of this function is “Class C”, i.e., ComputeNewState(E, ”CLASS c”, s).

5.4. The Algorithm that Implements the State Space 71

5.4.4 Computing the Facets that correspond to Properties

The part of the algorithm for computing the facets that correspond to properties is Part
B.2 of Alg. 6.

Algorithm 6 Computing Active Facets, Zoom points (Filters) and Analytics

1: function ComputeNewState(E:set of objects, Filt: Restriction spec, s: current state)

.Part B.2: Computation of property-based restrictions
2: FacetsPropsForw← {p ∈ Pr | Joins(s.Ext, p) , ∅} .forward properties
3: FacetsPropsBack← {p ∈ Pr−1 | Joins(s.Ext, p) , ∅} .backwards props
4: for each p ∈ FacetsPropsForw do
5: Node hnode← new HeadingNode(p.name) .Separator and name of p
6: for each v ∈ Joins(s.Ext, p) do .TMs related to p
7: Node node← new Node();
8: node.name← v ; .The name that will be displayed
9: node.count← | Restrict(s.Ext, p : v) | .The accompanying count

10: node.onClick← ComputeNewState(E, ”PVALUE p : v”, s)
11: Optional: group all values based on their classes i.e. with respect the following classes:
{c | Joins(s.Ext, p) ∩ inst(c) , ∅}

12: hnode.addButton(G, onClick=gE+ = p) .For group by
13: hnode.addButton(±, onClick=mE+ = p) .For measuring op
14: .For Entity Type Switch:
15: hnode.addButton(”EntityTypeSwitch”, .For entity type switch
16: onClick← ComputeNewState(Joins(s.Ext, p), ε, s))
17: .For Path Expansion:
18: hnode.addButton(”B”, .For path expansion
19: onClick← ComputeNewState(s.Ext,
20: ”PVALUE p: ” + ExpandAndRestrictRecursive(Joins(s.Ext, p)), s)
21:Analogously for FacetsPropsBack

In brief, being at a state s, with extension E, the properties that can be used in the

expansion of a property p are those that connect to that property as well as to the current

entities Eof focus, and they are defined as:

P = {p ∈ Pr | Joins(E,P) , ∅} (5.3)

For each such property p a heading node is created. For each property value of p that is

joinable a node is created with the appropriate name, count, and on-click behavior. More-

over, two buttons for analytics, i.e. G and ± are created. Finally, an additional expansion

button i.e., “B”, is added enabling the user to further expanding the property path (de-

scribed next in Section 5.4.4).

Clicking on a node corresponding to a property value, the function “ComputeNew-

State” is called. In that case, where the objects are restricted over a property, the filter-

ing condition that is passed to the function is “PVALUE p:v”, i.e., ComputeNewState(E,

72 Chapter 5. The Proposed Interaction Model for Analytics over RDF

“PVALUE p:v”, s).

As regards the part of the algorithm about Entity Type Switch (line 15), this function

enables the user to set as focus (new state) the transition markers of a property. This can be

useful for navigating through different types of entities connected by the chosen property.

For instance, while the user is filtering products based on their manufacturer and other

filters, (s)he can decide to switch the type, and start exploring (and filtering out) these

manufacturers. For achieving this, it is enough to set a extension of the new state and

joins of the property (line 17).

Computing the Facets Corresponding to Path Expansion

In Alg. 6, note the line concerning ’path expansion’ (line 17). On clicking on the element

“.” the algorithm for computing the facets that correspond to path expansion is called, de-

tailed in Alg. 7. By clicking on “B” the function “ExpandAndRestrictRecursive(M)” is called

again and the process is repeated (as described in Section 5.3.2).

Algorithm 7 Function for Path Expansion

.Carries out the expansion over a set of URIsMand returns a set of values (to be used for filtering
by the caller).

1: function EXPANDANDRESTRICTRECURSIVE(M:Uris):ValuesSet
2: P← {p ∈ Pr | Joins(M, p) , ∅} .applicable properties
3: for each p ∈ Pdo
4: Node hnode = new HeadingNode(p.name) .Separator and name of p
5: for each v ∈ Joins(M, p) do .TMs related to p
6: Node node← new Node();
7: node.name← v ; .The name that will be displayed
8: node.count← | Restrict(M, p : v) | .The accompanying count
9: node.onClick← return Restrict(M, p : v) .on click it returns a set

10: hnode.addButton(”B”, .recursive call for further expansion
11: onClick← return Restrict(M, p,ExpandAndRestrictRecursive(Joins(M, p)))
12: hnode.addButton(G, onClick=gE+ = p) .For group by
13: hnode.addButton(±, onClick=mE+ = p) .For measuring op

5.5 Expressing and Computing the Intentions of the States

Here, we explain how the intentions of the proposed model are expressed in a specific

query language, that of RDF data, i.e. SPARQL.

Table 5.1 (adapted from [114]) interprets the notations specified for this model and

shows how the intentions are expressed in SPARQL. We assume that all the inferred triples

(deduced from subClassOf and subPropertyOf relations) are available (materialized) in

the storage level.

As it is shown, the extension of the current state (i.e. ctx.Ext) can be computed either

5.5. Expressing and Computing the Intentions of the States 73

Id Notation Expression in SPARQL
(i) Restrict(E, p : vset), where

vset = {v1, ..., vk}
select ?x where {

?x rdf:type temp; p ?V.

Filter (V=$v_1 ||...|| ?V=v_k)}

(ii) -//-

select ?x where {

VALUES ?x { e1 ... en}.

?x p ?V.

Filter (?V=v_1 ||...|| ?V=v_k)}

(iii) Restrict(E, c)

select ?x where {

?x rdf:type temp; rdf:type c.}

(iv) Joins(E, p), where
E= {e1, ..., ek}

select Distinct ?v where { ?x p ?v.

Filter (?x = e_1 ||...|| ?x = e_k)}

(v) TMcl(s.Ext) and counts

select Distinct ?c count(*) where{

?x rdf:type ?c; rdf:type temp.}

group by ?c

(vi) Props(s)

select Distinct ?p

where{ {?x rdf:type temp; ?p ?v.}

UNION {?m rdf:type temp. ?n ?p ?m. }}

(vii) Joins(s.Ext, p) and counts

select Distinct ?v count(*)

where{ ?x rdf:type temp; p ?v.}

groupby ?v

Table 5.1: SPARQL-expression of the model’s notations, assuming that the extension of the
current state (either Eor s.Ext) is stored in temporary class temp

(i) extensionally or (ii) intentionally. “Extensional” means that the current state is stored in

a temporary class temp i.e. the RDF triples (e, rdf:type, temp) for each e ∈ ctx.Ext have

been added to the triplestore. On the other hand, “intentionally” means that instead of

storing the current state in a temporary class, the desired triples are obtained by querying

the triplestore. The way queries are formulated is given in Table 5.2.

Notation Expression in SPARQL
E← Restrict(s.Ext, c) s.q← s.q + “?x1 rdf:type c”
E← Restrict(s.Ext, p : v) s.q← s.q + “?x1 p v”
E← Restrict(s.Ext, p : vset) s.q← s.q + “?x1 p ?V. Filter (?V=v1 ||...|| ?V=vk)”

Table 5.2: For SPARQL-only evaluation approach

74 Chapter 5. The Proposed Interaction Model for Analytics over RDF

The approach to be selected (extensional or intentional) depends on the size of the

dataset and the server’s main memory. In particular, if the dataset is quite big and cannot

not fit in the memory, then the intentional approach is preferred. In our implementa-

tion, described in the next section, we adopt the intentional approach. Our decision for

computing the current state’s extension intentionally is driven by the dataset’s size and

memory constraints. In our implementation, we selectively load data from the triplestore

during each state transition, retrieving only the necessary information for that specific

state. This strategy optimizes memory usage, allowing the system to handle large datasets

effectively while avoiding the need to load the entire dataset into memory at once.

Chapter 6

Implementation

In this section, we delve into our system’s architecture, offering a comprehensive view of

both its front-end and back-end components (refer to section 6.1). Additionally, we pro-

vide a brief overview of the system’s core functionality (as detailed in section 6.2).

6.1 Architecture

Regarding the implementation details, we have developed the proposed model into a web-

based application.

Server side. The server-side uses the triplestore Virtuoso1, a high-performance, scal-

able, and feature-rich RDF triplestore and graph database system. It is often used in ap-

plications that need to manage, query, and analyze RDF data. Virtuoso is designed specif-

ically for RDF data, making it an excellent choice for applications deal with semantic data

and triples. It (i) supports the SPARQL query language, which is a powerful and standard-

ized way to query RDF data, (ii) can handle large datasets and high query loads, (iii) can be

used for data integration purposes, allowing to bring together data from various sources

and create a unified RDF dataset (useful if the application needs to combine data from

diverse domains), (iv) provides graph database capabilities, i.e. it models and analyzes

relationships between entities in RDF data, (v) can serve as a SPARQL endpoint allowing

external applications to send SPARQL queries and retrieve RDF data from your triplestore,

and (vi) has an active community and commercial support options, providing resources

and assistance for developers working with the triplestore. In summary, Virtuoso is a ver-

satile RDF triplestore and graph database system that can be a valuable component in

applications dealing with RDF data, semantic web technologies, and complex querying

requirements.

Front-end side. The front-end side of the system is implemented in Angular2, a pop-

ular JavaScript framework that provides a range of benefits for web application develop-

1http://docs.openlinksw.com/virtuoso/
2https://angular.io/

75

76 Chapter 6. Implementation

ment. Our decision to use Angular was at first, its component-based architecture, which

is well-suited for building modular user interfaces, e.g. reusable components for facets,

search results, query builders, and more. Since this language is built with TypeScript

(which provides strong typing and helps to catch type-related errors at compile time), it

would be valuable dealing with structured RDF data ensuring integrity of our data. Also,

since Angular offers two-way data binding, it would be easier to reflect changes in the RDF

data and query results in real-time on the user interface (which is beneficial for providing

a responsive and interactive user experience). Furthermore, Angular incorporates RxJS,

which would simplify managing asynchronous data flows and events, making it easier to

handle real-time updates, e.g. dealing with RDF data often involves asynchronous opera-

tions, such as querying a triplestore. At the same time, this language has a substantial and

active community, which means that there is a wealth of resources, documentation, and

third-party libraries to help with various aspects of application’s development saving time

and effort during development. In addition, Angular provides a robust testing framework

(Angular Testing Library and Jasmine) that would facilitate unit testing and end-to-end

testing of the application, ensuring its reliability and maintainability. Last but not least,

the Angular CLI (Command Line Interface) would simplify project setup, development,

and deployment tasks. While the current application may be relatively simple, if it grows in

complexity over time, Angular’s structure and modularity can accommodate that growth

more easily than some lighter-weight frameworks.

Figure 6.1 shows the main components of the implementation, and the responsibilities

of each component. The User initiates actions by interacting with the knowledge graph ex-

plorer, exploring the RDF Knowledge graph and triggering events. The events may lead to

(i) requests for exploring further data or (ii) to build analytical queries. In the first case, the

user’s interactions are sent to the SPARQL query services, the results of which trigger up-

dates in the knowledge graph explorer. In the second case the knowledge graph explorer

communicates the events to the analytical query builder informing it of user actions rel-

evant to analytical query construction. The analytical query builder upon receiving user

inputs, generates requests for query construction communicating them to the SPARQL

query services. Subsequently, the SPARQL query services execute the queries against the

RDF Knowledge graph and relay the results to the results display component for render-

ing.

6.2 System Demonstration

In Fig. 6.2, we present a snapshot of our system, where the loaded data adheres to the

schema of the running example. The user has expressed the query: ”Average, sum, and

maximum prices of laptops with 2 to 4 USB ports, grouped by manufacturer and the man-

ufacturer’s origin.” To begin with, the results of this query are initially displayed in a tabular

6.3. 3D Visualization 77

Figure 6.1: The architecture of the system RDF-ANALYTICS

format, as depicted in Fig. 6.3(a). However, our system offers a range of additional options

for the user: (i) to further refine the results, users can click on the ”Load to Tree” button, re-

sulting in the view illustrated in Fig. 6.3(b), (ii) choose to visualize the results through both

two-dimensional and three-dimensional charts for a more comprehensive understanding

by selecting the ”Visualize” button, as demonstrated in Fig. 6.4, (iii) export the results as

a .csv file by simply clicking on the ”Export as Excel” button. This multifaceted approach

empowers users to interact with and derive more insights from their data.

Common Extensions. The system could benefited from additional that are useful in case

the ontology is too big, i.e. it contains numerous classes and schema properties, and the

values that are used as property values are too many. Potential extensions include: search

boxes on each individual facet, methods for facet/value ranking (as described in the Sec-

tion 6.3.2 of the survey [114] and more recent ones like [7, 37]), methods for predicting

useful facets [82], as well as with similarity based browsing functions (as in [25]).

6.3 3D Visualization

In addition to presenting analytical results in traditional tabular and two-dimensional for-

mats, we have integrated a 3D visualization system into our framework. This innovative

approach, previously developed and described in detail in our earlier work [83]. Within

78 Chapter 6. Implementation

Figure 6.2: GUI of the system RDF-ANALYTICS for formulating the query ”Average, sum and
max price of laptops that have 2 to 4 USB ports, group by manufacturer and the origin of
manufacturer”

Figure 6.3: (a) Tabular visualization of the results and (b) Loading of the results as a new
dataset

6.3. 3D Visualization 79

Figure 6.4: 2D and 3D visualization of results

this 3D visualization system, we adopt an urban metaphor, where each numerical result

is represented with a 3D building. The volume of the building corresponds to the magni-

tude of the result, providing an intuitive representation of data values. Furthermore, the

color of each building signifies the type of aggregate function applied, such as average,

minimum, maximum etc. To enhance clarity, labels associated with these buildings indi-

cate the attributes used for grouping the results. This three-dimensional visualization not

only enriches the user experience but also facilitates a deeper understanding of the data,

offering an alternative perspective that can reveal patterns and insights that may not be

so apparent in conventional 2D representations.

Continuing from our previous example, let’s consider the scenario where the results of

the query ”Average, sum, and maximum prices of laptops with 2 to 4 USB ports, grouped

by manufacturer and the manufacturer’s origin,” are visualized within our 3D system, as

illustrated in Fig. 6.5. In this visualization approach, each floor of the 3D building corre-

sponds to a specific aggregate function, such as average (avg), maximum (max), or sum-

mation (sum). To enhance clarity, distinct colors are assigned to each floor, providing an

immediate visual cue regarding the aggregate function being represented. The system al-

lows also individuals to interactively choose the functions they wish to view within the

3D visualization. By selecting, for instance, only the average, maximum, or sum results,

users can easily focus on the specific aspects of interest. This selective rendering capabil-

ity ensures a tailored and informative visual experience, granting users the flexibility to

80 Chapter 6. Implementation

explore data insights precisely as they need. Moreover, this feature greatly enhances the

interpretability of the results. For instance, users can delve into the average pricing trends

(avg) or explore the highest price points (max) for laptops meeting the specified criteria.

By visualizing each floor separately, our system empowers users to gain deeper insights

into the data, uncovering trends that might otherwise remain hidden in traditional 2D

representations.

Figure 6.5: 3D visualization of results

6.4 Efficiency

As described in previous section (Section 5.5), there is an extensional and an intentional

approach for computing the extension of the current state. The intentional is beneficial

for large datasets. Below we discuss the time complexity of the algorithms for computing

the required queries following the intentional approach.

Below, we provide a summary of indicative execution times for both simple and more

complex queries across datasets of varying sizes. Utilizing the schema of our running ex-

ample, we generated synthetic datasets ranging from 100 triples to 1 million triples. In the

generated RDF datasets, the triples were not unique. To enhance the meaningfulness of ag-

gregate queries and evaluate the efficiency the system effectively, instances were intention-

ally grouped based on common domains or ranges. These datasets serve as representative

samples to evaluate system performance across different data volumes. Subsequently, we

6.4. Efficiency 81

tested the system’s capabilities by executing a diverse set of queries Q1-Q6. These queries

encompass a broad spectrum of complexity involving groups, paths, filters, and combina-

tions thereof. It is noteworthy that when executing queries within the dataset containing

1,000,000 triples, we opted not to include instance count information alongside the facets.

This decision was made due to the system experiencing performance overload. The signif-

icant time investment needed for this counting process contributed to the system’s perfor-

mance constraints.

We carried out experiments on a laptop equipped with an Intel(R) Core(TM) i5-7200U

CPU, operating at a base clock speed of 2.50GHz and a turbo boost frequency of 2.70GHz.

The system was con

gured with 8.00 GB of RAM and used a 64-bit operating system, speci

cally Windows 10, version 22H2, on an x64-based processor architecture.

• Q1: Average price of laptops group by manufacturer (simple group)

• Q2: Average price of laptops group by manufacturer and release date (combination of groups)

• Q3: Average price of laptops that have at least 2 USB ports group by manufacturer (filter)

• Q4: Average price of laptops group by the birthplace of founders (path)

• Q5: Average price of laptops released the last 2 years, and have at least 2 USB ports, group by
the origin of manufacturer (complex query containing path, filters, group)

• Q6: Average price of laptops released the last 2 years, have at least 2 USB ports, and its origin
country has gdb per capita [1.5, 2000] group by the origin of manufacturer and the birthplace
of the founders (complex query containing paths, filters, groups)

Table 6.1: Efficiency - peak hours

Query evaluation (in ms) Show results (in ms)
Dataset
size (in
triples)

q1 q2 q3 q4 q5 q6 q1 q2 q3 q4 q5 q6

102 149 178 198 316 458 859 28 18 19 16 15 19
103 177 188 170 165 362 856 13 57 12 15 10 12
104 270 181 319 235 347 576 12 158 20 12 11 12
105 147 585 402 240 550 949 16 1005 6 6 7 6
106 629 1564 807 930 626 1015 6 1021 6 13 18 5

Based on Table 6.1, several key insights can be drawn regarding query performance.

Firstly, it’s evident that the size as the dataset size increases (from 100 to 1,000, 10,000,

100,000, and 1,000,000 triples), the execution times for all queries generally tend to in-

crease. This indicates that dataset size has a significant influence on the time it takes to

execute these queries. Larger datasets typically require more processing time. The com-

plexity of the queries also plays a role in execution time. More complex queries, such as Q5

82 Chapter 6. Implementation

Table 6.2: Efficiency - off-peak hours

Query evaluation (in ms) Show results (in ms)
Dataset
size (in
triples)

q1 q2 q3 q4 q5 q6 q1 q2 q3 q4 q5 q6

102 58 94 212 93 193 758 15 15 12 15 13 14
103 75 132 219 94 362 665 13 49 12 13 18 31
104 70 167 232 95 362 769 14 175 13 13 13 13
105 125 456 290 155 430 781 6 1118 7 6 8 6
106 512 1341 682 694 281 567 8 1063 5 8 7 8

and Q6, which involve filtering, grouping, and path traversal, tend to have longer execu-

tion times compared to simpler queries like Q1 and Q3. This suggests that query complex-

ity can impact execution time, with more complex queries taking longer to process. The

type of query also affects execution time. For example, Q2, which involves grouping by

both manufacturer and release date, has varying execution times across dataset sizes, in-

dicating that the combination of groups can influence performance differently compared

to simple grouping (Q1). Similarly, the presence of filters (Q3) and path traversal (Q4, Q5,

Q6) introduces variations in execution times. At last, the time it takes to display the re-

sults is generally much shorter than the query execution time. This suggests that the dis-

play of query results is not a significant factor in overall query performance. In summary,

dataset size, query complexity, and query type all influence query execution times. Larger

datasets generally lead to longer execution times, and more complex queries, involving

filtering, grouping, and path traversal, tend to have longer execution times. The specific

combination of these factors can result in variations in query performance.

Comparing the set of execution times obtained during off-peak hours of Table 6.2 with

the previous results of Table 6.1 it appears that query execution times are shorter com-

pared to the corresponding times during peak hours. The influence of dataset size on

query execution times remains consistent with the previous results. As the dataset size

increases (from 100 to 1,000, 10,000, 100,000, and 1,000,000 triples), the execution times

generally increase, which is expected due to the larger volume of data to process. The

impact of query complexity and type on execution time also remains consistent. More

complex queries (e.g., Q5 and Q6) continue to have longer execution times compared

to simpler queries (e.g., Q1 and Q3). Query complexity, such as filtering, grouping, and

path traversal, still affects execution times. In addition, similar to the previous results, the

time it takes to display the results remains significantly shorter than the query execution

time. This indicates that the display of query results is not a significant factor in overall

query performance, and the majority of time is spent on query processing. In conclusion,

the new results obtained during off-peak hours generally show shorter query execution

times compared to the previous results during peak hours. This suggests that the tim-

ing of query execution can have a substantial impact on performance, and conducting

6.4. Efficiency 83

resource-intensive queries during off-peak hours may lead to faster results. However, the

overall trends regarding dataset size, query complexity, and query type continue to influ-

ence query performance.

While query optimization is not the focus of this work, it’s worth noting relevant re-

search in this area. Apart from [8] and [87], notable works include [93] addressing queries

that include several chain and star patterns, [126] focusing on optimizing SPARQL queries

with aggregate operators, [50] optimizing aggregate queries over federations of SPARQL

endpoints by materializing the intermediate results of the queries, and [51] focusing on

the selection and materialization of aggregate RDF views for reasons of efficiency, and pro-

vides the needed rewriting method for user queries.

84

Chapter 7

The Expressive Power of the Model

The proposed model aims to cover the most basic information needs in a familiar interac-

tive environment. Providing a model with extreme expressive power would have several

disadvantages, including: (i) ambiguity: RDF models used in semantic web applications

aim to enable machines to understand the meaning of the data. In these applications,

overly expressive models can lead to ambiguity and inconsistency in the data, making it

difficult for machines to make sense of it, (ii) interpretation issues: as models become

more complex, it becomes increasingly difficult to understand how they are making pre-

dictions, which can be a problem in applications where interpretability is important, (iii)

high computational cost: overly expressive models in RDF can lead to scalability issues,

as the number of triples and the complexity of the relationships between them can grow

exponentially. This can make it difficult to process and query the data efficiently.

Below, we describe the expressive power of the proposed model with respect to (a) the

kind of HIFUN expressions that can be formulated by the model (in Section 7.1), and (b)

the OLAP operations it supports (in Section 7.2).

7.1 Expressible HIFUN queries

Here, we show if the proposed model supports all kind of analytical queries expressed in

HIFUN. Recall that, in order to apply HIFUN over a dataset that satisfies its assumptions,

we have to specify the context of analysis i.e., the set of attributes we are going to analyze.

Then, we are able to formulate queries of the form (Q = gE/ rg,mE/ rm, opE/ ro). As we

have already mentioned, the grouping function gE can be a single attribute or a set of

complex attributes (pairing or composition) that may have restrictions rg, too. Similarly,

the measuring function mEcan be a single attribute or a set of complex attributes (pairing

or composition) that may have restrictions rm, too. At last, opEcan be any valid aggregate

function applicable over RDF data. Overall, the model should be able to support complex

analytical queries that involve aggregations and filtering operations.

Analysis context. The proposed model lets users define the set of the attributes they are

85

86 Chapter 7. The Expressive Power of the Model

interested to analyze through the facets it offers, which restrict the information space and

specify the focus.

Grouping function. Since a G button lays next to each facet at any level, the user can select

to group the results on one or more facets. If the facets correspond to different classes,

then gE refers to a pairing expression. If a facet corresponds to a property path, then gE
refers to a composition expression. Additionally, since G button lays next to each facet value,

the user can restrict the grouping function on one or more values.

Measuring function. Similarly, since a ± button lays next to each facet at any level, the user

can select to measure one or more facets. If the facets correspond to different classes, then

mE refers to a pairing expression. If a facet corresponds to a property path, then mE refers

to a composition expression. Additionally, since ± button lays next to each facet value, the

user can restrict the measuring function on one or more values.

Aggregate operation. Since a ± button that lays next to each facet offers a menu with the

basic aggregation functions, the user can summarize and analyze the results on any such

function.

Attribute restrictions. Since the G and ± buttons lay next to each distinct value of every

facet, the user can restrict the values of the grouping and the measuring function.

Results restrictions. Since the proposed model loads the results of an analytical query as

a new dataset on the FS system, the user is able to further explore and restrict them using

the filtering capabilities offered by the system.

Nesting. Each time the proposed system loads the current analytical results as a new

dataset a new query is created and evaluated. Each such query corresponds to an inner

query the results of which are used for the evaluation of an outer query.

7.2 OLAP Operators Supported

Online Analytical Processing systems (OLAP). Online Analytical Processing (OLAP), intro-

duced in the early ’90s [26], is used for the analysis of transaction data. It allows users to

view data at different granularities. In order to apply OLAP, data should be organized in a

multi-dimensional (MD) structure, known as Data Cube. A Data Cube consists of (i) facts

which are the subjects of the analysis and quantified by measures, and (ii) hierarchically-

organized dimensions allowing for measure aggregation. The fundamental operations

that can be applied over it include: roll-up (performs aggregation by climbing up a con-

cept hierarchy for a dimension or by dimension reduction), drill-down (is the reverse op-

eration of roll-up and performs aggregation by stepping down a concept hierarchy for a di-

mension or by introducing a new dimension), slice (selects one particular dimension from

a given cube and provides a new sub-cube), dice (selects two or more dimensions from a

given cube and provides a new sub-cube), and pivot (provides an alternative presentation

of data).

7.2. OLAP Operators Supported 87

In our presented model, we enable OLAP-like exploration directly over the graph, with-

out the need of predefining data cubes. The additions we propose for enhancing a Faceted

Search (FS) system to support analytic queries effectively cover the requirements for OLAP

over graph data. When a user expresses an analytic query with our tool (RDF-ANALYTICS) can

achieve the desired granularity and sub-cube is facilitated by just applying restriction and

group by actions.

The correspondence between these actions and OLAP operations is illustrated in Fig-

ure 7.1. Specifically, traversing up the hierarchy of a facet or adding/removing a GroupBy

action corresponds to a roll-up operation. Conversely, traversing down the hierarchy or

adding/removing a GroupBy action corresponds to a drill-down operation. Picking one

value for a facet corresponds to a slice operation, while picking two or more values from

multiple facets corresponds to a dice operation. Finally, moving to a facet directly or indi-

rectly connected to the focus facet corresponds to a pivot operation.

To illustrate this, consider that the user has expressed the query “Average prices for

products, grouped by manufacturer,” as shown in Figure 7.2 (left). If the user wishes to drill

down and inspect the average prices based on product type, they can press the G button on

the class Product. This action corresponds to the query “Average prices of product types

grouped by manufacturer,” as depicted in Figure 7.2 (right). The inverse direction would

be a roll-up operation.

88 Chapter 7. The Expressive Power of the Model

Figure 7.1: Correspondence with OPAP operations

7.2. OLAP Operators Supported 89

Figure 7.2: An example of roll-up and drill-down

90

Chapter 8

Evaluation

Section 8.1 discusses the results of an evaluation of our approach with users and Section

8.2 conveys an implementation of the model that proves its feasibility and the complete-

ness of the introduced algorithms.

8.1 Task-based Evaluation with Users

We performed a task-based evaluation with users. The objective was to investigate if they

can formulate easily analytic queries, especially complex queries containing various value-

restrictions and path expressions. Twenty (20) users participated to the evaluation. The

number was sufficient for our purposes since, according to [36], 20 evaluators are enough

for getting more than 95% of the usability problems of a user interface The participants

had varying educational levels (Computer Science Student (25%), Computer Science re-

lated (60%), Other such as bank employees, accountants and engineers (15%)), level of

experience (experts (55%), medium knowledge of RDF and SPARQL (30%), novice (15%)),

age groups (twenties (25%), thirties (40%), forties (20%), fifties (10%), sixties (5%)) and sex

(male (80%), female (20%)). We did not train them; we just provided them with a concise

assisting page that explains the functionality of the buttons laid next to each facet1.

We defined 10 tasks for the evaluation. X”elow we list them along with the success rates

of the users.

• Q1. Count the laptops grouped by manufacturer.: Success (85%), Partial success

(0%), Fail (15%)

• Q2. Count the number of laptops grouped by manufacturer that were released after

1/1/2022.: Success (85%), Partial success (0%), Fail (15%)

• Q3. Count the number of laptops grouped by manufacturer that were released after

1/1/2022 and have at least 2 USB ports.: Success (85%), Partial success (0%), Fail

1The deployment of the system that was used is accessible at https://demos.isl.ics.forth.gr/
rdf-analytics.

91

92 Chapter 8. Evaluation

(15%)

• Q4. Average price of laptops released after 1/1/2022 and have at least 2 USB ports.:

Success (80%), Partial success (0%), Fail (20%)

• Q5. Average price of laptops released after 1/1/2022 and have at least 2 USB ports

grouped by manufacturer.: Success (90%), Partial success (0%), Fail (10%)

• Q6. Average price of laptops with HDD manufactured in an Asian country.: Success

(50%), Partial success (0%), Fail (50%)

• Q7. Average price of laptops with HDD manufactured in US.: Success (50%), Partial

success (0%), Fail (50%)

• Q8. Count the laptops grouped by the country of the founder.: Success (50%), Partial

success (0%), Fail (50%)

• Q9. Average price of laptops grouped by manufacturer.: Success (80%), Partial suc-

cess (0%), Fail (20%)

• Q10. Average prices of laptops grouped by manufacturer, having average price below

800 Euro.: Success (65%), Partial success (10%), Fail (25%)

We observe that users had higher success rates to questions related to simple aggrega-

tions (Q9) and applying filters to the data (Q1-Q5). They were able to successfully navigate

the filtering options and effectively apply them to refine and manipulate the dataset. In

contrast, they encountered challenges when it came to questions that required formulat-

ing paths in the graph data (Q6-Q8). This particular task seemed to present difficulties for

users, as they struggled to navigate and comprehend the intricacies of the graph structure.

Additionally, users encountered difficulties in understanding how to formulate “HAVING”

clauses by loading the results as a new dataset, as they struggled to grasp the concept of ap-

plying conditions to aggregated data. This suggests that it is worth improving the system

by providing more guidance in such cases (e.g. through info boxes, tooltips etc.).

The results indicate a clear correlation between participants’ experience levels and

their task completion outcomes. Among those classified as ”Experts,” a substantial 74%

achieved success, while none reported partial success, and 26% faced failures. In the ”In-

termediate” group, 81.67% marked successful completion, 33.30% reported partial suc-

cess, and 15% encountered failures. Novice participants demonstrated a 70% success rate,

with 2.5% experiencing partial success and 27.5% facing difficulties. These findings high-

light the influence of expertise on task completion, with experienced individuals tend-

ing to achieve higher success rates, while intermediate participants navigate a balance

between success and partial success. The results of the analysis demonstrate that even

8.1. Task-based Evaluation with Users 93

(a) Task completion/Experts (b) Task completion/Interme-
diates

(c) Task completion/Novices

(d) User rating/Experts (e) User Rating/Intermedi-
ates

(f) User rating/Novices

Figure 8.1: Task-based evaluation with users: task completion and user rating

novice users achieved a commendable level of success, showcasing their ability to perform

tasks effectively. Furthermore, it is noteworthy that the differences in task completion

rates between novice users and more experienced participants were not significantly pro-

nounced. This suggests that while expertise certainly plays a role in task success, novice

users can still perform at a level that is competitive with their more experienced coun-

terparts. These findings underscore the importance of user-friendly interfaces and well-

designed systems that can accommodate a diverse range of users, regardless of their expe-

rience levels.

Regarding user rating, among expert users, an impressive 60% found the system ”very

useful,” indicating a high level of satisfaction and effective utilization. Intermediate users

also reported a favorable 16% rating for ”very useful,” showcasing its applicability to this

user group. Novice users, despite their relative inexperience, expressed a noteworthy 50%

rating for ”very useful,” highlighting the system’s user-friendly design. The ”useful” cate-

gory received positive feedback from experts and intermediates, with 40% and 60% respec-

tively, and also garnered a favorable 50% rating from novice users. Remarkably, among

expert and intermediate users, the product received no ”little useful” or ”not useful” rat-

ings, emphasizing its overall effectiveness across these experience levels. These findings

underscore the system’s versatility and its ability to cater to users of varying expertise.

In Fig. 8.2 (a), a notable total success rate of 75.89% is observed, indicating the majority

of participants successfully achieved their objectives. However, the presence of a partial

success rate of 11.60% suggests that there were instances where participants made notable

94 Chapter 8. Evaluation

(a) Total task completion (b) Total user rating

Figure 8.2: Task-based evaluation with users: total task completion and total user rating

progress, yet encountered some hurdles on their path to success. Meanwhile, a 22.50% fail

rate signifies challenges and setbacks faced by participants during their tasks. Also in Fig.

8.2 (b), the analysis reveals that the system earned a solid average of 42% for being “Very

Useful” across the spectrum of expertise. Additionally, the “Useful” rating garnered an

average of 50%, indicating a generally positive reception across all experience levels. It’s

worth noting that even among less experienced users, represented by the “Novice” cate-

gory, the system was considered “Very Useful” in 50% of cases, underlining its accessibility

and effectiveness. While there was a modest 5.33% rating of “Little Useful” among Interme-

diate users, there were no instances of a “Not Useful” rating. These results underscore the

system’s overall positive reception and suggest that it effectively caters to a diverse range

of users, including those with varying levels of expertise.

Overall, the results are very promising in terms of task completion, as shown in Fig.

8.1 (a) (i.e., success 75,89%, partial success 11,6%, fail 22,5%) and user rating as shown in

Fig. 8.1 (b) (i.e., Very useful 42%, Useful 50%, Little Useful 5,3%, Not Useful 0%), given that

no training was provided to the users. These results align well with our target audience,

where 55% of users have an expert-level background, 30% are at an intermediate level,

and 15% are novice users. It’s important to emphasize that our system is designed with

a focus on addressing the needs of non-expert users. Therefore, the positive outcomes

in task completion and user satisfaction demonstrate the effectiveness of our system in

assisting those who may not have prior expertise.

User Feedback. Users provided us with some additional comments for improving our sys-

tem. Firstly, there was a call for including a “Reset” button next to the “Analyze” button

for clearing their input and starting a fresh with a new analysis. They suggested to make

the ”Analyze” button ”sticky”, so as to remain visible and accessible as they scroll through

the page exploring various facets. They also highlighted the importance of providing brief

explanations next to faceted search symbols, i.e. G, ±, B, for additional guidance. Addi-

tionally, they suggested to enhance the manual with more clear guidelines and possibly

sample queries, and screenshots showcasing various usage scenarios. They faced a diffi-

culty with the concept of ”group by” and ”group by having a condition” and they asked

8.2. Testing Implementability 95

for simplification for users not well-versed in database queries. Finally, they suggested to

ensure the smooth system availability across different browsers.

In response to user feedback, we implemented several enhancements in our system.

We successfully addressed the call for a more user-friendly interface by introducing a “Re-

set” button adjacent to the “Analyze” button, allowing users to effortlessly clear their input

and start a new analysis. Furthermore, we have made the “Analyze” button “sticky”, ensur-

ing its visibility and accessibility as users navigate through various facets while scrolling.

To enhance user understanding, we incorporated tooltips next to faceted search symbols

(i.e. G, ±, B), providing concise explanations for improved guidance. The manual was en-

riched with clearer guidelines, sample queries and screenshots depicting various usage

scenarios. Acknowledging the challenge users faced with the concepts of ”group by” and

”group by having a condition,” particularly for those less familiar with database queries,

we recognize the need for further simplification in these areas and we are exploring ways

to present these concepts in a more intuitive manner, ensuring that users of varying levels

of expertise can grasp these functionalities. Lastly, in alignment with user suggestions, we

are committed to ensuring the smooth availability of our system across different browsers.

8.2 Testing Implementability

The development of Interactive User Interfaces are in general time-consuming. In this

work, we provided the concrete algorithms for producing the UIs in order to make the

model easily implementable. To test the completeness and clarity of the proposed algo-

rithms, we assigned an undergraduate student in the fourth year (not a member of the

research group) to implement them (as a Diploma Thesis) by providing him with a prelim-

inary version of the current paper. He was free to decide the implementation technologies

he would use. For the back-end side, he used Java, Spring framework, and apache Jena,

while for the front-end side, he used Vue.js, Bootstrap, and Font Awesome. Eventually, he

managed to implement the model correctly. A few screenshots are shown in Figure 8.3.

96 Chapter 8. Evaluation

Figure 8.3: An alternative implementation of the proposed model

Chapter 9

Conclusion

The formulation of structured queries over RDF Knowledge Graphs can be challenging,

especially when dealing with broad domains containing numerous classes and properties.

To assist both ordinary and expert users, we introduce a model that aims to enable

them to formulate easily analytic queries over any RDF knowledge graph, without having

any knowledge of the schema/terminology of the graph, nor the syntax of SPARQL.

To create an intuitive interaction model and interface, we leverage the familiarity of

users with the Faceted Search systems. Started from a general model for Faceted Search

over RDF data, we extended it with actions that enable users to specify analytic queries,

too. These actions correspond to queries of a high-level language for analytics named

HIFUN that we then translate to SPARQL.

Then, we detailed the proposed interaction model by (i) defining formally the state-

space of the interaction model and the required algorithms for producing the UI (User In-

terface) (ii) describing a hybrid (extensional and intentional) query evaluation approach,

(iii) presenting an implementation of the model, specifically the system RDF-ANALYTICS,

that showcased its feasibility, and (iv) discussing the results of a task-based evaluation with

users that provided evidence about its acceptance by users in terms of task completion

and user rating. In addition, we tested the implementability of the model by third-parties,

by showcasing that one undergraduate student succeeded in implementing it from scratch.

Key characteristics of our model are: its applicability to any RDF dataset (not only

to RDF datasets that have a star schema), its guidance (by guiding the user to formulate

queries whose answer is not empty), the handling of arbitrarily long paths, the provision

of count information, the interactive formulation of HAVING clauses, the support for both

Faceted Search and analytic queries, and the ability to handle nested analytic queries. As

regards visualization, apart from the standard methods to visualize analytic results, we

offer a 3D visualization method, too.

Regarding, the results of the task-based evaluation we made with users, they are very

positive in terms of task completion (i.e., success 75,89%, partial success 11,6%, fail 22,5%)

and user rating (Very useful 42%, Useful 50%, Little Useful 5,3%, Not Useful 0%), given that

97

98 Chapter 9. Conclusion

no training was provided to the users, in an audience of 55% expert, 30% intermediate

and 15% novice users. As regards efficiency, without any optimization, the system offers

real-time interaction, i.e. the analytic queries which are formulated during the interaction

require around 3 secs to be evaluated over a KGs with 1 millions triples.

9.1 Future Work and Research

The proposed model has wide applicability, since it can be applied across diverse Knowl-

edge Graphs and complements various methods for accessing graph data. There are sev-

eral issues for further research and work, a few of them are listed below.

System. Transformations during the Analysis. It is worth investigating the process of in-

troducing Feature Constructor Operators (FCO) (as described in Section 4.1.2) to the model

and RDF-ANALYTICS. These operators will allow users to transform data if needed, at explo-

ration time, to ease analysis. They could be implemented as additional actions, enact-able

through a special button (right of the G and ± buttons).

System: Ranking of Facets and Terms. In case the KG contains too many maximal classes

and maximal properties, as well as if the number of transitions markers is too many, it

would be useful to support some ranking functions, to avoid cluttering the GUI. One could

adopt ideas for such ranking functions from [68, 117].

System: Narrative Visual Analytics, Sequencing Queries, Summaries, and Integration
of Large Language Models (LLMs). Users could express their queries, preferences, or ex-

ploration goals using natural language. The system would then translate these natural

language inputs into structured queries or operations. By integrating sequencing queries,

the system could guide users through a step-by-step exploration process, with each query

building upon the results of the previous one, contributing to a cumulative understanding.

Finally, at certain points or upon user request, the system could provide summaries that

distill key insights from the ongoing exploration, acting as checkpoints and offering users

a snapshot of their discoveries. The system could also integrate Large Language Models

(LLMs). This integration would allow the interpretation of natural language queries as HI-

FUN queries, enabling users to express their exploration goals in a more intuitive manner.

This adaptability would enhance the system’s user-friendliness and intuitiveness.

System. Transformation of HIFUN Rewriting Rules to SPARQL Rules. We could optimize

the queries expressed in HIFUN through the process of query rewriting. This involves

expressing a query in terms of one or more other queries, facilitating the reuse of pre-

9.1. Future Work and Research 99

evaluated results stored in a cache. As an extension of this effort, the future work could

involve the translation of the optimized HIFUN queries into SPARQL fostering a cohesive

and efficient querying execution.

System: Further testing and improvement. Looking forward, we are going to evaluate the

model’s performance on extensive datasets to check its scalability and identify potential

optimizations required for handling large-scale data. What we are prioritizing are user-

friendly features, intelligibility, and scalability to meet the needs of novice and expert users

alike.

System. Extend HIFUN with actions that specify the desired visualization We could in-

vestigate enriching HIFUN with actions that specify the desired visualization. In this way,

at the stage of results visualization, the system could consider these actions and produce

an appropriate visualization

System. Visualization we aim to enrich the model, and the system RDF-ANALYTICS with

additional visualization features for enhancing the intelligibility of analytical results and

offering users a more intuitive understanding of complex data. In particular, we are going

to integrate interactive 2D interactive charts, graphs, and diagrams for making insights

clearer, allowing users to grasp analytical findings more intuitively and quickly. Further-

more, we are going to add customizable visualization options for enabling users to tailor

the presentation of analytical results to their specific needs, thereby enhancing the overall

user experience in exploring and interpreting RDF data.

100

Bibliography

[1] Ibrahim Abdelaziz, Razen Harbi, Semih Salihoglu, and Panos Kalnis. Combining

vertex-centric graph processing with sparql for large-scale rdf data analytics. IEEE

Transactions on Parallel and Distributed Systems, 28(12):3374–3388, 2017.

[2] Alberto Abelló, Oscar Romero, Torben Bach Pedersen, Rafael Berlanga, Victoria

Nebot, Maria Jose Aramburu, and Alkis Simitsis. Using semantic web technologies

for exploratory olap: a survey. IEEE transactions on knowledge and data engineering,

27(2):571–588, 2014.

[3] Konrad Abicht, Georges Alkhouri, Natanael Arndt, Roy Meissner, and Michael Mar-

tin. Cubeviz. js: a lightweight framework for discovering and visualizing rdf data

cubes. 2017.

[4] Bilal Abu-Salih. Domain-specific knowledge graphs: A survey. Journal of Network

and Computer Applications, 185:103076, 2021.

[5] Akritas Akritidis and Yannis Tzitzikas. Demonstrating interactive SPARQL formula-

tion through positive and negative examples and feedback. In 26th International

Conference on Extending Database Technology, EDBT 2023, 2023.

[6] Keith Alexander, Richard Cyganiak, Michael Hausenblas, and Jun Zhao. Describing

linked datasets with the void vocabulary. 2011.

[7] Esraa Ali, Annalina Caputo, Séamus Lawless, and Owen Conlan. Personalizing type-

based facet ranking using BERT embeddings, 2021.

[8] Waqas Ali, Muhammad Saleem, Bin Yao, Aidan Hogan, and Axel-Cyrille Ngonga

Ngomo. A survey of RDF stores & SPARQL engines for querying knowledge graphs.

VLDB Journal, 2021. (accepted for publication).

[9] Renzo Angles. The property graph database model. In AMW, 2018.

[10] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter Boncz, George Fletcher, Clau-

dio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan Sequeda,

et al. G-core: A core for future graph query languages. In Proceedings of the 2018

International Conference on Management of Data, pages 1421–1432, 2018.

101

102 Bibliography

[11] Francesco Antoniazzi and Fabio Viola. Rdf graph visualization tools: A survey. In

2018 23rd Conference of Open Innovations Association (FRUCT), pages 25–36. IEEE,

2018.

[12] Grigoris Antoniou and Frank Van Harmelen. A Semantic Web Primer. MIT Press, MA

02142, 2004.

[13] Marcelo Arenas, Gonzalo I Diaz, and Egor V Kostylev. Reverse engineering SPARQL

queries. In Proceedings of the 25th International Conference on World Wide Web,

pages 239–249, 2016.

[14] Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Šarūnas Marciuška,

and Dmitriy Zheleznyakov. Faceted search over RDF-based knowledge graphs. Jour-

nal of Web Semantics, 37:55–74, 2016.

[15] Sören Auer, Allard Oelen, Muhammad Haris, Markus Stocker, Jennifer D’Souza,

Kheir Eddine Farfar, Lars Vogt, Manuel Prinz, Vitalis Wiens, and Mohamad Yaser

Jaradeh. Improving access to scientific literature with knowledge graphs. Bibliothek

Forschung und Praxis, 44(3):516–529, 2020.

[16] Elham Akbari Azirani, François Goasdoué, Ioana Manolescu, and Alexandra Roatiş.

Efficient OLAP operations for RDF analytics. In 2015 31st IEEE International Confer-

ence on Data Engineering Workshops, pages 71–76. IEEE, 2015.

[17] Ciro Baron Neto, Kay Müller, Martin Brümmer, Dimitris Kontokostas, and Sebastian

Hellmann. Lodvader: An interface to lod visualization, analyticsand discovery in

real-time. In Proceedings of the 25th International Conference Companion on World

Wide Web, pages 163–166, 2016.

[18] Wouter Beek, Javier D Fernández, and Ruben Verborgh. Lod-a-lot: a single-file en-

abler for data science. In Proceedings of the 13th International Conference on Seman-

tic Systems, pages 181–184, 2017.

[19] Mohamed Ben Ellefi, Zohra Bellahsene, John G Breslin, Elena Demidova, Stefan

Dietze, Julian Szymański, and Konstantin Todorov. Rdf dataset profiling–a survey

of features, methods, vocabularies and applications. Semantic Web, 9(5):677–705,

2018.

[20] Boualem Benatallah, Hamid Reza Motahari-Nezhad, et al. Scalable graph-based

OLAP analytics over process execution data. Distributed and Parallel Databases,

34:379–423, 2016.

Bibliography 103

[21] Nikos Bikakis, George Papastefanatos, Melina Skourla, and Timos Sellis. A hier-

archical framework for efficient multilevel visual exploration and analysis. CoRR,

abs/1511.04750, 2015.

[22] Nikos Bikakis, Melina Skourla, and George Papastefanatos. rdf: Synopsviz–a frame-

work for hierarchical linked data visual exploration and analysis. In European Se-

mantic Web Conference, pages 292–297. Springer, 2014.

[23] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,

Richard Cyganiak, and Sebastian Hellmann. DBpedia-a crystallization point for the

web of data. Journal of web semantics, 7(3):154–165, 2009.

[24] Šejla Čebirić, François Goasdoué, Haridimos Kondylakis, Dimitris Kotzinos, Ioana

Manolescu, Georgia Troullinou, and Mussab Zneika. Summarizing semantic graphs:

a survey. The VLDB journal, 28(3):295–327, 2019.

[25] Manos Chatzakis, Michalis Mountantonakis, and Yannis Tzitzikas. RDF-

sim: similarity-based browsing over DBpedia using embeddings. Information,

12(11):440, 2021.

[26] E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP (On-Line Analytical Process-

ing) to User-Analysts: An IT Mandate. E. F. Codd and Associates, 1993.

[27] Aba-Sah Dadzie and Matthew Rowe. Approaches to visualising linked data: A survey.

Semantic Web, 2(2):89–124, 2011.

[28] Gonzalo Diaz, Marcelo Arenas, and Michael Benedikt. SPARQLByE: Querying RDF

data by example. Proceedings of the VLDB Endowment, 9(13):1533–1536, 2016.

[29] Eleftherios Dimitrakis, Konstantinos Sgontzos, and Yannis Tzitzikas. A survey on

question answering systems over linked data and documents. Journal of intelligent

information systems, 55(2):233–259, 2020.

[30] Dimitar Dimitrov, Erdal Baran, Pavlos Fafalios, Ran Yu, Xiaofei Zhu, Matthäus Zloch,

and Stefan Dietze. TweetsCOV19–a knowledge base of semantically annotated

tweets about the COVID-19 pandemic. In Proceedings of the 29th ACM International

Conference on Information & Knowledge Management, pages 2991–2998, 2020.

[31] Syeda Sana e Zainab, Muhammad Saleem, Qaiser Mehmood, Durre Zehra, Stefan

Decker, and Ali Hasnain. FedViz: A visual interface for SPARQL queries formulation

and execution. In VOILA@ ISWC, page 49, 2015.

[32] Jennifer English, Marti Hearst, Rashmi Sinha, Kirsten Swearingen, and Ka-Ping Yee.

Hierarchical faceted metadata in site search interfaces. In CHI’02 Extended Abstracts

on Human Factors in Computing Systems, pages 628–639, 2002.

104 Bibliography

[33] Ivan Ermilov, Jens Lehmann, Michael Martin, and Sören Auer. Lodstats: The

data web census dataset. In International Semantic Web Conference, pages 38–46.

Springer, 2016.

[34] Lorena Etcheverry and Alejandro A Vaisman. QB4OLAP: a new vocabulary for OLAP

cubes on the semantic web. In Proceedings of the Third International Conference on

Consuming Linked Data, volume 905, pages 27–38. CEUR-WS. org, 2012.

[35] Pavlos Fafalios, Kostas Petrakis, Georgios Samaritakis, Korina Doerr, Athina Kritso-

taki, Yannis Tzitzikas, and Martin Doerr. FAST CAT: collaborative data entry and

curation for semantic interoperability in digital humanities. Journal on Computing

and Cultural Heritage (JOCCH), 14(4):1–20, 2021.

[36] Laura Faulkner. Beyond the five-user assumption: Benefits of increased sample

sizes in usability testing. Behavior Research Methods, Instruments, & Computers,

35:379–383, 2003.

[37] Leila Feddoul, Sirko Schindler, and Frank Löffler. Automatic facet generation and

selection over knowledge graphs. In International Conference on Semantic Systems,

pages 310–325. Springer, 2019.

[38] Alberto Ferrari and Marco Russo. Introducing Microsoft Power BI. Microsoft Press,

2016.

[39] Sébastien Ferré. SPARKLIS: a SPARQL endpoint explorer for expressive question

answering. In ISWC posters & demonstrations track, 2014.

[40] Sébastien Ferré. Sparklis: An expressive query builder for SPARQL endpoints with

guidance in natural language. Semantic Web, 8(3):405–418, 2017.

[41] Sébastien Ferré. Analytical queries on vanilla RDF graphs with a guided query

builder approach. In International Conference on Flexible Query Answering Systems,

pages 41–53. Springer, 2021.

[42] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker,

Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor.

Cypher: An evolving query language for property graphs. In Proceedings of the 2018

International Conference on Management of Data, pages 1433–1445, 2018.

[43] Ningchao Ge, Peng Peng, Zheng Qin, and Mingdao Li. Fedaggs: Optimizing aggre-

gate queries evaluation in federated rdf systems. In International Conference on Web

Information Systems Engineering, pages 527–535. Springer, 2021.

Bibliography 105

[44] Olaf Görlitz and Steffen Staab. Splendid: Sparql endpoint federation exploiting void

descriptions. COLD, 782, 2011.

[45] Armin Haller, Javier D Fernández, Maulik R Kamdar, and Axel Polleres. What are

links in linked open data? a characterization and evaluation of links between knowl-

edge graphs on the web. Journal of Data and Information Quality (JDIQ), 12(2):1–34,

2020.

[46] SM Shamimul Hasan, Donna Rivera, Xiao-Cheng Wu, Eric B Durbin, J Blair Chris-

tian, and Georgia Tourassi. Knowledge graph-enabled cancer data analytics. IEEE

journal of biomedical and health informatics, 24(7):1952–1967, 2020.

[47] Ali Hasnain, Qaiser Mehmood, Syeda Sana e Zainab, and Aidan Hogan. Sportal: pro-

filing the content of public sparql endpoints. International Journal on Semantic Web

and Information Systems (IJSWIS), 12(3):134–163, 2016.

[48] Patrick Hoefler, Michael Granitzer, Vedran Sabol, and Stefanie Lindstaedt. Linked

data query wizard: A tabular interface for the semantic web. In Extended Semantic

Web Conference, pages 173–177. Springer, 2013.

[49] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,

Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebas-

tian Neumaier, et al. Knowledge graphs. ACM Computing Surveys (CSUR), 54(4):1–

37, 2021.

[50] Dilshod Ibragimov, Katja Hose, Torben Bach Pedersen, and Esteban Zimányi. Pro-

cessing aggregate queries in a federation of SPARQL endpoints. In The Semantic

Web. Latest Advances and New Domains: 12th European Semantic Web Conference,

ESWC 2015, Portoroz, Slovenia, May 31–June 4, 2015. Proceedings 12, pages 269–285.

Springer, 2015.

[51] Dilshod Ibragimov, Katja Hose, Torben Bach Pedersen, and Esteban Zimányi. Opti-

mizing aggregate SPARQL queries using materialized RDF views. In The Semantic

Web–ISWC 2016: 15th International Semantic Web Conference, Kobe, Japan, October

17–21, 2016, Proceedings, Part I 15, pages 341–359. Springer, 2016.

[52] Antoine Isaac and Bernhard Haslhofer. Europeana linked open data–data. euro-

peana. eu. Semantic Web, 4(3):291–297, 2013.

[53] Kim Ahlstrøm Jakobsen, Alex B Andersen, Katja Hose, and Torben Bach Pedersen.

Optimizing rdf data cubes for efficient processing of analytical queries. In COLD,

2015.

106 Bibliography

[54] Mohamad Yaser Jaradeh, Allard Oelen, Kheir Eddine Farfar, Manuel Prinz, Jennifer

D’Souza, Gábor Kismihók, Markus Stocker, and Sören Auer. Open research knowl-

edge graph: Next generation infrastructure for semantic scholarly knowledge. In

Proceedings of the 10th International Conference on Knowledge Capture, pages 243–

246, 2019.

[55] Maulik R Kamdar and Mark A Musen. Phlegra: Graph analytics in pharmacology

over the web of life sciences linked open data. In Proceedings of the 26th Interna-

tional Conference on World Wide Web, pages 321–329, 2017.

[56] Evgeny Kharlamov, Luca Giacomelli, Evgeny Sherkhonov, Bernardo Cuenca Grau,

Egor V Kostylev, and Ian Horrocks. Semfacet: Making hard faceted search easier. In

Proceedings of the 2017 ACM on Conference on Information and Knowledge Manage-

ment, pages 2475–2478, 2017.

[57] Jakub Kĺımek, Jiřı́ Helmich, and Martin Nečaskỳ. Payola: Collaborative linked data

analysis and visualization framework. In Extended Semantic Web Conference, pages

147–151. Springer, 2013.

[58] Yuta Kobayashi, Hiroyuki Shindo, and Yuji Matsumoto. Scientific article search sys-

tem based on discourse facet representation. Proceedings of the AAAI Conference on

Artificial Intelligence, 33:9859–9860, 07 2019.

[59] Mikko Koho, Esko Ikkala, Petri Leskinen, Minna Tamper, Jouni Tuominen, and Eero

HyvG’Anen. Warsampo knowledge graph: Finland in the second world war as linked

open data. Semantic Web Interoperability, Usability, Applicability, 2020. In press.

[60] Vangelis Kritsotakis, Yannis Roussakis, Theodore Patkos, and Maria Theodoridou.

Assistive query building for semantic data. In SEMANTICS Posters&Demos, 2018.

[61] Petri Leskinen, Goki Miyakita, Mikko Koho, and Eero Hyvönen. Combining faceted

search with data-analytic visualizations on top of a sparql endpoint. In CEUR Work-

shop Proceedings, 2018.

[62] Hao Li, Chee-Yong Chan, and David Maier. Query from examples: An iterative,

data-driven approach to query construction. Proceedings of the VLDB Endowment,

8(13):2158–2169, 2015.

[63] Alexander Loth. Visual analytics with Tableau. John Wiley & Sons, 2019.

[64] Pierre Maillot, Olivier Corby, Catherine Faron, Fabien Gandon, and Franck Michel.

KartoGraphI: Drawing a Map of Linked Data. In ESWC 2022 - 19th European Seman-

tic Web Conferences, Hersonissos, Greece, May 2022. Springer.

Bibliography 107

[65] Eetu Mäkelä. Aether–generating and viewing extended void statistical descriptions

of rdf datasets. In European Semantic Web Conference, pages 429–433. Springer,

2014.

[66] Mohamed Nadjib Mami, Damien Graux, Harsh Thakkar, Simon Scerri, Sören Auer,

and Jens Lehmann. The query translation landscape: a survey. arXiv preprint

arXiv:1910.03118, 2019.

[67] Paolo Manghi, Alessia Bardi, Claudio Atzori, Miriam Baglioni, Natalia Manola,

Jochen Schirrwagen, Pedro Principe, Michele Artini, Amelie Becker, Michele De Bo-

nis, et al. The openaire research graph data model. Zenodo, 2019.

[68] Kostas Manioudakis and Yannis Tzitzikas. Faceted search with object ranking and

answer size constraints. ACM Transactions on Information Systems (TOIS), 39(1):1–

33, 2020.

[69] Michael Martin, Konrad Abicht, Claus Stadler, Axel-Cyrille Ngonga Ngomo, Tom-

maso Soru, and Sören Auer. Cubeviz: Exploration and visualization of statistical

linked data. In Proceedings of the 24th International Conference on World Wide Web,

pages 219–222, 2015.

[70] Franck Michel, Fabien Gandon, Valentin Ah-Kane, Anna Bobasheva, Elena Cabrio,

Olivier Corby, Raphaël Gazzotti, Alain Giboin, Santiago Marro, Tobias Mayer, et al.

Covid-on-the-Web: Knowledge graph and services to advance COVID-19 research.

In International Semantic Web Conference, pages 294–310. Springer, 2020.

[71] Nandana Mihindukulasooriya, Marı́a Poveda-Villalón, Raúl Garcı́a-Castro, and

Asunción Gómez-Pérez. Loupe-an online tool for inspecting datasets in the linked

data cloud. In ISWC (Posters & Demos), 2015.

[72] José Moreno-Vega and Aidan Hogan. GraFa: Scalable faceted browsing for RDF

graphs. In International Semantic Web Conference, pages 301–317. Springer, 2018.

[73] Michalis Mountantonakis, Carlo Allocca, Pavlos Fafalios, Nikos Minadakis, Yannis

Marketakis, Christina Lantzaki, and Yannis Tzitzikas. Extending void for expressing

connectivity metrics of a semantic warehouse. In PROFILES@ ESWC, 2014.

[74] Michalis Mountantonakis and Yannis Tzitzikas. How linked data can aid machine

learning-based tasks. In International Conference on Theory and Practice of Digital

Libraries, pages 155–168. Springer, 2017.

[75] Michalis Mountantonakis and Yannis Tzitzikas. LODsyndesis: global scale knowl-

edge services. Heritage, 1(2):23, 2018.

108 Bibliography

[76] Michalis Mountantonakis and Yannis Tzitzikas. Large-scale semantic integration of

linked data: A survey. ACM Computing Surveys (CSUR), 52(5):103, 2019.

[77] Michalis Mountantonakis and Yannis Tzitzikas. Lodchain: Strengthen the connec-

tivity of your rdf dataset to the rest lod cloud. In International Semantic Web Confer-

ence, pages 537–555. Springer, 2022.

[78] Michalis Mountantonakis and Yannis Tzitzikas. Using multiple RDF knowledge

graphs for enriching ChatGPT responses. In European Conference on Machine

Learning and Principles and Practice of Knowledge Discovery in Databases, ECML

PKDD, 2023.

[79] Lekha Nair, Sujala Shetty, and Siddhanth Shetty. Interactive visual analytics on big

data: Tableau vs d3. js. Journal of e-Learning and Knowledge Society, 12(4), 2016.

[80] Christos Nikas, Pavlos Fafalios, and Yannis Tzitzikas. Open domain question answer-

ing over knowledge graphs using keyword search, answer type prediction, SPARQL

and pre-trained neural models. In International Semantic Web Conference, pages

235–251. Springer, 2021.

[81] Christos Nikas, Giorgos Kadilierakis, Pavlos Fafalios, and Yannis Tzitzikas. Keyword

search over RDF: Is a single perspective enough? Big Data and Cognitive Computing,

4(3):22, 2020.

[82] Xi Niu, Xiangyu Fan, and Tao Zhang. Understanding faceted search from data sci-

ence and human factor perspectives. ACM Transactions on Information Systems

(TOIS), 37(2):1–27, 2019.

[83] Maria-Evangelia Papadaki, Panagiotis Papadakos, Michalis Mountantonakis, and

Yannis Tzitzikas. An interactive 3D visualization for the LOD cloud. In EDBT/ICDT

Workshops, pages 100–103, 2018.

[84] Maria-Evangelia Papadaki, Nicolas Spyratos, and Yannis Tzitzikas. Towards interac-

tive analytics over RDF graphs. Algorithms, 14(2):34, 2021.

[85] Maria-Evangelia Papadaki and Yannis Tzitzikas. Rdf-analytics: Interactive analytics

over rdf knowledge graphs. 2023.

[86] Maria-Evangelia Papadaki and Yannis Tzitzikas. Unifying faceted search and analyt-

ics over rdf knowledge graphs. Manuscript under review, 2023.

[87] Maria-Evangelia Papadaki, Yannis Tzitzikas, and Michalis Mountantonakis. A brief

survey of methods for analytics over RDF knowledge graphs. Analytics, 2(1):55–74,

2023.

Bibliography 109

[88] Maria-Evangelia Papadaki, Yannis Tzitzikas, and Nicolas Spyratos. Analytics over

RDF graphs. In International Workshop on Information Search, Integration, and Per-

sonalization, 2019.

[89] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics of sparql, 2008.

[90] Ruben Prieto-Diaz. Implementing faceted classification for software reuse. Com-

munications of the ACM, 34(5):88–97, 1991.

[91] F. Gandon R. Gazzotti, F. Michel. Cord-19 named entities knowledge graph (cord19-

nekg), 2020.

[92] C Rajeswari, Dyuti Basu, and Namita Maurya. Comparative study of big data analyt-

ics tools: R and tableau. In IOP Conference Series: Materials Science and Engineering,

volume 263, page 042052. IOP Publishing, 2017.

[93] Padmashree Ravindra, Vikas V Deshpande, and Kemafor Anyanwu. Towards scal-

able RDF graph analytics on mapreduce. In Proceedings of the 2010 Workshop on

Massive Data Analytics on the Cloud, pages 1–6, 2010.

[94] Chavva Subba Reddy, Ravi Sankar Sangam, and B Srinivasa Rao. A survey on busi-

ness intelligence tools for marketing, financial, and transportation services. In

Smart intelligent computing and applications, pages 495–504. Springer, 2019.

[95] Tony Russell-Rose and Tyler Tate. Designing the search experience: The information

architecture of discovery. Elsevier, 2013.

[96] Giovanni Sacco. Dynamic taxonomies: A model for large information bases. IEEE

Transactions on Knowledge and Data Engineering, 12(3):468–479, 2000.

[97] Giovanni Maria Sacco and Yannis Tzitzikas. Dynamic Taxonomies and Faceted

Search: Theory, Practice, and Experience. Springer, Verlag, 2009.

[98] Ahmad Sakor, Samaneh Jozashoori, Emetis Niazmand, Ariam Rivas, Kostantinos

Bougiatiotis, Fotis Aisopos, Enrique Iglesias, Philipp D Rohde, Trupti Padiya, Anasta-

sia Krithara, et al. Knowledge4covid-19: A semantic-based approach for construct-

ing a covid-19 related knowledge graph from various sources and analysing treat-

ments’ toxicities. Journal of Web Semantics, page 100760, 2022.

[99] Percy E Rivera Salast, Michael Martin, Fernando Maia Da Mota, Sören Auer, Karin K

Breitman, and Marco A Casanova. Olap2datacube: An ontowiki plug-in for statisti-

cal data publishing. In 2012 Second International Workshop on Developing Tools as

Plug-Ins (TOPI), pages 79–83. IEEE, 2012.

110 Bibliography

[100] Evgeny Sherkhonov, Bernardo Cuenca Grau, Evgeny Kharlamov, and Egor V Kostylev.

Semantic faceted search with aggregation and recursion. In International Semantic

Web Conference, pages 594–610. Springer, 2017.

[101] Arnaud Soulet and Fabian M Suchanek. Anytime large-scale analytics of linked open

data. In International Semantic Web Conference, pages 576–592. Springer, 2019.

[102] Nicolas Spyratos. A functional model for data analysis. In International Conference

on Flexible Query Answering Systems, 2006.

[103] Nicolas Spyratos and Tsuyoshi Sugibuchi. HIFUN-a high level functional query lan-

guage for big data analytics. Journal of Intelligent Information Systems, 51:529–555,

2018.

[104] Nicolas Spyratos and Tsuyoshi Sugibuchi. Data exploration in the HIFUN language.

In Flexible Query Answering Systems: 13th International Conference, FQAS 2019,

Amantea, Italy, July 2–5, 2019, Proceedings 13, pages 176–187. Springer, 2019.

[105] Radhika Sridhar, Padmashree Ravindra, and Kemafor Anyanwu. Rapid: Enabling

scalable ad-hoc analytics on the semantic web. In International Semantic Web Con-

ference, pages 715–730. Springer, 2009.

[106] Minna Tamper, Petri Leskinen, Eero Hyvönen, Risto Valjus, and Kirsi Keravuori. An-

alyzing biography collections historiographically as linked data: Case national biog-

raphy of finland. Semantic Web, (Preprint):1–35, 2022.

[107] Bogaard Tessel. Metadata categorization for identifying search patterns in a digital

library. 75(2):270–286, Jan 2019.

[108] Yannis Theoharis, Yannis Tzitzikas, Dimitris Kotzinos, and Vassilis Christophides.

On graph features of semantic web schemas. IEEE Transactions on Knowledge and

Data Engineering, 20(5):692–702, 2008.

[109] Ilaria Tiddi and Stefan Schlobach. Knowledge graphs as tools for explainable ma-

chine learning: A survey. Artificial Intelligence, 302:103627, 2022.

[110] Paul Town and Fadi Thabtah. Data analytics tools: A user perspective. Journal of

Information & Knowledge Management, 18(01):1950002, 2019.

[111] Gerwald Tschinkel, Eduardo E Veas, Belgin Mutlu, and Vedran Sabol. Using seman-

tics for interactive visual analysis of linked open data. In ISWC (Posters & Demos),

pages 133–136, 2014.

[112] Daniel Tunkelang. Faceted search, volume 5. Morgan & Claypool Publishers, USA,

2009.

Bibliography 111

[113] Yannis Tzitzikas. FS2KG: From file systems to knowledge graphs (demo). In ISWC

2022, 2022.

[114] Yannis Tzitzikas, Nikos Manolis, and Panagiotis Papadakos. Faceted exploration of

RDF/S datasets: a survey. Journal of Intelligent Information Systems, 48(2):329–364,

2017.

[115] Yannis Tzitzikas, Yannis Marketakis, Nikos Minadakis, Michalis Mountantonakis,

Leonardo Candela, Francesco Mangiacrapa, et al. Methods and tools for supporting

the integration of stocks and fisheries. In Information and Communication Tech-

nologies in Modern Agricultural Development: 8th International Conference, HAICTA

2017, Chania, Crete, Greece, September 21–24, 2017, Revised Selected Papers 8, pages

20–34. Springer, 2019.

[116] Yannis Tzitzikas, Maria-Evangelia Papadaki, and Manos Chatzakis. A spiral-like

method to place in the space (and interact with) too many values. Journal of In-

telligent Information Systems, pages 1–25, 2021.

[117] Yannis Tzitzikas and Panagiotis Papadakos. Interactive exploration of multi-

dimensional and hierarchical information spaces with real-time preference elicita-

tion. Fundamenta Informaticae, 122(4):357–399, 2013.

[118] Dylan Van Assche, Thomas Delva, Gerald Haesendonck, Pieter Heyvaert, Ben

De Meester, and Anastasia Dimou. Declarative rdf graph generation from hetero-

geneous (semi-) structured data: A systematic literature review. Journal of Web Se-

mantics, page 100753, 2022.

[119] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. Pgql: a

property graph query language. In Proceedings of the Fourth International Workshop

on Graph Data Management Experiences and Systems, pages 1–6, 2016.

[120] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledge-

base. Communications of the ACM, 57(10):78–85, 2014.

[121] Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang Yang,

Douglas Burdick, Darrin Eide, Kathryn Funk, Yannis Katsis, Rodney Kinney, et al.

Covid-19 open research dataset (cord-19), 2020.

[122] Gerhard Weikum. Knowledge graphs 2021: a data odyssey. Proceedings of the VLDB

Endowment, 14(12):3233–3238, 2021.

[123] David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant,

Tanvir Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, et al. DrugBank 5.0: a major

112 Bibliography

update to the drugbank database for 2018. Nucleic acids research, 46(D1):D1074–

D1082, 2018.

[124] Airton Zancanaro, LD Pizzol, RDM Speroni, José Leomar Todesco, and FAO Gauthier.

Publishing multidimensional statistical linked data. In Proceedings of the Fifth Inter-

national Conference on Information, Process, and Knowledge Management, pages

290–304, 2013.

[125] Peixiang Zhao, Xiaolei Li, Dong Xin, and Jiawei Han. Graph cube: on warehousing

and OLAP multidimensional networks. In Proceedings of the 2011 ACM SIGMOD

International Conference on Management of data, pages 853–864, 2011.

[126] Lei Zou, M Tamer Özsu, Lei Chen, Xuchuan Shen, Ruizhe Huang, and Dongyan Zhao.

gstore: a graph-based sparql query engine. The VLDB journal, 23(4):565–590, 2014.

