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Thesis Abstract

The purpose of this dissertation is to study and understand the structural, me-

chanical and optoelectronic properties of amorphous and nanostructured carbon. To

achieve this goal, we carry out molecular dynamics simulations within the tight-

binding (or linear combination of atomic orbitals) approximation. Highlights of the

work done are the detailed study and analysis of the microstructure, the finding of

general physical trends in the variation of basic characteristics, and the development

of a methodology for the calculation and analysis of the optical properties.

As an introduction to the subject, we first present the elemental properties of

carbon, its electronic structure and hybridizations, and the various forms that can

be attained by carbon either in the solid state or in nanostructured configurations.

Next, we present the theory of the tight-binding method and the two specific models

used in this work. We also present the methodology for the computer generation of

our networks, as well as the tools used for their analysis.

Initially, we study the microstructure of amorphous carbon. We extract the

structural parameters of our networks and calculate the distribution functions of

bond lengths and bond angles, and perform a statistical analysis of rings. We find

that the basic characteristics of the microstructure are in excellent agreement with

results from first-principle calculations.

After establishing the reliability of our methodology, we study the structural and

elastic properties of our amorphous carbon networks. The main finding about the

material density is that it has a linear dependence on the sp3 tetrahedral fraction,

in good agreement with experimental work and other theoretical calculations. Also,

we extract for the first time accurate relations between the bulk modulus and the

mean coordination (or equivalently the density) and the mean bond length in the

amorphous network. These relations, in a power-law form, are in excellent agreement

with mean-field theories for the elastic properties.

We continue by investigating the electronic and optical properties of amorphous

carbon. Our major contribution here is the development of a methodology to calcu-

late the optical constants from the tight-binding wavefunctions. Initially, we calculate

the electronic density of states and the dielectric function, and we then extract the

optical gaps and the Urbach energy, associating them with the degree of disorder in

our networks. We compare to the literature where it is feasible.

Finally, the dissertation is concluded by applying the above well-tested methods

to the case of nanostructured carbon.
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Thesis Abstract (in greek) 
 
Ο σκοπός της παρούσας διατριβής είναι η µελέτη και κατανόηση των δοµικών, 
µηχανικών και οπτοηλεκτρονικών ιδιοτήτων του αµόρφου και νανοδοµικού άνθρακα. 
Για το σκοπό αυτό χρησιµοποιούµε προσοµοιώσεις µοριακής δυναµικής βασισµένες στη 
µέθοδο της ισχυράς δέσµευσης (ή  γραµµικού συνδυασµού ατοµικών τροχιακών). 
Κεντρικά σηµεία της διατριβής είναι η λεπτοµερής µελέτη της µικροδοµής και η εύρεση 
γενικών τάσεων/σχέσεων για τις  µεταβολές των χαρακτηριστικών ιδιοτήτων, καθώς και 
η ανάπτυξη µιας µεθοδολογίας για τον υπολογισµό των οπτικών ιδιοτήτων.  
 
Κατ’ αρχάς, παρουσιάζουµε εισαγωγικά τη φυσική δοµή του άνθρακα, τις ιδιότητές του, 
την ηλεκτρονική διάταξη και τους υβριδισµούς των τροχιακών του, και τις διάφορες 
µορφές που  µπορεί να πάρει ο άνθρακας είτε στη στερεά κατάσταση, ή σε νανοδοµικές 
διαµορφώσεις, πράγµα που είναι απόρροια των παραπάνω. Στη συνέχεια εισάγουµε τη 
θεωρία της µεθόδου της ισχυράς δέσµευσης και παρουσιάζουµε τα δυο διαφορετικά 
µοντέλα που θα χρησιµοποιήσουµε. Επίσης συζητάµε τη µεθοδολογία που θα 
ακολουθήσουµε στην κατασκευή των πλεγµάτων µας, καθώς και τα “εργαλεία” που θα 
χρειαστούµε για την ανάλυση των ιδιοτήτων του υλικού µας. 
 
Αρχικά µελετάµε τη µικροδοµή του άµορφου άνθρακα. Εξάγουµε τις δοµικές 
παραµέτρους των πλεγµάτων µας και υπολογίζουµε τις συναρτήσεις κατανοµής των 
µηκών και των γωνιών µεταξύ των δεσµών των ατόµων. Εν συνεχεία κάνουµε µια 
στατιστική στους δακτυλίους που συναντάµε στο υλικό µας. Βρίσκουµε πως τα βασικά 
χαρακτηριστικά της µικροδοµής είναι σε άριστη συµφωνία µε αποτελέσµατα από 
υπολογισµούς πρώτων αρχών. 
 
Αφού διαπιστώσουµε την πλήρη αξιοπιστία της µεθοδολογίας, µελετάµε στην επόµενη 
φάση τις δοµικές και τις ελαστικές ιδιότητες των πλεγµάτων µας. Το βασικό 
συµπέρασµα που προκύπτει για την πυκνότητα των δειγµάτων µας, είναι πως η τελευταία 
έχει γραµµική εξάρτηση µε το ποσοστό των sp3 ατόµων και το αποτέλεσµα αυτό 
συγκρίνεται µε πειραµατικά και άλλα θεωρητικά δεδοµένα και αποκαλύπτεται συµφωνία 
µεταξύ τους. Επίσης, εξάγουµε για πρώτη φορά ακριβείς σχέσεις µεταξύ του µέτρου 
ελαστικότητας όγκου και του µέσου αριθµού συντάξεως (ή της πυκνότητας), και του 
µέσου µήκους δεσµού στο άµορφο πλέγµα. Οι σχέσεις αυτές, σε µορφή νόµου δυνάµεως, 
είναι σε εξαιρετική συµφωνία µε θεωρίες µέσου πεδίου για τις ελαστικές ιδιότητες. 
 
Στη συνέχεια µελετάµε τις ηλεκτρονικές και τις οπτικές ιδιότητες του υλικού µας. Η 
κύρια συνεισφορά µας εδώ είναι η ανάπτυξη µιας µεθοδολογίας για τον υπολογισµό των 
οπτικών σταθερών από τις κυµατοσυναρτήσεις ισχυράς δέσµευσης. Κατ’αρχάς 
υπολογίζουµε την ηλεκτρονική πυκνότητα καταστάσεων και τη διηλεκτρική συνάρτηση,  
και καταλήγουµε στο οπτικό χάσµα και την ενέργεια Urbach και πως αυτά συνδέονται µε 
την αταξία µέσα στα πλέγµατα µας. Όλα τα αποτελέσµατά µας συγκρίνονται µε 
αντίστοιχα που συναντάµε στη βιβλιογραφία. 
 
Τέλος η διατριβή ολοκληρώνεται µε την εφαρµογή όλων των παραπάνω στην περίπτωση 
του νανοδοµικού άνθρακα. Αφού πρώτα εδραιώσαµε µια ολοκληρωµένη µεθοδολογία 
υπολογισµού των ιδιοτήτων του άµορφου άνθρακα, αποφασίσαµε να την ελέγξουµε και 
στη νανοδοµική µορφή του υλικού και εδώ παρουσιάζουµε τα συµπεράσµατά µας.    
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Chapter 1

Introduction

Despite the intense investigations over the last fifteen years, the properties of

amorphous [1] carbon [2] (a-C) are not fully understood. Some of them are strongly

debated. A lot of interest has been put to tetrahedral a-C (ta-C), containing a high

fraction of sp3 hybrids, because of its diamondlike properties [3, 4]. These include

high hardness making it suitable for mechanical purposes, such as protective coat-

ings, a wide band gap for optical applications, and biocompatibility for biomedical

coatings. Ta-C has also promising applications in micro-electromechanical devices

(MEMS). Ta-C has not been used so far as an electronic material because electron

states in the π orbitals, lying within the broader σ−σ∗ gap, are sufficiently localized

to yield low conductivity.

Recently, nanostructured amorphous carbon (na-C) has attracted attention be-

cause it offers the unique possibility to intermingle the properties of carbon nanos-

tructures with those of pure a-C [5, 6, 7]. It is a hybrid form of carbon in which

carbon nanocrystallites are embedded in the a-C matrix [8]. These carbon nanos-

tructures range, from diamond crystallites [9] to porous, open graphene structures

with negative curvature (schwarzites) [10, 11, 12]. Cluster-assembled carbon films

with amorphous sp2 character and a sizeable carbyne (sp1 chains) component have

also been reported [13, 14]. Na-C is expected to tailor the mechanical and electronic

properties of a-C.

Another very interesting carbon material widely studied is nanocrystalline di-

amond [15]. It is composed of randomly oriented nanodiamond grains, with grain

boundaries, few Angstroms wide, serving as the interfacial geometries. It is believed

that many atoms in the grain boundaries, how many yet unclear, are sp2-bonded.

Doping these interfaces with nitrogen seems to increase the conductivity of the ma-

terial. These nanodiamond films are reported to be extremely hard, probably harder

than ta-C, approaching the hardness of crystalline diamond.

1



2 CHAPTER 1. INTRODUCTION

Therefore, the range of promising new forms of carbon is extremely wide. The

fundamental macroscopic quantity, used in order to distinguish among them is the

density. This ranges from very low values, such as ∼ 0.5 - 1 gcm−3 for carbon foams

and schwarzites, to near diamond values ≃ 2.8-3.2 gcm−3 for ta-C. There might even

exist huge gradients of density within the same material, as in na-C and nanodi-

amonds. A unified approach to the study of a-C can link all other characteristic

quantities of the material to its density, over the whole range of possible configu-

rations. Such quantities include the sp3 fraction, the elastic moduli, the intrinsic

stress, the structural correlations, the electronic density of states and the energy

gap. The primary goal of this association is to unravel the fundamental trends be-

hind the properties as the density varies, to predict new behaviors from existing data

and to clarify certain issues which are debated, i.e., interpreted in a different way by

different experimental and theoretical methods.

In view of the fast emerging field of carbon-based composite nanomaterials, char-

acterized by inhomogeneous density profiles, where both high- and low-density re-

gions co-exist, a global theoretical study covering the whole density region is highly

desirable. The aim of such a theory is to establish simple relations describing the

trends in the single-phase systems, which can be used in the more complex composite

cases. For example, the structural and mechanical properties of numerous carbon

based materials have been extensively modelled by Kelires [16, 17, 18, 19, 20, 21] em-

ploying the empirical Tersoff potential. However, it is desirable to move a step further

in the study of these properties by employing more accurate energy functionals.

Another interesting research subject in the field of a-C is the study of its elec-

tronic structure and optical properties, which are related to the hybridization state.

Thus, the optical properties are particularly interesting as they can provide accu-

rate, although indirect determination of the chemical state of a-C (sp3/sp2 ratio),

and they are essential for many applications where optical transparency is required,

such as in protective coatings for lenses and optical systems [22]. The optical prop-

erties of a-C are dominated by the π - π∗ and σ - σ∗ electronic transitions, which

show up as distinct features in the dielectric function spectra [23, 24, 25]. The π -

π∗ contribution originates exclusively from sp2 carbon atoms and particularly from

the transition of π-bonded electrons to π∗ antibonding states. On the other hand,

the σ - σ∗ transition comes from the σ-bonded electrons participating in the covalent

bonds of both sp3 and sp2 carbon atoms [23, 24].

Despite the intensive investigations, the optoelectronic properties of a-C are not

fully understood, and many issues, such as the variation of the optical gap and of

other quantities as a function of the sp3 fraction and the role of defects and disorder,

remain unclear.
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Finally, our interest on na-C is steadily growing for its properties, both mechan-

ical and electronic, that will supplement those of the traditional, single phase a-C.

Na-C can be described as a composite material in which carbon nanocrystallites, of

various sizes and phases, are embedded in the a-C matrix. This interesting hybrid

form of carbon offers the unique possibility to intermingle the properties of carbon

nanostructures [26] with those of pure a-C [3, 4]. For example, since some of these

nanostructures are proposed to be insulating, while others to be metallic, the possi-

bility is opened for tailoring the electronic properties of a-C by controlling the type

and size of the embedded structures.

To achieve the goal of a global description, we therefore need an accurate com-

putational method able to address the fundamental issues at all densities and yield

statistical precision. The method also has to be transferable and not too costly for

the description of properties at the nanoscale. The use of ab initio methods is pro-

hibitive for this purpose and we need more accuracy than that provided by empirical

potentials. A very good candidate to tackle this problem would be the tight-binding

approach. Such a computational method may be coupled to empirical potentials in

problems where the latter can be safely used, to address large-scale problems in a

multiscale approach.

Here, we present a detailed theoretical study of various fundamental properties

of a-C through the whole range of possible densities, in the spirit described above.
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Chapter 2

Carbon

Carbon is encountered in various forms. As a crystal it can have

either the structure of diamond or that of graphite. There are many

modifications even at its amorphous phase. In the last years, other

new forms of carbon have been discovered and attracted great at-

tention. These include nanostructured and nanocomposite carbon,

fullerenes, and nanotubes. The plethora of the various forms of car-

bon makes it an exciting field to study.

2.1 General

Carbon is an exceptional element in its ability to form strong chemical bonds

with a great variety of coordination numbers from two, to three and four. It is able

to form one of the hardest materials or one of the softest. It could have a bandgap

as great as 5.5 eV, being thus insulator, or it could have conductive configuration.

The element carbon has an atomic number of six. Its electron configuration, that

is the arrangement of the electron in each orbital, is described as: 1s22s22p2. This

means that it has two electrons in the K shell (1s2). The K shell is filled, completely

stable and its electrons do not take part in any bonding. The K-shell electrons have

opposite spin. It also has four electrons in the L shell (2s22p2). The L-shell electrons

belong to different subshells, the s and the p, in different energy levels. The two 2s

electrons have opposite spin, in contrast to the two 2p electrons, which have parallel

spin. The whole view of carbon’s electronic structure is represented schematically in

Fig. 2.1a.

In order to have an electron configuration, that would account for the tetrahedral

symmetry found in structures such as diamond, the structure of carbon atom must be

altered to a state with four valence electrons instead of two, each in a separate orbital

5
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1s 2s 2p

1s 2s 2p
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(a)
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Fig. 2.1: Electronic configurations: (a) The electronic structure of the carbon in the
ground state. (b) The sp3 hybridization of carbon orbitals. (c) The sp2 hybridization of
carbon orbitals.

and each with its spin uncoupled from the other electrons. This alteration occurs

as a result of the formation of hybrid atomic orbitals, in which the arrangement of

the electrons of the L shell of the atom in the ground state is modified as one of

the 2s electrons is promoted to the higher orbital 2p as shown in Fig. 2.1b. These

new orbitals are called hybrids since they combine the 2s and the 2p orbitals. They

are labeled sp3 since they are formed from one s and three p orbitals. Now, the

carbon atom has four 2sp3 orbitals and the valence state is raised from two to four.

A graphic visualization of the formation of the sp3 hybridization is shown in Fig.

2.2a. The four hybrid sp3 orbitals are tetrahedrally oriented around the atom (so

the sp3 orbital is known as the tetragonal orbital), have identical shape but different

spatial orientation. They form a regular tetrahedron with equal angles to each other

of 109◦28′. This configuration forms strong covalent σ bonds.

In addition to the sp3-tetragonal hybrid orbital above, two other orbitals com-

plete the series of electronic building blocks of all carbon different species: the sp2

and the sp1 orbitals. The mechanism of the sp2 hybridization is somewhat different

from the sp3 hybridization. The arrengement of the electrons of the L shell of the

atom in the ground state is modified as one of the 2s electrons is promoted and com-

bined with two of the 2p orbitals, to form three sp2 orbitals and an unhybridized free

p orbital electron as shown in Fig. 2.1c. The valence state has now four electrons.

The three identical sp2 orbitals are in the same plane and their orientation forms a

120◦ angle as shown in Fig. 2.2b. The sp2 orbital (or trigonal orbital) is the key

of all graphitic structures and aromatic compounds. This configuration results in

in-plane strong covalent σ bonds and weak π bonds out of plane.

The sp1 orbital (known as digonal orbital) is a compination of an s and a p

orbital. An sp1 bond consists of two sp1 orbitals, which form an angle of 180◦ and
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sp3 sp2 sp1

π
ππ

(a) (c)(b)

Fig. 2.2: Carbon’s three hybridizations, sp3, sp2 and sp1.

consequently the sp1 molecule is linear. The sp1 configuration forms linear σ bonds

and two π bonds in vertical directions (Fig. 2.2c). An example of a molecule having

sp1 bonds is acetylene.

Many unique properties of condensed carbon phases come from the combination

of strong bonds with light mass and high melting point. These properties make the

material technologically important, as well as scientifically fascinating. Despite all

the extensive studies over the past few decades, many intersting problems remain

unresolved.

2.2 Allotropes of Carbon

The capability of an element to combine its atoms to form such allotropes is

not unique to carbon. Other materials in the fourth column of the periodic table

(silicon, germanium and tin) also have that characteristic. However carbon is unique

in the number and the variety of its allotropes. The properties of the various carbon

allotropes can vary widely. Yet these materials are made of the same carbon atoms;

the disparity is the result of different arrangements of their atomic structure.

So our great interest in the several crystalline forms of carbon is based on their

bond hybridization. In addition, each of these forms has a unique structure, that can

produce properties similar to the ones that we can find at its amorphous counterparts.

First of all, we have to refer to diamond with a coordination number (i.e. the

average number of an atom’s nearest neighbors, to which we’ll refer later) of four

and graphite with a coordination number which equals to three. Then there was
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(a) (b)

Fig. 2.3: Crystalline forms of carbon: (a) Diamond and (b) Graphite. Open and dark
spheres denote sp3 and sp2 sites, respectively.

a attempt to introduce a third allotropic form of carbon called carbyne1 [27, 28],

which had a coordination number which equals to two. Furthermore buckminster-

fullerene2 [29, 30] or C60 appears and its bond hybridization can be regarded as an

sp2.5 hybridization [31].

2.2.1 Diamond

Diamond (Fig. 2.3a) is the hardest substance known to man. It has the highest

atom density, one of the largest known bulk moduli, extremely high strength and

rigidity. It has the largest room temperature thermal conductivity of any solid and

the smallest thermal expansion coefficient. It has a wide bandgap of 5.5 eV, five times

common semiconductors’ average hole mobility and a dielectric constant that is half

of that of silicon. It has an unusually high index of refraction and it is transparent

to the visible spectrum.

The structure of diamond is fully constructed by sp3 hybrids. It requires a

loss of energy but this effect is compensated by a very profitable covalent bonding.

Quantum-mechanical calculations indicate that greater overlap between orbitals re-

sults in a stronger covalent bond, which is called σ bond. This bond is the source of

all these extreme physical properties of diamond. The diamond structure represents

a three-dimensional network of strong covalent bonds (Fig. 2.3), which explains why

diamond is so hard.

1Carbynes have a fully crystalline sp1 bonded chainlike structure.
2Its unique structure consists of 60 carbon atoms formed into a large molecule which has a shape

similar to that of a football ball.
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The diamond structure is cubic with a cube edge length of a0=3.567Å and can be

viewed as two interpenetrating FCC structures, displaced by (1/4,1/4,1/4)a0. The

C-C distance of the single bond length is 1.54 Å. The diamond crystal is highly

symmetric with a cubic space group F41/d 3̄ 2/m = Fd3m = O7
h.

Since all the valence electrons contribute to the covalent bond, they are not free

to migrate through the crystal and thus, diamond is a poor conductor and has a

wide bandgap.

2.2.2 Graphite

The origin of the word “graphite” is the greek word “γραφǫιν” (graphin), which

means “to write”, because of the use of graphite in pencils. Graphite (Fig. 2.3b)

is a fully trigonal network of bonds that forms planar six-member aromatic rings of

single and double bonded carbon. It is quite soft and opaque.

In the graphite structure, overlap occurs between the 2sp2 orbitals of neighboring

atoms in the same plane, making σ-bonds. For such neighbors a side-to-side overlap

also occurs between their unhybridized p orbitals. A side-to-side bonding known

as π-bonding results between these neighbors. The electrons participating in this

π-bonding seem able to move across these π-bonds from one atom to the next.

This feature explains graphite’s ability to conduct electricity along the sheets of

carbon atom parallel to the (0001) direction. An in-plane nearest-neighbor distance

is 1.42 Å. The adjacent sheets of carbon atoms are held together by the weak Van der

Waals bonds and separated by a distance 3.54 Å. This gives softness to the structure.

A single graphite plane is a zero bandgap semiconductor and behaves as a metallic

conductor in three dimensions.

The crystal structure is described by hexagonal lattice with D4
6h (P63/mmc)

space group.

2.2.3 Amorphous Carbon

2.2.3.1 General

Amorphous carbon (a-C) (Fig. 2.4) is the generic term used to describe most of

disordered carbon films. Although there is no long range order present, both short

and medium range order is preserved. This makes a-C to have physical properties

similar to its crystalline counterpart. The examination of the nearest neighbor dis-

tance and the next nearest neighbor one shows that the short and medium range

order is very close to clystalline material. In contrast to the previous, the bond angle
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(a) (b)

Fig. 2.4: Amorphous carbon networks: (a) ta-C, with a high percentage of sp3 hybrids
and (b) a-C, wih a balanced fraction of sp3 and sp2 hybrids. Open, dark and shaded
spheres denote sp3, sp2 and sp1 sites, respectively.

distribution is different from that of the crystalline case and doesn’t give a-C long

range order. But this angular variation can also give rise to the narrowing of the

bandgap and the creation of highly localized states within the bandgap.

Figure 2.5 presents, schematically and in a nutshell, the salient characteristics

of the atomic arrangements in glasses as opposed to crystals. Also included, as

an additional and useful reference point, is a sketch of the arrangement in a gas.

Of necessity, two-dimensional crystals, glasses, and gases are represented, but the

essential points to be noted correspond to their actual, three-dimensional, physical

counterparts. For the two sketches representing ideal crystal (a) and glass (b) lattices,

the solid dots denote the equilibrium positions about which the atoms oscillate; for

the gas (c), the dots denote a snapshot of one configuration of instantaneous atomic

positions.

For an amorphous solid, the essential aspect from which its structure differs, with

respect to that of a crystalline solid, is the absence of long-range order. There is no

translational periodicity. This fundamental difference is evident at a glance in Figs.

2.5a and 2.5b.

On the other hand, the atomic positions in the glass are not randomly distributed

in space. Randomness is a trait more properly associated with Fig. 2.5c, at least

in the low-density limit, in which the atoms comprising the gas may be viewed as

point particles. For such a dilute gas (the ideal gas of the kinetic theory), the particle

positions are totally uncorrelated. Each atom may be located anywhere, independent
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Fig. 2.5: Schematic sketches of the atomic arrangements in (a) a crystalline solid, (b)
an amorphous solid, and (c) a gas. (Figure from [1])

of the positions of all other atoms. But in Fig. 2.5b, a high degree of local correlation

can be easily observed. Each atom has (in the example used here for illustration)

three nearest neighbors at nearly the same distance from it. Nearest-neighbor atoms

are connected by lines in the figure and the bond angles formed where these lines

meet at an atomic position are also nearly equal.

In the crystalline case of Fig. 2.5a, the nearest-neighbor separations and bond

lengths are exactly equal (remember that we are dealing with the equilibrium po-

sitions), rather than nearly equal as in the glass. The degree of local correlation

in amorphous solids is quantitatively described in the following chapters; it suffices

here to say that this local order is quite high. Thus glasses have, in common with

crystals, a high degree of short-range order. As in crystals, this is a consequence of

the chemical bonding responsible for holding the solid together.

Thus, while the lack of long-range order in glasses implies randomness at large

separations (knowing the positions of a few atoms does not help to locate, as it does

in a crystal, the positions of distant atoms), the atomic-scale structure is highly

nonrandom for a few interatomic distances about any given atom. A simple thought

experiment serves as one way of demonstrating (other than by just looking) the

presence of local order in Figs. 2.5a and 2.5b and its absence in Fig. 2.5c. Suppose a

single atom is plucked out of each panel of the figure by a man with a bad memory.

If he later wished to reinsert each atom in its original position, he would have no

difficulty doing so for Figs. 2.5a and 2.5b. Not so, however, for Fig. 2.5c; since

it is completely random, the remaining atomic positions provide no clue about the

missing one.
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In technical terms, amorphous carbon has localized π electrons (as opposed to the

aromatic π bonds in graphite), and their bonds are formed in lengths and distances

that are inconsistent with any other allotrope of carbon. It also contains a high

concentration of dangling bonds, which cause deviations in interatomic spacing, and

noticeable variation in bond angle.

As in the crystalline case, each of the bond hybridizations is available to a-C

counterparts. This enables the large variation in the physical properties of a-C films.

Due to bond variations, there is also a significant amount of confusion as to the

terminology used to refer to a particular type of a-C thin film.

During the irradiation of diamond by atoms, many bonds are broken, leading to

point defects and eventually to clusters of defects. At a high enough irradiation dose,

amorphization of the crystal structure may occur and two specific amorphous forms

of carbon may appear: the tetrahedrally bonded Diamond-like Amorphous Carbon

which will be denoted by ta-C and the sp2 bonded Graphite-like Amorphous Carbon

named a-C. These two structures can be clearly distinguished by their macroscopic

and microscopic properties. The former material has higher density, is transparent,

electrically insulating and much harder than the latter. From the microscopic point

of view, the ratio of fourfold, diamond-like bonds to threefold, graphite-like bonds

(sp3/sp2) determines the kind of structure obtained.

Generally we can characterize the amorphous structures by the high degree of

short range order and the absence of long range order. On one hand, in amorphous

structures, the bond length, the number of nearest neighbor atoms and the angle

between two bonds are close to those in crystalline structure, which gives rise to

short range order.

On the other hand, there is no periodicity in the amorphous structure, i.e. one

cannot built the entire lattice from a unit cell by means of appropriate translations.

This lack of long range order breaks symmetries and gives isotropic characteristics

to the structure.

From the energetic point of view, atoms in an amorphous crystal are not bonded

ideally, they are subject to significant stresses and distortions. The energy of an

amorphous solid is thus higher than that of a pure crystal.

While entirely amorphous carbon can be made, most of the material described

as “amorphous” actually contains crystallites of graphite or diamond with various

amounts of amorphous carbon holding them together, making them technically poly-

crystalline or nanocrystalline materials. Commercial carbon also usually contains

significant quantities of other elements, which may form crystalline impurities.
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2.2.3.2 Diamond-like amorphous carbon

Ta-C is a hard and dense material, mostly made of distorted sp3 bonds. A

considerable amount of strain exists, due to localized melting and rapid quenching

during its formation, that leaves the lattice in a stressed state. Part of the internal

strain energy is relieved by the presence of sp2 bonded atoms. These threefold atoms

tend to form small clusters, owing to the delocalization of the π states, and perhaps

π-bonded pairs, and are thought to control the band gap. Moreover, an annealing

process at high temperature may relieve stresses and bring the sample to a still

dense but sp2-rich phase. This is explained by the fact that threefold sites are the

energetically favorable geometry. Temperature will supply the necessary energy to

remove weakly bonded sp3 atoms from their sites. The bonds are then transformed

to sp2 bonds, relieving the local strain and lowering the energy.

For instance, in the ta-C structure, the mean number of nearest neighbor atoms

(the coordination number) is z=3.5-3.8, the mean bond length is 1.50-1.53 Å, and the

mean bond angle 110-115◦. The way the amorphous diamond is prepared strongly

affects the properties of the structure, therefore the data that characterize these

properties cannot be specified exactly. They lie in a range that will define the

structure in consideration.

2.2.3.3 Graphite-like amorphous carbon

The a-C lattice has a less dense structure and is mainly sp2 bonded. In an a-C

sample threefold coordinated atoms tend to form large clusters embedded in a matrix

of fourfold atoms. These sp2 bonds are distorted and non planar, and the threefold

atoms form thick layers, which are spaced more closely than the sheets of graphite.

2.2.4 Fullerenes

The fullerenes [32] are a recently-discovered family of carbon allotropes. They are

molecules composed entirely of carbon, in the form of a hollow sphere, ellipsoid, or

tube. Spherical fullerenes are sometimes called buckyballs (Fig. 2.6a), and cylindrical

fullerenes are called buckytubes. Fullerenes are similar in structure to graphite, which

is composed of a sheet of linked hexagonal rings, but they contain pentagonal (or

sometimes heptagonal) rings that prevent the sheet from being planar.
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(a) (b) (c)

Fig. 2.6: Fullerenes: (a) a C60 buckyball, (b) a single-wall nantube, and (c) a multi-wall
nanotube.

2.2.4.1 Nanotubes

Carbon nanotubes [33] are cylindrical carbon molecules with novel properties

that make them potentially useful in a wide variety of applications (e.g., nano-

electronics, optics, materials applications, etc.). They exhibit extraordinary strength

and unique electrical properties, they can be either metallic or semiconducting de-

pending on their chirality, and are efficient conductors of heat. Inorganic nanotubes

have also been synthesized.

A nanotube (also known as a buckytube) is a member of the fullerene structural

family, which also includes buckyballs. Whereas buckyballs are spherical in shape, a

nanotube is cylindrical, with at least one end typically capped with a hemisphere of

the buckyball structure. Their name is derived from their size, since the diameter of

a nanotube is on the order of a few nanometers (approximately 50,000 times smaller

than the width of a human hair), while they can be up to several micrometers in

length. There are two main types of nanotubes: single-walled nanotubes (SWNTs)

(Fig. 2.6b) and multi-walled nanotubes (MWNTs) (Fig. 2.6c).

Nanotubes are composed entirely of sp2 bonds, similar to those of graphite.

This bonding structure, stronger than the sp3 bonds found in diamond, provides

the molecules with their unique strength. Nanotubes naturally align themselves into

”ropes” held together by Van der Waals forces. Under high pressure, nanotubes can

merge together, trading some sp2 bonds for sp3 bonds, giving great possibility for

producing strong, unlimited-length wires through high-pressure nanotube linking.



Chapter 3

Tight - Binding Molecular

Dynamics

In this dissertation, we use tight-binding molecular dynamics sim-

ulations in order to study carbon. We use two different models in

order to make sure that our results are independent of the hamilto-

nian used. Our simulations are done by using the canonical ensemble,

which means that simulations are carried out at constant volume and

temperature.

3.1 General

The tight-binding (TB) method bridges the gap between classical and first-

principles calculations. It is more accurate and transferable than empirical schemes

because it provides a quantum-mechanical description of the interactions. On the

other hand, while less accurate than ab initio approaches, it yields greater statistical

precision and allows the use of larger cells, which compensate in part the sacrifice in

accuracy.

In bibliography TB method is known with an additional name; it is called linear

combination of atomic orbitals (LCAO). As its name shows, the major idea of LCAO

method is the attempt to represent the unknown wave function, ψ(r), on the basis

of atomic orbitals considered to be known.

The TB approximation deals with the case in which the overlap of atomic wave

functions is enough to require corrections to the picture of isolated atoms, but not so

much as to render the atomic description completely irrelevant. The approximation

is most useful for describing the energy bands that arise from partially filled d-shells

of transition metal atoms and the electronic structure of insulators. Quite apart from

15
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its practical usefulness, the TB approximation provides an instructive way of viewing

Bloch levels complementary to that of the nearly free electron picture, permitting

a reconnciliation between the apparently contradictory features of localized atomic

levels on the one hand, and free electron-like plane-wave levels on the other.

A great disadvantage of TB method is the presence of parameters, which may

be some dozens in a realistic problem. One way to determine these parameters is by

ab initio calculations, which sometimes are very difficult to do. So, there are only

two solutions to follow; either you can get the values of parameters from hand books

[34], or you can represent them through atomic quantities and bond lenghts [35].

As we mentioned, the wave function, ψ, is written as a linear combination of

atomic-like orbitals, φ, which are the basis functions

|ψ >=

Nb
∑

iα

ciα|φα > (3.1)

where Nb is the dimension of the basis set and equals the product of the number of

atoms in the system, Nα, times the number of orbitals per atom, No, as Nb = NαNo.

The index in the sum runs over all atoms (i) and orbitals (α). The coefficients ciα are

actually the weights of each orbital at a given atomic site and are complex numbers.

The orbitals are centered around atoms and decay rapidly. Therefore, the matrix

elements of different orbitals are actually non-zero only for on-site terms and between

pairs of neighboring atoms (with a relative distance less than a certain cutoff).

The starting point of the method is Schrödinger’s equation

H|ψ >= ǫ|ψ > (3.2)

where H is the hamiltonian of the system and ǫ is the energy.

We replace in eq. (3.2) the wave function, ψ, from eq. (3.1). Additional, we

assume that the basis is not orthonormal in general, i.e. < φα|φβ >= Sαβ 6= δαβ

where Sαβ are the overlap parameters. After that we get a generalized eigenvalue

problem
∑

jβ

(Hiαjβ − ǫiSαβ)cjβ = 0 (3.3)

or in a matrix form

Hc = ǫSc (3.4)

where c is the vector of the coefficients cα, H and S is the hamiltonian and overlap

matrix, respectively.

The Hamiltonian matrix elements are given by the relation

Hiαjβ =< ψ|H|ψ >= c∗iαcjβ < φα|H|φβ > (3.5)



3.1. GENERAL 17

(a) (b)

(d)(c)

Fig. 3.1: The four steps, followed during an MD simulation is proceeded.

and the TB problem is reduced to the diagonalization of the Hamiltonian and the

extraction of the eigenvectors ciα that are related to the wavefunctions, as well as

the eigenvalues ǫi that give the energy levels.

In the TB method, the total energy of the system is written as

Etot = Ebs + Erep (3.6)

The first term represents the electronic band-structure energy, i.e., the sum of the

eigenvalues over all occupied electronic states and the second term includes all the

repulsive energies.

When the TB method is coupled with the dynamics and motion of particles in a

system, the resulting simulational method is called tight-binding molecular dynamics

(TBMD). The molecular dynamics (MD) method is simply a method for integrating

the classical equations of motion of the atoms, which are given by

MIR̈I = FI (3.7)

The MD simulations proceed in four steps (Fig. 3.1):

(a) The positions of the atoms are given as input and are used to calculate the

Hamiltonian of the system.

(b) The electronic ground state of the system is calculated by finding the eigenvalues

and eigenvectors of the Hamiltonian.
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(c) The eigenvectors are used to derive the forces on the atoms.

(d) Knowing the forces on the atoms we can integrate the equations of motion for

the ions and find the new atomic positions.

3.2 Ames model

We first treat the interatomic interactions in a-C networks using the enviroment-

dependent tight-binding (EDTB) model of Tang, Wang, Chan and Ho [36]. This

tight-binding model goes beyond the traditional two-center approximation and allows

the hopping parameters and the repulsive energy to be dependent on the binding

enviroment.

While the two-center approximation greatly simplifies the TB parametrization,

neglecting multicenter interactions are justified only when the electrons are well

localized in strong covalent bonds. For systems, where metallic effects are significant,

the two-center approximation is inadequate. In order to generate a tight-binding

model that has good transferability over a wide range of coordination numbers,

one can include multicenter interactions by allowing the interatomic interactions to

depend on the binding environment.

So this model, which has been tested for the case of carbon, describes properly

the higher-coordinated metallic structures in addition to the diamond, graphite and

linear chain structures. Compared to the previous two-center model of Xu, Wang,

Chan and Ho [37], the EDTB model improves remarkably the accuracy and transfer-

ability. The model has been used with success in specific problems related to carbon

systems, such as the study of carbon 1s core-level shifts in a-C [38] and the surface

reconstructions of “bucky diamonds” [39].

In this approach, the environment dependence of the hopping parameters is mod-

eled through incorporating two new scaling functions into the traditional two-center

integrals. A minimal basis set of one s and three p atomic orbitals is used to con-

struct the tight-binding Hamiltonian for carbon with the hopping parameters and

the pairwise repulsive potential expressed as

h(rij) = α1R
−α2

ij e−α3R
α4

ij (1 − Sij) (3.8)

The first one is a screening function, Sij, which mimics the electronic screening

effects in solids, such that the interaction strength between two atoms in the solid

becomes weaker if there are intervening atoms located between them. This approach

allows us to distinguish between first- and farther neighbor interactions within the

same interaction potential without having to specify separate interactions for first
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and second neighbors. The screening function is modeled as

Sij =
eξij − e−ξij

eξij + e−ξij
(3.9)

with

ξij = β1

∑

j

exp
[

− β2

(ril + rjl

rij

)β3
]

(3.10)

The screening function varies smoothly from 0 to near 1 as ξ is increased. In general,

we require that Sij is near 0 if i and j are nearest-neighbor atoms, and close to 1

otherwise so that nearest-neighbor interactions dominate.

The second function, Rij , scales the distance between two atoms according to

their effective coordination numbers. Longer effective bond lengths are assumed for

higher-coordinated atoms. The scaling function, between the real rij and the effective

Rij interatomic distance, is defined by

Rij = rij

{

1 +
δ

2

[(gi − g0

g0

)

+
(gj − g0

g0

)]}

(3.11)

where gi and gj are the effective coordination numbers of atoms i and j, and g0

denotes the coordination number for a reference atom in a reference structure and

they are given by

gi =
∑

j

(1 − Sij) (3.12)

Note that when i and j are nearest-neighbor atoms, Sij is close to 0 and gi counts

almost one neighbor. On the other hand, Sij is close to 1 if i and j are not nearest-

neighbor atoms, so that gi counts only a small fraction of a neighbor. So gi provides

a continuous and smooth function for counting the neighbors.

The strength of the hopping parameters between atoms i and j is therefore

dependent on the coordination number of the atoms: weaker interaction strength

for larger-coordinated structures. This model preserves the two-center form of the

tight-binding hopping integral. Note that expression (3.8) reduces to the traditional

two-center formula if we set Rij = rij and Sij = 0, while it is taking multicenter

effects into account.

Besides the hopping parameters, the diagonal matrix elements in this model are

also dependent on the bonding environments. The expression for the diagonal matrix

elements is

eλ,i = eλ,0 +
∑

j

∆eλ(rij) (3.13)

where ∆eλ(rij) takes the same expression as (3.8) and λ denotes the two types of

orbitals.
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Finally, the repulsive energy term is expressed by

Erep =
∑

i

f
(

∑

j

φ(rij)
)

(3.14)

where φ(rij) is a pairwise potential between atoms i and j and f is a functional

expressed as a fourth-order polynomial with argument
∑

j φ(rij). So the eq. (3.14)

can be coupled with the eq. (3.6) and give us the total energy of the system described

by this model.

The parameters in the model (α’s, β’s etc.) are determined by first fitting to

the electronic band structures and then the cohesive energy versus volume curves for

linear chain, graphite, diamond, simple cubic, bcc, and fcc structures, respectively

obtained by the self-consistent first-principles density-functional theory calculations.

3.3 NRL model

During our study, we used another TB scheme to ensure that our results are inde-

pendent of the hamiltonian. We applied to our methodology a TB method introduced

by Mehl and Papaconstantopoulos [40, 41]. They present a general tight-binding

total-energy (TBTE) method, which uses an analytic set of two-center, nonorthog-

onal tight-binding parameters, on-site terms that change with the local enviroment,

and no pair potential.

One essential feature of TBTE methods that has not been emphasized is the

choice of zero for the band structure term. In density-functional theory (DFT) [42]

the total energy can be written in the form

E[n(r)] =
∑

i

f(µ− ǫi)ǫi + F [n(r)] (3.15)

where the first term is the “band structure energy”. Many TBTE models use a

parametrized pair potential to represent F [n(r)]. However, there is a fundamental

problem with this approach that appears not to have been widely recognized.

Mehl and Papaconstantopoulos have solved this problem by eliminating the pair

potential from the tight-binding total energy. An alternative method of applying

tight binding to eq. (3.15) has been developed, based on the fact that the Kohn-Sham

formulation of DFT allows the eigenvalues to be shifted by an arbitrary constant V0,

often called the “muffin-tin zero”. If this shift is defined to be

V0 =
F [n(r)]

Ne

(3.16)
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whereNe =
∑

i f(µ−ǫi) is the number of electrons in the system, then the eigenvalues

ǫi are each shifted by an amount V0, to the new values

ǫ′i = ǫi + V0 (3.17)

Then the total energy (3.15) becomes

E[n(r)] =
∑

i

f(µ′ − ǫ′i)ǫ
′

i (3.18)

where µ′ = µ+ V0 is the shifted chemical potential.

The two-center Slater-Koster formulation of tight binding with a nonorthogonal

basis breaks the problem into the calculation of three types of parameters: on-site

parameters, which represent the energy required to place an electron in a specific

orbital; Hamiltonian parameters, which represent the matrix elements for electrons

hopping from one site to another; and overlap parameters, which describe the mixing

between the nonorthogonal orbitals on neighbor sites. The eigenvalues ǫ′i can be

determined once the parameters are evaluated for a given structure.

In an orthogonal tight-binding calculation, applying the shift to each eigenvalue

would be equivalent to shifting each diagonal element of the Hamiltonian matrix by

an amount V0. In the nonorthogonal case the effect is slightly more complicated. It

is clear, however, that the Hamiltonian and overlap parameters should not directly

depend on the shift V0. Thus the shift effect can only be accounted by changing the

on-site parameters.

On-site parameters must now be sensitive to the local environment around each

atom. This is achieved by introducing a local “density”, given by

ρi =
∑

j

e−λ2RijFc(Rij) (3.19)

where Fc is a smooth cutoff function. Then the on-site terms for each atom i are

fitted to a finite strain polynomial

hil = al + blρ
2/3
i + clρ

4/3
i + dlρ

2
i (3.20)

where the index l runs over all orbitals. In the case of carbon [43] only s and p

orbitals are used and the cutoff function vanishes at 10.5 a.u.

On the other hand, the two-center Slater-Koster hopping terms for the Hamil-

tonian and overlap parameters are essumed to have the same functional form. They

are simply polynomials multiplied by an exponential cutoff. Hamiltonian is defined

as

Hll′µ(R) = (pll′µ + qll′µR + rll′µR
2)e

−s2

ll′µ
R
Fc(R) (3.21)
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The overlap parameters have a small difference in the Hamiltonian to exhibit the

proper behavior as the atoms get close together and are written as

Sll′µ(R) = (δll′ + tll′µR + ull′µR
2 + vll′µR

3)e
−w2

ll′µ
R
Fc(R) (3.22)

where δll′ is the Kronecker delta function.

The parameters in the model (λ, (a, b, c, d)l, (p, q, r, s)ll′µ and (t, u, v, w)ll′µ),

which are forty-one in the case of carbon [43], are simultaneously fitted to the band

structures and total energies at different structures and volumes.

3.4 Canonical Ensemble - (N,V,T)

3.4.1 General

Statistical physics deals with the study of systems which are composed of a

large number of particles, i.e. atoms, molecules, electrons, etc., and thus have many

degrees of freedom. Its scope is to relate the microscopic level with the macroscopic

one.

Let’s say we have a classical system in equilibrium. This system is described by

the Hamiltonian H(r̄N , p̄N) = K + U which is the sum of the kinetic and potential

energy of the particles. Here, r̄ stands for the coordinates and p̄ for the momenta of

N particles. In this notation, the mean value of every observable quantity A(r̄N , p̄N)

is given by the sum over all states on the phase space, with respect to the stationary

probability P (r̄N , p̄N):

〈A〉 =
1

h3NN !

∫

A(r̄N , p̄N)P (r̄N , p̄N)dr̄Ndp̄N (3.23)

where the factor h3N is introduced because of the quantization of phase space while

the factor N! because of the indistinguishability of identical particles.

In the case of the canonical ensemble, the quantities which are kept constant are

the number of particles, the volume and the temperature of the system, (N,V,T). A

schematic representation of this ensemble is shown in Fig. 3.2, in which the system

is sketched inside a reservoir.

The proper thermodynamic potential, whose minimum determines thermal equi-

librium is the Helmholtz free energy F = E − TS = −kBT lnZ(N, V, T ). On the

other hand, the probability distribution is

P (r̄N , p̄N) =
e−βH(r̄N ,p̄N )

Z(N, V, T )
(3.24)
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oV  − V

m N, V, T

Fig. 3.2: Schematic representation of canonical ensemble. The number of particles, the
volume and the temperature of the system are kept fixed, (N,V,T).

where

Z(N, V, T ) =
1

h3NN !

∫

e−βH(r̄N ,p̄N )dr̄Ndp̄N (3.25)

is called the partition function of the system, β = 1
KBT

and KB is the Boltzmann

factor.

Applying the above equations in Eq. 3.23 one gets:

〈A〉 =

∫

A(r̄N , p̄N)e−βH(r̄N ,p̄N )dr̄Ndp̄N

∫

e−βH(r̄N ,p̄N)dr̄Ndp̄N
(3.26)

Note that the Hamiltonian is a quadratic function of momenta, meaning that

the integrations with respect to the latter can be carried analytical. On the other

hand, the integration of functions A(r̄N), like the potential energy U(r̄N ), over the

configuration part of the phase space is the difficult part. In this case the integration

over momenta cancels out, and Eq. 3.26 is written:

〈A〉 =

∫

A(r̄N)e−βU(r̄N )dr̄N

∫

e−βU(r̄N )dr̄N
(3.27)

3.4.2 Temperature Control

In the standard MD method, the newtonian equations of motion of the parti-

cles in a fixed MD cell of volume V are solved numerically. The total energy E is

conserved and thus the ensemble generated by the simulation is the microcanonical
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or (N,V,E) ensemble. With the MD method, not only the static quantities but also

the dynamic quantities can be obtained. This is one advantage over the classical

methods. However, a disadvantage of the MD method is that the conditions of the

simulations are not the same as those normally encountered in experiments (constant

temperature, constant pressure or (N,P,T) conditions).

To perform MD simulations at constant temperature((N,V,T) conditions), the

simplest way is to keep the kinetic energy constant by scaling the velocities at each

time step. However, there seems to be no rigorous proof that the latter approach

produces configurations belonging to the canonical ensemble.

Another method for constant temperature MD simulations was proposed by An-

dersen [44]. This is effectively a hybrid of MD and MC methods since the velocities

of the particles are changed stochastically to produce the Boltzmann distribution.

Hoover et al. [45] also introduced a constraint method in which an additional

velocity dependent term is added to the forces to keep the total kinetic energy con-

stant. Their method produces the canonical distribution for the potential energy

term. The fluctuations of the kinetic energy are suppressed.

3.4.3 Nosé-Hoover thermostat

Another molecular dynamics method at constant temperature is proposed by

Nosé [46, 47] and Hoover [48]. This method introduces an additional degree of

freedom, so the total energy of the physical system is allowed to fluctuate. A special

choice of the potential, for the extra degree of freedom, guarantees that the averages

of static quantities in this method are equal to those in the canonical ensemble.

An additional term is used, −ζpi, to the force term and the equations of motion

using the Nosé-Hoover thermostat, transform to

dqi

dt
=

pi

mi
(3.28)

dpi

dt
= − ∂Φ

∂qi
− ζpi (3.29)

where qi, pi are the atomic coordinates and momenta, mi the particle mass and Φ

the potential energy.

The parameter ζ is determined by the requirement that the total kinetic energy

is constant
∑

i

p2
i

2mi

=
gkT

2
or

∑

i

pi
dpi

dt
/mi = 0 (3.30)
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Thus, we get

ζ = −
∑

i
∂Φ
∂qi

pi/mi

∑

i
p2

i

mi

(3.31)



26 CHAPTER 3. TIGHT - BINDING MOLECULAR DYNAMICS



Chapter 4

Methodology

The procedure we follow to construct our amorphous carbon networks

is the ”quenching from the liquid” method, in some respects similar to

the experimental practice. We also consider fully tetrahedral amor-

phous networks, simulating the hypothetical ”amorphous diamond”

phase, based on the well known WWW model. Such networks offer

an upper bound to the properties of a-C. Our nanodiamond compos-

ites are generated from pure diamond by keeping the core frozen and

melting the surrounding matrix. Moreover, the methoology used to

analyse the computer generated networks is presented and discussed.

4.1 Formation of a-C networks

What is a ”solid”? In a familiar type of thought experiment, often invoked to

conceptually analyze the energetics involved in the formulation of a solid, a large

collection of initially isolated atoms is gradually brought together “from infinity”

until the actual interatomic spacings of the solid are attained. The actual experiment,

that most closely corresponds to this gedanken experiment, involves cooling the vapor

of the material until it condenses into the liquid state, and then further gradual

cooling of the liquid until it solidifies. Results of such an experiment, for a given

quantity of the material, may be represented on a volume-versus-temperature V (T )

plot such as the one schematically shown in Fig. 4.1.

Figure 4.1 should be read from right to left, since time runs in that direction

during the course of the quenching (temperature-lowering) experiment. A sharp

break or bend in V (T ) marks a change of phase occurring with decreasing temper-

ature. The first occurs when the gas (whose volume is limited only by the dimen-

sions of the experimental enclosure) condenses to the liquid phase (of well-defined

27
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Fig. 4.1: The two general cooling paths by which an assembly of atoms can condense
into the solid state. Route (1) is the path to the crystalline state; route (2) is the rapid-
quench path to the amorphous solid state.(Figure from [1])

volume, but shape enclosure-determined) at the boiling temperature Tb. Contin-

ued cooling now decreases the liquid volume in a continuous fashion, the slope of

the smooth V (T ) curve defining the liquid’s volume coefficient of thermal expansion

α = (1/V )(∂V/∂T )P . (The experiment is assumed to be taking place at low pressure,

P ≈ 0.) Eventually, when the temperature is brought low enough, a liquid-to-solid

transition takes place (with the exception of liquid helium, which remains liquid as

T → 0 in the absence of pressure). The solid then persists to T = 0, its signature in

terms of V (T ) being a small slope corresponding to the low value (relative to that

of the liquid phase) of the expansion coefficient a which characterizes a solid.

A liquid may solidify in two ways; either discontinuously to a crystalline solid

or continuously to an amorphous solid (glass). The two solids resulting from these
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two quite different solidification scenarios are labeled, correspondingly, (1) and (2)

in Fig. 4.1. Scenario (1) occurs at temperature Tf , the freezing (or melting) point.

The liquid-to-crystal transition is marked by a discontinuity in V (T ), an abrupt

contraction to the volume of the crystalline solid. In a quenching experiment carried

out at a sufficiently low cooling rate, this is usually the route taken to reach the

solid state. But at sufficiently high cooling rates, it is found that most materials

alter their behavior and follow route (2) to the solid phase. Tf is bypassed without

incident, and the liquid phase persists until a lower temperature Tg is reached. Here

the second solidification scenario is realized. The liquid-to-glass transition occurs in

a narrow temperature interval near Tg, the glass transition temperature. There is no

volume discontinuity, instead V (T ) bends over to acquire the small slope (similar to

that of the crystal) characteristic of the low thermal expansion of a solid.

Both crystals and glasses are bona fide solids and share the essential attributes

of the solid state. Their fundamental difference is in the basic nature of their mi-

croscopic, atomic-scale structure. In crystals, the equilibrium positions of the atoms

form a translationally periodic array. The atomic positions exhibit long-range or-

der. In amorphous solids, long-range order is absent; the array of equilibrium atomic

positions is strongly disordered. For crystals, the atomic-scale structure is securely

known at the outset from the results of diffraction experiments, and it provides the

basis for the analysis of such properties as electronic and vibrational excitations. For

amorphous solids, the atomic-scale structure is itself one of the key mysteries.

A note on terminology is in order at this point. The term amorphous solid

is the general one, applicable to any solid having a nonperiodic atomic array as

outlined above. The term glass has conventionally been reserved for an amorphous

solid actually prepared by quenching the melt, as in (2) of Fig. 4.1. Since there

are other ways to prepare amorphous solids than by melt-quenching, glass (in the

conventional usage) is the more restrictive term. In this thesis, both terms will

be used synonymously. Not only does this lubricate the discussion because “glass”

is one word while “amorphous solid” is two, it is also convenient to have “glass”

to set in opposition to “crystal” (instead of “amorphous solid” versus “crystalline

solid”). Other terms, sometimes used in the literature in place of amorphous solid,

are noncrystalline solid and vitreous solid.

The a-C networks are generated by quenching from the melt, as described previ-

ously. Although not directly related to the kinetics of the growth process of a-C films,

it produces generic structures associated with the equilibrium state of the films. (For

a thorough discussion of this and other points dealt with in this subsection, see Ref.

[18].)

We used cubic computational cells of about 200 - 500 atoms with periodic bound-
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ary conditions. We first equilibrated well various carbon liquid structures at different

densities, at 12000 K. Quenching of the liquid structures was then performed within

temperature intervals of 500 K down to 0 K, each of them lasting for 2000 time steps.

The size of the time step used was 1.05 ×10−15 s, i.e., the total quench time was

52.5 ps and the quench rate 226 K/ps. During quenching, the volume/density of the

cells was kept constant. After quenching, the density (volume) was allowed to relax

by changing homogeneously the dimensions of the cells within small increments and

seeking energy minimization, still within the (N, V, T ) ensemble.

The relaxation of volume and density is important because it brings the system

to its ground state and eliminates any external forces and constrains. In fact, we

observed that in most cells the change in density between the initial, as quenched

structure, and the final ground state structure was significant, of the order of 0.1

gcm−3. This shows that the unrelaxed cells were under external stress [18].

4.2 The WWW model

Besides the cells formed by quenching, we also examined the properties of another

generic structure. This is based on the Wooten-Winer-Waire (WWW) model [49, 50]

of a-C, which is a hypothetical model of “amorphous diamond”, completely tetrahe-

dral, constructed by a computer algorithm that generates realistic random-network

models of amorphous solids.

WWW models take in mind a critical aspect of the amorphous structure, which

demands attention. This is the homogeneous structure, thought to be typical of

the bulk material, and is generally believed to be a continuous random network.

Continuous random-network structures, constructed by WWW algorithm, preserve

local order, but bond angles and bond legths are somewhat distorted. Their topology

also includes fivefold and sevenfold rings in addition to sixfold rings characteristic

of the diamond structure. The models also obey to periodic boundary conditions to

avoid the awkward problems posed by free surfaces. This method differs from earlier

approaches in its conceptual simplicity and in the inclusion of a Maxwell-Boltzmann

factor, which is essential for construction of models.

The methodology of constructing fully tetrahedral a-C follows. The starting

structure is a perfect diamond crystal. Periodic boundary conditions are imposed so

that the structure is completely tetrahedrally coordinated, i.e. there are no dangling

bonds anywhere. The bond-bending and bond-stretching forces are described by a

Keating potential [51, 52].

The first step after generating the initial crystal structure is to randomize the
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Fig. 4.2: Bond switch move. The elementary rearrangement applied by Wooten at al.

[49].

network sufficiently, so that subsequent annealing will not lead the system back to

the crystalline state. The randomization process is realized by the introduction of

many bond switches (see Fig. 4.2) at a temperature just above the melting point for

the model. The bond rearrangements maintain fourfold coordination at each atom,

thus introducing large strain in the structure and constructing five- and sevenfold

rings.

In the second stage of the procedure, the temperature is reduced in small steps,

and at each new temperature, thermal equilibrium is established. The system is

relaxed geometrically (the release of the strain energy allowing the stretching and

bending of bonds, according to the Keating potential [52]) and topologically (creating

more bond switches in the system). After that, a long annealing process takes place,

and finally a random network of comparatively low energy is obtained.

We used the 216-atom cell constructed by Djordjević, Thorpe, and Wooten [53].

We relaxed its topology and density with the tight-binding models. The cell remains

perfectly tetrahedral. The WWW model, although hypothetical, is very useful be-

cause it provides an upper bound to the density, sp3 fraction, and bulk modulus of

a-C, and can directly be compared to the crystalline counterpart, diamond.

4.3 Generation of nanodiamond structures

The embedded nanostructures are formed using Monte Carlo (MC) simulations

by melting and subsequent quenching at constant volume the corresponding crystal
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structures, while keeping a certain number of atoms in the central portion of the

cells frozen in their ideal crystal positions. This method is not directly related to the

kinetics of the growth process of these materials, and is a nonequilibrium process,

where a metastable state is produced by freezing-in continuously the nonequilib-

rium local structures. The procedure of quenching from the melt, actually, produces

generic structures that cannot be directly associated with the nonequilibrium as-

deposited structures, but can be definitely associated with and can be used to study

the equilibrium ground state of na-C films.

After quenching, which produces amorphization of the surrounding matrix, the

cells are thoroughly relaxed with respect to atomic positions and density. Relaxations

are particularly important at the interface region, where the crystallites mainly adjust

to the host environment. Periodic boundary conditions are applied to the cells. The

total number of atoms is 512, while the number of atoms in the nanocrystals ranges

from ∼ 100 to 200.

Continuing, we anneal the structures up to 1000K with the tight-binding models.

We do that in order to relax the networks with the TB hamiltonians. Afterwards,

we lower again the temperature at 0K and we allow the volume of the cells to relax

by changing homogeneously its dimensions and seeking energy minimization, still

within the (N,V,T) ensemble, as we did in the case of the formation of a-C networks.

Cells with various coordination (density) of the amorphous matrix can be formed

by changing the initial starting density (volume) of the crystal structures. The size

(radius) of the nanocrystals is controlled by the choice of the number of the shells

kept frozen during quenching.

4.4 Analysis Tools

In order to describe an amorphous structure, the following characteristic quan-

tities, among others, can be used: coordination number, radial distribution function

and angular distribution function.

4.4.1 Radial distribution function

The radial distribution function (RDF), J(r), is a generalization of the coordina-

tion number. Instead of only looking at the first nearest neighbours, RDF is a way

to count the number of atoms that lie at a distance r from a specific atom, averaging

over all atoms of the lattice.

From a random atom chosen as the origin, J(r)dr gives the probability of finding
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Fig. 4.3: Sketches of the pair distribution function for (a) diamond crystal, (b) a-C,
and (c) liquid C.

a neighboring atom at a distance between r and r + dr. For a crystal lattice with

each atomic nucleus regarded as clamped to its equilibrium position (lattice site),

the RDF is a sum of delta functions, with each corresponding to a coordination shell

(Fig. 4.3a)

Jcr(r) =
∑

i

zi(r)δ(r − ri) (4.1)

Except for that fact, the spikes in J(r) for a crystal are broadened by thermal

and zero-point motion. Despite this blurring, well-defined peaks can be seen in

the experimentally determined RDFs for crystals out to about a dozen coordination

shells.

Direct evidence of the existence of short-range order in glasses, in the form of well-

defined nearest-neighbor and next-nearest-neighbor coordination shells, is provided

by the presence of the clearly seen first and second peaks in the RDF (Fig. 4.3b).

On the other hand, the absence of long-range order manifests itself in the fact that,

for glasses, discernible peaks in the RDF rarely occur beyond third-nearest neighbor.

Similar remarks apply to the RDF of liquids (Fig. 4.3c).

For point particles distributed randomly in space with an average number density

(number of atom centers per unit volume), ρ(r), at a distance r from an average atom

center, the RDF follows directly from the fact that the expected number of particles

in a shell of volume 4πr2dr is just that volume element times ρ

J(r) = 4πr2ρ(r) (4.2)

The RDF is obtained as a Fourier transformation of the observed momentum distri-

bution

J(r) = 4πr2ρ0 + rG(r) (4.3)
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where ρ0 is the density of atom centers averaged over the sample and G(r) is the

reduced RDF defined by

G(r) =
2

π

∞
∫

0

dk[I(k) − 1]k sin(kr) (4.4)

where I(k) is the normalized intensity distribution (structure factor) and k is the

scattering vector defined by

k = (4π/λ) sinφ (4.5)

λ being the wavelength of the probing radiation and 2φ the scattering angle.

Compining eq. (4.2) and (4.3) we produce the following form for reduced RDF

G(r) = 4πr(ρ(r) − ρ0) (4.6)

Another expression for RDF, which is commonly used, is defined by

g(r) = ρ(r)/ρ0 (4.7)

4.4.2 Coordination number

The coordination number z is the number of nearest neighbour atoms. For

example, z is 4 for the diamond structure, or 12 for the FCC structure. For perfect

lattices, the coordination number has no real significance but for more complex

structures, like amorphous lattices, it plays a crucial role in the determination of

the amorphous structure type. It will be shown in the next section that z for the

amorphous material is very close to that of the corresponding crystal.

It can be noted that the coordination number may be measured by determining

the integrated area under the first peak of radial distibution function. The number

of particles located in the region between r1 and r2 are:

n =

∫ r2

r1

4πr2ρ0g(r)dr (4.8)

In the case where r1 = 0 and r2 is such that g(r) = 0, eq. 4.8 denotes calculation of

the area under the first peak. This area is a direct expression of z.

4.4.3 Bond-angle distribution function

The bond angle distribution function g(θ) is defined for angles between near-

est neighbors atoms. For a diamond crystal, g(θ) is a delta function centered at
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θ = 109.47◦. For an amorphous crystal, g(θ) is centered at an angle close to the

tetrahedral angle for the ta-C structure and to θ = 120◦ for the a-C structure. Large

angle distortions occur in these structures, as indicated by the significant width of

the bond angle distribution. Moreover, in the case of the a-C crystal, for example,

g(θ) is not vanishing near the tetrahedral angle, thus part of the bonds, in that

structure, may be defined as having a diamond-like angle nature. In experiment, the

bond angle can be obtained by the ratio of the first and second neighbor distances

(r0 and r1 respectively) as in

θ = 2 arcsin(r/2r0) (4.9)

4.5 Bulk Modulus

A representative and important elastic quantity is the bulk modulus. It measures

the response in pressure due to a change in relative volume. The equilibrium bulk

modulus is defined as

Beq = V (
d2E

dV 2
)V =Veq

(4.10)

and it is obtained by considering a uniform hydrostatic expansion or compression

of the system and differentiating the curve of the energy as a function of volume.

The minimum energy and volume and the corresponding bulk modulus of each cell

were determined by fitting the energy-versus-volume data to Murnagham’s equation

of state [54].

4.6 Optical properties

4.6.1 Momentum matrix elements

For the discussion of the optical properties, one must calculate the momentum

(P) matrix elements from the TB wavefunction. We present here our contribution

to this subject. By necessity, this calculation is an approximation, because we can

not estimate them directly. These matrix elements are the basis for any subsequent

evaluation of all optical quantities.

We begin with a rigorous relation between matrix elements of the momentum

and the position operators between two eigenstates [35, 85]. These eigenstates are

denoted by |i〉 and |f〉. The essential idea is contained in two evaluations of the

“commutator”

C = 〈f |Hr− rH|i〉 (4.11)
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We first use the hamiltonian

H = −~
2∇2

2m
+ V (r) (4.12)

and we note that only the ∇2 gives extra terms, ∇2r − r∇2 = 2∇, and C becomes

C =
~

im
〈f |P|i〉 (4.13)

For the second evaluation we use the definition of energy eigenstates

〈f |H = Ef〈f |, (4.14a)

H|i〉 = Ei|i〉 (4.14b)

where Ei, Ef are the eigenvalues of |i〉, |f〉 eigenstates, respectively, and we obtain

C = (Ef −Ei)〈f |r|i〉 (4.15)

The whole combination gives

~〈f |P|i〉 = im(Ef − Ei)〈f |r|i〉 (4.16)

We now can use the principal idea of the LCAO method and write our eigenstates,

|i〉 and |f〉, as a linear combination of the atomic states (orbitals), |a〉 and |b〉

|i〉 =
∑

a

c(i)a |a〉 (4.17a)

|f〉 =
∑

b

c
(f)
b |b〉 (4.17b)

where c
(n)
k is the eigenvector for the nth eigenstate on k atomic state. If we take in

mind that 〈k|r|k〉 6= 0 but 〈k|r|l〉 = 0, we can compute that

〈f |r|i〉 =
∑

k

c
(f)∗
k c

(i)
k 〈k|r|k〉 =

∑

k

c
(f)∗
k c

(i)
k ~rk (4.18)

Finally if we combine the previous expression with the eq. 4.16, we will obtain

〈f |P|i〉 =
im

~
(Ef − Ei)

∑

k

c
(f)∗
k c

(i)
k ~rk (4.19)

Additional we can apply the rigorous result 4.16 to an approximate description

of tight-binding states, taking the atomic state |a〉 at a nucleus a distance d from an

atomic state |b〉. From these two states we construct a bonding eigenstate

|i〉 =

√

1 − αp

2
|a〉 +

√

1 + αp

2
|b〉 (4.20)
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and an antibonding state

|f〉 =

√

1 + αp

2
|a〉 −

√

1 − αp

2
|b〉 (4.21)

where αp is the polarity defined by

αp =
V3

√

V 2
2 + V 2

3

(4.22)

and V3 = (Ea −Eb)/2 and the coupling between them V2 = 〈a|H|b〉.
Then we may substitute these into the rigorous relation given above, taking of

course 〈b|P|a〉 = −〈a|P|b〉 and 〈a|P|a〉 = 〈b|P|b〉 = 0 and 〈a|r|b〉 = 〈b|r|a〉 = 0. We

obtain

~〈a|P|b〉 =
im

2
αc(Ea −Eb)d (4.23)

and with

αc =
√

1 − α2
p =

2〈a|H|b〉
(Ea − Eb)

(4.24)

gives a direct relation between the matrix elements

~〈a|P|b〉 = im〈a|H|b〉d (4.25)

4.6.2 Dielectric function

A major part of this thesis regards the calculation of the optical properties of

amorphous carbon. The central quantitiy, on which these properties are based on,

is the complex dielectric function thus all the others ones are based on the latter,

which is defined

ǫ = ǫ1 + iǫ2 (4.26)

is defined in terms of its real

ǫ1 = n2 − k2 (4.27)

and imaginary parts

ǫ2 = 2nk (4.28)

where n and k are the refractive index and the extinction coefficient of the material,

respectively [84].

The imaginary part of the dielectric function in the one-electron approximation

takes the form [4]

ǫ2(ω) =
2

V

(2πe

ωm

)

∑

i,f

|〈f |P|i〉|2δ(Ef −Ei − ~ω) (4.29)
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Now our problem is that the wave function for tight-binding models are not

known and the momentum matrix elements 〈f |P|i〉 can not be calculated directly.

In this case, we use the approximation we derived above, as expressed by the relation

(4.19). If we put it in the above relation and transform our variable from frequency

ω to energy E via E = ~ω, we will obtain

ǫ2(E) =
8π2e2

V

1

E

∑

i,f

(Ef − Ei)
2(

∑

k

c
(f)∗
k c

(i)
k ~rk)

2δ(Ef − Ei − E) (4.30)

where V is the sample volume and the summations are over all the initial |i〉 and

final |f〉 eigenstates, which have eigenvalues Ei and Ef , respectively.

The real and imaginary parts of the optical function are related to each other

through the general Kramers – Kronig dispersion relations

ǫ1(E) = 1 +
2

π

∞
∫

0

ξ

ξ2 − E2
ǫ2(ξ)dξ (4.31)

4.6.3 Refractive index

We mentioned that the complex dielectric function of an amorphous semiconduc-

tor is defined in terms of its real and imaginary parts, ǫ1 and ǫ2, respectively, which

are related to the refractive index n and the extinction coefficient of the material k.

We can solve the eq. 4.28 to k = ǫ2/2n and replace it into eq. 4.27. Then we

get the following equation

4n4 − 4ǫ1n
2 − ǫ22 = 0 (4.32)

The solution of eq. 4.32 has two forms

n2 =
ǫ1 +

√

ǫ21 + ǫ22
2

(4.33a)

n2 =
ǫ1 −

√

ǫ21 + ǫ22
2

(4.33b)

The first one is acceptable, because when E ≤ Egap and ǫ2 = 0, n2 equals to ǫ1,

and when E > Egap and ǫ2 > 0, n2 is a positive number. But the second one is not

acceptable, because when E ≤ Egap and ǫ2 = 0, n2 equals to 0, and when E > Egap

and ǫ2 > 0, n2 is negative! So the square of the refractive index as a function of

energy is given by the relation 4.33a.
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4.6.4 Absorption coefficient

The absorption coefficient, α, is related to the imaginary part of the dielectric

function, ǫ2, via [4]

α(ω) =
ωǫ2(ω)

nc
(4.34a)

or, if we substitude ω with E = ~ω

α(E) =
Eǫ2(E)

~nc
(4.34b)

where n is the refractive index of the material, defined above.

4.6.5 Tauc gap

Assuming a parabolic behavior [86]

α E ∼ (E − Eg)
2 (4.35)

where α is the absorption coefficient and is related as (see eq. 4.34b)

α ∼ E ǫ2 (4.36)

So

α(E) E ∼ (E − Eg)
2

Eǫ2(E)E ∼ (E −Eg)
2

E2 ǫ2(E) ∼ (E −Eg)
2

E
√

ǫ2(E) ∼ E − Eg

In conclusion, the depentence between E
√
ǫ2 and E −Eg is linear and if we plot

them, we will get a straight line, which where it reaches the x-axis, it will be the

energy gap, because E
√
ǫ2 = 0 then E − Eg = 0 ⇔ E = Eg.

4.6.6 Urbach energy

In the energy range E < Eg [4], we have the relation

α(E) = α0e
(E−E0)/EU (4.37)

where α0, E0 are constants and EU is the urbach energy.

We manipulate this expression as follows.
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α = α0e
(E−E0)/EU

lnα = ln(α0e
(E−E0)/EU )

lnα = lnα0 + lne(E−E0)/EU

lnα = lnα0 + E−E0

EU
lne

lnα = lnα0 + E−E0

EU

lnα = lnα0 + E
EU

− E0

EU

lnα =
(

lnα0 − E0

EU

)

+ E
EU

lnα = const + 1
EU
E

Therefore lnα and E have a linear relation, and the slope of the their line is

equal to 1/EU .

Consequently

EU = [slope(lnαvsE)]−1 (4.38)



Chapter 5

Microstructure of a-C

Initially we study the structure and the microstructure of our net-

works which we derive from the two diferent tight-binding models.

We check the distribution of the distances and angles between the

atom bonds as well as the rings they form. We first thoroughlly con-

firm that our networks are reliable and in accord with what has been

known and established in the literature by using different methodolo-

gies. Then in the following, we analyze the networks to extract and

establish various physical trends.

5.1 Structural parameters

We first begin with a description of the microstructure of a-C. This is a stringent

test for the tight-binding model before its application to open questions and problems

of amorphous and nanocomposite carbon. Intensive work over the years has led to

a rather complete understanding of the structure of evaporated a-C (e-C) and the

denser ta-C materials. Not so well understood is the structure of low-density a-C

(with ρ < 2 gcm−3), especially with regard to its connectivity and the presence or

not of sp3 bonding.

Representative examples of networks at various densities, produced by the liquid-

quench method described before, are portrayed in Fig. 5.1. The structural details of

these networks are tabulated in Table 5.1. Networks A – E and WWW have been

constructed by using the enviroment-dependent tight-binding (EDTB) model [36].

We mostly use these samples throughout our analysis in this thesis. However, we

have also made supplementary samples. These ones have been constructed by the

hamiltonian of Mehl and Papaconstantopoulos (NRL model) [40, 41]. The structural

details of the latter networks are tabulated in Table 5.2.

41
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.1: Ball and stick models of the a-C structures included in Table 5.1. Panels
(a)-(e) show networks A – E, respectively. Panel (f) displays the connectivity of sp2 sites
of network B. Open, dark, and shaded spheres denote sp3, sp2, and sp1 sites, respectively.
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Table 5.1: Density, coordination numbers, cutoff radius and hybrid contents of the a-C
structures, whose network topologies are illustrated in Fig. 5.1. Also given for comparison
are the corresponding structural parameters of diamond and of the WWW fully tetrahedral
amorphous model [53]. N∗

2 would be the second coordination number without small rings.

Sample Diamond WWW A B C D E

ρ (gr/cm3) 3.46 3.27 2.99 2.66 2.23 1.93 1.20

N1 4.00 4.00 3.80 3.73 3.43 3.28 2.65

N2 12.00 11.94 10.29 9.35 7.53 7.06 3.78

N∗

2 = 6(N1 − 2) 12.00 12.00 10.80 10.38 8.58 7.68 3.90

rc (Å) 1.58 1.70 1.82 1.82 1.76 1.76 1.58

sp3 (%) 100 100 79 72 45 36 1

sp2 (%) 0 0 21 28 52 55 66

sp1 (%) 0 0 0 0 3 9 33

Table 5.2: Density, coordination number, cutoff radius and hybrid contents of the a-C
structures, using NRL model. Also given for comparison are the corresponding structural
parameters of diamond and of the WWW fully tetrahedral amorphous model [53].

Sample Diamond WWW A’ B’ C’ D’

ρ (gr/cm3) 3.65 3.44 3.05 2.85 2.51 1.60

N1 4.00 4.00 3.78 3.66 3.46 3.16

rc (Å) 1.52 1.88 1.82 1.78 1.76 1.72

sp3 (%) 100 100 78 67 47 18

sp2 (%) 0 0 22 32 52 77

sp1 (%) 0 0 0 1 1 5

From the very first beginning, we ’d like to state that there is absolute similarity

to the results of the two sets of networks. We observed that our results are indepen-

dent of the hamiltonian. Therefore, we ’ll refer to results of NRL model only when

these are extremely important findings.

A close inspection of the ta-C networks in panels (a) and (b), with a clear pre-

dominance of tetrahedral bonding, reveals that the sp2 sites are largely clustered,

an effect well established from previous theoretical work [55, 56, 57, 58, 59]. This is

clearly demonstrated in panel (f), where only the sp2 sites of network B (72% sp3

atoms) are shown. Clustering is present in the form of olefinic, chainlike geometries.
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There are five pairs, seven three-membered chains, two four-membered chains, and

three larger clusters: One seven-membered and two eight-membered chains. In the

more dense network labeled A in panel (a), with 79% sp3 sites, such large clusters

do not exist. In agreement with the ab initio MD simulations of Marks et al. [59],

the sp2 chains are isolated and do not link (percolate) to a single spanning cluster.

The driving force behind the clustering effect is stress relief. Earlier simulations

of Kelires, using the Tersoff, potential addressed the issue of local rigidity in ta-

C [18]. Despite the shortcomings of the potential (insufficient clustering and the

presence of isolated threefold sites in ta-C), the simulations were useful in pointing

out that clustering contributes stress relief and rigidity to the network. This depends

on the degree of clustering. The larger the cluster, the higher the stress relaxation

and the contribution to rigidity in the network. Experimental work supported these

conclusions [60, 61]. Panel (f) also shows that there still are some isolated threefold

sites in the present TBMD computer-generated ta-C network. It is not yet clear if

this is a shortcoming of the model or whether slower quenching rates will be able

to eliminate the presence of these defects, which is only physical for much larger

cells than the ones used here. Previous TB models which succesfully simulated the

clustering effect in ta-C also suffer from this shortcoming [55, 56, 57], and only ab

initio MD simulations [58, 59, 62] reported networks free of this type of defect.

The main characteristic of the low-density networks [panel (e)] is an open struc-

ture with long chains and large rings, and with numerous sp1 sites (33%). A sizeable

fraction of such sites is also present at densities typical of e-C, as in panel (d) (9%).

In this density region, all three hybridizations are present in significant proportions.

Although the presence of sp1 hybrids in a-C has been supported by all types of

computational work, it is not directly established by experiment. Instead, the latter

probes the sp2 or sp3 hybrids. It is useful to determine the actual fraction of sp1

sites in low-density a-C. Because sp1 are usually mingled up with sp2, this reflects

on the reliable estimate of the sp3 fraction.

5.2 Radial distribution function

The cutoff distance (rc) (see Tables 5.1 & 5.2) used to define the coordinations

in the networks is determined in each case from the first minimum in the pair dis-

tribution functions g(r), which are shown in Fig. 5.2. Thus, the cutoff might not

be the same for every cell. As for any other similar analysis in the past, count-

ing first nearest neighbors (NN) involves some degree of umbiguity. The choice of

the cutoff distance should always take into account that first NN are those atoms

forming a stable bond. So, we do not count atoms as neighbors if they are involved
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Fig. 5.2: The pair distribution functions, at 0 K, of networks A – E included in Table
5.1.

in extremely streched, weak, and easily breaking bonds, and the cutoff distance is

determined accordingly.

The functions in Fig. 5.2 were calculated at 0 K to reveal the subtle features

associated with each type of hybridization (these are usually smeared out at elevated

T’s.) It is interesting to analyze how these features evolve as we move from the dense

ta-C structure of cell A to the open structure of cell E. Let us concentrate on the first

peak in the g(r). In A, we have a single peak associated with the sp3 bonds and only

a slight shoulder in its left side indicates the presence of sp2 atoms. This develops
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Fig. 5.3: The reduced radial distribution function, at 300 K, of network A (solid line),
compared to the neutron-diffraction data (dashed line) of Gilkes et al. [63] Arrow shows
the feature at 2.15 Å, indicative of four-membered rings.

into a small peak in structure B, at 1.34 Å, it grows substantially in structure C, at

1.36 Å, and becomes the main peak in D, at 1.40Å. On the other hand, the presence

of sp1 sites starts to show up clearly in D, at 1.22 Å, and develops into a well-defined

peak in E, at 1.24 Å. Note also that the split of the first peak involves a shift of the

sub-peak positions from cell to cell. For example, the sp2 sub-peak position moves

to larger values when going from A to D. This provides firm evidence that the sp2

bonds are in a constrained environment in the dense network of ta-C, and that the

length of the bond eventually requires its natural, graphitelike value in the less dense

network of e-C. Similarly, the sp3 bond length shifts from diamondlike values in ta-C

to lower values in the intermediate mixed phase.

The simulated ta-C microstructures are in accord with experiment, as the com-

parison of the simulated (network A, ρ = 3.0 gcm−3) and measured reduced radial

distribution functions G(r) in Fig. 5.3 shows. The latter is derived from the neutron-

diffraction data of Gilkes et al. [63] The agreement is good, especially regarding the

relative height of the first two peaks, which is well reproduced. Note that the earlier

Wang and Ho TB model [37], as well as the TB model of Frauenheim [55, 57], do

not reproduce this correctly, since the simulated second peak of G(r) is higher than

the first.
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Fig. 5.4: Bond-angle distribution functions of networks A – E. Heavy solid, dashed,
dotted, and light solid lines denote the total and sp3, sp2, and sp1 contributions, respec-
tively.

5.3 Bond-angle distribution function

The bond-angle distribution functions of the representative networks, analyzed in

contributions from each hybridization, are shown in Fig. 5.4. They are quite broad,

especially the sp2 distributions in ta-C which are peaked at an angle of ∼ 110◦. This

shows that the sp2 geometries in ta-C are not planar and, consequently, are heavily

stressed. Note also the peaks at 60◦ and 90◦ arising from three- and four-membered

rings, respectively. It is clear that the major contribution to these peaks comes from
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sp3 atoms.

5.4 Ring statistics

An important result of the present simulations, regarding the microstructure of a-

C, is the finding of three- and four-membered rings in ta-C networks. Fig. 5.5 shows

related histograms for each of the representative cells discussed above, including the

low-density ones. The shortest-path criterion of Franzblau [64] was used to define the

ring sizes. As a reference, we also analyze and show the ring statistics for the WWW

model, an idealized representative of “amorphous diamond”. By construction [53],

this network contains a small number of four-membered rings. It also contains five-

and seven-membered rings, the former being more numerous. Of course, because the

network is fully tetrahedral, six-membered rings are the most abundant.

The ta-C networks (cells A and B) contain a significant fraction of both three- and

four-membered rings. Note that this is the first tight-binding model which predicts

three-membered rings in ta-C. Previously, only the ab initio MD simulations of Marks

et al. [59], using the Car-Parrinello method, predicted the existence of such rings.

Neither the previous Wang and Ho two-center TB model [37] nor the TB model of

Frauenheim [55, 57] found three-membered rings in ta-C. The relative fraction of five-

, six-, and seven-membered rings is also in good agreement with the ab initio results,

with the five-membered rings being slightly more numerous than the six-membered

rings and significantly more numerous than the seven-membered ones.

Interestingly, we find small-membered rings not only in ta-C, but also in low-

density networks, in cell E (ρ = 1.2 gcm−3) for example. This is somewhat surprising.

According to arguments of Marks et al. [59], small-membered rings have a high

strain energy, as calculated from the heat of formation of organic elements such as

cycloalkanes, but are stabilized in ta-C by its intrinsic compressive stress. Then, one

should not expect such rings to exist in low-density networks which have a much

lower stress. One answer to this paradox may be given by the theory of Kelires

[17, 18, 19] who pointed out that stress in a-C can be locally quite large, even in a

globally relaxed structure with average intrinsic stress zero. This will allow a locally

strained cluster of atoms to form small rings.

Another explanation could be that such small rings do not necessarily have high

strain energy in low-density networks, where the hybridization is not predominantly

sp3. (Note that the arguments about cycloalkanes are solely based on sp3 geometries.)

To investigate this possibility, carefull studies of local stress in a-C within TBMD are

needed, but this goes beyond the scope of the present work. Still, some additional

information can be extracted from a further analysis of the ring structures into
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Fig. 5.5: Histograms showing the frequency of occurence of rings of various sizes in the
WWW model, and in the structures A – E shown in Table 5.1 using EDTB model.

relative hybrid populations. This is given in Fig. 5.7. We see that indeed sp3

hybrids constitute the vast majority of configurations in small rings (e.g., 100% in

three- and nearly that in four-membered rings of network A). However, as the density

decreases, the other hybrids also provide a sizeable contribution to the formation of

small rings. This shows the complexity of the problem which differentiates it from

the simple case of molecular cycloalkanes. Still, the sp3 atoms overall dominate in

small rings. (Except in structure E, but their total percentage is just 1%.) Another

information coming out from this analysis, is that the sp3 (sp2) atoms have a higher
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Fig. 5.6: Histograms showing the frequency of occurence of rings of various sizes in the
WWW model, and in the structures A’ – D’ shown in Table 5.2 using NRL model.

relative participation in ring sizes less (larger) than six. (See for example network C

having nearly equal fractions of these two hybrids.)

As pointed out by Marks et al. [59], the presence of four-membered rings explains

the presence of a peak in the experimental [63] G(r) at 2.15 Å. Such a peak can only

be generated by the diagonal distances across a quadrilateral. The simulated G(r)

with the present model, shown in Fig. 5.3, clearly possesses this subtle feature, in

excellent agreement with experiment and with the ab initio results. A related issue

concerns the second-neighbor coordination number N2 in ta-C, which was found by

Gilkes et al. [63] to be less than expected. As explained by Marks et al. [59], the

dicrepancy can be partly attributed to the presence of three- and four-membered

rings, which effectively reduces N2 with respect to the first NN number N1. In a

fully bonded network with a minimum ring size of 5, the two are related through the
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Fig. 5.7: Decomposition of ring populations in structures A – E into different hybridiza-
tions. Squares, circles, and triangles denote sp3, sp2, and sp1 sites, respectively. Lines are
guide to the eye.

expression N2 = 6(N1 − 2) [59]. Our calculated coordination numbers are given in

Table 5.1 [N2 is extracted from a Gaussian deconvolution of the second peak of the

g(r)], and clearly show the reduction of N2 due to small rings.

We followed the same procedure with the NRL model too. Our results were the

same as the previous ones and they are presented in the corresponding histograms

in Fig. 5.6. We found three- and four-membered rings at ta-C networks (cells A’

and B’). We have also noticed the existence of small-membered rings in low-density

networks (cell D’).
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5.5 Conclusions

We first showed the accuracy and transferability of the model by analyzing in de-

tail the structure of a-C networks, and comparing to experimental and first-principles

results.

More than that, the most important finding of this study of amorphous carbon

networks’ microstructure is the existence of three- and four-membered rings. This

was shown by the straight calculation of the rings, which the bonds of the atoms

form. Both our models confirm the previous result, which has only been found by

ab-initio calculations.

Beyond this proof of the small-membered rings’ existence, we checked this in

other ways too. The presence of four-membered rings is confirmed by a small peak

at the G(r). There are also further evidence on that, based on the calculation of

the second neighbors. We found less of the latters than a theory predicted, which,

however, hadn’t taken into account small-membered rings. Finally, the peaks of g(θ)

at 60◦ and 90◦ show along with the previous the presence of three- and four-membered

rings.



Chapter 6

Physical Trends in a-C

In this chapter, we trace important physical trends in amorphous car-

bon using the networks whose microstructure was presented in the

previous chapter. We first show that between the density of the net-

works and their sp3 fraction a linear relationship holds. Then, we

derive a power-law behaviour of the the bulk modulus as a function

of the coordination, and confirm that this is in accord with the well

known constraint-counting theory of Philips and Thorpe. We also de-

rive power-law relations between the bulk modulus and the homopolar

gap of the material.

6.1 Density Variation

Having established the reliability of the TB models in describing the microstruc-

ture of a-C, we now turn our attention to certain issues which are still unclear. One of

them is the variation of sp3 fraction or, equivalently, of mean coordination z̄ (= N1),

with density. The basic question underlying this issue is whether there is a linear

relationship between these two quantities. Of course, if such linear variation exists,

it has to be limited within physically meaningful densities.

We have carried an extensive investigation of this issue through the entire range

of densities relevant to a-C. The physically meaningful densities are bounded from

below by the density at the floppy transition and from above by the diamond density.

The former signifies the transition from rigid to floppy behavior. According to the

constraint counting theory of Philips [65] and Thorpe [66], the transition is located

at z̄=2.4. Below this, the network is unconstrained, i.e., there are many ways to

deform the network at no cost in energy. These independent deformations are called

zero-frequency modes. Above z̄, the network is constrained and rigid. The problem

53
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Fig. 6.1: The variations of (a) mean coordination and (b) sp3 fraction as a function
of density in a-C networks (filled circles) using EDTB model. Lines are linear fits to the
points. Also given are the corresponding calculated quantities for the WWW model (open
circle) and diamond (open diamond).

is that the density corresponding to the floppy transition in a-C is not actually known

with any accuracy. The other end of the density spectrum, the diamond density, is

of course unambiguous and fixed for experiment at 3.51 gcm−3 but, for theory, it

may vary from method to method.

Fig. 6.1 shows our results regarding the variation of z̄ and sp3 fraction as the

density of the network varies. In total, we have generated seventeen networks, besides

the WWW network relaxed with the present EDTB model, to have as much statistics

as possible. Several interesting conclusions derive from this analysis. The foremost

important one is that the variations are linear beyond any doubt, from down the
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Fig. 6.2: The variations of (a) mean coordination and (b) sp3 fraction as a function
of density in a-C networks (filled squares) using NRL model. Lines are linear fits to the
points of Fig. 6.1. Also given are the corresponding calculated quantities for the WWW
model (open square) and diamond (open diamond).

floppy transition up to the diamond density. A linear fit of the density-versus-

coordination points in panel (a) gives

ρ(g/cm3) = −3.29 + 1.65 z̄. (6.1)

Equation (6.1) gives a density of ∼ 0.67 gcm−3 at the floppy transition (z̄=2.4). We

thus predict that for an a-C network to be rigid, its density needs to be larger than

this value. At the other end, this equation predicts a density of 3.31 gcm−3 for z̄=4,

slightly more than the calculated density of 3.27 gcm−3 for the WWW model. We
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thus impose an upper limit in the range of densities of a-C. This is the density of

the hypothetical, fully tetrahedral “amorphous diamond”. Note that this density is

lower, as it should be, than that of diamond (3.46 gcm−3 with the present model) by

about 4%. This confirms a similar conclusion reached earlier [17, 18, 19] using the

simpler Tersoff potential. The other group-IV covalent materials, Si and Ge, show

this trend and there is no reason why the all-sp3 C network should behave differently.

The linear fit of the density-versus-sp3 fraction points in panel (b) gives

ρ(g/cm3) = 1.27 + 2.08 (sp3fraction). (6.2)

Eq. (6.2) predicts the minimum density required to sustain sp3 bonding in a-C to

be ∼ 1.3 gcm−3. The sp3 sites are needed in such low-density networks as linking

geometries between the main sp2 and sp1 components. For 100% sp3 bonding, the

corresponding density is 3.35 gcm−3, a bit higher than the WWW density and the

value obtained from the fit of Eq. (6.1), but still less than diamond’s by ∼ 3%.

Despite the slight difference between the two fits (the end points were in both not

fixed), the conclusion about an upper limit in the possible densities of ta-C is firmly

established. Let us point out that the highest densities for ta-C reported until now

by experiment are less than 3.3 gcm−3. It is possible that this natural limit can not

be exceeded.

Fig. 6.2 shows our NRL results of the variation of z̄ and sp3 fraction as a function

of density. Furthermore, in order to compare the two models, we have also drawn the

straight lines of equations 6.1 and 6.2. In addition, we present the density of WWW

network and diamond by using the current model. These points are very close to

the previous linear fits. But the densities of WWW and diamond are slightly higher

than the EDTB results. However, they are an upper limit in densities of a-C.

Comparison of our results with experimental data can be made on the basis

of sp3 fraction. (Experiment directly probes the sp3 fraction, not z̄. The latter

follows indirectly. This is exact for dense networks, but not so for low-density ones

containing sp1 sites.) Fig. 6.3(a) compares our extracted linear variation, given by

Eq. (6.2), to various sets of experimental data from non-hydrogenated a-C, wide

as possible to cover a larger density region. A large set consists of data extracted

from samples prepared by filtered cathodic vacuum arc (FCVA) deposition [67, 68].

Another large set consists of data extracted from samples prepared by magnetron

sputtering (MS) [69]. Also shown is the sp3 fraction of a na-C film prepared by

cluster-beam deposition [13]. The density and sp3 content of this film were analyzed

by Ferrari et al. [68] and reported to be 1.4 gcm−3 and ∼ 10%, respectively. X-ray

reflectivity (XRR) was used for the determination of the density of the FCVA and

na-C films, and electron energy-loss spectroscopy (EELS) for their sp3 fraction. The
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Fig. 6.3: Comparison of our fitted linear variation (see line of Fig. 6.1b) of sp3 fraction
as a function of density (solid line) with (a) experimental data and (b) other theoretical
results. In (a), squares denote FCVA data [67, 68], triangles show MS data [69], and
the circle denotes the sp3 fraction in a na-C film [13, 68]. In (b) squares denote NOTB
results,[56] triangles show CPMD results [62], and circles denote EDIP results [70]. In both
(a) and (b), the experimental density of diamond (filled diamond) is given for comparison.

density of the MS films was determined by EELS and Rutherford backscattering

spectroscopy (RBS), and the sp3 fraction by EELS.

The comparison shows very good agreement between theory and experiment in

the ta-C region. A tendency for a slight overestimation of the sp3 fraction by theory

is observed. In this region, all experimental data fall closely to each other. It is not so

at lower densities, where the FCVA data show a rather large dispersion, and deviate

from the MS data. In this region, if we exclude the single point from the cluster-
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assembled film which falls very close to the theoretical line, a larger overestimation

seems to exist. It is not clear at the moment if this is attributed to inaccuracies

in the EDTB model. However, let us underline a fundamental principle: if a linear

variation indeed exists, it has to be valid over the whole range of possible densities

for a-C, and not selectively over a limited range. Consequently, a global linear fit

has to be applied to the experimental points. Unfortunately, this is hard to envision

if we consider them all together. If considered individually, a linear fit can be drawn

over each set, but needs to be extrapolated to get the limiting values.

Actually, a linear fit over the FCVA data was carried out and reported by Ferrari

et al. [68] to yield ρ (g/cm3) = 1.92 + 1.37 (sp3 fraction). This gives a density of ∼
3.3 gcm−3 for 100% sp3 content, in good agreement with our limiting value, but the

lower limit at 1.92 gcm−3 is considerably higher than ours. This means that if we

consider the FCVA data alone, one predicts absence of sp3 hybrids in a-C networks

with densities less than this value. Then, a significant part of the MS data fall

outside this variation and, in addition, it is hard to explain the discrepancy with the

cluster-assembled amorphous carbon film. There are four possible, but contrasting to

each other, explanations for this discrepancy: (a) The EELS measurement for the sp3

content in this film is inaccurate. (b) A linear variation over the entire density region

does not exist. (c) The cluster-assembled film can not be considered as belonging in

the class of a-C materials, and so it is not necessary to satisfy a linear rule obeyed by

the “more traditional” a-C films. (d) A linear fit does exist, but only after including

in the fit all sets of experimental data, albeit with a large dispersion of points in the

low-density regime.

The fact that our simulational data for both z̄ and sp3 content vary quite linearly

with density over the entire regime, renders point (b) not so possible. Regarding

point (c), it is clear from the work of Barborini et al. [13] that the cluster-assembled

film is amorphous. It was produced by the deposition of small clusters which leads,

according to these authors, to a disordered amorphous structure with a clear majority

of sp2 atoms and a sizeable sp1 component. Its network should be similar to our

simulated network shown in Fig. 5.1(e). Therefore, the most conceivable scenario is

a combination of points (a) and (d), i.e., the sp3 content of the cluster-assembled film

could be probably overestimated, and one has to take into account all sets of data.

In fact, if we consider together the MS data and the FCVA data of the ta-C region,

a linear fit can be easily drawn. Extrapolation gives an upper limit of ∼ 3.4 gcm−3

at 100% sp3 content, and a lower limit of ∼ 1.6 gcm−3 for 0% sp3 fraction. This is

closer but still higher than our prediction and excludes the cluster-assembled film.

Obviously, more experimental work to characterize low-density films with a sizeable

carbyne nature is needed.
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Of course, one might argue that it is not possible to have a global fit of all exper-

imental data, because they are produced by different deposition methods and thus

different conditions and driving forces. This implies, accepting that the characteriza-

tion tools for density and sp3 fraction are reliable, that we could have films deposited

with different methods having the same density but not sp3 fraction. This is some-

thing difficult to envision because the density is solely determined by the fraction

and type of hybrids involved and how they are linked. Thus, similar microstructures

should yield similar densities and vice versa. It is more possible that any differences

in the experimental data arise from uncertainties in the characterization analyses.

An independent confirmation of our sp3 fractions is provided by the calculations

of Haerle et al., [38] who prepared a-C networks in the density range 1.8 - 3.0 gcm−3

using the present EDTB model, and further relaxed them with a first-principles

molecular-dynamics scheme within the pseudopotential plane-wave approach. Al-

though they used smaller cells (64- and 128-atom networks), their sp3 contents are

quite close to our values. However, these authors did not consider lower densities

and did not address the issues studied here, such as the variations with density and

the conclusions resulting from them. They, instead, focused on the carbon 1s core-

level shifts. It is interesting that their EDTB cells proved to be quite stable under

the first-principles relaxation, and only minor readjustments of atomic positions and

changes of coordination were reported.

Comparison of our predicted variation of sp3 fraction, Eq. (6.2), to previous

theoretical results is done in Fig. 6.3(b). The latter are limited to the density region

over 2.0 gcm−3. Included in this figure, are data from the non-orthogonal tight-

binding (NOTB) MD simulations of Stephan et al. [56], the Car-Parrinello MD

(CPMD) simulations of McCulloch et al. [62], and the classical MD simulations of

Marks [70], who extended the environment-dependent interatomic potential (EDIP)

of Bazant and Kaxiras [71] to carbon. The common characteristic of these results

is a consistently lower sp3 fraction compared to our global fit, and also compared to

the experimental data in panel(a).

For the purposes of the present analysis, the most important issue is to examine

whether these theoretical data provide also a solid confirmation for a linear behavior,

and if the variation is limited within physically meaningful densities. Regarding

the first point, note that none of these works attempted to fit the reported points,

but from the visual inspection it seems that such a linear variation can be drawn.

A linear fit to the CPMD data, considered to be the most accurate set, gives at

100% sp3 content, which would correspond to an “amorphous diamond” network,

a limiting value of ∼ 3.55 gcm−3. NOTB gives 3.74 gcm−3, and EDIP gives 4.24

gcm−3. Unfortunately, none of these works reported the relaxed density of crystalline
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diamond within the respective methodology, in order to judge whether these values

are or not physically meaningful. For similar technical details in the CPMD method

(pseudopotentials and kinetic energy cutoffs), Galli et al. [72] calculated the density

of diamond to be ∼ 3.3 - 3.35 gcm−3. Thus, the McCulloch data seem to suggest,

assuming they can be fitted linearly, that the “amorphous diamond” network would

have a density higher than diamond. That would be incorrect. Similarly, NOTB

and especially EDIP seem to predict that the amorphous analog is denser than the

crystal. It could be that EDIP gives an equilibrium diamond density larger than 4.24

gcm−3. This is already 20% higher than the experimental value, quite erroneous for

an empirical model introduced to describe correctly π interactions in a-C.

6.2 Bulk Modulus

6.2.1 Bulk modulus versus Coordination

We now address another interesting physical trend in a-C, namely the variation

of elastic moduli as a function of mean coordination. The aim is to develop simple

formulas able to predict the hardness and related properties for any given network,

over the entire range of densities. There is practical interest in this, since it over-

comes the need to perform tedious first-principles calculations for a wide class of

configurations, and it can guide and interpret relevant experiments, as well.

There is fundamental interest too. As mentioned above, Philips [65] and Thorpe

[66] suggested, using a constraint-counting model, that within mean-field theory the

elastic properties of random covalent networks depend primarily on a single variable,

z̄, the mean atomic coordination. Constraint-counting predicts a transition from

rigid to floppy behavior at a critical coordination z̄f = 2.4. Furthermore, He and

Thorpe [73] found, using the Keating potential, [52] that the elastic moduli of bond-

depleted crystalline diamond lattices follow a power-law behavior c ∼ (z̄−z̄f )ν within

the range z̄f < z̄ < 3.2, with the exponent taking the value 1.5 ± 0.2. Franzblau

and Tersoff [74] proposed, based on bond depleted crystalline diamond lattices and

the Keating model, that this law is valid for the bulk modulus over the whole range

z̄f < z̄ < 4. Bond-depleted “amorphous diamond” networks (WWW model) also

showed the same behavior when simulated with the Keating model [75].

Model a-C networks can not just be generated by bond depletion of the WWW

model without extensive reconstruction and rebonding. It is crucial to examine

whether more realistic a-C networks can be described by the constraint-counting

model, and if their moduli exhibit a power-law behavior, using a more sophisticated

potential than Keating. Previous attemps [20] using the Tersoff potential found that
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Fig. 6.4: The variation of computed bulk moduli (filled circles) of a-C networks as a
function of the mean coordination z̄. The open symbols, circle and diamond, are for the
WWW model and diamond, respectively.

the bulk modulus indeed vanishes at z̄f = 2.4, and that the power-law is obeyed

in the range z̄f < z̄ < 2.8, but strong deviations occur for higher coordinations.

It is now clear that this is due to the too compact networks with excessive moduli

produced by the Tersoff potential in this range. We thus reexamine here the issue

using the accurate EDTB model.

We carried out extensive investigations using as a representative quantity the

equilibrium bulk modulus Beq. Our results for Beq for several networks as a function

of z̄ are given in Fig. 6.4. We also included in this figure the computed Beq for

diamond (428 GPa) and for the WWW model (361 GPa). The latter value coincides

with that calculated previously with the Tersoff potential for WWW [17, 18, 20].

This is neither surprising nor accidental because the Tersoff potential treats highly

tetrahedral networks well. To extract the physical trend and get the details, we fit

the computed data to the power-law relation

Beq = B0

(

z̄ − z̄f

z̄0 − z̄f

)ν

, (6.3)

where B0 is the bulk modulus of the fully tetrahedral network, for which z̄0 = 4.0.

This is not crystalline diamond but its amorphous counterpart. Letting all fitting

parameters in Eq. (6.3) free, we obtain B0 = 361 GPa, which is exactly the computed

value for WWW, z̄f = 2.25, and ν = 1.6. If we fix ν to be 1.5, we get 2.33 for z̄f , and
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Fig. 6.5: Comparison of our computed bulk moduli with experimental data derived
from surface acoustic waves [76] (open triangles) and surface Brillouin scattering [77] (open
inverted triangle). Also shown are the bulk moduli of the WWW model and diamond (open
circle and diamond, respectively).

if we fix z̄f to be 2.4, we get 1.4 for ν. We thus conclude that the variation confirms

the constraint-counting theory of Philips and Thorpe, with a critical coordination

close to 2.4, and it has a power-law behavior with a scaling exponent ν = 1.5 ± 0.1.

In the following, for consistency, we shall be using ν = 1.5, so the modulus obeys the

relation

Beq = 167.3 (z̄ − 2.33)1.5. (6.4)

Our theory also predicts that “amorphous diamond” has a modulus less than dia-

mond’s by ∼ 10% (softening effect.)

Comparison of our variation, as fitted with Eq. (6.4), to experimental moduli

derived from surface acoustic waves [76] (SAW) and surface Brillouin scattering [77]

(SBS) measurements is shown in Fig. 6.5. The agreement is very good, especially in

the ta-C region. The computed modulus for z̄ ≃ 3.9 nearly coincides with the SBS

data. The fit to the experimental data extrapolates to a modulus very close to that

of the WWW model at z̄ = 4. A deviation seems to exist at lower coordinations.

The theoretical fit is closer to the constraint-counting model than the experimental

fit, which extrapolates to z̄f = 2.6. More experimental data at the low-z̄ region are

needed.
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6.2.2 Bulk modulus and Homopolar gap

The calculated bulk moduli can also be linked with another interesting trend in

a-C. This trend is closely related to a model proposed in 1985 by Cohen [78] for

the bulk moduli of diamond and zinc-blende crystalline solids, and which was later

modified to allow for deviations from tetrahedral coordination [79]. The essence of

this model is embodied in a simple expression which defines a power-law dependence

of Beq on the first NN separation d. It has the form

Beq = A d−3.5, (6.5)

A being a numerical constant. For non-tetrahedral crystals the expression takes the

form

Beq = C
z̄

4
d−3.5, (6.6)

z̄ being the average atomic coordination. The physical considerations behind this

approach is that Beq depends predominantly on the covalent character of the bond,

which is exemplified by a homopolar gap Eh, and only weakly on ionicity, and that Eh

scales logarithmically against lattice constants between different rows of the periodic

table, as suggested by Philips [80].

In 1997, Kelires [81] proposed that a similar power-law behavior, with the same

scaling exponent, also holds for the whole composition range of complex semicon-

ductor alloys, such as Si1−xCx. The power law has the form

Beq = A d(x)n, (6.7)

with n = –3.5. This is a generalization of Cohen’s theory where Beq scales with

d between different rows of the periodic table. In Kelires’s model, Beq scales with

d(x) which is a function of composition x within a single alloy series, and denotes

an average bond length in the alloy. It is obvious that such simple expressions are

very useful in extracting elastic data for any alloy composition, without the need to

perform costly calculations.

It is quite interesting to examine whether such a power-law behavior is not re-

stricted to only crystalline elements, compounds and alloys, but it could hold for

amorphous materials as well. Amorphous carbon is ideally suited for this, because

it displays a continuous sequence of microstructures with different density and co-

ordination, contrary to a-Si and a-Ge having a unique tetrahedral network. In this

respect, we seek to find trends in the spirit of Kelires’s model, i.e., treating a-C as

an “alloy”, where the concept of composition is replaced by the concept of density.

Since the latter is the fundamental quantity on which all trends discussed in this

paper are based, it is proper to consider an average NN separation d̄ which reflects

the density and the topology of the network.
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Fig. 6.6: Variation of bulk moduli with the average effective distance d̄ (main figure),
and the relative distance d̄r (inset). For definitions see text. Open circles denote the
extrapolated end points, for the fully tetrahedral amorphous network and the network at
the floppy transition (by definition equals zero).

This is achieved by deriving an effective d̄ directly from the volume and the

“lattice constant” a0 of the network. We are dealing with cubic cells, so a convenient

choice is d̄ = a0

√
3/4. As d̄ shrinks, the network becomes stiff and dense. As it

expands, the network becomes soft and dilute. Thus, small d̄’s denote constrained

ta-C networks, while large d̄’s reflect the open, polymericlike structure of low-density

networks, which can be subjected to excessive deformations. Note that choosing as

d̄ the average bond length derived from the g(r) is improper: As we move from sp3-

to sp2- and eventually to sp1-rich networks, the actual average bond length shrinks

because the shorter sp2 and sp1 bonds dominate. On the other hand, the volume of

the network increases (structures with more open space) and its stiffness decreases.

This is opposite to the trend in tetrahedral semiconductors, where Beq scales inversely

proportional to d between rows of the periodic table. In other words, the choice to

get d̄ from the g(r) neglects the “volume effect” in a-C.

The dependence of Beq on the effective d̄ is shown in Fig. 6.6. Beq decreases as

d̄ increases. In searching for a power-law behavior in this trend, we must take into

account that the variation is bounded both from below at the floppy transition and

from above at the density of the amorphous tetrahedral network. So, included in

the plot is the point (Beq = 0, d̄f = 2.86 Å) corresponding to the density at z̄f =
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2.33 [Eq. (6.1) yields ρf = 0.55 gcm−3, from which d̄f is calculated], and the point

corresponding to the density at z̄0. It is obvious that a fit using simple expressions of

the type in Eqs. (6.5-6.7) is not possible, because neither d̄ can be infinitely large nor

z̄ can be zero to yield a vanishing Beq. Of course, the variation can be described with

such power-law expressions by adding a constant, but unfortunately this obscurs the

identification of a scaling exponent.

Therefore, we develop a model which can describe in a simple way the variation,

making the power-law behavior transparent, and which can also be linked to the

power-law model of Thorpe. This is obtained by fitting the variation to the expression

Beq = A (d̄f − d̄)n, (6.8)

in analogy with Eq. (6.4). This ensures that Beq vanishes at d̄f (= 2.86 Å), as

the fit to the points clearly shows. Remarkably, the scaling exponent comes out to

be n = 3.5 ± 0.05, same in magnitude as in Cohen’s and Kelires’s models for the

crystalline semiconductor compounds. The positive sign results because Beq scales

proportional to the always positive relative distance d̄r = d̄f − d̄. (The corresponding

variation is shown in the inset of Fig. 6.6.) The constant A in Eq. (6.8) equals 150.5

when n = 3.5, so in the following we shall be using the relation

Beq = 150.5 (2.86 − d̄)3.5, (6.9)

where Beq is measured in GPa and d̄ in Å.

The observation of this accurate power-law behavior is quite notable for several

reasons: (a) The magnitude of the scaling exponent is the same with the one de-

rived for the crystalline tetrahedral case, indicating that the physical origins of the

material’s stiffness remain the same (see below), despite the change in the network

topology (disorder due to amorphicity and non-tetrahedral configurations.) (b) The

model is completely analogous to Kelires’s model for crystalline semiconductor al-

loys, i.e., the power-law behavior holds for the whole density range of these complex

a-C networks. Beq scales with d̄, which is a function of density, within a series of

networks composed of the same element. This is different from Cohen’s model where

Beq scales with d from element to element. (c) The model provides the opportunity

for an easy derivation of Beq for any arbitrary density, even in the case where z̄ is

not known, without the need to perform costly calculations. This is quite helpful in

experimental cases where Beq can be extracted from the density alone.

Another important outcome of this analysis is the direct association of the present

approach, which is an extension of Cohen’s and Kelires’s models for crystalline semi-

conductors to the amorphous state, with Thorpe’s power-law variation for amorphous

materials and glasses. Actually, it can be easily shown that the two models are equiv-

alent to each other. Let us compare the equations (6.4) and (6.9). For the scaling
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Fig. 6.7: Variation of homopolar gap as a function of the mean coordination z̄. Open
circles denote the extrapolated end points.

exponents ν (= 1.5) and n (= 3.5) to be consistent to each other, the relative co-

ordination number z̄r = z̄ − z̄f should scale with d̄r to the power of ≃ 2.33 (the

multiplicative constants are about equal.) Indeed, a direct fit of our data to the

relation z̄r = A (d̄r)
µ yields A ≃ 1 and µ = 2.3, confirming the equivalence of the

two power laws.

Perhaps, the most interesting aspect of the power-law dependence of Beq on d̄r is

the immediate implication for a definite trend in the variation of the homopolar gap

Eh in a-C. We propose here that one can have a very good estimate of Eh for any

a-C network, just from structural and elastic parameters and only a reference energy

scale, without the need to carry out calculations of the electronic structure. Eh

plays the role of an average optical gap (the average bonding-antibonding splitting),

like the energy gap parameter EG in the isotropic band model of Penn [82]. It is

an important quantity, since it is associated with the complex dielectric function

ǫ(E) and the plasmon energy EP , which determines the density and the sp3 content.

Ferrari et al. [68] have pointed out the importance of considering Eh in EELS theory

for a-C, in order to remedy the approximation of a free-electron metal and account

for the finite gap.

In order to calculate Eh for any given a-C structure, we adopt the approach

of Kelires for c-Si1−xCx alloys. This is based on fundamental arguments given by

Philips [80] and Cohen [78]. According to Philips, tetrahedral compounds sharing
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eight valence electrons per atom pair are characterized by a covalent or homopolar

gap Eh and an ionic gap C. Examining a series of solids of increasing ionicity

(group IV→III-V→II-VI) Cohen observed that the lattice constant, or d, is nearly

independent of C and one should expect that B depends predominantly on the

covalent character of the bond. He thus chose Eh as the energy variable for covalent

systems in analogy with the Fermi energy Ef for the free-electron gas (B = 2
3
nEf ; n

is the electron concentration.) For group IV elements, the purest covalent materials

with no ionic bonding, B depends solely on Eh. Since B scales inversely proportional

to the covalent-bond volume (∼ d; bond charge densities have roughly cylindrical

shape), Cohen suggested that

Beq = D Eh d
−1, (6.10)

where D is a numerical constant. Kelires [81] generalized this argument to hold

within a single alloy (c-Si1−xCx) series. Then taking as a reference the Eh of either

Si or C, he used Eq. (6.10) to extract Eh as a function of composition from the

calculated B’s and d’s.

In a similar manner, we propose that the analogous expression for a-C is

Beq = D Eh d̄r, (6.11)

since Beq scales proportional to d̄r. We furthermore need a reference energy scale.

For this we use the homopolar gap of diamond (13.8 eV) [80]. Then, Eq. (6.11)

yields the variation of Eh with z̄ in this series of a-C networks:

Eh(z̄) = Eh(D)

[

Beq(z̄)

Beq(D)

d̄r(D)

d̄r(z̄)

]

. (6.12)

The EDTB method gives Beq(D) = 428 GPa and d̄(D) = 1.55 Å (so d̄r(D) = 1.31

Å.) For the input data (the Beq’s and d̄r’s) we use the calculated values.

The results are plotted in Fig. 6.7. We find the homopolar gap of the WWW

model, or of the extrapolated amorphous tetrahedral network (they coincide), to be

11.9 eV compared to 13.8 eV for diamond. This is reasonable. An alternative rough

estimate of Eh(WWW) can be reached by making the approximation that the ratio

of homopolar and direct gaps of the WWW model and diamond are equal

Eh(WWW )

Eh(D)
=
Eg(WWW )

Eg(D)
. (6.13)

The Eg(WWW), as extracted from the electronic density of states using the EDTB

method (not shown), equals 4.4 eV, and Eg(D) = 5.45 eV, so this approximation

gives 11.1 eV for Eh(WWW), in reasonable agreement with the direct value. At the
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Fig. 6.8: Variation of homopolar gap as a function of the relative distance d̄r. Open
circles denote the extrapolated end points.

other end, i.e., the floppy transition, the homopolar gap closes, as required by Eq.

(6.12).

The best fit to the points of Fig. 6.7 is obtained using an expression similar to

the power law in Eq. (6.4)

Eh(z̄) = A (z̄ − z̄f )
ν . (6.14)

The fit gives A = 6.8 and ν = 1.07. We can check the consistency of this scal-

ing exponent by recalling that the relations Beq ∼ (z̄r)
1.5 and Beq ∼ Eh(d̄r)

1.0

are equivalent. Also, since z̄r ∼ (d̄r)
2.33, we have that d̄r ∼ (z̄r)

0.43. Therefore,

Eh ∼ Beq/d̄r ∼ (z̄r)
1.5/(z̄r)

0.43 ∼ (z̄r)
1.07.

Thus, the variation of Eh with z̄ or sp3 content is close to be but not exactly

linear. This implies also a slightly non-linear dependence of the gap on the plasmon

energy EP . Associated with EP is the interband effective electron mass m∗, which

differentiates from the free-electron case and accounts for the finite energy gap. By

comparing XRR and EELS densities, Ferrari et al. [68] made a linear fit over the

experimental data and derived a constant m∗ = 0.87m for carbon systems, m being

the free-electron mass. They arrived at a linear relation between Eh and EP , namely

EP = Eh

(

1 − m∗

m

)−1/2

. (6.15)
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This is reasonable since our analysis shows only a small deviation from linearity. Eq.

(6.15) together with our Eq. (6.14) can be used to predict the plasmon energy for

an arbitrary a-C structure. For the WWW model, EP comes out to be ∼ 31 eV.

Finally, the above results provide us with the dependence of Eh on d̄r. A

simple dimensional analysis reveals that Eh scales as (d̄r)
2.5: Beq ∼ (d̄r)

3.5 and

Beq ∼ Eh(d̄r)
1.0, thus Eh ∼ (d̄r)

2.5. This is confirmed by plotting the computed

values of Eh as a function of d̄r, as shown in Fig. 6.8. A fit to the points leads

to Eh = 6.3 (d̄r)
2.5±0.05. We thus conclude that the scaling of Eh in a-C networks

follows the same form, except for the sign, like the scaling in crystalline tetrahedral

compounds, as suggested by Philips [80]. This is not accidental, but it shows that

these ideas are more general, extend beyond the simple tetrahedral case, and have

applications in complex non-tetrahedral covalent compounds, even in the amorphous

state. Note, that Philips’s argument was the fundamental assumption on which the

d−3.5 scaling of Beq, proposed by Cohen, is based. Here, we followed the reverse

procedure. We first extracted the (d̄r)
3.5 scaling of Beq, directly from calculations

without any assumption, and then the scaling of Eh naturally follows.

6.3 Conclusions

The complexity and rich variance of a-C networks, dinstictly marked from each

other by their density and hybridization, offer the unique possibility to unravel fun-

damental physical trends, pertained to bonding, rigidity, and related properties. In

this chapter, we have presented an in-depth investigation of such trends, mainly fo-

cusing on structural and mechanical properties. We based our analysis on TBMD

simulations, using the reliable EDTB model and supplementary the NRL scheme.

We first extracted the variation of sp3 fraction, or mean coordination, with den-

sity over the whole possible range, bounded from below by the density at the floppy

transition and from above by the density of the fully tetrahedral amorphous net-

work. The variation is linear and agrees well with experiment in the region above 1.8

gcm−3, where experimental data are mostly abundant. We estimated the sp3 content

in low-density networks, as well as the density at the floppy transition. The density

of “amorphous diamond” at the upper end of the spectrum is lower than diamond’s.

The bulk moduli of a-C networks were shown to satisfy the constraint-counting

model of Philips and Thorpe, with a critical coordination near 2.4, and to closely

have a power-law behavior as a function of mean coordination with a scaling expo-

nent equal to 1.5. Furthermore, we showed that the bulk moduli, as a function of

an average effective distance, also follow a simple power law, which was previously

proposed for crystalline semiconductor compounds and alloys. We showed the equiv-
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alence of the two power laws. Finally, from these simple physical laws, based on only

structural and elastic data, we extracted the variation of the homopolar gap in a-C

networks.

Although demonstrated for the single series of a-C networks, the method and

the accompanying analysis may be applied to other covalent amorphous systems as

well, in order to unravel interesting physical trends.



Chapter 7

Electronic and Optical Properties

of a-C

The optoelectronic properties of amorphous carbon are less well un-

derstood than the structural and mechanical properties of amorphous

carbon. This dissertaion aims at an elucidation and clarification of

these issues. We first study the electronic structure and extract the

density of states. We then obtain the dielectric function and the op-

tical gaps and examine their variations as a function of the sp3 frac-

tion. Finally, we are able to associate the disorder in a-C networks

with the Urbach energy, which shows a non-monotonic variation as

a function of sp3 fraction and density.

7.1 Electronic density of states

The amorphous carbon networks used in this work have been constructed previ-

ously and presented in the chapter before. Here, we analyze three typical a-C cells

with 86%, 75%, 45% sp3 content. In addition, we use a WWW network, which has

100% sp3 bonded atoms.

The first step of our study is to calculate the electronic density of states (EDOS)

of the various networks. This is defined for every energy E by the eigenvalues ǫi of

our system

ρ(E) =
N

∑

i=1

δ(E − ǫi) (7.1)

where N is the total number of the eigenstates. Fig. 7.1 shows the EDOS of the

three quenched networks. We present the total contribution of all atoms, as well as

the individual contributions of fourfold and threefold atoms separately. In the case

71
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Fig. 7.1: The electronic density of states for a-C structures with different sp3 content:
(a) 86%, (b) 75% and (c) 45% sp3 fraction. The light grey, grey and black lines correspond
to the total, fourfold, threefold electronic density of states, respectively.

of the mostly sp3-bonded network (86% sp3, Fig. 7.1a), the EDOS consists of the σ

(occupied) and σ∗ (unoccupied) with a distinct band separation (gap). The π and

π∗ states are hardly identified. As the content of sp2 increases (Fig. 7.1b and c), we
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Fig. 7.2: (a) Electronic density of states (EDOS) of a ta-C network with 75% sp3 atoms.
The light grey, grey and black lines refer to the total, sp3 and sp2 projected contributions,
respectively. (b) Inverse participation ratio P . Grey lines denote defects states.

observe that around the gap, the contribution of fourfold atoms vanishes while the

EDOS of threefold atoms becomes the primary behavior, and the π and π∗ peaks

become evident. The optical gap is controlled by the low-energy transitions, which

correspond to the π - π∗ transitions of the sp2-bonded atoms.

7.2 Defect states

We also demonstrate the highly localized nature of the π states in our networks.

Fig. 7.2(a) shows the EDOS of a ta-C network with 75% sp3 content. The inverse

participation ratio (IPR) P near the gap region is shown in panel (b) of the previous

figure. The IPR is defined as

P =
∑

i

c4i (7.2)

where ci are the coefficients in the expansion of the eigenstates in terms of the local

orbitals, and it is a measure of the localization of the electronic states. The π and

π∗ bands within the σ − σ∗ gap are clearly identified. Their IPR signifies that they

are strongly localized, in agreement with previous calculations [83]. Some defect

states at midgap near EF (grey lines in Fig7.2b) are also shown to be very localized.

These are mainly due to isolated (unpaired) sp2 sites. Note also the non-negligible
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Fig. 7.3: The imaginary part of the dielectric function for the quenched a-C structures.
The solid, dashed, dotted and dash-dotted lines show networks with 100%, 86%, 75% and
45% sp3 fraction, respectively.

contribution to the EDOS in the gap region from fourfold-coordinated atoms. This

originates from distorted sp3 hybrids, and it is relevant to the discussion below.

7.3 Dielectric function

The electronic structure of the material is directly correlated with the complex

dielectric function through its imaginary part, which is directly proportional to the

joined density of states (JDOS) for interband electronic transitions. The main benefit

of the calculated dielectric functions is the direct comparison of the theoretical results

with the experimental data. The real and imaginary parts of the dielectric function of

an amorphous semiconductor are related to each other through the general Kramers

- Kronig dispersion relations

ǫ1(E) ∼ 1 +
2

π

∞
∫

0

z

z2 −E2
ǫ2(z)dz (7.3)

E2ǫ2(E) ∼
∑

|〈f |P|i〉|2δ(Ef − Ei −E) (7.4)

where P is the momentum operator, Ef , Ei are the energy eigenvalues of the initial

(valence) and final (conduction) states, and the sum is over all initial i and final f
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eigenstates. However, the wave functions for tight-binding models are not known,

and the momentum matrix elements 〈f |P|i〉 can not be calculated directly. In this

case, we can use the approximation [85]

~〈f |P|i〉 = im(Ef −Ei)〈f |r|i〉 (7.5)

For further details, see the discussion in Chapter 4. The proof of the this approx-

imation and the calculation of the momentum matrix elements, which is based on

the latter, are presented there.

Following this procedure, we determined the imaginary part of the dielectric

function (ǫ2) of various a-C networks. We calculated the optical matrix elements

combining Eqs. 7.4 and 7.5; Fig. 7.3 shows the calculated ǫ2 for various a-C networks

including the WWW cell. The dielectric function of the cells with significant sp2

content exhibits two distinctive peaks at about 3 and 11 eV. On the other hand,

the tetrahedrally bonded networks show only one welldefined peak at high energy.

The first peak, when present, indicates the π - π∗ transitions, and the second higher

peak comes from the σ - σ∗ transitions. A particularly interesting observation is that

the high-energy peak of the σ - σ∗ transitions moves to greater mean energies with

increasing sp2 content, which may be due to enhanced σ - σ∗ transitions from the

local graphite-like component of the films (the σ - σ∗ peak in graphite is located at

about 14 eV).

7.4 Optical gaps

In a crystal, a photon of energy hν can induce a transition from a filled state

of energy E to an empty state of energy E + hν only if the initial and final states

have the same wave vector k and satisfy certain selection rules. Thus, among all

the pairs of electron states separated by energy hν, only a few contribute to optical

absorption.

But in a glass, no such restrictions apply. Assuming that we are dealing with

extended states, all such pairs of states - filled, at energy E, and empty, at energy

E + hν - can contibute to optical processes.

An interesting and important electronic property of a-C to be used in optics and

optoelectronics is the value of the fundamental gap Eg . The optical band gap Eg

of a-C can be defined as the minimum gap between the occupied and unoccupied

states (due to the amorphous character of the material) and can be based on the

observation [86] that the upper portion of an amorphous solid’s absorption edge is

often well described by a parabolic relation

α(E)E ∼ (E −Eg)
2 (7.6)
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Fig. 7.4: Extraction of the Tauc gap from the imaginary part of the dielectric function.
Panels (a), (b), (c) and (d) shows the data for 100%, 75%, 66% and 45% sp3 atoms,
respectively. The dashed lines demonstrate the fits. See text for details.

where α(E) is the absorption coefficient or equivalent

E
√

ǫ2(E) ∼ E −Eg (7.7)

In short we have minimized the calculations, which are shown in ’Methodology’.

This so-called ‘Tauc gap’, which is defined by Eq. 7.7, is determined by the plots

of the quantity E
√
ǫ2 versus photon energy E by extrapolating the linear plots to

the energy axis. This is demonstrated in Fig. 7.4 for various cases.

Another definition of the optical gap is the energy value where the absorption

coefficient

α(E) =
Eǫ2(E)

~nc
(7.8)

reaches the value 104 cm−1. This gap is usually called E04 [3, 87]. The calculation of

E04 requires knowledge of the refractive index n of the studied material. We extract
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Fig. 7.5: Extraction of the E04 gap and the Urbach energy EU from the absorption
coefficient. Panels (a), (b), (c) and (d) shows the data for 100%, 75%, 66% and 45% sp3

atoms, respectively. Grey solid lines show the absorption edge without defects. The dotted
lines demonstrate the fits. See text for details.

n by solving the system of equations ǫ1 = n2−k2 and ǫ2 = 2nk. (ǫ1 is calculated from

ǫ2 through the Kramers – Kronig dispersion relation, and the extinction coefficient

k is eliminated.) You can find every detail for the calculation of n in a previous

chapter. Fig. 7.5 demonstrates the estimation of E04 from α(E) for different cells.

The variation of the calculated optical gaps as a function of sp3 fraction is shown

in Fig. 7.6. There is a rapid increase of the gap in the ta-C region, especially above

75% sp3, signifying the dominant role of transitions between localized π states. The

gap is ∼ 2.5 eV for 86% sp3 and reaches 5 eV for hypothetical a-D. (The gap for

diamond is 5.5 eV with the present EDTB model.) The results of NRL model

are presented in Fig. 7.6 too. The accuracy between the two models is stunning,

concerning either the Tauc gap or the E04 gap.

In order to compare our theoretical results, we asked for some ”experimental



78 CHAPTER 7. ELECTRONIC AND OPTICAL PROPERTIES OF A-C

20 30 40 50 60 70 80 90 100

sp
3
 fraction  (%)

0

1

2

3

4

5

O
pt

ic
al

 G
ap

s 
 (

eV
)

Fig. 7.6: Variation of the optical gaps as a function of the sp3 fraction. Filled and open
symbols are for the calculated values using EDTB and NRL model, respectively. Shaded
symbols are for the experimental measurements. Squares and circles show the E04 gap
and the Tauc gap, respectively. Error bars for experimental E04 gap and for calculated
quantities are smaller than the symbols. Line is fit to the EDTB points.

assistance”. The experimental work was carried out by Patsalas [25]. A number

of ta-C samples were grown by Pulsed Laser Deposition (PLD) in a high-vacuum

chamber (Pb < 5 × 105 Pa) from a pure (99.999%) solid graphite target using the

third harmonic (λ = 255 nm) of a Nd:YaG laser source. The laser fluence was fixed

at 80 J/cm2. The density of the films varied by applying an external electric field

during growth, and has been determined by X-Ray Reflectivity (XRR) [25]. The sp3

content was extracted from the density values using the eq. 6.2 from the previous

chapter. Dielectric function spectra have been acquired in the spectral range 1.5-6.5

eV by an ex situ phase-modulated ellipsometer. The spectra were analyzed using

two Tauc-Lorentz oscillators for the π − π∗ and σ − σ∗ transitions, respectively, as

described in Refs. [25, 88]. The optical gap and EU were extracted from the real

spectra of the films, excluding the substrate contribution.

The experimentally mesured E04 gaps for the PLD samples are also shown in Fig.

7.6. They are in very good agreement with the theoretical variation. In addition,

our calculated gaps agree well with previously reported experimental gaps in films

prepared by filtered cathodic vacuum arc deposition [89]. The value for 100% sp3 is

also in accord with estimates by Ferrari and Robertson [90].

Both experimental and theoretical results show that the increase of sp2 content
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Fig. 7.7: Comparison of our fitted line (see Fig. 7.6 of optical gaps as a function of sp3

fraction with experimental data. Filled symbols are for the E04 gap, open symbols are for
the Tauc gap. Up and down triangles show data from [91] and [89], respectively.

reduces considerably the Tauc Gap due to the increasing contribution of the π - π∗

transition and the evolution of the π and π∗ peaks at the high-energy edge of the

valence band and the low-energy edge of the conduction band (see also Fig. 7.1),

respectively. This clearly shows that the value of Eg is mainly determined by the

energy separation of the π and π∗ bands.

Finally, we want to compare all our results with other experimental ones. We

took data from Chhowalla [91] and Waidmann [89] which are presented in Fig 7.7

along with the line of Fig. 7.6, which derives from the fit of our points. We can

observe that there is an agreement in the ta-C region but we have a difference as

the sp3 fraction drops. Furthermore, these two experimental data show a linear

behaviour as opposed to ours, which behave in a clearly non-linear variation.

7.5 Urbach energy - Disorder

We now concentrate on the issue of linking disorder and optical parameters. For

this purpose, we extract the Urbach energies EU and relate them to the sp3 content

and optical gap of our networks. EU is customarily defined as the inverse of the

local slope of ln [α(E)] at the E03 photon energy [3, 92, 93], so that it captures

quantitatively the variations of α(E) deep within the gap. These variations are, in
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Fig. 7.8: Variation of the Urbach energy as a function of the sp3 fraction. Filled and
open symbols are for the calculated values using EDTB and NRL model, respectively.
Shaded symbols are for the experimental measurements. The error bars are for experimen-
tal sp3 and EU . Lines are fits to the points.

general, associated to disorder-induced changes and to defects. Fig. 7.5 demonstrates

the extraction of EU from α(E). The variation of EU with sp3 fraction and optical

gap is shown in Fig. 7.8.

The striking finding of this analysis is that EU does not increase monotonically

with sp3 fraction and gap, as observed in a-C:H, where the largest values of EU

correspond to the highest gaps (in polymer-like films). Instead, the variation exhibits

a maximum at around 65% sp3, and then sharply declines dropping to ∼ 90 meV

for a-D. This means that disorder becomes maximum at the lower side of the ta-C

region, but then declines as sp2 content is minimized and the gap widens.

We also present the results of NRL model in Fig. 7.8. We might not have

accuracy in quantity between the results of the two models but they follow exactly

the same non-monotonic trend.

This non-monotonic variation can be explained as follows: If we exclude for the

moment the contribution from defects (mainly unpaired sp2 sites), and the inherent

distortions of the amorphous network, disorder in a-C builds up upon embedding

“minority” configurations into a host phase. These can either be chains of sp2 sites

embedded in the high-density, sp3-rich phase or sp3 clusters embedded in the low-

density, sp2-rich phase. In both cases, the incompatibility due to the substantially

different geometries, effective atomic volumes, and local electronic structure of sp3
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and sp2 hybrids produces disorder, which increases along with the relative fraction of

the minority component, giving rise to a maximum in the variation. However, more

disorder is produced in ta-C (steeper rise of EU) than in low-density a-C because of

the rigid character of the network. The latter is easier to deform and adjust to the

embedding. Confirmation of the theoretical trend in the ta-C region is provided by

our experimental measurements of EU in the PLD samples. The extracted EU values

are depicted in Fig. 7.8. They compare favorably with theory and confirm that the

higher the sp3 fraction and the optical gap the lower the disorder in ta-C. Ongoing

work aims at extending the investigation to samples with lower density. We also

have preliminary experimental results [88] for hydrogenated samples which confirm

that, in this case, EU increases monotonically with optical gap, as found previously

[3, 92, 94, 95]. This shows the reliability of the experimental analysis for the pure

films in the ta-C region.

Note that for 100% sp3 EU is not zero, which means that in this case EU measures

the inherent structural disorder of the fully tetrahedral network (no sp2 sites, no

defects.) As the sp2 fraction increases, EU rises. The question is whether this

rise reflects to the additional structural disorder induced by the embedding, or/and

to any topological disorder. To answer this question, we analyzed the sp2 cluster

distributions and bond-angle and length distortions in our networks. Fig. 7.9 shows

a histogram of cluster (chain) distributions in the ta-C cells. It is evident that more

numerous and larger chain sizes progressively appear with increasing sp2 fraction.

It is striking that for ∼ 30% sp2 sites, at which the maximum of EU occurs, long

chains, grouped into larger clusters, dominate. Their distribution is inhomogeneous.

Thus, the association between increasing topological disorder and EU seems likely.

As a measure of bond-angle distortions we consider the relative angle fluctuations

∆θ = σθ/θ̄, where σθ are the standard deviations and θ̄ the mean values, extracted

from the bond-angle distribution functions (not shown). We refer these quantities to

the respective value for a-D, ∆θr = (∆θ − ∆θ0)/∆θ0, to show the excess structural

disorder due to sp2 embedding. The same is done for bond-length distortions (the

pair distribution functions are used.) The results for the ta-C cells are shown in

the inset of Fig. 7.9. While excess bond-length distortions are minimal, excess

angle distortions are significant. At the maximum of EU , they become ∼ 60% higher

than the inherent tetrahedral disorder. Therefore, the association between increasing

structural disorder and EU also seems likely.

There is no straightforward way to separate the two contributions to EU and

estimate their relative importance. The clustering of sp2 sites alters the local elec-

tronic structure and affects the optical transitions, depending on the size and spatial

distribution of chains, but in addition unavoidably produces structural disorder both
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around the embedding in the sp3 skeleton, and within the cluster itself. Thus, the

two types of disorder are interlinked.

For sp2-rich cells, on the other hand, we find that distortions vary slowly with

increasing sp3 content, as shown in Fig. 7.9, which can be attributed to the flexible

nature of the network. Thus, the rise of EU in this case is predominantly associated

with topological disorder due to the embedding of sp3 clusters, as is evident from

the cluster analysis in Fig. 7.9.

Another issue concerns the relative contributions to EU from hybrid states. Since
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EU in a-C describes transitions between localized states, one expects that π − π∗

transitions are the major contributors. Surprisingly, we find that contributions from

transitions involving localized σ states also are considerable. This can be explained

by referring to the EDOS in Fig. 7.2 which shows that such states, due to distorted

sp3 hybrids, are found localized at energies where the π and π∗ peaks are located,

well inside the σ−σ∗ gap, and thus lie at the Urbach edge. The distorted sp3 hybrids

are mainly found in the neighborhood of the embedded sp2 chains, which in turn also

get distorted. Thus, we have in ta-C topological EU due to π states, and structural

EU due to both π and σ states.

Finally, we examined the effect of unpaired sp2 sites on the optical transitions.

For this, we calculated the absorption coefficient by excluding the contribution of

states localized on such defects. The result is plotted in Fig. 7.5. The comparison

to the full absorption edge shows that the effect on both the E04 and EU (slope of

curve) is small, indicating that transitions between states localized on unpaired sp2

sites, or between such states and neighboring π and σ states, are negligible. This is

in contrast to a-Si:H, where the spin density due to dangling bonds is a major factor

in shaping up the Urbach edge.

7.6 Conclusions

We have studied computationally the electronic properties of a-C networks with

various sp3/sp2 content, using tight-binding molecular dynamics with the EDTB and

NRL models. We calculated the electronic density of states (EDOS), the dielectric

function and the fundamental gap of various networks. All networks show semicon-

ducting behavior. We have also found that the EDOS is dominated by the σ and π

occupied states and the σ∗ and π∗ unoccupied states, resulting to two distinct peaks

in the dielectric function spectra, which correspond to σ - σ∗ and π - π∗ transitions.

The energy positions of the σ - σ∗ transition move to higher energy with increasing

sp2 content in agreement with the experimental observations. The fundamental gap

is mainly determined by the energy separation of the π and π∗ bands and varies be-

tween 0.3 and 2.7 eVs. The computational results are consistent with experimental

studies of the optical properties of a-C using SE in the energy range 0.1 - 10 eV.

In conclusion, we presented in this chapter results of TB calculations, which

offered insight into the link between disorder and optical properties in a-C films.

We showed that the Urbach edge is associated to both topological and structural

disorder, and that EU behaves non-monotonically with sp3 fraction and optical gap.

The theoretical results are backed by experimental measurements in the ta-C region.

Further work aims at extending the theoretical investigations to a-C:H, in order
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to provide a direct understanding of the link between disorder and optical data,

which until now has only been attempted through phenomenological modeling [92].



Chapter 8

Optical Properties of

nanodiamond carbon

We study the electronic and optical properties of diamond nanocrys-

tals embedded in amorphous carbon using tight-binding molecular dy-

mamics simulations. We calculate the electronic density of states, the

dielectric function, the optical band gap, and the Urbach energy . By

separating the nanodiamond contributions from those of the amor-

phous matrix, we show that the last one follows the trends of pure

amorphous Carbon. The optical gap and Urbach energy for diamond

inclusions retain constant values.

8.1 Constructing nanodiamond carbon

Mechanical and electronic properties of nanostructured amorphous carbon (na-

C) attract a lot of interest lately. This is due to the fact that this mixed phase

offers the possibility to intermingle the properties of carbon nanostructures [5, 6]

with those of pure amorphous carbon (a-C) [3, 4]. For instance, it is possible to

tailor electronic properties by controlling the type and size of the nanostructures

embedded in a-C, which may be insulating or metallic. One form of na-C observed

are diamond nanocrystals embedded in an a-C [96, 97], which are predicted to have

excellent mechanical properties [98]. In order to understand the electronic structure

of this “nanodiamond” (nD) carbon we perform tight-binding molecular dynamics

(TBMD) simulations.

We have already used TBMD in pure and nanostructured a-C networks [99,

100, 101, 102]. In chapters 5 and 6, we have studied the structural and mechanical

properties of these a-C phases [99, 102]. Furthermore, in chap. 7 we have calculated
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Table 8.1: Structural data of five representative nanostructured amorphous carbon
networks.

Sample nD Volume z̄AM sp3
AM (%)

fraction (%)

A 48.78 3.88 88

B 20.78 3.81 81

C 8.68 3.71 71

D 3.78 3.66 65

E 1.57 3.40 44

the electronic properties of pure a-C [100] and have recently presented a detailed

study on optical properties of pure a-C [101]. We now apply the methodology of our

recent works in the case of nD carbon.

The TBMD simulations are carried out in the canonical (N,V,T) ensemble. Tem-

perature is controlled via a stochastic temperature control algorithm. The embedded

nanostructures are formed by melting initially crystalline structures and subsequently

quenching at constant volume, while keeping a certain number of atoms in the cen-

tral portion of the cells frozen in their ideal crystal positions. Periodic boundary

conditions are applied to the cells. We use cubic computational cells of a total of

512 atoms, while the number of atoms in the nanocrystals ranges from 50 to 250.

After quenching, which produces amorphization of the surrounding matrix, the cells

are thoroughly relaxed with respect to atom positions and density. Relaxations are

particularly important at the interface region, where the crystallites mainly adjust

to the host environment. Cells with varying coordination (density) of the amorphous

matrix can be formed by changing the initial density (volume) of the crystal struc-

tures. The size (radius) of the nanocrystals is controlled by the choice of the number

of the shells kept frozen during quenching.

8.2 Results and discussion

The nanostructured amorphous carbon networks used in this work have been

constructed previously [102] and the samples produced have been studied in detail

with respect to their structure and stability [102]. Here, we show the optoelectronic

properties of five representative cells (among a significant number used in our calcu-

lations). Data for these five cells are presented in Table 8.1.
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Fig. 8.1: The EDOS of the nanostructured a-C networks A - E included in Table 8.1.
The black, grey and light grey lines correspond to the total, nD and AM contribution,
respectively. Arrow indicates the Fermi level.

Fig. 8.1 shows the EDOS of those nanostructured networks. We present the

total contribution of all atoms, as well as the partial EDOS of the nD and AM atoms

separately. In the case of the sample with the greatest nD size (Fig. 8.1 - sample

A), the crystalline behavior is dominant and it is characterized by the large gap and

the presence of σ (occupied) and σ∗ (unoccupied) states. The amorphous part also

consists of mainly σ and σ∗ peaks with a distinct band separation, since it has a

great number of sp3 amorphous atoms and the π, π∗ states are hardly identified.

As the number of diamond atoms decreases, so does the number of sp3 atoms in

the amorphous phase, and the amorphous matrix becomes less dense with increasing

sp2 atoms, the π and π∗ peaks become evident. This happens due to supremacy of

the sp2 atoms’ behavior.

If we study nD and AM separately, we observe that the crystalline atoms preserve

their qualitative characteristics at all networks, even when they decrease in quantity.
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Fig. 8.2: The imaginary part of dielectric function of the nanostructured a-C networks
A - E included in Table 8.1. The black, grey and light grey lines correspond to the total,
nD and AM contribution, respectively.

Furthermore, the amorphous atoms of the nanocomposite behave as the amorphous

atoms of pure a-C network. This can be verified with a comparison between our

current nD carbon data with pure a-C data from a previous chapter [100]. We find

similar results for the dielectric function. In Fig. 8.2 we present the imaginary

part of the dielectric function, which provides very useful information about optical

processes. When the sp3 fraction is high and nD is large, only a primary peak exists

which is due to σ - σ∗ transitions. As the sp3 ratio drops, a secondary peak also

appears at lower energies due to π - π∗ transitions. Individual study of nD and AM

does not seem to introduce any additional knowledge other than what is already

known for diamond and a-C, except for the fact that we do not clearly notice the

shift of the major peak of AM to greater energies as the sp3 atoms fraction decreases,

like in pure a-C samples [100].

The optical band gap has also been calculated for all samples following the pro-
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Fig. 8.3: Extraction of (a) the Tauc gap from the imaginary part of the dielectric func-
tion, and (b) the E04 gap and the Urbach energy EU from the absorption coefficient, for the
total (black line), nD (dark grey line) and AM (light grey line) contribution, respectively,
for network D.

cedure described in chap. 4 and illustrated in Fig. 8.3. The Tauc gap is estimated

by fitting a line at the E
√
ǫ2 versus E curve (Fig. 8.3a). Estimation of E04 gap

and Urbach energy (EU ) is also shown (Fig. 8.3b). By investigating not only the

total gap but also the partial contributions of nD and AM, we observe that for the

amorphous part E
√
ǫ2 gets nonzero values at lower energies and dominates in the

optical gap calculation.

This becomes clear in Fig. 8.4, where the optical gap of nD and AM is plotted

separately, as a function of the sp3 fraction. For comparison, we show data for pure

a-C (see chap. 7) [101] and diamond using the EDTB model. We observe that AM

atoms behave exactly as the pure a-C atoms do. The non-linear variation between gap

and sp3 ratio is preserved. Furthermore, nD atoms have an approximately constant

value of band separation, which is close to diamond’s optical gap.

Finally, in Fig. 8.5 we present the dependence of Urbach energy as a function

of sp3 fraction. Data for EU of pure a-C are given for comparison. AM contribution

follows the trend of pure a-C. It exhibits a non-monotonic behavior with a maxi-

mum near to the one of pure a-C data. This result is expected from our previous

observations that nD and AM behave like pure diamond and a-C, respectively.

A noteable difference between nD and bulk diamond is Urbach energy. Although
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Fig. 8.4: Variation of the optical gaps as a function of sp3 fraction. Diamonds and
squares (black symbols) indicate the nD and AM contribution, respectively. For compar-
ison triangles and circles (grey symbols) show the values of pure diamond and a-C [101],
respectively. Filled symbols are for the E04 gap and open symbols for the Tauc gap. Lines
are trends for the average gaps’ value of nD (black) and pure a-C [101] (grey).

non-existent in diamond, EU for nD atoms in our nanocomposites has a high value.

This could be due to the disorder at the interface between crystalline and amorphous

phase.

8.3 Conclusions

We studied the electronic and optical properties of nanostructured a-C consist-

ing of nanodiamond inclusions in a-C. We applied the same methodology we had

developed and used already in pure a-C, for the case of this nanocomposite a-C.

We calculated the EDOS and the dielectric function by using TBMD simulations

with the EDTB model. From the latter, we extracted the optical band gaps and the

Urbach energies. We separated the partial contributions from the nanocrystals and

a-C and found that the results for the amorphous matrix follow our previous findings

about pure a-C, such as nonlinear gap behavior and non-monotonic relation between

EU and sp3 fraction. The atoms of nD have an approximately constant value of

optical gap and EU . This value of nD band separation reaches the value of the gap
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Fig. 8.5: Variation of the Urbach energy as a function of sp3 fraction. Diamonds and
squares (black symbols) indicate the nD and AM contribution, respectively. For comparison
circles (grey symbols) show the values of pure a-C [101].

of diamond. However, the EU of the core nD atoms is oddly high and we explain

this due to disorder at the interface of nD and AM atoms.
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[75] B. R. Djordjević and M.F. Thorpe, The bulk modulus of covalent random net-

works, J. Phys.: Condens. Matter 9, 1983 (1997).

[76] B. Schultrich, H. J. Scheibe, D. Drescher, and H. Ziegele, Deposition of super-

hard amorphous carbon films by pulsed vacuum arc deposition, Surf. Coatings

Technol. 98, 1097 (1998).

[77] A. C. Ferrari, J. Robertson, M. G. Beghi, C. E. Bottani, F. Ferulano, and R.

Pastorelli, Elastic constants of tetrahedral amorphous carbon films by surface

Brillouin scattering, Appl. Phys. Lett. 75, 1893 (1999).

[78] M. L. Cohen, Calculation of bulk moduli of diamond and zinc-blende solids,

Phys. Rev. B 32, 7988 (1985).

[79] A. Y. Liu, M. Cohen, K. C. Hass, and M. A. Tamor, Structural properties of a

three-dimensional all-sp2 phase of carbon, Phys. Rev. B 43, 6742 (1991).

[80] J. C. Philips, Bonds and bands in semiconductors, Academic, New York (1973).

[81] P. C. Kelires, Short-range order, bulk moduli, and physical trends in c-Si1−xCx

alloys, Phys. Rev. B 55, 8784 (1997).

[82] D. R. Penn, Wave-Number-Dependent Dielectric Function of Semiconductors,

Phys. Rev. 128, 2093 (1962).

[83] C.W. Chen and J. Robertson, Nature of disorder and localization in amorphous

carbon, J. Non-Cryst. Solids 227, 602 (1998).

[84] F. Wooten, Optical Properties of Solids, Academic Press, New York, (1972).

[85] W.A. Harrison, Elementary Electronic Structure, p. 219, World Scientific, Sin-

gapore, (1999).

[86] J. Tauc, R. Grigorovici, A. Vancu, Optical Properties and Electronic Structure

of Amorphous Germanium, Phys. Status Solidi 15, 627 (1966).

[87] C. Godet, S. Kumar, V. Chu, Field-enhanced electrical transport mechanisms

in amorphous carbon films, Philos. Mag. 83, 3351 (2003).

[88] P. Patsalas, D. Papadimitriou, K. Kosmidis, P.C. Kelires, S. Logothetidis, and

G. Evangelakis, unpublished.

[89] S. Waidmann, M. Knupfer, J. Fink, B. Kleinsorge, and J. Robertson, Electronic

structure studies of undoped and nitrogen-doped tetrahedral amorphous carbon

using high-resolution electron energy-loss spectroscopy, J. Appl. Phys. 89, 3783

(2001).



110 Bibliography

[90] A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered

and amorphous carbon, Phys. Rev. B 61, 14095 (2000).

[91] Chhowalla, J. Robertson, C. W. Chen, S. R. P. Silva, C. A. Davis, G. A. J.

Amaratunga, and W. I. Milne, Influence of ion energy and substrate temper-

ature on the optical and electronic properties of tetrahedral amorphous carbon

(ta-C) films, J. Appl. Phys. 81, 139 (1997).

[92] G. Fanchini and A. Tagliaferro, Disorder and Urbach energy in hydrogenated

amorphous carbon: A phenomenological model, Appl. Phys. Lett. 85, 730

(2004).

[93] R.A. Street, Hydrogenated Amorphous Silicon Cambridge University Press,

New York, (1991).

[94] J.D. Carey and S.R.P. Silva, Disorder, clustering, and localization effects in

amorphous carbon, Phys. Rev. B 70, 235417 (2004).

[95] C. Casiraghi, A.C. Ferrari, and J. Robertson, Raman spectroscopy of hydro-

genated amorphous carbons, Phys. Rev. B 72, 085401 (2005).

[96] Y.Lifshitz, Th. Kohler, Th. Frauenheim, I. Gouzman, A. Hoffman, R.Q. Zhang,

X.T. Zhou, and S.T. Lee, The mechanism of diamond nucleation from energetic

species, Science 297, 1531 (2002).

[97] S. Welz, Y. Gogotsi, and M.J. McNallan, Nucleation, growth, and graphitization

of diamond nanocrystals during chlorination of carbides, J. Appl. Phys. 93,

4207 (2003).

[98] M.G. Fyta, I.N. Remediakis, P.C. Kelires, and D.A. Papaconstantopoulos, In-

sights into the fracture mechanisms and strength of amorphous and nanocom-

posite carbon, Phys. Rev. Lett. 96, 185503 (2006).

[99] C. Mathioudakis, G. Kopidakis, P. C. Kelires, C. Z. Wang, and K. M. Ho,

Physical trends in amorphous carbon: A tight-binding molecular-dynamics

study, Phys. Rev. B 70, 125202 (2004).

[100] C. Mathioudakis, G. Kopidakis, P. C. Kelires, P. Patsalas, M. Gioti, and S. Lo-

gothetidis, Electronic and optical properties of a-C from tight-binding molecular

dynamics simulations, Thin Solid Films 482, 151 (2005).

[101] C. Mathioudakis, G. Kopidakis, P. Patsalas, and P. C. Kelires, Disorder and

optical properties of amorphous carbon, Diam. Relat. Mater. XX, XXX (2007).



Bibliography 111

[102] M. G. Fyta, C. Mathioudakis, G. Kopidakis, and P. C. Kelires, Structure,

stability, and stress properties of amorphous and nanostructured carbon films,

Thin Solid Films 482, 56 (2005).



112 Bibliography




