
Adaptive Delay Injection for Improving TCP
Performance in 802.11 WLANs with High Delay

Variability

by

Georgios I. Fotiadis

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Masters of Science

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CRETE, HERAKLION

Fall 2005

UNIVERSITY OF CRETE

DEPARTMENT OF COMPUTER SCIENCE

Adaptive Delay Injection for Improving TCP Performance in 802.11

WLANs with High Delay Variability

Author:
Georgios Fotiadis
Department of Computer Science

President of the Committee:
Vasilios Siris
Assistant Professor
Department of Computer Science

Members of the Committee:
Apostolos Traganitis
Professor
Department of Computer Science

Maria Papadopouli
Assistant Professor
Department of Computer Science

Approved by:
Dimitris Plexousakis
Chairman of Graduate Studies
Department of Computer Science

Heraklion, November 2005

v

Abstract

During the past few years, wireless local area networks (WLANs) based on the

IEEE 802.11 protocol have experienced a tremendous growth. This success is primarily

driven by the need for universal access to the Internet and by the ability offered to

users to move freely without the need of cables. One of the challenges in wireless

networks is to integrate to the existing Internet infrastructure. However, the wireless

path can not guarantee reliable data transfer, introducing high packet error rates and

delay variability. Hence, the interaction of existing transport protocols initially designed

for wireline paths, such as TCP, with wireless protocols, such as 802.11, appears to be

highly challenging. TCP performs poorly in wireless environments, mainly because

packet losses are misinterpreted as congestion signals by the TCP sender. Unnecessary

congestion avoidance invocations lead to transmission rate throttling by the TCP sender

and, hence, reduced throughput. Moreover, local retransmissions, user mobility, and

handoffs, often introduce high delay variability to the packets being transmitted. High

delay variability can result in spurious timeouts, i.e. timeouts that could have been

avoided if the sender’s retransmission timeout (RTO) was larger. Spurious timeouts

significantly degrade TCP throughput, since the congestion window is unnecessarily

reduced to one segment. Moreover, they result in unnecessary segment retransmissions

by the TCP sender, which consume battery power if the sending node is the mobile user.

In this work, we present an approach that improves TCP performance in both

infrastructure and multihop wireless networks. Firstly, our approach focuses on pre-

venting wireless losses by applying a robust data-link layer retransmission mechanism.

Secondly, we eliminate the negative effects of high delay variability, which is caused by

local retransmissions in bursty loss environments, by injecting artificial delay to TCP

acknowledgements at the access point so as to indirectly influence the sender’s RTO

value. The proposed algorithm is implemented solely at the access point, without re-

quiring changes at the sending and receiving nodes. Moreover, the algorithm can adapt

vi

its behavior to network characteristics such as packet error rate, propagation delay and

number of participating mobile nodes. Experiments with the NS-2 simulation tool show

that the proposed adaptive delay injection method achieves significant throughput im-

provements and reduces unnecessary TCP retransmissions, hence reduces a mobile TCP

sender’s battery consumption.

Supervisor of Dissertation: Vasilios A. Siris

Assistant Professor

University of Crete

PerÐlhyh

Ta teleutaÐa qrìnia, h qr sh asÔrmatwn diktÔwn pou basÐzontai sto prwtìkol-

lo 802.11 emfanÐzei shmantik ex�plwsh. H epituqÐa aut ofeÐletai, kurÐwc, sthn eu-

rÔterh an�gkh gia prìsbash sto diadÐktuo kaj¸c kai sth dunatìthta pou parèqetai sto

qr sth gia eleÔjerh metakÐnhsh. MÐa apì tic prokl seic sta asÔrmata dÐktua eÐnai na

enswmatwjoÔn sthn up�rqousa upodom tou diadiktÔou. Par' ìla aut�, to asÔrmato mè-

so den parèqei axiopistÐa kat� th met�dosh, eis�gwntac meg�lo rujmì laj¸n kai meg�lh

metablhtìthta sthn kajustèrhsh. 'Etsi, h allhlepÐdrash uparqìntwn prwtokìllwn dik-

tÔwn ta opoÐa èqoun sqediasteÐ gia ensÔrmata dÐktua, ìpwc to TCP, me prwtìkolla asÔr-

matwn diktÔwn, ìpwc to 802.11, apoteleÐ meg�lh prìklhsh. 'Omwc, to prwtìkollo TCP

parousi�zei meiwmènh apìdosh se asÔrmata perib�llonta, kurÐwc lìgw thc parermhneÐac

thc ap¸leiac pakètwn sto asÔrmato mèso wc s mata sumfìrhshc. Oi mh anagkaÐec kl -

seic twn mhqanism¸n apofug c sumfìrhshc odhgoÔn se meÐwsh tou rujmoÔ met�doshc tou

TCP apostolèa kai, telik�, se meiwmènh apìdosh tou prwtokìllou. Epiplèon, oi topikèc

epanametadìseic, h kinhtikìthta tou qr sth kai oi metapompèc (handoffs) eis�goun meg�l-

h metablhtìthta sthn kajustèrhsh twn pakètwn. Aut h meg�lh metablhtìthta sthn

kajustèrhsh èqei wc apotèlesma thn mh anagkaÐa l xh (timeout) tou metrht epanamet�-

doshc tou apostolèa, ta opoÐa ja mporoÔsan na eÐqan apofeqjeÐ an h tim tou metrht

(RTO) autoÔ tan megalÔterh. H l xh tou metrht epanamet�doshc mei¸nei shmantik�

thn apìdosh tou TCP, afoÔ qwrÐc na up�rqei lìgoc to par�juro sumfìrhshc (congestion

window) mei¸netai sto èna. Epiplèon, odhgoÔn se aqreÐastec epanametadìseic pakètwn,

oi opoÐec katanal¸noun �skopa thn enèrgeia twn asÔrmatwn kìmbwn.

Se aut thn ergasÐa, parousi�zoume mÐa mèjodo h opoÐa stoqeÔei sthn aÔxhsh thc

apìdoshc tou prwtokìllou TCP se asÔrmata dÐktua upodom c kai pollapl¸n alm�twn.

H proteinìmenh mèjodoc exaleÐfei ta l�jh sto asÔrmato monop�ti prosarmìzontac è-

nan isqurì mhqanismì topik c epanamet�doshc. Epiplèon, antimetwpÐzoume to prìblh-

viii

ma thc meg�lhc metablhtìthtac sthn kajustèrhsh, h opoÐa eis�getai apì tic topikèc

epanametadìseic se perib�llonta me ekr xeic laj¸n, prosjètwntac teqnht kajustèrhsh

se pakèta epibebai¸sewn sto shmeÐo prìsbashc (access point). Epiplèon, h proteinìmenh

mèjodoc prosarmìzetai se sugkekrimèna qarakthristik� tou diktÔou, ìpwc o rujmìc la-

j¸n, h kajustèrhsh di�doshc kai o arijmìc twn asÔrmatwn kìmbwn. Ta peir�mata pou ègi-

nan ston prosomoiwt diktÔou Network Simulator 2, deÐqnoun ìti o proteinìmenoc algìri-

jmoc petuqaÐnei beltÐwsh sthn apìdosh tou TCP kai mei¸nei ton arijmì twn mh anagkaÐ-

wn epanametadìsewn, apofeÔgontac thn �skoph katan�lwsh enèrgeiac stouc asÔrmatouc

kìmbouc.

Epìpthc Kajhght c: BasÐleioc A. SÔrhc

EpÐkouroc Kajhght c

Panepist mio Kr thc

ix

Acknowledgments

The present study is the result of personal hard work. However, the outcome of this

work could have been far from success without the help of many people. Their support

and willingness to help was more than invaluable and I hope that I will come up to their

expectations.

Assistant professor Vassilios A. Siris, my supervisor, has a great contribution to

the present work. He had always been available to discuss about my thesis and had

always led me towards the right directions. This is why am I grateful to him.

I would also like to thank my friends and colleagues at the pleasant environment of

ICS-FORTH. Giorgos Stamataki’s friendship and priceless advices, as far as the present

work is concerned, have been of great importance to me. Also, Despoina Triantafullidou

was always more than available to provide her valuable ns-2 advice to me. Moreover, I

would like to thank Stefanos Papadakis, Vaggelis Angelakis.

Furthermore, I would like to thank my friends for their support throughout my

studies. The whole world’s conference proceedings are not enough to write about the

contribution of Giorgos K., Ilias, Antonis, Giorgos P., Alkis and Miltos. ”The times

they are a-changin” but my feelings about them will not. Last, but not least, I owe the

maximum to Eleftheria for her love, support and patience during this difficult period of

my life.

Nevertheless, nothing would be true if it was not for my family. My father, Giannis,

my mother, Chrysoula, my sister, Maria, and my brother, Pavlos, were always there for

me to support and help in any way they could. For this, I dedicate this work to them.

xi

To my family

Sthn oikogèneia mou

xiii

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Problem statement . 2
1.2 Contribution of the present work . 3
1.3 Relation to previous work . 5
1.4 Thesis outline . 5
1.5 Outcome . 6

2 Background Theory 7
2.1 The 802.11 wireless LAN standard . 7

2.1.1 The 802.11 operation modes . 8
2.1.2 The 802.11 MAC Layer . 9

2.2 The Transmission Control Protocol . 12
2.2.1 TCP congestion control . 13
2.2.2 The TCP timestamp option . 15

3 TCP performance in presence of high delay variabilities 17
3.1 TCP over wireless networks . 17
3.2 TCP spurious timeouts . 18

3.2.1 Impact of spurious timeouts on TCP throughput 20
3.2.2 Impact of spurious timeouts on useful transmission ratio 21

4 ACK delay injection for improving TCP performance in bursty loss
environments 25
4.1 The delay injection method . 25
4.2 Improving TCP performance in presence of bursty losses 27

4.2.1 Suppressing wireless losses . 27
4.2.2 Adaptive algorithm to absorb high delay variability 28

4.3 Considering downlink traffic . 32

xiv

5 Experimental Evaluation 35
5.1 Performance metrics . 36
5.2 Infrastructure networks experiments . 36

5.2.1 Single user experiment . 38
5.2.2 Experiments with different propagation delays 40
5.2.3 Experiments with multiple users 43

5.3 Multihop networks experiments . 45
5.4 Algorithm parameter selection . 48

5.4.1 Delay factor (delay factor) selection 48
5.4.2 Subtraction threshold (subthresh) selection 49

5.5 Comparison to other methods . 50
5.5.1 Comparison to static delay injection 50
5.5.2 Comparison to TCP Westwood 51

6 Related Work 53
6.1 Improving TCP performance over wireless links 53

6.1.1 End-to-end mechanisms . 53
6.1.2 Link layer approaches . 54
6.1.3 Split connections . 55

6.2 Improving TCP performance in wireless networks with high delay variability 55
6.2.1 GBN retransmission policy . 56
6.2.2 The Eifel algorithm . 56
6.2.3 Delay jitter algorithm . 57
6.2.4 Transparent TCP proxies . 58

6.3 Relation to real traffic measurements . 58

7 Conclusions and issues for further research 61

Bibliography 63

xv

List of Figures

2.1 An Extended Service Set (ESS): Infrastructure Wireless Network 8
2.2 An Independent Basic Service Set (IBSS): Ad-hoc Wireless Network . . 9
2.3 The 802.11 CSMA/CA mechanism . 10
2.4 The 802.11 RTS/CTS mechanism . 11

3.1 Impact of spurious timeouts on the useful transmission ratio 22

4.1 Calculation of the pdelay variable . 29
4.2 Delay Injection Procedure . 31
4.3 The modified round robin serving mechanism 33

5.1 Infrastructure Network Topology . 37
5.2 End-to-end TCP throughput and useful transmission ratio as a function

of PER in a single flow experiment . 38
5.3 Number of Timeouts and RTT as a function of PER in a single flow

experiment . 40
5.4 End-to-end TCP throughput with different wired propagation delays . . 41
5.5 Useful transmission ratio with different wired propagation delays 43
5.6 Impact of the wired propagation delay on TCP throughput for different

PERs. 43
5.7 End-to-end TCP throughput and useful transmission ratio for two par-

ticipating users and 15 ms wired propagation delay 44
5.8 End-to-end TCP throughput and useful transmission ratio for two par-

ticipating users and 80 ms wired propagation delay 45
5.9 Aggregate throughput as a function of the number of mobile nodes for

different PERs . 46
5.10 Multihop network topology . 46
5.11 End-to-end TCP throughput as a function of PER for two and three hops 47
5.12 Percentage difference of our method and the inf-RL as a function of the

number of hops . 48
5.13 Delay factor parameter selection . 49
5.14 Comparison of our method with static delay injection for different PERs 51

xvi

5.15 Comparison of DI-method to TCP Westwood 52

xvii

List of Tables

5.1 Number of timeouts as a function of propagation delay, when PER = 20% 42

Chapter 1

Introduction

Over the last decade, wireless communication systems have experienced a deto-

nating growth. Wireless connectivity allows users to move freely while connected to a

wireless local area network (WLAN), while, at the same time, it renders such a network

set up an easy task, since it does not require cables or infrastructure. This develop-

ment is primarily driven by the transformation of what has been largely a medium for

supporting mobile telephony into a medium for supporting other services, such as the

transmission of video, images, text, and data.

In 1997, the Institute of Electronic and Electrical Engineering (IEEE) released the

802.11 as the first international standard for wireless local area networks, specifying two

data rates of 1 and 2 Mb/s. Two years later became available the 802.11b and 802.11a,

operating at a maximum data rate of 11 and 54 Mb/s, respectively. Furthermore, in

June 2003, a third standard was ratified, 802.11g, operating at a maximum data rate

of 108 Mb/s. Later in June 2005, the 802.11e standard was introduced defining a set

of Quality of Service enhancements for LAN applications. The research on wireless

communications is on continuous progress, targeting at maximum speeds of 540 Mb/s

(802.11n).

One of the challenges in wireless communication systems is their integration into

today’s Internet infrastructure, providing their clients with the ability to access existing

2 Introduction

information as well as with the experience of world wide connectivity. Though, in

order for this integration to be proper, existing network transport protocol, such as

the Transmission Control Protocol (TCP), must perform efficiently on top of emerging

wireless protocols. Nowadays, 90% of the total Internet traffic is TCP traffic [1, 2], so it

is very important for this protocol to interact properly with the most popular wireless

protocol; i.e. 802.11.

1.1 Problem statement

TCP was originally designed for wireline paths; hence, the particular characteris-

tics of wireless paths impose anomalies in its proper operation. High and bursty packet

error rates (PERs), introduced by the lossy wireless channel, and high delay variability,

introduced by data-link layer retransmissions, mobility and handoffs, reduce signifi-

cantly TCP’s performance and render flow and congestion control in such environments

a difficult task.

TCP provides mechanisms so that the sender controls the amount of data injected

to the path, in order to avoid network congestion. Hence, the TCP sender probes the

available bandwidth of the network path between the source and destination nodes and

adapts its transmission rate accordingly. In wireline networks, network congestion is

detected when the sender realizes that some transmitted packet(s) is (are) lost. The TCP

sender detects packet losses with the aid of the following two methods: (i) expiration

of its retransmission timer, and, (ii) reception of three duplicate acknowledgements.

The TCP sender assumes that packet losses are attributed to buffer overflow at some

intermediate router’s queue and, therefore, throttles its transmission rate by reducing

its congestion window (cwnd).

However, network congestion is not always the reason for packet losses in wireless

environments. Error-prone transmissions over the radio path and high delay variability,

which can lead to timeouts, are misinterpreted as signals of congestion by the TCP

sender that unnecessarily reduces its transmission rate. Robust local error recovery

1.2 Contribution of the present work 3

mechanisms mitigate the problem of wireless losses but impose additional delay to pack-

ets being locally retransmitted. Due to the burstiness of wireless channel errors, local

error recovery mechanisms result in highly variable packet transmission delays, which

can have a serious impact on TCP performance.

In this paper, we focus on the impact of high delay variabilities, often referred to

as delay spikes, on TCP performance. Delay spikes mostly appear in environments with

bursty losses, where multiple consecutive data-link layer frames can be corrupted. Delay

spikes can be attributed to data-link layer retransmissions, user mobility and handoffs.

Thus, they result in a sudden delay increase of specific TCP segments in contrast to the

delay experienced by other segments of the same TCP session. This sudden increase

to the delay of a segment, and therefore of its round trip time, can lead to spurious

TCP timeouts, i.e., timeouts that could have been avoided if the retransmission timer

(RTO) value of the sender was larger. Spurious timeouts have a negative impact on

TCP throughput, since the congestion window (cwnd) is unnecessarily reduced to one

segment. This negative impact becomes even more serious in emerging high bandwidth

wireless networks, where the bandwidth delay product (BDP) is fairly large and, as a

result, the cwnd can obtain large values. Moreover, the lossy and high-delay wireless

environment makes it difficult for the TCP sender to quickly recover the optimal cwnd

value. Finally, spurious timeouts result in unnecessary segment retransmissions by the

TCP sender, since packets are not actually lost, but only delayed. These unnecessary

retransmissions, which can be plenty in high bandwidth-delay environments, needlessly

consume additional network resources, such as energy from the mobile nodes’ battery.

1.2 Contribution of the present work

In this work, we present an approach that improves TCP performance in both

infrastructure and multihop wireless environments. The performance improvements

concern the end-to-end TCP throughput and the useful transmission ratio; the latter

is defined as the ratio of the useful bytes transmitted to the total amount of bytes

4 Introduction

transmitted, at transport layer. The total amount of bytes includes packets that were

unnecessarily retransmitted by the TCP sender. A smaller value of the useful transmis-

sion ratio for a specific amount of data indicates that a larger amount of packets and,

hence, of battery power, is required in order to transmit the data volume. Our approach

focuses on eliminating wireless losses by applying a robust link layer retransmission

mechanism. Persistent local retransmissions prevent packet losses even in a bursty loss

environment and, as a result, solve the problem of packet losses being misinterpreted as

congestion signals. Furthermore, we address the negative effects of high delay variability,

which are caused by retransmission in bursty loss environments, by injecting artificial

delay to specific acknowledgement (ACK) packets at the access point (AP) to indirectly

influence the retransmission timeout (RTO) value of the TCP sender. Hence, the delay

injection method intends to render the TCP sender’s retransmission timer more robust

against delay variabilities and, therefore, prevent spurious timeouts.

The main advantage of our method is that it does not require changes to the exist-

ing TCP implementation at the sending or receiving nodes. The proposed delay injection

algorithm can be implemented solely at the access point. Moreover, the proposed algo-

rithm adapts according to specific network characteristics, such as propagation delays,

number of participating mobile nodes, and packet error rates (PERs) at the wireless

radio path. Hence, the proposed method can be applied to a wide variety of network

topologies.

Our method was tested using the Network Simulator 2 (ns-2). Using ns-2, we

showed the improvements achieved on TCP performance in wireless environments with

bursty losses and how these improvements depend on the propagation delay of the path,

number of participating wireless stations, and PER. We tested the proposed method for

both infrastructure wireless LANs and multihop wireless networks connected to wireline

backbone.

1.3 Relation to previous work 5

1.3 Relation to previous work

The work most related to ours is [3], that shows that the injection of static or

random delays at static or random intervals can lead to throughput improvements in

GPRS networks. However, because of the static values of the delay injected, the per-

formance of this approach is highly dependent on specific network characteristics, such

as propagation delays, number of mobile nodes, and bit error rates. Furthermore the

method is implemented at the TCP sender, whereas our method is implemented at the

AP, without requiring any modification to the end systems.

Other methods [4, 5] focus on changing the retransmission timer calculation for-

mula to make the retransmission timer more robust to large changes of the round trip

time (RTT) of a TCP session. Recall that RTT is time needed for a TCP segment to

reach the destination and the correspoinding ACK to travel back to the sender. All such

approaches require changes at the TCP senders. Moreover, such changes may improve

TCP throughput in presence of high delay variability but introduce uncertainties in

the operation of TCP in wireline environments, since making the retransmission timer

more robust by changing its calculation formula may delay the detection of congestion

in wired environments.

Finally in [6, 7] the authors propose an algorithm, implemented at the TCP sender,

so as to distinguish between packet losses due to wireless transmission and due to con-

gestion. As with the approaches mentioned before, this algorithm is implemented at

the TCP sender. Moreover, the first unnecessary retransmission can not be avoided,

imposing overhead to the algorithm’s performance.

1.4 Thesis outline

The rest of this report is organized as follows:

In Chapter 2, we present the basic features of wireless LANs and the most popular

wireless architectures. Furthermore, we introduce the fundamentals of the two proto-

6 Introduction

cols, whose interaction is studied in this work; the wireless 802.11 protocol and the

Transmission Control Protocol (TCP).

In Chapter 3, we introduce performance-critical issues of TCP’s operation in wire-

less environments. More specifically, we analyze TCP performance in environments with

high delay variability and show their negative effect on the end-to-end TCP throughput

and the useful transmission ratio.

Further, in Chapter 4, we describe our method for improving TCP performance,

that can be applied to both infrastructure and multihop wireless LANs.

In Chapter 5, we present and discuss the numerical results of the application of

the proposed method in wireless LANs using the Network Simulator 2 (NS-2) simulation

tool.

Later, in Chapter 6, we give a brief summary of related work as far as TCP

performance improvements in wireless networks is concerned, identifying where it differs

from our work.

Finally, in Chapter 7, we conclude our work by summarizing the main findings

and give some future research directions.

1.5 Outcome

Part of the the work presented in this report has been included in the proceedings

of the International Symposium in Wireless Communication Systems (ISWCS ’05), held

in Sienna, Italy in September 2005, with the title ”Improving TCP Throughput in 802.11

WLANs with High Delay Variability”, by Georgios I. Fotiadis and Vasilios A. Siris.

Chapter 2

Background Theory

In this chapter, we briefly summarize two protocols used in this work; the 802.11

wireless protocol and the Transmission Control Protocol.

2.1 The 802.11 wireless LAN standard

The 802.11 standard addresses wireless local area networking where the connected

devices communicate over the air to other devices that are within close proximity to each

other, by defining the medium access control (MAC) and physical (PHY) layers.

The 802.11 standard is similar in most respects to the IEEE 802.3 Ethernet stan-

dard. Specifically, it addresses the following issues:

• Functions required for 802.11 compliant devices to operate either in a peer-to-peer

fashion or integrated with an existing wired LAN

• Operation of an 802.11 device with possibly overlapping 802.11 wireless LANs and

concerning the mobility of this device within multiple wireless LANs

• MAC level access control and data delivery services to the upper layers of the

802.11 network

• Physical layer signaling techniques and interfaces

8 Background Theory

• Privacy and security of user data being transferred over the wireless medium

The 802.11 protocol defines two pieces of equipment; the wireless station, which

is usually a PC equipped with a wireless network interface card, and the access point

(AP), which acts as a bridge between the wireless and wired networks. The access point

usually consists of both a wireless and a wired network interface as well as bridging

software conforming to the 802.1d standard.

2.1.1 The 802.11 operation modes

The 802.11 standard defines two operation modes: the infrastructure mode and

ad hoc mode. In infrastructure mode, the wireless network consists of at least one

access point, connected to a wireline network, and a set of wireless stations. This simple

configuration is called a Basic Service Set (BSS). All stations in the BSS communicate via

the access point and not directly to each other. The Extended Service Set (ESS), extends

the range of mobility to an arbitrary range, by combining two or more BSSs, forming a

single subnetwork. The means by which an access point of a BSS communicates with

another access point of another BSS is called Distribution System (DS); e.g. an Ethernet

backbone infrastructure. An 802.11 ESS is depicted in Figure 2.1.

Distribution System

BSS

AP

BSS

AP

Figure 2.1: An Extended Service Set (ESS): Infrastructure Wireless Network

Ad hoc mode, also called Independent Basic Service Set (IBSS), is a set of 802.11

wireless stations that communicate directly with one another without an access point

2.1 The 802.11 wireless LAN standard 9

infrastructure. An adhoc network is shown in Figure 2.2.

IBSS

Figure 2.2: An Independent Basic Service Set (IBSS): Ad-hoc Wireless Network

The ad hoc mode is useful for quickly and easily setting up a wireless network

anywhere that a wireless infrastructure does not exist or is not required. One common

use is to create a short-lived network to support a meeting in a conference room.

2.1.2 The 802.11 MAC Layer

The 802.11 MAC layer provides a variety of functions that manage and maintain

communication between 802.11 wireless stations by coordinating access to a shared radio

channel. Hence, it provides functionality to allow reliable data delivery over the wireless

physical medium. The data delivery itself is based on an asynchronous, best-effort,

connectionless delivery of MAC layer data. There is no guarantee that the frames will

be delivered successfully. Other basic functions of the 802.11 MAC layer are: data

transaction, scanning, authentication, encryption, RTS/CTS and fragmentation.

The MAC 802.11 basic access method

The access to the shared wireless medium is controlled by coordination functions.

The basic access method, Carrier-Sense Multiple Access with Collision Avoidance (CS-

MA/CA), is provided by the distributed coordination function (DCF). If contention-free

service is required, it can be provided by the point coordination function (PCF), which

is built on top of the DCF. To gain priority over standard contention-based services, the

PCF allows stations to transmit frames after shorter intervals than the DCF.

10 Background Theory

CSMA/CA works by a ”listen before talk” scheme. This means that a station

wishing to transmit must first sense the radio channel to determine if another station is

transmitting. If the medium is not busy, the transmission may proceed. The CSMA/CA

protocol avoids collisions among stations sharing the medium by utilizing a random

backoff time if the station’s physical or logical sensing mechanism indicates a busy

medium. During periods in which the channel is idle, the node wishing to transmit

decreases its backoff counter. When the backoff counter reaches zero the node transmits

the frame. This type of multiple access ensures fair channel sharing while avoiding

collisions. The 802.11 CSMA/CA mechanism is depicted in Figure 2.3

Figure 2.3: The 802.11 CSMA/CA mechanism

CSMA/CA uses three different types of interframe spaces to coordinate priorities

in accessing the medium. The SIFS is used for the highest priority transmissions such

as acknowledgements and RTS/CTS frames. The PIFS is used by the PCF during

contention free operation. Finally, the DIFS is the minimum medium idle time for

contention-based services.

The MAC 802.11 RTS/CTS mechanism

In order to minimize packet collisions, steming from the fact that a station may

not be able to hear another transmitting node, the 802.11 MAC layer has a virtual

carrier sensing mechanism, the RTS/CTS. According to this mechanism, a station wish-

ing to transmit data firstly sends a control frame, the Request-to-Send (RTS) frame,

2.1 The 802.11 wireless LAN standard 11

which includes the source, destination address and the duration of the transaction. The

duration of the transaction is stored in the duration field. If the medium if free, the

destination node responds with the Clear-to-Send (CTS) frame and, afterwards, the

transaction can begin. Stations receiving either an RTS or a CTS, set their virtual

carrier sense indicator, called network allocation vector (NAV), for the given duration

and wait for this specific amount of time before they sense the medium again. By using

NAV, stations can ensure that data transaction, after the RTS/CTS handshake, will not

be interrupted. The operation of the RTS/CTS mechanism is depicted in Figure 2.4.

Figure 2.4: The 802.11 RTS/CTS mechanism

The RTS/CTS mechanism is governed by the MAC 802.11 RTSThreshold; the

RTS/CTS handshake is used only for frames that are longer than the RTSThreshold.

The default value of the RTSThreshold parameter, as defined in the 802.11 standard,

is 2348 bytes.

The MAC 802.11 retransmission mechanism

Like most other network protocols, 802.11 provides reliability through retransmis-

sion. Successful data transmission comprise from data frame delivery and reception of

the corresponding acknowledgement frame. Hence, the entire frame transaction must

complete for a transmission to be successful. When a station transmits a frame, it must

receive an acknowledgment from the receiver within a specific time interval or it will

12 Background Theory

consider the transmission to have failed.

Failed transmissions increment a retry counter associated with every frame (or

fragment). All mobile stations keep two retry counters: the short retry count and the

long retry count. Frames that are shorter than the RTSThreshold are associated with

the short retry counter, while frames longer that the RTSThreshold are associated

with the short retry one. Frames assigned to the short retry counter are transmitted

a maximum ShortRetryLimit number of times, while for the ones associated with the

long retry counter, LongRetryLimit number of times. If the retry counter for a specific

frame reaches the corresponding maximum threshold value, the frame is dropped and

the transmission failure is reported to the upper layers. The default values, as the

802.11 standard defines, for the ShortRetryLimit and LongRetryLimit are 7 and 4,

respectively.

Applying large values to the RetryLimit parameters denotes a robust data link

retransmission mechanism, since frames are transmitted a lot of times before being

dropped. Hence, the problem of frame corruption is treated locally, at the mobile nodes

or the access point. On the other hand, assigning small RetryLimit values suggests han-

dling successful packet delivery in an end-to-end fashion; hence, reliable data transaction

is considered by the transport layer protocol.

2.2 The Transmission Control Protocol

The Transmission Control Protocol (TCP) is a connection-oriented, end-to-end

reliable protocol build on top of the Internet Protocol (IP). TCP makes up for IP’s

deficiencies by providing reliable, stream-oriented connections. Hence, TCP guarantees

that the data sent by the TCP sender will reach their destination uncorrupted and in

the order they were sent. This reliability is build by adding sequencing information and

some kind of checksum to each packet sent. Also, TCP adds support to detect errors

or lost data and to trigger retransmission until the data is correctly and completely

received. Besides reliable packet delivery, TCP provides congestion control, i.e. the

2.2 The Transmission Control Protocol 13

means for detecting that the network becomes overloaded and the actions to be followed

in order to alleviate the congestion problem. We will focus on TCP congestion control

by presenting, later in this section, the most important functions and algorithms needed

to provide such a functionality.

2.2.1 TCP congestion control

TCP congestion control is implemented with the aid of two variables that are

added per TCP connection; the congestion window and the receiver window. The con-

gestion window (cwnd) is a sender-side limit on the amount of data that the sender

can transmit into the network before receiving an acknowledgment (ACK), while the

receiver’s advertised window (rwnd) is a receiver-side limit on the amount of data that

the receiver can accept. The minimum of cwnd and rwnd governs data transmission.

TCP detects congestion by the following two methods: expiration of the sender’s re-

transmission timer and reception of a specific number (usually three) of duplicate ac-

knowledgements.

TCP maintains a timer for every segment’s transmission; the retransmission timer.

When the sender transmits a TCP segment, the retransmission timer is started. If the

sender does not receive an acknowledgement for the corresponding segment before the

timer expires, then the segment is regarded lost and, hence, has to be retransmitted.

Then, the segment is retransmitted and the retransmission timer is re-started. The

determination of the retransmission timer value (RTO) for a specific segment is based on

the round trip time (RTT) of the successfully transmitted preceding segments. Hence,

for the k − th incoming TCP acknowledgement, the RTO is defined by the following

equations:

SRTT [k] = (1− a) ∗ SRTT [k − 1] + a ∗RTT [k] (2.1)

V RTT [k] = (1− b) ∗ V RTT [k − 1] + b ∗ (|RTT [k]− SRTT [k]|) (2.2)

14 Background Theory

RTO = SRTT [k] + c ∗ V RTT [k] (2.3)

This formula calculates RTO as the sum of the exponential smoothing average of

RTT (SRTT) plus the its variance (V RTT). Typical values for a, b and c, as defined

in [8], are 1
8 , 1

4 and 4 respectively.

The second way for the TCP sender to detect congestion is through the recep-

tion of duplicate acknowledgements, i.e. ACKs that acknowledge other than the last

segment sent. A reception of, usually, three duplicate ACKs with the same sequence

number, lead the TCP sender conclude that the segment with sequence number at the

duplicate ACKs never reached the destination and is, therefore, considered lost. Hence,

the corresponding packet is retransmitted without having to wait for the retransmission

timer to expire.

After TCP has detected congestion using one of the two aforementioned methods,

the sender follows specific methods to alleviate the congestion problem. TCP congestion

control implements the following four algorithms:

• Slow start: According to the slow start algorithm, the TCP sender increments its

cwnd by one for every incoming ACK that acknowledges data. This results in cwnd

doubling every RTT and, hence, suggests an exponential growth of the cwnd. Slow

start ends when cwnd exceeds ssthresh or when congestion is observed. Parameter

ssthresh, is typically set to cwnd
2 when the retransmission timer of the TCP expires.

The slow start algorithm is followed at the beginning of a new connection (to

probe the available bandwidth of the path) and when the retransmission timer of

the TCP sender expires, denoting heavy congestion at the network.

• Congestion avoidance: During congestion avoidance, the cwnd is incremented by

one full-sized segment per round-trip time (RTT), suggesting linear growth of

the cwnd. Congestion avoidance is followed when, during slow start phase, the

cwnd value exceeds ssthresh and continues until congestion is detected. It is also

followed when light congestion, though reception of three duplicate acknowledge-

ments, is detected.

2.2 The Transmission Control Protocol 15

• Fast retransmit: According to the fast retransmit algorithm, TCP retransmits a

segment when a specific number (usually three) of duplicate ACKs arrive at the

sender. Thereafter, TCP halves the cwnd and enters the congestion avoidance

phase.

• Fact recovery: After the fast retransmit algorithm sends what appears to be the

missing segment, the ”fast recovery” algorithm governs the transmission of new

data until a non-duplicate ACK arrives. According to the fast recovery algorithm,

TCP increases the cwnd by one for every duplicate ACK it receives.

2.2.2 The TCP timestamp option

In most TCP implementations, the RTO calculation formula, comprised from

Eqs. (2.1), (2.2) and (2.3), is based upon a sample of only one segment per congestion

window. While this yields in an adequate approximation of the RTT for small cwnds,

it results in poor RTT estimates in environments with large bandwidth-delay products,

such as emerging wireless networks. As a result, more accurate RTT measurements are

required.

The TCP timestamp option [9] is an option provided by the TCP protocol to solve

the problem of inaccurate RTT measurements. If the TCP timestamp option is enabled,

then the sender the sender places a timestamp in each data segment transmitted, indi-

cating the time that the corresponding segment was sent by the sender, and the receiver

reflects the timestamp back in ACK segments. The timestamp option adds an overhead

of 10 bytes to every transmitted TCP segment. However, this 10-byte overhead corre-

sponds to, only, about 1% of a conventional TCP segment length (usually being 1400

bytes) and, hence, can be regarded negligible.

Chapter 3

TCP performance in presence of

high delay variabilities

3.1 TCP over wireless networks

TCP was initially designed for wired networks but the growing popularity of mo-

bile applications has established its deployment in wireless environments as well. TCP

performs well over wireline networks by adapting the volume of data that the sender

transmits according to end-to-end delays and congestion losses. However, wireless net-

works pose different path characteristics, which can lead to severe TCP performance

degradation.

According to the TCP operation, packet losses are the most convenient way to

detect congestion in wireline networks where physical layer related errors are very rare

and most losses are due to buffer overflow at the intermediate router queues. As de-

scribed in Chapter 2, when a packet loss is detected the sender reduces its transmission

rate, so to allow the overloaded buffers to drain. However, network congestion is usually

not the reason for packet losses in wireless networks. Error-prone transmissions over the

wireless channel are misinterpreted as signals of congestion from the TCP sender, which

unnecessarily throttles the transmission rate by reducing the congestion window (cwnd)

18 TCP performance in presence of high delay variabilities

and by invoking congestion avoidance routines. Therefore, the deflated cwnd limits the

data that are allowed to be injected to the network, i.e. the network carries less data

that it can actually handle.

The performance of TCP can further degrade when multiple TCP segments, be-

longing to the same window, are dropped at the wireless radio channel. In this case,

the impact of packet losses being misinterpreted as signals of congestion has an even

more negative effect on TCP performance. TCP is shown to recover very slowly from

such a situation; the authors in [10] show that TCP recovers by one lost segment per

round trip time. This multiple packet loss scenario is not far from reality in bursty loss

environments, where the wireless channel remains in a bad state for a significant amount

of time. It is assumed that during the bad state hardly any packet can be successfully

transmitted over the radio path.

3.2 TCP spurious timeouts

Besides packet losses being misinterpreted as congestion signals, TCP comes up

with another unpleasant phenomenon in mobile environments. The wireless radio chan-

nel often introduces high delay variability to packets transmitted over it, leading to

unpleasant effects as far as TCP performance is concerned. High delay variability can

be attributed to one of the following:

• Link-layer retransmissions: In bursty loss environments packets being transmitted

over the wireless medium can be corrupted at the data-link layer in a consecutive

way. As a result, the mobile nodes (or the access point) spend a respectful amount

of time on retransmitting the packets that are continuously corrupted. These local

retransmissions introduce high delay to packets that undergo retransmission in

comparison to other packets that were transmitted without any problem.

• User mobility: Mobile users often move inside their basic service set (BSS) area.

The fluctuating distance between the mobile user and the access point results

3.2 TCP spurious timeouts 19

in different transmission times in packets of the same TCP session and, hence,

introduce delay variability.

• Handoffs: Extensive user movement in a wireless environments can often lead to

users changing cells and, therefore, the network automatically switches coverage

responsibility from one base station to another. The switching process is called

handoff and requires a significant amount of time to accomplish. This additional

amount of time needed is experienced by the mobile user as high delay variability.

In this work, we focus on delay variability that is introduced by bursty packet

losses at the data-link layer. In order to analyze the operation of TCP in a bursty loss

environment, we consider a mixed wired and wireless LAN topology, where all packets

exchanged between the sender and the receiver cross the access point of the WLAN.

Suppose that until time t, the wireless channel is in a good state and, therefore, successful

packet transaction takes place. Let RTOut be the value of the sender’s retransmission

timer as it is determined by the successfully received acknowledgement packets, until

time t. Now, at time t the channel enters a bad state, where hardly any packet can be

transmitted over the radio path. Packets that were set for transmission by the mobile

nodes are corrupted and, thus, have to be retransmitted. Supposing that the wireless

channel remain in the bad state for a large amount of time, a corrupted packet can be

retransmitted several times, leading to substantial increment of its RTT. This sudden

delay increment, often referred to as delay spike, of the RTT of a specific TCP segment

can result in the expiration of the retransmission timer of the TCP sender; this will

happen if the RTT of the segment that undergoes local retransmission exceeds RTOut.

This timeout that the TCP sender experiences is called spurious, since it could

have been avoided if the retransmission timeout (RTO) value of the TCP sender was

larger. Upon a spurious timeout, the sender reduces its cwnd to one segment, leading to

severe throughput degradation. Moreover, the TCP segment that triggered the spurious

timeout, along with all the other segments of the same window, are unnecessarily retrans-

mitted. These unnecessary retransmissions lead, also, to substantial reduction of the

20 TCP performance in presence of high delay variabilities

useful transmission ratio, which results in wasteful consumption of network resources,

such as the battery energy of the wireless nodes. The impact of spurious timeouts on

both the TCP throughput and the useful transmission ratio is shown in the following

two sections.

3.2.1 Impact of spurious timeouts on TCP throughput

As explained before, high delay variability can lead to expiration of the sender’s

retransmission timer and, hence, to unnecessary cwnd reduction to one segment. After

the cwnd deflation, the TCP sender enters the slow start phase and starts increasing

the cwnd in an exponential way; the phase until the sender fully recovers the value of

cwnd just before the timer, unnecessarily, expired is called congestion window restoration

phase. This period of time reflects the time that the network path is under-utilized, since

the TCP sender transmits with a rate lower than the network can accept.

In order to estimate the impact of a spurious timeout on TCP throughput, suppose

that RTT is the mean round trip time of a TCP session and that a is the value of the

cwnd when a spurious timeout at the TCP sender occurs. We assume that a spurious

timeout takes place after the cwnd has stabilized in its optimum value, i.e. the value of

cwnd at which TCP operates after the initial startup phase. Recall that, the optimum

value of the cwnd for a TCP session is equal to the bandwidth-delay product (BDP) of

the path, which denotes the maximum amount of data needed to fill the path. In other

words, the BDP gives an upper bound of the cwnd, since the path can not carry more

than BDP data. Hence,

a ≈ bandwidth ∗ delay (3.1)

From Eq. 3.1, we clearly see the dependence of the cwnd restoration phase on the

bandwidth and the delay (hence the RTT) of the path. Note that, the bandwidth of a

path is the effective rate at which a single flow can transmit.

Also, after the spurious timeout, the TCP sender enters the slow start, where

3.2 TCP spurious timeouts 21

the cwnd is incremented in an exponential way. The increment of the cwnd is strongly

dependent on the delay of the path, since during slow start phase the cwnd is doubled

every RTT. Hence, the larger the delay of the path is, the longer the cwnd restoration

phase lasts. Hence, the network remains under-utilized for a larger amount of time,

decreasing end-to-end throughput severely. As a result, the impact of spurious timeouts

on TCP throughput is stronger in network paths with large bandwidth and RTTs.

3.2.2 Impact of spurious timeouts on useful transmission ratio

Besides end-to-throughput, spurious timeouts also have a negative impact on the

useful transmission ratio, due to unnecessary retransmissions of TCP segments by the

sender. The impact of spurious timeouts on the useful transmission ratio is depicted in

Fig. 3.1, which shows the packet and acknowledgment transmissions between the sender

and the receiver of a TCP session. The vertical axis of Fig. 3.1 depicts the time. The

Figure also shows the contents of the sending node’s wireless card buffer. Also, there

are two potential states that the wireless radio channel enters to: the good state, where

packet transmission takes place without any problem, and the bad state, where hardly

any packet can be successfully transmitted over the radio path.

So, at time t1 packet p1 is set for transmission by the mobile node, which also

has packets p2, p3 and p4 buffered at its wireless card. At time t2, the radio channel

enters a bad state, leading to p1 unsuccessful transmission. Though, due to the local

error recovery mechanism, packet p1 is retransmitted by the mobile node. However, the

channel remains in bad state for a significant amount of time, yielding to more than

one local retransmissions of p1
1. Continuous local retransmission of p1 introduces high

delay variability to the corresponding TCP segment and, as a result, at time t3 the

retransmission timer of the TCP sender expires; a spurious timeouts occurs. So, at time

t4, packet p1 is retransmitted by the TCP sender and is, therefore, put at the buffer of

the wireless card, right after packets p2, p3 and p4.

1Recall that the mobile nodes implement a strong local error recovery mechanism that suggests many
retransmissions of a corrupted packet.

22 TCP performance in presence of high delay variabilities

p
 1

p
 2

p
 3

p
 4

...

Mobile Sender
 Access Point
 Wired Receiver

p
 1
 x

x

x

x

x

x

p
 2

p
 3

p
 1

p
 2

p
 3

a
3

a
2

a
1

time

t
2

t
5

p
 4

t
4

p
 4

a
4
p
 1

a
4

t
7

p
 2

p
 3

p
 4

TCP
 sender

Retransmits
 p1

p1
 corrupted

p1
 Transm
 itted

p1
 Retransmitted
t
6

TCP
 sender

Retransmits
 p2
,
 p3

Wireless Card's Buffer

t
1

t
 3

TIMEOUT
 for
 p1

t
8

TCP
 sender

Retransmits
 p4

p
 1

p
 2
t
9

p2
 Retrans
 mitted

...

...

Channel enters the bad state

Channel returns in good state

Figure 3.1: Impact of spurious timeouts on the useful transmission ratio

Now, at time t5, the wireless channel returns in good state and, hence, packet p1 is

successfully transmitted over the radio path. After p1, all other packets that lie at the

wireless card’s buffer (p2, p3, p4 and the duplicate of p1) are successfully transmitted.

Hence, at time t6, packet p1 is unnecessarily transmitted by the mobile node. At time

t7, the acknowledgement for the first transmission of packet p1 travels back to the TCP

sender. The sender misinterprets acknowledgement a1 to be for the retransmitted packet

3.2 TCP spurious timeouts 23

p1 (the one transmitted after the timeout) and unnecessarily retransmits packets p2 and

p3, while being in slow start phase. Packets p2 and p3 are put at the wireless card’s buffer

and are later retransmitted by the mobile node. This process continues until all packets

that were on the card’s buffer when the spurious timeout occurred, are retransmitted.

As explained in Fig. 3.1, we see that the negative impact of spurious timeouts

the useful transmission ratio is even bigger for high cwnds. As a result, this impact is

dependent on the bandwidth-delay product of path, as with TCP throughput. Hence,

the negative effects of spurious timeouts on the useful transmission ration are even more

significant in high bandwidth and delay (RTT) paths.

Chapter 4

ACK delay injection for

improving TCP performance in

bursty loss environments

In the previous Chapter, we showed the negative impact of spurious timeouts

on the TCP end-to-end throughput and the useful transmission ratio. The impact is

greater on high bandwidth-delay paths, which will be the case for emerging and future

wireless communication systems. Indeed, the bandwidth of wireless networks is steadily

increasing and, furthermore, there is an increasing use of wireless metropolitan area

networks for Internet access. In this Chapter, we present our methodology for avoiding

spurious timeouts, and, hence, improving TCP performance, in wireless networks with

Internet connectivity.

4.1 The delay injection method

As stated before, spurious timeouts occur because instantaneous delay variability

is misinterpreted by the TCP sender as signal of congestion, leading to unnecessary ex-

piration of its retransmission timer. Hence, a spurious timeout could have been avoided

26 ACK delay injection for improving TCP performance in bursty loss environments

if the sender’s retransmission timer was aware of the sudden delay increment and would

not expire. So, an effective solution, without having to change the existing implementa-

tion of the TCP protocol or use an explicit signaling protocol, is to indirectly influence

the value of the TCP sender’s retransmission timer. As presented in Chapter 1 the

retransmission timer of the TCP sender is strongly dependent on the variance of the

RTT . Hence, an effective way for making the sender’s retransmission timer more robust

against delay variabilities is to, indirectly, increase the variance of the RTT by injecting

artificial delay to specifically chosen packets.

The delay injection method has two basic parameters that need to be defined;

the magnitude and frequency of the delay to be injected. The magnitude determines

how much delay will be injected, while the frequency determines which packets will be

delayed. So, by artificially delaying some packets of a TCP session, the variance of the

RTT can be increased. Thus, the retransmission timeout value (RTO) would receive

larger values, according to Eqs. (2.1), (2.2) and (2.3), and is, therefore, rendered more

robust again high delay variabilities.

However, the delay injection method introduces an interesting tradeoff; artificial

delay injection makes the sender’s retransmission timer more robust against delay vari-

abilities but increases the average RTT of the session. Because end-to-end-throughput is

inversely proportional to the RTT , an increase of the RTT can decrease the end-to-end

throughput.

In [3] the authors use the delay injection method to improve throughput in a

GPRS network. The proposed method suggests injecting static or random delay at

static or random intervals to TCP segments at the sender. Indeed, the method achieves

throughput improvements by preventing spurious timeouts. Though, the optimal values

of the magnitude and frequency of the injected delay differ according to the wireless

environment characteristics and, hence, the static parameter selection can not adapt to

different environments. The method we propose tries to eliminate this shortcoming by

introducing an adaptive delay injection algorithm.

4.2 Improving TCP performance in presence of bursty losses 27

4.2 Improving TCP performance in presence of bursty

losses

In this section, we present our methodology for improving TCP performance in

wireless LANs with bursty packet errors. We, mainly, focus on uplink traffic, i.e. data

traffic flowing from the mobile senders to the fixed receivers and acknowledgements to

the opposite direction. Our method solves the problem of reduced throughput using

two basic ideas: (a) eliminating bursty wireless losses using a robust local error recovery

mechanism at the data-link layer, (b) absorbing high delay variabilities, due to local

retransmissions, by injecting artificial delay to acknowledgement (ACK) packets at the

access point.

4.2.1 Suppressing wireless losses

As discussed in Chapter 3, TCP in wireless environments suffers from the mis-

interpretation of packet losses at the radio path as congestion signals. We avoid this

unpleasant phenomenon by adapting a robust retransmission mechanism at data link

layer. As stated in Chapter 2, two parameters govern the retransmission mechanism

of the 802.11 protocol: the ShortRetryLimit and LongRetryLimit, which denote the

maximum number of retransmission for short and long frames, respectively. We use the

same number of retransmissions for all data-link layer frames, regardless of their size.

We will refer to this parameter as RetryLimit, which denotes the maximum number of

times that a data-link layer frame is retransmitted.

We eliminate wireless losses by assigning a very large value to the RetryLimit

parameter at the mobile nodes. In the uplink direction, the RetryLimit parameter

affects only TCP segment retransmissions. Moreover, it does not affect other flows

from the same node, since if a single flow fails to transmit then no other flow from the

same node will be able to transmit. Hence, using a large RetryLimit parameter, it is

highly improbable for a data-link layer frame to be dropped, even if packet errors are

bursty, and packet losses are, almost, only due to congestion, as in wireline networks. In

28 ACK delay injection for improving TCP performance in bursty loss environments

other words, we hide from the TCP sender the unreliability of the wireless channel. We

will refer to this modification of the 802.11 protocol as the infinite-RetryLimit (inf-RL)

enhancement. However, persistent local retransmissions introduce an unpleasant effect;

packets being locally retransmitted can experience significantly larger delay than the

packets that did not undergo retransmission. In bursty loss environments these delay

variabilities are expected to be fairly large and can lead to spurious timeouts.

4.2.2 Adaptive algorithm to absorb high delay variability

Our goal is to develop an algorithm that absorbs high delay variability caused by

local retransmissions at the data-link layer. The algorithm’s objective is to dynamically

inject artificial delay to ACK packets, so that we indirectly influence the RTO calculation

and prevent it from expiring. An important observation is that the size of the delay

spike reflects the packet’s delay due to local retransmissions. Thus, this information,

considering the burstiness of errors in the wireless channel, provides the intuition of

how much delay we should inject in order to avoid potential spurious timeouts. The

packets which are selected to be delayed are TCP acknowledgement (ACK) packets that

reach the access point from the wired nodes. The access point implements the functions

needed for our adaptive delay injection method.

For the purposes of the algorithm, we define packet delay (pdelay) as the interval

from the time the mobile TCP sender transmits a packet until the time the correspond-

ing TCP acknowledgement reaches the access point. This interval is calculated from the

access point’s local time minus the TCP acknowledgement’s timestamp1, and includes

propagation delays, queuing delays, and delays spent on local retransmissions. Fig. 4.1

depicts the pdelay variable, which is calculated for every incoming TCP acknowledge-

ment at the access point.

Also, let average delay (avdelay) be the exponentially smoothed average of pdelay.

When there are no errors at the wireless channel, i.e. there are no link-layer retransmis-

1The TCP timestamp needs to be enabled. Also, this assumes that clocks are synchronized. If this
is not the case, the access point can estimate the time lag, and consider it in the calculation.

4.2 Improving TCP performance in presence of bursty losses 29

Internet

pdelay
 = local_time -
 timestamp

 data

ack

TCP receiver

TCP sender

ack

Figure 4.1: Calculation of the pdelay variable

sions, avdelay will include only the propagation and queuing delays. It is,

avdelay[k] = (1− a) ∗ avdelay[k − 1] + a ∗ pdelay[k] (4.1)

where k is the k − th incoming TCP ACK at the access point and a is given the

value of 1
8 . So, for a packet that undergoes local retransmission, pdelay will include the

time spent on these retransmissions. Hence, the difference of pdelay and avdelay gives

a good estimate of the time spent on local retransmissions, and therefore suggests the

delay we need to inject in order to avoid spurious timeouts.

In order to identify delay spikes that can lead to spurious timeouts, we apply a

formula similar to the TCP RTO calculation formula, as suggested in [8], on the variable

pdelay at the access point. So, for the k − th incoming TCP acknowledgement at the

access point, we have:

S[k] = (1− a) ∗ S[k − 1] + a ∗ pdelay[k] (4.2)

V [k] = (1− b) ∗ V [k − 1] + b ∗ (|pdelay[k]− S[k]|) (4.3)

dthresh = S[k] + c ∗ V [k] (4.4)

This formula calculates the dthresh variable as the sum of the smoothing aver-

age of pdelay (S) plus its variance (V). Typical values for a, b and c are 1
8 , 1

4 and 4

30 ACK delay injection for improving TCP performance in bursty loss environments

respectively, as suggested in [8]. Identification of the delay spike is crucial for our al-

gorithm since it indicates when delay should be injected. The dthresh is compared to

pdelay for every incoming acknowledgement at the access point in order to detect a delay

spike. Once a delay spike is detected, the delay D to inject is proportional (defined by

delay factor) to the size of the delay spike detected, i.e. pdelay minus avdelay. Hence

D =
pdelay − avdelay

delay factor

The algorithm, also, includes a linear reduction parameter (subthres2) of the injected

delay to avoid needlessly delaying packets when delay spikes are infrequent. A high level

description of the proposed algorithm, which runs for every ACK packet received by the

access point and travelling towards the mobile nodes, is shown below.

Algorithm 1 Adaptive delay injection algorithm
1: for all incoming ACKs do

2: pdelay = (ACK → timestamp)− local time

3: if pdelay > dthresh then

4: /*delay spike detection*/

5: D = (pdelay−avdelay)
delay factor

6: else

7: inject delay(D)

8: end if

9: D = D − subthresh

10: avdelay = (1− a) ∗ avdelay + a ∗ pdelay

11: update(dthresh)

12: end for

The inject delay() function adds delay D to the first ACK packet after the delay

spike is detected. All subsequent ACK packets that arrive within time D of the delayed

ACK are transmitted after it (i.e., no additional delay is added). ACKs that arrive

after time D of the first delayed ACK are again delayed by time D. The value of D

2Detailed explanation of the delay factor and subthresh parameter selection is included Chapter 5.

4.2 Improving TCP performance in presence of bursty losses 31

decreases linearly with each ACK that does not trigger a delay spike detection. Finally,

the update() function calculates the dthresh value according to equations (2.1), (2.2)

and (2.3).

The delay injection procedure is depicted in Fig. 4.2. Suppose that at some time,

the acknowledgment packet a arrives at the access point. Algorithm 1 detects a high

delay variability for ACK a and calculates the value D of the delay to be injected; ACK

a is transmitted without any delay. Afterwards, ACK b arrives at the access point; this

ACK is delayed by D. Subsequent ACKs (such as ACK c) that arrive before time D

elapses are not further delayed, hence, are transmitted immediately after packet b. An

ACK packet (d) that arrives after the interval D is delayed by an interval D−subthersh,

as the algorithm suggests. This procedure continues until either delay D is decreased

to 0 or a new delay spike is detected and the value D is re-calculated.

b

D

b

D -
 subthresh
 d

t

a

a

b

c

c

b
 c

d

Figure 4.2: Delay Injection Procedure

The reason why we implement the delay injection algorithm for ACK packets

reaching the access point from the wired part of the LAN, and not for TCP segment

that reach the access point by the mobile nodes, is that ACKs are just one hop away

from their final destination, i.e. the TCP sender that lies at the mobile nodes. Recalling

that pdelay of a TCP ACK equals to the RTT of the corresponding TCP segment minus

the propagation delay of the wireless path, the delay spike detection mechanism, almost,

32 ACK delay injection for improving TCP performance in bursty loss environments

simulates the TCP sender’s timeout detection mechanism. Therefore, we can be sure

enough when a delay variability will also be experienced as a timeout by the TCP sender.

This renders our adaptive delay injection algorithm adaptable to networks with different

propagation delays, since the case where a delay variability leads to a spurious timeout

depends on the delay of the path.

4.3 Considering downlink traffic

In the previous section, we presented the methodology for suppressing wireless

losses and absorbing high delay variabilities, when data packets were travelling from the

mobile nodes to the access point and ACKs to the opposite direction.

Suppressing wireless data packet losses at the uplink suggests assigning a large

value at the RetryLimit parameter of 802.11 at the mobile nodes. Though, suppress-

ing packet losses at the downlink presents different characteristics. Applying a strong

local error recovery mechanism at the access point (by assigning a large value at the

RetryLimit parameter) may have a negative impact in a scenario where multiple wire-

less nodes, with different radio channel quality, are being served by the same access

point. Suppose, that there is a wireless LAN with more than one participating wireless

nodes and that one of them has very low channel quality, i.e. a obstacle in front of

the mobile node is intercepted. Because of the large RetryLimit, the access point will

attempt several retransmissions of the same packet (destined to the mobile node with

the low channel quality) without success. Hence, other nodes, that may have a good

channel, will be prevented from transmitting.

In order to avoid situations, where the robust local error recovery mechanism

blocks packets destined to all mobile nodes, we propose a modified round-robin serv-

ing mechanism at the access point, shown in Fig. 4.3. The packet serving mechanism,

initially, suggests that there is a single queue for every destination mobile node; Queue

1, Queue 2, ..., Queue N for destination mobile nodes 1, 2, ... N, respectively. Packets

destined to each one of the destination nodes are served in a round robin fashion. More-

4.3 Considering downlink traffic 33

p
 1

......

Queue 1

Queue 2

Queue
 N

p
 2
 p
 1
 x

x

x

x

Figure 4.3: The modified round robin serving mechanism

over, every time the access point fails to transmit a packet to a destination mobile node,

then the unsuccessfully transmitted packet is not dropped, but is put back at the front

of the corresponding queue. For example, as shown in Fig. 4.3, suppose that packet

p1 destined to node 1 is set for transmission by the access point. Due to low channel

quality for node 1 the packet transmission fails for four consecutive times. Then, instead

of the packet being dropped it is put back to the front of Queue 1 and the access point

carries on with the next queue (Queue 2) and, hence, transmits packet p2. This way,

the access point implements a strong local error recovery mechanism, without blocking

packets that may have a good channel quality. Then, as with uplink data traffic, the

high delay variabilities, introduced by the local retransmissions, can be alleviated with

the aid of our adaptive delay injection algorithm.

Chapter 5

Experimental Evaluation

In this chapter, we present the experimental results from the application of our

method in single and multihop wireless networks with Internet infrastructure, based on

802.11. All experiments were conducted using the Network Simulator 2 (NS-2) [11]. We

compared three different approaches:

• Standard 802.11 (st-802.11): We used the standard 802.11 protocol implementa-

tion without any modification throughout the experiments. The default values for

the ShortRetryLimit and LongRetryLimit parameters are 7 and 4, respectively.

• Infinite-RetryLimit enhancement (inf-RL): This modification to the standard

802.11 considers assigning a very large value for both the ShortRetryLimit and

LongRetryLimit at the mobile nodes. Practically, we assigned the value 50 to

both of the parameters. In the remainder of this report both will be referred to

as RetryLimit parameter.

• Delay injection method (DI-method): This method combines the inf-RL enhance-

ment and the adaptive delay injection algorithm, presented in Chapter 4.

We tested all three methods in wireless topologies with different network character-

istics, such as propagation delays, packet error rates (PERs) and number of participating

wireless nodes. Furthermore, in multihop network scenarios, we conducted experiments

36 Experimental Evaluation

with different number of hops. Note, also, that in the experiments we only considered

uplink data traffic.

5.1 Performance metrics

The network performance metrics considered in our experiments were the end-

to-end throughput and the useful transmission ratio1. The end-to-end throughput of

a TCP flow is equal to the ratio of the total amount of transmitted data volume at

application layer to the duration of the corresponding transmission. Hence,

end-to-end throughput =
total data transmitted at application layer

duration of data transmission
(5.1)

The useful transmission ratio is defined as the ratio of the transmitted useful

data to the total amount of data transmitted over the network. The latter amount of

data includes unnecessary segment retransmissions by the TCP sender, due to, falsely,

triggered congestion avoidance mechanisms. So, it is:

useful transmission ratio =
useful bytes transmitted
total bytes transmitted

(5.2)

We measured the useful transmission ratio in order to quantitatively determine the

overhead imposed by the unnecessary retransmissions because of the spurious timeouts.

5.2 Infrastructure networks experiments

The network topology used throughout the infrastructure network experiments is

depicted in Fig. 5.1. The network consists of a number of mobile nodes, an access point

and a number wired nodes. The mobile nodes act as TCP senders and are connected to

the wired TCP receivers through the access point. Also, the wired TCP receivers are

connected to the access point through an intermediate node. The TCP implementation

1In multiuser environments we consider the aggregate of this metric.

5.2 Infrastructure networks experiments 37

used is TCP Sack [12]. The wireless protocol used is 802.11b operating at 11 Mb/s and

distance of the mobile nodes from the access point was set to 200 m. Finally, the wired

links have a capacity of 100 Mb/s, i.e. there is no bottleneck in the wired part of the

network.

...
...

data

ACKs

TCP
 sender

TCP
 sender

TCP
 receiver

TCP
 receiver

Figure 5.1: Infrastructure Network Topology

In the experiments conducted, we consider long-lived FTP traffic. The duration of

a single experiment is 140 seconds. Each FTP flow starts randomly within the interval

[0,10] seconds. The measurements are taken after the 20th second, in order to exclude

from our results the time spent on the connection establishment and slow start phase. To

model bursty losses at the wireless channel, we use a simple error model that introduces

consecutive packet losses, e.g. in a 10% loss scenario 10 out of 100 packets are lost,

consecutively.

The inf-RL enhancement is implemented by assigning a large value (equal to

50) for the ShortRetryLimit and LongRetryLimit parameter of the 802.11 protocol.

Moreover, our algorithm was implemented at the data-link layer of the access point, and

requires access to the TCP/IP headers. Finally the timestamp option was enabled for

every TCP session.

38 Experimental Evaluation

5.2.1 Single user experiment

In this subsection, we compare the performance of the three approaches in a single

flow scenario. In Fig. 5.2, we show the TCP throughput and the useful transmission

ratio as a function of the packet error rate (PER) for one TCP flow, when the wired

propagation delay (w prop) is 15 ms.

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
b/

s)

PER (%)

st-802.11
inf-RL

DI-method

(a) Throughput

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30

U
se

fu
l t

ra
ns

m
is

si
on

 r
at

io

PER (%)

st-802.11
inf-RL

DI-method

(b) Useful transmission ratio

Figure 5.2: End-to-end TCP throughput and useful transmission ratio as a function of PER: 1

TCP flow, 15 ms wired propagation delay

As shown in Fig. 5.2(a), TCP over standard 802.11 experiences poor throughput

due to packet losses being misinterpreted as congestion signals. The inf-RL enhancement

solves the above problem, since packets are no longer dropped at the wireless channel,

but introduces high delay to the packets that are retransmitted at the data-link layer,

especially when PER is fairly large. High delay variability results in spurious timeouts

and, therefore, severe throughput degradation. The above two problems are addressed

by our method, which performs significantly better than the other two methods when

PER is above 10%. For example, our algorithm presents throughput improvements

of 85% and 46% in comparison to the st-802.11 and inf-RL enhancement respectively,

when PER is 10%. When PER is 5%, the improvement of our method is smaller than

5.2 Infrastructure networks experiments 39

the inf-RL enhancement, though still better than st-802.11 (improvement of 109%).

This is because a low PER (5%) does not impose much delay variability to the locally

retransmitted packets so as to generate spurious timeouts. In this case, our algorithm

sometimes decides to inject delay to ACK packets, that eventually does not have a

positive impact on TCP performance, but rather a slightly negative one, resulting in a

throughput reduction of 8% in comparison to the inf-RL enhancement.

In Fig. 5.2(b) we show the useful transmission ratio as a function of the PER.

The 802.11 standard suffers from poor useful transmission ratio because, firstly, the TCP

sender experiences ordinary timeouts; we will refer to as ordinary timeouts the timeouts

caused by multiple packet losses at the data-link layer. In addition, packet losses at the

data-link layer trigger duplicate ACKs that lead to segment retransmissions through

the congestion avoidance mechanism invocation. Hence, a single TCP segment is trans-

mitted more than once by the TCP sender. The reduction in the useful transmission

ratio increases as the PER increases, due to the increasing number of packet losses and

timeouts. The inf-RL enhancement, also, presents low useful transmission ratio due

to spurious timeouts, triggered by high delay variabilities. Our method, improves the

useful transmission ration, since it prevents ordinary timeouts, duplicate ACKs and

spurious timeouts. Ordinary timeouts and duplicate ACKs are prevented with the aid

of the strong local error recovery mechanism, while spurious timeouts with the aid of

the adaptive delay injection algorithm. For example, when PER is 30% the increment

in the useful transmission ratio of our method in comparison to the st-802.11 and the

inf-RL enhancement is 18% and 17%, respectively.

In Fig. 5.3 we present the number of timeouts and the impact on the RTT of

each approach studied as a function of the PER, in the same single flow experiment.

In Fig. 5.3(a), we see that, as explained above, the our method achieves significant

reduction of the number of timeouts, compared to both the standard 802.11 and the

inf-RL enhancement. Moreover, in Fig. 5.3(b), we see the impact of the delay injection

method on the round trip time of the TCP session. Our method increases the round trip

time of the session due to the artificial delay that is injected to the TCP ACKs. Note

40 Experimental Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

of

 T
im

eo
ut

s

PER (%)

st-802.11
inf-RL

DI-method

(a) # of Timeouts

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30
M

ea
n

R
T

T
 (

m
s)

PER (%)

st-802.11
inf-RL

DI-method

(b) mean RTT

Figure 5.3: # of Timeouts and mean RTT as a function of PER: 1 TCP flow, 15 ms wired

propagation delay

that the increase in RTT is bigger when PER is larger, because the delay that has to be

injected in order to avoid spurious timeouts is larger. In the next two subsections, we see

the impact of the delay of the path and the number of mobile nodes on TCP performance

and show that avoiding spurious timeouts is not always throughput-beneficial.

5.2.2 Experiments with different propagation delays

In this section, we study the impact of different propagation delays on each of the

three approaches. The propagation delay of a TCP session’s path is straightforwardly

related to the end-to-end throughput, which is inversely proportional to the RTT of the

path. Note, also, that a larger propagation delay suggests a larger bandwidth delay

product (BDP) and, therefore, larger values for the cwnd of the TCP session. When

the cwnd is large, the impact of a spurious timeout on TCP performance is greater since

the cwnd restoration phase will occur more slowly. Moreover, the larger the propagation

delay is, the longer the cwnd restoration phase lasts, since the cwnd is incremented more

slowly.

In Fig. 5.4, we show the throughput as a function of PER, for two wired differ-

5.2 Infrastructure networks experiments 41

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
b/

s)

PER (%)

st-802.11
inf-RL

DI-method

(a) Throughput, w prop = 10 ms

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
b/

s)

PER (%)

st-802.11
inf-RL

DI-method

(b) Throughput, w prop = 20 ms

Figure 5.4: End-to-end TCP throughput: 1 TCP flow, 10 ms and 20 ms wired propagation

delay, respectively

ent propagation delays at the wireline part; w prop is 10 and 20 ms, respectively. In

Fig. 5.4(a), we can see that our method performs better than both the other two only

when PER is 10%, 15% and 20%. When PER is lower than 10% then, as in the former

experiment, no spurious timeouts take place at the TCP sender. On the other hand,

when PER is greater than 20%, the 802.11 standard outperforms the other two ap-

proaches. This is attributed to the two following reasons: (i) because of the high PER

(> 20%) the local error recovery mechanism adds significant delay to packets that un-

dergo retransmission, which stay in buffers for a respectful amount of time, and (ii) the

small delay of the path (only 10 ms) renders end-to-end retransmission of lost packets

more beneficial than have them locally retransmitted. Thus, when the end-to-end delay

is low and the PER is high, it is better to leave packet retransmission to the end-to-end

mechanism.

Fig. 5.4(b), illustrates the results when the wired propagation delay is 20 ms.

We see that our method improves performance, in comparison to the inf-RL, when

PER is greater than 15%. When PER is 10%, in contrast to the experiment where

the wired propagation delay was 15 ms, our method does not outperform the inf-RL

enhancement. This is attributed to the fact that the large propagation delay suggests a

42 Experimental Evaluation

larger BDP for the path and, hence, more packets are injected to the network because

the cwnd obtains greater values. Therefore, due to the great number of outstanding

packets, larger inter-packet variances are introduced, rendering the TCP sender’s RTO

more robust against delay variabilities. Thus, less spurious timeouts take place. This

observation is also shown in Table 5.1, where we show the number of timeouts for

different wired propagation delays, when PER is 20%. Moreover, from Fig. 5.2(a) and

Fig. 5.4(b), we see that the improvements achieved with our method are higher when

the wired propagation delay is larger (20 ms), when there are spurious timeouts. Hence,

when the propagation delay is larger, the negative impact of spurious timeouts is more

crucial and, therefore, avoiding them is more beneficial.

Table 5.1: Number of timeouts as a function of propagation delay, when PER = 20%

10ms 15ms 20ms 30ms 50ms 80ms
st-802.11 96 65 50 39 24 16
inf −RL 158 93 77 49 15 5

DI −method 3 9 3 7 4 4

In Fig. 5.5, we see the impact of the propagation delay on the useful transmission

ratio. It is worth mentioning that in the case where st-802.11 outperforms the other

two methods (w prop = 10 ms,PER ≥ 25%), our method achieves improvements in

the useful transmission ratio, because it avoids retransmission triggered by spurious

timeouts, ordinary timeouts and reception of three duplicate ACKs. Moreover when

w prop is 20 ms and PER is 10% there is no useful transmission ratio improvement of

our method against the inf-RL enhancement since no spurious timeouts occur at the

TCP sender.

Finally, the overall impact of the wired propagation delay on TCP throughput for

different PERs is shown in Fig. 5.6.

5.2 Infrastructure networks experiments 43

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30

U
se

fu
l t

ra
ns

m
is

si
on

 r
at

io

PER (%)

st-802.11
inf-RL

DI-method

(a) Useful transmission ratio, w prop = 10 ms

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30

U
se

fu
l t

ra
ns

m
is

si
on

 r
at

io

PER (%)

st-802.11
inf-RL

DI-method

(b) Useful transmission ratio, w prop = 20 ms

Figure 5.5: Useful transmission ratio: 1 TCP flow, 10 ms and 20 ms wired propagation delay,

respectively

standard 802.11
inf-RL

DI-method

 0
 5

 10
 15

 20
 25PER (%)

 10
 20

 30
 40

 50
 60

 70
 80

W_prop (ms)

 0
 1
 2
 3
 4
 5

Throughput (Mb/s)

Figure 5.6: Impact of the wired propagation delay (w prop) on TCP throughput for different

PERs. The 95% confidence interval is within +/- 9% of the values shown

5.2.3 Experiments with multiple users

In this section we present the results of the experiments conducted with more than

one participating mobile nodes. Each participating mobile initiates one TCP session

44 Experimental Evaluation

with a destination node at the wired part of the network.

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
b/

s)

PER (%)

st-802.11
inf-RL

DI-method

(a) Throughput

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 5 10 15 20 25 30

U
se

fu
l t

ra
ns

m
is

si
on

 r
at

io

PER (%)

st-802.11
inf-RL

DI-method

(b) Useful transmission ratio

Figure 5.7: End-to-end TCP throughput and useful transmission ratio: two TCP flows, 15 ms

wired propagation delay

In Fig. 5.7, we show the aggregate throughput and useful transmission ratio, re-

spectively, as a function of the PER for two participating mobile nodes. The wired

propagation delay is 15ms. As shown in Fig. 5.7, when PER is below 15%, both our

method and the inf-RL enhancement outperform the st-802.11. Our method does not

outperform the inf-RL enhancement, when PER is 10%, in contrast to the one flow

experiment, because the participation of two mobile nodes limit the optimal cwnd of

each flow; hence, the cwnd restoration phase is shorter and avoiding spurious timeouts

does not improve performance. Moreover, when PER is above 20%, the 802.11 standard

outperforms the other two approaches. This is because, due to the the high PERs, the

two TCP flows experience significant data-link layer contention, since each node con-

tinuously attempts to retransmit lost packets and, hence, prevents the other node from

transmitting. This observation, in conjunction with the low wired propagation delay,

renders end-to-end retransmission more beneficial. However, as shown in Fig. 5.7(b),

even when PER > 20%, our method improves the useful transmission ration, because

it prevents ordinary timeouts, unnecessary retransmissions due to duplicate ACKs and

spurious timeouts.

5.3 Multihop networks experiments 45

The same experiment was conducted with a larger wired propagation delay, i.e.

80 ms; the results for the aggregate throughput and useful transmission ratio are shown

in Fig. 5.8. For all PER values, our method performs significantly better than the

802.11 standard. When PER ≤ 20% the inf-RL enhancement outperforms our method.

This is, again, attributed to the fact that low PERs do not impose a lot of spurious

timeouts in a large delay path. However, when PER ≥ 25%, plenty of spurious timeouts

are introduced and, hence, our approach yields significant throughput improvements.

Finally, as shown in Fig. 5.8(b), our method achieves significant useful transmission

ratio improvements, when PER > 20%, i.e. plenty of spurious timeouts are introduced.

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
b/

s)

PER (%)

st-802.11
inf-RL

DI-method

(a) Throughput

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 5 10 15 20 25 30

U
se

fu
l t

ra
ns

m
is

si
on

 r
at

io

PER (%)

st-802.11
inf-RL

DI-method

(b) Useful transmission ratio

Figure 5.8: End-to-end TCP throughput and useful transmission ratio: two TCP flows, 80 ms

wired propagation delay

Finally, in Fig. 5.9, we show the overall impact of the number of mobile nodes on

the aggregate throughput for different wired propagation delays. The PER is 20%.

5.3 Multihop networks experiments

In this section, we present the results of our method’s application to multihop

wireless networks connected to wired Internet infrastructure. As in the infrastructure

network experiments, the TCP sender lies in a mobile host while the TCP receiver

lies in the Internet. The wireless protocol used is 802.11 at 11 Mb/s, while the TCP

46 Experimental Evaluation

standard 802.11
inf-RL

DI-method

 2
 3

 4
 5

 6
 7

 8
 9
 10

of mobile nodes

 10
 20

 30
 40

 50
 60

 70
 80

W_prop (ms)

 1
 1.5

 2
 2.5

 3
 3.5

 4

Throughput (Mb/s)

Figure 5.9: Aggregate throughput as a function of the number of mobile nodes for different

PERs, when PER = 20%. The 95% confidence interval is within +/- 11% of the values shown

implementation is, again, TCP Sack. Finally the wired link’s capacity is 100 Mb/s. The

mobile nodes are within a distance of 200 m. The network topology used throughout

the experiments in depicted in Fig. 5.10. We conducted experiments with different

propagation delays, packet error rates, and number of hops at the multihop part of the

network.

...
...

data

ACKs

TCP
 sender

TCP
 receiver

TCP
 receiver

Figure 5.10: Multihop network topology

5.3 Multihop networks experiments 47

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
b/

s)

PER (%)

st-802.11
inf-RL

DI-method

(a) Throughput: Two hops

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
b/

s)

PER (%)

st-802.11
inf-RL

DI-method

(b) Throughput: Three hops

Figure 5.11: End-to-end TCP throughput as a function of PER for two and three hops, when

the wired propagation delay is 20 ms

Fig. 5.11 shows the TCP throughput as a function of the PER for a two and three

hop multihop network, respectively, when the wired propagation delay is 20 ms. The

results are qualitatively the same with infrastructure wireless networks. Both the inf-RL

and our method perform better than the standard 802.11 protocol for all PER values,

while our method outperforms the inf-RL enhancement in the presence of spurious

timeouts; i.e. when PER ≥ 15%. Moreover, from Fig. 5.11(a) and (b) we see that the

improvement of our method in comparison to the inf-RL is higher in the case of two hops

compared to the case of three hops. This is because, due to the increasing number of

hops, the optimum cwnd of the TCP session is smaller and, hence, the cwnd restoration

phase is shorter. In this case, avoiding spurious timeouts becomes less beneficial.

In order to compare our method and the inf-RL enhancement, we show the per-

centage difference in throughput of our method and the inf-RL as function of PER for

different numbers of hops. This comparison is show in Fig. 5.12, for two different values

of the propagation delay at the wireline part, i.e. 20 and 50 ms.

As shown from Fig. 5.12(a) and (b), the improvements of our method in com-

parison to the inf-RL enhancement become smaller as the number of hops increases.

This is attributed to the fact that as the number of hops increases the optimal cnwd

48 Experimental Evaluation

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

Pe
rc

en
ta

ge
 D

if
fe

re
nc

e
(%

)

PER (%)

1 hop
2 hops
3 hops
4 hops

(a) Throughput, w prop = 15 ms

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30
Pe

rc
en

ta
ge

 D
if

fe
re

nc
e

(%
)

PER (%)

1 hop
2 hops
3 hops
4 hops

(b) Throughput, w prop = 50 ms

Figure 5.12: Percentage difference of our method and the inf-RL as a function of the number

of hops, for wired propagation delays 20 ms and 50 ms

window of the TCP flow becomes smaller. For example, when the number of hops is

four, the improvements of our method are almost negligible. As far as the performance

improvement ”knee” that is observed (in (a) it is observed when PER ≥ 15%, while in

(b) when PER ≥ 20%), it depends on the propagation delay at the wireline part. As

in the infrastructure experiments, the greater the propagation delay at the wired part

is the greater the PER has to be in order for spurious timeouts to be produced.

5.4 Algorithm parameter selection

Our delay injection algorithm has two parameters that need to be defined: the

delay factor and the subthresh. In this section, we show the appropriate selection of

these two parameters, in an infrastructure network scenario.

5.4.1 Delay factor (delay factor) selection

As introduced in Algorithm 1, the delay factor parameter reflects how much

delay is to be injected in proportion to the size of the delay spike. Fig. 5.13 shows the

effect of delay factor parameter on TCP performance and, hence, suggests what is the

5.4 Algorithm parameter selection 49

appropriate value to be used. In this experiment, only one mobile user participated in

the network and, also, the wired propagation delay was 15 ms.

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
b/

s)

PER (%)

delay_factor=1.25
delay_factor=1.50
delay_factor=2.00
delay_factor=2.25

Figure 5.13: Delay factor parameter selection. The 95% confidence interval is within +/- 8%

of the values shown

A smaller delay factor results in a larger delay being injected, hence decreases

the likelihood of delay spikes. Though, when then the delay factor is really small (e.g.

1.25) too much delay is injected leading to significant increment of the RTT of the TCP

session and, hence, throughput reduction. On the other hand, a larger delay factor

value results in more significant throughput improvement in low PER scenarios, e.g.,

when delay factor = 2.25 and PER = 10%, but this is not the case when PER is

higher. We choose a rather small value (1.5) to guarantee that less spurious timeouts

will occur.

5.4.2 Subtraction threshold (subthresh) selection

In contrast to delay factor, subthresh does not directly affect TCP’s performance.

Its goal is to mitigate the negative impact of delay injection in scarce loss environments.

Suppose that in the wireless environment a burst of corrupted packet occurs; our al-

gorithm will detect the delay spike and would inject delay according to Algorithm 1.

50 Experimental Evaluation

Without the presence of the subthresh parameter the access point would continue de-

laying ACKs despite the fact that there is no other delay variability. In this case the

injected delay would be unnecessary and would result in throughput degradation. The

subtraction threshold parameter decreases the delay to be injected to every incoming

TCP acknowledgement by the value of subthresh. Therefore after several incoming

ACKs, and if no other delay variability takes place, the delay to be injected would be

zero. Hence, ACK packets will no longer be, unnecessarily, delayed.

The subthresh is selected as follows: the access point counts the number of packets

that are interjected between two delay spikes (pkt count); supposing that delay D is

chosen to be injected, subthresh is assigned the value D
5∗pkt count . With such a value, if

in an interval containing 5 ∗ pkt count2 packets no delay spikes occur, then the value of

the injected delay is reduced to zero.

5.5 Comparison to other methods

In this section we present the results of the comparison of our method to other

methods presented in the bibliography.

5.5.1 Comparison to static delay injection

We compared our adaptive delay injection method (DI-method) to the static delay

method (static DI-method). In the latter method, the magnitude of the delay to be

injected is chosen statically, while the packets to be delayed are selected according to the

delay spike detection mechanism described in Algorithm 1. We conducted experiments

with different PERs in order to show the relation each of the two methods to this

characteristic.

In Fig. 5.14, we see the end-to-end throughput as a function of the PER, when

the wired propagation delay is 15 ms. The magnitude of the delay to be injected in

the static-DI method is 60 ms, i.e. every time the delay spike detection mechanism

2The value 5 is optional, denoting the maximum distance, in packets, of two consecutive delay spikes.

5.5 Comparison to other methods 51

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
b/

s)

PER (%)

static DI-method
our DI-method

Figure 5.14: Comparison of our method with static delay injection for different PERs, when

the wired propagation delay is 15 ms

of Algorithm 1 detects a delay spike, then ACKs are delayed by 60 ms, as illustrated

in Fig. 4.2. As we can see in Fig. 5.14, the static delay injection method outperforms

ours only when PER is 10%, hence, the selection for delay to be injected according to

our algorithm is less appropriate. On the other hand, we see that for all other PER

values, our method outperforms the static delay injection method, denoting that the

static selection for the delay in the static-DI method is does not adapt to different

packet error rates.

5.5.2 Comparison to TCP Westwood

Next, we compare our method (with TCP Sack implementation at the TCP

sender) with Westwood TCP [13] and TCP Sack without the proposed method. The

results for the TCP throughput and the useful transmission ratio as a function of PER

are shown in Fig. 5.15(a) and (b).

As we can see in Fig. 5.15(a), TCP Westwood achieves better throughput than

TCP Sack because of the efficient cwnd and ssthresh restoration procedure after an

unnecessary cwnd reduction. This way the cwnd restoration phase is dramatically re-

52 Experimental Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
b/

s)

PER (%)

TCP Sack
TCP Westwood

DI-method with TCP Sack

(a) Throughput

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30
U

se
fu

l t
ra

ns
m

is
si

on
 r

at
io

PER (%)

TCP Sack
TCP Westwood

DI-method with TCP Sack

(b) Useful transmission ratio

Figure 5.15: Comparison of DI-method to TCP Westwood

duced and, therefore, the throughput improves. On the other hand, TCP Westwood’s

performance is lower than the proposed method’s, because it still experiences timeouts

and cwnd reductions due to spurious timeouts. The unnecessary retransmissions that

also take place with TCP Westwood are also depicted in Fig. 5.15(b). TCP Westwood

achieves the same goodput as TCP Sack, which is significantly less than our method’s.

Chapter 6

Related Work

6.1 Improving TCP performance over wireless links

Several methods that improve TCP throughput have been proposed in the bibli-

ography over the recent years. In general, the approaches that study the performance

of TCP in wireless networks lie in one of the following three categories, as presented

in [10]: end-to-end mechanisms, link-layer approaches and split connections.

6.1.1 End-to-end mechanisms

This category includes studies that propose modifications that take place at the

end hosts, either by implementing a new protocol or by modifying the mechanisms

at the sender or the receiver. Modifications of the TCP protocol include TCP proto-

col extensions, such as TCP Newreno [14] and TCP Sack [12]. These two protocols

use an enhanced cumulative acknowledgement scheme in order to recover from multi-

ple packet losses within a single transmission window. A TCP sender using the ECN

mechanism [15] distinguishes between losses due to congestion and losses due to packet

corruption and therefore does not falsely respond to congestion or packet losses. Al-

though ECN was originally introduced for wired networks, F. Peng et al. [16] propose

a method to effectively use this mechanism in wireless environments as well. As far as

54 Related Work

end-to-end methods are concerned, besides needing changes to the end hosts, they can

also require longer time to respond to wireless losses.

TCP Westwood

TCP Westwood [13, 17] implements a new congestion control algorithm that is

based on end-to-end bandwidth estimation. In particular, TCP Westwood estimates

the available bandwidth by counting and filtering the flow of returning ACKs and adap-

tively sets the cwnd and ssthresh after congestion by taking into account the estimated

bandwidth. Upon receiving three duplicate acknowledgements the cnwd and ssthresh

parameters are set according to the estimation while upon a timeout cwnd is set to one

segment and ssthresh according to the estimated bandwidth. Hence, TCP Westwood

ensures a faster recovery from losses that were not due to congestion, though the reduc-

tion to one segment upon a timeout remains the same as in the legacy implementations

of TCP.

6.1.2 Link layer approaches

These approaches include methods that attempt to hide the lossy radio channel

from the TCP sender. Forward error correction (FEC) and retransmission of lost packets

in response to automatic repeat request (ARQ) deal with the problem of packet cor-

ruption locally and prevent congestion misinterpretation. The AIRMAIL and TULIP

protocols, as presented in [18] and [19] respectively, lie in this category. Link layer pro-

tocols fit naturally to the layered structure of the network stack; a local problem, such

a wireless loss, should be solved locally and therefore such approaches operate indepen-

dently of higher layer protocols. These are the so-called TCP-unaware methods. One

disadvantage of such approaches is the potentially adverse effects when interacting with

higher-layer protocols [10], such as TCP. TCP-aware protocols encounter these adverse

effects. In particular, Snoop [20] improves TCP performance by locally retransmitting

corrupted packets, while at the same time it suppresses duplicate acknowledgements, so

6.2 Improving TCP performance in wireless networks with high delay variability 55

as to avoid congestion avoidance routines at the TCP sender.

6.1.3 Split connections

Approaches lying in this category are based on the observation that since a TCP

session operates in a mixed wired/wireless environment, merged through an access point,

we could use a different protocol for each network part, i.e. we could split the TCP

connection at the access point. Methods of this category concern exclusively wireless

networks with access point infrastructure. According to these methods, the wired part

runs the standard TCP protocol while the wireless part uses a specialized protocol

tuned for wireless channels. Though, such approaches, like the Indirect-TCP [21] and

the Mobile-TCP [22], violate the TCP semantics since the access point acknowledges

TCP segments as soon it receives them and before they actually reach the destination

host. Further, W-TCP [23] changes the timestamp field in the packet to account for the

time spent idling at the base station.

6.2 Improving TCP performance in wireless networks with

high delay variability

Several studies have been conducted in order to study high delay variability in

wireless networks and its effects on TCP performance. Gurtov [24, 5] observes the

presence of large delay variabilities in a GPRS wireless LAN and quantifies the nega-

tive impact of TCP spurious timeouts provoked by the delay variations. In [24], the

author presents experiments using four different TCP implementations and their recov-

ery capability against spurious timeouts and finally discusses several existing methods

to alleviate the problem. Later, in [5] he studies the effects of delay spikes on TCP

Tahoe, Reno, NewReno and Sack and recommends timing every TCP segment in order

to achieve more conservative values for the sender’s retransmission timer, so as to avoid

spurious timeouts.

56 Related Work

The above studies show that large delay variations are a reality for both GPRS

and wireless LANs and have very serious impact on TCP protocol performance. Below

we present three methods proposed in the bibliography that encounter the impact of

large delay variabilities on TCP performance.

6.2.1 GBN retransmission policy

Leung et al. propose using a go-back-N retransmission policy at session layer

instead of the typical selective repeat (SR) that TCP uses, in order to alleviate the

negative effects of high delay variability. This method performs well in environments

with strong temporal correlation, where if a packet is lost it is highly probable that the

subsequent packets are lost as well. The GBN retransmission policy suggests retrans-

mitting all outstanding packets upon a timeout or a loss detection of a specific packet

and not only the last packet, as the typical TCP implementation does. This method

can result in reduced throughput when packets are lost in a random fashion. In this

case go-back-N retransmission wastes bandwidth. In the same paper, the authors pro-

pose another method to efficiently encounter large delay variability. In particular, they

suggest selecting a larger retransmission timeout threshold by changing the RTO calcu-

lation formula. In this way, the retransmission timer of the sender becomes more robust

against TCP spurious timeous. In the experiments conducted, the above two methods

present throughput improvements up to 13.7% and 12% respectively. Note that, both

proposed methods require changes to the TCP sender’s implementation.

6.2.2 The Eifel algorithm

Ludwig and Katz [6] propose an enhancement to the TCP’s error recovery scheme

that helps the TCP sender alleviate the negative impact of spurious timeouts. The

authors use the TCP timestamp option to eliminate the retransmission ambiguity caused

by spurious timeouts and the corresponding retransmissions.

In order to eliminate the retransmission ambiguity we require extra information

6.2 Improving TCP performance in wireless networks with high delay variability 57

so as to help the sender distinguish between a packet that was actually lost and a packet

that was just delayed somewhere in the path. So, the algorithm having recorded the

timestamp of a packets first transmission and of a potential retransmission, compares the

recorded timestamp with the one of the corresponding ACK; if it is larger this indicates

that the retransmission was spurious. Afterwards, the sender, having also recorded the

cwnd and ssthresh upon retransmission, restores the values of the cwnd and ssthres and

alleviates the unnecessary throttling. Drawbacks of this implementation are the bursty

response of the sender upon spurious timeout detection. This inefficiency is encountered

in [7], where the authors suggest a more smoothed restoration of the congestion control.

Although the Eifel algorithm performs very well in environments with spurious re-

transmissions (such as wireless environments) it has some disadvantages as well. Firstly,

changes to the end hosts, i.e. the TCP senders, are required. Moreover the penalty of

a single spurious retransmission can not be avoided in any case.

6.2.3 Delay jitter algorithm

Klein et al [3] examine how injecting delay to specific packets can improve end-

to-end throughput. Delay injection can indirectly influence the sender’s retransmission

timer and therefore render it more robust. The authors propose three algorithms to

inject delay: (i) Fixed Time - Fixed Delay (FTFD), where a fixed amount of delay is

added over fixed periods of time, (ii) Random Time - Fixed Delay (RTFD), where pre-

defined delay is injected of random intervals and (iii) Random Time - Random Delay

(RTRD), where randomness is introduced in both the magnitude of the delay to inject

and the frequency to be injected.

The performance evaluation of the above algorithms suggest throughput improve-

ment by up to 8%. The sender avoids several TCP spurious timeouts, because of the

robustness of his retransmission timer imposed by the delay injection. On the other

hand, the proposed method is static and does not adapt to specific network charac-

teristics; i.e. the optimal magnitude/frequency values do no perform well when the

58 Related Work

propagation delay of the path, the number of mobile users or the packet error rate

change.

6.2.4 Transparent TCP proxies

In [25], the authors present the design and implementation of a transparent TCP

proxy that mitigates problems, such as poor loss recovery, excess queuing for long-lived

flows, and link under-utilization for short-lived flows. The proposed mechanism does

not require any changes to the TCP implementations in either mobile or fixed-wire end

systems. The key features of the proposed scheme are (i) avoiding slow start during

connection startup, (ii) error recovery is improved due to the extension of the SACK

mechanism to the entire aggregate, (iii) the flow control mechanism algorithm manages

proxy buffer space to ensure sufficient data is buffered to keep wireless link fully utilized,

and (iv) scheduling of packets in the aggregate allows fair bandwidth allocation to flows,

regardless of duration.

6.3 Relation to real traffic measurements

In Chapter 5, we saw that our adaptive delay injection method achieves significant

performance improvements when the propagation delay at the wired part was fairly large,

i.e. > 15 ms in single flow experiments. The authors in [26], study specific characteristics

of TCP connections in the mixed wired and wireless LAN of the University of North

Carolina at Chapel Hill (UNC) with almost 600 access points.

Among other things, the authors in [26] present measurements as far as the one-

side transit time (OSTT) is concerned, defined as the the time spent on the LAN part

(LAN OSTT) or the time spent on the WAN part (WAN OSTT) of the network. The

cumulative probability for the average WAN OSTT shows that only 30% of the long

wireless TCP connections (connections with more than 100 packets) have a WAN OSTT

below 20 ms. This indicates that most wireless TCP connections tend to have fairly large

delays, as suggested in the experiments we conducted.

6.3 Relation to real traffic measurements 59

Moreover, the authors shows the variability in delay presented in the LAN and

WAN side of the TCP connections. The results show that the delay jitter in LAN

side of the TCP connection is substantially larger than the one presented in WAN

side. More specifically, they show that 70% of the wireless connections have a standard

deviation below 20 ms. The delay to be injected according to our adaptive delay injection

algorithm is strongly dependent of the average RTT of the path. Recalling that we

capture delay variabilities using the delay spike identification mechanism, and that the

results in [26] show that the WAN delay jitter is not large enough, we conclude that the

calculation of the difference of pdelay minus avdelay in our algorithm, indeed, reflects

the time spent on local retransmissions, since the delay variability in the wired part of

the network is not large.

Still, there is a number of TCP connections that have fairly large standard devi-

ation (10% of the wireless TCP connections pose a standard deviation above 100 ms),

denoting that the agile adaptation of the average delay we propose may sometimes not

be a robust metric.

Chapter 7

Conclusions and issues for further

research

In this thesis we presented a method that improves TCP performance in wireless

environments with bursty packet errors. Our work was motivated by the fact existing

network protocol, originally designed for wireline network, present reduced performance

when interacting with emerging wireless protocols. We therefore study the interaction

of the most popular network protocol (TCP) with the most popular wireless protocol

(802.11). The most important feature is that packet losses at the error-prone wireless

channel as misinterpreted as signals of congestion by the TCP sender that unnecessarily

reduces its transmission rate.

Our methodology suggests applying a strong data-link error recovery mechanism,

so to prevent packet losses at the radio channel. Next, high delay variabilities, intro-

duced by local retransmissions, are eliminated by artificial delay injection to the ACK

packets of the TCP session. This way, we achieve significant improvements in the end-

to-end throughput and the useful transmission ratio, especially in high delay paths. We

conducted experiments in both infrastructure and multihop wireless environments in

topologies with different network characteristics such as propagation delays, number of

participating mobile nodes and packet error rates.

62 Conclusions and issues for further research

In this work, we show that our method adapts to networks with different path

characteristics, in contrast to other methods proposed in the bibliography, rendering our

method applicable in a wide range of network topologies. Moreover, our adaptive delay

injection algorithm does require changes to the existing TCP protocol implementation

and is implemented solely at the access point; hence, no changes to the end systems are

required.

Part of our future work is to conduct experiments considering downlink data traf-

fic with the aid of the modified round robin queuing mechanism, proposed in Chapter 4.

Moreover, it would be interesting to implement a dynamic selection of the RetryLimit

parameter of 802.11 that would adapt to changing channel quality and network char-

acteristics. Recall that in Chapter 5 we showed that a less strong local error recovery

mechanism can sometimes be more beneficial. Finally, the application of the proposed

method to a real wireless network would be of great interest.

Bibliography

[1] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely,

and C. Diot, “Packet-level traffic measurements from the sprint IP backbone,”

IEEE Network, vol. 17, No 6, pp. 6–15, Novemeber 2003.

[2] C. Williamson, “Internet Traffic Measurement,” IEEE Internet Computing, vol. 5,

No 6, pp. 70–74, November 2001.

[3] T. Klein, K. Leung, R. Parkinson, and L. Samuel, “Avoiding Spurious TCP Time-

outs in Wireless Networks by Delay Injection,” in Proceedings of IEEE GLOBE-

COM, Novemeber 2004.

[4] K. Leung, T. Klein, C. Mooney, and M. Haner, “Methods to Improve TCP Through-

put in Wireless Networks With High Delay Variability,” in Proccedings of IEEE

Veh. Tech. Conf., 2004.

[5] A. Gurtov, “Making TCP Robust Against Delay Spikes,” University of Helsinki,

Department of Computer Science, Technical Report C-2001-53, November 2001.

[6] R. Ludwig and R. Katz, “The Eifel Algorithm: Making TCP Robust Against Spu-

rious Retransmissions,” in ACM Computer Communication Review, vol. 30, No 1,

January 2000.

[7] A. Gurtov and R. Ludwig, “Responding to Spurious Timeouts in TCP,” in Pro-

ceedings of IEEE INFOCOM, March 2003.

64 BIBLIOGRAPHY

[8] V. Paxson and M. Allman, “Computing TCP’s Retransmission Timer,” RFC2988,

2000.

[9] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High Performance,”

RFC1323, 1992.

[10] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz, “A Comparison of

Mechanisms for Improving TCP Performance over Wireless Links,” IEEE/ACM

Transactions on Networking, pp. 5 (6):756–769, December 1997.

[11] Network Simulator 2, availiable at http://www.isi.edu/nsnam/ns/

[12] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowledge-

ment Options,” RFC 2018, April 1996.

[13] M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C. Casetti, and S. Mascolo, “TCP

Westwood: Congestion Window Control Using Bandwidth Estimation,” in Pro-

ceedings of IEEE Globecom 2001, November 25-29, 2001.

[14] S. Floyd and T. Henderson, “The NewReno Modification to TCP’s Fast Recovery

Algorithm,” RFC 2582, April 1999.

[15] S. Floyd, “TCP and Explicit Congestion Notification,” ACM Computer Communi-

cation Review, vol. 25, N. 5, pp. 10–23, November 25-29, 2001.

[16] F. Peng, S. Cheng, and J. Ma, “A Proposal to Apply ECN to Wireless and Mobile

Networks,” in Proceedings of INET ’00, July 2000.

[17] R. W. A. Z. C. C. S. M. M. Gerla, M. Y. Sanadidi, “TCP Westwood: Congestion

Window Control Using Bandwidth Estimation,” in Proceedings of IEEE Globecom

2001, vol. 3, pp. 1698–1702, November 25-29, 2001.

[18] E. Ayanoglu, S. Paul, T. F. LaPorta, K. Sabnani, and R. Gitlin, “AIRMAIL: A

Link-Layer Protocol for Wireless Networks,” ACM ACM/Baltzer Wireless Networks

Journal, pp. 47–60, February 1995.

BIBLIOGRAPHY 65

[19] C. Parsa and J. J. Garcia-Luna-Aceves, “Improving TCP Performance over Wireless

Networks at the Link Layer,” in Mobile Networks and Applications, vol. 5, N. 1,

pp. 57–71, 2000.

[20] H. Balakrishnan, “Improving TCP/IP Performance over Wireless Networks,” in

Proceedings of ACM MOBICOM ’95, 1995.

[21] B. Badrinath and A. Bakre, “I-TCP: Indirect TCP for Mobile Hosts,” in Proceed-

ings of 15th International Conference on Distributed Computing, May 1995.

[22] K. Brown and S. Singh, “M-TCP: TCP for Mobile Cellular Networks,” in Proceed-

ings of SIGCOMM ’97, October 1997.

[23] K. Ratnam and I. Matta, “WTCP: An Efficient Mechanism for Improving TCP

Performance over Wireless Links,” in Proceedings of 3rd IEEE Symposium on Com-

puters and Communications (ISCC ’98), Athens, Greece, 1998.

[24] A. Gurtov, “Effect of Delays on TCP Performance,” in Proceedings of IFIP Personal

Wireless Communications, August 2001.

[25] R. Chakravorty, S. Katti, J. Crowcroft, and I. Pratt, “Flow Aggregation for En-

hanced TCP over Wide-Area Wireless,” Proceedings of the IEEE INFOCOM 2003,

March 29-April 4, San Francisco, USA, 2003.

[26] F. Hernández-Campos and M. Papadopouli, “Assessing The Real Impact of 802.11

WLANs: A Large-Scale Comparison of Wired and Wireless Traffic,” 14th IEEE

Workshop on Local and Metropolitan Area Networks, Chania, Crete, Greece,

September 18-21, 2005.

[27] R. Chakravorty, S. Banerjee, P. Rodriguez, J. Chesterfield, and I. Pratt, “Per-

formance optimizations for wireless wide-area networks: comparative study and

experimental evaluation,” Proceedings of the 10th annual International Conference

on Mobile Computing and Networking, Philadelphia, PA, USA, 2004.

