ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ

Βιολογική και Οργανική Χημεία

ΕΡΓΑΣΤΗΡΙΟ ΒΙΟΧΗΜΕΙΑΣ

ΜΕΤΑΠΤΥΧΙΑΚΟ ΔΙΠΛΩΜΑ ΕΙΔΙΚΕΥΣΗΣ

Μελέτη του Μεταβολισμού του θείου στο βακτήριο Chlorobaculum tepidum

Λυρατζάκης Αλέξανδρος

Υπεύθυνος Καθηγητής: Τσιώτης Γεώργιος

ΗΡΑΚΛΕΙΟ2020

UNIVERSITY OF CRETE DEPARTMENT OF CHEMISTRY

Biological and Organic Chemistry

BIOCHEMISTRY LAB

Master Thesis

Study of sulfur metabolism of Chlorobaculum tepidum

Lyratzakis Alexandros

Master Thesis Supervisor: Tsiotis Georgios

HERAKLION2020

Στην οικογένειά μου...

Εξεταστική Επιτροπή

Τσιώτης Γεώργιος

Επιβλέπων Καθηγητής Τμήματος ΧημείαςΠανεπιστημίου Κρήτης

Γανωτάκης Δημήτριος

Καθηγητής Τμήματος Χημείας Πανεπιστημίου Κρήτης

Παυλίδης Ιωάννης

Επίκουρος Καθηγητής Τμήματος ΧημείαςΠανεπιστημίου Κρήτης

ΕΥΧΑΡΙΣΤΙΕΣ

Η παρούσα εργασία πραγματοποιήθηκε την διετία 2018-2020 στο εργαστήριο Βιοχημείας του Τμήματος Χημείας του Πανεπιστημίου Κρήτης με επιβλέποντα καθηγητή τον Δρ. Τσιώτη Γεώργιο.

Αρχικά ευχαριστώ το Τμήμα Χημείας του Πανεπιστημίου Κρήτης για την υλικοτεχνική υποδομή και το υψηλό επίπεδο σπουδών, που μου παρείχε σε προπτυχιακό και μεταπτυχιακό επίπεδο.

Θερμά, ευχαριστώ τον επιβλέπων Καθηγητή Δρ. Τσιώτη Γεώργιο για την εξαιρετική συνεργασία και καθοδήγηση κατά τη διάρκεια τόσο της διπλωματικής όσο και της μεταπτυχιακής μου εργασίας. Τον ευχαριστώ που μου επέτρεψε να πραγματοποιήσω αυτές τις εργασίες υπό την επίβλεψη του, αλλά και για την υποστήριξη του, τις ιδέες που μου προσέφερε κατά τη διάρκεια αυτών, καθώς και την εμπειρία με πληθώρα τεχνικών εργαστηριακών και πληροφορικής.

Θα ήθελα επίσης να ευχαριστήσω τα μέλη της τριμελούς μου επιτροπής Δρ. Γανωτάκη Δημήτριο , Καθηγητή του Τμήματος Χημείας , και Δρ. Παυλίδη Ιωάννη, Επίκουρο Καθηγητή του Τμήματος Χημείας, που δέχθηκαν να κρίνουν την εργασία μου.

Ακόμη ευχαριστώ τον Δρ. Παύλο Ζάρμπα και τον καθηγητή του Τμήματος Χημείας Δρ. Μιχαλόπουλο Νικόλαο για τα αποτελέσματα της ιοντικής χρωματογραφίας.

Να ευχαριστήσω όλα τα μέλη του εργαστηρίου παλιά και καινούρια ιδιαίτερα τους εξής: Μαθιουδάκη Ειρήνη, Παϊκόπουλος Γεώργιος, ΒαλσαμίδηςΓιάννης, Κουρπά Κατερίνα, Σπανού Ανδρονίκη, Δρακωνάκη Αθηνά, Καναβάκη Ηλιάνα, Κουτάντου Μυρτώ, ΓιαπιντζάκηΑφροδίτη,Τρυπάκη Μαρία, Λεοντίδου Έλσα, Φωτιάδη Αλίκη και ΚότσιραΔέσποινα, για το ευχάριστο περιβάλλον, την βοήθεια και την άριστη συνεργασία τους.

Ακόμα ευχαριστώ θερμά τα μήλη του εργαστηρίου του Δρ. Γανωτάκη: Νάζο Χάρη, Βαλσαμή Ελευθερία, Σφενδουράκη Γεώργιο, Παπαβασιλείου Μαλαματένια, Ψυχογιού Μαριλένα, Ανδρεαδάκη Θεοφανία, για την βοήθεια και την συνεργασία τους.

Επίσης, ευχαριστώ θερμά τα μήλη του εργαστηρίου του Δρ. Παυλίδη ιδιαίτερα την Σακολεύα Θάλεια και τον Κελεφιώτη Παναγιώτη για την συνεργασία και την βοήθειά τους.

Ευχαριστώ θερμά το Dr. JulianLangerπου μας έδωσε την δυνατότητα να αναλύσουμε τα δείγματα στοProteomicsFacilityτου MaxPlanckInstituteforBiophysicsστην Frankfurtκαθώς και τις πολύτιμες συμβουλές του για την βιοστατιστική ανάλυση.

Τέλος, ευχαριστώ πολύ την οικογένειά μου για την στήριξη σε όλα τα επίπεδα όλα αυτά τα χρόνια.

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

ΠΡΟΣΩΠΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ

Αλέξανδρος Λυρατζάκης

- የ Σοφοκλή Βενιζέλου 55 , Ηράκλειο, 71202, Ελλάδα
- **L** 2810 283022 **D** 6989505535
- alexlamp2008@gmail.com

	Φύλο:Άρρεν Ημερομηνία γέννησης:15/02/1996 Εθνικότητα:Ελληνική
ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΜΠΕΙΡΙΑ	
10/2015-12/2015	Προπτυχιακός βοηθός στα Εργαστήρια Γενικής Χημείας Υπεύθυνος εργαστηρίου: Σπύρος Κορνήλιος Παρασκευή διαλυμάτων Επιχείρηση ή κλάδος Πανεπιστήμιο Κρήτης Τμήμα Χημείας
1/7/18-30/9/18	Πρακτική Άσκηση Επόπτης : Δημήτρης Καφετζόπουλος Φυσικοχημικές μέθοδοι απομόνωσης και ανάλυσης νουκλεϊκών οξέων. Βιοπληροφορική και Βιοστατιστική επεξεργασία αποτελεσμάτων γονιδιωματικής ανάλυσης Επιχείρηση ή κλάδος ΙΔΡΥΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΡΕΥΝΑΣ-ΙΜΒΒ
ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΚΑΤΑΡΤΙΣΗ	
7/2017-5/2018	Πτυχιακή εργασία Τίτλος: «Χαρακτηρισμός των εκκρινόμενων πρωτεϊνών και θείου στα διάφορα στάδια ανάπτυξης στο φωτοσυνθετικό βακτήριο <i>Chlorobaculumtepidum»</i> Βαθμός: 10
9/2014-11/2018	Πτυχιούχος Τμήματος Χημείας της Σχολής Θετικών και Τεχνολογικών Επιστημών – Πανεπιστημίου Κρήτης Βαθμός: 8,37
10/2018-	Μεταπτυχιακό δίπλωμα ειδίκευσης στην Οργανική και Βιολογική Χημεία , Τμήμα Χημείας Πανεπιστημίου Κρήτης
ΑΤΟΜΙΚΕΣ ΔΕΞΙΟΤΗΤΕΣ	_

Μητρική γλώσσα	Ελληνική
Λοιπές γλώσσες	
Αγγλική	
	Επίπεδο Β2
Επικοινωνιακές δεξιότητες	Καλές επικοινωνιακές δεξιότητες που αποκτήθηκαν μέσα από την εμπειρία μου στην Ομάδα επίδειξης πειραμάτων του Πανεπιστημίου Κρήτης
Επαγγελματικές δεξιότητες	Μέθοδοι απομόνωσης και ταυτοποίησης πρωτεϊνών με MALDI-MS λογισμικό βιοπληροφορικήςBiotools , PerseusCytoscape ,απεικονιστικές τεχνικές ηλεκτρονικό μικροσκόπιο σάρωσης(SEM)
Ψηφιακές δεξιότητες	
	Πιστοποιητικό πληροφορικής και Η/Υ από το τμήμα Χημείας του Πανεπιστημίου Κρήτης
	καλόςχειρισμόςτουOffice(επεξεργασία κειμένου, λογιστικάφύλλα,παρουσιάσεις) καλόςχειρισμόςτουOriginPro8(επεξεργασίαδεδομένων)

Δίπλωμα οδήγησης	В	
Δημοσιεύσεις και Συνέδρια	19th Post 20 th Post 21 st Post 1)	Igraduate Conference on Chemistry , 2017 graduate Conferences on Chemistry , 2018 graduate Conference on Chemistry , 2019 Pergantis, S. A.; Saridakis, I.; Lyratzakis, A .; Mavroudakis, L.; Montagnon, T. Buffer Squares: A Graphical Approach for the Determination of Buffer PH Using
	2)	Kourpa, K., Manarolaki, E., Lyratzakis, A., Strataki, V., Rupprecht, F., Langer, J. D., Tsiotis, G., Proteome Analysis of Enriched Heterocysts from Two Hydrogenase Mutants from <i>Anabaena</i> sp. PCC 7120. <i>Proteomics</i> 2019, 19, 1800332. doi.org/10.1002/pmic.201800332
	3)	Lyratzakis A., Valsamidis G., Nikolaki A., Rupppert F., Langer J.D. and Tsiotis G., Proteomic characterization of the Pseudomonas sp. strain phDV1response to monocyclic aromatic compounds, <i>Proteomics</i> , 2020(under revision)

CURICULUM VITAE

PERSONAL INFORMATION		Alexandros Lyratzakis
		SofokliVenizelou 55 , Heraklion , 71202, Greece
		\$ 2810 283022 \$ 6989505535
		⊠ <u>alexlamp2008@gmail.com</u>
		Sex Male Birthday 15/02/1996 Nationality Greek
Working Experience		
10/2015-12/2015		Undergraduate assistant in General Chemistry Lab
		Lab Manager :Spyros Kornilios
		Buffer preparation Institution University of Crete Department of Chemistry
1/7/18-30/9/18		Internship
		Supervisor :Dimitris Kafetzopoulos
		Isolation and analysis of nucleic acids. Bioinformatic and biostatistic analysis of genomic data. Institution Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology Hellas (IMBB-FORTH)
Education		
7/2017-5/2018		Graduate thesis Title: «Characterization of secreted proteins and sulfur at different stages of development in the photosynthetic bacterium <i>Chlorobaculumtepidum</i> »
		Grade: 10
9/2014-11/2018		Graduate student of University of Crete, School of Science and Engineering, Department of Chemistry
		Grade: 8,37
10/2018-		Master of Science in Organic and Biological Chemistry , University of Crete Department of Chemistry
Skills		
Nativo Languago	Crook	
Other Languages	English	Level B2
Social skills		Participation in the Experiment demonstration team of University of Crete Department of Chemistry [8]

Professional skills	In gel and gel free proteomic analysis, bioinformatics and biostatistics softwares (Biotools and Perseus) interactomic analysis of protein data set with Cytoscape ,Scanning Electron Microscopy, Transmition Electron microscopy.
Digital skills	Department of Chemistry certificates informatics and computer handling
Driving License	В
Conferences	19 th Postgraduate Conference on Chemistry , 2017 20 th Postgraduate Conferences on Chemistry , 2018 21 st Postgraduate Conference on Chemistry , 2019
Publications	 Fergantis, S. A., Sandakis, I., <u>Lyratzakis, A</u>., Matroduakis, E., Montagnon, T. Buner Squares: A Graphical Approach for the Determination of Buffer PH Using Logarithmic Concentration Diagrams. <i>J. Chem. Educ.</i>2019. Kourpa, K., Manarolaki, E., <u>Lyratzakis, A</u>., Strataki, V., Rupprecht, F., Langer, J. D., Tsiotis, G., Proteome Analysis of Enriched Heterocysts from Two Hydrogenase Mutants from <i>Anabaena</i> sp. PCC 7120. <i>Proteomics</i> 2019, 19, 1800332. <u>doi.org/10.1002/pmic.201800332</u> Lyratzakis A., Valsamidis G., Nikolaki A., Rupppert F., Langer J.D. and Tsiotis G.,
	Proteomic characterization of the Pseudomonas sp. strain phDV1response to monocyclic aromatic compounds, <i>Proteomics</i> , 2020(under revision)

ΠΕΡΙΛΗΨΗ

ΤοChlorobaculumtepidumείναι ένα πράσινο θειούχο βακτήριο,που αναπτύσσεται παρουσία θειούχων και θειοθειικών αλάτων. Πρόκειται για ένα υποχρεωτικά αναερόβιο,φωτότροφο βακτήριο, που μεταβολίζει τα θειούχα και θειοθειικααλάταπρωτα σε ατομικό θειο καιμετά σε θειικά κατά την ανάπτυξη του. Το παραγόμενο στοιχειακό θείο μεταφέρεται στο εξωκυττάριο χώρο. Με στόχο την μελέτη του μεταβολισμού του θείου, συλλέχθηκαν κύτταρα κατά τη μέγιστη παραγωγή θείου (20h) και κατά τη στατική φάση ανάπτυξης(40h). Τα εξωκυττάρια σφαιρίδια στοιχειακού θείου απομονώθηκαν και αναλύθηκαν με MALDI-TOF και ηλεκτρονική μικροσκοπία σάρωσης (SEM). Στα κύτταρα που συλλέχθηκαν πραγματοποιήθηκε ανάλυση του ολικού πρωτεώματος και ποσοτικοποίηση με labelfreequantificationπροσέγγιση. Συνολικά, έγινε ταυτοποίηση σε 1132 πρωτεΐνες περίπου το 50% του θεωρητικού πρωτεώματος και από αυτές ποσοτικοποιήθηκαν πάνω από 990 με τον LFQαλγόριθμο. Από αυτές 130 είχαν στατιστικά σημαντική αλλαγή στην αφθονία, τους μεταξύ των δύο επιλεγμένων βιολογικών συνθηκών. Η λειτουργική και τοπολογική ανάλυση δείχνουν την αυξημένη αφθονία ενζύμων, που σχετίζονται με την οξείδωση θειούχων και θειοθειικών αλάτων στις 20h (dsrsystemκαι soxsystem). Τέλος, βάση των αποτελεσμάτων πρωτεομικής, δημιουργήθηκε ένα μοντέλο μεταβολισμού του θείου, που δείχνει πώς το κύτταρο μεταβάλλει την αφθονία των ενζύμων που σχετίζονται με την παραγωγή και την αποικοδόμηση των σφαιριδίων βιογενούς θείου.

Λέξεις κλειδιά: Πρωτεωμική ανάλυση, φασματομετρία μάζας, βιοστατιστική,ηλεκτρονική μικροσκοπία σάρωσης

ABSTRACT

Chlorobaculumtepidum is an anaerobic green sulfur bacterium, which oxidizes sulfide,elemental sulfur, and thiosulfate for photosynthetic growth. This anoxygenic phototroph can oxidized sulfide to produce extracellular S⁰ globules, which can be further oxidized to sulfate. The extracellular S⁰ globules have been isolated and analyzed by MALDI-TOF MS and scanning electron microscopy (SEM). Further, to gain insight to the sulfur metabolism, the proteome of *C. tepidum*was sampled at the time of the maximum sulfur production and in the stationary growth conditions and quantified using a label free quantitative proteomics strategy. In total, 1132 proteins were identified; this represents around 50% of the total proteome and more than 990 were included for thelabel-free quantification. Of these, 130 had statistically significant change to their regulation, at the point of the highest sulfur production of the strain. Cellshave an increased abundance of the periplasmicthiosulfate-oxidizing SOX enzymesand the dissimilatorysulfite reductase subunits. Finally based on the previous results we propose a model showing the regulation of sulfur metabolism proteins.

Keywords: Proteomics, Mass spectrometry, Biostatistics, Scanning Electron Microscopy

Περιεχόμενα

. Εισαγωγή	15
1.1 Η εξέλιξή της φωτοσύνθεση	15
1.2 Κέντρα αντίδρασης (RC)	16
1.3 Πράσινα θειούχα βακτήρια (GSB)	17
1.4 Chlorobaculumtepidum (C. tepidum)	18
1.5Φωτοσυνθετική κεραία και η αλυσίδα μεταφοράς ηλεκτρονίων στο <i>C. tepidum</i>	19
1.6 Μεταβολισμός του θείου στο <i>C. tepidum</i>	21
1.7 Scanning Electron Microscopy-SEM(Ηλεκτρονική Μικροσκοπία Σάρωσης)	23
1.8 Φασματομετρία μάζας	24
1.9 Πρωτεωμικήανάλυση: Label Free Quantitative Proteomics (LFQ-Proteomics)	25
1.10 Στόχος εργασίας	26
Υλικά και Μέθοδοι	27
2.1 Υλικά	27
2.2 Μέθοδοι	27
2.2.1 Ανάπτυξη του βακτηρίου <i>Chlorobaculum tepidum</i>	27
2.2.2 Επεξεργασία καλλιεργιών για την μελέτη του ρυθμού ανάπτυξης του βακτηρίου <i>Chlorobacu</i> tepidum	ılum 29
2.2.3 Απομόνωση και χαρακτηρισμός βιογενικών σφαιριδίων στοιχειακού Θείου με MALDI-TOF και S	SEM
	30
2.2.4 Προετοιμασία δείγματος με Filter Aid Sample Preparation (FASP) για nano-LC-ESI-MS/MS	30
2.3 Αναλυτικές μέθοδοι	31
2.3.1 Φασματοφωτομετρία Υπεριώδους- Ορατού (UV-Vis)	31
2.3.2 Υγρή χρωματογραφία υψηλής απόδοσης συζευγμένη με σύστημα ηλεκτροψεκασμού φασματογράφο μάζας nano-LC-ESI-MS/MS	και 32
2.3.3Βιοπληροφορική και Στατιστική ανάλυση	33
. Αποτελέσματα- Συζήτηση	34
3.1 Ανάπτυξη του Chlorobaculumtepidum	34
3.2 Χαρακτηρισμός σφαιριδίων στοιχειακού θείου	35
.Συμπεράσματα και Προοπτικές	45
4.1 Μελέτη της ανάπτυξης του βακτηρίου Chlorobaculumtepidum	45
4.2Χαρακτηρισμός σφαιριδίων στοιχειακού θείου	45
4.3 LabelfreeQuantification (LFQ) Πρωτεωμικήανάλυση	45
4.4 Προοπτικές	46

5. Βιβλιογραφία	47
ТАРАРТНМА	51

ΣΥΝΤΟΜΟΓΡΑΦΙΕΣ

SEM: Scanning Electron Microscopy **EDS:** Electron Dispersive Spectrometry MALDI: Matrix Assisted Laser Desorption Ionization LDI:Laser Desorption Ionization **Chl:** Chlorophyll BChl: Bacteriochlorophyll LC:Liquid Chromatography **ESI:** Electrospray Ionization C.tepidum :Chlorobaculumtepidum LH: Light Harvesting FMO:FennaMathew Olson RC: Reaction Center LFQ: LabelFreeQuantification **GSB:** GreenSulfurBacteria **PI:** Post Incubation **PMF:** Peptide Mass Fingerprint **PFF:** Peptide Fragment Fingerprint

1. Εισαγωγή

1.1 Η εξέλιξή της φωτοσύνθεση

Η φωτοσύνθεση είναι από τις σημαντικότερες, αν όχι η σημαντικότερη διεργασία αποθήκευσης και μετατροπής της ηλιακής ενέργειας σε ηλεκτροχημικό δυναμικό για την κάλυψη των αναγκών των φωτοσυνθετικών οργανισμών. Η κατανόηση της προέλευσης και της εξέλιξής της θα ωφελήσει στην βελτιστοποίηση της γεωργίας και μεθόδων παραγωγής ενέργειας.

Είναι μια διαδικασία που διεξήχθη για πρώτη φορά λίγο μετά την ύπαρξη ζωής στον πλανήτη Γη και ύστερα, από πολύπλοκες εξελικτικές διαφοροποιήσεις προέκυψαν τα διάφορα είδη φωτοσυνθετικών μικροοργανισμών και μεταβολικών μονοπατιών που ανακαλύπτονται ακόμα και σήμερα^{1,2}. Μια αξιόπιστη τεχνική για την αποσαφήνιση των εξελικτικών διαφοροποιήσεων είναι η ανάλυση του γονιδίου που κωδικεύει την μικρή υπομονάδα του ριβοσομικούRNA(16SrRNA). Πρόκειται για μια συντηρημένη αλληλουχία με επαρκές μέγεθος, για να φανούν εξελικτικές σχέσεις. Το μειονέκτημα της μεθόδου αυτής είναι ότι πρόκειται για μικρό γονίδιο επομένως μικρές διαφορές είναι δύσκολο να ανιχνευθούν.

Στην **εικόνα 1.1** φαίνεται δενδρόγραμμα με τις εξελικτικές σχέσεις των τριών επικρατειών, Βακτήρια, Αρχαία και Ευκαρυώτες, βασισμένο στην ανάλυση που προαναφέρθηκε. Από αυτά η φωτοσύνθεση ανιχνεύεται μόνο στα Βακτήρια και τα Ευκαρυώτες.Ηεπικράτεια των Βακτηρίων είναι χωρισμένησε 6 διαφορετικά φύλα, τα κυανοβακτήρια, πράσινα θειούχα βακτήρια, μωβ θειούχα βακτήρια, filamentus anoxygenic phototrophs, heliobacteria και acidobacteria³. Όσο για την προέλευση των ευκαριωτικών φωτοσυνθετικών οργανισμών, έχει αποδειχθεί ότι είναι αποτέλεσμα της ενδοσυμβίωσης οργανισμών παρόμοιων με κυανοβακτήρια σε ευκάρια και με την πάροδο των γενεώνπροέκυψαν οι χλωροπλάστες⁴.

Εικόνα 1.1Δενδροδιάγραμμαεξελικτικών σχέσεων από δεδομένα αλληλούχησης της 16SrRNAυπομονάδας. Με κόκκινο βέλος φαίνεται η ενδοσυμβίωση ενός κυανοβακτηρίου με ένα ευκαριώτη με πράσινο επισημάνονται τα είδη που περιέχουν μόνο το κέντρο αντίδρασης τύπου Ι, με ροζαυτά που έχουν μόνο το κέντρο αντίδρασης τύπου ΙΙ και αντίστοιχα και με τα δυο⁵. Έχει αποδειχθεί λοιπόν, κυρίως από δεδομένα γονιδωματικήςτων φωτοσυνθετικών μικροοργανισμών, ότι η φωτοσύνθεση σαν διαδικασία είναι αποτέλεσμα οριζόντιας μεταφοράς γονιδίου σε συνδυασμό με ανασυνδυασμό γονιδίων, που κωδικοποιούν διαφορετικές πρωτεΐνες του φωτοσυνθετικού συστήματος σε κάθε οργανισμό. Εναλλακτικοί τρόποι μελέτης της εξέλιξης της φωτοσύνθεσης είναι η μελέτη των φωτοσυνθετικών χρωστικών, των κέντρων αντίδρασης, των κεραιώνπου χρησιμοποιούνται για την συλλογή φωτός (LH Complexes), της αλυσίδας μεταφοράς ηλεκτρονίων και μονοπάτια καθήλωσης του άνθρακα. Το πλεονέκτημα αυτών είναι πως μπορούν να αναλυθούν ξεχωριστά διότι πρόκειται για διαφορετικά βιομόρια⁵.

1.2 Κέντρα αντίδρασης (RC)

Τα κέντρα αντίδρασης (RCs) χαρακτηρίζονται ως η «κάρδια» της φωτοσύνθεσης. Πρόκειται για διαμεμβρανικάσύμπλοκα πρωτεϊνών, που χρησιμοποιούν την ηλιακή ενέργεια η οποία, απορροφάται από τις κεραίες, διεγείρεται το specialpair τους μεταφέροντας ηλεκτρόνια στη αλυσίδα μεταφοράς ηλεκτρονίων. Έτσι επιτυγχάνεται πρωτονιακή άντληση διαμέσου της μεμβράνης με την βοήθεια πρωτεϊνικών συμπλόκωνκαι η δημιουργία διαφορά δυναμικού διαμέσου της μεμβράνης που χρησιμοποιείται από τις ΑΤΡασες για την παραγωγή ΑΤΡ.

Υπάρχουν δύο τύποι κέντρων αντίδρασης με βάση τον πρώτο δέκτη ηλεκτρονίων τους, τα κέντρατύπου Ι και ΙΙ (RCI και RCII). Στα RCI ο πρώτος δέκτης ηλεκτρονίων είναι κέντρα σιδήρου-θείου (Fe-S Clusters), ενώ στα RCIIο πρώτος δέκτης ηλεκτρονίων είναι φαιοφυτίνες ή κινόνες, ή ακόμα και σύμπλοκα αυτών. Οι μη οξυγονικοί φωτότροφοι οργανισμοί διαθέτουν ένα από τα δύο σύμπλοκα, ενώ οι οξυγονικοί και τα δύο. Αυτά τα δεδομένα προκύπτουν από δομικές, θερμοδυναμικές και φασματοσκοπικές αναλύσεις. Μελέτες βασιμένες στις αλληλουχίες των πρωτεϊνών και των δομών τους, προτείνουν πως όλα τα RC είναι αποτέλεσμα της διαφοροποίησης ενός κοινού προγόνου. Αυτό ήταν εμφανές κατά τη σύγκριση των δομών των RC όπου φάνηκε πως υπήρχε αρκετά μεγάλος αριθμός συντηρημένων δομικών μοτίβων. Με αυτόν τον τρόπο ήταν δυνατή η κατασκευή δεντρογραμμάτων με βάση την δομή τους. Οι ιδιότητες του αρχαιότερου κέντρου αντίδρασης τύπου 1.5 (εικόνα 1.2) ήταν παρόμοιες και με τα δύο νεώτεραRC.Επιπλέον αποδείχθηκεότι η παρουσία ετεροδιμερικώνσυμπλόκων στο πυρήνα των κέντρων ήταν αποτέλεσμα πολλαπλών διπλασιασμών γονιδίων⁵

Εικόνα 1.2Δεντρόγγραμμα που προκύπτει με βάση την δομική μελέτη των RC, με κόκκινο φαίνονται τα RC με ετεροδιμερικό πυρήνα, με μπλε αυτά με ομοδιμερικό και με αστερίσκο επισημάνονται οι διπλασιασμοί γονιδίων(genedublication).

Η αλυσίδα μεταφοράς ηλεκτρονίων είναι η διαδικασία μεταφοράς ηλεκτρονίων από τα RCs σε ενώσεις ή σύμπλοκα που μπορούν να διαχυθούν διαμέσου της μεμβράνης και να μεταφέρουν ηλεκτρόνια σε δύο επιπλέον σύμπλοκα B_6 fκαι Bc₁. Αυτά τα σύμπλοκα είναι ικανά να οξειδώνουν ανηγμένεςκινόνες, που προέρχονται από φωτοχημικές αντιδράσεις των RCII ή από κυκλικές διεργασίες στα RCIκαι να αντλούν πρωτόνια διαμέσου της μεμβράνης δημιουργώντας το κατάλληλο ηλεκτροχημικό δυναμικό για την παραγωγή ATP. Τα κυτοχρώματα B_6 fκαι Bc₁ είναι παρόμοια, με διακριτή την δομική διαφορά των υπομονάδωνc₁ και f₆⁶.

1.3 Πράσινα θειούχα βακτήρια (GSB)

Τα θειούχα βακτήρια αναπτύσσονται, είτε σε πλακτονικές ή βενθικές μορφές σε υδρόβιο, ανοξυγονικόπεριβάλλον. Είναι υποχρεωτικά αναερόβια και φωτοαυτότροφα. Διαχωρίζονται σε πράσινα θειούχα βακτήρια (GSB) και τα μωβ θειούχα βακτήρια (PSB) και μελετούνται πάνω από 100 χρόνια. Τα GSBαποτελούν την οικογένεια *Chlorobiaceae*και οφείλουν το όνομα τους στις χρωστικές τους: βακτηριοχλωροφύλλη c, d και e⁷.

Για τη διαδικασία της φωτοσύνθεσης, χρησιμοποιούν κέντρο αντίδρασης τύπου Ι, καθώς και μόρια βακτηριοχλωροφύλλης a,c,d,e(ολιγομερή) και καροτενοειδή. Η βακτηριοχλωροφύλλες βρίσκονται σε εξειδικευμένα οργανίδια, τα οποία καλούνται χλωροσώματα(**εικόνα 1.3**). Τα βακτήρια αυτά οξειδώνουν διάφορες μορφές του θείου όπως θειούχα, θειοθειικάάλλατα και στοιχειακό θείο καθώς και υδρογόνο ή σίδηρο (σπανιότερα). Οι προαναφερόμενες ουσίες χρησιμεύουν ως δότες ηλεκτρονίων κατά τη φωτοσύνθεση.

Εικόνα 1.3 Α. Μοντέλο συμπλόκουχλωροσώματος-FMO-RC, οι χρωστικές και τα μέγιστα απορρόφησης (A_{max}) τους σε nm⁷.

Η οικογένεια Chlorobiaceae, απαρτίζεται κυρίως από Gram-αρνητικά βακτήρια. Υπάρχουν πολλά είδη GSB που έχουν τη δυνατότητα να οξειδώνουν θειούχα και θειοθειικά άλατα. Το Chlorobiumlimicola και το Clorobaculumtepidumοποία δημιουργούν εξωκυττάρια σφαιρίδια στοιχειακού θείου και τα χρησιμοποιούν όταν εξαντληθούν οι υπόλοιπες πηγές θείου. Ένα άλλο είναι το Pelodictyonphaeoclathratifovmeπου δημιουργεί νήματα, και τοChlorochromatiumaggregatumτο οποίο συμβιώνει με το Candidatus symbiobacter(Betaproteobacteria), δημιουργώντας βαρέλια που στο εσωτερικό του περικλείουν τοβακτήριο. Για την μελέτη λοιπόν των GSB θεωρείται οργανισμός μοντέλο το *Chlorobaculumtepidum*, διότι έχει αναγνωστείτο γονιδίωμά του πλήρως, μπορεί να αναπτυχθεί στο εργαστήριο σχετικά εύκολα και το μέγεθος του είναι μεγαλύτερο από τα άλλα GSB⁸.

Pelodictyon phaeoclathratifovme

Chlorobaculum tepidum

Chlorochromatium aggregatum

Εικόνα 1.4Διάφορα είδη πράσινων θειούχων βακτηρίων^{9,10}.

1.4 Chlorobaculumtepidum (C. tepidum)

Το*Chlorobaculumtepidum*είναιέναυποχρεωτικάαναερόβιοκαιθερμόφιλοβακτήριο. Απομονώθηκε από θερμές πηγές στη Νέα Ζηλανδία. Το περιβάλλον που αναπτύσσεται περιέχει υψηλές συγκεντρώσεις θειούχων ενώσεων και έχει βέλτιστη θερμοκρασία ανάπτυξης 47-48°C. Πρόκειται για ένα Gram αρνητικό βακτήριο της οικογένειας*Chlorobiaceae*, τα κύτταρα του οποίου είναι μη κινητικά και έχουν ραβδοειδή μορφή. Το κύτταρο του είναι μεγαλύτερο σε σχέση με τα υπόλοιπα είδη του γένους *Chlorobaculum*, και είναι το μόνο γνωστό θερμόφιλο της οικογένειας⁸.

Το γονιδίωμα του Chlorobaculumtepidumείναι το πρώτο που αναγνώστηκε από την οικογένεια των Chlorobiaceae, το 2002,. και βρέθηκε ότι αποτελείταιαπό ένα χρωμόσωμα με 2,154,946 ζεύγη βάσεων⁹. Από τη σύγκριση με άλλα γονιδιώματα, αποδείχθηκε η ύπαρξη γονιδίων συντηρημένων μεταξύ των φωτοσυνθετικών οργανισμών. Από τη φυλογενετικήανάλυση προέκυψαν πιθανοί διπλασιασμοί γονιδίων που σχετίζονται με βιοσυνθετικά μονοπάτια της φωτοσύνθεσης του θείου και του αζώτου.Επίσης, πραγματοποιεί την καθήλωση του άνθρακα μέσω του αντίθετου κύκλου του τρικαρβοξυλικού οξέος**(Εικόνα 1.5)**. Χρησιμοποιούν διοξείδιο του άνθρακα και νερό, ώστε να παραχθούν διάφορες ενώσεις του άνθρακα, αντί του κύκλου του Calvin^{10,11}.

Εικόνα 1.5Αντίστροφος κύκλος του κιτρικού οξέος¹².

Το συγκεκριμένο στέλεχος έχει βρεθεί ότι μπορεί να αναπτυχθεί παρουσία θειούχων και θειοθειικών αλάτων, στο βιογενές στοιχειακό θείο που παράγει το ίδιο. Έχει λοιπόν ενδιαφέρον να απαντηθεί το ερώτημα, γιατί να μεταβολίζει μόνο το στοιχειακό θείο που το ίδιο παράγει και όχι κάποια άλλη μορφή που του διατίθεται¹³.

Εικόνα 1.6Εικόνες από Cryo-SEMA)Απομονωμένα βιογενή σφαιρίδια στοιχειακού θείου B) C) εικόνες από καλλιέργεια *Chlorobaculumtepidum*που δείχνουν αποικοδόμηση των σφαιριδίων και την επαφή τους με τα βακτήρια αντίστοιχα. (ΑΝΑΦΟΡΑ)

1.5Φωτοσυνθετική κεραία και η αλυσίδα μεταφοράς ηλεκτρονίων στο C. tepidum

Το*C. tepidum*, όπως και τα υπόλοιπα πράσινα θειούχα βακτήρια, είναι ικανό να φωτοσυνθέτει σε περιβάλλον με πολύ χαμηλό φωτισμό, λόγω της μεγάλης φωτοσυνθετικής τους κεραίας, το χλωρόσωμα. Όπως αναφέρθηκε παραπάνω, το χλωρόσωμα περιέχει τις χρωστικές Bchlc, d, e, ακαροτενοειδή, 2 είδη κινονών (1-oxomenaquinone-7, και τηνmenaquinone-7). Επιπλέον περιέχει και 10 πρωτεΐνες, τις CsmA, B, C, D, E, F, H, I, Jκαι X. Το μέγεθος της μεμβράνης του χλωροσώματος είναι 23nmκαι αποτελείται από monogalagtosyldiglycerideκαι πολυπεπτίδια. Στο *C. tepidum* το μέγεθος των χλωροσωμάτων έχει τις εξής διαστάσεις: 170-260nmμήκος, 90-160nmπλάτος και 30-40nmύψος.

Εικόνα 1.7Μοντέλο που δείχνει την φωτοσυνθετική κεραία(χλωρόσωμα) και την μεμβράνη του *C.* tepidum. Υπάρχουν δύο μοντέλα για την στοίβαξη της Bchlc: το rod-model που φαίνεται στα αριστερά και το lamellar-modelπου φαίνεται στα δεξιά. Οι κόκκινες γραμμές αντιπροσωπεύουν την μεταφορά φωτονίων (singlet), ενώ οι ασυνεχείς κόκκινες γραμμές την αποδιέγερση των BChltriplets από καροτενοειδή, ενώ οι μπλε γραμμές την μεταφορά ηλεκτρονίων. Παρουσία O₂ οξειδώνεται ένας αποσβέστης (quencher) εντός των χλωροσωμάτων εμποδίζει την διέγερση BChlc καθιστώντας αδύνατη την μεταφορά ηλεκτρονίων. Ο αποσβέστης απενεργοποιείται με αναγωγή, από τις πρωτεΐνες Csml και J¹⁶.

Η επαφή της κεραίας με το κέντρο αντίδρασης γίνεται μέσω της πρωτεΐνης Fenna-Matthews-Olson (FMO). Πρόκειται για ένα υδατοδιαλυτόομοτριμερές, όπου στην κάθε του υπομονάδα περιέχονται 7 μόρια BChla. Το FMO είναι αγκυροβολιμένο στην εσωτερική μεμβράνη μέσω ενός αμινογλυκοσφιγγολιπιδίου και επικοινωνεί με την PscAυπομονάδα του RC¹⁷.

Τα RCP₈₄₀ του*C.tepidum*είναι τύπου I(περιέχει κέντρα Fe-S) και κάθε ένα συνδέεται με την κεραία μέσω δυο τριμερών FMO. Το κέντρο αντίδραση P₈₄₀, είναι ένα μεμβρανικόσύμπλοκο που αποτελείται από 4υπομονάδες. Πιο συγκεκριμένα, περιλαμβάνει τον ομοδιμερικό πυρήνα, με δυο PscA (82 kDa, αποτελείται από 11 διαμεμβρανικές έλικες), δύο υπομονάδεςPscC (23 kDa), μία PscB (24 kDa) και την PscD (17 kDa). Επιπλέον, συνδέεται με δύο FMO τριμερή (40 kDa) τα οποία μεταφέρουν τα φωτόνια από την φωτοσυνθετική κεραία (Χλωρόσωμα) στο specialpairτου κέντρου αντίδρασης. Ακολούθως, πραγματοποιείται μεταφορά των ηλεκτρονίων στο πρώτο δέκτη ηλεκτρονίων το (A₀) ένα ισομερές της χλωροφύλλης α, P663. Από εκεί στην menaquinone-7 στην συνέχεια στα κέντρα σιδήρου- θείου F_x, F_Aκαι

F_B. Τέλος τα ηλεκτρόνια καταλήγουν στην φερρεδοξίνη(Fd)(**εικόνα1.8**)που χρησιμοποιείται στην καθήλωση του CO₂κατά τον αντίστροφο κύκλο του Krebs.

Εικόνα 1.8Αλυσίδα μεταφοράς ηλεκτρονίων στο *C. tepidum*¹⁸.

1.6 Μεταβολισμός του θείου στο C. tepidum

Τα πράσινα θειούχα βακτήρια χρησιμοποιούν ενώσεις του θείου, ως δότες ηλεκτρονίων. Συγκεκριμένα, το στέλεχος *Chlorobaculumtepidum* χρησιμοποιεί θειούχα (S²⁻), θειοθειικά (S₂O₃²⁻) άλατα και στοιχειακό θείο (S⁰) ως ηλεκτρονιοδότες. Λόγω της πληθώρας τω ενζύμων, που συμμετέχουν στην διαδικασία του μεταβολισμού των ενώσεων του θείου, η μελέτη της καθίσταται δύσκολη. Ένα προτεινόμενο μοντέλο της διαδικασίας αυτής παρουσιάζεται στην **εικόνα 1.9**^{14, 15}.

Το μοντέλο αυτό περιλαμβάνει τα προτεινόμενα μονοπάτια μεταφοράς ηλεκτρονίων και παρατηρήθηκαν τα θειούχα να οξειδώνονται σε ενώσεις στοιχειακού θείου ως ενδιάμεσο. Οι ενώσεις αυτές εξέρχονταιεκτός κυττάρου και δημιουργούν σφαιρίδια στοιχειακού θείου. Τα σφαιρίδια αυτά διατηρούνται, όσο εξακολουθεί να είναι διαθέσιμη η ανηγμένη πηγή θείου από την οποία έχουν προκύψει. Όταν αυτή εξαντληθεί, τότε τα σφαιρίδια οξειδώνονται πλήρως σε θειικά ιόντα. Ωστόσο, δεν είναι ακόμα γνωστοί οι μηχανισμοί δημιουργίας, διάσπασης και μεταφοράς των σφαιριδίων, από τον εξωκυττάριο χώρο στο περίπλασμα. Όσον αφορά την δομή των σφαιριδίων πιστεύεται ότι αποτελούνται από αλυσίδες πολυσουλφιδίων (θειοαιθέρων), μηδενικού φορτίου, που τερματίζονται με οργανικά κατάλοιπα^{16,17}.Επιπλέον στην βιβλιογραφία αναφέρονται δύο πρωτεΐνες, οι CT1305.1και CT1320.1, οι οποίες βρέθηκαν πάνω στα σφαιρίδια βιογενούς θείου,οι οποίες δεν έχουν χαρακτηριστεί ακόμα¹³.

Τα πράσινα θειούχα βακτήρια περιέχουνγονίδια τα οποίακωδικοποιούν ένα σύστημα αναγωγάσηςθειώδων αλάτων (dissimilatorysulfitereductasesystem), ταοποία είναι γνωστά ως γονίδιαdsr.Το σύστημα dsrείναι ομόλογο με αυτό των βακτηρίων, τα οποίαανάγουν θειικά άλατα, με τη διαφορά ότι το σύστημα αυτό λειτουργεί προς την αντίθετη κατεύθυνση. Στο *Chlorobaculumtepidum*, τα dsr γονίδια χωρίζονται σε δύο ομάδες, και συγκεκριμένα στις dsrNCABLMKJOP (CT2251–2238) και dsrCABLEFH (CT0851–0857), έτσι ώστε το γονίδιο dsrCABL, να υπάρχει δύο φορές. Έχει αποδειχθεί ότι στο συγκεκριμένο στέλεχος, το σύστημα dsr είναι απαραίτητο για την οξείδωση των σφαιριδίων του θείου^{9,13}.

Οι πρωτεΐνες Dsr που παίρνουν μέρος στην οξείδωση των σφαιριδίων στοιχειακού θείου είναι: siroheme-containingsulfitereductaseDsrAB, το διαμεμβρανικόσύμπλοκο μεταφοράς ηλεκτρονίων DsrMKJOP και οι dsrW/CT2238, dsrV/CT2239, dsrT/CT2245, dsrU/CT2246¹⁸.

Προτεινόμενα ένζυμα, που συμμετέχουν στην οξείδωση των θειούχων ενώσεων στο *Chlorobaculumtepidum*είναι η οξειδοαναγωγάσησουλφιδίου-κινίνης (sulfidequinineoxidoreductase, SQR) και το φλαβοκυτόχρωμας (Fcc). Το φλαβοκυτόχρωμα c-553 καταλύει τη μεταφορά 2 e⁻ απ' το H₂S στο Cyt c, σε μικρομοριακές συγκεντρώσεις, με το στοιχειακό θείο ως προϊόν οξείδωσης. Τα μεμβρανικάσυνδεδεμένα ομόλογα της SQR, CT0117 και CT1087 καταλύουν την οξείδωση των θειούχων αλάτων μέσα στο κύτταρο¹⁹.

Η οξείδωση των θειοθειϊκών γίνεται απ' το σύστημα οξείδωσης θείου (sulfuroxidationsystem,Sox). Στο προτεινόμενο μονοπάτι, η χαρακτηριστική ομάδα σουλφονίων του $S_2O_3^{2-}$ οξειδώνεται σε θειικό και εξέρχεται εκτός του κυττάρου, ενώ η χαρακτηριστική ομάδα σουλφονίων απελευθερώνεται στην υποθετική περιοχή των πρόδρομων ενώσεων του στοιχειακού θείου (putativeoligosulfidepool), και έπειτα είτε τοποθετείται στα σφαιρίδια του στοιχειακού θείου, είτε οξειδώνεται σε θειώδες SO_3^{2-} απ' το σύστημα dsr^{20} .Παρόλο που έχουν ταυτοποιηθεί τα ένζυμα που καταλύουν την οξείδωση του θείου μέχρι στιγμής δεν έχει βρεθεί ο τρόπος που εξέρχονται τα πολυσουλφίδια από το κύτταρο, ούτε το πώς εισέρχονται σε αυτό.

Εικόνα 1.9 Μοντέλο μεταβολισμού του θείου στα πράσινα θειούχα βακτήρια²⁰.

1.7 Scanning Electron Microscopy-SEM(Ηλεκτρονική Μικροσκοπία Σάρωσης)

Η ηλεκτρονική μικροσκοπία σάρωσης χρησιμοποιείται για την απεικόνιση μικρο-δομών σε μεγάλο εύρος βιο-υλικών και συνθετικών υλικών. Τα κύρια μέρη της οργανολογίας του SEM είναι η πηγή ηλεκτρονίων(electrongun), ηλεκτρομαγνητικοί φακοί για την συγκέντρωση των ηλεκτρονίων (focus), τονθάλαμο δείγματος, ανιχνευτές ηλεκτρονίων, υπολογιστή για την επεξεργασία των εικόνων. Τα ηλεκτρόνια που παράγονται από την πηγή επιταχύνονται προς τα κάτω περνώντας από φακούς και οπές δημιουργώντας έτσι μια λεπτή δέσμη ηλεκτρονίων. Η δέσμη, στην συνέχεια, χτυπά την επιφάνεια του δείγματος μέσα σε κατάλληλο θάλαμο υπό κενό. Η επιφάνεια του δείγματος σαρώνεται από την δέσμη ηλεκτρονίων πληροφορίες για την μορφολογία της. Η διαδικασία της σάρωσης δημιουργεί μια σειρά από σήματα τα οποία είναι ανιχνεύσιμα με την κατάλληλη οργανολογία (ανιχνευτές).

Η τεχνική αυτή δίνει τη δυνατότηταπαραγωγής2Dεικόνων υψηλής ευκρίνειας χρησιμοποιώντας το κατάλληλο λογισμικό. Επιπλέον με το μικροσκόπιο σάρωσης μπορεί να πραγματοποιηθεί και στοιχειακή ανάλυση (EDS, electrondispersiveX-rayspectroscopy). Με την ανάλυση αυτή μπορεί να μετρηθεί η χαρακτηριστική ακτινοβολία που εκπέμπεται, όταν ένα ηλεκτρόνιο από την εξωτερική στοιβάδα καλύπτει μια «οπή», που έχει δημιουργηθεί από ένα ηλεκτρόνιο εσωτερικής στοιβάδας, το οποίο έχει διεγερθεί. Η ακτινοβολία είναι χαρακτηριστική για κάθε στοιχείο²¹. Πολύ σημαντική είναι η προετοιμασία των δειγμάτων, διότι πολλές φορές ανεπαρκής προετοιμασία, όπως η αλλαγή της επιφάνειας των προς παρατήρηση αντικειμένων, λόγω άσκησης μηχανικής πίεσης, οδηγεί σε εσφαλμένα αποτελέσματα. Τέλος βασικό μειονέκτημα του SEM είναι πως περιορίζεται σε στερεά δείγματα^{22,23}.

Εικόνα 1.10 Σχηματική απεικόνιση ηλεκτρονικού μικροσκοπίου σάρωσης²¹.

1.8 Φασματομετρία μάζας

Η φασματομετρία μάζας, είναι μια αναλυτική τεχνική,ικανή να πραγματοποιήσει ποιοτική και ποσοτική ανάλυση. Βασική αρχή της μεθόδου είναι ο ιοντισμός του αναλύτη στην αέρια φάση από μια πηγή ιοντισμού όπως ESIή MALDIκαι στην συνέχεια τα ιόντα μέσω του αναλυτή μάζαςδιαχωρίζονται και ανιχνεύονται, βάση το λόγο m/z.Ως αναλυτές μάζας έχουν καθιερωθεί οι: TimeofFlight, TripleQuadrapol,Iontrapκαι Orbitrap.

Ένα πολύ σημαντικό στάδιο στην φασματομετρία μάζας είναι ο ιονισμός του δείγματος. Οι δύο κύριες τεχνικές που χρησιμοποιούνται σε βιολογικά δείγματα είναι:**Ιονισμός εκρόφησης με λέιζερ** υποβοηθούμενος από υλικό μήτρας (MALDI) και Ιονισμός με ηλεκτροψεκασμό (ESI) (NobelPrize in Chemistry,2002)²⁴. Αυτές οι τεχνικές χαρακτηρίζονται ως ήπιου ιοντισμού, που σημαίνει πως παρατηρείται το μοριακό ιόν και όχι τα θραύσματά του.

Το MALDIείναι μια τεχνική ιοντισμού που επιτρέπει την συλλογή πληροφοριών ως προς το μοριακό βάρος πολικών βιοπολυμερών (π.χ. πεπτίδια) των οποίων οι μοριακές μάζες είναι μεγαλύτερες των 200kDaμέσω ιοντισμού και ατμοποίησης, αποφεύγοντας την αποικοδόμησή τους²⁵. Στην τεχνική αυτή χρησιμοποιείται μικρή συγκέντρωση αναλύτη διασπαρμένου ομοιόμορφα σε στερεά ή υγρή μήτρα. Σκοπός της χρήσης της μήτρας είναι :

- Η αποφυγή της αποικοδόμησης του πολυμερούς απορροφώντας την ενέργεια της ακτίνας του λέιζερ
- Η απορρόφηση στο μήκος κύματος που ο αναλύτης δεν απορροφά σημαντικά
- Η ελαχιστοποίηση διαμοριακών αλληλεπιδράσεων πέραν αυτών της μήτρας- αναλύτη
- Η συμμετοχή στη δημιουργία ιόντων είτε σαν μέσο πρωτονίωσης(ανιχνευτής κατιόντων), είτε σαν μέσοαποπρωτονίωσης (ανιχνευτής ανιόντων)
- Η ανίχνευση συγκεντρώσεων αναλύτη της τάξης του pmol και μικρότερων

Εικόνα 1.12 Σχηματική αναπαράσταση ιοντισμού πρωτεϊνών με MALDI²⁹.

Ηπηγή ιοντισμού ESI χρησιμοποιεί ηλεκτρική ενέργεια (2.5-6 κV)για τον ιοντισμό του αναλύτη στην αέρια φάση. Ο μηχανισμός του αποτελείται από τρία στάδια:

- 1) την δημιουργία φορτισμένων σταγόνων (αερόλυμα)
- 2) την εξάτμιση του διαλύτη
- 3) την απόσχιση ιόντων από τα φορτισμένα σταγονίδια.

Το ESI είναι ικανό να παράγει πολλαπλώς φορτισμένα ιόντα. Έτσι αυξάνεται το εύρος μάζας του αναλυτή από kDaεωςMDaπου παρατηρούνται σε πρωτεΐνες και σε πολυπεπτίδια. Τέλος, ένα μεγάλο πλεονέκτημα του ESI είναι ότι μπορεί να συζευχθεί με χρωματογραφία αντίστροφής φάσης. Έτσι καθίσταται δυνατή ανάλυση πολύπλοκων μιγμάτων ακόμα και ολόκληρα πρωτεώματα²⁶.

της

τηνtop-

Εικόνα 1.13Μηχανισμός ιοντισμού με ESI πηγή²⁶.

1.9 Πρωτεωμικήανάλυση: Label Free Quantitative Proteomics (LFQ-Proteomics)

Πρωτεομικήανάλυσηείναιηχρήση

φασματομετρίαςμάζαςγιατηνανάλυσηπρωτεϊνικώνδειγμάτων,μίγματακαικαθαρέςπρωτεΐνες. Χωρίζεταισεδύομεγάλεςκατηγορίες,

bottomπουχρησιμοποιείταιολόκληρηηπρωτεΐνηχωρίςπέψηκαιbottom-upóπουταδείγματαπέπτονται απόμιαπρωτεάση (π.χ. θρυψίνη) καιαναλύονταιταπεπτίδιαπουπροκύπτουν.

Η bottom-up προσέγγιση χρησιμοποιείται για την ανάλυση πρωτεϊνών σε gelπολυακρυλαμιδίου και gel-freeδείγματα.Για την *denovo* ταυτοποίηση των πρωτεϊνών, πραγματοποιείται θραυσματοποίηση των πεπτιδίων (MS/MS) ώστε να βρεθεί το αποτύπωμα μάζας των πεπτιδικών θραυσμάτων της κάθε πρωτεΐνης (PFF).Τα πειραματικά δεδομένα συγκρίνονται με αυτά της *insilico*πέψης του πρωτεώματος του οργανισμού για να βρεθεί το αποτύπωμα μάζας των πεπτιδίων, με τη χρήση MS1 (PMF).

Η Shotgunπρωτεωμική βασίζεται στην σύζευξη της χρωματογραφία αντίστροφής φάσης (στήλη C18) και του ESI-MS/MS. Έτσι, δίνεται η δυνατότητα να αναλύονταιπολύπλοκα πρωτεϊνικά μίγματα. Εκτός από την ποιοτική πρωτεωμική ανάλυση πραματοποιείται και ποσοτική ανάλυση του πρωτεώματος. Για να γίνει αυτό, τα δείγματα μπορεί να είναι επισημασμένα όπως γίνεται στο SILAC και στο iTRAQ ή μια πιο πρόσφατη προσέγγιση, χωρίς επισήμανση των δειγμάτων, την Label-FreeQuantificationproteomics (LFQproteomics).

Εικόνα 1.14Η πορεία εργασίας Shotgunproteomics για την ταυτοποίηση πρωτεϊνικών θραυσμάτων (PFF) Α)προετοιμασία δείγματος, Β)χρωματογράφημα από nanoLCC₁₈, C)MS1 φάσμα μάζας με επισημασμένη σε μπλε πλαίσιο την κορυφή του προς ανάλυση πεπτιδίου, D)MS2 φάσμα μάζας και θραυσματοποίηση του επιλεγμένου πεπτιδίου,τα θραύσματα του N-τελικού άκρου καλούνται b-ions και του C-τελικού y-ions²⁹.

Πιο συγκεκριμένα επιλέγονται δύο συνθήκες με βάση το εκάστοτε ερώτημα που τίθεται προς απάντηση. Συλλέγονται τα βιολογικά δείγματα,τουλάχιστον δύο σε κάθε συνθήκη, για να μπορεί να γίνει στατιστική ανάλυση και να διαπιστωθεί η πιστότητα και η ακρίβεια της ανάλυσης. Ακολουθεί η λύση των κυττάρων και η πρωτεϊνική πέψη. Πολλές φορές η προαναφερθείσα προετοιμασία του δείγματος γίνεται με την χρήση πρωτοκόλλου FASP(Filteraidsamplepreparation),με στόχο την βελτιστοποίηση του δείγματος, την απομάκρυνση αλάτων απορρυπαντικών και πιθανών προσμίξεων(Βλ. § 2.2.7). Τα δείγματα αναλύονται στο nanoLC-ESI-MS/MS όπου γίνεται η ταυτοποίηση και η σχετική ποσοτικοποίηση (**εικόνες** 1.14 και 1.15)²⁷⁻²⁹.

Εικόνα 1.15ΣχηματικήαναπαράστασηLabelFreeQuantificationproteomics²⁹.

1.10 Στόχος εργασίας

Στόχος της παρούσας εργασίας είναι μέσω της LFQ συγκριτικής πρωτεομικής ανάλυσης να μελετηθεί το πρωτέωμα σε δύο συνθήκες: κατά το μέγιστο της παραγωγής σφαιριδίων στοιχειακού θείου(20h) και όταν ο οργανισμός καταναλώνει τα σφαιρίδια(40h). Το πρωτέωμα είναι το σύνολο των πρωτεϊνών ενός οργανισμού και μεταβάλλεται βάσει της φάσης ανάπτυξης του κυττάρου (χρόνο) και τις

συνθήκες ανάπτυξης, πράγμα που καθιστά δύσκολη την συλλογή και επεξεργασία των βιολογικών δειγμάτων. Ακολούθως, με τη χρήση βιο-πληροφορικών εργαλείων,προτείνεται ένα μοντέλο που περιλαμβάνει τις πρωτεΐνες που συμμετέχουν στο μεταβολισμό του θείου, την τοπολογία, τη λειτουργία και το πώς μεταβάλλεται η έκφρασή τους σε κάθε βιολογική συνθήκη.Τέλος, έγινε προσπάθεια χαρακτηρισμού του βιογενούς στοιχειακού θείου που απομονώθηκε σε διαφορετικές χρονικές στιγμές(10 hέως 50h)με MALDITOFMSκαι ηλεκτρονική μικροσκοπία σάρωσης (SEM).

2 Υλικά και Μέθοδοι

2.1 Υλικά

Τα αντιδραστήρια και οι διαλύτες που χρησιμοποιήθηκαν για την παρασκευή των διαλυμάτων κατά την διεξαγωγή των πειραμάτων, ήταν από τις εταιρείες SigmaAldrich, Fluka και Merck. Το νερό που χρησιμοποιήθηκε για την παρασκευή των διαλυμάτων ήταν απιονισμένο (dH₂O). Επίσης για την παρασκευή ορισμένων διαλυμάτων χρησιμοποιήθηκε υπερκάθαρο νερό (nanopure H₂O).

2.2 Μέθοδοι

2.2.1 Ανάπτυξη του βακτηρίου Chlorobaculum tepidum

Το θρεπτικό μέσο ανάπτυξης του βακτηρίου περιλαμβάνει τα αντιδραστήρια που παρουσιάζονται στον παρακάτω πίνακα. Οι ποσότητες που αναγράφονται αντιστοιχούν σε καλλιέργεια 1 L.

Αντιδραστήριο	Ποσότητα
KH ₂ PO ₄	0.50g
CH₃COONH₄	0.50g
NH₄Cl	0.40g
NaCl	0.40g
MgSO ₄ x 7H ₂ O	0.20g
CaCl ₂ x 2H ₂ O	50 mg
EDTA	12.5 mg
NaHCO ₃	2.0g
Μείγμα Ιχνοστοιχείων	1mL
Βιταμίνη Β ₁₂ (20mg/L)	2mL

Πίνακας 2.1. Αντιδραστήρια που απαιτούνται για καλλιέργεια 1 LτουChlorobaculumtepidum

Αναλυτικότερα, για την δημιουργία του μείγματος ιχνοστοιχείων, οι ποσότητες που αναγράφονται στον παρακάτω πίνακα διαλύονται σε 1Lαπιονισμένου νερού.

Αντιδραστήριο	Ποσότητα
EDTA	0.67g
FeCl ₃ x 6H ₂ O	0.2g
CoCl ₂ x 6H ₂ O	19mg
Na ₂ MoO ₄ x 2H ₂ O	19mg
ZnSO ₄ x 7H ₂ O	15mg
MnCl ₂ x 4H ₂ O	10mg
VSO ₄ x 2H ₂ O	3mg
NiCl ₂ x 6H ₂ O	2.5mg
CuCl ₂ x 2H ₂ O	1.7mg
H ₃ BO ₃	0.6mg
NaWO ₄ x 2H ₂ O	0.2mg
Na ₂ HSeO ₃	0.2mg
NaOH	έως pH = 8

Πίνακας 2.2. Αντιδραστήρια που απαιτούνται για 1 Lμείγματος ιχνοστοιχείων

Για την δημιουργία 1Lκαλλιέργιας οι παραπάνω ενώσεις του πίνακα 2.1 διαλύονται σε 1Lαπιονισμένου νερού και το διάλυμα αναδεύεται συνεχώς, έως ότου να μην υπάρχουν αδιάλυτα στερεά υπολείμματα. Ως πηγές θείου χρησιμοποιούνται:7.7mM Na₂S και 8mM Na₂S₂O₃ x 5H₂O.

Στη συνέχεια 800mL του διαλύματος αυτού, μεταφέρονται σε φιάλη καλλιέργειας 1L, και ακολουθεί αποστείρωση για 20 min στους 120°C. Έπειτα, αφού το διάλυμα αποκτήσει θερμοκρασία δωματίου, τοποθετείται στο στόμιο της φιάλης parafilm και πραγματοποιείται απαέρωση μέσω διαβίβασης αερίου CO₂ για 40 min. Η χρήση του parafilm γίνεται με σκοπό την αποφυγή εισχώρησης ατμοσφαιρικού οξυγόνου μετά την απαέρωση, καθώς όταν αυτή πραγματοποιηθεί η φιάλη σφραγίζεται με ειδικό καπάκι. Οι διαδικασίες που ακολουθούν μετά τη σφράγιση της φιάλης, πραγματοποιούνται με τη χρήση αποστειρωμένων συριγγών.

Στις περιπτώσεις όπου η επιθυμητή συνθήκη ανάπτυξης περιλαμβάνει το αντιδραστήριο Na₂S, τότε η προσθήκη του στο διάλυμα γίνεται σε αυτό το σημείο, σε συγκέντρωση 7.7mM, μεπροσαρμογήπορώδουςφίλτρου 0.2μm (GE HealthCare, Life Sciences, Whatman[™], Disposable filter

Device, 0.2μmpolyethersulfonemembrane) στη σύριγγα. Συνεχίζοντας, γίνεται ρύθμιση του pH σε 6.9 με τη χρήση αποστειρωμένου διαλύματος 10%H₂SO₄ και διαλύματος4MKOH.

Τέλος γίνεται προσθήκη 20mL βακτηρίων (προκαλλιέργεια) και η καλλιέργεια τοποθετείται στο σκοτάδι όλη την νύκτα, έτσι ώστε το περισσευούμενο οξυγόνο να καταναλωθεί απ' το H_2S , όπως προκύπτει από την παρακάτω αντίδραση.

$$2Na_2S + 3O_2 \rightarrow 2Na_2SO_3$$

Την επόμενη μέρα η καλλιέργεια τοποθετείται σε υδατόλουτρο θερμοκρασίας 47-48°C, υπό πλήρη φωτισμό για μία περίπου μέρα.⁸ Η πλήρης ανάπτυξη των βακτηρίων διαπιστώνεται από την αλλαγή του χρώματος του περιεχομένου της φιάλης από ανοικτό πράσινο σε σκούρο πράσινο. Η φιάλη απομακρύνεται από το υδατόλουτρο και φυλάσσεται στους 4°C. Η συλλογή των κυττάρων γίνεται με φυγοκέντρηση στις 6000xgγια 20minκαι φυλάσσονται στους -20°C για περεταίρω επεξεργασία.

2.2.2 Επεξεργασία καλλιεργιών για την μελέτη του ρυθμού ανάπτυξης του βακτηρίου Chlorobaculum tepidum

Αρχικά 1 mLκαλλιέργειας φυγοκεντρείται στα 13000xg για 15 min. Το υπερκείμενο που προκύπτει συλλέγεται με σκοπό την περαιτέρω ανάλυση του με ιοντική χρωματογραφία. Το ίζημα που περιέχει βακτηριακά κύτταρα και στοιχειακό θείο, εκχυλίζεται με 1 mLμεθανόλης99,9%³⁰ και πραγματοποιείται μια δεύτερη φυγοκέντρηση στα 13000xg για 15 min. Το υπερκείμενο συλλέγεταιμε σκοπό την περαιτέρω ανάλυσή του με φασματοφωτομετρία απορρόφησης ορατού – υπεριώδους (UV-Vis).

Στη συγκεκριμένη εργασία γίνεται ανίχνευση και μέτρηση της συγκέντρωσης των θειϊκών ιόντων $(SO_4^{2^-})$ της υγρής καλλιέργεια του θειοβακτηρίου*Chlorobaculumtepidum* και γι' αυτό το λόγο χρησιμοποιείται ανιοντική χρωματογραφία.Στην ανιοντική χρωματογραφία, η επιφάνεια της στατικής φάσης είναι θετικά φορτισμένη και αναπτύσσει ισχυρές αλληλεπιδράσεις με τα αρνητικά φορτισμένα ιόντα του αναλύτη. Τα $-N(CH_3)_3^+OH^-$ και $-NH_3^+OH^-$ χρησιμοποιούνται σαν ισχυρός και σαν ασθενής ανιοανταλλάκτης αντίστοιχα.Το σύστημα της χρωματογρφίαςιοντοανταλλαγής που χρησιμοποιήθηκε στην παρούσα εργασία αποτελείται από τα εξής βασικά τμήματα και χαρακτηριστικά:

• Κινητή φάση: χρησιμοποιούνται άλατα Να ασθενών οξέων αφού ο καταστολέας τα μετατρέπει σε ουδέτερα ελεύθερα οξέα. Η πιο συνηθισμένη κινητή φάση για το διαχωρισμό ανιόντων είναι το ρυθμιστικό διάλυμα ανθρακικών ιόντων.

• Στατική φάση: η στατική φάση που βρίσκεται μέσα στη στήλη διαχωρισμού, αποτελείται απ' το υλικό πλήρωσής της, και συνήθως είναι ρητίνες ιονανταλλαγής. Οι ρητίνες ιονανταλλαγής αποτελούνται από ένα μη διαλυτό οργανικό ή ανόργανο υπόστρωμα, τις δραστικές ιονανταλλακτικές ομάδες (functionalgroups) και τα αντισταθμιστικά ιόντα αντιθέτου φορτίου προς τις ιονανταλλακτικές ομάδες (counterions) που κινούνται ελεύθερα μέσα στον ιονανταλλάκτη. Σαν υπόστρωμα χρησιμοποιούνται πολυμερή τα οποία σχηματίζονται με τον συμπολυμερισμόστυρενίου και διβινυλοβενζολίου το συμπολυμερές αυτό είναι σταθερό σε pH= 0-14, επιτρέποντας τη μετατροπή μη ιοντικών ενώσεων σε ιοντικές έτσι ώστε να μπορούν να αναλυθούν με ιοντική χρωματογραφία. Σαν δραστική ομάδα στην ανιοντική χρωματογραφία χρησιμοποιείται το τεταρτοταγές αμμώνιο $-N^+(R)_3$.

• Αντλία: οι αντλίες μπορεί να είναι μονού ή διπλού εμβόλου, ισοκρατικές ή βαθμιδωτές. Στη συγκεκριμένη περίπτωση χρησιμοποιήθηκε η αντλία DionexGP50 gradientpump.

Ανιχνευτής: χρησιμοποιείται αγωγιμομετρικός ανιχνευτής της εταιρείας Dionex CD20, ο οποίος αποκρίνεται στη συγκέντρωση του προσδιοριζόμενου ιόντος, ενώ η περιοχή γραμμικότητάς του καλύπτει 5 τάξεις μεγέθους συγκεντρώσεων γι' αυτό και μπορεί να χρησιμοποιηθεί για ποσοτική ανάλυση.

- Στήλη: η στήλη που χρησιμοποιήθηκε είναι DionexAS4A-SC 4mm.
- Προστήλη: η προστήλη που χρησιμοποιήθηκε είναι DionexAG4A-SC 4mm.
- Καταστολέας: ο καταστολέας που χρησιμοποιήθηκε είναι DionexASRSULTRAII 4mm
- Σύστημα εισαγωγής δείγματος: MarathonAutosampler

Διάλυμα έκλουσης: χρησιμοποιήθηκε μίγμα όξινου ανθρακικού νατρίου/ανθρακικού νατρίου (NaHCO₃/Na₂CO₃) 20M, μαζί με νερό σε αναλογία 50% απ' το καθένα.

• Ροή: 1,5 mL/min

Πριν ξεκινήσει η ανάλυση των δειγμάτων, πραγματοποιείται διαβίβαση He στο διάλυμα έκλουσης και γίνεται απαέρωση του συστήματος, και στη συνέχεια αφού σταματήσει η διαβίβαση He, απομονώνεται το σύστημα και αφήνεται να τρέχει ο εκλουτής, χωρίς να περνάει από τη στήλη, ώστε να απομακρυνθούν τυχόν φυσαλίδες. Κατά τη διάρκεια της ανάλυσης, δεν πρέπει να υπάρχουν καθόλου φυσαλίδες, γιατί θα προκαλέσουν φραγή ή άλλη φθορά στο όλο σύστημα.

2.2.3 Απομόνωση και χαρακτηρισμός βιογενικών σφαιριδίων στοιχειακού Θείου με MALDI-TOF και SEM

Η καλλιέργεια του βακτηρίουφυγοκεντρείται σε 6000xg για 20min. Αποτέλεσμα αυτής της φυγοκέντρησης είναι η κατακρήμνιση των βακτηριακών κυττάρων,αλλά και του στοιχειακού θείου που έχει παραχθεί. Το υπερκείμενο διάλυμα που προκύπτει αποτελείται από το θρεπτικό μέσο ανάπτυξης και τους μεταβολίτες του βακτηρίου.

Σε 1mLτου υπερκείμενου ομογενοποιούνται τα κύτταρα και το θείο με τη χρήση ενός πινέλου. Στη συνέχεια επιστοιβάζονται σε διάλυμα ζάχαρης 2M (10-15mL) και πραγματοποιείται φυγοκέντρηση στις 4000xgγια 10min. Τα σφαιρίδια του θείου δημιουργούν ίζημα ενώ τα κύτταρα μένουν στο υπερκείμενο. Η διαδικασία αυτή επαναλαμβάνεται τουλάχιστον τρεις φορές. Ακολουθεί μια πλύση με TTBufferγια 5min στις 13000xg, το υπερκείμενο απορρίπτεται¹³. Το απομονωμένο στερεό, συλλέγεται με nanopurewater και αφήνεται να στεγνώσει σε θερμοκρασία περιβάλλοντος για να μελετηθεί με SEMκαι LDI-TOF.

Για το SEMχρησιμοποιήθηκε αποστειρωμένη σπάτουλα μεταλλική για να απλωθεί το αποξειραμένο δείγμα πάνω σε carbontape. Στην συνέχεια παρατηρήθηκε με SEM (μοντέλο: JEOL-JSM-6390 LV) στα 20kVκαι 2000-10000xμεγέθυνση. Τέλος για την ανάλυση με LDI-TOF(μοντέλο: MALDITOFULTRAFLEXBRUKERDALTONIKS) 0.01g δείγματος αφήνεται όλη την νύκτα σε 99,9% μεθανόλη και παρατηρείται την επομένη.

2.2.4 Προετοιμασία δείγματος με Filter Aid Sample Preparation (FASP) για nano-LC-ESI-MS/MS

Συλλέχθηκαν κύτταρα από καλλιέργεια 500mLκαι εναποτίθενται πάνω σε κατάλληλο φίλτρο (FASP) που προσαρμόζεται σε eppendorf.Προστίθενται 200μLUAδιαλύματος (6.5M ουρία σε ρυθμιστικό διάλυμα Tris/HCl 100 mM, pH 8.5) στο φίλτρο και φυγοκεντρείται 14000xgγια 20min. Το προηγούμενο βήμα επαναλαμβάνεται 2 φορές και το έκλουσμα του φίλτρου απορρίπτεται. Στην συνέχεια το δείγμα επωάζεται για 30min, σε 100μL UA διάλυμα με 10mM dithiothreitol (DTT) υπό ανάδευση, στους 25°C και στο σκοτάδι.Ακολουθείφυγοκέντρηση στα 14000xgγια 20min, ενώ το έκλουσμα απορρίπτεται. Ακολούθως τοποθετούνται στο φίλτρο 100μLUA διαλύματοςμε 95mMiodoacetamide (IAA) και επωάζεται στους 25°Cγια 30min, υπό ανάδευση. Ακολουθεί φυγοκέντρηση στα 14000xgγια 20min, ενώ το έκλουσμααπορρίπτεται. Το φίλτρο πλένεται με 100μLUBδιαλύματος (6.5Moupίασε ρυθμιστικό διάλυμα Tris/HCl 100 mM, pH 8) και φυγοκεντρείται 14000xg για 20 min. Το φίλτρο επωάζεται με 40μLUBδιαλύματος, που περιέχει Lys-C σε αναλογία 1:50 στο σκοτάδι σε θερμοκρασία δωματίου μέχρι το επόμενο πρωί.Το φίλτρο μεταφέρεται σε νέο eppendorf και προστίθενται 100μL ammoniumbisulphate (ABS) διαλύματος, με θρυψίνησε αναλογία 1:100 και επωάζεται όλο το βράδυ στο σκοτάδι και στους 25°C. Ακολουθεί φυγοκέντρηση στα 14000xg για 15min. Ύστερα προστίθεται υδατικό διάλυμα 50μL 0.5 M NaCl και φυγοκεντρείται στα 14000xg για 15min. Το διήθημα προστίθεται trifluoroacetic acid (TFA) σε τελική συγκέντρωση 0,1% (v/v) και αφαλατώνεται με Zip-Tip που περιέχει C-18 (bedmaterial 0.2-0.6μL). Τέλος, ταπεπτίδιασυλλέγονται, ξηραίνονται με SpeedVac φυγοκεντρητικό εξατμηστήρα (Savant SC100) και φυλάσσονται στους -80°Cγια περαιτέρω ανάλυση^{31,32}.

Εικόνα 2.1FASPπρωτόκολλο Α. Λύση κυττάρων αποδιάταξη πρωτεϊνών και λύση δισουλφιδικών δεσμών, Β. Ακετυλίωση και καθαρισμός ,C. Πρωτεόλυση³¹.

2.3 Αναλυτικές μέθοδοι

2.3.1 Φασματοφωτομετρία Υπεριώδους- Ορατού (UV-Vis)

Αρχή της μεθόδου αποτελεί ο νόμος του Beer-Lampert. Με βάση αυτόν, μπορεί να γίνει ποσοτικός προσδιορισμός συγκεκριμένων ενώσεων. Ο νόμος αυτός προϋποθέτει:

- Η ακτινοβολία να είναι μονοχρωματική
- Μοναδικό φαινόμενο η απορρόφηση
- Ομοιόμορφος όγκος του διαλύματος
- Κάθε σωματίδιο να απορροφά ανεξάρτητα και να μην αλληλεπιδράμε τα άλλα σωματίδια του διαλύματος

Αν ισχύουν τα παραπάνω τότε η απορρόφηση είναι ευθέως ανάλογη της συγκέντρωσης του αναλύτη, σύμφωνα με την εξίσωση:

$$A = -logT = log\frac{Po}{P} = \varepsilon bc$$

Όπου:P₀, η ακτινοβολούμενη ισχύςP, η διερχόμενη ακτινοβολίαΑ, η απορρόφηση log(P₀/P)T, η διαπερατότητα (P/P₀)b, το μήκος διαδρομής της ακτινοβολίαςc, η συγκέντρωση της ουσίας που απορροφάει ε, η γραμμομοριακή απορροφητικότητα. Η εξίσωση αυτή αποτελεί τη μαθηματική έκφραση του νόμου του Beer-Lampert.

Το φασματοφωτόμετρο που χρησιμοποιήθηκε για τη διεξαγωγή των πειραματικών μετρήσεων ήταν διπλής δέσμης (PerkinElmerLamda 20). Η διαφορά των φασματοφωτόμετρων διπλής δέσμης και των φασματοφωτόμετρων μονής δέσμης είναι ότι στα πρώτα, η ακτινοβολία διέρχεται μέσω του δείγματος και του αναφορικού (λευκού), κατευθυνόμενο από ένα περιστρεφόμενο κάτοπτρο. Όταν η ακτινοβολία διέρχεται μέσω του δείγματος, ο ανιχνευτής μετρά την ένταση της διερχόμενης ακτινοβολίας Ρ. Όταν το περιστροφικό κάτοπτρο κατευθύνει την ακτινοβολία προς την κυψελίδα αναφοράς, ο ανιχνευτής μετράει την διερχόμενη ακτινοβολία Ρ₀. Έτσι συγκρίνεται συνεχώς η Ρ και η P₀ ακτινοβολία με αποτέλεσμα να πραγματοποιείται συνεχής και αυτόματη διόρθωση για μεταβολές στην ένταση της πηγής ακτινοβολίας που χρησιμοποιείται, και την απόκριση του ανιχνευτή ως προς το χρόνο και το μήκος κύματος³³.

Πηγή ακτινοβολίας για την περιοχή του υπεριώδους (190-400 nm) αποτέλεσε μια λυχνία δευτερίου, ενώγια την περιοχή του ορατού (400-800 nm) μια λυχνία βολφραμίου. Οι λυχνίες αυτές χρησιμοποιήθηκαν με μεταξύ τους εναλλαγή, με βάση το μήκος κύματος που χρησιμοποιούταν κάθε φορά.

Για εργασία στην περιοχή του υπεριώδους, απαιτούνται κυψελίδες από χαλαζία ή τηγμένηπυριτία, ενώ για την περιοχή του ορατού, μπορούν να χρησιμοποιηθούν και πλαστικές κυψελίδες ή απλή πυριτική ύαλος. Στη συγκεκριμένη εργασία χρησιμοποιήθηκε κυψελίδα χαλαζία²¹.

Η μέθοδος χρησιμοποιήθηκε για τον προσδιορισμό της συγκέντρωσης της βακτηριοχλωροφύλλης Cκαι του στοιχειακού θείου (μεταβολικό ενδιάμεσο που παράγεται από τον οργανισμό). Έτσι μελετήθηκε ο ρυθμός ανάπτυξης του βακτηρίου.

Τέλος ποσοτικοποιήθηκε η πρωτεϊνική συγκέντρωση με την μέθοδο Bradford και BCA. Για την κατασκευή την πρότυπης καμπύλης χρησιμοποιήθηκε ως πρότυπη πρωτεΐνη η BSA (αλβουμίνη από ορό βοδιού). Αρχικά λαμβάνονται εις διπλούν 1-10 μL BSA 1 mg/mL. Το τυφλό θα περιέχει μόνο 10μL ρυθμιστικού. Σε αυτά προστίθεται 200μLαντιδραστηρίου Bradford ή BCAκαι ύστερα από ισχυρή ανάδευση (vortex) τα διαλύματα αφήνονται σε ηρεμία για 5min και έπειτα μετράται η απορρόφηση στα 595nm³⁴για την Bradfordενώ για την BCAχρειάζεται μια επιπλέον επώαση στους 37°Cγια 30 minκαι πραγματοποιείται μέτρηση στα 562nm.

2.3.2 Υγρή χρωματογραφία υψηλής απόδοσης συζευγμένη με σύστημα ηλεκτροψεκασμού και φασματογράφο μάζας nano-LC-ESI-MS/MS

Για την nano-LC-ESI-MS/MS ένεση, τα ξηρά δείγματα διαλύονται σε διάλυμα 5% ακετονιτρυλίουμε 0.1% μυρμηκικού οξέος και εισάγονται σε στήλη χρωματογραφίας αντιστροφής φάσης Dionex U3000 RSLCnano(trappingcolumn: particlesize 3mm, C18, L=20mm; analyticalcolumn: particle<2mm, C18, L=50cm, PepMap, Dionex/ThermoFischer Scientific). Τα πεπτίδια εκλούονται από τη στήλη με βαθμιδωτή έκλουση με τα διαλύματα A (νερό με 5% (v/v)ακετονιτρύλιο και 0.1% μυρμηκικό οξύ) και B (20% (v/v)νερό, 80% (v/v)ακετονιτρύλιο και 0.1% μυρμηκικό οξύ). Τα διαλύματα παρασκευάστηκαν με αντιδραστήρια grade από την Fluka. Η βαθμιδωτή έκλουση πραγματοποιήθηκε, με διαβάθμηση της ποσότητας του διαλύματος B από 4% μέχρι 48% και ταχύτητα ροής 300 nL/min. ΤαεκλουόμεναπεπτίδιαδιοχετεύονταικατευθείανσεένασύστημαιοντισμούThermonanoFlexESIsour ceκαιαναλύθηκανμετοφασματογράφομάζαςThermo "Orbitrap Elite". Τα φάσματα μάζας εύρους: 350-1600 m/z, συλλέχθηκαν από πρόγραμμα του κατασκευαστή με data dependent acquisition και ρυθμίσεις: TOP15, "FT-IT"-mode, MS resolution120k, MS²injectiontime: 50ms. Κάθε δείγμα έτρεξε δύο φορές και χρησιμοποιήθηκαν τρία βιολογικά δείγματα για κάθε συνθήκη.

2.3.3 Βιοπληροφορική και Στατιστική ανάλυση

Τα δεδομένα από το nanoLCMS/MSφορτώθηκαν στο MaxQuant(version1.5.3.8) καιαναλύθηκαν με τον αλγόρυθμοAndromedasearchengine. Συνοπτικά, τα φάσματα αντιστοιχηθήκαν με δεδομένα της NCBI, βάση τα γονιδιώματα του *Chlorobaculumtepidum*(Ημερομηνία: 12/2019).Η παράμετρος του masstolerance των MSτέθηκε 20ppm,ενώ των MS/MS 0.5Da. Το ένζυμο για τηvinsilicoπέψη, είναι η θρυψίνη. Ακόμα ως variablemodificationτέθηκαν, η οξείδωση των κατάλοιπων μεθειονίνης (+15,995) και η ακετυλίωση των αμινόξυ- τελικών άκρων (+42,011) ενώ σαν fixedmodificationεπιλέχθηκε η καρβοξυαμιδομεθυλίωση (+57,021). Το FalseDiscoveryrate (FDR) των πρωτεϊνών και των πεπτιδίων τέθηκε 0,01.Η ποσοτικοποίηση πραγματοποιήθηκε με τον αλγόριθμο MaxLFQ εφαρμογή MaxQuant όπως περιγράφεταιστη βιβλιογραφία.^{35,36}

Από το MaxQuantπροέκυψε ένα αρχείο (proteinsgroups) με τις ταυτοποιημένεςπρωτεΐνες και τα δεδομένα που προκύπτουν για κάθε μια από αυτές. Στην συνέχεια το αρχείο φορτώθηκε στο Perseus(version 1.5.3.8 και 1.6.5.0), όπου πραγματοποιήθηκε στατιστική ανάλυση των δεδομένων. Πιο συγκεκριμένα,οι πρωτεΐνες που ταυτοποιήθηκαν ως contaminant, reverse και identifiedbyonesidemodificationδε χρησιμοποιήθηκαν. Ακολούθησε η μετατροπή των εντάσεων των πρωτεϊνών σε λογαριθμική κλίμακα. Για την σύγκριση των πρωτεϊνικών δειγμάτων έγινε ομαδοποίηση σε τεχνικά(multipleruns) και βιολογικά(συνθήκη) με βάση το εκάστοτε πείραμα. Πραγματοποιήθηκε t-test με την μέθοδο του permutationbasedFDR. Τέλος το FDRκαι το s_oγια το κάθε πείραμα και κυμαίνονται στα εύρη: 0,01-0,05 και 0,1 -0,9 αντίστοιχα^{36,37}.Τέλος χρησιμοποιήθηκε το ελεύθερο λογισμικό Cytoscape 3.8.0(<u>www.cytoscape.org</u>) για την μελέτη των αλληλεπιδράσεων των ταυτοποιημένων βιομορίων.

3. Αποτελέσματα- Συζήτηση

3.1 Ανάπτυξη του Chlorobaculumtepidum

Σε ένα κλειστό σύστημα καλλιέργειας, η καμπύλη ανάπτυξης μπορεί να χωριστεί σε τέσσερεις φάσεις: την λανθάνουσα, την εκθετική, την στατική και την φάση θανάτου. Πιο συγκεκριμένα κατά τον ενοφθαλμισμό ενός βακτηριακού πληθυσμού σε φρέσκο θρεπτικό μέσο, υπάρχει μια περίοδος που δεν παρατηρείται ανάπτυξη.Η περίοδος αυτή διαφέρει ανάλογα το θρεπτικό και τις περιβαλλοντικές συνθήκες της καλλιέργειας και ονομάζεται λανθάνουσα φάση. Ακολουθεί η εκθετική φάση ανάπτυξης που οφείλεται στη ραγδαία κυτταρική διαίρεση καθώς τα κύτταρα είναι υγιή και έχουν προσαρμοστεί στο καινούριο μέσο. Ύστερα η καλλιέργεια μπαίνει στην στατική φάση που ο πληθυσμός παραμένει σταθερός, λόγω εξάντλησης κάποιου θρεπτικού συστατικού, είτε λόγω συσσώρευσης κάποιου κατάλοιπου του μεταβολισμού του κύτταρου που δρα ανασταλτικά στην ανάπτυξη, είτε και τα δύο. Τέλος,αν η επώαση συνεχιστεί, και αφού φτάσει η καλλιέργεια στην στατική φάση, ο πληθυσμός των κυττάρων αρχίζει να μειώνεται και η καλλιέργεια μπαίνει στη φάση θανάτου.

Εικόνα 3.2 Χαρακτηριστικό χρώμα καλλιέργειας στις φάσεις Α: 1hPI, Β: 20hPIκαι C: 40hPI.

Η ανάπτυξη του βακτηρίου ελέγχτηκε μετρώντας την συγκέντρωση BChlc στις καλλιέργειες με πηγές θείου τα θειούχα 7.7mMκαι θειοθειικά 8mM άλατα (Pf-7 medium, **βλ.§2.2.1**). Τα δείγματα συλλέχτηκαν σε τριπλέτες (τεχνικές επαναλλήψεις), σε διαφορετικές χρονικές στιγμές, κατά την επώαση της καλλιέργειας.

Στην παρούσα εργασία συλλέχθηκαν μετρήσεις για την μελέτη της ανάπτυξης του βακτηρίου μέχρι την στατική φάση ανάπτυξης. Το πρώτο πράγμα που μπορεί κανείς να παρατηρήσει είναι η μεταβολή του χρώματος της καλλιέργειας. Πιο συγκεκριμένα, στην **εικόνα 3.2** απεικονίζεται η καλλιέργεια.Μία ώραμετά τον εβολιασμόεμφανίζει ένα υποκίτρινο χρώμα, στις 20hένα σκούρο κίτρινο χρώμα και στις 40hένα σκούρο πράσινο χρώμα. Αποτέλεσμα της οξείδωσης των πηγών θείου είναι η δημιουργία ολιγοσουλφιδίων, τα οποία δρουν ως υπόστρωμα για την παραγωγή εξωκυττάριων σφαιριδίων στοιχειακού θείου. Στην **εικόνα 3.3** φαίνεται ότι η καλλιέργεια ύστερα από επώαση 20h έχει παράξει την μέγιστη ποσότητα σφαιριδίων στοιχειακού θείου. Ενώ, μετά από 40h τα κύτταρα φαίνεται να

καταναλώνουν τα σφαιρίδια που είχαν ήδη παράξει. Τέλος, μετρήθηκε και η συγκέντρωση των θειικών ιόντων (**εικόνα 3.3 C)** που αποτελούν τον τελικό δέκτη ηλεκτρονίων κατά τον μεταβολισμό του θείου στο συγκεκριμένο βακτήριο. Συνεπώς με βάση τα δεδομένα αυτά, προκύπτουν τα εξής σχετικά όρια: 0-10h διαρκεί η λανθάνουσα φάση, 10-25/30hη εκθετική και άνω των 30h η στατική.

Εικόνα 3.3 Α) Καμπύλη ανάπτυξης βάση τη συγκέντρωση βακτηριοχλωροφύληςc. Β) Καμπύλη που δείχνει την μεταβολή της συγκέντρωσης του στοιχειακού θείου στο χρόνο. C) Καμπύλη που δείχνει την μεταβολή της συγκέντρωσης θειικών ιόντων συναρτήσει του χρόνου.

3.2 Χαρακτηρισμός σφαιριδίων στοιχειακού θείου

Τα σφαιρίδια στοιχειακού θείου απομονώθηκαν βάσει του πρωτοκόλλου στην παράγραφο **§2.2.3** σε διαφορετικές χρονικές στιγμές, πιο συγκεκριμένα στις 10, 20, 30, 40 και 50h. Από τις εικόνες της ηλεκτρονική μικροσκοπίας σάρωσης (SEM) παρατηρήθηκε ότι η μορφολογία των σφαιριδίων στοιχειακού θείου διαφέρει βάσει την χρονική στιγμή που έχει απομονωθεί το δείγμα. Πιο συγκεκριμένα, μέχρι τις 20h επώασης παρατηρούνται λείες και συμπαγείς σφαίρες διαφόρων μεγεθών. Το μέγεθος των κυττάρων του στελέχους*C. tepidum*κυμαίνεται στο εύρος 1.5-1.7μm, βάσει μελετών που πραγματοποιήθηκαν σε Cryo-EM^{38,39}. Ενώ τα σφαιρίδια που απομονώθηκαν μετά τις 40h επώασης φαίνονται μικρότερα και η επιφάνειά τους δεν ήταν πλέον λεία. Σε κάθε περίπτωση το μέγεθος των σφαιριδίων κυμαινεται από2-7 μm¹⁵. Συνεπώς πιθανόν ο οργανισμός καταναλώνει το διαθέσιμο ηλεκτρονιοδότη, όταν δεν υπάρχει άλλη διαθέσιμη πηγή¹³.

Εικόνα 3.4 A) σφαιρίδια στοιχειακού θείου απομονωμένα ύστερα από 20h επώασης. B) σφαιρίδια στοιχειακού θείου απομονωμένα ύστερα από 40h επώασης (η μπάρα αντιπροσωπεύει 2μm).

Η στοιχειακή ανάλυση EDS (electrondispersiveX-rayspectroscopy) των σφαιριδίων στο SEM αποδεικνύει την καλή ποιότητα των δειγμάτων, όπου 94-96% αποτελούσε το S⁰. Επιπλέον φάνηκαν μικρά ποσοστά οξυγόνου και άνθρακα, όμως δεν είναι σαφής η προέλευση τους, διότι το δείγμα παρατηρείται πάνω σε carbontape και η προετοιμασία του πραγματοποιήθηκε σε οξυγονικές συνθήκες. Επιπλέον, η απουσία αζώτου και τα μικρά ποσοστά οξυγόνου και άνθρακα αποτελούν μια ένδειξη απουσίας πρωτεϊνών πάνω στα σφαιρίδια ύστερα από την απομόνωση¹³.

Εικόνα 3.5 Φάσματα στοιχειακής ανάλυσης EDS απομονωμένων σφαιριδίων βιογενούς θείου A)20h και B)40h (χαρακτηριστική ακτινοβολία τουστοιχειακού θείου ενέργειας 2,309keVτης μετάπτωσης Κ_α).
Τα δείγματα που αναλύθηκαν με SEM και EDS αναλύθηκαν και με φασματομετρία μάζας LDI-TOF (LaserDesorptionIonization). Σε πρόσφατη δημοσίευση αναφέρεται ότι το θείο παράγει μια σειρά από ιόντα θετικά και αρνητικά βάση των συνθηκών ιοντισμού με ακτινοβόληση από UVIaser 337nm απουσία μήτρας⁴⁰. Στην **εικόνα 3.6** φαίνονται τα φάσματα μάζας των δειγμάτων που απομονώθηκαν ύστερα από 20 και 40 h επώασης, τα υπόλοιπα δείγματα είχαν πανομοιότυπο μοτίβο. Τα φάσματα που παρουσιάζονται είναι του εύρους 0-500m/z και προέρχονται από την εναπόθεση του μεθανολικού εναιωρήματος πάνω στο στόχο (target). Από την ανάλυση των φασμάτων βρέθηκαν οι κορυφές με m/z πολλαπλάσιο του 32(ατομικό βάρος του θείου) και τα τέσσερα ισότοπα του θείου: ³²S (94.93%), ³³S (0.76%), ³⁴S (4.29%), and³⁶S (0.02%) (εικόνα ΙΙ, Παράρτημα).Με βάσει αυτά τα δεδομένα ταυτοποιήθηκαν τα ιόντα από S₅⁺εωςS₁₂⁺, ενώ κορυφές χαμηλού μοριακού βάρους όπως 32 και 64 μπορούν να παρατηρηθούν με τη χρήση μεγαλύτερου ποσοστού laserfluence, που πιθανόν να οδηγήσει σε μειωμένη ευκρίνεια, ένταση και ποιότητα των κορυφών των πιο άφθονων ιόντων^{41,40}.

Εικόνα 3.6 Φάσματα μάζας σφαιριδίων βιογενούς θείου Α) 20h(μπλε φάσμα) B) 40h (κόκκινο φάσμα)3.3 LabelFreeQuantification (LFQ) Πρωτεομικήανάλυσητου*C. Tepidum*για τη διαλεύκανση του μεταβολισμού του θείο

Για την πρωτεωμική ανάλυση συλλέχθηκαν κύτταρα σε δύο κομβικά σημεία για το μεταβολισμό του θείου με βάσει τα παραπάνω δεδομένα. Πιο συγκεκριμμένασυλλέγχθησαν3 δείγματα στις 20hPl(postincubation: μετά την επώαση) όπου παρατηρείται η μέγιστη παραγωγή σφαιριδίων στοιχειακού θείου και 3 στις 40hPlόπου η συγκέντρωση θείου και Bchlcπαραμένουν σχετικά σταθερές (**εικόνα 3.8**).

Από τις 2245 πρωτεΐνες του οργανισμού ταυτοποιήθηκαν1430 (63% του θεωρητικού πρωτεόματος) σε τουλάχιστον ένα δείγμα. Στην συνέχεια, απορρίφθηκανοι πρωτεΐνες που ταυτοποιήθηκαν σε λιγότερο από δύο τεχνικά ενός βιολογικού με λιγότερα από 4 μοναδικά πεπτίδια(uniquepeptides), με βάση αυτή την συνθήκη ο αριθμός τον ταυτοποιημένων πρωτεϊνών μειώνεταιστις 1108. Τέλος, για να μεγιστοποιηθεί η αξιοπιστία των αποτελεσμάτων και των στατιστικών testπου ακολουθούν επιλέχθηκαν οι πρωτεΐνες που ταυτοποήθηκαν σε τουλάχιστον για τα test είναι 994.Η μέθοδος FASPσε συνδυασμό με nLC-ESI/MS/MSεπέτρεψε την ταυτοποίηση περισσότερων πρωτεϊνών σε σχέση με τις χρονοβόρες τεχνικές με διαχωρισμό των πρωτεϊνών σε πηκτή (gel-based).

Εικόνα 3.8 Αριθμός ταυτοποιημένων πρωτεϊνών με σφάλματα για το κάθε βιολογικό δείγμα Α και οι μέσοι όροι της κάθε συνθήκης Β.

Σε πρόσφατη δημοσίευση η πρωτεομική ανάλυση με επισήμανση των δειγμάτων επέτρεψε την ποσοτικοποίηση 640 πρωτεϊνών ενώ, στην ίδια δημοσίευση, τα μη επισημασμένα δείγματα με τη χρήση του LFQ αλγόριθμουταυτοποιήθηκαν970 πρωτεΐνες. Ακόμα σε παλαιότερη δημοσίευσηταυτοποιήθηκαν με παρόμοια τακτική 621 πρωτεΐνες του *C.tepidum*⁴². Στην παρούσα μελέτη οι 994 πρωτεΐνες χρησιμοποιήθηκαν για την ανάλυση, τη σχετική ποσοτικοποίησηκαι την σύγκριση των δύο πρωτεωμάτων (**εικόνα 3.9**). Είναι εμφανές το πλεονέκτημα του LFQ πρωτοκόλλου που παρακάμπτεται η επισύναψη των δειγμάτων με κάποια αντίδραση που μειώνει τον αριθμό των αξιόπιστων ταυτοποιήσεων.

Εικόνα 3.9Διάγραμμα vennμεταξύ του συνόλου των πρωτεϊνών 20 και 40h

Πραγματοποιήθηκε λειτουργική ανάλυση των παραπάνω πρωτεϊνών με βάση τους GOtermsκάθε πρωτεΐνης από την Uniprot. Από την ανάλυση αυτή προκύπτουν 17 λειτουργικές κατηγορίες. Σε αυτές περιλαμβάνονται και οι απαραίτητες λειτουργίες για την βιωσιμότητα του κυττάρου. Πιοσυγκεκριμένα: μεταφοράκαιμεταβολισμόςαμινοξέων, παραγωγή και μετατροπής ενέργειας, μεταβολισμό και μεταφορά νουκλεϊκών οξέων, μετάφρασηκαιμεταβολισμός υδρογονανθράκων(εικόνα 3.10).

Εικόνα

3.10Λειτουργική ανάλυση βάση των όρων GO(GOBP: GeneOntologyBiologicalProcess) των 994 ταυτοποιημένων πρωτεϊνών.

Ακολούθησε η σχετική ποσοτικοποίηση βάσει των εντάσεων των μοναδικών πεπτιδίων κάθε πρωτεΐνης στο εκάστοτε βιολογικό δείγμα με τον αλγόριθμοLFQ. Τα αποτελέσματα παρουσιάζονται με την μορφή δεντροδιαγράμματος (Hierachicalclustering-heatmap) στην εικόνα **3.11B**, όπου φαίνεται η υψηλή συσχέτιση που περιμέναμε μεταξύ των ίδιων βιολογικών δειγμάτων (τριπλέτες για κάθε συνθήκη). Για τον υπολογισμό των στατιστικά σημαντικών πρωτεϊνών, αλλά και της μεταβολής της έκφρασής τους μεταξύ των βιολογικών δειγμάτων πραγματοποιήθηκε t-testμε τη μέθοδο permutationbasedFDR μεταξύ των πρωτεϊνών που ταυτοποιήθηκαν στις 20h, έναντι ατών που ταυτοποιήθηκαν στις 40h. Από αυτό προκύπτουν 130 στατιστικά σημαντικές πρωτεΐνες μεFDR: 0,03 καιS₀: 0,3, ενώ τα συγκεντρωτικά αποτελέσματα φαίνονται στο volcanoplotστην **εικόνα 3.11A**.

Εικόνα 3.11A.Volcanoplot, που προέκυψε από τot-test, με κόκκινο στα δεξιά, βρίσκονται οι στατιστικά σημαντικές πρωτεΐνες που είναι υπερεκφρασμένες στις 20h, ενώ στα αριστερά, με σκούρο πράσινο οι υπερεκφρασμένες στις 40h. **Β.**Δεντροδιάγραμμα-heatmap μεταξύ των βιολογικών δειγμάτων σε κάθε συνθήκη το κόκκινο χρώμα δηλώνει υπερέκφραση και το πράσινο υποέκφραση, το μαύρο δηλώνει μειωμένη μεταβολή στην έκφραση μεταξύ των δύο συνθηκών.

Αυξημένη αφθονία στις 20hPlβρέθηκαν οι πρωτεΐνες:του μεταβολισμού του θείου (Dsrsystem, dsrEFH), της βιοσύνθεσης της βακτηριοχλωροφύλλης (BchE, Q93SV2) και πρωτεΐνες της μεμβράνης των χλωροσωμάτων (csmH, csmC). Οι δύο τελευταίες ομάδες πρωτεϊνών ήταν αναμενόμενο να είναι υπερεκφρασέμενες στις 20h, καθώς τα επίπεδα βακτηριοχλωροφύλλης C ήταν αυξημένα. Απεναντίας μειωμένη αφθονία στις 20hέχουν οι πρωτείνες μεταφοράς ηλεκτρονίων (δύο κυτοχρώματα και το κυτόχρωμα c-555 που βρίσκεται προσδεμένο στην μεμβράνη).

Από τις 57 πρωτεΐνες, που προτείνεται από τη βιβλιογραφία⁴³, ότι σχετίζονται με το μεταβολισμό του θείου, ταυτοποιήθηκαν οι 53 και από αυτές οι 45 πληρούσαν τα κριτήρια για να μπουν στο t-test, δηλαδή να είναι ταυτοποιημένες σε τουλάχιστον 2 από τα 3 βιολογικά σε κάθε συνθήκη και με 4 και άνω uniquepeptides(**Πίνακας ΙΙ, παράρτημα**).

Πιο συγκεκριμένα, το σύστημα sox, που είναι υπεύθυνο για την οξείδωση των θειοθειικών, αποτελείται από 8 γονίδια τα οποία μεταγράφονται σε ένα αντίγραφο, το οποίο εκφράζεται περισσότερο στις 20hγια κάθε μια από τις πρωτεΐνες soxJXYZAKBW. Από αυτές, οι SoxB, J, KκαιW είναι σε μεγαλύτερη

αφθονία στις 20h. Βάσει των καμπυλών ανάπτυξης (εικόνα 3.3) και των δεδομένων έκφρασης προκύπτει ότι η μετάβαση από την παραγωγή των σφαιριδίων μέχρι την κατανάλωση σχετίζεται με την χρήση κυρίως των θειοθειικών ως πηγή ηλεκτρονίων. Αναλυτικότερα, κατά τον μεταβολισμό του θείου στο C. tepidumδημιουργείται στον περιπλασματικό χώρο δεξαμενή ολιγοσουλφιδίων, η οποία βρίσκεται σε ισορροπία με τα εξωκυττάρια σφαιρίδια στοιχειακού θείου. Τα σφαιρίδια αυτά είναι προϊόν της οξείδωσης των θειούχων και θειοθειικών αλάτων από τα ένζυμα του Dsrσυστήματοςκαι στην συνέχεια χρησιμοποιούνται από τα φωτολιθότροφα βακτήρια καθώς μειώνονται οι πηγές θείου (ηλεκτρονιοδότες). Тα ολιγοσουλφίδια από τις δεξαμενές του περιπλάσματος διαχέονται διαμέσου της λιπιδικήςδιπλοστοιβάδας και ανάγονται από την DsrLσεS⁻².Στην βιβλιογραφία αναφέρεται ότι το σύμπλοκοDsrEFH λειτουργεί ως δέκτης των S⁻²προσδένεται μέσω του συντηρημένου κατάλοιπου Cys78 ηDsrE, εν συνεχεία, μεταφέρονται στην DsrC. Ακολουθεί η μεταφορά του θείου από την DsrCστο σύμπλοκοDsrAB,που το οξειδώνει προς SO_3^{-2} . Το προϊόν της προηγούμενης αντίδρασης μετατρέπεται από την AprAB (αδενυλοθειικήαναγωγάση) με τη χρήση AMP, σε APS(5-φωσφωθειική αδενοσίνη). Τέλος παράγεται ΑΤΡκαι SO₄⁻², με την χρήση τουΑΡSκαι του ΡΡ_iαπό το ένζυμο Sat (ΑΤΡσουλφορυλαση). Οι περισσότερες από τις 23 υπομονάδες τουDsrσυστήματος ταυτοποιήθηκαν και ποσοτικοποιήθηκαν. Βρέθηκε ότι εκφράζονται περισσότερο στις 20h, με τις DsrA, C, E, FκαιΗ να βρίσκονται σε μεγαλύτερη αφθονία.

Τα ένζυμα sulfide/ quinoneoxidoreductases (SQR) και το flavocytochrome c sulfide dehydrogenase (FccAB) επιτελούν την οξείδωση των σουλφιδίων. Στην παρούσα διατριβή, ταυτοποιήθηκαν και ποσοτικοποιήθηκαν τα εξής: SqrE, F και μόνο το FccA. Από την συγκριτική πρωτεωμική ανάλυση προκύπτει ότι οι προαναφερθήσεςυπομονάδες αφθονούν στις 40h. Έτσι τα ηλεκτρόνια από τα σουλφίδια εισέρχονται στην αλυσίδα μεταφοράς ηλεκτρονίων μέσω των δεξαμενών των κινονών.

Συνεχίζοντας, το υδατοδιαλυτό και το αγκυροβολημένο στην μεμβράνη κυτόχρωμα c τροφοδοτούν με ηλεκτρόνια, από τα μονοπάτια οξείδωσης του θείου, τα κέντρα αντίδρασης Ρ840. Το αγκυροβολημένο στην μεμβράνη κυτόχρωμα προτείνεται ότι κάνει πιο αποδοτικά την μεταφορά ηλεκτρονίων μεταξύ διπλανών μεμβρανικώνσυμπλόκων. Βάσειτων δεδομένωντης συγκριτικήςπρωτεομικής προκύπτει ότι, τα γονίδια CT0073 (Q8KG95), CT1704 (Q8KBS9) και CT1734 (Q8KBQ1), πρόκειται για μεμβρανικάcytc-556τα οποία εκφράζονται στο κύτταρο. Ταυτόχρονα, η ανάλυση δείχνει ότι, βρίσκονται σε μεγαλύτερη αφθονία στις 40h. Τα παραπάνω αποτελέσματα δείχνουν ότι στην συγκεκριμένη φάση ανάπτυξης του οργανισμού (40 h), τα ηλεκτρόνια ρέουν από την δεξαμενή ολιγοσουλφιδίων στην μεβρανική sulfide/quinineoxidoreductaseστο bc1 complex, στακυτοχρώματα,καταλήγοντας στο κέντρο αντίδρασης P840.

Εικόνα3.12 Δίκτυο αλληλεπιδράσεων των 130 στατιστικά σημαντικών πρωτεϊνών και χρωματική κλίμακα με το log2 foldchange (μεταβολή) της έκφρασης μεταξύ των δύο συνθηκών 20h και 40h καλλιέργειαςκαι ομαδοποίηση των πρωτεϊνών βάση της λειτουργίας τους.

Στην **εικόνα 3.12** φαίνεται το δίκτυο αλληλεπιδράσεων των στατιστικά σημαντικών πρωτεϊνών, που φαίνονται στο **πίνακα I** του παραρτήματος, από το Stringtool (<u>string-db.org</u>) και το Cytoscape3.8.0⁴⁴⁻⁴⁶.Το δίκτυο αποτελείται από σφαίρες και γραμμές. Κάθε σφαίρα αντιπροσωπεύει μια πρωτεΐνη και πάνω της αναγράφεται το όνομα του γονιδίου της (genename). Οι γραμμές, δηλώνουν την αλληλεπίδραση των πρωτεϊνών, επιβεβαιώνεται είτε πειραματικά είτε θεωρητικά. Η θεωρητική επιβεβαίωση μιας αλληλεπίδρασης γίνεται με πέντε τρόπους: 1)Textmining (βιβλιογραφική ανασκόπηση από κατάλληλο αλγόριθμο), 2)coexpression (τα γονίδια των συγκεκριμένων πρωτεϊνών πιθανολογείται ότι υπόκεινται σε κοινό έλεγχο της έκφρασής τους), 3) genefusion (η σύντηξη ίδιου γονιδίου με ένα άλλο είναι ένδειξη αλληλεπίδρασης), 4) η θέση πάνω στο γονιδίωμα(neighborhoodonchromosome) πληροφορεί για τις

αλληλεπιδράσεις των πρωτεϊνώνκαι 5)phylogeniccooccurrence (η ύπαρξη αλληλεπίδρασης ομόλογων αλληλουχιών σε άλλα στελέχη της ίδιας οικογένειας είναι σημαντική ένδειξη αλληλεπίδρασης).

Στο παραπάνω δίκτυο, από τις 130 πρωτεΐνες υπάρχουν επιβεβαιωμένες αλληλεπιδράσεις για τις 86. Από αυτές οι 63 είναι υπερεκφρασμένες στις 20hκαι οι 23 στις 40h. Αναλυτικότερα, η μεγαλύτερη λειτουργική ομάδα είναι οι πρωτεΐνες που συνδέονται με την 50Sριβοσωμικήυπομονάδα(ssb-2,rpsU,rpsI,rpsG,rpsF,rpsA,rpoA,rpmI,rpmD,rpIW,rpIU,rpIS,rpIP,rpIO,rpIM,rpIK,rpIJ,rpII,rpIF,rpIE,rpID,rpIB,reIA ,nusG,lepA,efp,dnaG,der,ctc,clpX,clpC, CT1713, CT1665, CT1353). Συνολικά, περιέχει 34 πρωτεΐνες, από αυτές οι 7 είναι υπερεκφρασμένες στις 40h(CT1713, rpml, der, relA, rpmD, CT1353, dnaG), ενώ οι υπόλοιπες 27 στις 20h. Η επόμενη ομάδα συντελείται από 19 πρωτεΐνες και σχετίζονται με την μεταγραφή του DNA. Πιο συγκεκριμένα, τα γονίδια CT1704, tal, xseB, CT0060, CT1734, zwf, rnrκαι CT1874υπερεκφράζονται στις 40h,ενώ τα CT1668, rimP, nusA, nusB, CT0249, CT2111, CT0647,greA, gmk και CT0011στις 20h.Επιπροσθέτως από τις παραπάνω πρωτεΐνες οιnusA, nusB,CT2111 καιgmkαλληλεπιδρούν με πολλαπλές πρωτεΐνες της ομάδας που συνδέονται στην 50Sριβοσωμικήυπομονάδα και η xseB(αναγωγάσηθειορεδοξίνης)αλληλεπιδρά με την CT1023 (θειορεδοξίνη)από τις πρωτεΐνες που σχετίζονται με το μεταβολισμό του θείου. Στην συνέχεια, οι πρωτείνες του μεταβολισμού του θείου είναι 14 (soxB, petC, fccB-1, dsrH, dsrF, dsrE, dsrC-2, atpH, CT2041, CT1087, CT1023, CT1020, CT0995 και CT0876) από αυτές οι CT0995,CT1087 και CT0876 είναι υπερεκφρασμένες στις 40h, οι υπόλοιπες στις 20h. Από αυτές μόνο η atpH (FtypeATPasedeltasubunit) αλληλεπιδρά με πάνω από 10 ριβοσωμικές πρωτεΐνες. Ακολουθούν οι πρωτείνες του μεταβολισμού της φρουκτόζης από τις οποίες οι glms, lytBκαι CT0282 υπερεκφράζοτναι στις 20h και οι glgA και CT0304 στις 40h, όμως η μόνη που αλληλεπιδρά με μια ριβοσωμική είναι η lytBπου αλληλεπιδρά με την rspA. Τα υπόλοιπα μικρότερα groupείναι: 3 τρασγλυκοϋλάσες (CT1178,CT0979 και CT0977), 2 πρωτεΐνες για την επιδιόρθωση και τον ανασυνδυασμό του DNA(recN και mutS1) που είναι υπερεκφρασμένες στις 40h, 3 πρωτεΐνες της βιοσύνθεσης Βακτηριοχλωροφύλλης (hemD,bchD και bchB), 2 πρωτεΐνες βιοσύνθεσης αμινοξέων (hisAκαι trpC) και τέλος 2 μη χαρακτηρισμένες (CT0959 καιCT0958). Στο παράρτημα παρουσιάζονται αναλυτικά όλες οι αλληλεπιδράσεις του δικτύου καθώς και η αιτιολόγηση και το σκορ, με μαξ το 1 και ελάχιστο το 0.4(Πίνακας ΙΙΙ,Παράρτημα). Συμπερασματικά, ο οργανισμός στις 20hυπερεκφράζει ένζυμα ριβοσωμικώνυπομονάδων και του μεταβολισμού των αμινοξέων, αντίθετα στις 40hυπερεκφράζειέζνυμα που βοηθούν στην σύνθεση του κυτταρικού τοιχώματος (τρασγλυκοϋλάσες) και επιδιόρθωσης και ανασυνδυασμού του DNA.

Στην παρούσα μελέτη ταυτοποιήθηκε μεγάλος αριθμός μη χαρακτηρισμένων πρωτεϊνών και στις δύο επιλεγμένες συνθήκες. Επιπροσθέτως, πολλές από αυτές ταυτοποιήθηκανμόνο στη μια από τις δύο συνθήκες. Παρόλο που χρησιμοποιήθηκαν αρκετά εργαλεία βιοπληροφορικής δεν ήταν δυνατή η εξακρίβωση της λειτουργίας τους. Περισσότερη έρευνα χρειάζεται για την κατανόηση των λειτουργιών αυτών των πρωτεϊνών και κατ' επέκταση την ερμηνεία της μεταβολής του πρωτεόματος του οργανισμού. Τέλος, στην **εικόνα 3.13** φαίνεται το μοντέλο που προκύπτει βάσει της βιβλιογραφίας και τα δεδομένα αυτής μεταβολισμό θείου της έρευνας για το του στο С. tepidum.

4.Συμπεράσματα και Προοπτικές

4.1 Μελέτη της ανάπτυξης του βακτηρίου Chlorobaculumtepidum

Το βακτήριο αναπτύσσεται παρουσία Na₂S 7,7mM και Na₂S₂O₃ x 5H₂O8mM σε κατάλληλο θρεπτικό pf₇ (βλ.§2.2.1). Για την μελέτη της ανάπτυξης του βακτηρίου μετρήθηκαν συγκεντρώσεις της βακτηριοχλωροφύληςςκαι του στοιχειακού θείου με φασματοσκοπία UV-Vis. Επιπροσθέτως,ποσοτικοποιήθηκε με ιοντική χρωματογραφία ένας επιπλέον μεταβολίτης,ο οποίος αποτελεί προϊόν της ανοξυγωνικής φωτοσύνθεσης του οργανισμού, το SO₄⁻².

Από τα δεδομένα της **εικόνας 3.3** προκύπτουν οι τρείς χρονικές φάσεις ανάπτυξης του βακτηρίου. Αναλυτικότερα,0-10hη καλλιέργεια βρίσκεται σε λανθάνουσα φάση, από 10-20h σε εκθετική, από 20-40hπαρατηρείται πτώση της βακτηριοχλωροφύλληςς και του στοιχειακού θείου και από 40hκαι άνω σταθεροποιούνται, άρα βρίσκεται στη στατική φάση.

Βάσει των παραπάνω διακρίνεται ότι η μέγιστη συγκέντρωση παραγόμενου στοιχειακού θείου είναι στις 20h, ενώ από τις 40h και μετά μένει σχετικά σταθερή. Η παρατήρηση αυτή καθιστά τις δύο αυτές χρονικές στιγμές σημαντικές για πρωτεϊνική ανάλυση.

4.2Χαρακτηρισμός σφαιριδίων στοιχειακού θείου

Για το χαρακτηρισμό των σφαιριδίων βιογενούς θείου απομονώθηκαν κύτταρα στις 10, 20, 30, 40 και 50h και πραγματοποιήθηκε το ίδιο πρωτόκολλο απομόνωσης (βλ.§ 2.2.2). Ακολούθησε, η παρατήρηση των σφαιριδίων με ηλεκτρονική μικροσκοπία σάρωσης. Τα αποτελέσματα έδειξαν ότι η μορφολογία των 10 και 20hείναι ίδια. Πιο συγκεκριμένα φαίνονται συμπαγείς σφαίρες. Αντίθετα, η μορφολογία των δειγμάτων από 30, 40 και 50hείναι μη συμπαγείς και παραμορφωμένες σφαίρες. Στην ίδια οργανολογία πραγματοποιήθηκαν και μετρήσεις στοιχειακής ανάλυσης EDS, βάση της χαρακτηριστικής μετάπτωσηςΚα (από την στοιβάδα Lστην K) του S⁰ ενέργειας 2,309 keV. Τα φάσματα αυτά δείχνουν ότι τα δείγματα περιείχαν στοιχειακό θείου σε ποσοστό 94-96%.

Ακολούθησε αναλύση με MALDI-TOF. Στα φάσματα αυτά φαίνονται κορυφές σε μοριακά βάρη πολλαπλάσια του ατομικού βάρους του θείου (32) που παρουσιάζουν τα ισότοπα³²S(94.93%), ³³S (0.76%), ³⁴S (4.29%), and³⁶S (0.02%).Παρατηρήθηκαν λοιπόν, τα ιόντα από $S_5^+εωςS_{12}^+$. Τέλος, δεν παρατηρήθηκε κάποια διαφοράστα φάσματα μάζας των δειγμάτων που συλλέχτηκαν διαφορετική χρονική στιγμή(10-50h).

4.3 LabelfreeQuantification (LFQ) Πρωτεωμικήανάλυση

Στην παρούσα διατριβή το ερώτημα είναι: πώς μεταβολίζεται το θείο; Πραγματοποιήθηκε λοιπόν, σύγκριση του συνόλου των πρωτεϊνών που ταυτοποιήθηκαν στις δύο συνθήκες, 20 και 40h(σε τουλάχιστον δύο βιολογικά με 4 και άνω uniquepeptides) τα αποτελέσματα φαίνονται στο venndiagramm της **εικόνας3.9.** Στην ίδια εικόνα φαίνεται τοαποτέλεσμα του t-test (volcanoplot) το οποίο δείχνει ότι 130 πρωτεΐνες διαφοροποιούν σημαντικά την έκφρασή τους μεταξύ των δύο συνθηκών και το heatmapπου δείχνει το προφίλ έκφρασης σε κάθε βιολογικό δείγμα.

Βιβλιογραφικά⁴³, βρέθηκαν οι πρωτεΐνες που μέχρι στιγμής έχει αποδειχτεί ότι, σχετίζονται με το μεταβολισμό του θείου στο συγκεκριμένο βακτήριο. Από τις 57 πρωτεΐνες που σχετίζονται με το μεταβολισμό του θείου ταυτοποιήθηκαν οι 53 και ήταν δυνατή η ποσοτικοποίηση των 45 εξ αυτών(βλ. πίνακα 1). Με βάση τα βιβλιογραφικά αλλά και τα δεδομένα που προκύπτουν από την πρωτεωμική ανάλυση προτείνεται το μοντέλο μεταβολισμού του θείου της **εικόνας 3.11**όπου φαίνεται και η διαφορά στην έκφραση μεταξύ των δύο συνθηκών. Μέχρι σήμερα, δεν έχει αναφερθεί στην βιβλιογραφία κάποια πρωτεωμική μελέτη για τη διαλεύκανση του μεταβολισμού του θείου στο *Chlorobaculumtepidum.*

Συνεπώς, η παρούσα μελέτη δείχνει το FASPσε συνδυασμό με την LFQ ανάλυση είναι μια ισχυρή μέθοδος ικανή να ταυτοποιήσει άνω του 60% του θεωρητικού πρωτεώματος του οργανισμού βάση του γωνιδιώματος. Πρόκειται για μια καλή εναλλακτική, έναντι των gelbased τεχνικών. Τέλος η συγκεκριμένη τεχνική καθιστά δυνατή την σύγκριση πρωτεωμάτων από 2 και άνω διαφορετικά βιολογικά δείγματα.

4.4 Προοπτικές

Το συγκεκριμένο βακτήριο αναπτύσσεται παρουσία θειούχων και θειοθειικών αλάτων. Όμως, μπορεί να αναπτυχθεί παρουσία μόνο θειούχων. Συνεπώς, θα ήταν ενδιαφέρον να γίνει παρόμοια πρωτεομική ανάλυση απουσία των θειοθειικών. Ακόμα στην βιβλιογραφία αναφέρεται ότι το βακτήριο δεν μπορεί να αναπτυχθεί παρουσία μόνο στοιχειακού θείου εκτός αν αυτό το έχει παράξει το ίδιο. Επομένως, υπάρχει το ερώτημα: γιατί δεν μπορεί να χρησιμοποιήσει σαν ηλεκτρονιοδότη το στοιχειακό θείου του εμπορίου, ενώ μπορεί το βιογενές; Η κατανόηση του μεταβολισμού του θείου μπορεί να βοηθήσει στην καλύτερη διαχείριση των αποβλήτων θείου ακόμα και στην αποθείωση των καυσίμων μειώνοντας έτσι την μόλυνση του περιβάλλοντος.

Το *C.tepidum*χρησιμοποιεί το κέντρο αντίδρασης P840, του οποίου η δομή δεν έχει λυθεί. Ένας άλλος ενδιαφέρον τομέας είναι αυτός της δομικής ανάλυσης. Συνεπώς, προτείνεται να βρεθεί πρωτόκολλο απομόνωσης του κέντρου αντίδρασης από το μεμβρανικόπρωτέομα του βακτηρίου και να αναλυθεί με CryoElectronMicroscopy και την μέθοδο του singleparticleanalysis. Ακόμα ενδιαφέρον θα ήταν να γίνει το ίδιο και για την φωτοσυνθετική κεραία του μικροοργανισμού. Τέλος, ηλύση της δομής τωνδύο αυτών συμπλόκων θα δώσει απαντήσεις για τον μηχανισμό της ανοξυγονικής φωτοσύνθεσης του βακτηρίου και κατ' επέκταση νέες ιδέες για καλύτερη διαχείριση της ενέργειας.

5. Βιβλιογραφία

- (1) Blankenship, R. E. *Molecular Mechanisms of Photosynthesis*; 2008. https://doi.org/10.1002/9780470758472.
- (2) Björn, L. O.; Govindjee. The Evolution of Photosynthesis and Its Environmental Impact. In *Photobiology*; Springer New York: New York, NY, 2015; pp 207–230. https://doi.org/10.1007/978-1-4939-1468-5_16.
- (3) Raymond, J.; Blankenship, R. E. The Origin of the Oxygen-Evolving Complex. *Coordination Chemistry Reviews*. 2008. https://doi.org/10.1016/j.ccr.2007.08.026.
- (4) Margulis, L.; Goode, D. Book-Review Symbiosis in Cell Evolution Life and Its Environment on the Early Earth. *Orig. Life* **1982**.
- (5) Blankenship, R. E. Early Evolution of Photosynthesis. *Plant Physiol.* **2010**, *154* (2), 434–438. https://doi.org/10.1104/pp.110.161687.
- Baniulis, D.; Yamashita, E.; Zhang, H.; Hasan, S. S.; Cramer, W. A. Structure-Function of the Cytochrome B6f Complex. In *Photochemistry and Photobiology*; 2008. https://doi.org/10.1111/j.1751-1097.2008.00444.x.
- Hauska, G.; Schoedl, T.; Remigy, H.; Tsiotis, G. The Reaction Center of Green Sulfur Bacteria. *Biochim. Biophys. Acta Bioenerg.* 2001, 1507 (1–3), 260–277. https://doi.org/10.1016/S0005-2728(01)00200-6.
- Wahlund, T. M.; Woese, C. R.; Castenholz, R. W.; Madigan, M. T. A Thermophilic Green Sulfur Bacterium from New Zealand Hot Springs, Chlorobium Tepidum Sp. Nov. *Arch. Microbiol.* 1991, 156 (2), 81–90. https://doi.org/10.1007/BF00290978.
- (9) Eisen, J. A.; Nelson, K. E.; Paulsen, I. T.; Heidelberg, J. F.; Wu, M.; Dodson, R. J.; Deboy, R.; Gwinn, M. L.; Nelson, W. C.; Haft, D. H.; Hickey, E. K.; Peterson, J. D.; Durkin, A. S.; Kolonay, J. L.; Yang, F.; Holt, I.; Umayam, L. A.; Mason, T.; Brenner, M.; Shea, T. P.; Parksey, D.; Nierman, W. C.; Feldblyum, T. V.; Hansen, C. L.; Craven, M. B.; Radune, D.; Vamathevan, J.; Khouri, H.; White, O.; Gruber, T. M.; Ketchum, K. A.; Venter, J. C.; Tettelin, H.; Bryant, D. A.; Fraser, C. M. The Complete Genome Sequence of Chlorobium Tepidum TLS, a Photosynthetic, Anaerobic, Green-Sulfur Bacterium. *Proc. Natl. Acad. Sci.* 2002, *99* (14), 9509–9514. https://doi.org/10.1073/pnas.132181499.
- Bryant, D. A.; Frigaard, N. U. Prokaryotic Photosynthesis and Phototrophy Illuminated. *Trends in Microbiology*. 2006, pp 488–496. https://doi.org/10.1016/j.tim.2006.09.001.
- Imhoff, J. F.; Govindjee; Amesz, J.; Barber, J.; Blankenship, R. E.; Murata, N.; Ogren,
 W. L.; Ort, D. R.; Kiel, D. U.; Weg, D. Chapter 1 Taxonomy and Physiology of
 Phototrophic Purple Bacteria and Green Sulfur Bacteria. In *Anoxygenic Photosynthetic* Bacteria; 2004; Vol. 2, pp 1–15.
- Madigan, M. T.; Martinko, J. M.; Stahl, D. A.; Clark, D. P. References. *Hypertens. Res.* 2014, 37 (4), 362–387. https://doi.org/10.1038/hr.2014.17.
- (13) Hanson, T. E.; Bonsu, E.; Tuerk, A.; Marnocha, C. L.; Powell, D. H.; Chan, C. S. Chlorobaculum Tepidum Growth on Biogenic S(0) as the Sole Photosynthetic Electron

Donor. *Environ. Microbiol.* **2016**, *18* (9), 2856–2867. https://doi.org/10.1111/1462-2920.12995.

- Holkenbrink, C.; Barbas, S. O.; Mellerup, A.; Otaki, H.; Frigaard, N. U. Sulfur Globule Oxidation in Green Sulfur Bacteria Is Dependent on the Dissimilatory Sulfite Reductase System. *Microbiology* 2011, *157* (4), 1229–1239. https://doi.org/10.1099/mic.0.044669-0.
- (15) Rodriguez, J.; Hiras, J.; Hanson, T. E. Sulfite Oxidation in Chlorobaculum Tepidum. *Front. Microbiol.* **2011**, *2* (MAY). https://doi.org/10.3389/fmicb.2011.00112.
- Eddie, B. J.; Hanson, T. E. Chlorobaculum Tepidum TLS Displays a Complex Transcriptional Response to Sulfide Addition. *J. Bacteriol.* 2013, 195 (2), 399–408. https://doi.org/10.1128/JB.01342-12.
- (17) Marnocha, C. L.; Levy, A. T.; Powell, D. H.; Hanson, T. E.; Chan, C. S. Mechanisms of Extracellular S0 Globule Production and Degradation in Chlorobaculumtepidum via Dynamic Cell-Globule Interactions. *Microbiology* **2016**, *162* (7), 1125–1134. https://doi.org/10.1099/mic.0.000294.
- Prange, A.; Chauvistré, R.; Modrow, H.; Hormes, J.; Trüper, H. G.; Dahl, C.
 Quantitative Speciation of Sulfur in Bacterial Sulfur Globules: X-Ray Absorption
 Spectroscopy Reveals at Least Three Different Species of Sulfur. *Microbiology* 2002, 148 (1), 267–276. https://doi.org/10.1099/00221287-148-1-267.
- (19) Friedrich, C. G. *Physiology and Genetics of Sulfur-Oxidizing Bacteria.*; 1998; Vol. 39. https://doi.org/10.1016/s0065-2911(08)60018-1.
- (20) Frigaard, N. U.; Dahl, C. Sulfur Metabolism in Phototrophic Sulfur Bacteria. Advances in Microbial Physiology. 2008, pp 103–200. https://doi.org/10.1016/S0065-2911(08)00002-7.
- (21) Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R. Skoog and West's Fundamentals of Analytical Chemistry. In Skoog and West's Fundamentals of Analytical Chemistry; 2014; p 931. https://doi.org/10.1021/ed069pA305.1.
- (22) Ratner, B. D. Surface Properties and Surface Characterization of Biomaterials. In *Biomaterials Science*; Elsevier, 2013; pp 34–55. https://doi.org/10.1016/B978-0-08-087780-8.00005-X.
- (23) Singh, A. K. Experimental Methodologies for the Characterization of Nanoparticles. In Engineered Nanoparticles; 2016. https://doi.org/10.1016/b978-0-12-801406-6.00004-2.
- (24) Tanaka, K. The Origin of Macromolecule Ionization by Laser Irradiation (Nobel Lecture). In Angewandte Chemie - International Edition; 2003. https://doi.org/10.1002/anie.200300585.
- (25) Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10 000 Daltons. *Analytical Chemistry*. 1988. https://doi.org/10.1021/ac00171a028.
- (26) Fenn, J. B. Electrospray Wings for Molecular Elephants (Nobel Lecture). In Angewandte Chemie - International Edition; 2003.

https://doi.org/10.1002/anie.200300605.

- (27) Ahmad, Y.; Lamond, A. I. A Perspective on Proteomics in Cell Biology. *Trends in Cell Biology*. 2014. https://doi.org/10.1016/j.tcb.2013.10.010.
- (28) Lamond, A. I.; Uhlen, M.; Horning, S.; Makarov, A.; Robinson, C. V.; Serrano, L.; Hartl, F. U.; Baumeister, W.; Werenskiold, A. K.; Andersen, J. S.; Vorm, O.; Linial, M.; Aebersold, R.; Mann, M. Advancing Cell Biology through Proteomics in Space and Time (PROSPECTS). *Molecular and Cellular Proteomics*. 2012. https://doi.org/10.1074/mcp.0112.017731.
- (29) Pappireddi, N.; Martin, L.; Wühr, M. A Review on Quantitative Multiplexed Proteomics. *ChemBioChem*. 2019. https://doi.org/10.1002/cbic.201800650.
- (30) Stanier, R. Y.; Smith, J. H. C. The Chlorophylls of Green Bacteria. BBA Biochim. Biophys. Acta 1960, 41 (3), 478–484. https://doi.org/10.1016/0006-3002(60)90045-7.
- (31) Wiśniewski, J. R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal Sample Preparation Method for Proteome Analysis. *Nat. Methods* 2009. https://doi.org/10.1038/nmeth.1322.
- (32) Feist, P.; Hummon, A. B. Proteomic Challenges: Sample Preparation Techniques for Microgram-Quantity Protein Analysis from Biological Samples. *International Journal* of Molecular Sciences. 2015, pp 3537–3563. https://doi.org/10.3390/ijms16023537.
- Harris, D. C. Summary for Policymakers. In *Climate Change 2013 The Physical Science Basis*; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, 2010; Vol. 53, pp 1–30. https://doi.org/10.1017/CBO9781107415324.004.
- Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Using the Principle of Protein Dye Binding. *Anal. Biochem.* 1976, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.
- James, P. Protein Identification in the Post-Genome Era: The Rapid Rise of Proteomics. *Q. Rev. Biophys.* 1997, 30 (4), 279–331. https://doi.org/10.1017/S0033583597003399.
- (36) Tyanova, S.; Cox, J. Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research. In *Methods in Molecular Biology*; 2018. https://doi.org/10.1007/978-1-4939-7493-1_7.
- (37) Rudolph, J. D.; Cox, J. A Network Module for the Perseus Software for Computational Proteomics Facilitates Proteome Interaction Graph Analysis. J. Proteome Res. 2019. https://doi.org/10.1021/acs.jproteome.8b00927.
- Kudryashev, M.; Aktoudianaki, A.; Dedoglou, D.; Stahlberg, H.; Tsiotis, G. The Ultrastructure of Chlorobaculum Tepidum Revealed by Cryo-Electron Tomography. *Biochim. Biophys. Acta - Bioenerg.* 2014, 1837 (10), 1635–1642. https://doi.org/10.1016/j.bbabio.2014.06.002.
- Nielsen, J. T.; Kulminskaya, N. V.; Bjerring, M.; Linnanto, J. M.; Rätsep, M.; Pedersen,
 M. O.; Lambrev, P. H.; Dorogi, M.; Garab, G.; Thomsen, K.; Jegerschöld, C.; Frigaard,
 N. U.; Lindahl, M.; Nielsen, N. C. In Situ High-Resolution Structure of the Baseplate

Antenna Complex in Chlorobaculum Tepidum. *Nat. Commun.* **2016**. https://doi.org/10.1038/ncomms12454.

- Hearley, A. K.; Johnson, B. F. G.; McIndoe, J. S.; Tuck, D. G. Mass Spectrometric Identification of Singly-Charged Anionic and Cationic Sulfur, Selenium, Tellurium and Phosphorus Species Produced by Laser Ablation. *Inorganica Chim. Acta* 2002. https://doi.org/10.1016/S0020-1693(02)00738-7.
- Kruegel, A.; Attygalle, A. B. Elemental Sulfur as a Versatile Low-Mass-Range
 Calibration Standard for Laser Desorption Ionization Mass Spectrometry. J. Am. Soc.
 Mass Spectrom. 2010, 21 (1), 112–116. https://doi.org/10.1016/j.jasms.2009.09.011.
- Kouyianou, K.; de Bock, P. J.; Colaert, N.; Nikolaki, A.; Aktoudianaki, A.; Gevaert, K.; Tsiotis, G. Proteome Profiling of the Green Sulfur Bacterium Chlorobaculum Tepidum by N-Terminal Proteomics. *Proteomics* 2012. https://doi.org/10.1002/pmic.201000739.
- (43) Falkenby, L. G.; Szymanska, M.; Holkenbrink, C.; Habicht, K. S.; Andersen, J. S.; Miller, M.; Frigaard, N.-U. Quantitative Proteomics of Chlorobaculum Tepidum: Insights into the Sulfur Metabolism of a Phototrophic Green Sulfur Bacterium. *FEMS Microbiol. Lett.* 2011, 323 (2), 142–150. https://doi.org/10.1111/j.1574-6968.2011.02370.x.
- (44) Excoffier, L.; Gouy, A.; Daub, J. T.; Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N. S.; Wang, J. T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. *Nucleic* Acids Res. 2017. https://doi.org/10.1093/nar/gkx626.
- (45) Shannon, P. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. *Genome Res.* 2003, 13 (11), 2498–2504. https://doi.org/10.1101/gr.1239303.
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.;
 Fridman, W. H.; Pagès, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape Plug-in to
 Decipher Functionally Grouped Gene Ontology and Pathway Annotation Networks.
 Bioinformatics 2009. https://doi.org/10.1093/bioinformatics/btp101.

ПАРАРТНМА

Πίνακας ΙΤαυτοποιημένες πρωτεΐνες σε τουλάχιστον 2 βιολογικά με ανω των 4 uniquepeptides(994)και το αποτέλεσμα του ttest (130significantproteins).

No	Significant	-log P Value	Difference	ProteinIDs (Uniprot)	Geneontology (biologicalprocess)	Uniquep eptides
1	+	1,794	0,974	Q46385;H2VFJ0	phosphorelay signal transduction system [GO:0000160]	13
2	+	3,406	1,932	O68991;H2VFJ1		6
3		1,028	0,332	Q93ST8;H2VFJ3;O68993	bacillithiolbiosyntheticprocess [GO:0071793]	13
4		1,007	0,321	Q93SV6;H2VFJ5	chlorophyllbiosyntheticprocess [GO:0015995]	75
5		0,041	-0,028	Q9F734;H2VFJ8	photosynthesis [GO:0015979];bacteriochlorophyll biosynthetic process [GO:0030494]	8
6		1,335	0,728	Q93SV9;H2VFJ9	chlorophyllbiosyntheticprocess [GO:0015995]	49
7	+	4,311	2,913	Q93SV2;H2VFK1		29
8		0,074	0,053	007091	photosynthesis [GO:0015979]	8
9		1,504	0,465	O52393	DNA repair [GO:0006281];SOS response [GO:0009432];DNA recombination [GO:0006310]	17
10		0,835	0,640	O68983	photosynthesis [GO:0015979]	10
11		0,481	-0,175	O68988	photosynthesis [GO:0015979]	11
12		0,120	0,151	P0A314	photosynthesis [GO:0015979];protein-chromophore linkage [GO:0018298];oxidation-reduction process [GO:0055114]	7
13		1,445	0,574	P59003	'de novo' CTP biosynthetic process [GO:0044210]	17
14		0,624	-0,571	P59014	Mo-molybdopterin cofactor biosynthetic process [GO:0006777]	14
15		0,808	1,284	P59028	leucinebiosyntheticprocess [GO:0009098]	19
16		0,248	-0,242	P59031	translation [GO:0006412]	11
17		0,005	0,002	P59040	glutamine metabolic process [GO:0006541];'de novo' CTP biosynthetic process [GO:0044210]	33
18	+	2,732	0,821	P59060	translation [GO:0006412]	20
19		0,233	0,113	P59077	methionyl-tRNAaminoacylation [GO:0006431]	54
20		1,872	0,642	P59129	translation [GO:0006412]	19
21		0,125	0,076	P59297	arginine biosynthetic process via ornithine [GO:0042450]	11
22		0,093	0,047	P59316	argininebiosyntheticprocess [GO:0006526]	32
23		2,983	0,430	P59599		8

24		0,428	0,558	P59611	argininebiosyntheticprocess [GO:0006526]	10
25		0,324	0,156	P71149	DNA-templated transcription, initiation [GO:0006352]	16
26		0,569	0,216	P80039	tricarboxylic acid cycle [GO:0006099];carbohydrate metabolic process [GO:0005975]	21
27		1,535	0,859	Q46366	response to arsenic-containing substance [GO:0046685]	23
28	+	2,174	1,813	Q46367	protein-chromophore linkage [GO:0018298];photosynthesis [GO:0015979]	8
29		1,021	-0,384	Q46383	protein-chromophore linkage [GO:0018298];photosynthesis [GO:0015979]	6
30		0,124	0,083	Q46393	photosynthesis [GO:0015979];protein-chromophore linkage [GO:0018298];oxidation-reduction process [GO:0055114]	33
31		0,002	0,006	Q4W537		11
32		0,000	-0,840	Q4W544		10
33		0,175	0,070	Q4W549	lipidbiosyntheticprocess [GO:0008610]	21
34		0,000	0,533	Q4W554	tRNAmodification [GO:0006400]	16
35		1,534	0,424	Q8K5E9		31
36	+	2,727	0,787	Q8K5F4		7
37		0,374	0,219	Q8KA83		21
38		0,185	0,132	Q8KA87	proteinmetabolicprocess [GO:0019538]	48
39		0,895	1,327	Q8KA88		7
40		0,123	-0,145	Q8KA94	peptidoglycan metabolic process [GO:0000270];cell wall organization [GO:0071555]	9
41		0,895	0,474	Q8KA98	tryptophan catabolic process to kynurenine [GO:0019441]	7
42		0,731	0,584	Q8KAA2		32
43		0,616	-0,246	Q8KAA3	DNA topological change [GO:0006265];DNA-dependent DNA replication [GO:0006261]	34
44		0,052	0,025	Q8KAA6	RNAprocessing [GO:0006396]	30
45		1,489	0,708	Q8KAB0	photosynthesis [GO:0015979];chlorophyll biosynthetic process [GO:0015995]	20
46		0,126	-0,067	Q8KAB1	glycyl-tRNAaminoacylation [GO:0006426]	23
47		1,242	1,029	Q8KAB6		4
48		1,134	0,635	Q8KAB7		12
49		0,207	0,145	Q8KAB9	sulfideoxidation [GO:0019418]	9
50		0,252	-0,263	Q8KAC0		30
51		2,957	0,589	Q8KAC2		17

52		0,000	-0,350	Q8KAC4	sirohemebiosyntheticprocess [GO:0019354]	7
53		1,606	-0,995	Q8KAC5	siroheme biosynthetic process [GO:0019354];oxidation- reduction process [GO:0055114]	23
54		0,000	-0,025	Q8KAC7		15
55		1,244	0,561	Q8KAC8	ATP synthesis coupled proton transport [GO:0015986]	5
56		1,605	0,639	Q8KAC9	ATP synthesis coupled proton transport [GO:0015986]	36
57		1,687	0,578	Q8KAD0	cellredoxhomeostasis [GO:0045454]	6
58		1,028	-1,249	Q8KAD1	gluconeogenesis [GO:0006094]	21
59	+	1,455	1,190	Q8KAD9	chorismatemetabolicprocess [GO:0046417]	11
60		1,084	0,433	Q8KAE1	glycolyticprocess [GO:0006096]	30
61		0,397	-0,629	Q8KAE7		12
62		0,627	0,293	Q8KAE8	translation [GO:0006412]	32
63	+	1,518	-1,267	Q8KAE9	DNAcatabolicprocess [GO:0006308]	7
64		1,627	0,320	Q8KAF0	ribosomebiogenesis [GO:0042254]	18
65		0,452	-0,358	Q8KAF1	phosphoenolpyruvate-dependent sugar phosphotransferase system [GO:0009401]	6
66		0,516	-0,261	Q8KAF8		16
67		0,780	-1,732	Q8KAG8	translation [GO:0006412]	9
68		0,052	0,041	Q8KAG9		59
69		0,751	0,097	Q8KAH0		36
70		1,978	0,559	Q8KAH1	translation [GO:0006412]	11
71		0,798	0,342	Q8KAH2	translation [GO:0006412]	23
72	+	2,946	0,907	Q8KAH3	translation [GO:0006412]	10
73	+	3,103	0,694	Q8KAH4	translation [GO:0006412]	10
74	+	3,327	0,780	Q8KAH5	translation [GO:0006412]	17
75		1,632	0,531	Q8KAH6	translation [GO:0006412]	8
76		0,281	-0,206	Q8KAH7	translation [GO:0006412]	15
77		1,571	0,443	Q8KAH8	translation [GO:0006412]	18
78	+	2,603	0,892	Q8KAH9	translation [GO:0006412]	9
79		0,021	0,037	Q8KAIO	translation [GO:0006412]	7
80		0,623	-1,094	Q8KAI1	translation [GO:0006412]	7
81		0,923	0,282	Q8KAI2	translation [GO:0006412]	9

82		2,046	0,588	Q8KAI3	translation [GO:0006412]	12
83	+	2,884	1,197	Q8KAI4	translation [GO:0006412]	17
84	+	2,426	1,063	Q8KAI6	translation [GO:0006412]	16
85		0,091	0,084	Q8KAI7	translation [GO:0006412]	5
86		0,279	0,205	Q8KAI8	translation [GO:0006412]	19
87	+	1,630	-2,500	Q8KAI9	translation [GO:0006412]	4
88	+	5,016	0,578	Q8KAJ0	translation [GO:0006412]	12
89		0,714	0,344	Q8KAJ2	protein initiator methionine removal [GO:0070084]	15
90		1,109	0,740	Q8KAJ3		6
91	+	2,539	0,703	Q8KAJ5	translation [GO:0006412]	12
92		2,128	0,633	Q8KAJ6	translation [GO:0006412]	8
93	+	2,167	0,787	Q8KAJ8	transcription, DNA-templated [GO:0006351]	33
94		1,856	0,769	Q8KAJ9	translation [GO:0006412]	10
95		0,442	0,248	Q8KAK0		12
96		0,000	-0,478	Q8KAK1	biosyntheticprocess [GO:0009058]	12
97		0,056	-0,026	Q8KAK2	cysteinyl-tRNAaminoacylation [GO:0006423]	30
98		0,782	-0,260	Q8KAK6	'de novo' AMP biosynthetic process [GO:0044208]	24
99		1,366	-0,705	Q8KAK9		30
100		1,144	-0,488	Q8KAL1		16
101		1,037	0,716	Q8KAL2		6
102		0,000	0,962	Q8KAL4		14
103		0,777	0,174	Q8KAL5		9
104		0,844	0,518	Q8KAL6		11
105		1,187	0,884	Q8KAM0	DNArepair [GO:0006281]	20
106	+	2,183	1,279	Q8KAM1	translation [GO:0006412]	12
107	+	3,881	1,685	Q8KAM2	DNAreplication [GO:0006260]	10
108		0,111	-0,134	Q8KAM3	translation [GO:0006412]	9
109	+	2,702	1,349	Q8KAM4	translation [GO:0006412]	11
110		0,611	-0,479	Q8KAM5		10
111		0,641	0,241	Q8KAM6	phenylalanyl-tRNAaminoacylation [GO:0006432]	22
112		0,229	0,147	Q8KAM7	translation [GO:0006412];ribosomal large subunit assembly [GO:0000027]	10

113	+	1,295	-3,777	Q8KAM8	translation [GO:0006412]	5
114		1,340	0,753	Q8KAM9		14
115		0,844	0,217	Q8KAN0	threonyl-tRNAaminoacylation [GO:0006435]	36
116		0,120	-0,116	Q8KAN1	photosynthesis [GO:0015979];bacteriochlorophyll biosynthetic process [GO:0030494]	28
117		0,731	0,676	Q8KAN2	carbohydratemetabolicprocess [GO:0005975]	27
118		1,407	-0,174	Q8KAN3	glycine decarboxylation via glycine cleavage system [GO:0019464]	28
119		0,133	-0,058	Q8KAN8	fatty acid biosynthetic process [GO:0006633]	19
120		0,216	-0,159	Q8KAN9		11
121		2,644	0,624	Q8KAP0	fatty acid biosynthetic process [GO:0006633]	16
122		1,691	0,468	Q8KAP1		12
123		1,221	0,576	Q8KAP2	fatty acid biosynthetic process [GO:0006633]	17
124		0,138	0,061	Q8KAP3	phospholipid biosynthetic process [GO:0008654];fatty acid biosynthetic process [GO:0006633]	18
125	+	2,161	0,938	Q8KAP5		9
126		0,211	0,089	Q8KAP9	leucinebiosyntheticprocess [GO:0009098]	36
127	+	3,317	-0,787	Q8KAQ0	metal ion transport [GO:0030001];cell adhesion [GO:0007155]	15
128		1,094	0,339	Q8KAQ7	protoporphyrinogen IX biosynthetic process [GO:0006782];chlorophyll biosynthetic process [GO:0015995]	30
129		0,207	-0,300	Q8KAQ9		7
130		0,066	0,045	Q8KAR0		15
131		1,071	0,334	Q8KAR1		18
132		0,000	0,354	Q8KAR4		7
133		0,988	-0,357	Q8KAR6	alpha-glucan biosynthetic process [GO:0030979]	26
134		0,455	-0,112	Q8KAR7	carbohydratemetabolicprocess [GO:0005975]	45
135		0,222	-0,115	Q8KAS0		7
136		0,510	-0,375	Q8KAS1	tRNAmodification [GO:0006400]	24
137		1,004	0,627	Q8KAS7	cellredoxhomeostasis [GO:0045454]	11
138		0,931	-0,523	Q8KAT4		7
139		0,072	-0,040	Q8KAT5		29
140		0,391	0,313	Q8KAT8		26
141		0,549	-0,252	Q8KAU0		13

142		0,260	0,207	Q8KAU7;Q46384		14
143		0,117	0,101	Q8KAV2		23
144	+	1,425	-1,659	Q8KAV3		13
145		0,914	-0,721	Q8KAV4		52
146		0,110	-0,085	Q8KAV5		9
147		0,345	-0,217	Q8KAV6		12
148		0,857	0,273	Q8KAV7		16
149		0,552	0,143	Q8KAV9	electrontransportchain [GO:0022900]	34
150	+	1,670	1,041	Q8KAW0	tricarboxylicacidcycle [GO:0006099]	23
151		0,374	0,119	Q8KAW2	protoporphyrinogen IX biosynthetic process [GO:0006782]	23
152		0,000	0,035	Q8KAW3	D-glycero-D-manno-heptose 7-phosphate biosynthetic process [GO:2001061];carbohydrate metabolic process [GO:0005975]	7
153		0,213	-0,364	Q8KAW4	riboflavinbiosyntheticprocess [GO:0009231]	11
154		0,000	-0,215	Q8KAW5	phospholipidbiosyntheticprocess [GO:0008654]	9
155		0,534	0,163	Q8KAW6		33
156		2,042	-0,335	Q8KAW7	threoninebiosyntheticprocess [GO:0009088]	14
157		1,169	0,262	Q8KAW8	ATP synthesis coupled proton transport [GO:0015986]	41
158		1,321	0,247	Q8KAW9	plasma membrane ATP synthesis coupled proton transport [GO:0042777]	20
159		1,537	-0,503	Q8KAX1	aspartate family amino acid biosynthetic process [GO:0009067]	39
160		0,780	0,418	Q8KAX2		19
161		0,238	-0,040	Q8KAX3	mismatchrepair [GO:0006298]	27
162		0,000	-1,205	Q8KAX5		7
163		0,000	-1,728	Q8KAX6	peptidoglycan biosynthetic process [GO:0009252];regulation of cell shape [GO:0008360];cell wall organization [GO:0071555]	7
164		1,441	0,585	Q8KAX9	lysine biosynthetic process via diaminopimelate [GO:0009089]	9
165		0,000	-0,637	Q8KAY0	photosynthesis [GO:0015979]	15
166		0,868	0,703	Q9AEH8;Q8KAY1		10
167		0,390	-1,039	Q8KAY5;Q9F735		22
168	+	1,860	-1,035	Q8KAY6	glycogenbiosyntheticprocess [GO:0005978]	27
169		1,737	0,735	Q8KAY7	carbohydratemetabolicprocess [GO:0005975]	9

170		0,865	0,441	Q8KAZ0	lipid A biosynthetic process [GO:0009245]	12
171		0,000	0,027	Q8KAZ1		11
172		0,564	0,317	Q8KAZ7	cellredoxhomeostasis [GO:0045454]	9
173		0,000	-2,744	Q8KB00		29
174		1,380	0,362	Q8KB03		14
175	+	2,635	0,889	Q8KB04	iron-sulfur cluster assembly [GO:0016226]	17
176		1,049	0,824	Q8KB05	tRNAmodification [GO:0006400]	15
177		1,690	0,569	Q8KB10	histidinebiosyntheticprocess [GO:0000105]	19
178		0,574	0,149	Q8KB12		22
179		0,646	-0,258	Q8KB19		13
180		0,254	0,157	Q8KB22	maintenance of CRISPR repeat elements [GO:0043571];defense response to virus [GO:0051607]	21
181		0,329	0,149	Q8KB23		32
182		0,826	0,310	Q8KB24		15
183		1,044	0,294	Q8KB25		9
184		0,206	-0,063	Q8KB26		18
185		0,223	-0,151	Q8KB28		20
186		0,076	0,132	Q8KB32		7
187		0,568	-0,257	Q8KB35	glycolyticprocess [GO:0006096]	26
188		1,101	-0,454	Q8KB36;Q93SV1	cellredoxhomeostasis [GO:0045454]	23
189	+	2,239	-1,974	Q8KB41;Q93SV7		18
190		0,110	-0,062	Q8KB43	biosyntheticprocess [GO:0009058]	30
191		2,216	0,644	Q8KB47	DNAreplication [GO:0006260]	14
192		0,354	0,106	Q8KB48	pyrimidine nucleotide biosynthetic process [GO:0006221]	14
193	+	1,352	2,181	Q8KB51;Q46369		39
194	+	1,566	1,298	Q8KB52		21
195		1,015	0,423	Q8KB53	folic acid-containing compound biosynthetic process [GO:0009396]	6
196		0,021	-0,014	Q8KB55	NADbiosyntheticprocess [GO:0009435]	21
197		2,004	0,779	Q8KB57	cell division [GO:0051301];protein folding [GO:0006457];protein transport [GO:0015031];cell cycle [GO:0007049]	41
198		0,000	0,095	Q8KB60		12

199		2,149	0,303	Q8KB62	diaminopimelate biosynthetic process [GO:0019877];isoleucine biosynthetic process [GO:0009097];lysine biosynthetic process via diaminopimelate [GO:0009089];threonine biosynthetic process [GO:0009088];'de novo' L-methionine biosynthetic process [GO:0071266]	25
200		1,538	-0,814	Q8KB63		6
201		0,000	0,440	Q8KB65		9
202		2,852	-0,565	Q8KB68		27
203		1,052	0,437	Q8KB69		13
204	+	1,757	1,157	Q8KB70	translation [GO:0006412]	5
205		0,672	0,310	Q8KB71	chorismate biosynthetic process [GO:0009423];aromatic amino acid family biosynthetic process [GO:0009073]	26
206		0,002	-0,001	Q8KB81		11
207		0,195	0,209	Q8KB82		8
208	+	2,945	-1,005	Q8KB83		20
209	+	1,603	1,089	Q8KB88	transmembranetransport [GO:0055085]	8
210		0,369	0,242	Q8KB89		15
211		0,321	-0,132	Q8KB90		9
212		0,256	0,085	Q8KB91		22
213		0,000	1,314	Q8KB93		7
214		0,031	-0,017	Q8KB95		20
215		0,006	-0,005	Q8KB96		21
216		0,686	-1,057	Q8KB97	pyrimidine nucleotide biosynthetic process [GO:0006221]	14
217		0,590	-0,680	Q8KB98		14
218		2,145	-0,546	Q8KBA6	translation [GO:0006412]	10
219		1,535	-0,354	Q8KBA7		15
220		1,285	-0,560	Q8KBA8	DNA restriction-modification system [GO:0009307]	25
221		0,913	-0,461	Q8KBA9	DNAmodification [GO:0006304]	20
222		0,588	-0,617	Q8KBB1	DNA restriction-modification system [GO:0009307]	46
223		1,627	-0,510	Q8KBB3	cellular modified amino acid biosynthetic process [GO:0042398]	16
224	+	1,580	-1,211	Q8KBB5	pentose-phosphateshunt [GO:0006098]	21
225	+	4,126	-0,998	Q8KBB6		30
226		0,000	0,033	Q8KBB8	pentose-phosphate shunt [GO:0006098];carbohydrate metabolic process [GO:0005975]	12

227		1,434	-0,356	Q8KBB9		42
228		0,006	0,002	Q8KBC2		11
229		0,474	0,198	Q8KBC7		32
230		0,099	0,048	Q8KBD1	pteridine-containing compound metabolic process [GO:0042558]	52
231		1,324	0,654	Q8KBD2		9
232		0,793	-0,298	Q8KBD6		13
233		0,237	0,110	Q8KBD7		19
234		0,822	0,323	Q8KBD8	lysine biosynthetic process via diaminopimelate [GO:0009089];diaminopimelate biosynthetic process [GO:0019877]	15
235		1,259	-0,361	Q8KBE2	menaquinonebiosyntheticprocess [GO:0009234]	18
236		1,274	0,454	Q8KBE9	menaquinonebiosyntheticprocess [GO:0009234]	24
237		1,067	0,311	Q8KBF2	metaliontransport [GO:0030001]	7
238		0,512	-0,234	Q8KBF3	tricarboxylicacidcycle [GO:0006099]	31
239		1,286	0,544	Q8KBF4	translation [GO:0006412];regulation of translational fidelity [GO:0006450]	6
240		0,000	0,112	Q8KBF9	DNAcatabolicprocess [GO:0006308]	10
241		0,820	-0,219	Q8KBG1	photosynthesis [GO:0015979];bacteriochlorophyll biosynthetic process [GO:0030494]	21
242		0,010	-0,011	Q8KBG2	one-carbon metabolic process [GO:0006730];'de novo' IMP biosynthetic process [GO:0006189]	10
243	+	4,203	-1,483	Q8KBG4		9
244		0,496	0,128	Q8KBH1	L-methionine salvage from S-adenosylmethionine [GO:0019284];L-methionine salvage from methylthioadenosine [GO:0019509]	26
245		1,105	0,431	Q8KBH2	nucleosidemetabolicprocess [GO:0009116]	15
246	+	1,803	-0,901	Q8KBH5		17
247		0,098	-0,026	Q8КВН8	chorismate biosynthetic process [GO:0009423];shikimate metabolic process [GO:0019632];aromatic amino acid family biosynthetic process [GO:0009073]	20
248		0,000	-0,305	Q8KBI3		15
249		0,179	0,085	Q8KBI9	proteinmaturation [GO:0051604]	10
250		1,917	0,604	Q8KBJ9	glycine decarboxylation via glycine cleavage system [GO:0019464]	26
251		1,279	0,548	Q8KBK1	iron-sulfur cluster assembly [GO:0016226]	11
252		1,091	1,062	Q8KBK2		16

253	+	2,230	-0,951	Q8KBK3	ribosomebiogenesis [GO:0042254]	28
254	+	2,755	1,250	Q8KBK4	translation [GO:0006412]	11
255	+	3,071	1,102	Q8KBK5	translation [GO:0006412]	14
256		1,813	0,475	Q8KBK6	translation [GO:0006412]	25
257		2,770	0,497	Q8KBK7		26
258		1,259	0,152	Q8KBL2		37
259		1,315	0,604	Q8KBL3		20
260		0,031	0,025	Q8KBL4	carbonfixation [GO:0015977]	16
261		0,573	0,218	Q8KBL7		6
262		0,420	0,217	Q8KBL9		6
263		0,325	-0,212	Q8KBM0		17
264		0,021	-0,015	Q8KBM1	molybdateiontransport [GO:0015689]	9
265		0,000	-0,083	Q8KBN6		9
266		1,085	0,390	Q8KBN7		9
267		0,827	-0,159	Q8KBN8	cellredoxhomeostasis [GO:0045454]	20
268		0,757	-1,292	Q8KBP2		6
269		0,372	-1,944	Q8KBP3	ironionhomeostasis [GO:0055072]	41
270		0,398	-1,024	Q8KBP5	iron ion transport [GO:0006826];cellular iron ion homeostasis [GO:0006879]	10
271	+	2,595	-2,864	Q8KBQ1		9
272		1,674	-0,491	Q8KBQ4		33
273		1,525	-0,440	Q8KBQ5	DNAmethylation [GO:0006306]	63
274		1,553	0,657	Q8KBQ9		8
275		0,202	0,281	Q8KBR2		6
276	+	2,477	-1,320	Q8KBS0		33
277		1,568	0,441	Q8KBS2		8
278		0,611	0,350	Q8KBS3	base-excisionrepair [GO:0006284]	16
279	+	3,209	1,642	Q8KBS4	transcription antitermination [GO:0031564];DNA- templated transcription, termination [GO:0006353]	11
280		0,595	0,508	Q8KBS5		15
281		0,901	-0,456	Q8KBS6	DNA replication [GO:0006260];sister chromatid cohesion [GO:0007062];chromosome condensation [GO:0030261]	32
282	+	1,291	-1,706	Q8KBS9		7

283	+	1,662	2,350	Q8KBT4		23
284	+	1,629	-1,020	Q8KBU0		13
285	+	1,623	-1,140	Q8KBU3	nucleotide-excisionrepair [GO:0006289]	26
286	+	1,680	-1,010	Q8KBU9	proton export across plasma membrane [GO:0120029]	33
287		0,344	-0,102	Q8KBV0	pyruvatemetabolicprocess [GO:0006090]	83
288		0,676	-0,196	Q8KBV2		13
289		1,347	0,490	Q8KBV5		7
290		0,558	0,241	Q8KBV8	purine nucleobase biosynthetic process [GO:0009113];'de novo' IMP biosynthetic process [GO:0006189]	26
291		0,415	0,150	Q8KBV9		9
292		2,259	-0,506	Q8KBW0	'de novo' UMP biosynthetic process [GO:0044205]	30
293	+	3,334	1,992	Q8KBW1	tryptophanbiosyntheticprocess [GO:0000162]	14
294		0,762	0,846	Q8KBW2	pentose-phosphate shunt [GO:0006098];carbohydrate metabolic process [GO:0005975]	8
295		0,176	-0,215	Q8KBW3		21
296	+	1,986	1,082	Q8KBW4		5
297		1,138	-0,529	Q8KBW6	L-phenylalanine biosynthetic process [GO:0009094]	21
298	+	3,190	1,112	Q8KBW7	regulation of transcription, DNA-templated [GO:0006355]	15
299		0,134	-0,055	Q8KBX0	lipid A biosynthetic process [GO:0009245];fatty acid biosynthetic process [GO:0006633]	19
300		1,251	-1,375	Q8KBX4		5
301		0,676	-1,585	Q8KBX9		4
302		0,048	-0,013	Q8KBY0	acetyl-CoA biosynthetic process from acetate [GO:0019427]	43
303		0,971	-0,160	Q8KBY2	leucyl-tRNAaminoacylation [GO:0006429]	40
304		0,587	0,178	Q8KBY3	RNA processing [GO:0006396];mRNA catabolic process [GO:0006402]	45
305		0,690	0,537	Q8KBY5	pantothenatebiosyntheticprocess [GO:0015940]	15
306		0,468	-0,178	Q8KBY7	peptidetransport [GO:0015833]	11
307		2,009	-0,680	Q8KBZ2;Q9F720	tricarboxylic acid cycle [GO:0006099];carbon fixation [GO:0015977]	47
308		0,672	0,533	Q8KBZ6	primarymetabolicprocess [GO:0044238]	5
309		0,244	-0,434	Q8KBZ7	regulation of carbohydrate metabolic process [GO:0006109]	17
310		1,159	-0,841	Q8KBZ8	transmembranetransport [GO:0055085]	29

311		1,024	0,724	Q8KC00	DNA repair [GO:0006281];SOS response [GO:0009432];DNA recombination [GO:0006310]	17
312		0,172	0,016	Q8KC02	electrontransportchain [GO:0022900]	74
313		0,000	0,837	Q8KC03	RNAprocessing [GO:0006396]	10
314		0,283	-0,202	Q8KC04	glycine decarboxylation via glycine cleavage system [GO:0019464]	4
315		0,349	-0,244	Q8KC05	nucleoside metabolic process [GO:0009116];glycine decarboxylation via glycine cleavage system [GO:0019464]	17
316		0,544	0,421	Q8KC06	lysine biosynthetic process via diaminopimelate [GO:0009089];diaminopimelate biosynthetic process [GO:0019877]	13
317	+	1,831	-1,345	Q8KC12	DNA repair [GO:0006281];DNA recombination [GO:0006310]	23
318		1,489	-0,685	Q8KC14	protein transport by the Tat complex [GO:0043953];protein secretion [GO:0009306]	4
319		0,360	-0,145	Q8KC15	tRNAmodification [GO:0006400]	18
320		0,459	0,231	Q8KC17	tryptophanbiosyntheticprocess [GO:0000162]	16
321		0,139	-0,022	Q8KC18		14
322		0,617	-0,224	Q8KC21	leucine biosynthetic process [GO:0009098];valine biosynthetic process [GO:0009099];isoleucine biosynthetic process [GO:0009097]	26
323		0,022	0,014	Q8KC23	fructose 6-phosphate metabolic process [GO:0006002]	27
324		0,013	-0,007	Q8KC29	'de novo' UMP biosynthetic process [GO:0044205];'de novo' pyrimidine nucleobase biosynthetic process [GO:0006207]	12
325		0,940	-0,239	Q8KC30	carbohydratemetabolicprocess [GO:0005975]	45
326		1,634	0,325	Q8KC31		11
327		0,883	1,105	Q8KC32		4
328		0,258	-0,079	Q8KC34	'de novo' UMP biosynthetic process [GO:0044205]	41
329		1,363	0,288	Q8KC35	riboflavinbiosyntheticprocess [GO:0009231]	33
330		0,057	-0,042	Q8KC36	tetrahydrofolate interconversion [GO:0035999];glycine biosynthetic process from serine [GO:0019264]	31
331		1,806	0,739	Q8KC37		17
332	+	1,812	-0,998	Q8KC38		27
333		0,634	-1,095	Q8KC40	proteintransport [GO:0015031]	9
334		0,000	0,147	Q8KC42	proteintransport [GO:0015031]	7
335		2,044	0,360	Q8KC49	translationaltermination [GO:0006415]	22
336		0,037	-0,045	Q8KC50	translation [GO:0006412]	4

337		0,079	0,107	Q8KC52	ribosomal small subunit biogenesis [GO:0042274]	9
338		1,331	-0,499	Q8KC53		26
339		0,880	0,556	Q8KC55	regulation of transcription, DNA-templated [GO:0006355]	25
340		0,863	-0,938	Q8KC57	regulation of transcription, DNA-templated [GO:0006355]	20
341		1,589	-0,762	Q8KC60		19
342		0,000	-0,655	Q8KC61	glutaminemetabolicprocess [GO:0006541]	5
343		0,000	0,359	Q8KC65		8
344		0,000	-0,064	Q8KC69		4
345		0,181	0,063	Q8KC71	malonyl-CoA biosynthetic process [GO:2001295];fatty acid biosynthetic process [GO:0006633]	17
346		0,864	-0,291	Q8KC72	dTMPbiosyntheticprocess [GO:0006231]	13
347		0,672	0,314	Q8KC73		10
348		1,734	-0,474	Q8KC74	valyl-tRNAaminoacylation [GO:0006438]	59
349		0,164	0,063	Q8KC77		62
350	+	1,362	-1,515	Q8KC80	guanosine tetraphosphate metabolic process [GO:0015969]	37
351		0,000	1,387	Q8KC81	molybdateiontransport [GO:0015689]	11
352		0,000	0,447	Q8KC82	molybdateiontransport [GO:0015689]	11
353		0,015	-0,021	Q8KC98		48
354		1,956	-0,810	Q8KC99	organic acid metabolic process [GO:0006082];acetyl-CoA biosynthetic process [GO:0006085]	20
355		0,853	-0,466	Q8KCA0	carbohydratemetabolicprocess [GO:0005975]	63
356	+	1,611	-2,569	Q8KCA5		11
357		0,721	0,319	Q8KCB0	histidinebiosyntheticprocess [GO:0000105]	15
358		0,442	0,122	Q8KCB2		27
359		0,393	0,228	Q8KCB4	nitrogen compound metabolic process [GO:0006807]	15
360		0,076	0,058	Q8KCB6	putrescinebiosyntheticprocess [GO:0009446]	16
361		0,567	0,242	Q8KCB7	translation [GO:0006412]	4
362	+	2,100	1,025	Q8KCB8	translation [GO:0006412]	8
363	+	1,917	-0,902	Q8KCC0	mismatchrepair [GO:0006298]	39
364		1,873	0,855	Q8KCC3	regulation of transcription, DNA-templated [GO:0006355]	6
365		0,000	-0,085	Q8KCC5	regulation of transcription, DNA-templated [GO:0006355]	15
366		0,560	0,460	Q8KCC6		13

					terpenoid biosynthetic process [GO:0016114]; isopentenyl	
367		0,522	-0,228	Q8KCC7	diphosphate biosynthetic process, methylerythritol 4- phosphate pathway [GO:0019288]	11
368		0,304	-0,218	Q8KCC8	nitrogen compound metabolic process [GO:0006807]	7
369		1,592	0,799	Q8KCD0	cellredoxhomeostasis [GO:0045454]	19
370		1,740	-0,405	Q8KCD1	prolyl-tRNAaminoacylation [GO:0006433]	27
371		0,276	0,168	Q8KCD3		11
372		0,118	-0,145	Q8KCD6	negative regulation of transcription, DNA-templated [GO:0045892]	8
373		0,214	0,109	Q8KCD7	proteinfolding [GO:0006457]	17
374		0,105	0,083	Q8KCD8	protein folding [GO:0006457];response to heat [GO:0009408];DNA replication [GO:0006260]	26
375		0,000	1,314	Q8KCD9	photosynthesis [GO:0015979];chlorophyll biosynthetic process [GO:0015995]	6
376		1,170	-0,359	Q8KCE0		11
377		1,988	0,650	Q8KCE2	glucosemetabolicprocess [GO:0006006]	29
378		0,645	0,188	Q8KCE3	peptidoglycan biosynthetic process [GO:0009252];cell wall organization [GO:0071555]	19
379		0,486	-0,095	Q8KCE5		23
380		0,734	0,147	Q8KCE9	L-proline biosynthetic process [GO:0055129]	33
381		0,424	-0,274	Q8KCF9		18
382		0,829	-0,348	Q8KCG4	L-proline biosynthetic process [GO:0055129]	14
383		1,560	0,911	Q8KCG7	translation [GO:0006412]	8
384		1,388	0,670	Q8KCG8		21
385	+	3,225	1,015	Q8KCH0	positive regulation of translation [GO:0045727]	25
386		1,075	-0,509	Q8KCH1		17
387		0,031	-0,022	Q8KCH3	tryptophanbiosyntheticprocess [GO:0000162]	32
388		1,456	-0,424	Q8KCH4		38
389	+	2,928	1,149	Q8KCH5	regulation of DNA-templated transcription, elongation [GO:0032784]	15
390		1,757	0,521	Q8KCH6		6
391		0,056	0,058	Q8KCH9	thiamine diphosphate biosynthetic process [GO:0009229];thiamine biosynthetic process [GO:0009228]	37
392		0,309	0,167	Q8KCI1		26
393	+	2,276	0,946	Q8KCI4		11

394		0,490	-0,221	Q8KCI5	cysteine biosynthetic process from serine [GO:0006535]	16
395		0,482	0,206	Q8KCI9	chorismate biosynthetic process [GO:0009423];aromatic amino acid family biosynthetic process [GO:0009073]	20
396		0,429	0,158	Q8KCJ0	protoporphyrinogen IX biosynthetic process [GO:0006782]	26
397		0,921	0,231	Q8KCJ1	phosphatidylinositolphosphorylation [GO:0046854]	15
398	+	1,892	0,979	Q8KCJ3	protoporphyrinogen IX biosynthetic process [GO:0006782]	14
399		1,811	0,803	Q8KCJ4	peptidyl-pyrromethane cofactor linkage [GO:0018160];protoporphyrinogen IX biosynthetic process [GO:0006782];chlorophyll biosynthetic process [GO:0015995]	27
400	+	5,026	1,430	Q8KCJ5;Q93ST2		30
401		0,000	0,928	Q8KCJ6	DNA-templated transcription, initiation [GO:0006352];photosynthesis [GO:0015979];bacteriochlorophyll biosynthetic process [GO:0030494]	23
402		0,409	0,139	Q8KCJ7;Q93ST5		13
403	+	3,614	-1,013	Q93ST7;Q8KCJ8	transmembranetransport [GO:0055085]	28
404		0,517	0,214	Q8KCK0;O68989		13
405		2,810	-0,565	Q8KCK1		23
406		0,000	0,429	Q8KCK2		6
407		0,955	-0,296	Q8KCK3		13
408		0,777	-0,246	Q8KCK4	nitrogen compound metabolic process [GO:0006807]	49
409		1,151	0,399	Q8KCK5		7
410		0,000	-0,884	Q8KCK6		4
411		2,005	-0,411	Q8KCK9	chorismate biosynthetic process [GO:0009423];aromatic amino acid family biosynthetic process [GO:0009073]	28
412		1,031	1,136	Q8KCL0	chorismate biosynthetic process [GO:0009423];aromatic amino acid family biosynthetic process [GO:0009073]	11
413	+	2,055	-1,556	Q8KCL4		15
414		0,000	-0,280	Q8KCL5		9
415		0,009	-0,004	Q8KCL6	transcription, DNA-templated [GO:0006351];regulation of transcription, DNA-templated [GO:0006355]	16
416		1,171	0,261	Q8KCL7	tRNA modification [GO:0006400];peptidyl-L-beta- methylthioaspartic acid biosynthetic process from peptidyl-aspartic acid [GO:0018339]	21
417		0,806	0,864	Q8KCL9	regulation of transcription, DNA-templated [GO:0006355]	34
418		0,392	0,117	Q8KCM7	lysyl-tRNAaminoacylation [GO:0006430]	41

419		0,021	0,030	Q8KCN8		20
420		0,040	0,022	Q8KCP2	lysine biosynthetic process via diaminopimelate [GO:0009089]	29
421		1,376	0,691	Q8KCP5	tetrahydrofolate interconversion [GO:0035999];methionine biosynthetic process [GO:0009086]	16
422	+	4,242	1,043	Q8KCQ1	translation [GO:0006412]	13
423		0,559	0,242	Q8KCQ2	nucleoside metabolic process [GO:0009116];nucleotide biosynthetic process [GO:0009165];ribonucleoside monophosphate biosynthetic process [GO:0009156];5- phosphoribose 1-diphosphate biosynthetic process [GO:0006015]	17
424	+	1,789	0,901	Q8KCQ3	lipid A biosynthetic process [GO:0009245]	14
425		0,477	-0,215	Q8KCQ6		22
426		0,221	-0,169	Q8KCQ9		4
427	+	2,584	-1,389	Q8KCR0		21
428		0,228	-0,107	Q8KCR5	transmembranetransport [GO:0055085]	16
429		0,100	-0,068	Q8KCR8	peptidoglycan biosynthetic process [GO:0009252];regulation of cell shape [GO:0008360];cell wall organization [GO:0071555]	20
430		1,195	0,532	Q8KCR9		6
431		0,341	-0,131	Q8KCS2	pantothenatebiosyntheticprocess [GO:0015940]	19
432		1,882	0,621	Q8KCS4	'de novo' IMP biosynthetic process [GO:0006189]	6
433		1,862	0,325	Q8KCS5	glutamine metabolic process [GO:0006541];'de novo' IMP biosynthetic process [GO:0006189]	13
434		0,819	0,289	Q8KCT1	Mo-molybdopterin cofactor biosynthetic process [GO:0006777];molybdopterin cofactor biosynthetic process [GO:0032324]	14
435		0,413	-0,617	Q8KCT3	cellular iron ion homeostasis [GO:0006879]	14
436		1,886	0,441	Q8KCT4		13
437		0,759	-0,188	Q8KCT6	DNAreplication [GO:0006260]	25
438		1,626	-0,282	Q8KCT7	aspartyl-tRNAaminoacylation [GO:0006422]	37
439		0,000	0,010	Q8KCU2		6
440		0,729	0,303	Q8KCU3	terpenoid biosynthetic process [GO:0016114];isopentenyl diphosphate biosynthetic process, methylerythritol 4- phosphate pathway [GO:0019288]	16
441		0,731	0,468	Q8KCU4	queuosinebiosyntheticprocess [GO:0008616]	23
442		1,180	-0,300	Q8KCU5	carbohydratemetabolicprocess [GO:0005975]	65
443		2,038	-0,701	Q8KCU6		25

444		0,309	-0,143	Q8KCU7	dTTP biosynthetic process [GO:0006235];dTDP biosynthetic process [GO:0006233]	13
445	+	0,948	-3,877	Q8KCV1		16
446		0,091	-0,110	Q8KCV2		13
447		0,165	-0,191	Q8KCV5		24
448		0,000	0,242	Q8KCV6		8
449		0,171	0,062	Q8KCV9		34
450		0,829	0,433	Q8KCW2;Q93SW2	glycolytic process [GO:0006096];cell redox homeostasis [GO:0045454]	22
451		1,134	-0,151	Q8KCW4	GMPbiosyntheticprocess [GO:0006177]	29
452		0,000	-0,021	Q8KCX4		8
453		1,633	-0,435	Q8KCX9	cellular protein modification process [GO:0006464]	19
454		0,407	-0,704	Q8KCY0		12
455		0,896	-0,406	Q8KCY2	oxidation-reductionprocess [GO:0055114]	23
456		0,548	0,608	Q8KCZ2		18
457		0,000	-1,166	Q8KCZ4		4
458		1,168	0,382	Q8KCZ8		17
459		1,109	-0,431	Q8KCZ9	carbohydrate metabolic process [GO:0005975];ADP-L- glycero-beta-D-manno-heptose biosynthetic process [GO:0097171]	22
460		0,845	0,454	Q8KD01	histidinebiosyntheticprocess [GO:0000105]	23
461		0,000	0,375	Q8KD05	translation [GO:0006412]	6
462		1,336	0,458	Q8KD07	pyrimidine nucleotide biosynthetic process [GO:0006221]	19
463		0,690	-0,424	Q8KD08		15
464		0,564	0,326	Q8KD09		15
465		1,054	0,486	Q8KD10	oxidation-reductionprocess [GO:0055114]	10
466		0,871	-0,323	Q8KD11		34
467		0,754	-0,753	Q8KD12		22
468		0,446	0,206	Q8KD15	biosyntheticprocess [GO:0009058]	23
469		0,195	-0,099	Q8KD16	nicotinamide nucleotide metabolic process [GO:0046496]	21
470		0,531	-0,138	Q8KD17	'de novo' IMP biosynthetic process [GO:0006189]	48
471		1,399	0,154	Q8KD18	protein import [GO:0017038];protein targeting [GO:0006605];intracellular protein transmembrane transport [GO:0065002]	64

472		0,000	-0,258	Q8KD19		8
473		1,182	-0,300	Q8KD24		16
474		0,380	0,178	Q8KD27	cell division [GO:0051301];cell wall organization [GO:0071555];peptidoglycan biosynthetic process [GO:0009252];regulation of cell shape [GO:0008360];cell cycle [GO:0007049]	20
475		0,996	-0,509	Q8KD30	peptidoglycancatabolicprocess [GO:0009253]	18
476		0,650	-0,454	Q8KD38		7
477		1,330	0,537	Q8KD40	glycerol ether metabolic process [GO:0006662];cell redox homeostasis [GO:0045454]	24
478		0,231	0,151	Q8KD41	deoxyribonucleotidecatabolicprocess [GO:0009264]	7
479		0,715	-0,298	Q8KD42	rRNAprocessing [GO:0006364]	24
480		0,485	-0,523	Q8KD43		14
481		0,042	0,183	Q8KD44		8
482		0,000	-0,229	Q8KD46	coenzyme A biosynthetic process [GO:0015937]	12
483		0,688	-0,306	Q8KD49	isoprenoidbiosyntheticprocess [GO:0008299]	24
484		0,101	0,136	Q8KD50		11
485		0,557	0,776	Q8KD53		7
486		0,237	0,082	Q8KD57	oxidation-reductionprocess [GO:0055114]	15
487		0,658	-0,276	Q8KD59	recombinationalrepair [GO:0000725]	17
488		2,052	0,672	Q8KD60		12
489		0,239	0,208	Q8KD62	proteolysis involved in cellular protein catabolic process [GO:0051603]	11
490		1,445	0,642	Q8KD63	proteinunfolding [GO:0043335]	34
491		1,633	0,827	Q8KD69	AMPsalvage [GO:0044209]	18
492		0,858	0,909	Q8KD71	rRNAbasemethylation [GO:0070475]	13
493		1,326	-0,408	Q8KD73		14
494		0,128	-0,081	Q8KD74		34
495	+	3,040	-1,124	Q8KD76		20
496		0,506	-0,089	Q8KD77	polysaccharidebiosyntheticprocess [GO:0000271]	28
497		1,215	0,508	Q8KD78	thiaminebiosyntheticprocess [GO:0009228]	9
498		0,890	0,188	Q8KD79	thiamine diphosphate biosynthetic process [GO:0009229];thiamine biosynthetic process [GO:0009228]	11
499		0,415	0,171	Q8KD80		15

500		0,455	-0,247	Q8KD81		11
501		0,226	0,103	Q8KD84		15
502		0,327	-0,068	Q8KD86	carbohydratemetabolicprocess [GO:0005975]	10
503		1,120	0,758	Q8KD87	SRP-dependent cotranslational protein targeting to membrane [GO:0006614]	43
504		1,625	0,474	Q8KD88	translation [GO:0006412]	14
505	+	4,015	0,931	Q8KD91	translation [GO:0006412]	8
506		0,000	-1,157	Q8KD93		24
507		0,216	0,544	Q8KD96		6
508		0,166	-0,172	Q8KD97		11
509		0,000	-0,362	Q8KDA1		6
510		0,003	-0,001	Q8KDA2		20
511		0,966	0,696	Q8KDA3		24
512		0,072	-0,020	Q8KDA4		13
513		0,000	0,039	Q8KDB1		8
514		2,755	-0,456	Q8KDB5		57
515		0,593	-0,278	Q8KDC0	maintenance of CRISPR repeat elements [GO:0043571];defense response to virus [GO:0051607]	17
516		0,107	-0,086	Q8KDC1		33
517		0,950	0,390	Q8KDC2		22
518		0,000	0,254	Q8KDD5		8
519		0,790	0,389	Q8KDE0	argininebiosyntheticprocess [GO:0006526]	28
520		0,764	0,602	Q8KDE2	argininebiosyntheticprocess [GO:0006526]	15
521		0,000	-0,074	Q8KDE3	argininebiosyntheticprocess [GO:0006526]	10
522	+	3,552	-0,797	Q8KDF4		10
523		0,342	0,149	Q8KDG1	tricarboxylicacidcycle [GO:0006099]	33
523 524		0,342	0,149	Q8KDG1 Q8KDG2	tricarboxylicacidcycle [GO:0006099]	33 36
523 524 525	+	0,342 0,189 3,502	0,149 -0,120 -0,782	Q8KDG1 Q8KDG2 Q8KDG3	tricarboxylicacidcycle [GO:0006099]	33 36 22
523 524 525 526	+	0,342 0,189 3,502 0,053	0,149 -0,120 -0,782 -0,037	Q8KDG1 Q8KDG2 Q8KDG3 Q8KDG5	tricarboxylicacidcycle [GO:0006099]	33 36 22 18
523 524 525 526 527	+	0,342 0,189 3,502 0,053 0,847	0,149 -0,120 -0,782 -0,037 0,326	Q8KDG1 Q8KDG2 Q8KDG3 Q8KDG5 Q8KDG6	tricarboxylicacidcycle [GO:0006099]	33 36 22 18 26
523 524 525 526 527 528	+	0,342 0,189 3,502 0,053 0,847 3,446	0,149 -0,120 -0,782 -0,037 0,326 -0,871	Q8KDG1 Q8KDG2 Q8KDG3 Q8KDG5 Q8KDG6 Q8KDG8	tricarboxylicacidcycle [GO:0006099]	33 36 22 18 26 24

530		2,331	0,593	Q8KDH4		16
531		0,479	0,567	Q8KDH5	cytochrome complex assembly [GO:0017004];cell redox homeostasis [GO:0045454]	11
532		1,210	1,288	Q8KDH8	cellredoxhomeostasis [GO:0045454]	10
533		1,268	0,955	Q8KDI3		8
534		1,398	1,099	Q8KDI4		7
535		0,409	-0,631	Q8KDI7		17
536		0,122	-0,068	Q8KDJ0	'de novo' IMP biosynthetic process [GO:0006189]	23
537		0,815	-0,232	Q8KDJ2	proteolysis [GO:0006508]	24
538		1,218	-0,862	Q8KDJ5	arginine biosynthetic process via ornithine [GO:0042450]	29
539		0,662	0,272	Q8KDJ6		47
540		0,355	0,205	Q8KDJ7	glycolytic process [GO:0006096];fructose 1,6- bisphosphate metabolic process [GO:0030388]	25
541		0,194	0,145	Q8KDJ8		20
542		1,691	0,763	Q8KDK0	pentose-phosphate shunt [GO:0006098];carbohydrate metabolic process [GO:0005975]	10
543	+	2,522	-2,016	Q8KDK2	signaltransduction [GO:0007165]	24
544		0,965	0,837	Q8KDK4		10
545		1,402	0,522	Q8KDK5	'de novo' UMP biosynthetic process [GO:0044205]	30
546	+	2,670	1,030	Q8KDK6		5
547		0,000	0,063	Q8KDK7		12
548		0,000	-1,239	Q8KDK9		25
549	+	1,930	-0,962	Q8KDL1		17
550		0,218	-0,188	Q8KDM1		30
551	+	1,425	1,276	Q8KDM3	cellredoxhomeostasis [GO:0045454]	12
552	+	2,788	1,139	Q8KDM5	nucleotidecatabolicprocess [GO:0009166]	52
553	+	2,457	1,225	Q8KDM6		9
554		1,089	0,758	Q8KDM7	oxidation-reduction process [GO:0055114];sulfur oxidation [GO:0019417];enzyme active site formation via cysteine modification to L-cysteine persulfide [GO:0018192]	27
555		1,369	1,076	Q8KDM8		7
556		1,324	0,507	Q8KDM9		7
557		0,235	0,246	Q8KDN0		6

558	+	3,171	0,842	Q8KDN1		15
559		0,000	0,857	Q8KDN8		6
560		0,687	0,301	Q8KDP3		10
561	+	1,442	-1,693	Q8KDQ0		15
562		1,689	-0,551	Q8KDQ2		35
563		0,568	-0,584	Q8KDQ5	RNAprocessing [GO:0006396]	16
564		0,949	-0,220	Q8KDQ6	'de novo' IMP biosynthetic process [GO:0006189];'de novo' AMP biosynthetic process [GO:0044208]	31
565		0,431	-0,207	Q8KDQ7	glycolytic process [GO:0006096];gluconeogenesis [GO:0006094]	18
566		0,195	0,173	Q8KDR0	regulation of nitrogen utilization [GO:0006808]	6
567		0,453	-0,235	Q8KDR2		21
568		0,559	0,242	Q8KDR4	chorismate biosynthetic process [GO:0009423];aromatic amino acid family biosynthetic process [GO:0009073]	24
569		0,541	0,069	Q8KDR5		26
570	+	1,686	-1,253	Q8KDR6	peptidoglycanmetabolicprocess [GO:0000270]	20
571	+	1,879	-1,053	Q8KDR8	carbohydratemetabolicprocess [GO:0005975]	23
572		1,392	0,483	Q8KDR9		20
573		0,325	0,184	Q8KDS3		7
574		2,114	0,516	Q8KDS8	biosyntheticprocess [GO:0009058]	26
575		1,519	0,364	Q8KDS9	coenzyme A biosynthetic process [GO:0015937]	11
576		0,118	0,216	Q8KDT1		14
577		0,634	0,322	Q8KDT4	cobalamin biosynthetic process [GO:0009236];'de novo' IMP biosynthetic process [GO:0006189]	22
578	+	3,320	1,394	Q8KDT5		8
579	+	2,769	2,190	Q8KDT6		10
580	+	1,169	-1,659	Q8KDT8	protontransmembranetransport [GO:1902600]	17
581		0,000	-0,803	Q8KDU3		14
582		1,565	0,467	Q8KDU5		11
583		0,000	-0,568	Q8KDU7		10
584		1,785	0,795	Q8KDU8	nucleoside biosynthetic process [GO:0009163];cobalamin biosynthetic process [GO:0009236]	18
585		0,175	0,175	Q8KDU9	cobalaminbiosyntheticprocess [GO:0009236]	8
586		0,544	0,379	Q8KDV0		8

587		0,000	-0,353	Q8KDV1		16
588	+	1,897	0,901	Q8KDV3	cobalaminbiosyntheticprocess [GO:0009236]	12
589		0,270	0,370	Q8KDV6	glutamine metabolic process [GO:0006541];cobalamin biosynthetic process [GO:0009236]	23
590		1,165	0,554	Q8KDW1		4
591		0,000	0,023	Q8KDW4		8
592		1,605	-0,590	Q8KDW5	glutamine metabolic process [GO:0006541];cobalamin biosynthetic process [GO:0009236]	22
593	+	2,276	1,386	Q8KDX0		6
594		0,223	0,160	Q8KDX4		13
595		1,208	0,535	Q8KDX6		20
596		0,218	0,106	Q8KDY2		19
597		0,026	0,053	Q8KDY5		14
598		0,712	0,475	Q8KDY6	DNAmethylation [GO:0006306]	23
599		0,972	0,738	Q8KDZ1		20
600		0,446	0,184	Q8KDZ4	negative regulation of phosphate metabolic process [GO:0045936];phosphate ion transport [GO:0006817];cellular phosphate ion homeostasis [GO:0030643]	20
601		1,604	0,748	Q8KDZ5		17
602		0,374	0,386	Q8KDZ9		22
603		0,014	0,018	Q8KE01		12
604		1,553	0,588	Q8KE04		11
605		0,751	0,285	Q8KE05		13
606		0,000	-0,286	Q8KE09		16
607		1,218	-0,534	Q8KE13		17
608		0,000	-0,205	Q8KE14	tRNA guanine ribose methylation [GO:0002938]	7
609	+	3,312	-0,736	Q8KE17		36
610		1,662	0,818	Q8KE20		18
611		0,207	0,089	Q8KE24		13
612		1,796	0,255	Q8KE25		52
613		2,035	0,551	Q8KE26		24
614		1,160	0,362	Q8KE27		49
615		1,564	0,763	Q8KE28		12
616		0,619	0,142	Q8KE30	sulfate assimilation [GO:0000103];hydrogen sulfide biosynthetic process [GO:0070814]	29
-----	---	-------	--------	--------	---	----
617		0,557	0,412	Q8KE31		6
618	+	4,080	1,994	Q8KE35	tRNA wobble position uridine thiolation [GO:0002143]	11
619	+	3,354	1,929	Q8KE36		8
620	+	2,079	1,481	Q8KE37	tRNAprocessing [GO:0008033]	10
621		0,731	0,289	Q8KE38		5
622		1,916	0,407	Q8KE39	sulfur compound metabolic process [GO:0006790]	29
623		1,299	0,693	Q8KE43		6
624		0,000	1,884	Q8KE47		9
625	+	2,179	0,792	Q8KE48	removal of superoxide radicals [GO:0019430]	22
626		1,584	0,336	Q8KE49	glycerol ether metabolic process [GO:0006662];cell redox homeostasis [GO:0045454]	7
627		2,022	-0,719	Q8KE50	DNAreplication [GO:0006260]	44
628		1,528	-0,652	Q8KE51		18
629	+	2,547	-0,992	Q8KE52	carbohydratemetabolicprocess [GO:0005975]	49
630		1,002	0,396	Q8KE54		14
631		0,020	-0,014	Q8KE56		33
632		0,428	-0,203	Q8KE57	generation of precursor metabolites and energy [GO:0006091]	30
633		0,682	-0,068	Q8KE61	proteinfolding [GO:0006457]	63
634		0,000	-0,186	Q8KE62		9
635		0,406	0,098	Q8KE65	carbohydratebiosyntheticprocess [GO:0016051]	20
636		0,976	0,205	Q8KE66		11
637		2,411	0,438	Q8KE67	phosphate-containing compound metabolic process [GO:0006796]	11
638		1,911	0,728	Q8KE69		5
639		0,084	0,059	Q8KE70		11
640		0,325	-0,061	Q8KE76		7
641		0,517	0,228	Q8KE83		20
642		0,995	0,306	Q8KE85		4
643		1,156	1,023	Q8KE86		16
644		0,072	-0,053	Q8KE92		14

645		1,260	-0,730	Q8KE93		14
646		1,452	-0,987	Q8KEA3		5
647		0,297	0,569	Q8KEA4	glycerol ether metabolic process [GO:0006662];cell redox homeostasis [GO:0045454]	8
648		0,042	0,027	Q8KEA7	queuosinebiosyntheticprocess [GO:0008616]	12
649		0,059	-0,092	Q8KEA8	one-carbon metabolic process [GO:0006730];tetrahydrofolate biosynthetic process [GO:0046654];7,8-dihydroneopterin 3'-triphosphate biosynthetic process [GO:0035998]	12
650		1,554	0,289	Q8KEB8		16
651		0,796	0,199	Q8KEC0		25
652		1,696	0,606	Q8KEC1		16
653		1,852	0,781	Q8KEC2		9
654	+	1,973	1,147	Q8KEC9		10
655		0,197	0,466	Q8KED3		7
656		0,209	0,069	Q8KED5	cellredoxhomeostasis [GO:0045454]	11
657		0,552	-0,142	Q8KEE2	riboflavinbiosyntheticprocess [GO:0009231]	22
658		0,528	-0,247	Q8KEE3	pyrimidine nucleotide metabolic process [GO:0006220]	11
659		1,242	-0,275	Q8KEE5		9
660		1,257	0,338	Q8KEF4	histidinebiosyntheticprocess [GO:0000105]	10
661		0,634	-0,530	Q8KEF5	mRNAcatabolicprocess [GO:0006402]	26
662		1,712	0,507	Q8KEF7		10
663		0,379	0,244	Q8KEF8		6
664		0,288	0,129	Q8KEF9	phenylalanyl-tRNAaminoacylation [GO:0006432]	44
665		2,511	0,594	Q8KEG0		10
666		0,706	-0,463	Q8KEG2	biosyntheticprocess [GO:0009058]	13
667		0,643	-0,194	Q8KEG7	S-adenosylmethionine biosynthetic process [GO:0006556];one-carbon metabolic process [GO:0006730]	43
668		0,624	0,385	Q8KEG8	S-adenosylhomocysteine catabolic process [GO:0019510];one-carbon metabolic process [GO:0006730]	42
669		1,244	0,523	Q8KEG9	cellularmetabolicprocess [GO:0044237]	13
670		1,879	0,519	Q8KEH0		25
671		0,217	0,075	Q8KEH1	tryptophanbiosyntheticprocess [GO:0000162]	5
672		0,087	-0,062	Q8KEH2		10

673		0,374	-0,346	Q8KEH5		10
674		0,826	-1,021	Q8KEH8		16
675		0,170	-0,082	Q8KEI2		5
676		1,886	0,708	Q8KEJ1	thiamine diphosphate biosynthetic process [GO:0009229];thiamine biosynthetic process [GO:0009228]	16
677		0,697	0,184	Q8KEK7		17
678		0,178	0,068	Q8KEK8		10
679		0,978	-0,371	Q8KEL2		27
680		0,655	0,593	Q8KEL8	molybdateiontransport [GO:0015689]	27
681		0,782	0,295	Q8KEM5	cellredoxhomeostasis [GO:0045454]	20
682		1,441	0,484	Q8KEN1	regulation of transcription, DNA-templated [GO:0006355];phosphorelay signal transduction system [GO:0000160]	15
683		0,284	0,087	Q8KEN2	peptidetransport [GO:0015833]	14
684		1,026	-1,248	Q8KEN4	transcription-coupled nucleotide-excision repair, DNA damage recognition [GO:0000716];regulation of transcription, DNA-templated [GO:0006355]	32
685		0,960	-0,568	Q8KEN5		13
686		1,437	0,695	Q8KEN6	L-alanine catabolic process [GO:0042853]	15
687		0,864	-0,489	Q8KEN7		13
688		2,056	0,665	Q8KEN8	DNA-templated transcription, initiation [GO:0006352]	8
689	+	1,698	1,049	Q8KEN9		5
690		0,612	0,417	Q8KEP0		12
691		0,624	-0,330	Q8KEP2		9
692		2,656	-0,642	Q8KEP3	proteinfolding [GO:0006457]	23
693		0,180	-0,075	Q8KEP4		9
694		0,278	0,229	Q8KEP5	photosynthesis [GO:0015979];oxidation-reduction process [GO:0055114]	16
695		0,476	-0,472	Q8KEP6	celldivision [GO:0051301]	18
696		0,463	-0,520	Q8KEP8	celldivision [GO:0051301]	9
697		0,488	-0,226	Q8KEQ0	proteinimport [GO:0017038]	22
698		0,137	-0,161	Q8KEQ1		14
699		0,187	-0,168	Q8KEQ2	proteintransport [GO:0015031]	8
700		0,580	-0,787	Q8KEQ3	protein transport [GO:0015031];bacteriocin transport [GO:0043213]	4

701		1,185	-1,291	Q8KEQ5		24
702		0,626	0,225	Q8KEQ6		14
703		0,000	-0,150	Q8KER2	transcriptionantitermination [GO:0031564]	5
704		0,340	0,911	Q8KER4	valine biosynthetic process [GO:0009099];isoleucine biosynthetic process [GO:0009097]	27
705		0,279	0,806	Q8KER5	valine biosynthetic process [GO:0009099];isoleucine biosynthetic process [GO:0009097]	35
706		0,475	1,310	Q8KER6	branched-chain amino acid biosynthetic process [GO:0009082]	14
707		0,643	0,597	Q8KER7	valine biosynthetic process [GO:0009099];isoleucine biosynthetic process [GO:0009097]	28
708		0,131	-0,111	Q8KER8	leucinebiosyntheticprocess [GO:0009098]	25
709		0,809	1,309	Q8KER9		7
710		0,793	0,573	Q8KES0	leucinebiosyntheticprocess [GO:0009098]	34
711		0,000	0,058	Q8KES1		10
712		1,429	1,066	Q8KES2		6
713		1,178	-0,330	Q8KES3		15
714		0,452	0,499	Q8KES5		10
715		0,354	0,096	Q8KES6	selenocysteinyl-tRNA(Sec) biosynthetic process [GO:0097056];seryl-tRNA aminoacylation [GO:0006434];selenocysteine biosynthetic process [GO:0016260]	21
716		0,630	0,314	Q8KES7	methioninebiosyntheticprocess [GO:0009086]	15
717		0,015	0,013	Q8KES8		23
718		0,000	-2,940	Q8KET1	RNAprocessing [GO:0006396]	14
719		0,049	0,044	Q8KET2		7
720	+	1,811	-2,286	Q8KET4		17
721		0,422	0,183	Q8KEU1		20
722		1,468	0,730	Q8KEU2	celldivision [GO:0051301]	12
723		0,750	-0,785	Q8KEV4	DNA replication [GO:0006260];DNA biosynthetic process [GO:0071897]	58
724	+	2,155	-1,148	Q8KEV7		12
725		0,563	-0,172	Q8KEW2	NADbiosyntheticprocess [GO:0009435]	21
726		0,523	0,216	Q8KEW3	proteinfolding [GO:0006457]	10
727		0,025	0,036	Q8KEW7		16
728		0,000	0,679	Q8KEW8;REVQ8KEW8	trans-translation [GO:0070929]	5

729		0,493	-0,423	Q8KEW9	tyrosyl-tRNAaminoacylation [GO:0006437]	20
730		0,747	0,375	Q8KEX0	argininecatabolicprocess [GO:0006527]	8
731		0,035	-0,023	Q8KEX1	NADbiosyntheticprocess [GO:0009435]	18
732		1,450	0,548	Q8KEX2	NADbiosyntheticprocess [GO:0009435]	11
733		0,801	-0,799	Q8KEX4		12
734		0,858	0,272	Q8KEX5		5
735		0,996	0,447	Q8KEX7	cell division [GO:0051301];cell wall organization [GO:0071555];peptidoglycan biosynthetic process [GO:0009252];regulation of cell shape [GO:0008360];UDP-N-acetylgalactosamine biosynthetic process [GO:0019277];cell cycle [GO:0007049]	18
736		0,074	-0,095	Q8KEX8		24
737		1,492	-0,864	Q8KEX9		16
738		0,440	-0,169	Q8KEY0		20
739		0,000	-2,677	Q8KEY1		11
740		1,071	-1,452	Q8KEY4	bacillithiolbiosyntheticprocess [GO:0071793]	15
741		2,204	0,725	Q8KEY5	cellmorphogenesis [GO:0000902]	28
742		0,297	0,142	Q8KEY6	histidinebiosyntheticprocess [GO:0000105]	22
743		0,238	-0,101	Q8KEY7	queuosinebiosyntheticprocess [GO:0008616]	18
744		0,487	0,206	Q8KEY9	tricarboxylicacidcycle [GO:0006099]	52
745		0,907	-0,637	Q8KEZ1		8
746		1,564	-0,459	Q8KEZ7		7
747		0,172	-0,081	Q8KF00	queuosinebiosyntheticprocess [GO:0008616]	12
748		0,585	0,616	Q8KF01		35
749		0,996	0,318	Q8KF02	proteinrefolding [GO:0042026]	72
750		0,703	0,297	Q8KF03	proteinfolding [GO:0006457]	11
751		1,228	-0,795	Q8KF05	nucleotide-excisionrepair [GO:0006289]	31
752		0,668	-1,060	Q8KF08		12
753		0,494	-0,557	Q8KF09		20
754		0,123	0,041	Q8KF11		26
755	+	3,699	-0,818	Q8KF23		39
756		0,476	0,088	Q8KF30	DNA-templated transcription, initiation [GO:0006352]	10
757		0,000	0,222	Q8KF47		6

758		0,078	0,125	Q8KF49		10
759		0,000	0,158	Q8KF53	pseudouridinesynthesis [GO:0001522]	13
760	+	3,272	1,650	Q8KF55	histidinebiosyntheticprocess [GO:0000105]	15
761		0,110	0,034	Q8KF56	histidine biosynthetic process [GO:0000105];glutamine metabolic process [GO:0006541]	12
762		0,579	0,207	Q8KF58	pyrimidine nucleotide biosynthetic process [GO:0006221]	23
763		0,276	0,163	Q8KF59		32
764		0,533	-0,450	Q8KF64		19
765		2,757	0,568	Q8KF68	histidinebiosyntheticprocess [GO:0000105]	7
766		0,430	0,363	Q8KF69	menaquinonebiosyntheticprocess [GO:0009234]	12
767		0,244	-0,120	Q8KF74	DNA replication [GO:0006260];DNA repair [GO:0006281]	36
768		0,832	-0,188	Q8KF75		13
769		0,431	-1,755	Q8KFA5	biosyntheticprocess [GO:0009058]	47
770		0,500	-0,264	Q8KFA6		20
771		0,000	-0,316	Q8KFA7		20
772		0,290	-0,523	Q8KFA9	cobalamin biosynthetic process [GO:0009236];chlorophyll biosynthetic process [GO:0015995]	75
773		1,065	-1,102	Q8KFB0		14
774	+	2,840	-1,927	Q8KFB2	nitrogen compound metabolic process [GO:0006807]	20
775		0,298	-0,414	Q8KFB3		22
776		0,485	-1,078	Q8KFB4		17
777		0,808	-1,423	Q8KFB7		18
778	+	3,497	1,189	Q8KFC3	proteinfolding [GO:0006457]	21
779		0,981	-0,412	Q8KFC4		8
780		0,074	0,014	Q8KFC5	glutamatebiosyntheticprocess [GO:0006537]	30
781		0,414	-0,141	Q8KFC6	glutamatebiosyntheticprocess [GO:0006537]	92
782		0,307	0,049	Q8KFC8	glycolytic process [GO:0006096];gluconeogenesis [GO:0006094]	23
783	+	2,852	1,067	Q8KFC9		22
784		0,270	-0,182	Q8KFD6	cobaltiontransport [GO:0006824]	11
785		0,107	-0,067	Q8KFD7	siroheme biosynthetic process [GO:0019354];oxidation- reduction process [GO:0055114]	9
786		0,595	-0,516	Q8KFD8	anaerobic cobalamin biosynthetic process [GO:0019251]	28

787		0,079	-0,086	Q8KFD9	oxidation-reduction process [GO:0055114];cobalamin biosynthetic process [GO:0009236]	17
788		1,510	-0,810	Q8KFE0	cobalaminbiosyntheticprocess [GO:0009236]	24
789		0,540	-0,361	Q8KFE1	cobalaminbiosyntheticprocess [GO:0009236]	28
790		0,032	0,039	Q8KFE2	oxidation-reduction process [GO:0055114];cobalamin biosynthetic process [GO:0009236]	24
791		0,991	-0,872	Q8KFE3	corrin biosynthetic process [GO:0046140];cobalamin biosynthetic process [GO:0009236]	17
792		0,625	-0,419	Q8KFE6	tRNA wobble adenosine to inosine editing [GO:0002100]	6
793		0,955	0,261	Q8KFE7	tricarboxylicacidcycle [GO:0006099]	34
794		0,267	0,207	Q8KFF0		10
795	+	2,752	0,789	Q8KFF1		11
796		0,250	0,484	Q8KFF4		15
797		1,607	0,983	Q8KFF5	protoporphyrinogen IX biosynthetic process [GO:0006782]	31
798		0,390	0,406	Q8KFF6	'de novo' IMP biosynthetic process [GO:0006189]	6
799	+	2,648	-0,689	Q8KFF8		19
800		0,177	0,126	Q8KFG8	reductive pentose-phosphate cycle [GO:0019253]	19
801		1,571	0,340	Q8KFG9		10
802		0,035	0,016	Q8KFH5	tricarboxylic acid cycle [GO:0006099];glyoxylate cycle [GO:0006097]	56
803		0,238	0,126	Q8KFH6	fatty acid biosynthetic process [GO:0006633]	20
804		1,023	0,983	Q8KFH8		27
805		1,063	0,596	Q8KFH9		7
806		0,554	0,243	Q8KFI1		9
807		0,038	0,025	Q8KFI2		11
808		0,000	-0,181	Q8KFI3		24
809	+	2,390	-1,139	Q8KFI4	tetrahydrobiopterinbiosyntheticprocess [GO:0006729]	4
810		1,739	-0,436	Q8KFI6	carbohydratemetabolicprocess [GO:0005975]	18
811		0,960	0,415	Q8KF17		9
812		0,000	-0,872	Q8KFI9	terpenoid biosynthetic process [GO:0016114];thiamine biosynthetic process [GO:0009228];1-deoxy-D-xylulose 5- phosphate biosynthetic process [GO:0052865]	19
813		0,000	-0,136	Q8KFJ2	negative regulation of DNA recombination [GO:0045910];mismatch repair [GO:0006298]	14
814		0,401	-0,207	Q8KFJ5	pyridoxinebiosyntheticprocess [GO:0008615]	15

815		2,140	0,753	Q8KFJ6	purine nucleoside triphosphate catabolic process [GO:0009146];nucleotide metabolic process [GO:0009117]	14
816		0,572	0,105	Q8KFJ8		11
817		0,807	0,623	Q8KFK0		10
818		0,540	-0,200	Q8KFK1		12
819		0,182	0,356	Q8KFK2		11
820		0,114	-0,083	Q8KFK3		17
821		0,936	0,172	Q8KFK6	'de novo' IMP biosynthetic process [GO:0006189]	25
822		1,155	0,343	Q8KFK7	'de novo' IMP biosynthetic process [GO:0006189]	16
823		0,000	-0,506	Q8KFK8	queuosinebiosyntheticprocess [GO:0008616]	10
824		0,624	0,301	Q8KFL0	DNArepair [GO:0006281]	9
825	+	2,360	-0,826	Q8KFL1	cell division [GO:0051301];cell cycle [GO:0007049]	6
826		1,389	-0,410	Q8KFL3	glutamine metabolic process [GO:0006541];nucleoside metabolic process [GO:0009116];purine nucleobase biosynthetic process [GO:0009113];'de novo' IMP biosynthetic process [GO:0006189]	27
827		1,907	0,404	Q8KFL4		10
828		1,888	-0,237	Q8KFL5	isoleucyl-tRNAaminoacylation [GO:0006428]	51
829	+	1,261	1,704	Q8KFL6		4
830		0,533	-0,065	Q8KFL7	polysaccharidebiosyntheticprocess [GO:0000271]	26
831		1,525	0,779	Q8KFL8	nucleotide-sugar metabolic process [GO:0009225]	19
832		0,698	-0,142	Q8KFL9	dTDP-rhamnose biosynthetic process [GO:0019305]	15
833		1,059	-0,304	Q8KFM0	dTDP-rhamnose biosynthetic process [GO:0019305]	9
834		0,195	-0,150	Q8KFM1	extracellular polysaccharide biosynthetic process [GO:0045226]	14
835	+	2,015	-1,532	Q8KFM2	carbohydratemetabolicprocess [GO:0005975]	43
836		1,761	-0,862	Q8KFM5	protein catabolic process [GO:0030163];cell division [GO:0051301]	30
837		0,117	0,051	Q8KFM7	chromosomecondensation [GO:0030261]	5
838		1,306	0,955	Q8KFM9	AMP salvage [GO:0044209];purineribonucleoside salvage [GO:0006166];adenine salvage [GO:0006168]	12
839		0,612	-0,475	Q8KFN1		15
840	+	3,391	0,749	Q8KFN4	translation [GO:0006412]	54
841		0,314	-0,241	Q8KFN6	pyrimidine nucleotide metabolic process [GO:0006220]	16
842		0,270	0,193	Q8KFN8	peptidoglycan biosynthetic process [GO:0009252];regulation of cell shape [GO:0008360];cell	15

					wall organization [GO:0071555]	
843	+	3,404	0,749	Q8KFN9	isopentenyl diphosphate biosynthetic process, methylerythritol 4-phosphate pathway [GO:0019288];terpenoid biosynthetic process [GO:0016114];dimethylallyl diphosphate biosynthetic process [GO:0050992]	17
844	+	1,645	1,120	Q8KFP0		24
845		0,797	-0,215	Q8KFP3	carbohydratemetabolicprocess [GO:0005975]	34
846		1,082	0,451	Q8KFP4	DNA-templated transcription, initiation [GO:0006352]	6
847		0,572	-0,508	Q8KFP6		8
848		1,009	-0,529	Q8KFP7		11
849		0,848	-1,416	Q8KFQ0		5
850		0,515	-0,143	Q8KFQ2	carbohydrate metabolic process [GO:0005975];carbohydrate derivative metabolic process [GO:1901135]	20
851		1,518	0,392	Q8KFQ3	tricarboxylicacidcycle [GO:0006099]	21
852		1,652	-0,364	Q8KFQ4	translation [GO:0006412]	24
853		1,216	-0,711	Q8KFQ5		13
854		0,059	0,069	Q8KFQ6	membraneassembly [GO:0071709]	40
855		0,921	0,619	Q8KFQ7		15
856		1,027	0,283	Q8KFQ8	DNA-templated transcription, termination [GO:0006353]	32
857		0,357	-0,179	Q8KFR0	DNA repair [GO:0006281];SOS response [GO:0009432];DNA recombination [GO:0006310]	9
858		1,227	-0,420	Q8KFR2	carbohydratemetabolicprocess [GO:0005975]	26
859		1,196	0,787	Q8KFR6	geranylgeranyl diphosphate biosynthetic process [GO:0033386]	26
860		0,692	0,319	Q8KFR8		14
861	+	2,648	1,189	Q8KFS3		12
862		0,760	0,359	Q8KFS4		12
863	+	1,578	1,438	Q8KFS5		12
864		0,863	0,441	Q8KFS6		15
865		0,819	0,308	Q8KFS7	translation [GO:0006412]	11
866		0,067	-0,057	Q8KFS8	FMN biosynthetic process [GO:0009398];riboflavin biosynthetic process [GO:0009231];FAD biosynthetic process [GO:0006747]	15
867		1,743	0,601	Q8KFT0	maturation of SSU-rRNA [GO:0030490]	9
868		1,487	0,721	Q8KFT1		55

869	+	2,127	1,019	Q8KFT2	transcription antitermination [GO:0031564];DNA- templated transcription, termination [GO:0006353]	39
870	+	2,634	0,794	Q8KFT3	ribosomal small subunit biogenesis [GO:0042274]	10
871		0,070	-0,030	Q8KFT6	histidyl-tRNAaminoacylation [GO:0006427]	24
872		0,336	-0,305	Q8KFT7	phosphoenolpyruvate-dependent sugar phosphotransferase system [GO:0009401]	13
873		0,110	-0,034	Q8KFU2		22
874		0,336	-0,138	Q8KFU4	polysaccharidebiosyntheticprocess [GO:0000271]	26
875		0,000	-0,177	Q8KFV1	proteinglycosylation [GO:0006486]	9
876		0,102	0,096	Q8KFV2		16
877		0,000	-0,116	Q8KFV5		12
878		0,146	0,083	Q8KFW1	carbohydrate metabolic process [GO:0005975];ADP-L- glycero-beta-D-manno-heptose biosynthetic process [GO:0097171]	11
879		0,000	-1,089	Q8KFW2		33
880		0,633	-0,585	Q8KFW3	pantothenate catabolic process [GO:0015941];coenzyme A biosynthetic process [GO:0015937]	19
881		0,241	-0,118	Q8KFW4		9
882		0,430	-0,458	Q8KFW5	DNA replication, synthesis of RNA primer [GO:0006269]	21
883	+	2,370	-1,154	Q8KFW6	phosphoenolpyruvate-dependent sugar phosphotransferase system [GO:0009401]	32
884	+	3,534	-0,755	Q8KFW7		43
885		0,403	-0,149	Q8KFW8	proteinrepair [GO:0030091]	11
886		0,487	0,250	Q8KFX0	SRP-dependent cotranslational protein targeting to membrane [GO:0006614]	18
887		0,000	0,698	Q8KFX6	regulation of transcription, DNA-templated [GO:0006355];phosphorelay signal transduction system [GO:0000160]	9
888		1,591	-0,445	Q8KFX8		23
889	+	2,595	1,823	Q8KFX9		66
890		0,129	-0,103	Q8KFY1		17
891		1,058	0,560	Q8KFY2		10
892		0,058	0,104	Q8KFY3		13
893		0,000	0,306	Q8KFY6		9
894		0,349	0,558	Q8KFZ1		7
895		0,242	-0,317	Q8KFZ3		9

896		0,814	0,106	Q8KFZ4		40
897		0,544	-0,152	Q8KFZ5	GMP biosynthetic process [GO:0006177];glutamine metabolic process [GO:0006541]	33
898		0,535	-0,337	Q8KFZ7		24
899		0,038	-0,024	Q8KG01		7
900		0,000	1,116	Q8KG03		6
901		0,464	0,082	Q8KG04	alanyl-tRNAaminoacylation [GO:0006419]	53
902		1,200	-0,229	Q8KG07		37
903		0,683	0,206	Q8KG08		26
904		1,248	0,467	Q8KG09	malonyl-CoA biosynthetic process [GO:2001295];fatty acid biosynthetic process [GO:0006633]	19
905		0,276	-0,568	Q8KG10	chromosomecondensation [GO:0030261]	10
906	+	3,557	1,607	Q8KG11		9
907		0,017	0,006	Q8KG13	malonyl-CoA biosynthetic process [GO:2001295];fatty acid biosynthetic process [GO:0006633]	26
908		0,169	0,046	Q8KG14	transcription, DNA-templated [GO:0006351]	103
909		0,183	-0,028	Q8KG15	transcription, DNA-templated [GO:0006351]	86
910		0,327	0,263	Q8KG16	translation [GO:0006412]	12
911	+	2,919	0,707	Q8KG17	translation [GO:0006412];ribosome biogenesis [GO:0042254]	8
912		1,905	0,665	Q8KG18	translation [GO:0006412];regulation of translation [GO:0006417]	15
913	+	2,430	0,808	Q8KG19	translation [GO:0006412]	8
914	+	3,079	0,726	Q8KG20	DNA-templated transcription, termination [GO:0006353];regulation of DNA-templated transcription, elongation [GO:0032784];transcription antitermination [GO:0031564];DNA-templated transcription, elongation [GO:0006354]	14
915		0,193	0,086	Q8KG23	terpenoid biosynthetic process [GO:0016114];isopentenyl diphosphate biosynthetic process, methylerythritol 4- phosphate pathway [GO:0019288]	38
916		0,708	0,326	Q8KG25	glycolyticprocess [GO:0006096]	24
917		1,435	-0,326	Q8KG26		42
918		1,119	-0,485	Q8KG27	DNA topological change [GO:0006265];DNA-dependent DNA replication [GO:0006261]	48
919		0,131	0,080	Q8KG31		23
920		0,192	0,124	Q8KG34	regulation of nitrogen utilization [GO:0006808]	9
921	+	2,694	1,716	Q8KG36		12

922		1,235	-0,638	Q8KG37		24
923	+	2,045	1,754	Q8KG38	carbohydrate metabolic process [GO:0005975];glutamine metabolic process [GO:0006541];carbohydrate derivative biosynthetic process [GO:1901137]	41
924		0,469	0,185	Q8KG39	'de novo' UMP biosynthetic process [GO:0044205];'de novo' pyrimidine nucleobase biosynthetic process [GO:0006207]	10
925		1,485	0,373	Q8KG41	protein catabolic process [GO:0030163];cell division [GO:0051301]	27
926		0,069	0,045	Q8KG42		6
927		0,007	0,004	Q8KG43	terpenoid biosynthetic process [GO:0016114];isopentenyl diphosphate biosynthetic process, methylerythritol 4- phosphate pathway [GO:0019288]	31
928		1,189	-0,843	Q8KG44		15
929		0,936	0,450	Q8KG46		8
930		0,106	-0,075	Q8KG50		5
931		0,690	0,414	Q8KG51		25
932	+	3,593	-2,666	Q8KG52		17
933		0,698	-0,440	Q8KG56	phenylacetatecatabolicprocess [GO:0010124]	14
934		0,000	-0,076	Q8KG57		6
935		1,895	-0,622	Q8KG59		15
936		0,624	0,170	Q8KG62		7
937		0,824	-0,339	Q8KG63	transmembranetransport [GO:0055085]	8
938		0,424	-0,284	Q8KG65	response to oxidative stress [GO:0006979];protein repair [GO:0030091]	13
939		0,040	-0,016	Q8KG69		14
940		2,667	0,472	Q8KG70		12
941		0,085	0,030	Q8KG73	threonine biosynthetic process [GO:0009088];lysine biosynthetic process via diaminopimelate [GO:0009089]	22
942		1,969	0,725	Q8KG74	'de novo' IMP biosynthetic process [GO:0006189]	19
943		1,225	-0,450	Q8KG76	glycerol-3-phosphate biosynthetic process [GO:0046167];glycerol-3-phosphate catabolic process [GO:0046168];glycerophospholipid metabolic process [GO:0006650];phospholipid biosynthetic process [GO:0008654];carbohydrate metabolic process [GO:0005975]	22
944		1,928	0,315	Q8KG77		10
945		0,712	0,909	Q8KG78	carbohydratemetabolicprocess [GO:0005975]	22
946		0,096	0,070	Q8KG79		47

947		1,592	-0,578	Q8KG80	lipopolysaccharidebiosyntheticprocess [GO:0009103]	11
948		0,839	0,392	Q8KG81		9
949		0,000	-0,751	Q8KG84	tyrosinebiosyntheticprocess [GO:0006571]	12
950		2,013	-0,579	Q8KG85	nucleoside metabolic process [GO:0009116];pyrimidine nucleobase biosynthetic process [GO:0019856];'de novo' UMP biosynthetic process [GO:0044205]	10
951		0,471	0,238	Q8KG91	L-proline biosynthetic process [GO:0055129]	13
952		0,478	-0,511	Q8KG93	photosynthesis [GO:0015979]	5
953	+	1,659	-1,503	Q8KG95		8
954		0,000	-0,623	Q8KG97		6
955		0,947	-0,355	Q8KG98		24
956		0,444	0,390	Q8KGA0		7
957		0,272	0,145	Q8KGA2	arginine biosynthetic process [GO:0006526];'de novo' UMP biosynthetic process [GO:0044205];glutamine metabolic process [GO:0006541];'de novo' pyrimidine nucleobase biosynthetic process [GO:0006207]	23
958		0,014	0,007	Q8KGA5		23
959	+	2,103	-0,861	Q8KGA8		13
960		0,042	-0,056	Q8KGA9		5
961		1,282	0,735	Q8KGB0		10
962		0,253	-0,442	Q8KGB1		4
963		0,027	-0,022	Q8KGB3	DNAtopologicalchange [GO:0006265]	42
964		0,598	0,578	Q8KGB4	peptidoglycancatabolicprocess [GO:0009253]	27
965		0,000	0,951	Q8KGB6	biotinbiosyntheticprocess [GO:0009102]	10
966		0,158	0,060	Q8KGC9	cell division [GO:0051301];cell wall organization [GO:0071555];peptidoglycan biosynthetic process [GO:0009252];regulation of cell shape [GO:0008360];cell cycle [GO:0007049]	17
967		1,646	-0,502	Q8KGD5	cell division [GO:0051301];cell wall organization [GO:0071555];peptidoglycan biosynthetic process [GO:0009252];regulation of cell shape [GO:0008360];cell cycle [GO:0007049]	16
968		0,080	-0,050	Q8KGD7	FtsZ-dependentcytokinesis [GO:0043093]	20
969		0,604	0,261	Q8KGD8	FtsZ-dependent cytokinesis [GO:0043093];protein polymerization [GO:0051258];division septum assembly [GO:0000917]	30
970		0,029	0,008	Q8KGD9	acetyl-CoA metabolic process [GO:0006084]	28
971		0,563	0,301	Q8KGE0	light-independent bacteriochlorophyll biosynthetic process [GO:0036070];light-dependent bacteriochlorophyll biosynthetic process [GO:0036069]	31

972		0,419	0,245	Q8KGE1		8
973		0,155	0,133	Q8KGE4	galactosemetabolicprocess [GO:0006012]	21
974		0,088	0,035	Q8KGE9	ATP synthesis coupled proton transport [GO:0015986]	14
975	+	1,911	1,180	Q8KGF0	ATP synthesis coupled proton transport [GO:0015986]	16
976		0,962	-0,685	Q8KGF1		23
977		0,352	-0,071	Q8KGF3	arginyl-tRNAaminoacylation [GO:0006420]	30
978		0,528	0,326	Q8KGF5	tryptophanyl-tRNAaminoacylation [GO:0006436]	21
979	+	2,846	1,218	Q8KGF7	peptidyl-lysine modification to peptidyl-hypusine [GO:0008612]	18
980	+	1,965	-2,113	Q8KGF8	pentose-phosphate shunt [GO:0006098];carbohydrate metabolic process [GO:0005975]	12
981		0,553	-0,446	Q8KGG2		15
982		0,000	0,949	Q8KGG5	translation [GO:0006412]	7
983		0,568	0,167	Q8KGG6	regulation of DNA replication [GO:0006275];DNA replication initiation [GO:0006270]	21
984		1,979	0,271	Q8KGG7	DNAreplication [GO:0006260]	29
985		0,605	-1,329	Q93SU8	translation [GO:0006412]	7
986		0,159	-0,077	Q93SV3;Q8KB38	chlorophyllbiosyntheticprocess [GO:0015995]	15
987	+	1,642	1,549	Q93SW0	photosynthesis [GO:0015979];bacteriochlorophyll biosynthetic process [GO:0030494]	28
988		0,845	0,521	Q93SW1	photosynthesis [GO:0015979];bacteriochlorophyll biosynthetic process [GO:0030494]	30
989		1,202	0,601	Q9F714	photosynthesis, dark reaction [GO:0019685];light- independent bacteriochlorophyll biosynthetic process [GO:0036070]	11
990	+	1,918	1,209	Q9F715	photosynthesis, dark reaction [GO:0019685];light- independent bacteriochlorophyll biosynthetic process [GO:0036070]	29
991		0,745	0,447	Q9F716	photosynthesis, dark reaction [GO:0019685];light- independent bacteriochlorophyll biosynthetic process [GO:0036070]	21
992		0,191	0,167	Q9F721	respiratory electron transport chain [GO:0022904]	11
993	+	2,648	1,056	Q9F722	photosynthesis [GO:0015979]	16
994		1,103	0,307	Q9F724	glutamyl-tRNAaminoacylation [GO:0006424]	31

Locus	Name	Unlabelddetected	t testinput	significant (t test	regulation of	Foldch	error
		(1450 proteins)	(994 proteins)	proteins)	eins	ange	
CT0073	Membrane-bound cytochrome c-555, protein CycB	yes*	yes*	yes	\downarrow	-1,50	0,18
CT0075	Soluble cytochrome c- 555, protein CycA (periplasmic)	yes*	yes*	no		-0,51	0,37
CT0117	Sulfide:quinoneoxidored uctase, SqrD	yes*	yes*	no		0,41	0,04
CT0494	Polysulfide-reductase- likeenzyme,	no	no	no		-	-
CT0495	Polysulfide-reductase- like enzyme, subunit PsrB	yes*	no	no		-	-
CT0496	Polysulfide-reductase- like enzyme, subunit PsrA	yes*	no	no		-	-
CT0851	Dissimilatory sulfite reductase protein DsrC, copy 1‡	yes*	yes*	yes	^	0,79	0,184085
CT0852	Dissimilatory sulfite reductase protein DsrA, copy 1‡	yes*	yes*	no		0,42	0,08
CT0853	Dissimilatory sulfite reductase protein DsrB, copy 1‡	yes*	yes*	no		0,41	0,03
CT0854	Dissimilatory sulfite reductase protein DsrL, copy 1‡	yes*	yes*	no		0,29	0,18

Πίνακας ΙΙΙ Πρωτεΐνες που σχετίζονται με το μεταβολισμό του θείου και ανάλυσή τους.

CT0855	Dissimilatory sulfite reductase protein DsrE	yes*	yes*	yes	↑	1,48	0,465242
CT0856	Dissimilatory sulfite reductase protein DsrF	yes*	yes*	yes	1	1,93	0,180384
CT0857	Dissimilatory sulfite reductase protein DsrH	yes*	yes*	yes	1	1,99	0,189
CT0862	Sulfateadenylyltransfera se, proteinSat	yes*	yes*	no		0,14	0,1
CT0864	Adenylylsulfatereductas e, subunitAprB	yes*	yes*	no		0,76	0,25
CT0865	Adenylylsulfatereductas e, subunitAprA	yes*	yes*	no		0,36	0,2
CT0866	Quinone-modifying oxidoreductase, subunit QmoA	yes*	yes*	no		0,55	0,15
СТ0867	Quinone-modifying oxidoreductase, subunit QmoB	yes*	yes*	no		0,25	0,09
CT0868	Quinone-modifying oxidoreductase,subunit QmoC	yes*	yes*	no		0,09	0,16
CT0876	Sulfide:quinoneoxidored uctaseSqrE§	yes*	yes*	yes	\downarrow	-0,74	0,074
CT1015	Sulfur- oxidizingproteinSoxJ	yes*	yes*	yes	1	0,84	0,137
CT1016	Sulfur- oxidizingproteinSoxX	yes*	yes*	no		0,25	0,17
CT1017	Sulfur- oxidizingproteinSoxY	yes*	yes*	no		0,51	0,05
CT1018	Sulfur- oxidizingproteinSoxZ	yes*	yes*	no		1,08	0,25
CT1019	Sulfur- oxidizingproteinSoxA	yes*	yes*	no		0,76	0,26

	- 10			1	•	1	
CT1020	Sulfur- oxidizingproteinSoxK	yes*	yes*	yes		1,22	0,321
CT1021	Sulfur- oxidizingproteinSoxB	yes*	yes*	yes	\uparrow	1,14	0,230
CT1023	Sulfur- oxidizingproteinSoxW	yes*	yes*	yes	\uparrow	1,28	0,27
CT1025	Sulfide dehydrogenase (SoxF/SqrC homolog)	yes*	yes*	no		-0,19	0,5
CT1087	Sulfide:quinoneoxidored uctaseSqrF	yes	yes	yes	\checkmark	-0,78	0,059
CT1245	Heterodisulfide- reductase-like subunit D	yes*	yes*	no		-0,75	0,78
CT1246	Heterodisulfide- reductase-like subunit A	yes*	yes*	no		-0,32	0,25
CT1247	Heterodisulfide- reductase-like	yes*	yes*	no		0,49	0,36
CT1248	Heterodisulfide- reductase-like enzyme component	yes*	yes	no		0,33	0,36
CT1249	Heterodisulfide- reductase-like subunit B	yes*	yes*	no		-0,42	0,33
CT1250	Heterodisulfide- reductase-like subunit G	yes*	yes*	no		0,46	0,21
CT1772	RuBisCO-likeprotein (RLP)	yes*	yes*	no		0,03	0,31
CT1891	Sulfhydrogenase-like enzyme, subunit B	yes	yes	no		0,59	0,06
CT1892	Sulfhydrogenase-like enzyme, subunit G	yes	yes	no		-1,06	0,69
CT1893	Sulfhydrogenase-like enzyme, subunit D	yes	yes	no		0,00	0,34
CT1894	Sulfhydrogenase-like enzyme, subunit A	yes*	yes*	no		-0,02	0,23

CT2080	Flavocytochrome c, subunitFccA	yes	no	no		-	-
CT2081	Flavocytochrome c, subunitFccB	no	no	no		-	-
CT2238	Dissimilatory sulfite reductase protein DsrW	yes*	yes	no		-1,00	0,46
CT2239	Dissimilatory sulfite reductase protein DsrV	yes	no	no		-0,35	0,17
CT2240	Dissimilatory sulfite reductase protein DsrP	no	no	no		-	-
CT2241	Dissimilatory sulfite reductase protein DsrO	yes*	yes*	no		0,59	0,09
CT2242	Dissimilatory sulfite reductase protein DsrJ	yes*	no	no		-	-
CT2243	Dissimilatory sulfite reductase protein DsrK	yes*	yes*	no		-0,26	0,25
CT2244	Dissimilatory sulfite reductase protein DsrM	yes*	yes	no		0,14	0,08
CT2245	Dissimilatory sulfite reductase protein DsrT	yes	no	no		-	-
CT2246	Dissimilatory sulfite reductase protein DsrU	yes*	yes*	no		0,63	0,25
CT2247	Dissimilatory sulfite reductase protein DsrL	yes*	yes*	no		1,03	0,41
CT2248	Dissimilatory sulfite reductase protein DsrB	no	no	no		-	-
CT2249	Dissimilatory sulfite reductase protein DsrA	yes*	yes*	no		0,42	0,08
CT2250	Dissimilatory sulfite reductase protein DsrC	yes*	yes*	yes	^	0,79	0,18
CT2251	Dissimilatory sulfite reductase protein DsrN	yes	no	no		-	-

Topology (GOCC)

Εικόνα Ι Τοπολογική ανάλυση όλων τωνταυτοποιημένων πρωτεϊνών (994) βάση του κωδικούςGOCellularComponent.

Εικόνα ΙΙΙσοτοπικοί λόγοι του θείου για κάθε κορυφή που αντιστοιχεί σε πολλαπλάσιο του ατομικού βάρους του θείου(32 m/z) το μπλε αφορά τις 20h και το κόκκινο τις 40h

automated_ textmining	coexpression	experimentally_ determined_ interaction	gene_fusion	neighborhood_ on_chromosome	phylogenetic_ cooccurrence	combined_ score	node1_ external_id	node1_ string_internal_id	node2_ external_id	node2_ string_internal_id
0.0	0.0	0.449	0.0	0.0	0.0	0.449	194439.CT2171	10657674	194439.CT1784	10657291
0.0	0.0	0.458	0.0	0.0	0.0	0.457	194439.CT2171	10657674	194439.CT1545	10657056
0.0	0.096	0.426	0.0	0.0	0.0	0.458	194439.CT2171	10657674	194439.CT1353	10656865
0.0	0.561	0.0	0.0	0.0	0.0	0.561	194439.CT2171	10657674	194439.CT2111	10657614
0.0	0.594	0.0	0.0	0.0	0.0	0.594	194439.CT2171	10657674	194439.CT0018	10655550
0.042	0.082	0.826	0.0	0.0	0.0	0.833	194439.CT2171	10657674	194439.CT1451	10656963
0.136	0.68	0.712	0.0	0.0	0.0	0.913	194439.CT2171	10657674	194439.CT0288	10655819
0.0	0.577	0.841	0.0	0.0	0.0	0.929	194439.CT2171	10657674	194439.CT0159	10655691
0.106	0.116	0.945	0.0	0.0	0.0	0.952	194439.CT2171	10657674	194439.CT1919	10657425
0.462	0.909	0.0	0.0	0.376	0.0	0.966	194439.CT2171	10657674	194439.CT2162	10657665
0.08	0.574	0.945	0.0	0.0	0.0	0.976	194439.CT2171	10657674	194439.CT2132	10657635
0.193	0.543	0.945	0.0	0.0	0.0	0.977	194439.CT2171	10657674	194439.CT1163	10656679
0.126	0.602	0.945	0.0	0.0	0.0	0.979	194439.CT2171	10657674	194439.CT1362	10656874
0.106	0.611	0.945	0.0	0.064	0.0	0.979	194439.CT2171	10657674	194439.CT1505	10657017
0.224	0.599	0.945	0.0	0.0	0.0	0.981	194439.CT2171	10657674	194439.CT2128	10657631
0.213	0.589	0.945	0.0	0.206	0.0	0.983	194439.CT2171	10657674	194439.CT1782	10657289
0.199	0.704	0.945	0.0	0.0	0.0	0.985	194439.CT2171	10657674	194439.CT2135	10657638
0.204	0.847	0.945	0.0	0.206	0.0	0.993	194439.CT2171	10657674	194439.CT1783	10657290
0.203	0.847	0.945	0.0	0.119	0.0	0.993	194439.CT2171	10657674	194439.CT0151	10655683
0.252	0.847	0.945	0.0	0.206	0.0	0.994	194439.CT2171	10657674	194439.CT0153	10655685
0.463	0.953	0.945	0.0	0.762	0.0	0.999	194439.CT2171	10657674	194439.CT2170	10657673
0.0	0.0	0.0	0.0	0.0	0.443	0.443	194439.CT2214	10657717	194439.CT0060	10655592

Πίνακας IV Οι αλληλεπιδράσεις των 130 στατιστικά σημαντικών πρωτεϊνών από την βάση δεδομένων του Stringtool (506 αλληλεπιδράσεις- γραμμές,με σκορ >0,4 και μαξ το 1).

0.0	0.09	0.0	0.0	0.0	0.46	0.487	194439.CT2214	10657717	194439.CT0240	10655771
0.0	0.0	0.0	0.0	0.0	0.551	0.551	194439.CT2214	10657717	194439.CT0249	10655780
0.0	0.0	0.0	0.0	0.0	0.561	0.561	194439.CT2214	10657717	194439.CT0647	10656171
0.0	0.0	0.0	0.0	0.043	0.618	0.618	194439.CT2214	10657717	194439.CT2111	10657614
0.0	0.0	0.0	0.0	0.0	0.71	0.71	194439.CT2214	10657717	194439.CT1734	10657242
0.491	0.099	0.0	0.0	0.0	0.0	0.521	194439.CT1428	10656940	194439.CT1296	10656809
0.571	0.0	0.0	0.0	0.466	0.0	0.761	194439.CT1020	10656542	194439.CT1015	10656537
0.187	0.077	0.436	0.0	0.076	0.0	0.556	194439.CT1709	10657219	194439.CT0240	10655771
0.122	0.064	0.407	0.0	0.0	0.215	0.566	194439.CT1709	10657219	194439.CT0150	10655682
0.187	0.105	0.43	0.0	0.057	0.461	0.75	194439.CT0240	10655771	194439.CT0150	10655682
0.0	0.902	0.0	0.0	0.712	0.193	0.975	194439.CT0240	10655771	194439.CT0239	10655770
0.101	0.0	0.0	0.0	0.104	0.366	0.444	194439.CT1618	10657128	194439.CT1545	10657056
0.498	0.0	0.0	0.0	0.099	0.244	0.628	194439.CT1618	10657128	194439.CT1503	10657015
0.0	0.0	0.449	0.0	0.0	0.0	0.449	194439.CT2128	10657631	194439.CT1784	10657291
0.0	0.0	0.454	0.0	0.053	0.0	0.46	194439.CT2128	10657631	194439.CT1545	10657056
0.0	0.069	0.45	0.0	0.0	0.0	0.466	194439.CT2128	10657631	194439.CT1353	10656865
0.0	0.802	0.0	0.0	0.0	0.0	0.802	194439.CT2128	10657631	194439.CT1296	10656809
0.0	0.203	0.806	0.0	0.045	0.0	0.839	194439.CT2128	10657631	194439.CT0159	10655691
0.074	0.121	0.809	0.0	0.206	0.0	0.86	194439.CT2128	10657631	194439.CT1451	10656963
0.217	0.474	0.844	0.0	0.0	0.0	0.93	194439.CT2128	10657631	194439.CT0288	10655819
0.219	0.126	0.945	0.0	0.099	0.0	0.961	194439.CT2128	10657631	194439.CT1362	10656874
0.386	0.103	0.945	0.0	0.053	0.0	0.967	194439.CT2128	10657631	194439.CT1919	10657425
0.463	0.593	0.945	0.0	0.0	0.0	0.986	194439.CT2128	10657631	194439.CT1163	10656679
0.463	0.614	0.945	0.0	0.0	0.0	0.987	194439.CT2128	10657631	194439.CT0151	10655683
0.463	0.735	0.945	0.0	0.0	0.0	0.991	194439.CT2128	10657631	194439.CT0153	10655685
0.398	0.8	0.945	0.0	0.0	0.0	0.992	194439.CT2128	10657631	194439.CT1783	10657290

0.4620.8080.9450.00.00.00.933194439CT12810657811194439CT1505106578170.00.00.450.040.00.050.455194439CT12410657291194439CT1305106578170.060.090.040.000.050.4550.472194439CT13410657291194439CT031106557310.0740.000.000.000.050.4550.472194439CT13410657291194439CT0351106557810.1770.0440.4490.00.000.050.459194439CT13410657291194439CT0351106557810.0770.00.00.000.0590.0590.508194439CT13410657291194439CT13510555810.020.00.000.000.000.0590.057194439CT13410657291194439CT13510555910.00.000.000.000.0160.4140.683194439CT1341057291194439CT13510556930.040.0490.000.0150.3880.689194439CT13410657291194439CT13510656930.0430.4490.000.0990.042194439CT13410656791194439CT13510656930.050.0480.4490.000.0990.042194439CT1361065679194439CT135106556930.050.0580.000.0760.0580.052194439CT1361065679194439CT03810655693<	0.463	0.808	0.945	0.0	0.0	0.0	0.993	194439.CT2128	10657631	194439.CT1782	10657289
0.00.040.440.00.00.049448(71%9448(71%) <td>0.462</td> <td>0.808</td> <td>0.945</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.993</td> <td>194439.CT2128</td> <td>10657631</td> <td>194439.CT1505</td> <td>10657017</td>	0.462	0.808	0.945	0.0	0.0	0.0	0.993	194439.CT2128	10657631	194439.CT1505	10657017
0.00.0490.0490.00.0740.0471.94430.11341.06572111.94430.11301.06573110.0660.00.00.0650.4550.4791.94430.117841.06572111.94430.11311.06557310.1270.0470.000.00.000.4991.94431.17841.06572111.94430.11311.06557810.1270.0470.000.000.0260.0571.94439.117841.94439.11321.94439.11321.0657310.010.00.00.0560.0571.94439.117841.9657311.94439.117821.94439.117841.9439.11841.9439.11841.9439.11841.9439.11841.9439.11841.9439.11841.9439.11841.9439.11841.9439.11841.9439.11841.9439.11841	0.0	0.0	0.45	0.0	0.0	0.0	0.45	194439.CT1784	10657291	194439.CT1362	10656874
0.060.00.00.0650.4550.479194439.CT178410657291194439.CT019110655730.1270.0440.4490.00.00.00.499194439.CT17841065729119443.CT0151106556310.190.070.00.00.2060.2690.508194439.CT17841065729119443.CT0179106557380.00.000.000.5690.00.57194439.CT17841065729119443.CT015910555610.2230.00.1090.00.0160.3750.61194439.CT17841065729119443.CT153106556910.010.0490.000.1150.3080.688194439.CT17441065729119443.CT15310556910.4630.1290.1090.00.15970.4380.665194439.CT17441065729119443.CT15310556920.4630.1290.1090.00.5970.4380.655194439.CT17441065729119443.CT15310656930.4630.4490.00.5970.4380.655194439.CT17441065729119443.CT163106556910.1390.1380.00.000.0990.00.424194439.CT1641065729119443.CT168106556910.1390.1380.0450.000.0760.040.414194439.CT163106567919443.CT163106556910.1390.2820.8410.000.0760.0580.993194439.CT1631	0.0	0.049	0.449	0.0	0.074	0.0	0.472	194439.CT1784	10657291	194439.CT1505	10657017
0.1270.0440.0490.00.00.00.49919443CT124106572119443CT15110655830.190.0770.00.00.2660.2690.50819443CT174106572119443CT047106557310.00.00.00.00.5690.00.5719443CT174106572119443CT17810657210.2330.00.0190.000.2060.3750.6119443CT1741065721119443CT136106566910.4630.1290.0090.000.0160.410.68119443CT1741065721119443CT136106566730.4630.1290.1090.00.5970.4880.69819443CT1361065721119443CT136106566730.4630.1290.000.000.0990.480.69219443CT136106567919443CT136106556910.1350.5830.6690.000.0990.07719443CT11631065667919443CT105106556910.1350.5830.650.000.0760.67219443CT11631065667919443CT0153106556910.1290.2820.8410.00.0740.5680.95219443CT11631065667919443CT0153106556730.1210.2820.8410.00.0740.5680.95219443CT11631065667919443CT0153106556730.1200.2860.9450.00.1210.9519443CT1551065707719443CT0155	0.06	0.0	0.0	0.0	0.065	0.455	0.479	194439.CT1784	10657291	194439.CT0191	10655723
0.190.0770.00.00.0260.2690.50819439.C17841065729119443.C1247106557810.00.00.00.00.5990.00.57194439.C178410657291194439.C1152106572910.2230.00.1090.00.2660.3750.61194439.C178410657291194439.C1153106556910.00.00.4490.00.1660.410.683194439.C178410657291194439.C1153106566930.430.1290.1090.00.1150.3080.685194439.C178410657291194439.C1163106567930.4490.490.00.5970.4380.865194439.C178410657291194439.C1163106567930.1960.4640.490.00.5970.4380.865194439.C11631065679194439.C1015106555910.1350.2690.00.070.5680.92194439.C11631065679194439.C1028106558190.1350.880.4650.00.070.5680.952194439.C11631065679194439.C101310656790.1420.840.9450.00.070.5680.952194439.C11631065679194439.C1013106556790.4520.860.9450.000.070.5680.952194439.C11631065679194439.C101310656790.4520.860.9450.000.0410.0410.043194439.C11	0.127	0.044	0.449	0.0	0.0	0.0	0.499	194439.CT1784	10657291	194439.CT0151	10655683
0.00.00.00.5690.00.5719443.C17841065729119443.C1782106572910.2230.00.1090.00.2060.3750.6119443.C17841065729119443.C1163106556910.00.00.4490.00.1060.410.68319443.C17841065729119443.C1163106566790.4630.1290.1090.00.1150.3080.68819443.C17841065729119443.C1784106572910.670.0480.4490.00.5970.4380.68819443.C17841065729119443.C116310656790.1390.2690.000.000.0980.2810.45419443.C1163106567919443.C108106555910.1350.5830.4650.000.0760.00.7719443.C1163106567919443.C1028106558910.1290.2820.8410.00.0760.00.7719443.C1163106567919443.C103106556910.4620.750.9450.00.0760.5680.95219443.C1163106567919443.C103106556910.4620.750.9450.00.0760.0640.9331943.C1163106567919443.C116310656790.6680.680.9450.000.0760.9451943.C1163106567919443.C1163106567919443.C116310655690.1200.280.280.9450.660.660.67<	0.19	0.077	0.0	0.0	0.206	0.269	0.508	194439.CT1784	10657291	194439.CT0247	10655778
0.2230.00.1090.00.2060.3750.6119439.C17481065729119439.CT0159106556910.00.00.4490.00.1060.410.68319443.CT17841065729119439.CT141106566930.4630.1290.1090.00.1150.3080.69819443.CT17841065729119443.CT1451106569630.00.0480.4490.00.5970.4380.86519443.CT17841065729119443.CT1783106572910.1960.0480.4490.00.5970.4380.86519443.CT184106567919443.CT018106557910.1960.6980.030.0990.00.5970.4241943.CT1631065667919443.CT018106558910.1350.5830.4650.00.0770.5680.9431045657919443.CT0159106558910.1290.2820.8410.00.0770.5680.943106567919443.CT015106556790.4620.750.9450.00.0460.1640.99319443.CT155106567919443.CT015106556910.6680.6840.9450.00.0450.2110.99519443.CT155106567919443.CT015106556790.6670.5850.00.0450.0460.4231943.CT155106567919443.CT015106556790.6680.6840.9450.00.0180.0460.42319443.CT1551065671 <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.569</td> <td>0.0</td> <td>0.57</td> <td>194439.CT1784</td> <td>10657291</td> <td>194439.CT1782</td> <td>10657289</td>	0.0	0.0	0.0	0.0	0.569	0.0	0.57	194439.CT1784	10657291	194439.CT1782	10657289
0.00.0490.00.1060.410.68319439.717841065729119439.71161106566790.4630.01290.0190.00.1150.3080.69819439.717841065729119439.71784106572910.0480.0490.00.5970.4380.865194439.717841065729119439.71784106557910.1560.2690.000.000.0990.00.424194439.7116310656679194439.7030106555820.1390.1380.060.000.0760.07194439.7116310656679194439.7038106556790.1350.5830.4650.00.0770.5680.572194439.7116310656679194439.7038106555910.1290.2620.8410.00.0770.5680.582194439.7116310656679194439.7038106555910.4620.750.9450.00.070.5680.952194439.7116310656679194439.7038106555910.6590.2590.050.070.5680.57194439.71531065679194439.7138106555910.6590.650.040.070.5680.93194439.71531065679194439.715310555910.6590.940.040.040.040.9419439.71531065717194439.715410555930.650.050.040.040.040.43194439.71551065717194439.713510556151 <t< td=""><td>0.223</td><td>0.0</td><td>0.109</td><td>0.0</td><td>0.206</td><td>0.375</td><td>0.61</td><td>194439.CT1784</td><td>10657291</td><td>194439.CT0159</td><td>10655691</td></t<>	0.223	0.0	0.109	0.0	0.206	0.375	0.61	194439.CT1784	10657291	194439.CT0159	10655691
0.4630.1290.0190.00.1150.3080.698194430.T178410657291194430.T145110656930.00.0480.0490.00.5970.4380.865194430.T178410657291194430.T1783106572910.1960.2690.00.00.0990.00.424194430.T1631065679194430.T0183106557910.1380.00.00.0980.2810.45419443.T1613106567919443.T012810655820.1350.5830.4650.00.0760.00.79719443.T1613106567919443.T0128106558190.1290.2820.8410.00.0760.060.79719443.T1613106567919443.T015310655820.4620.750.9450.00.0760.5880.95219443.T1613106567919443.T015310655820.6890.9450.00.0760.0640.99319443.T1613106567919443.T015310655820.6420.750.9450.00.0640.1640.99319443.T1613106567919443.T015310655820.6590.9450.00.0040.0140.99319443.T1613106567919443.T0153106557119443.T015310655710.6670.9450.00.0450.00.61119443.T155106571719443.T15310656890.00.6010.040.00.61119443.T155106570119443.T153	0.0	0.0	0.449	0.0	0.106	0.41	0.683	194439.CT1784	10657291	194439.CT1163	10656679
0.00.0480.4490.00.5970.4380.86519439.CT17841065729119439.CT1783106572910.1960.2690.00.00.0990.00.42419439.CT163106567919439.CT01810655590.1390.1380.00.00.0990.00.79719439.CT163106567919439.CT028810655890.1350.5830.4650.00.0760.00.79719439.CT163106567919439.CT05810655890.1290.2820.8410.00.070.5680.95219439.CT163106567919439.CT05310655690.4620.750.9450.00.0640.1640.99319439.CT163106567919439.CT015310655680.6890.680.9450.00.0230.2110.99519439.CT163106567919439.CT015310655680.6970.3560.00.00.0180.0420.99519439.CT163106567919439.CT015310655680.6970.3560.00.00.0180.9120.99519439.CT163106567919439.CT015310655710.6970.3560.00.00.0180.4260.49319439.CT155106571719439.CT015310656790.6080.6040.00.42619439.CT155106571719439.CT0153106567919439.CT0153106571719439.CT015310656790.00.6010.6040.00.435 <td>0.463</td> <td>0.129</td> <td>0.109</td> <td>0.0</td> <td>0.115</td> <td>0.308</td> <td>0.698</td> <td>194439.CT1784</td> <td>10657291</td> <td>194439.CT1451</td> <td>10656963</td>	0.463	0.129	0.109	0.0	0.115	0.308	0.698	194439.CT1784	10657291	194439.CT1451	10656963
0.1960.2690.00.00.00.0990.00.42419439.CT1631065667919439.CT00810655500.1390.1380.00.00.0980.2810.45419439.CT1631065667919439.CT0103106556820.1350.5830.4650.00.0760.00.77719439.CT1631065667919439.CT028106558190.1290.2820.8410.00.0770.5680.95219439.CT1631065667919439.CT0153106556910.4620.750.9450.00.0640.1640.99319439.CT1631065667919439.CT0153106556830.6890.680.9450.00.0230.2110.99519439.CT1631065679119439.CT0151106556830.0670.3560.00.00.1180.00.42319439.CT1551065701719439.CT0153106555010.00.0640.0450.00.42319439.CT1551065701719439.CT15310656890.00.0640.040.00.43519439.CT1551065701719439.CT15310656890.00.0640.010.040.040.04919439.CT1551065701719439.CT15310656990.00.010.040.00.00.08819439.CT1551065701719439.CT15310656990.00.040.00.00.08819439.CT1551065701719439.CT15310656990.00.04	0.0	0.048	0.449	0.0	0.597	0.438	0.865	194439.CT1784	10657291	194439.CT1783	10657290
0.1390.1380.00.00.0980.2810.45419439.C1163106567919439.CT05010655820.1350.5830.4650.00.0760.00.77719439.CT163106567919439.CT028106558190.1290.2820.8410.00.0770.5680.95219439.CT163106567919439.CT01910655670.4620.750.9450.040.0640.1640.99319439.CT163106567919439.CT01310655830.6890.680.9450.040.0230.2110.99519439.CT163106567919439.CT01310655830.6670.3560.00.010.0230.2110.99519439.CT163106567919439.CT01310655830.670.3560.00.010.0230.2110.99519439.CT155106570719439.CT01310655830.670.6640.010.0240.020.42319439.CT155106570719439.CT03510657050.670.0490.00.0460.00.44719439.CT155106570719439.CT150106570719439.CT150106570719439.CT1631055830.00.0460.040.040.84819439.CT1505106570719439.CT16310655810.00.8160.8260.0120.040.88319439.CT1505106570719439.CT16310655810.00.8260.3010.8260.040.040.883 <td< td=""><td>0.196</td><td>0.269</td><td>0.0</td><td>0.0</td><td>0.099</td><td>0.0</td><td>0.424</td><td>194439.CT1163</td><td>10656679</td><td>194439.CT0018</td><td>10655550</td></td<>	0.196	0.269	0.0	0.0	0.099	0.0	0.424	194439.CT1163	10656679	194439.CT0018	10655550
0.1350.0530.0450.00.0760.079719449.T163106567919449.T028106558190.1290.2820.8410.00.070.5680.95219449.T163105667919439.T01310439.T01319439.T0	0.139	0.138	0.0	0.0	0.098	0.281	0.454	194439.CT1163	10656679	194439.CT0150	10655682
0.1290.2820.8410.00.070.5680.95219439.C1163106567919439.C105910655910.4620.750.9450.0940.0640.1640.93319439.C1163106567919439.C10510655830.6890.680.9450.00.0230.2110.95519439.C1153106567919439.C10310655590.6670.3560.00.00.0180.040.42319439.C1505106570719439.C13310656850.00.0640.0490.040.0450.04519439.C15051065701719439.C13310656890.00.0990.000.000.040.000.61119439.C15051065701719439.C13510656890.00.0010.0010.0040.000.60119439.C15051065701719439.C13510656890.00.0100.020.040.000.60119439.C15051065701719439.C13510656990.00.0110.040.010.08419439.C15051065701719439.C13510656910.0450.040.040.000.88319439.C15051065701719439.C13610656910.050.0510.0520.060.060.88319439.C15051065701719439.C13610656910.0460.040.010.0819439.C15051065701719439.C1501065701719439.C15010656910.0460.040.010.05<	0.135	0.583	0.465	0.0	0.076	0.0	0.797	194439.CT1163	10656679	194439.CT0288	10655819
0.4620.750.9450.00.0640.1640.93319439.C1163106567919439.C105310655850.6890.6840.9450.040.0230.2110.99519439.C1163106567919439.C105<	0.129	0.282	0.841	0.0	0.07	0.568	0.952	194439.CT1163	10656679	194439.CT0159	10655691
0.6890.680.9450.00.2030.2110.95519439.CT163106567919439.CT051106556790.0670.3560.00.00.0180.00.42319439.CT15051065701719439.CT03310656850.00.0640.4190.00.0450.040.43519439.CT15051065701719439.CT1505106570	0.462	0.75	0.945	0.0	0.064	0.164	0.993	194439.CT1163	10656679	194439.CT0153	10655685
0.0670.3560.00.00.1180.00.42319439.CT150511065701719439.CT018110655500.00.0640.0490.0490.00.0450.0450.43519439.CT15051065701719439.CT1503106568650.00.0990.00.00.0460.00.47919439.CT15051065701719439.CT1503106570170.00.0610.0610.0460.000.04819439.CT15051065701719439.CT126110656890.00.2460.8070.000.0430.000.84819439.CT15051065701719439.CT126110656890.1990.6860.5680.000.0460.000.88219439.CT15051065701719439.CT028106558190.010.0310.8260.020.0120.00.88319439.CT15051065701719439.CT016310655690.4630.6920.9450.040.0120.00.9919439.CT15051065701719439.CT16310656679	0.689	0.68	0.945	0.0	0.203	0.211	0.995	194439.CT1163	10656679	194439.CT0151	10655683
0.00.0640.4190.00.0450.043519439.CT15051065701719439.CT153310656850.00.0990.000.00.0460.00.47919439.CT15051065701719439.CT1503106570170.00.6010.6010.000.000.000.0010439.CT15051065701719439.CT129610656890.00.2460.8070.000.0040.000.848194439.CT15051065701719439.CT145110656890.1990.6860.5680.00.0460.00.882194439.CT15051065701719439.CT028106558190.00.3010.8260.0560.0120.00.883194439.CT150510657017194439.CT0159106550170.4630.6920.9450.0450.0120.00.99194439.CT150510657017194439.CT1631065667	0.067	0.356	0.0	0.0	0.118	0.0	0.423	194439.CT1505	10657017	194439.CT0018	10655550
0.00.0990.00.00.4460.00.479194439.CT150510657017194439.CT1503106570170.00.6010.0010.0010.0010.0010.00119439.CT15051065701719439.CT120510656890.00.2460.8070.0010.00430.000.0848194439.CT150510657017194439.CT163510656930.1990.6860.5680.00.0460.00.882194439.CT150510657017194439.CT0285106558190.00.3010.8260.020.0120.00.883194439.CT150510657017194439.CT016310656930.4630.6920.9450.9450.0120.00.99194439.CT150510657017194439.CT016310656693	0.0	0.064	0.419	0.0	0.045	0.0	0.435	194439.CT1505	10657017	194439.CT1353	10656865
0.0 0.601 0.0 0.0 0.0 0.601 194439.CT1505 10657017 194439.CT1296 10656809 0.0 0.246 0.807 0.0 0.043 0.0 0.848 194439.CT1505 10657017 194439.CT1451 10656963 0.199 0.686 0.568 0.0 0.046 0.0 0.882 194439.CT1505 10657017 194439.CT0288 10655819 0.0 0.301 0.826 0.0 0.121 0.0 0.883 194439.CT1505 10657017 194439.CT0159 10655691 0.463 0.692 0.945 0.0 0.112 0.0 0.99 194439.CT1505 10657017 194439.CT1163 10656679	0.0	0.099	0.0	0.0	0.446	0.0	0.479	194439.CT1505	10657017	194439.CT1503	10657015
0.0 0.246 0.807 0.0 0.043 0.0 0.848 194439.CT1505 10657017 194439.CT1451 10656963 0.199 0.686 0.568 0.0 0.046 0.0 0.882 194439.CT1505 10657017 194439.CT0288 10655819 0.0 0.301 0.826 0.0 0.012 0.0 0.883 194439.CT1505 10657017 194439.CT0159 10655691 0.463 0.692 0.945 0.0 0.112 0.0 0.99 194439.CT1505 10657017 194439.CT0163 10655697	0.0	0.601	0.0	0.0	0.0	0.0	0.601	194439.CT1505	10657017	194439.CT1296	10656809
0.199 0.686 0.568 0.0 0.046 0.0 0.882 194439.CT1505 10657017 194439.CT0288 10655819 0.0 0.301 0.826 0.0 0.121 0.0 0.883 194439.CT1505 10657017 194439.CT059 10655617 0.463 0.692 0.945 0.0 0.112 0.0 0.99 194439.CT1505 10657017 194439.CT1163 10656679	0.0	0.246	0.807	0.0	0.043	0.0	0.848	194439.CT1505	10657017	194439.CT1451	10656963
0.0 0.301 0.826 0.0 0.121 0.0 0.883 194439.CT1505 10657017 194439.CT0159 10655691 0.463 0.692 0.945 0.0 0.112 0.0 0.99 194439.CT1505 10657017 194439.CT1163 10656679	0.199	0.686	0.568	0.0	0.046	0.0	0.882	194439.CT1505	10657017	194439.CT0288	10655819
0.463 0.692 0.945 0.0 0.112 0.0 0.99 194439.CT1505 10657017 194439.CT1163 10656679	0.0	0.301	0.826	0.0	0.121	0.0	0.883	194439.CT1505	10657017	194439.CT0159	10655691
	0.463	0.692	0.945	0.0	0.112	0.0	0.99	194439.CT1505	10657017	194439.CT1163	10656679

0.463	0.808	0.945	0.0	0.046	0.0	0.993	194439.CT1505	10657017	194439.CT0153	10655685
0.463	0.831	0.945	0.0	0.05	0.0	0.994	194439.CT1505	10657017	194439.CT0151	10655683
0.462	0.963	0.945	0.0	0.113	0.0	0.998	194439.CT1505	10657017	194439.CT1362	10656874
0.0	0.0	0.0	0.0	0.0	0.425	0.425	194439.CT1668	10657178	194439.CT0239	10655770
0.0	0.0	0.0	0.0	0.0	0.426	0.426	194439.CT1668	10657178	194439.CT0240	10655771
0.591	0.0	0.0	0.0	0.0	0.0	0.591	194439.CT1021	10656543	194439.CT0855	10656377
0.599	0.0	0.0	0.0	0.0	0.0	0.599	194439.CT1021	10656543	194439.CT0302	10655833
0.449	0.0	0.0	0.0	0.548	0.0	0.74	194439.CT1021	10656543	194439.CT1020	10656542
0.088	0.0	0.0	0.0	0.324	0.727	0.817	194439.CT1021	10656543	194439.CT1015	10656537
0.4	0.402	0.449	0.0	0.045	0.231	0.828	194439.CT1362	10656874	194439.CT0288	10655819
0.123	0.166	0.779	0.0	0.099	0.0	0.834	194439.CT1362	10656874	194439.CT0159	10655691
0.199	0.597	0.945	0.0	0.0	0.0	0.98	194439.CT1362	10656874	194439.CT1163	10656679
0.4	0.745	0.945	0.0	0.0	0.0	0.99	194439.CT1362	10656874	194439.CT0153	10655685
0.205	0.794	0.945	0.0	0.0	0.0	0.99	194439.CT1362	10656874	194439.CT0151	10655683
0.0	0.403	0.0	0.0	0.0	0.0	0.403	194439.CT2170	10657673	194439.CT2111	10657614
0.0	0.0	0.43	0.0	0.0	0.0	0.43	194439.CT2170	10657673	194439.CT1545	10657056
0.135	0.402	0.0	0.0	0.098	0.0	0.492	194439.CT2170	10657673	194439.CT0150	10655682
0.133	0.506	0.0	0.0	0.099	0.0	0.58	194439.CT2170	10657673	194439.CT0018	10655550
0.187	0.056	0.432	0.0	0.0	0.162	0.585	194439.CT2170	10657673	194439.CT1784	10657291
0.222	0.117	0.465	0.0	0.0	0.389	0.745	194439.CT2170	10657673	194439.CT1451	10656963
0.219	0.609	0.438	0.0	0.062	0.0	0.817	194439.CT2170	10657673	194439.CT0288	10655819
0.065	0.737	0.533	0.0	0.0	0.0	0.875	194439.CT2170	10657673	194439.CT0159	10655691
0.214	0.101	0.846	0.0	0.0	0.0	0.881	194439.CT2170	10657673	194439.CT1919	10657425
0.254	0.309	0.945	0.0	0.0	0.0	0.969	194439.CT2170	10657673	194439.CT1362	10656874
0.463	0.403	0.945	0.0	0.0	0.0	0.98	194439.CT2170	10657673	194439.CT2128	10657631
0.463	0.72	0.945	0.0	0.0	0.16	0.992	194439.CT2170	10657673	194439.CT2132	10657635

0.463	0.969	0.11	0.0	0.393	0.29	0.992	194439.CT2170	10657673	194439.CT2162	10657665
0.463	0.789	0.945	0.0	0.0	0.0	0.993	194439.CT2170	10657673	194439.CT2135	10657638
0.462	0.808	0.945	0.0	0.0	0.0	0.993	194439.CT2170	10657673	194439.CT1163	10656679
0.463	0.808	0.945	0.0	0.068	0.0	0.994	194439.CT2170	10657673	194439.CT1505	10657017
0.463	0.857	0.945	0.0	0.206	0.0	0.996	194439.CT2170	10657673	194439.CT0151	10655683
0.463	0.854	0.945	0.0	0.206	0.302	0.997	194439.CT2170	10657673	194439.CT1782	10657289
0.463	0.86	0.945	0.0	0.206	0.39	0.997	194439.CT2170	10657673	194439.CT1783	10657290
0.463	0.894	0.945	0.0	0.206	0.0	0.997	194439.CT2170	10657673	194439.CT0153	10655685
0.105	0.0	0.0	0.0	0.206	0.311	0.467	194439.CT1446	10656958	194439.CT0288	10655819
0.463	0.0	0.0	0.0	0.12	0.15	0.563	194439.CT1446	10656958	194439.CT0159	10655691
0.393	0.0	0.109	0.0	0.099	0.302	0.614	194439.CT1446	10656958	194439.CT0240	10655771
0.0	0.274	0.12	0.0	0.0	0.175	0.426	194439.CT2182	10657685	194439.CT0240	10655771
0.0	0.427	0.0	0.0	0.0	0.0	0.426	194439.CT2182	10657685	194439.CT2134	10657637
0.0	0.0	0.449	0.0	0.0	0.0	0.449	194439.CT2182	10657685	194439.CT1784	10657291
0.0	0.096	0.426	0.0	0.0	0.0	0.458	194439.CT2182	10657685	194439.CT1353	10656865
0.056	0.0	0.454	0.0	0.0	0.0	0.462	194439.CT2182	10657685	194439.CT1545	10657056
0.125	0.401	0.465	0.0	0.069	0.0	0.704	194439.CT2182	10657685	194439.CT0288	10655819
0.123	0.488	0.109	0.0	0.098	0.319	0.709	194439.CT2182	10657685	194439.CT0150	10655682
0.689	0.056	0.0	0.0	0.0	0.295	0.775	194439.CT2182	10657685	194439.CT1588	10657098
0.08	0.081	0.929	0.0	0.0	0.0	0.934	194439.CT2182	10657685	194439.CT1919	10657425
0.463	0.06	0.806	0.0	0.0	0.474	0.941	194439.CT2182	10657685	194439.CT1451	10656963
0.19	0.708	0.778	0.0	0.0	0.0	0.942	194439.CT2182	10657685	194439.CT0159	10655691
0.463	0.588	0.945	0.0	0.0	0.0	0.986	194439.CT2182	10657685	194439.CT2128	10657631
0.411	0.598	0.945	0.0	0.0	0.168	0.987	194439.CT2182	10657685	194439.CT2132	10657635
0.198	0.74	0.945	0.0	0.0	0.0	0.987	194439.CT2182	10657685	194439.CT1362	10656874
0.686	0.401	0.945	0.0	0.0	0.191	0.99	194439.CT2182	10657685	194439.CT1163	10656679

0.41	0.791	0.945	0.0	0.0	0.0	0.992	194439.CT2182	10657685	194439.CT1505	10657017
0.463	0.963	0.375	0.0	0.289	0.482	0.994	194439.CT2182	10657685	194439.CT2162	10657665
0.463	0.863	0.945	0.0	0.0	0.0	0.995	194439.CT2182	10657685	194439.CT2135	10657638
0.463	0.873	0.945	0.0	0.206	0.0	0.996	194439.CT2182	10657685	194439.CT0153	10655685
0.686	0.912	0.945	0.0	0.206	0.183	0.998	194439.CT2182	10657685	194439.CT0151	10655683
0.758	0.854	0.945	0.0	0.206	0.158	0.998	194439.CT2182	10657685	194439.CT1782	10657289
0.463	0.979	0.945	0.0	0.319	0.483	0.999	194439.CT2182	10657685	194439.CT2170	10657673
0.758	0.979	0.945	0.0	0.401	0.633	0.999	194439.CT2182	10657685	194439.CT2177	10657680
0.248	0.979	0.945	0.0	0.326	0.0	0.999	194439.CT2182	10657685	194439.CT2171	10657674
0.758	0.979	0.945	0.0	0.352	0.724	0.999	194439.CT2182	10657685	194439.CT2174	10657677
0.758	0.91	0.945	0.0	0.206	0.329	0.999	194439.CT2182	10657685	194439.CT1783	10657290
0.08	0.0	0.0	0.0	0.404	0.0	0.428	194439.CT0979	10656501	194439.CT0977	10656499
0.061	0.0	0.17	0.0	0.301	0.0	0.408	194439.CT1023	10656545	194439.CT1015	10656537
0.1	0.1	0.314	0.0	0.063	0.0	0.409	194439.CT1023	10656545	194439.CT0842	10656364
0.0	0.0	0.0	0.0	0.491	0.0	0.491	194439.CT1023	10656545	194439.CT1020	10656542
0.0	0.0	0.0	0.0	0.774	0.0	0.774	194439.CT1023	10656545	194439.CT1021	10656543
0.0	0.0	0.0	0.0	0.856	0.0	0.856	194439.CT0011	10655543	194439.CT0010	10655542
0.0	0.456	0.0	0.0	0.0	0.0	0.456	194439.CT2111	10657614	194439.CT0151	10655683
0.061	0.4	0.109	0.0	0.098	0.0	0.486	194439.CT2111	10657614	194439.CT1782	10657289
0.0	0.12	0.0	0.0	0.098	0.455	0.529	194439.CT2111	10657614	194439.CT0240	10655771
0.0	0.0	0.0	0.0	0.0	0.553	0.553	194439.CT2111	10657614	194439.CT0647	10656171
0.0	0.0	0.0	0.0	0.0	0.568	0.568	194439.CT2111	10657614	194439.CT0249	10655780
0.0	0.6	0.0	0.0	0.0	0.0	0.6	194439.CT2111	10657614	194439.CT0288	10655819
0.0	0.602	0.0	0.0	0.0	0.0	0.602	194439.CT2111	10657614	194439.CT0153	10655685
0.0	0.603	0.0	0.0	0.076	0.0	0.617	194439.CT2111	10657614	194439.CT1362	10656874
0.0	0.0	0.0	0.0	0.0	0.628	0.628	194439.CT2111	10657614	194439.CT0060	10655592

0.0	0.603	0.0	0.0	0.119	0.0	0.635	194439.CT2111	10657614	194439.CT1163	10656679
0.0	0.0	0.0	0.0	0.0	0.677	0.677	194439.CT2111	10657614	194439.CT1734	10657242
0.0	0.724	0.0	0.0	0.075	0.0	0.733	194439.CT2111	10657614	194439.CT1783	10657290
0.0	0.757	0.0	0.0	0.076	0.0	0.765	194439.CT2111	10657614	194439.CT1505	10657017
0.0	0.434	0.0	0.0	0.0	0.0	0.434	194439.CT2187	10657690	194439.CT2111	10657614
0.0	0.0	0.449	0.0	0.0	0.0	0.449	194439.CT2187	10657690	194439.CT1784	10657291
0.123	0.163	0.117	0.0	0.098	0.212	0.455	194439.CT2187	10657690	194439.CT0150	10655682
0.106	0.088	0.426	0.0	0.0	0.0	0.491	194439.CT2187	10657690	194439.CT1353	10656865
0.0	0.0	0.459	0.0	0.0	0.152	0.521	194439.CT2187	10657690	194439.CT1545	10657056
0.0	0.606	0.0	0.0	0.064	0.0	0.615	194439.CT2187	10657690	194439.CT0018	10655550
0.0	0.091	0.833	0.0	0.0	0.0	0.841	194439.CT2187	10657690	194439.CT1451	10656963
0.223	0.879	0.11	0.0	0.286	0.189	0.942	194439.CT2187	10657690	194439.CT2162	10657665
0.217	0.595	0.841	0.0	0.0	0.0	0.945	194439.CT2187	10657690	194439.CT0159	10655691
0.126	0.159	0.945	0.0	0.0	0.0	0.956	194439.CT2187	10657690	194439.CT1919	10657425
0.098	0.704	0.846	0.0	0.071	0.0	0.956	194439.CT2187	10657690	194439.CT0288	10655819
0.269	0.402	0.945	0.0	0.0	0.0	0.973	194439.CT2187	10657690	194439.CT2132	10657635
0.463	0.299	0.945	0.0	0.0	0.0	0.977	194439.CT2187	10657690	194439.CT2128	10657631
0.389	0.601	0.945	0.0	0.0	0.0	0.985	194439.CT2187	10657690	194439.CT1163	10656679
0.402	0.695	0.945	0.0	0.0	0.0	0.989	194439.CT2187	10657690	194439.CT1362	10656874
0.463	0.808	0.945	0.0	0.0	0.0	0.993	194439.CT2187	10657690	194439.CT2135	10657638
0.411	0.808	0.945	0.0	0.206	0.0	0.994	194439.CT2187	10657690	194439.CT1782	10657289
0.265	0.857	0.945	0.0	0.206	0.0	0.994	194439.CT2187	10657690	194439.CT1783	10657290
0.388	0.847	0.945	0.0	0.303	0.0	0.995	194439.CT2187	10657690	194439.CT2171	10657674
0.463	0.859	0.945	0.0	0.0	0.0	0.995	194439.CT2187	10657690	194439.CT1505	10657017
0.392	0.847	0.945	0.0	0.206	0.0	0.995	194439.CT2187	10657690	194439.CT0151	10655683
0.462	0.847	0.945	0.0	0.206	0.0	0.995	194439.CT2187	10657690	194439.CT0153	10655685

0.463	0.884	0.945	0.0	0.3	0.0	0.997	194439.CT2187	10657690	194439.CT2170	10657673
0.463	0.936	0.945	0.0	0.339	0.18	0.998	194439.CT2187	10657690	194439.CT2177	10657680
0.463	0.922	0.945	0.0	0.315	0.202	0.998	194439.CT2187	10657690	194439.CT2174	10657677
0.463	0.979	0.945	0.0	0.558	0.155	0.999	194439.CT2187	10657690	194439.CT2182	10657685
0.463	0.979	0.945	0.0	0.772	0.151	0.999	194439.CT2187	10657690	194439.CT2186	10657689
0.048	0.059	0.163	0.0	0.073	0.27	0.4	194439.CT1665	10657175	194439.CT1451	10656963
0.0	0.084	0.15	0.0	0.206	0.171	0.418	194439.CT1665	10657175	194439.CT0159	10655691
0.0	0.283	0.109	0.0	0.0	0.157	0.414	194439.CT2186	10657689	194439.CT0240	10655771
0.22	0.062	0.171	0.0	0.0	0.155	0.418	194439.CT2186	10657689	194439.CT0247	10655778
0.0	0.0	0.449	0.0	0.0	0.0	0.449	194439.CT2186	10657689	194439.CT1784	10657291
0.0	0.0	0.458	0.0	0.0	0.0	0.457	194439.CT2186	10657689	194439.CT1545	10657056
0.0	0.458	0.0	0.0	0.0	0.0	0.457	194439.CT2186	10657689	194439.CT2134	10657637
0.0	0.096	0.434	0.0	0.0	0.0	0.466	194439.CT2186	10657689	194439.CT1353	10656865
0.463	0.058	0.0	0.0	0.0	0.0	0.472	194439.CT2186	10657689	194439.CT0404	10655934
0.074	0.494	0.0	0.0	0.064	0.0	0.523	194439.CT2186	10657689	194439.CT0018	10655550
0.139	0.308	0.109	0.0	0.098	0.168	0.528	194439.CT2186	10657689	194439.CT0150	10655682
0.0	0.58	0.0	0.0	0.0	0.0	0.58	194439.CT2186	10657689	194439.CT2111	10657614
0.689	0.055	0.0	0.0	0.0	0.227	0.753	194439.CT2186	10657689	194439.CT1588	10657098
0.222	0.607	0.738	0.0	0.071	0.0	0.915	194439.CT2186	10657689	194439.CT0288	10655819
0.122	0.606	0.841	0.0	0.0	0.0	0.94	194439.CT2186	10657689	194439.CT0159	10655691
0.1	0.078	0.945	0.0	0.0	0.0	0.95	194439.CT2186	10657689	194439.CT1919	10657425
0.463	0.314	0.826	0.0	0.0	0.494	0.963	194439.CT2186	10657689	194439.CT1451	10656963
0.462	0.316	0.945	0.0	0.0	0.0	0.977	194439.CT2186	10657689	194439.CT2128	10657631
0.216	0.675	0.945	0.0	0.0	0.0	0.984	194439.CT2186	10657689	194439.CT1362	10656874
0.463	0.578	0.945	0.0	0.0	0.0	0.986	194439.CT2186	10657689	194439.CT2132	10657635
0.463	0.956	0.421	0.0	0.287	0.345	0.992	194439.CT2186	10657689	194439.CT2162	10657665

0.3920.880.9450.00.00.00.995194439.CT21810657689194439.CT213106576810.6630.8570.9450.000.00.00.995194439.CT21810657689194439.CT2131065576810.6630.94730.94550.000.2060.1550.99619439.CT218610657689194439.CT2171065576810.66430.94730.94550.000.2060.2590.99819439.CT218610657689194439.CT217106576770.5780.9790.9450.000.2060.2590.99919439.CT218610657689194439.CT217106576870.5780.9790.9450.000.2060.4590.99919439.CT218610657689194439.CT217106576810.5780.9790.9450.000.2060.4510.99919439.CT218610657689194439.CT217106576810.5780.9790.9450.000.3470.4710.99919439.CT218610657689194439.CT217106576810.5780.9790.9450.000.3020.4320.99919439.CT218610657689194439.CT217106576810.6630.9790.9450.000.000.44219439.CT217610657689194439.CT217106576810.6640.9790.9450.000.000.45219439.CT217610657689194439.CT217106576810.6630.9790.9450.000.00 </th <th>0.686</th> <th>0.644</th> <th>0.945</th> <th>0.0</th> <th>0.0</th> <th>0.204</th> <th>0.994</th> <th>194439.CT2186</th> <th>10657689</th> <th>194439.CT1163</th> <th>10656679</th>	0.686	0.644	0.945	0.0	0.0	0.204	0.994	194439.CT2186	10657689	194439.CT1163	10656679
0.4630.8870.9480.040.00.00.99819439.C12810657689194439.C136106576890.6430.9470.9450.0450.0260.1550.998194439.C12810657689194439.C123106576890.6430.9230.9430.0450.000.2060.90919439.C1218101657689194439.C121106576810.6570.9790.9450.000.2060.49919439.C1218101657689194439.C123106576810.5780.9790.9450.000.2060.6450.99919439.C124810657689194439.C123106576810.5780.9790.9450.000.2060.6450.99919439.C124810657689194439.C124106576810.5780.9790.9450.000.2060.6450.99919439.C124810657689194439.C124106576810.5780.9790.9450.000.3020.4640.99919439.C124510657689194439.C124106576810.5780.9490.9490.020.0470.04119439.C12410657681194439.C124106576810.5780.9490.9490.940.020.94919439.C12410657681194439.C124106576810.5780.9490.9490.940.020.4490.9419439.C12410657681194439.C124106576810.5780.9490.9490.940.020.0410.4121943	0.392	0.88	0.945	0.0	0.0	0.0	0.995	194439.CT2186	10657689	194439.CT2135	10657638
0.4340.8470.94490.00.02000.1550.99619443.071361045789919443.07135106578990.6430.9230.9450.00.3060.099.9483104578919443.0713710657870.6460.8790.9450.00.2060.2590.94831046578919443.0713710657890.6570.9470.9450.00.2060.5730.99919443.0713810657891943.0713710557830.5780.9790.9450.00.6010.5730.99919443.0713810657891943.9717410557870.7580.9790.9450.00.2660.4670.99919443.071861943.9717410557890.7580.9790.9450.00.2660.4690.99919443.071861943.9717410557890.7580.9790.9450.00.3020.4710.99919443.071861943.9717410557890.6580.9990.9430.00.3020.4640.99919443.071861943.9717410557890.6580.9990.9430.00.010.4140.99919443.0717410657891943.9717410557890.6590.9490.940.00.010.4140.9991943.9717410657891943.9717410557890.650.9490.900.0440.00.040.41410.9991943.9717410657891943.9717410557890.05 </td <td>0.463</td> <td>0.857</td> <td>0.945</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.995</td> <td>194439.CT2186</td> <td>10657689</td> <td>194439.CT1505</td> <td>10657017</td>	0.463	0.857	0.945	0.0	0.0	0.0	0.995	194439.CT2186	10657689	194439.CT1505	10657017
0.4330.9230.9450.00.3060.00.998194439.C718610657689194439.C717110657670.6860.880.9450.00.2060.2590.998194439.C71861065789194439.C71861065789194439.C71861065789194439.C71861065789194439.C71861065789194439.C71861065789194439.C71861065789194439.C71861065789194439.C71861065789194439.C71861065789194439.C71861065789194439.C71861065789194439.C71861065789194439.C71861065789194439.C71861065789194439.C71861065789194439.C71861065789194439.C71861065789194439.C71721065789194439.C71721065789194439.C71721065789194439.C7173<	0.463	0.847	0.945	0.0	0.206	0.155	0.996	194439.CT2186	10657689	194439.CT0153	10655685
0.6860.880.9450.00.2060.2590.99819443.CT21861065768919443.CT1314106556810.7580.9790.9450.00.6010.5730.99919443.CT21861065768919443.CT2174106576870.7580.9990.94500.040.6010.5730.99919443.CT2186106576891943.CT2172106578870.7580.9790.9450.000.2060.4610.99919443.CT21861065768919433.CT2170106576890.7580.9790.9450.000.3020.4320.99919443.CT21861065768919443.CT2170106576300.4630.9790.9450.000.3020.4690.99919443.CT21861065768919443.CT2170106576300.7580.9790.9450.000.3020.4690.99919443.CT21861065768919443.CT2170106576300.6630.9790.9450.000.3020.4690.99919443.CT21761065768919443.CT2170106576890.7580.9790.9450.000.0460.99919443.CT21701065768919443.CT2170106576890.000.4640.99919443.CT21771065768019443.CT21701065768919443.CT2170106576890.010.020.020.46419443.CT21771065768019443.CT218106576910.010.020.0219443.CT21771065768019443.CT21810657691 <td>0.463</td> <td>0.923</td> <td>0.945</td> <td>0.0</td> <td>0.306</td> <td>0.0</td> <td>0.998</td> <td>194439.CT2186</td> <td>10657689</td> <td>194439.CT2171</td> <td>10657674</td>	0.463	0.923	0.945	0.0	0.306	0.0	0.998	194439.CT2186	10657689	194439.CT2171	10657674
0.7580.9790.9450.00.320.4990.99919443.CT2161065768919443.CT21410657670.7580.0790.9450.00.6010.5730.99919443.CT2161065768919443.CT2182106576890.7580.9080.9450.00.2060.4650.99919443.CT2161065768919443.CT2172106576890.7580.9790.9450.00.3470.4710.99919443.CT2161065768919443.CT2170106576890.7580.9790.9450.00.3420.4220.99919443.CT21651065768919443.CT2170106576890.7580.9790.9450.00.2060.4690.99919443.CT21651065768919443.CT2170106576800.7580.8970.9450.000.000.1710.41219443.CT21771065768019443.CT2161065576890.00.2680.1090.00.0740.00.42219433.CT21771065768019443.CT2141065576810.00.4020.00.00.00.42519443.CT21771065768019443.CT2141065576810.00.4020.00.00.00.42519433.CT21771065768019443.CT2141065576810.00.000.00.00.42519443.CT2171065768019443.CT2141065576810.000.000.00.00.45519443.CT2171065768019443.CT214106	0.686	0.88	0.945	0.0	0.206	0.259	0.998	194439.CT2186	10657689	194439.CT0151	10655683
0.7580.9790.9450.00.6010.5730.999194439.C7128610657689194439.C71282106576890.7580.9080.9450.00.2060.4650.999194439.C7128610657689194439.C7127106576890.7580.9790.9450.00.3470.4710.999194439.C7128610657689194439.C7127106576890.6630.9790.9450.00.3020.4220.999194439.C718610657689194439.C7127106576890.7580.8970.9450.00.2060.4690.999194439.C718610657689194439.C7127106576800.7580.8970.9450.00.2060.4690.999194439.C717710657680194439.C7127106576800.0100.0260.000.0170.012194439.C717710657680194439.C7131106576800.020.0430.000.000.000.424194439.C717710657680194439.C7135106576800.030.040.00.00.04194439.C717710657680194439.C7145106576800.040.0460.4450.00.0740.05194439.C717710657680194439.C71450.050.0560.4490.00.080.55194439.C717710657680194439.C7145106576800.050.2640.4490.00.080.55194439.C717710657680194439.C714510657680<	0.758	0.979	0.945	0.0	0.32	0.499	0.999	194439.CT2186	10657689	194439.CT2174	10657677
0.7580.9080.9430.00.02600.4650.99919443.CT2181065769919443.CT2181045769919443.CT217106576900.7580.9790.9450.00.3020.4320.99919443.CT2181065769919443.CT2171065769319443.CT217106576930.7580.8970.9450.00.02060.4690.99919443.CT2181065769019443.CT2171065769019443.CT2171065769119443.CT217	0.758	0.979	0.945	0.0	0.601	0.573	0.999	194439.CT2186	10657689	194439.CT2182	10657685
0.7580.9790.9450.00.3470.4710.99919439.CT2161065768919439.CT217106576800.6430.9790.9450.00.3020.4320.99919439.CT218106578919439.CT21810439.CT21810439.CT21810439.CT21810439.CT21810439.CT21810439.CT21810439.CT21810439.CT21810439.CT21810439.CT21810439.CT21810439.CT21810439.CT21810439.CT2181045789104578910457891055789104578110557810.00.2680.0190.000.0740.010.42219449.CT217106576019449.CT01810657810.00.4030.000.000.010.44519449.CT171106576019449.CT11410657610.00.4030.0450.000.010.4519449.CT177106576019449.CT13510657650.00.4040.000.010.4519449.CT177106576019449.CT135106567810.00.0660.0440.000.04519449.CT177106576019449.CT145106576810.00.00.0160.01219449.CT177106576019449.CT145106576810.0160.0190.0260.01219449.CT177106576019449.CT145106576810.0170.0560.0490.000.0480.04919449.CT175106576019449.CT145106576810.0180.0590.0560.0490.060.0490.0	0.758	0.908	0.945	0.0	0.206	0.465	0.999	194439.CT2186	10657689	194439.CT1782	10657289
0.4630.9790.9450.00.0320.4320.99919443.CT2161065768919443.CT217106576890.7580.8970.9450.00.0260.4690.99919443.CT2161065768019443.CT217106576800.00.2680.1090.00.00.1710.41219443.CT2171065768019443.CT217106576800.00.4020.000.00.0740.00.42219443.CT2171065768019443.CT21110557610.00.4030.1090.00.00.45419443.CT2171065768019443.CT2171065768019443.CT21410557610.00.0430.090.00.00.45419443.CT2171065768019443.CT21410557610.00.0560.4540.00.00.00.45419443.CT2171065768019443.CT217106576800.00.0660.4450.00.00.07819433.CT2171065768019443.CT2171065768019443.CT2170.00.0660.040.00.0780.57819443.CT2171065768019443.CT2171065768019443.CT2170.00.050.0490.00.0780.57919443.CT2171065768019443.CT18410657910.180.050.040.080.5590.00.06619443.CT2171065768019443.CT184106576800.180.050.050.060.040.15519443.CT217<	0.758	0.979	0.945	0.0	0.347	0.471	0.999	194439.CT2186	10657689	194439.CT2177	10657680
0.7580.8970.9450.00.2060.4690.999194439.CT28610657689194439.CT2783106572900.00.2680.1090.00.00.01710.412194439.CT27710657680194439.CT2040106557710.00.4020.000.000.0740.00.422194439.CT217710657680194439.CT2113106576800.00.4030.1090.00.00.00.454194439.CT217710657680194439.CT2113106576800.00.04030.04540.00.00.0454194439.CT217710657680194439.CT2154106576800.00.0560.4450.00.00.00.455194439.CT217710657680194439.CT333106568610.00.0660.4450.00.00.0780.455194439.CT217710657800194439.CT343106576800.00.0560.4490.00.00.1850.539194439.CT217710657800194439.CT34310657910.1870.5110.1090.00.0980.1550.55194439.CT217710657800194439.CT358106578910.1870.5110.1090.00.090.91219439.CT21771065780019439.CT358106578910.6890.0560.000.0170.91419439.CT21771065780019439.CT358106578910.6890.0560.000.0170.91219439.CT21771065780019439.CT	0.463	0.979	0.945	0.0	0.302	0.432	0.999	194439.CT2186	10657689	194439.CT2170	10657673
0.00.2680.1090.00.00.1710.41219443.CT27711065768019443.CT20401106557710.00.4020.4020.4030.000.00.0740.00.42219443.CT217711065768019443.CT0181106555500.00.4030.1090.000.00.00.44519443.CT217711065768019443.CT21111106576160.00.00.050.060.04540.000.00.45419443.CT217711065768019443.CT15451106576800.00.0660.4450.000.00.00.45519443.CT217711065768019443.CT31331106568650.00.0270.000.000.010.1850.45519443.CT217711065768019443.CT3141106576800.00.0560.4490.000.000.1850.55919443.CT217711065768019443.CT3141106576810.1870.3110.1090.000.0180.5551943.CT217711065768019443.CT3181106576810.6890.0560.000.000.0240.9431943.CT217711065768019443.CT3181106576810.4080.6850.5590.000.000.04780.93919443.CT217711065768019443.CT3181106576810.4080.6860.690.01730.9551943.CT21771106576801943.CT318110557810.4130.1030.6860.020.0173	0.758	0.897	0.945	0.0	0.206	0.469	0.999	194439.CT2186	10657689	194439.CT1783	10657290
0.00.00.00.0740.020.4249443.C12779.10657809.443.C1019.10657800.00.030.0190.000.010.0449.443.C12179.10657809.443.C12149.1057800.00.0400.0450.0450.4549.443.C12179.10657809.443.C12139.1043	0.0	0.268	0.109	0.0	0.0	0.171	0.412	194439.CT2177	10657680	194439.CT0240	10655771
0.00.4030.1090.00.00.00.44519449.CT2171065768019443.CT211106576100.00.00.00.00.00.45419443.CT2171065768019433.CT153106576800.00.0660.4450.00.00.00.45919433.CT2171065768019433.CT353106568650.00.02070.000.000.000.03780.48519443.CT2171065768019443.CT36310656820.00.0560.4490.00.00.1850.53919443.CT2171065768019443.CT363106576810.1870.3110.1090.00.0980.1550.5519443.CT2171065768019443.CT168106576810.6890.0560.00.00.02040.74619443.CT2171065768019443.CT168106576810.4080.6850.5590.00.0660.019443.CT2171065768019443.CT168106576810.4130.1030.8660.00.00.4780.93919443.CT2171065768019443.CT168106576350.4130.0850.0850.000.010.070.95519443.CT1771065768019443.CT168106576350.4240.6860.9450.000.010.070.95619443.CT1771065768019443.CT168106576350.4330.6860.9450.000.010.070.97619443.CT1771065768019443	0.0	0.402	0.0	0.0	0.074	0.0	0.422	194439.CT2177	10657680	194439.CT0018	10655550
0.00.04540.00.00.04540.4430.CT2771.06576801.9439.CT3541.06576800.00.0660.04500.04500.04500.04500.9439.CT2171.06576801.9439.CT3530.10556810.00.0700.0700.0700.0700.0700.08500.9439.CT2171.06576801.9439.CT2840.10552820.00.0560.04900.00.0980.1550.5391.9439.CT2171.06576801.9439.CT2840.10552820.1870.0190.0190.0980.1550.5591.9439.CT2171.06576801.9439.CT2841.06576800.6880.0590.0190.0980.0200.07401.9439.CT2171.06576801.9439.CT2841.06576810.4080.0590.010.0060.0200.0121.9439.CT2171.06576801.9439.CT2841.06576810.4130.6850.5990.010.0660.0121.9439.CT2171.06576801.9439.CT2841.06576810.4140.4550.010.010.0130.9551.9439.CT2171.06576801.9439.CT2181.06576810.4240.4580.020.010.0130.9761.9439.CT2171.06576801.9439.CT2181.06576810.4250.4580.050.010.0130.9761.9439.CT2171.06576801.9439.CT2181.06576810.4650.4580.020.010.0130.9761.9439.CT2171.06576801.9439.CT2181.0657	0.0	0.403	0.109	0.0	0.0	0.0	0.445	194439.CT2177	10657680	194439.CT2111	10657614
0.00.0660.0450.0450.00.045919449.CT2771.065768019449.CT3331.06568650.00.0270.000.00.03780.4851.9449.CT2171.06576801.9449.CT3241.06576801.9449.CT3241.06576801.9449.CT3241.06576801.9449.CT3241.06576801.9449.CT3241.06576801.9449.CT3241.06576801.9449.CT3241.06576801.9449.CT3241.06576801.9449.CT3241.06576801.9449.CT3241.06576801.9449.CT3241.06576801.9449.CT3241.06576801.9449.CT3261.065768	0.0	0.0	0.454	0.0	0.0	0.0	0.454	194439.CT2177	10657680	194439.CT1545	10657056
0.00.070.00.00.03780.48519449.CT21771065768019449.CT0824106563640.00.0560.4490.00.00.1850.539194439.CT217710657680194439.CT050106576820.1870.3110.1090.00.0980.1550.55194439.CT217710657680194439.CT050106576820.6890.0560.000.00.020.2040.746194439.CT217710657680194439.CT058106570820.4080.6850.5590.00.00.00.912194439.CT217710657680194439.CT288106570810.4130.1030.8060.00.00.4780.939194439.CT217710657680194439.CT1451106576810.2080.0680.9450.00.00.00.955194439.CT217710657680194439.CT1451106576810.2040.8360.8050.00.00.1730.976194439.CT217710657680194439.CT1451106576810.4630.440.9450.00.00.00.98194439.CT217710657680194439.CT145110657631	0.0	0.066	0.445	0.0	0.0	0.0	0.459	194439.CT2177	10657680	194439.CT1353	10656865
0.00.0560.4490.00.00.1850.53919439.CT217710657680194439.CT178106572910.1870.3110.1090.00.0980.1550.5519439.CT21771065768019439.CT158106556820.6890.0560.00.00.00.2040.74619439.CT21771065768019439.CT1588106570980.4080.6850.5990.00.0660.010.0180.01219439.CT217710657680194439.CT26810655830.4130.0380.8060.00.010.4780.939194439.CT217710657680194439.CT245110656830.2080.0680.0480.040.00.010.955194439.CT217710657680194439.CT1919106576310.2040.8360.8050.000.010.010.955194439.CT217710657680194439.CT191106576310.2040.8360.8050.010.010.010.955194439.CT217710657680194439.CT191106576310.2040.8360.8050.010.010.010.976194439.CT217710657680194439.CT191106576310.4630.440.9450.000.010.976194439.CT217710657680194439.CT218106576310.4630.440.9450.000.010.98194439.CT217710657680194439.CT21810657631	0.0	0.207	0.0	0.0	0.0	0.378	0.485	194439.CT2177	10657680	194439.CT0842	10656364
0.1870.3110.1090.00.0980.1550.55194439.CT217710657680194439.CT0150106556820.6890.0560.00.00.2040.746194439.CT217710657680194439.CT0288106578190.4080.6850.5590.00.0660.010.912194439.CT217710657680194439.CT0288106558190.4130.1030.8060.00.04780.939194439.CT217710657680194439.CT1451106569630.2080.0680.9450.00.00.00.955194439.CT217710657680194439.CT1919106574250.2040.8360.8050.00.00.01730.976194439.CT217710657680194439.CT0159106556310.4630.440.9450.00.00.976194439.CT217710657680194439.CT015910655631	0.0	0.056	0.449	0.0	0.0	0.185	0.539	194439.CT2177	10657680	194439.CT1784	10657291
0.6890.0560.00.00.00.0240.74619439.CT21771065768019439.CT1588106570980.4080.6850.5590.00.0660.00.91219439.CT21771065768019439.CT0288106558190.4130.1030.8060.00.00.4780.93919439.CT21771065768019439.CT145110656930.2080.0680.9450.00.00.070.95519439.CT21771065768019439.CT1919106576300.2040.8360.8050.00.00.1730.97619439.CT21771065768019439.CT159106556310.4630.440.9450.00.00.00.9819439.CT21771065768019439.CT15910655631	0.187	0.311	0.109	0.0	0.098	0.155	0.55	194439.CT2177	10657680	194439.CT0150	10655682
0.408 0.685 0.559 0.0 0.066 0.0 0.912 19439.CT2177 10657680 19439.CT0288 10655819 0.413 0.103 0.806 0.0 0.0 0.478 0.939 19439.CT2177 10657680 19439.CT1451 10656963 0.208 0.068 0.945 0.0 0.0 0.955 19439.CT2177 10657680 19439.CT1451 10656963 0.204 0.836 0.945 0.0 0.0 0.955 19439.CT2177 10657680 19439.CT1451 10657691 0.204 0.836 0.805 0.0 0.0 0.976 19439.CT2177 10657680 19439.CT0159 10655691 0.463 0.4 0.945 0.0 0.0 0.98 19439.CT2177 10657680 19439.CT2128 10657631	0.689	0.056	0.0	0.0	0.0	0.204	0.746	194439.CT2177	10657680	194439.CT1588	10657098
0.413 0.103 0.806 0.0 0.0 0.478 0.939 194439.CT2177 10657680 194439.CT1451 10656963 0.208 0.068 0.945 0.0 0.0 0.955 194439.CT2177 10657680 194439.CT1451 10657425 0.204 0.836 0.805 0.0 0.0 0.976 194439.CT2177 10657680 194439.CT0159 10655691 0.204 0.836 0.805 0.0 0.0 0.976 194439.CT2177 10657680 194439.CT0159 10655691 0.463 0.4 0.945 0.0 0.0 0.98 194439.CT2177 10657680 194439.CT2128 10657631	0.408	0.685	0.559	0.0	0.066	0.0	0.912	194439.CT2177	10657680	194439.CT0288	10655819
0.208 0.068 0.945 0.0 0.0 0.955 19439.CT2177 10657680 19439.CT1919 10657425 0.204 0.836 0.805 0.0 0.0 0.173 0.976 19439.CT2177 10657680 194439.CT0159 10655691 0.463 0.4 0.945 0.0 0.0 0.98 194439.CT2177 10657680 194439.CT2128 10657631	0.413	0.103	0.806	0.0	0.0	0.478	0.939	194439.CT2177	10657680	194439.CT1451	10656963
0.204 0.836 0.805 0.0 0.173 0.976 194439.CT2177 10657680 194439.CT0159 10655691 0.463 0.4 0.945 0.0 0.0 0.98 194439.CT2177 10657680 194439.CT2128 10657631	0.208	0.068	0.945	0.0	0.0	0.0	0.955	194439.CT2177	10657680	194439.CT1919	10657425
0.463 0.4 0.945 0.0 0.0 0.0 0.0 0.98 194439.CT2177 10657680 194439.CT2128 10657631	0.204	0.836	0.805	0.0	0.0	0.173	0.976	194439.CT2177	10657680	194439.CT0159	10655691
	0.463	0.4	0.945	0.0	0.0	0.0	0.98	194439.CT2177	10657680	194439.CT2128	10657631

0.219	0.606	0.945	0.0	0.0	0.0	0.981	194439.CT2177	10657680	194439.CT1362	10656874
0.463	0.544	0.945	0.0	0.0	0.201	0.987	194439.CT2177	10657680	194439.CT2132	10657635
0.462	0.731	0.945	0.0	0.0	0.0	0.991	194439.CT2177	10657680	194439.CT1505	10657017
0.462	0.804	0.945	0.0	0.0	0.0	0.993	194439.CT2177	10657680	194439.CT2135	10657638
0.463	0.979	0.109	0.0	0.316	0.296	0.994	194439.CT2177	10657680	194439.CT2162	10657665
0.463	0.859	0.945	0.0	0.206	0.0	0.996	194439.CT2177	10657680	194439.CT0153	10655685
0.686	0.605	0.945	0.0	0.0	0.482	0.996	194439.CT2177	10657680	194439.CT1163	10656679
0.758	0.78	0.945	0.0	0.206	0.482	0.998	194439.CT2177	10657680	194439.CT1782	10657289
0.758	0.847	0.945	0.0	0.206	0.295	0.998	194439.CT2177	10657680	194439.CT1783	10657290
0.686	0.862	0.945	0.0	0.206	0.398	0.998	194439.CT2177	10657680	194439.CT0151	10655683
0.463	0.974	0.945	0.0	0.463	0.184	0.999	194439.CT2177	10657680	194439.CT2170	10657673
0.463	0.979	0.945	0.0	0.495	0.0	0.999	194439.CT2177	10657680	194439.CT2171	10657674
0.758	0.979	0.945	0.0	0.622	0.72	0.999	194439.CT2177	10657680	194439.CT2174	10657677
0.127	0.31	0.109	0.0	0.098	0.0	0.451	194439.CT2188	10657691	194439.CT0150	10655682
0.0	0.286	0.11	0.0	0.076	0.207	0.472	194439.CT2188	10657691	194439.CT0240	10655771
0.106	0.084	0.45	0.0	0.059	0.0	0.519	194439.CT2188	10657691	194439.CT1353	10656865
0.0	0.0	0.454	0.0	0.0	0.193	0.54	194439.CT2188	10657691	194439.CT1545	10657056
0.0	0.614	0.0	0.0	0.0	0.0	0.614	194439.CT2188	10657691	194439.CT2111	10657614
0.0	0.0	0.451	0.0	0.0	0.408	0.661	194439.CT2188	10657691	194439.CT1784	10657291
0.08	0.652	0.0	0.0	0.065	0.0	0.674	194439.CT2188	10657691	194439.CT0018	10655550
0.689	0.0	0.0	0.0	0.075	0.234	0.76	194439.CT2188	10657691	194439.CT1588	10657098
0.246	0.651	0.559	0.0	0.071	0.0	0.877	194439.CT2188	10657691	194439.CT0288	10655819
0.13	0.604	0.805	0.0	0.046	0.221	0.94	194439.CT2188	10657691	194439.CT0159	10655691
0.367	0.116	0.814	0.0	0.0	0.578	0.95	194439.CT2188	10657691	194439.CT1451	10656963
0.0	0.165	0.945	0.0	0.0	0.0	0.952	194439.CT2188	10657691	194439.CT1919	10657425
0.462	0.402	0.945	0.0	0.0	0.0	0.98	194439.CT2188	10657691	194439.CT2128	10657631

0.463	0.94	0.11	0.0	0.285	0.242	0.981	194/39 CT2199	10657691	194439 (772162	10657665
0.405	0.94	0.045	0.0	0.205	0.242	0.002	104420 CT2100	10657601	104420 CT1262	10656874
0.198	0.853	0.945	0.0	0.0	0.0	0.992	194439.012188	10657691	194439.011362	10656874
0.463	0.695	0.945	0.0	0.0	0.301	0.992	194439.CT2188	10657691	194439.CT2132	10657635
0.463	0.808	0.945	0.0	0.0	0.0	0.993	194439.CT2188	10657691	194439.CT1505	10657017
0.267	0.853	0.945	0.0	0.3	0.0	0.995	194439.CT2188	10657691	194439.CT2171	10657674
0.686	0.747	0.945	0.0	0.0	0.371	0.996	194439.CT2188	10657691	194439.CT1163	10656679
0.339	0.903	0.945	0.0	0.0	0.0	0.996	194439.CT2188	10657691	194439.CT2135	10657638
0.463	0.847	0.945	0.0	0.206	0.162	0.996	194439.CT2188	10657691	194439.CT0153	10655685
0.758	0.853	0.945	0.0	0.206	0.164	0.998	194439.CT2188	10657691	194439.CT1782	10657289
0.686	0.848	0.945	0.0	0.206	0.207	0.998	194439.CT2188	10657691	194439.CT0151	10655683
0.758	0.855	0.945	0.0	0.206	0.541	0.999	194439.CT2188	10657691	194439.CT1783	10657290
0.463	0.952	0.945	0.0	0.297	0.317	0.999	194439.CT2188	10657691	194439.CT2170	10657673
0.758	0.979	0.945	0.0	0.702	0.169	0.999	194439.CT2188	10657691	194439.CT2186	10657689
0.758	0.953	0.945	0.0	0.31	0.285	0.999	194439.CT2188	10657691	194439.CT2174	10657677
0.758	0.963	0.945	0.0	0.331	0.212	0.999	194439.CT2188	10657691	194439.CT2177	10657680
0.463	0.979	0.945	0.0	0.762	0.0	0.999	194439.CT2188	10657691	194439.CT2187	10657690
0.758	0.979	0.945	0.0	0.516	0.226	0.999	194439.CT2188	10657691	194439.CT2182	10657685
0.123	0.401	0.0	0.0	0.063	0.0	0.464	194439.CT2041	10657545	194439.CT0018	10655550
0.103	0.575	0.112	0.0	0.044	0.0	0.633	194439.CT2041	10657545	194439.CT0302	10655833
0.188	0.31	0.0	0.0	0.0	0.0	0.415	194439.CT0151	10655683	194439.CT0018	10655550
0.187	0.6	0.0	0.75	0.687	0.166	0.975	194439.CT0151	10655683	194439.CT0150	10655682
0.0	0.0	0.111	0.0	0.57	0.0	0.601	194439.CT0283	10655814	194439.CT0282	10655813
0.08	0.403	0.0	0.0	0.0	0.0	0.427	194439.CT0153	10655685	194439.CT0018	10655550
0.13	0.501	0.0	0.0	0.513	0.208	0.81	194439.CT0153	10655685	194439.CT0150	10655682
0.463	0.926	0.945	0.0	0.667	0.0	0.999	194439.CT0153	10655685	194439.CT0151	10655683
	1	1	1	1	1	1	1		1	

0.0	0.0	0.458	0.0	0.067	0.0	0.472	194439.CT1783	10657290	194439.CT1545	10657056
0.0	0.731	0.0	0.0	0.0	0.0	0.731	194439.CT1783	10657290	194439.CT0018	10655550
0.689	0.065	0.0	0.0	0.206	0.0	0.749	194439.CT1783	10657290	194439.CT1588	10657098
0.449	0.682	0.555	0.0	0.0	0.0	0.915	194439.CT1783	10657290	194439.CT0288	10655819
0.116	0.611	0.805	0.0	0.108	0.229	0.945	194439.CT1783	10657290	194439.CT0159	10655691
0.448	0.129	0.828	0.0	0.076	0.665	0.969	194439.CT1783	10657290	194439.CT1451	10656963
0.354	0.83	0.945	0.0	0.042	0.0	0.993	194439.CT1783	10657290	194439.CT1362	10656874
0.463	0.847	0.945	0.0	0.076	0.0	0.995	194439.CT1783	10657290	194439.CT0153	10655685
0.463	0.94	0.945	0.0	0.206	0.0	0.998	194439.CT1783	10657290	194439.CT1505	10657017
0.686	0.808	0.945	0.0	0.127	0.436	0.998	194439.CT1783	10657290	194439.CT1163	10656679
0.686	0.862	0.945	0.0	0.117	0.201	0.998	194439.CT1783	10657290	194439.CT0151	10655683
0.758	0.979	0.945	0.164	0.856	0.282	0.999	194439.CT1783	10657290	194439.CT1782	10657289
0.57	0.0	0.0	0.0	0.057	0.0	0.577	194439.CT2250	10657752	194439.CT1087	10656609
0.127	0.0	0.364	0.0	0.098	0.6	0.772	194439.CT2250	10657752	194439.CT0857	10656379
0.136	0.0	0.0	0.0	0.098	0.74	0.779	194439.CT2250	10657752	194439.CT0856	10656378
0.135	0.0	0.0	0.0	0.098	0.738	0.953	194439.CT2250	10657752	194439.CT0855	10656377
0.0	0.09	0.407	0.0	0.0	0.0	0.437	194439.CT2174	10657677	194439.CT1353	10656865
0.0	0.051	0.449	0.0	0.0	0.0	0.454	194439.CT2174	10657677	194439.CT1784	10657291
0.0	0.432	0.109	0.0	0.0	0.0	0.472	194439.CT2174	10657677	194439.CT2111	10657614
0.187	0.258	0.0	0.0	0.098	0.161	0.482	194439.CT2174	10657677	194439.CT0150	10655682
0.222	0.0	0.458	0.0	0.0	0.0	0.56	194439.CT2174	10657677	194439.CT1545	10657056
0.0	0.13	0.0	0.0	0.0	0.519	0.563	194439.CT2174	10657677	194439.CT0842	10656364
0.688	0.0	0.0	0.0	0.0	0.0	0.688	194439.CT2174	10657677	194439.CT1588	10657098
0.101	0.713	0.0	0.0	0.099	0.0	0.747	194439.CT2174	10657677	194439.CT0018	10655550
0.238	0.615	0.465	0.0	0.063	0.0	0.833	194439.CT2174	10657677	194439.CT0288	10655819
0.39	0.1	0.826	0.0	0.0	0.483	0.944	194439.CT2174	10657677	194439.CT1451	10656963

0.263	0.111	0.93	0.0	0.0	0.0	0.95	194439.CT2174	10657677	194439.CT1919	10657425
0.208	0.84	0.841	0.0	0.0	0.0	0.978	194439.CT2174	10657677	194439.CT0159	10655691
0.463	0.463	0.945	0.0	0.0	0.0	0.982	194439.CT2174	10657677	194439.CT2128	10657631
0.411	0.599	0.945	0.0	0.0	0.0	0.985	194439.CT2174	10657677	194439.CT1362	10656874
0.463	0.615	0.945	0.0	0.0	0.231	0.99	194439.CT2174	10657677	194439.CT2132	10657635
0.261	0.812	0.945	0.0	0.0	0.0	0.991	194439.CT2174	10657677	194439.CT2135	10657638
0.463	0.747	0.945	0.0	0.062	0.0	0.992	194439.CT2174	10657677	194439.CT1505	10657017
0.463	0.971	0.109	0.0	0.341	0.277	0.992	194439.CT2174	10657677	194439.CT2162	10657665
0.686	0.661	0.945	0.0	0.0	0.415	0.996	194439.CT2174	10657677	194439.CT1163	10656679
0.463	0.861	0.945	0.0	0.206	0.0	0.996	194439.CT2174	10657677	194439.CT0153	10655685
0.758	0.808	0.945	0.0	0.206	0.289	0.998	194439.CT2174	10657677	194439.CT1782	10657289
0.685	0.903	0.945	0.0	0.206	0.27	0.998	194439.CT2174	10657677	194439.CT0151	10655683
0.758	0.852	0.945	0.0	0.206	0.52	0.999	194439.CT2174	10657677	194439.CT1783	10657290
0.463	0.979	0.945	0.154	0.594	0.43	0.999	194439.CT2174	10657677	194439.CT2170	10657673
0.462	0.979	0.945	0.0	0.65	0.0	0.999	194439.CT2174	10657677	194439.CT2171	10657674
0.138	0.0	0.407	0.0	0.075	0.0	0.485	194439.CT2134	10657637	194439.CT1588	10657098
0.0	0.69	0.0	0.0	0.0	0.0	0.69	194439.CT2134	10657637	194439.CT1505	10657017
0.0	0.168	0.0	0.0	0.576	0.216	0.699	194439.CT2134	10657637	194439.CT2132	10657635
0.063	0.054	0.426	0.0	0.0	0.0	0.446	194439.CT2132	10657635	194439.CT1353	10656865
0.463	0.063	0.0	0.0	0.0	0.0	0.475	194439.CT2132	10657635	194439.CT1446	10656958
0.0	0.558	0.0	0.0	0.0	0.0	0.558	194439.CT2132	10657635	194439.CT1296	10656809
0.113	0.049	0.449	0.0	0.0	0.202	0.579	194439.CT2132	10657635	194439.CT1784	10657291
0.139	0.064	0.458	0.0	0.0	0.218	0.612	194439.CT2132	10657635	194439.CT1545	10657056
0.221	0.099	0.463	0.0	0.0	0.182	0.65	194439.CT2132	10657635	194439.CT1451	10656963
0.222	0.078	0.846	0.0	0.061	0.0	0.882	194439.CT2132	10657635	194439.CT1919	10657425
0.463	0.261	0.712	0.0	0.0	0.185	0.894	194439.CT2132	10657635	194439.CT0288	10655819

0.193	0.206	0.825	0.0	0.107	0.575	0.949	194439.CT2132	10657635	194439.CT0159	10655691
0.263	0.359	0.945	0.0	0.206	0.196	0.98	194439.CT2132	10657635	194439.CT1362	10656874
0.393	0.54	0.945	0.0	0.075	0.0	0.983	194439.CT2132	10657635	194439.CT2128	10657631
0.463	0.581	0.945	0.0	0.05	0.0	0.986	194439.CT2132	10657635	194439.CT0153	10655685
0.463	0.757	0.945	0.0	0.0	0.0	0.992	194439.CT2132	10657635	194439.CT1505	10657017
0.463	0.741	0.945	0.0	0.075	0.176	0.993	194439.CT2132	10657635	194439.CT0151	10655683
0.463	0.74	0.945	0.0	0.0	0.269	0.993	194439.CT2132	10657635	194439.CT1783	10657290
0.463	0.808	0.945	0.0	0.0	0.0	0.993	194439.CT2132	10657635	194439.CT1782	10657289
0.463	0.803	0.945	0.0	0.0	0.482	0.996	194439.CT2132	10657635	194439.CT1163	10656679
0.118	0.723	0.0	0.0	0.0	0.0	0.745	194439.CT0302	10655833	194439.CT0018	10655550
0.187	0.046	0.0	0.0	0.067	0.154	0.927	194439.CT1713	10657223	194439.CT1545	10657056
0.0	0.0	0.45	0.0	0.062	0.0	0.462	194439.CT1919	10657425	194439.CT1353	10656865
0.0	0.0	0.458	0.0	0.065	0.0	0.471	194439.CT1919	10657425	194439.CT1545	10657056
0.416	0.101	0.0	0.0	0.206	0.0	0.546	194439.CT1919	10657425	194439.CT1588	10657098
0.0	0.064	0.463	0.0	0.205	0.0	0.565	194439.CT1919	10657425	194439.CT1451	10656963
0.0	0.109	0.462	0.0	0.206	0.0	0.586	194439.CT1919	10657425	194439.CT0159	10655691
0.0	0.488	0.706	0.0	0.0	0.0	0.843	194439.CT1919	10657425	194439.CT1362	10656874
0.387	0.162	0.712	0.0	0.07	0.0	0.844	194439.CT1919	10657425	194439.CT0288	10655819
0.223	0.163	0.846	0.0	0.0	0.0	0.891	194439.CT1919	10657425	194439.CT0151	10655683
0.208	0.237	0.93	0.0	0.0	0.0	0.954	194439.CT1919	10657425	194439.CT1163	10656679
0.22	0.113	0.945	0.0	0.0	0.0	0.958	194439.CT1919	10657425	194439.CT0153	10655685
0.274	0.237	0.945	0.0	0.0	0.0	0.966	194439.CT1919	10657425	194439.CT1782	10657289
0.213	0.574	0.945	0.0	0.0	0.0	0.979	194439.CT1919	10657425	194439.CT1783	10657290
0.224	0.584	0.945	0.0	0.044	0.0	0.98	194439.CT1919	10657425	194439.CT1505	10657017
0.0	0.065	0.215	0.0	0.098	0.367	0.524	194439.CT0509	10656035	194439.CT0247	10655778
0.0	0.062	0.4	0.0	0.0	0.0	0.413	194439.CT1451	10656963	194439.CT0153	10655685

0.463	0.064	0.0	0.0	0.116	0.0	0.516	194439.CT1451	10656963	194439.CT0159	10655691
0.463	0.089	0.0	0.0	0.12	0.353	0.684	194439.CT1451	10656963	194439.CT0247	10655778
0.0	0.092	0.707	0.0	0.206	0.0	0.77	194439.CT1451	10656963	194439.CT1362	10656874
0.222	0.12	0.806	0.0	0.0	0.162	0.873	194439.CT1451	10656963	194439.CT0151	10655683
0.221	0.129	0.826	0.0	0.108	0.367	0.921	194439.CT1451	10656963	194439.CT1163	10656679
0.0	0.046	0.407	0.0	0.062	0.0	0.423	194439.CT1353	10656865	194439.CT1163	10656679
0.106	0.067	0.122	0.0	0.246	0.283	0.531	194439.CT1353	10656865	194439.CT0979	10656501
0.224	0.06	0.0	0.0	0.879	0.765	0.976	194439.CT1874	10657379	194439.CT1873	10657378
0.224	0.0	0.109	0.0	0.203	0.0	0.4	194439.CT1588	10657098	194439.CT0404	10655934
0.391	0.0	0.0	0.0	0.119	0.0	0.44	194439.CT1588	10657098	194439.CT0247	10655778
0.463	0.055	0.0	0.0	0.0	0.0	0.47	194439.CT1588	10657098	194439.CT0151	10655683
0.462	0.0	0.0	0.0	0.0	0.198	0.55	194439.CT1588	10657098	194439.CT0159	10655691
0.463	0.062	0.0	0.0	0.042	0.274	0.602	194439.CT1588	10657098	194439.CT1163	10656679
0.187	0.094	0.155	0.0	0.0	0.458	0.617	194439.CT1588	10657098	194439.CT0150	10655682
0.0	0.116	0.0	0.0	0.206	0.608	0.7	194439.CT1588	10657098	194439.CT0240	10655771
0.0	0.402	0.0	0.0	0.0	0.0	0.402	194439.CT1782	10657289	194439.CT1296	10656809
0.057	0.054	0.449	0.0	0.047	0.0	0.468	194439.CT1782	10657289	194439.CT1353	10656865
0.0	0.0	0.454	0.0	0.07	0.0	0.47	194439.CT1782	10657289	194439.CT1545	10657056
0.689	0.062	0.0	0.0	0.206	0.0	0.748	194439.CT1782	10657289	194439.CT1588	10657098
0.19	0.309	0.805	0.0	0.105	0.0	0.889	194439.CT1782	10657289	194439.CT0159	10655691
0.463	0.602	0.597	0.0	0.0	0.0	0.906	194439.CT1782	10657289	194439.CT0288	10655819
0.462	0.313	0.806	0.0	0.076	0.38	0.951	194439.CT1782	10657289	194439.CT1451	10656963
0.198	0.692	0.945	0.0	0.0	0.0	0.985	194439.CT1782	10657289	194439.CT1362	10656874
0.463	0.808	0.945	0.0	0.07	0.0	0.994	194439.CT1782	10657289	194439.CT0153	10655685
0.463	0.858	0.945	0.0	0.206	0.0	0.996	194439.CT1782	10657289	194439.CT1505	10657017
0.686	0.812	0.945	0.0	0.121	0.189	0.997	194439.CT1782	10657289	194439.CT1163	10656679

	0.750	0.945	0.0	0.113	0.36	0.997	194439.CT1782	10657289	194439.CT0151	10655683
0.0	0.086	0.0	0.0	0.365	0.154	0.467	194439.CT0247	10655778	194439.CT0240	10655771
0.0	0.0	0.454	0.0	0.0	0.0	0.454	194439.CT2135	10657638	194439.CT1545	10657056
0.079	0.451	0.0	0.0	0.0	0.0	0.472	194439.CT2135	10657638	194439.CT0018	10655550
0.223	0.311	0.465	0.0	0.057	0.0	0.693	194439.CT2135	10657638	194439.CT0288	10655819
0.0	0.724	0.0	0.0	0.0	0.0	0.724	194439.CT2135	10657638	194439.CT2111	10657614
0.057	0.129	0.788	0.0	0.0	0.0	0.81	194439.CT2135	10657638	194439.CT1451	10656963
0.191	0.1	0.826	0.0	0.061	0.0	0.865	194439.CT2135	10657638	194439.CT0159	10655691
0.179	0.67	0.0	0.0	0.629	0.0	0.89	194439.CT2135	10657638	194439.CT2134	10657637
0.216	0.165	0.945	0.0	0.064	0.228	0.969	194439.CT2135	10657638	194439.CT1919	10657425
0.463	0.701	0.945	0.0	0.098	0.0	0.99	194439.CT2135	10657638	194439.CT2128	10657631
0.463	0.768	0.945	0.0	0.0	0.0	0.992	194439.CT2135	10657638	194439.CT1163	10656679
0.463	0.841	0.945	0.0	0.0	0.0	0.994	194439.CT2135	10657638	194439.CT0153	10655685
0.463	0.866	0.945	0.0	0.0	0.0	0.995	194439.CT2135	10657638	194439.CT1783	10657290
0.463	0.794	0.945	0.0	0.455	0.0	0.996	194439.CT2135	10657638	194439.CT2132	10657635
0.463	0.901	0.945	0.0	0.075	0.0	0.996	194439.CT2135	10657638	194439.CT0151	10655683
0.463	0.88	0.945	0.0	0.0	0.0	0.996	194439.CT2135	10657638	194439.CT1782	10657289
0.462	0.858	0.945	0.0	0.206	0.0	0.996	194439.CT2135	10657638	194439.CT1362	10656874
0.462	0.879	0.945	0.0	0.0	0.0	0.996	194439.CT2135	10657638	194439.CT1505	10657017
0.446	0.0	0.0	0.0	0.0	0.0	0.446	194439.CT1087	10656609	194439.CT0855	10656377
0.57	0.0	0.0	0.0	0.0	0.728	0.479	194439.CT1087	10656609	194439.CT0876	10656397
0.583	0.0	0.0	0.0	0.043	0.0	0.584	194439.CT1087	10656609	194439.CT0302	10655833
0.075	0.0	0.0	0.0	0.0	0.164	0.705	194439.CT1087	10656609	194439.CT1015	10656537
0.591	0.0	0.0	0.0	0.046	0.348	0.723	194439.CT1087	10656609	194439.CT1021	10656543
0.207	0.311	0.0	0.0	0.0	0.0	0.43	194439.CT2162	10657665	194439.CT2128	10657631
0.462	0.0	0.0	0.0	0.0	0.0	0.461	194439.CT2162	10657665	194439.CT1618	10657128
0.463	0.096	0.0	0.0	0.0	0.0	0.493	194439.CT2162	10657665	194439.CT1451	10656963
-------	-------	-------	-----	-------	-------	-------	---------------	----------	---------------	----------
0.187	0.042	0.439	0.0	0.0	0.0	0.524	194439.CT2162	10657665	194439.CT1709	10657219
0.194	0.402	0.0	0.0	0.112	0.0	0.534	194439.CT2162	10657665	194439.CT0018	10655550
0.0	0.603	0.0	0.0	0.0	0.0	0.603	194439.CT2162	10657665	194439.CT2111	10657614
0.463	0.268	0.0	0.0	0.0	0.212	0.663	194439.CT2162	10657665	194439.CT0159	10655691
0.391	0.472	0.109	0.0	0.0	0.0	0.688	194439.CT2162	10657665	194439.CT1505	10657017
0.463	0.222	0.109	0.0	0.056	0.254	0.69	194439.CT2162	10657665	194439.CT2132	10657635
0.463	0.0	0.0	0.0	0.076	0.489	0.724	194439.CT2162	10657665	194439.CT1588	10657098
0.0	0.808	0.0	0.0	0.0	0.0	0.808	194439.CT2162	10657665	194439.CT1362	10656874
0.463	0.316	0.109	0.0	0.068	0.488	0.815	194439.CT2162	10657665	194439.CT1163	10656679
0.187	0.161	0.435	0.0	0.098	0.557	0.817	194439.CT2162	10657665	194439.CT0150	10655682
0.224	0.692	0.109	0.0	0.049	0.372	0.849	194439.CT2162	10657665	194439.CT0288	10655819
0.127	0.0	0.109	0.0	0.0	0.0	0.915	194439.CT2162	10657665	194439.CT1545	10657056
0.224	0.857	0.464	0.0	0.0	0.0	0.935	194439.CT2162	10657665	194439.CT2135	10657638
0.463	0.841	0.161	0.0	0.206	0.0	0.935	194439.CT2162	10657665	194439.CT1783	10657290
0.463	0.0	0.836	0.0	0.118	0.295	0.937	194439.CT2162	10657665	194439.CT1446	10656958
0.463	0.847	0.0	0.0	0.206	0.19	0.94	194439.CT2162	10657665	194439.CT0151	10655683
0.463	0.849	0.0	0.0	0.206	0.229	0.943	194439.CT2162	10657665	194439.CT0153	10655685
0.106	0.078	0.945	0.0	0.066	0.0	0.951	194439.CT2162	10657665	194439.CT1919	10657425
0.463	0.2	0.829	0.0	0.099	0.611	0.969	194439.CT2162	10657665	194439.CT0240	10655771
0.463	0.609	0.945	0.0	0.206	0.152	0.99	194439.CT2162	10657665	194439.CT1782	10657289
0.0	0.0	0.4	0.0	0.067	0.0	0.416	194439.CT2193	10657696	194439.CT1545	10657056
0.0	0.129	0.17	0.0	0.099	0.226	0.428	194439.CT2193	10657696	194439.CT0240	10655771
0.0	0.08	0.426	0.0	0.0	0.0	0.449	194439.CT2193	10657696	194439.CT1353	10656865
0.463	0.0	0.109	0.0	0.0	0.154	0.559	194439.CT2193	10657696	194439.CT1446	10656958
0.21	0.058	0.109	0.0	0.044	0.47	0.602	194439.CT2193	10657696	194439.CT1588	10657098

0.0	0.615	0.0	0.0	0.0	0.0	0.615	194439.CT2193	10657696	194439.CT2111	10657614
0.177	0.589	0.0	0.0	0.098	0.23	0.733	194439.CT2193	10657696	194439.CT0150	10655682
0.232	0.141	0.463	0.0	0.0	0.574	0.828	194439.CT2193	10657696	194439.CT1451	10656963
0.463	0.68	0.712	0.0	0.0	0.0	0.946	194439.CT2193	10657696	194439.CT0288	10655819
0.212	0.134	0.945	0.0	0.0	0.0	0.959	194439.CT2193	10657696	194439.CT1919	10657425
0.222	0.748	0.841	0.0	0.0	0.0	0.966	194439.CT2193	10657696	194439.CT0159	10655691
0.463	0.401	0.945	0.0	0.075	0.0	0.981	194439.CT2193	10657696	194439.CT2132	10657635
0.217	0.688	0.945	0.0	0.0	0.0	0.985	194439.CT2193	10657696	194439.CT1362	10656874
0.463	0.659	0.945	0.0	0.0	0.0	0.989	194439.CT2193	10657696	194439.CT2128	10657631
0.463	0.808	0.945	0.0	0.0	0.0	0.993	194439.CT2193	10657696	194439.CT1505	10657017
0.463	0.951	0.465	0.0	0.283	0.492	0.993	194439.CT2193	10657696	194439.CT2162	10657665
0.463	0.829	0.945	0.0	0.082	0.0	0.994	194439.CT2193	10657696	194439.CT2135	10657638
0.383	0.851	0.945	0.0	0.288	0.0	0.995	194439.CT2193	10657696	194439.CT2171	10657674
0.463	0.808	0.945	0.0	0.0	0.258	0.995	194439.CT2193	10657696	194439.CT1163	10656679
0.463	0.749	0.945	0.0	0.206	0.361	0.995	194439.CT2193	10657696	194439.CT1782	10657289
0.463	0.852	0.945	0.0	0.447	0.0	0.997	194439.CT2193	10657696	194439.CT2187	10657690
0.463	0.914	0.945	0.0	0.287	0.168	0.998	194439.CT2193	10657696	194439.CT2170	10657673
0.463	0.924	0.945	0.0	0.206	0.16	0.998	194439.CT2193	10657696	194439.CT0153	10655685
0.463	0.887	0.945	0.0	0.298	0.583	0.998	194439.CT2193	10657696	194439.CT2177	10657680
0.463	0.931	0.945	0.0	0.206	0.248	0.998	194439.CT2193	10657696	194439.CT1783	10657290
0.463	0.93	0.945	0.0	0.206	0.196	0.998	194439.CT2193	10657696	194439.CT0151	10655683
0.463	0.902	0.945	0.0	0.292	0.377	0.998	194439.CT2193	10657696	194439.CT2174	10657677
0.463	0.938	0.945	0.0	0.476	0.213	0.999	194439.CT2193	10657696	194439.CT2188	10657691
0.463	0.936	0.945	0.0	0.359	0.699	0.999	194439.CT2193	10657696	194439.CT2182	10657685
0.463	0.952	0.945	0.0	0.424	0.571	0.999	194439.CT2193	10657696	194439.CT2186	10657689
0.462	0.0	0.0	0.0	0.0	0.0	0.461	194439.CT1873	10657378	194439.CT1446	10656958

10.810.040.0440.0490.0490.0740.9499.494.0054 <th>0.463</th> <th>0.335</th> <th>0.172</th> <th>0.0</th> <th>0.206</th> <th>0.0</th> <th>0.733</th> <th>194439.CT1873</th> <th>10657378</th> <th>194439.CT0010</th> <th>10655542</th>	0.463	0.335	0.172	0.0	0.206	0.0	0.733	194439.CT1873	10657378	194439.CT0010	10655542
0.880.00.8440.00.6990.7999.494,00059.1493,0055<	0.858	0.0	0.846	0.0	0.699	0.771	0.998	194439.CT0857	10656379	194439.CT0855	10656377
0.8380.1350.4640.000.08570.7840.99919439C085106657719439C08519439C08	0.858	0.0	0.846	0.0	0.699	0.779	0.999	194439.CT0857	10656379	194439.CT0856	10656378
0.2210.00.00.00.00.2630.78119439.CT01510656377194439.CT0876105654810.00.00.00.00.4590.00.459194439.CT09591065541194439.CT0876106554710.1070.0880.000.000.0440.00.453194439.CT028810655191194439.CT0191106557230.1370.0290.00.00.0240.041194439.CT02810655819194439.CT02810655819194439.CT02810655819194439.CT02810655819194439.CT02810655819194439.CT02810655819194439.CT0281065581919453.CT0151106558190.4630.1290.00.00.0260.0260.058194439.CT02810655819194439.CT0281065581919439.CT028106558190.4220.5730.4650.00.00.00.573194439.CT02810655819194439.CT0281065581919439.CT028106558190.4240.060.090.000.090.933194439.CT02810655819194439.CT02810655810.4350.4650.000.000.026194439.CT02810655819194439.CT02810655810.4430.4640.000.000.0460.939194439.CT02810655819194439.CT02810655810.4560.000.010.010.026194439.CT02810655811194439.CT02810655810.4560.020.020.02	0.888	0.135	0.464	0.0	0.857	0.784	0.999	194439.CT0856	10656378	194439.CT0855	10656377
0.00.00.00.4590.00.45919439.CT059106564119439.CT05819439.CT05810655730.1060.080.3530.00.0640.00.435194439.CT0281065581919439.CT039	0.221	0.0	0.0	0.0	0.0	0.263	0.781	194439.CT1015	10656537	194439.CT0876	10656397
0.1060.080.3530.00.0640.00.43519439.CT0281065581919443.CT0191106557230.1370.0980.00.00.00.3990.422194439.CT0281065581919443.CT010106556820.00.1290.00.00.2050.3240.491194439.CT02810655819194439.CT019106558190.4320.1370.0650.00.00.090.595194439.CT02810655819194439.CT013106558190.4220.5730.4650.00.00.1690.575194439.CT02810655819194439.CT038106558190.2240.660.00.8990.5030.00.993194439.CT02810655819194439.CT038106558190.4630.8080.9450.00.00.00.993194439.CT028106551719443.CT038106558190.4630.8080.9450.00.00.00.426194439.CT028106551719443.CT032106558190.00.3990.3360.00.00.411194439.CT0281065517194439.CT03210655810.3990.6330.00.00.00.903194439.CT04510655181194439.CT03210655810.4330.650.00.00.00.01.94439.CT0471065181194439.CT03210655810.4330.660.00.00.00.941.94439.CT03510655611194439.CT032<	0.0	0.0	0.0	0.0	0.459	0.0	0.459	194439.CT0959	10656481	194439.CT0958	10656480
0.1370.0980.00.00.3890.48219443.CT02881065S81919443.CT0301065S6190.00.1290.00.00.2050.3240.49119443.CT02881065S1919443.CT0391065S1919443.CT0391065S1919443.CT0381065S1919443.CT0391065S1919443.CT0391065S1919443.CT0391065S1919443.CT0391065S1919443.CT0391065S1919443.CT0391065S1919443.CT0391065S1919443.CT0391065S1919443.CT0391065S1919443.CT0391065S1919443.CT0391065S1919443.CT0	0.106	0.08	0.353	0.0	0.064	0.0	0.435	194439.CT0288	10655819	194439.CT0191	10655723
0.00.1290.00.00.2050.3240.49119443.070281065581919443.07024104655710.4630.1290.00.00.00.59619443.070281065581919443.07013106558130.4220.5730.4650.00.00.1690.87519443.070281065581919443.07013106558130.2240.060.00.8990.0190.9871943.07028106551919443.0702819443.0703819443.0703819443.0703819443.0703819443.0703819443.0703819443.07038106551119443.07038106551119443.07038106551119443.07038106551119443.07038106551119443.07038106551119443.07038106551119443.07038106551119443.07038106551119443.07038106551119443.07038106551119443.07039106551119443.07039106551119443.07039106551119443.0703110655111065511106551110655111065511106551110655111065511106551110655111065511106551110655111065511106555110655111	0.137	0.098	0.0	0.0	0.0	0.389	0.482	194439.CT0288	10655819	194439.CT0150	10655682
0.4630.1290.00.00.00.00.566194439.7028810655819194439.7019106556190.4220.5730.4650.00.00.1690.875194439.7028810655819194439.7038106558190.2240.060.00.8990.5030.00.958194439.7028810655819194439.7038106558190.4630.8080.9450.00.00.939194439.70281065517194439.703810655830.00.4260.0390.3360.00.00.426194439.703910656517194439.703010655830.00.3090.3360.00.010.010.42194439.71571065718194439.703010655830.3890.630.00.010.010.010.42194439.715710657181194439.703710655830.4630.050.00.020.00.93194439.716710657181194439.703710656910.6390.040.00.00.00.03194439.71631065581194439.713310655810.6430.040.00.00.020.863194439.71631065581194439.713310655810.6430.040.00.010.020.863194439.71631065561194439.713310655610.7440.6440.00.0440.00.641194439.71531045561194439.713310655810.1350.649<	0.0	0.129	0.0	0.0	0.205	0.324	0.491	194439.CT0288	10655819	194439.CT0240	10655771
0.4220.5730.4650.00.00.1690.87519443.0T0281065581919443.0T0151106558890.2240.060.00.8990.5330.00.95819443.0T028106551919433.0T02810655190.4630.8080.9450.00.00.00.93319433.0T028106551919439.0T0153106555890.00.4260.04260.0360.00.00.0219439.0T095106551719439.0T01610655830.00.3090.3360.00.00.1830.5219439.0T095106551719439.0T01910655830.3890.0630.030.00.1030.00.4219439.0T15119439.0T15119439.0T15110655170.4630.0520.030.00.030.4219439.0T15119439.0T15119439.0T151106556170.4630.0520.00.00.00.00.0104419449.0T15119449.0T1511065518119439.0T15110655610.6770.050.00.00.00.00.0219439.0T151104551119439.0T15110655610.6880.2780.040.040.040.020.42719439.0T151106556119439.0T15110655610.1310.5890.2890.0560.0260.020.42719439.0T151106556119439.0T15110655610.1320.5490.2860.0560.0540.0400.401 </td <td>0.463</td> <td>0.129</td> <td>0.0</td> <td>0.0</td> <td>0.206</td> <td>0.0</td> <td>0.596</td> <td>194439.CT0288</td> <td>10655819</td> <td>194439.CT0159</td> <td>10655691</td>	0.463	0.129	0.0	0.0	0.206	0.0	0.596	194439.CT0288	10655819	194439.CT0159	10655691
0.2240.060.00.8990.5030.00.95819439.CT0281065581919439.CT0283106558190.4630.8080.9450.00.00.00.99319439.CT028106551719439.CT01310655680.00.4260.000.000.020.42619439.CT095106551719439.CT0018106555370.00.3090.3360.00.00.1830.59219439.CT095106551719439.CT032106558330.3890.630.00.00.1030.00.44119439.CT16711065718119439.CT037106556910.4630.0520.00.00.000.00.93319439.CT028106551319439.CT037106556910.6770.00.00.00.0460.2030.42719439.CT0151065569119439.CT015106556910.2210.0460.4420.00.0760.00.5619439.CT0151065569119439.CT015106556910.1330.5980.2890.000.0760.020.7819439.CT0151065569119439.CT015106556910.130.5980.2890.000.00.1540.80919439.CT0151065569119439.CT015106556910.1340.5980.3430.00.060.1540.80919439.CT015106557119439.CT01510655710.1350.5980.3430.00.060.1540.80919439.CT025 <td< td=""><td>0.422</td><td>0.573</td><td>0.465</td><td>0.0</td><td>0.0</td><td>0.169</td><td>0.875</td><td>194439.CT0288</td><td>10655819</td><td>194439.CT0151</td><td>10655683</td></td<>	0.422	0.573	0.465	0.0	0.0	0.169	0.875	194439.CT0288	10655819	194439.CT0151	10655683
0.4630.8080.9450.00.00.00.99319439.CT02881065S81919439.CT01331065S6810.00.4260.4260.42619439.CT0351065S1719439.CT0131065S51719439.CT0131065S5170.00.3090.3360.00.00.1830.59219439.CT01511065S1719439.CT0131065S8190.3890.0630.00.00.0130.00.41119439.CT1611065718119439.CT0159106556170.4630.0520.00.00.00.00.04119439.CT01511065718119439.CT0159106569170.6770.00.00.00.00.00.05219439.CT01511065718119439.CT015910656910.6780.0520.00.00.00.00.010.010.010.010.00.0770.00.00.00.00.019439.CT01591065561119439.CT01591065561119439.CT0159106556110.080.2780.040.040.00.0160.0220.7819439.CT01591065561119439.CT01591065561119439.CT0159106556110.1310.5980.2890.040.00.00.0220.7819439.CT01591065561119439.CT0159106556110.1320.5980.3430.00.00.0150.40119439.CT01591065575119439.CT0159106556110.1430.6990.054 <td>0.224</td> <td>0.06</td> <td>0.0</td> <td>0.899</td> <td>0.503</td> <td>0.0</td> <td>0.958</td> <td>194439.CT0288</td> <td>10655819</td> <td>194439.CT0283</td> <td>10655814</td>	0.224	0.06	0.0	0.899	0.503	0.0	0.958	194439.CT0288	10655819	194439.CT0283	10655814
0.00.4260.00.00.00.42619439.CT095106561719439.CT008106555170.00.3900.3360.00.00.1830.59219439.CT095106561719439.CT032106558330.3890.0630.000.000.0130.00.44119439.CT0471065718119439.CT04710656910.4630.0520.000.000.0260.000.56194439.CT04710657181194439.CT04710656020.4700.0520.000.000.000.000.56194439.CT04210657181194439.CT04710656020.4710.0520.000.000.000.000.0019439.CT0451065513194439.CT04710656620.680.2780.000.000.0460.020.427194439.CT0451045591194439.CT04510655830.2210.0460.4420.00.0760.020.78194439.CT0451065591194439.CT04510655830.130.5980.3430.00.060.04119439.CT0151065591194439.CT04510655830.130.6590.3430.00.0640.000.41119439.CT0251065517194439.CT02410655830.130.6590.0440.00.050.574194439.CT0251065517194439.CT02410655830.1450.0590.0590.0590.0574194439.CT0251065517194439.CT0241065583<	0.463	0.808	0.945	0.0	0.0	0.0	0.993	194439.CT0288	10655819	194439.CT0153	10655685
0.00.3390.3360.00.00.1830.59219439.CT095106561719439.CT03010655830.3890.0630.00.00.0130.00.44119439.CT16711065718119439.CT057106556170.4630.0520.000.000.000.05619439.CT06711065718119439.CT03710656030.0770.000.000.000.000.90319439.CT0521065581319439.CT013106556320.0770.000.000.000.000.90319439.CT0521065581319439.CT013106556320.080.2780.040.000.0660.0220.7819439.CT0151045561119439.CT015106556310.130.5980.2890.00.070.020.7819439.CT015106556119439.CT015106556310.130.5990.3430.00.060.2240.7819439.CT0151065563119439.CT015106556310.130.5990.3430.00.060.020.7819439.CT0151065563119439.CT015106556310.130.5990.3430.00.060.020.7819439.CT0151065563119439.CT015106556310.130.5990.3430.00.060.04119439.CT0151065563119439.CT015106556310.140.5990.3430.00.0640.00.40119439.CT021106557119439.CT02410	0.0	0.426	0.0	0.0	0.0	0.0	0.426	194439.CT0995	10656517	194439.CT0018	10655550
0.3890.0630.00.00.1030.00.44119439.C116711065718119449.C1059106556910.4630.0520.000.000.0260.000.05619449.C10591065718119449.C103910656030.0770.00.000.000.000.030.9439.C1059106558119449.C10391045569119449.C1019106556310.080.2780.0440.000.0760.0230.42719449.C1059106559119449.C1019106556310.2210.0460.4220.00.0760.020.7819449.C1059106559119449.C1019106556310.1310.5980.2890.000.070.1540.7819449.C1059106559119449.C1019106556310.1320.6590.3430.000.000.1540.80919449.C1059106559119449.C101910655830.1330.6590.3430.000.0640.010.40119449.C1019106559119449.C101910655830.1350.0440.050.050.0540.04119449.C1019106571719449.C102410655830.0590.0560.060.070.5740.57419449.C1024106578019449.C102410655740.0590.0560.0560.050.0400.04119449.C10241065578019449.C10241065554	0.0	0.309	0.336	0.0	0.0	0.183	0.592	194439.CT0995	10656517	194439.CT0302	10655833
0.4630.0520.00.00.00.00.05619449.CT671965718119449.CT04710656030.0770.000.000.000.000.000.00319443.CT0281065581319443.CT039106556310.080.2780.040.000.0400.0200.42719443.CT0591065569119443.CT01919439.CT019	0.389	0.063	0.0	0.0	0.103	0.0	0.441	194439.CT1671	10657181	194439.CT0159	10655691
0.0770.00.00.00.00.93319439.CT022106558319439.CT03010655620.080.2780.040.00.040.0230.42719439.CT019106556119439.CT01010655430.2210.0460.4420.00.0760.020.7819439.CT019106556119439.CT01110655430.130.5980.2890.00.000.220.7819439.CT019106556119439.CT01510439.CT01510655630.1130.5590.3430.00.00.1540.80919439.CT015106556119439.CT01310655630.1350.0440.00.00.0150.40119439.CT0211065751719439.CT02310655830.1650.0570.050.00.0570.1560.1655830.16558310655830.050.060.060.0570.15619439.CT0241065751719439.CT02410655830.050.050.050.050.0570.41510459.CT24910459.CT24910459.CT24910459.CT24910459.CT2490.0530.050.060.060.060.0401041919439.CT02410459.CT24910439.CT04010459.CT2490.0530.0540.060.060.060.04010439.CT2491045578019439.CT040104557800.0530.0560.0560.060.060.04010439.CT2491045578010439.CT04010455780 <td>0.463</td> <td>0.052</td> <td>0.0</td> <td>0.0</td> <td>0.206</td> <td>0.0</td> <td>0.56</td> <td>194439.CT1671</td> <td>10657181</td> <td>194439.CT0477</td> <td>10656003</td>	0.463	0.052	0.0	0.0	0.206	0.0	0.56	194439.CT1671	10657181	194439.CT0477	10656003
0.080.2780.00.00.0460.2030.42719439.CT01591065569119439.CT0150106556910.2210.0460.0420.00.0760.060.56519439.CT01591065569119439.CT011106556310.130.5980.2890.00.00.220.7819439.CT01591065569119439.CT0151106556830.130.6590.3430.00.00.1540.80919439.CT01591065569119439.CT0159106556830.130.6590.0440.00.00.0150.6160.40119439.CT0121065571719439.CT02810655830.160.0870.0870.0870.0570.16557119439.CT0291065571719439.CT0291065573719439.CT029106557370.0930.2660.1560.00.060.5740.57419439.CT0291065578019439.CT02010655780	0.077	0.0	0.0	0.0	0.0	0.0	0.903	194439.CT0282	10655813	194439.CT0130	10655662
0.2210.0460.4420.00.0760.00.65519449.CT01591065569119449.CT011106556310.130.5980.2890.00.00.220.7819439.CT015910655691194439.CT0153106556810.1340.6590.3430.00.00.1540.809194439.CT015910655691194439.CT0139106556850.3850.0440.000.0690.0640.000.401194439.CT02110657517194439.CT024910655830.1060.0870.000.0690.0570.057419439.CT024910657517194439.CT024910655780194439.CT0249106557800.0330.2660.1560.00.060.00.401194439.CT024910655780194439.CT001010655542	0.08	0.278	0.0	0.0	0.046	0.203	0.427	194439.CT0159	10655691	194439.CT0150	10655682
0.130.5980.2890.00.00.220.7819439.CT01591065569119439.CT0151106556810.1130.6590.3430.00.00.1540.80919439.CT01591065569119439.CT0153106556810.3850.0440.000.060.0640.000.40119439.CT01201065751719439.CT0230106558310.1060.0870.000.0690.0570.05740.065751719439.CT02491065578019439.CT0249106557800.0930.2660.1560.00.060.00.010.40119439.CT02491065578019439.CT001010655542	0.221	0.046	0.442	0.0	0.076	0.0	0.565	194439.CT0159	10655691	194439.CT0011	10655543
0.1130.6590.3430.00.00.1540.809194439.CT015910655691194439.CT0153106556810.3850.0440.00.00.0640.00.401194439.CT021210657517194439.CT0283106558140.1060.0870.0870.0870.0960.0650.0737194439.CT024110657517194439.CT024910655830.00.00.00.0740.5740.574194439.CT064710656171194439.CT0249106557800.0330.2660.1560.00.060.00.401194439.CT024910655780194439.CT001010655542	0.13	0.598	0.289	0.0	0.0	0.22	0.78	194439.CT0159	10655691	194439.CT0151	10655683
0.385 0.044 0.0 0.064 0.0 0.401 194439.CT2012 10657517 194439.CT0283 10655814 0.106 0.087 0.0 0.696 0.065 0.0 0.737 194439.CT2012 10657517 194439.CT0304 10655835 0.0 0.0 0.0 0.0 0.574 0.574 194439.CT0647 10656171 194439.CT0249 10655780 0.093 0.266 0.156 0.0 0.06 0.0 0.401 194439.CT0249 10439.CT0010 10655542	0.113	0.659	0.343	0.0	0.0	0.154	0.809	194439.CT0159	10655691	194439.CT0153	10655685
0.106 0.087 0.0 0.696 0.065 0.0 0.737 194439.CT2012 10657517 194439.CT0304 10655835 0.0 0.0 0.0 0.0 0.574 0.574 194439.CT0647 10656171 194439.CT0249 10655780 0.093 0.266 0.156 0.0 0.06 0.0 0.401 194439.CT0249 10655780 194439.CT0010 10655542	0.385	0.044	0.0	0.0	0.064	0.0	0.401	194439.CT2012	10657517	194439.CT0283	10655814
0.0 0.0 0.0 0.0 0.574 194439.CT0647 10656171 194439.CT0249 10655780 0.093 0.266 0.156 0.0 0.06 0.0 0.401 194439.CT0249 10655780 19439.CT0010 10655542	0.106	0.087	0.0	0.696	0.065	0.0	0.737	194439.CT2012	10657517	194439.CT0304	10655835
0.093 0.266 0.156 0.0 0.06 0.0 0.401 194439.CT0249 10655780 194439.CT0010 10655542	0.0	0.0	0.0	0.0	0.0	0.574	0.574	194439.CT0647	10656171	194439.CT0249	10655780
	0.093	0.266	0.156	0.0	0.06	0.0	0.401	194439.CT0249	10655780	194439.CT0010	10655542

0.0	0.0	0.0	0.0	0.312	0.466	0.617	194439.CT0249	10655780	194439.CT0240	10655771
0.0	0.067	0.0	0.0	0.86	0.0	0.864	194439.CT0249	10655780	194439.CT0247	10655778
0.0	0.0	0.0	0.0	0.0	0.434	0.434	194439.CT1734	10657242	194439.CT1704	10657214
0.0	0.0	0.0	0.0	0.0	0.508	0.508	194439.CT1734	10657242	194439.CT0060	10655592
0.0	0.0	0.0	0.0	0.0	0.515	0.515	194439.CT1734	10657242	194439.CT0240	10655771
0.0	0.0	0.0	0.0	0.0	0.563	0.563	194439.CT1734	10657242	194439.CT0647	10656171
0.0	0.0	0.0	0.0	0.0	0.564	0.564	194439.CT1734	10657242	194439.CT0249	10655780
0.502	0.0	0.0	0.0	0.093	0.328	0.67	194439.CT2151	10657654	194439.CT1296	10656809
0.482	0.0	0.0	0.0	0.099	0.167	0.577	194439.CT1178	10656694	194439.CT0979	10656501
0.0	0.0	0.448	0.0	0.0	0.0	0.448	194439.CT1545	10657056	194439.CT1362	10656874
0.0	0.0	0.454	0.0	0.076	0.0	0.473	194439.CT1545	10657056	194439.CT1505	10657017
0.0	0.042	0.458	0.0	0.067	0.0	0.473	194439.CT1545	10657056	194439.CT1163	10656679
0.199	0.057	0.0	0.296	0.206	0.0	0.521	194439.CT1545	10657056	194439.CT0247	10655778
0.0	0.0	0.458	0.0	0.0	0.459	0.694	194439.CT1545	10657056	194439.CT0153	10655685
0.649	0.061	0.454	0.0	0.0	0.0	0.804	194439.CT1545	10657056	194439.CT0151	10655683
0.0	0.401	0.0	0.0	0.061	0.0	0.413	194439.CT0842	10656364	194439.CT0010	10655542