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Abstract

The primary goal of an AmlI environment is to help and support the people
living in it; towards that objective it should be able to identify a user need and
act accordingly. Many research approaches and commercial tools have
focused on realizing this concept, which follows the paradigm of the trigger-
action model; however, the majority of them poses several limitations (e.g.,
one trigger can be connected to a single action, artifact-oriented triggers
mainly). The domain of education would particularly benefit from an Aml
environment able to monitor students during their educational activities and
intervene when deemed necessary to help, support or motivate them so as to
promote the learning process. Nevertheless, despite the fact that the concept
of the Intelligent Classroom has gained much attention from researchers over
the past decade, none of the approaches proposed so far offers a generic,

scalable, fast and easy way to connect triggers with actions.

Aiming to bridge this gap, this thesis presents a framework and an authoring
tool that support both developers and educators in defining the behaviors
(triggers) that lead to context-aware interventions (actions). Following an
extensive literature review and an iterative elicitation process -based on
multiple collection methods such as brainstorming, focus groups, observation
and scenarios- the high-level functional and non-functional requirements that
both the framework and authoring tool should satisfy were identified. Based
on those findings, this work aims to equip the Intelligent Classroom with
mechanisms that monitor the learners' attention levels and intervene, when
necessary, to (i) provide motivating activities to distracted, unmotivated or
tired individuals or (ii) suggest to educators alternative methodologies which

would be beneficial for the entire classroom.

In more detail, the LECTOR framework offers a mechanism for identifying

student behaviors that require remedial actions and intervening when the
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students need help or support. This mechanism relies on “if-then” rules -
created either by developers or by educators- to define the behavior of the
classroom environment. In order to ensure scalability and simplify rules’
management, a three (3) step process for connecting a behavior with an
intervention was introduced. In more detail, the first step requires the user to
define a behavior, next the conditions under which the behavior becomes a
trigger have to be described, and during the last step connections between a
trigger and appropriate interventions are created. This decomposition
permits a behavior to be associated with multiple triggers, and a trigger with
multiple interventions that alternate depending on the context of use.
Furthermore, in contrast to the artifact-oriented recipes that are currently
supported by the majority of such tools, LECTOR’s rule structure supports the

creation of user-oriented intervention scenarios.

Furthermore, LECTOR introduces a sophisticated authoring tool, named
LECTORstudio, which aims to support both developers and educators in
creating rules that describe behaviors, triggers, and interventions. However,
since developers require further assistance in order to integrate the
appropriate building blocks necessary for programming the AmI environment
(e.g., actors, context, interventions), LECTORstudio also provides such

functionality through intuitive user interfaces.

Lastly, in order to further support the targeted end-users of the Intelligent
Classroom environment (i.e., students and educators), this work also features
three (3) additional tools: LECTORviewer, NotifEye and CognitOS. The former
two (namely LECTORviewer and NotifEye) aim to support educators in having
an overview of the students’ attention levels and providing their input
regarding ambiguous behaviors or scheduled interventions that aim to re-
engage distracted, tired or unmotivated students. CognitOS on the other hand,
is a sophisticated web-based working environment for students that hosts a
variety of educational applications, which constitute the communication

channels through which LECTOR presents the interventions.



Iepiinyn

O mpotapykds 6tdy0og evog mepiPdiiovtog Atdyvtng Nonpoouvvng (AN) eivat
va BonBd ko va vrootnpilel Tovg avBpmmovg Tov {ovv Kot KIvoovtal HEGO GE
ovto. e avtd to Adyo, éva té€toro mepifaAilov Oa émpeme vo pmopel va
OVOYVOPIGEL TIC OVAYKES TV YPNOTOV TOL Kol VO, avTIOPE KOTAAANAQ Y10 VoL TIG
wavomomoet. Avt 1 1W0éa dev gival Kovovpla, TOAAEG EPELVNTIKES UEAETES
OAAG Kol eumopikd  epyadeion €xovv mpoomabncel vo. TNV LAOTOWGOLV
akolovBmvtag To Sadedopévo povieho «Evavoua-dpdorny (trigger-action).
Qot6c0, o1 TEPGCOTEPEG OMd OVTEG TIG TPOGEYYIGES £YOVV  OPKETA
LLELOVEKTNLATO, OTI®G TO YEYOVOG OTL éval Evavopa (trigger) pmopel va 0dnynocet
oe pia ko poévo dpdon (action) | v amaitmon ta TEPIOCOTEPL EVADCUATO
(triggers) va mpoépyovtal amd GUYKEKPIUEVES KATAGTACELS GLOKEVMV KOl O)L

and avlpdTIVEG EVEPYELEC.

O topéag g exmaidevong Ba ermeerobvtay ta TAEioTa amd Eva mepPaiiov
Atdyvtng Nonpoovvng mov €xet tn dvvotdTNTo Vo TopaKoAovdel Tovg padntég
KOTA T1 SLAPKELD TV EKTOOEVTIKMY TOVG OPOUGTNPLOTHTAOV Kol VoL ETepPaivel —
otav Kkpel omapaitnto— Yo va tovg Pondnoel kot vo Tovg vrootnpiEet
vrofonfmvtag pe avtdv 10 TPOTO TNV dladikacio panong. [apodro mov N 16€a
™G E&umvng Taéng Ppioketar 1101 apkeTA ¥pOVIQ. GTO TPOCKN VIO, Kapio amd Tig
€¢ TOpa O00ECIUES TPOCEYYICEIS OEV TPOCPHEPEL EVO YEVIKO, EMEKTAGIUO,
YPYOPO KOl €OKOAO TPOTO Vo, cuvdéovtal evavopata (triggers) pe dpaocelg

(actions).

[Ipoomabmvrog vo kKoAdvyel avtd to kevd, avt) 1 dwtpPn mTapovotdletl pio
vrodoun; (framework) kot éva epyadeio ovyypaenc (authoring tool) ywo vo
SLEVKOAVVEL TOVG TPOYPOULUUATICTEG OAAL KOl TOVG EKTALOEVTIKOVG VO GUVOEGOVV
ovUTEPLPOPEG pabnToV (evavouata) pe mopepPdoets (0pdoetg). AkolovdmvTog
pio extevn PPAoypaeiky] €épevva kot pio ETavaANTTIKn Oodtkacio. GLAAOYNG

TANPOPOPLOV —Paciopévn e TOAAEG HEBOOOVS OMMG KOTIOEAGHUOS, OUAOES
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€0TIOONG, TOPATPNON KOl KOTAGKEVT CEVAPIOV— avayvopioTnKay ot Pactkég
AELTOVPYIKEG KO UN-AEITOVPYIKES OTTALTNGELS TOV GLGTNHATOC. 'Exovtag og faon
OVTA TOL ELPNUATA, CVTN 1) EPYacia oToyevel va eEomAioel Ty ‘E&umvn Tdén pe
UNYAVIGHOVG oL TopakoAovBolv To emimedo mPocoyNg TV HaONTOV Kot
eneppoaivouv Otav elvor amapoaitnto yo: (o) vo TOPEXOVY GLVOPTOCTIKEG
dOPACTNPLOTNTES G LOONTEC TTOV £YOVV YAGEL TO KIVITPO VO GUUUETEXOVV 1 EXOVV
Kovpaotel N €xovv amoonactel and TIG TpEYOVOES dpactnprottes, N (B) va
poteivovy evoAlakTikég pebodoroyiec oTovg Kabnyntég Yo va ta Kepdicovv

TNV TPOGOYT] TOL GLVOAOL T®V HAONTAOV TNG TAENG.

Yvykekppéva, mn vmodopwy LECTOR  mpoooeéper €vav  unyovicpud mov
xpnoonotel T teyvoroyieg mov vrdpyovv NoM oty ‘ESumvn TdEn v va
avayvopilel cuUTEPLPOPES LOONTOV TOV omanTovV EMOVOPOOTIKES EVEPYELES Ko
va emepPaivel otav ot padntég yperalovion Pondewa 1 vrootpiEn. Avtdg o
unyoviopdc Poaciletor oe  kovoveg g popong «if-theny —mov  €xovv
Inuovpyn el gite amd TPOYPAUUATIOTES €iTE OO EKTALOELTIKOVC— Y10l VOL OPIGEL
TN GLUTEPLPOPA TOV TePIPAALOvTOS TG ThEne. EmumAéov, elodyeton pio
ddikacio Tprdv (3) PudTomv yio T cHVIEST] GLUTEPLPOPDOV KoL TAPEUPACEWDV.
ApyIKA omoLTelTOL O OPIGUOS TV GLUTEPLUPOPDV, GTN GLUVEXELD O OPIGUOG TMV
ocuvONKOV KAT® amd TIC omoieg Mo GLUTEPIPOPA amoTeEAEl Evavoua Yo
nopEuPocn, Kot T€AOG 1 GUVOECT] T®V GCLUTEPIPOPDOV HE TIG KOUTAAANAESG
nopeUPAcEIC. AVTOG 0 KOTAUKEPUATIOUOG EXITPETEL LU0, GUUTEPLPOPA VO GLVOEDET
ue ToALamAG evabopota (triggers), kat évo Evavopa pe moALOTAES TapeUPAcELS.
EmumAéov, éva axoduo yopokmplioTikd TV KovOvedv TOL  UTOpPOvV Vo
dnpovpynBovv givar 6tL vroopilovy ™ dNuovpyic. AVOPOTOKEVIPIKAOV Kot
Ol GLOKEVO-KEVIPIKAOV Gevapimv, €v avtiBécel pe Tovg Kavoveg mov Mom

vrootnpilovtal amd TNV TAELOYNEIN TOV CYETIKOV EPYOAEI®V.

Emmpoctétmg, o LECTOR mpocoépet éva epyareio ouyypaeng (authoring tool)
nmov ovoudletow LECTORstudio xai otoyeder vo Ponbioet 1000 TOLG
TPOYPOUUOTIOTEG OGO KO TOVG EKTOLOEVTIKOVG VO ONUIOVPYOVV KOVOVEG TOV

TEPLYPAPOVY GLUTEPLPOPES, EVOVCUOTO, Kot TAPEUPAGEIS. 26TOCO, EMEWDT OL
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TPOYPOUUOTIOTES YPELBLOVTaL EMMALOV EPYOAEID YO VO EVOOUATOCOLY T
dopkd  otoreio mov elval amopoaitnTo Yoo TOV  TPOYPOUUOTICUO TOL
nepiairoviog g 'E&vmvng Taéng (m.y., mhaicio ypnong, mapepPacelc,
ovoKeVEG mopovoioong mapepPfdacenv), to LECTORSstudio mpocpéper v

KOTAAANAN AELTOVPYIKOTNTA HEGO OO EVYPNOTES YPOUPIKES OIEMAPEC.

Téhog, €roviag mg 6TOY0 TNV VROGTNPLEN TOV TEMKOV Ypnotov ¢ E&umvng
Ta&Eng (ONA. TOV HaONTOV Kol TOV EKTOOEVTIKAOV), QVTH 1| EPYACIO TPOCPEPEL
emmAéov tpia (3) epyaireio: LECTORviewer, NotifEye kor CognitOS. Ta dvo
npota (LECTORviewer kot NotifEye) £yovv ©g 610)0 Vo TPOSPEPOLY GTOVG
EKTTAOEVTIKOVG TN OLVATOTNTO EKTEVOVG EMOMTEING TMOV EVOVGUATOV TOL
aviyvevovtor amd tov LECTOR kat €ékppaocng g O1KNG TOLG EKTIUNONG Yo
SUPOPOVUEVEG GLUTEPLPOPES 1] Yo TOPEUPACEL TOV TTPOKELTAL GUVIOUO VL
Eexwvnoovv. Télog, To CognitOS amotedet éva meptPaAlov epyaciog yio pobntég
10 omoilo, HETOEL AAA®V, @ofevel TANOOG EKTAOEVLTIKAOV EPOPLOYDV TOL
ypnoponotovvtol ard To LECTOR mg To KavaAla mapovcioong Kot EQapLoyng

nopeUPacemy.
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Chapter 1
Introduction

General Objective
“Ambient Intelligence (Aml) is about sensitive, adaptive electronic
environments that respond to the actions of persons and objects and cater for
their needs’.

Aarts & Wichert [1]

The above definition highlights the human-oriented nature of AmlI
environments, whose primary goal is to satisfy the needs of the people living
in them. Towards that objective, an AmI environment should be able to
recognize the users in it, understand their needs, identify their behavior, and
act and react in their interest. Fundamentally, this process entails two basic
steps (i) identifying a user need and, (ii) acting accordingly; this simplification
reveals similarities with the trigger-action model [2]-[4], which in the recent
years has been in the spotlight as a form of programming AmI environments,

using simple “if trigger, then action” rules.

Currently, there is an abundance of commercial tools that permit not only
developers, but non-technical users as well to program their environment.
However, the majority of them focuses on triggers originating from physical
artifacts rather than human behaviors, while they also present several
constraints concerning the extensibility and scalability of the rules that can be

created. Furthermore, despite the fact that the Intelligent Classrooms already



foster a variety of AmI technologies, currently there is no easy way to combine
them and create custom trigger-action scenarios. To this end, this work
proposes a framework and a sophisticated authoring tool that advances the
way through which both developers and educators create the conditions that
dictate how certain human-oriented behaviors lead to context-aware
interventions, and applies such framework in the context of the intelligent

classroom.

Motivation & Vision

Ambient Intelligence (AmlI) environments [1] are expected to transparently
interact with the users either passively, by observing and trying to interpret
their actions and intentions, or actively by learning users’ preferences and
adapting their behavior accordingly to improve the quality of life. Particularly,
according to [5] “Aml is a user-centric paradigm, it supports a variety of
artificial intelligence methods and works pervasively, non-intrusively, and
transparently to aid the user”. In order to be able to act as described, the
architecture of an AmI Environment should consist of four main layers [6],
namely: (i) Sensing, (ii) Networking, (iii) Perception and Reasoning, and (iv)
Acting. It is obvious that such environments evolve around the needs of their
users and their main objective is to act in an appropriate manner when
deemed necessary. Indeed, providing the right type of help or support as soon
as the user needs it, is imperative in many application domains such as
Ambient Assisted Living (AAL), eHealth, Domestic Life, Learning and

Education, etc.

The domain of AAL is already benefited s from a large number of systems
aiming to facilitate independent living for the elderly and people with
disabilities. Indicatively, over the past few years many researchers have
focused on creating reliable fall detection systems, which in case of
emergency notify the emergency-personnel, care-takers, and/or family
members [7]-[9]. Similarly, in the case of eHealth, many applications are

being designed to provide assistance under various situations, including
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diabetes [10], asthma [11], obesity [12], [13], smoking cessation [14], stress
management [15], [16], and depression treatment [17]; most of these
approaches are able to provide specific remedial actions (e.g., automated real-
time educational and behavioral messaging) as soon as an irregularity is

identified.

In the case of domestic life, the advancement of Internet of Things (IoT) [18]
in combination with cloud computing [19] has led to an abundance of web-
enabled devices and services for smart homes [20]. In such environments,
individual users in their everyday lives interact frequently with various smart
artifacts in conjunction; for that reason, smart homes became the most
popular testbed for creating automated tasks based on the preferences, needs
and daily routines of their inhabitants. Developers can manipulate the
intelligent facility of a smart home to create useful integrations (e.g., “if
nobody is at home, turn off all unnecessary electronic devices”, “Save to
Dropbox all attachments from incoming emails”). However, a new type of
programming environment is emerging that allows non-technical users to
specify their own logic over the simple, yet effective trigger-action model [21]-
[27]. Through such environments, users can define triggers (e.g., “if
temperature falls below 18°C”) that initiate specific actions (e.g., turn on the

heating) when their conditions are met, thus automating common tasks.

Programming the behavior of smart homes came quickly to the spotlight and
an increasing number of solutions appeared, enabling people without
programming experience to create their own configurations. However, that is
not the case for domains where triggers go beyond simple sensor readings and
actions play the role of interventions rather than mere automations (e.g., AAL,
eHealth, Education). For example, in a classroom environment a student
“talking” should not trigger a remedial action immediately. On the contrary,
other contextual information (e.g., “the fact that teacher is talking”, “there is

an ongoing exam”) should be taken into consideration before reaching a

conclusion.



In the context of this work, the notion of behavior seems more appropriate for
describing the triggers that originate from or revolve around human activities.
According to [28], in the domains of biology, chemistry, physics and
psychology the word behavior is defined as “the way that a person, an animal,
a substance, etc. behaves in a particular situation or under particular
conditions”. In addition, taking into consideration the user-oriented nature of
AmlI, the term intervention (“involvement in a difficult situation in order to
improve it or prevent it from getting worse” [29]) seems more appropriate for
describing the actions that the environment undertakes to support its users.
Furthermore, since AmI environments are expected to behave intelligently
and adapt their behavior according to user needs [5], any intervention should
be selected carefully and be delivered in a ubiquitous manner based on the
current context. Consider the following example where during a Physics
course many students (60% of the classroom) show signs of tiredness; since a
large percentage of the classroom is affected, the system should be able to
select an intervention that targets a group of people and display it on a public

artifact such as the classroom board.

The domain of Education would particularly benefit from an ambient system
that monitors the learners' attention levels and intervenes, when necessary, to
(i) provide motivating activities to distracted, unmotivated or tired individuals
or (ii) suggest alternative learning methodologies to educators, which would
be beneficial for all students. External stimuli such as pictures and sounds or
internal stimuli such as personal thoughts usually distract learners during a
course. Additionally, feelings of fatigue (i.e., Drowsiness and Falling Asleep),
which are a common phenomenon inside a traditional classroom
environment, could directly affect the behavior of a student. Observing
student behaviors can reveal such attention lapses; hence, a system that is able
to initiate appropriate interventions when needed seems essential. Despite the

fact that AmI has already permeated the classroom environment, there is



currently no support for linking identified behaviors with interventions, nor

for educators to create their own integrations.

These observations nurtured the idea of a framework that supports both
developers and educators in defining the conditions under which certain
behaviors lead to context-aware interventions, via a user-friendly
programming environment. In more detail, the envisioned framework aims

to:

e Support the rapid creation of user-oriented behavior-intervention
(trigger-action) scenarios in contrast to the artifact-oriented recipes
that are currently supported by the majority of IFTTT-style tools [21],
[27].

e Enable behavior modelling by combining multiple contextual
information.

e Support the connection of N behaviors with M interventions.

e Permit the definition of multimodal and ubiquitous interventions.

e Provide a mechanism for assessing the efficacy of interventions.

The approach

This thesis introduces LECTOR, a framework responsible for (i) monitoring
the Intelligent Classroom environment, (ii) detecting student behaviors that
require remedial actions (e.g., inattentive behaviors), and (iii) selecting
appropriate interventions in order to help or support them throughout the

educational process.

LECTOR exploits the potential of AmI technologies to observe student
behaviors (SENSE), identify whether they require remedial actions (THINK)
and intervene accordingly -when deemed necessary- in order to fulfill their
needs (ACT). According to cognitive psychology, the sense-think-act cycle
stems from the processing nature of human beings that receive input from the
environment (perception), process that information (thinking), and act upon

the decision reached (behavior) [30]. This identified pattern constitutes the
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base for many design principles regarding autonomous agents and traditional

AT [31].

Furthermore, the SENSE-THINK-ACT model is extended here by introducing
the notion of LEARN. The fact that the nature of this system enables
continuous observation of behaviors creates the foundation for a mechanism
that provides updated knowledge to the decision-making components. In
more detail, the LEARN-ing mechanism is able to (i) incorporate knowledge
provided by end-users in order to disambiguate identified behaviors and
assess the acceptance of an intervention, and (ii) auto-rank the suggested

interventions according to their efficacy.

In order to support both developers and educators in defining the conditions
under which certain behaviors lead to context-aware interventions, LECTOR
features a sophisticated tool, named LECTORstudio. Since the decision-
making mechanisms of LECTOR rely on rule-based conditions, LECTORstudio

supports the creation of three (3) types of rules:

I.  Rules that “model” a behavior® based on physical context®.
II. Rules that “model” the triggers® based on the behavior® of actors!
under specific virtual context®.
III. Rules that describe the conditions (triggers® and virtual context*)
under which an intervention’ is initiated on a specific intervention

host?2.

Even if this decomposition increases the number of steps that a user must
complete in order to connect a trigger to an intervention, it offers scalability
and better rule management. In particular, the three ingredients (i.e.,
behavior, trigger, intervention) are defined in isolation and are only
connected in terms of their outcome. Therefore, an ingredient can be
modified independently of the others and as long as its outcomes remain the
same, no more adjustments will be required for the system to continue to

operate as prior to the change. This approach not only minimizes unwanted



ramifications, but also facilitates collaboration as new rules can be easily
created by different users given that their “connection points” will always be
their outcomes. This is inspired by how an Application Programming Interface
(API) simplifies programming and enables computer programs to evolve
independently by abstracting the underlying implementation and only

exposing objects the developer needs.
The core concepts of this rule-based approach are explained below:

1. Actors are the (groups of) users of the intelligent environment whose
behavior needs to be monitored in order to decide whether an
intervention is required (i.e., student, teacher and classroom).

2. Intervention hosts can either launch an application with specific
content or control the physical environment. They are: (i) common
computing devices such as smartphones, tablets, and laptops or (ii)
technologically augmented everyday physical objects (e.g., interactive
white boards, smart lamps, etc.), or (iii) custom made items (e.g.,
student desk).

3. The physical context encapsulates information regarding physically
observable phenomena via sensors (e.g., luminance, heart rate, sound
levels, etc.).

4. The virtual context refers to any static or dynamic information that is
provided through software components (e.g., student profiles, course
schedule).

5. Behavior is a model that represents the actions of an actor (e.g., a
student talks, a teacher is walking).

6. Trigger is the model of a high level behavior that can initiate an
intervention.

7. Interventions are the system-guided actions that aim to help or support

students during the educational process.

In order to support the creation of such rules in the Intelligent Classroom

environment, LECTORstudio permits developers to integrate the necessary
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building blocks (i.e., actors, intervention hosts, physical context, virtual

context, interventions).

Contribution

The primary contributions of this thesis are:

A. Mechanisms that empower the Intelligent Classroom to: (i) identify
behaviors that require remedial actions by taking advantage of its AmI
facilities and (ii) intervene when students need help or support.

B. A user-friendly authoring tool for supporting both educators and
developers in creating -in a rapid and easy way- the conditions under
which certain behaviors lead to context-aware interventions.
Specifically, users guide the generation of “if-then” rules that dictate the

behavior of the Intelligent Classroom.
Secondary contributions are the following:

e A three (3) step process for connecting behaviors with interventions; this
decomposition, permits a behavior to be associated with many triggers and
a trigger with many interventions, depending on the context of use. In
more detail, the first step is to define a behavior, next the conditions under
which the behavior becomes a trigger have to be described, and the last
step is to create a connection between a trigger and an intervention.

e A rule structure that supports the creation of user-oriented behavior-
intervention scenarios in contrast to the artifact-oriented recipes that are
currently supported by the majority of IFTTT-style tools.

e Appropriate infrastructure that enables evaluation of system decisions,
depending on user input to (i) invalidate identified behaviors, and (ii)
override system suggestions in case they do not serve their needs.

e A user-friendly authoring tool that enables developers to integrate the
building blocks (i.e., actors, intervention hosts, physical context, virtual
context, interventions) that are required for programming the Intelligent

Classroom.



e Auxiliary tools were also created to serve the needs of educators and

students.

Thesis Outline

The rest of this thesis is organized in the following way:

e Chapter 2 presents a literature review that aims to (i) examine the state-
of-the-art technology that concentrates on monitoring human
attention, (ii) reveal methodologies for detecting human behaviors, and
(iii) identify widely accepted techniques, appropriate for resetting the
students' attention during lectures.

e Chapter 3 reviews the related work regarding trigger-action
programming.

e Chapter 4 introduces several scenarios that motivated this work and
outlines the functional and non-functional requirements of the
proposed framework.

e Chapter 5 describes the System Architecture in details.

e Chapter 6 describes the functionality and user interface of the offered
authoring tool. Furthermore, it explains in details the functionality of
three (3) auxiliary tools which were created to serve the needs of
educators and students.

e Chapter 7 concludes the thesis with a summary of the results and a

discussion on possible future directions.



10



Chapter 2
Background Theory

Chapter 2 presents a literature review that aims to (i) examine the state-of-the-
art technology that concentrates on monitoring human attention, (ii) reveal
methodologies for detecting human behaviors, and (iii) identify widely
accepted techniques, appropriate for resetting the students' attention during

lectures.
Particularly, the survey’s findings have significantly contributed to:

A. The creation of a proper knowledge base that aids LECTOR in
appropriately identifying inattentive behaviors and providing suitable
interventions (Chapter 5)

B. The formulation of the framework’s core concepts (Chapter 5)

C. The definition of the requirements of LECTOR framework (Chapter 4)

Interactive technology in the classroom

In the recent past there has been growing interest in how computers and the
Internet can improve the efficiency and effectiveness of education at all levels.
Information and communication technologies (ICTs) are acknowledged as
potentially powerful tools for educational change and reform. When used
appropriately, different ICTs are claimed to help expand access to

information, strengthen the relevance of education to the increasingly digital
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workplace, and raise educational quality by, among others, helping make

learning and teaching an engaging, active process connected to real life [32].

The students benefit particularly from the use of ICTs in education, since
access to educational information is unlimited, the learning environment is
enriched, collaboration is promoted, and motivation to learn is enhanced [33].
In the recent past, learning with the use of ICT was strongly related to concepts
such as distance learning [34], educational games [35], intelligent tutoring

systems and e-learning applications [36].

The notion of intelligent classrooms has become prevalent in the past decade
[37]. Smart classroom is used as an umbrella term, meaning that classroom
activities are enhanced and augmented through the use of pervasive and
mobile computing, sensor networks, artificial intelligence, robotics,
multimedia computing, middleware and agent-based software [38]. Following
the rationale of augmented technology in the educational environments, new
means of interaction - such as interactive whiteboards, touch screens and
tablet PCs - have gained popularity and have become a major tool in the
educational process, allowing more natural interaction. Smart classrooms, for
example, may support one or more of the following capabilities: video and
audio capturing in classroom [39], automatic environment adaptation
according to the context of use (such as lowering the lights for a presentation)
[40], lecture capturing enhanced with the instructor's annotations, delivery of

personalized content [41] and information sharing between class members.

However, inside a classroom environment, students get distracted from
educational activities either by internal stimuli (e.g., thoughts and attempts to
retrieve information from memory) or external stimuli (e.g., pictures,
sounds); hence they might not always be "present" to take advantage of all the
benefits that an intelligent classroom has to offer. This observation highlights
the need of a mechanism that monitors the learners, identifies inattentive

behaviors and intervenes to appropriately reset attention levels.
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Attention and Education

Attention is defined in psychology as the cognitive process of selectively
concentrating on one aspect of the environment while ignoring other things;
an indicative example is when listening carefully to what someone is saying
while ignoring other conversations in a room. In other words, attention means
focusing the consciousness on a stimulus or a range of stimuli by

preferentially responding to them.

Attention is very often considered as a fundamental prerequisite of learning,
both within and outside the classroom environment, since it plays a critical
role in issues of motivation and engagement [42]. Obtaining and maintaining
the students' attention is an important task in classroom management, and
teachers apply various techniques for this purpose, however currently no
technological support is available to monitor attention levels of students and

assist teachers in obtaining optimal attention for the task at hand.

According to Packard [43], "classroom attention" refers to a complex and
fluctuating set of stimulus-response relationships involving curriculum
materials, instructions from the teacher and some prerequisite student
behaviors (e.g., looking, listening, being quiet, etc.). Such behaviors can be
rigorously classified as "appropriate" and "inappropriate" [44]. Appropriate
behaviors include attending to the teacher, raising hand and waiting for the
teacher to respond, working in seat on a workbook, following in a reading text,
while inappropriate behaviors include (but are not limited to) getting out of
seat, tapping feet, rattling papers, carrying on a conversation with other
students, singing, laughing, turning head or body toward another person,
showing objects or looking at another class mate. Some of the above behaviors
would be in fact disruptive to some educational activities. However, the
students should not be forced to spend their whole day not being children, but
being quiet, docile, and obedient "young adults" [45]. On the contrary, learning
can take place more effectively if students’ curiosity, along with their desire to

think or act for themselves, remains intact.
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The application of LECTOR in the intelligent classroom does not target to
creating a system obsessed with silence and lack of movement. On the
contrary, an intriguing challenge is to disambiguate behaviors that could also
be indicative of attempts to maintain attention. For instance, students looking
around the classroom or looking away from their notes could be thinking
about the material that the instructor is presenting, and fidgeting could be an
attempt to increase arousal [46]. To this end, the decision-making processes
for identifying attention vs. inattention should take into consideration the
behavioral norms of each student before reaching any conclusions (e.g., a
student doodling while thinking). Furthermore, since students who are
motivated and sufficiently aroused can sustain prolonged attention [46], the
main goal of the system is to motivate the students in becoming engaged in the
learning activities so as to benefit most from the knowledge that the teacher

and the ICTs have to offer.

How long do students pay attention?

As passive listeners, people generally find it difficult to maintain a constant
level of attention over extended periods of time, while pedagogical research
reveals that attention lapses are inevitable during a lecture. McKeachie [47] in
his book on tips for lecturers, suggests that student attention will drift during
a passive lecture, unless interactive strategies are used to hold student
attention. This belief is corroborated by [48] that supports that student
concentration decays in the same way during a passive lecture as does that of
a human operator monitoring automated equipment, with serious
implications for learning and performance. Bligh [49], in his book about how
to lecture, advises that students are not likely to pay close attention to a lecture
in the first 5 minutes, while they are settling down, nor during the last 5
minutes, when their attention rises and falls. Similarly, Sousa [50] suggests
that students' processing of information during a lecture is dependent upon
their motivation. The more motivated students pay attention longer than the

less motivated. He suggests that unmotivated students pay attention for an
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average of 10-20 min, which means that a teacher may see the beginning
effects of attention decline after 10 minutes of lecturing. The estimation that
attention degrades after 10 to 30 minutes on task has found support in several

other studies [51]-[53].

However, experimental studies [54], [55] reveal that, unlike common belief
[49], [50] students do not pay attention continuously for 10-20 minutes during
a lecture. Instead, their attention alternates between being engaged and non-
engaged in ever-shortening cycles throughout a lecture segment. This
observation highlights the need for techniques that estimate students'

attention lapses in real time.

Monitoring User Attention

There is a well-established body of research on monitoring human attention
to determine users' vigilance, concentration level and visual focus of attention.
Traditional approaches mainly focus on attention monitoring during
interaction with computer-based applications, where the collected data are
used either as diagnostic tools or as indications that additional actions should

be taken to facilitate the task at hand.

Recent approaches are significantly influenced by the emergence of the
Ambient Intelligence (AmI) paradigm and the concept of disappearing
computing, and focus on real world activities (e.g., viewing exhibits in a
museum, shopping, attending a meeting, driving, etc.), where the attention
stimuli might be anywhere and the subjects might move unrestrictedly. The
aforementioned approaches aim to facilitate a broad spectrum of human

activities by:

. Analyzing statistical data that represent the user's visual fixations

. Adapting application content (e.g., learning material) based on user
preferences and needs

. Suggesting actions based on users cognitive behavior (e.g.,

remediation)
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. Interpreting attention as an input modality (e.g., human-robot
interaction)

. Restoring user's vigilance in critical situations (e.g., driving)

From a technical point of view, various solutions are employed. Eye tracking
is one of the most widely used methods to provide evidence of user's attention,
since gaze is considered to be a good indicator of a person's attention on
external objects. However, in open spaces where users' mobility is
unconstrained, gaze trackers are not that accurate. As an alternative, based on
the fact that humans pay attention to an external object by orienting
themselves towards that object to have it in the center of their visual field [56],
head pose tracking and laser-based orientation scanning are used to estimate

the user's direction.

To improve accuracy, many studies augmented gaze-tracking techniques with
additional cues like sound and context information. According to [56], objects
which draw a person's attention can be external stimuli (e.g., pictures, sounds,
etc.). Indicative examples that realize such concepts are discussed in [56],
where the authors tried to predict at whom a person is looking based on who
is/was speaking, and in [57] and [58], where content information (e.g., what is
the next task in the list of pending tasks) is used to predict the visual focus of

attention.

The next paragraphs report on state-of-the-art attention monitoring

technologies and their application in laboratory and real-world scenarios.

In [59] the authors focus on real-world attention levels. Trying to clarify how
things such as merchandise in a store or pictures in a museum receive
attention in the real world, they propose a Sensor of Physical-world Attention
using Laser scanning (SPAL). The use of a laser scanner is quite challenging,
since it provides only front-side circumference of any detected objects in a
measurement area, however, unlike cameras, it poses no privacy problems.

SPAL includes many important factors when calculating people's attention,
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i.e., lingering time, direction of people, distance between people and a target
object. After extracting a human from a group of humans and detecting his/her
direction in comparison with the position of the target object, the system
calculates real-world attention levels by using two proposed models: the
Object-based Attention (OA) and the Distance-weighted Attention (DA)
models. Furthermore, they define two metrics, value and degree of real-world

attention levels, to indicate and evaluate people's attention.

Much literature focuses on driver vigilance and attention monitoring. The
system in [60] analyzes video sequences in order to determine the visual
attention of a driver. Measurable cues, like eye blink rate and head rotation
rate, are collected with a single camera placed on the car dashboard and
assessed to make determination of the driver's visual attention level. As the
authors claim, when compared to similar works, the proposed system goes
beyond classifying visual attention with eye closure metrics, but also shows
that detecting head rotation could expose other kinds of decreases in visual
attention. The adopted method to track the head uses color predicates to find
the lips, eyes, and sides of the face, while the results show that the system can
track local lip motion like yawning. Despite the challenges posed by
unexpected conditions that a moving vehicle might face, the system, as
reported, performed quite well under a variety of daytime illumination levels,

while it did not encounter any difficulty with the changing background.

In [61] the authors propose to track focus of attention of several participants
in a meeting by modeling both the persons head movements and the relative
locations of probable targets of interest in a room. Taking into consideration
that when humans pay attention to an external object, they usually orient
themselves towards the object of interest, so as to have it in the center of their
visual field, they try to estimate a person's focus of attention based on head
orientation. To this end, they extend the neural network approach to estimate
the head pose in more unrestricted situations. In particular, the use of neural

networks does not limit to estimating the head rotation in pan direction, but
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also allows the calculation in the tilt direction as well. Concerning the
detection of a user's focus of attention, they employ the hidden Markov model
(HMM), which is able to incorporate knowledge about the meeting situation,
i.e., the approximate location of participants in the meeting. Hence, the

HMMs are applied to track whom the participants in a meeting are looking at.

In a more recent work, Stiefelhagen et al. [56] try to estimate the visual focus
of attention of participants in a meeting room using multiple cues. They
demonstrate that through the combination of visual and acoustic information
a higher percentage is achieved on detecting the participants' focus of
attention. Since visual attention is influenced by external stimuli, they also
investigate whether it is possible to predict a person's focus of attention based
on audio information. Hence, microphones are used to detect who is speaking
while sound history is taken into account in order to improve the audio-based
prediction. Similarly to their prior work [61], they use neural networks to
estimate the participants’ head poses which are captured by an
omnidirectional camera that simultaneously tracks participants' faces.
However, the proposed system is unable to handle significant movements of
the meeting participants, as the current model relies on probability
distributions related to participants'locations, limiting its employment in real-

life applications.

Ba and Odobez [62] aim to address problems of recognizing the visual focus of
attention (VFOA) of meeting participants following a different approach based
on participants' head pose. To this end, the head pose observations are
modeled using a Gaussian mixture model (GMM) or a hidden Markov model
(HMM) whose hidden states correspond to the VFOA. Contrary to the work
presented in [56], in the proposed setup, the potential VFOA of a person is not
restricted to other participants, but includes environmental targets as well (a
table and a projection screen), which subsequently increases the complexity
of the task with more VFOA targets spread in the pan and tilt gaze space. To

address the added complexity, they propose a novel approach to set the model
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parameters either in GMM or HMM models that represent the associations
between head poses and visual targets without collecting training data. Their
method (referred to as cognitive or geometric) models the head pose of a
person given his upper body pose and his effective gaze target. In this way, no
training data are required to learn the parameters, but some knowledge of the
3-D room geometry is necessary. In addition, to account for the fact that people
have their own head pose preferences for looking at the same given target,
they adopted an unsupervised maximum a posteriori (MAP) scheme to adapt
the parameters obtained from either the training data or the geometric

approaches to the unlabeled head pose data of individual people in meetings.

In [63] the authors define and address the problem of finding the visual focus
of attention for a varying number of wandering people (VFOA-W),
determining where a person is looking when their movement is
unconstrained. Trying to create a tool that automatically measures the
effectiveness of printed outdoor advertisements came upon the problem of
VFOA-W estimation, which poses implications in behavior understanding and
cognitive science in real-world applications. The authors approach this
problem by offering a multi-person tracking solution based on a dynamic
Bayesian network that simultaneously infers the number of people in a scene,
their body locations, their head locations, and their head pose. For efficient
inference in the resulting variable-dimensional state-space, they propose a
Reversible-Jump Markov Chain Monte Carlo (RJMCMC) sampling scheme and
a novel global observation model, which determines the number of people in
the scene and their locations. Finally, in order to determine if a person is
looking at the advertisement or not, they suggest Gaussian Mixture Model
(GMM)-based and Hidden Markov Model (HMM)-based VFOA-W models,

which use head pose and location information.

In multi-agent multi-user environments there is a need of clarifying who is
talking to whom. Vertegaal et al [64] present an experiment aimed at

evaluating whether gaze directional cues of users could be used for informing
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an agent that is it being addressed or expected to speak. Using an eye tracker,
they measured a subject's gaze at the faces of conversational partners during
four-person conversations. Results indicated that when someone is listening
or speaking to individuals, there is a high probability that the person looked at
is the person listened or spoken to. Hence they conclude that gaze is an
excellent predictor of conversational attention in multiparty conversations,
but its predictive power may depend on the individual user and the visual
design of the conversational system. To support that they implemented FRED,
a multi-agent conversational system that uses eye input to gauge which agent

the user is listening or speaking to.

In [65] the authors present a way to extract user attention and head gestures
utilizing the shape and texture parameters from a fitted Active Appearance
Model (AAM). The main advantage of using an AAM is the holistic
representation of the face. They focus on improving human-robot interaction
and therefore apply an attention and head gesture estimation which uses the
AAM shape parameters to estimate the users head pose. For the measure of
attention the distribution of the head pose over time is used, while to allow a
more natural dialog the head pose is also very efficiently interpreted as head
nodding or shaking by the use of adaptive statistical moments. For head pose
estimation an own dataset is used which consists of mixed facial image
sequences of male and female people who rotate their heads around. Each
image of this dataset is labeled by the current head pose, which is determined
by the so-called Flock of Birds. The Flock of Birds is a two-parted system which
determines the head pose using magnetic fields. One part is fixed and must be
positioned near the camera; the other part must be mounted on the top of the
head. Finally, in order to facilitate users that are restricted in their head
movements (e.g., demented) and mostly look around only by using eye
movements, they use a simple eye tracker, which operates with an ordinary

webcam.
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The Reading Assistant presented in [66] is a computer-based remediation tool
that uses visually controlled auditory prompting to help the user with
recognition and pronunciation of words. This work is a straightforward
extension of the GWGazer, a system that predicts user alertness and
attentiveness using eye tracking. The main objective of the Reading Assistant
is to track the reader's eye movements and, using principles derived from
reading research, aid the reader by pronouncing words that appear to be hard
to recognize. The system takes advantage of (i) the ability of unobtrusive eye
tracking systems to follow eye motion and (ii) the ability of text-to-speech
software to help children learn to read. As students read text displayed on a
computer screen, a video camera, mounted below the screen, monitors the
students' eye motions. The eye tracking system analyzes the infrared video
image of the eye and computes the coordinates of the gaze-point (the point at
which the eye is looking) on the screen and sends them to the GWGazer
application, which keeps track of the user's scan of the displayed text in real
time. Visual and auditory cues are produced that depend on where the student
is looking and whether changes in scan pattern indicate difficulties in

identifying a word.

In [67] the authors present an empathic software agent (ESA) that aims to
overcome the challenges of online learning and increase students' motivation
by stimulating their interest. In online learning the students can lose
motivation and concentration easily, especially in a virtual education
environment that is not tailored to their needs and physical contact with
human teachers is limited. For that purpose, ESA detects the attention
information from real-time eye tracking data from each learner and modifies
instructional strategies based on the different learning patterns of each
learner. During the learning process, the system records the user's eye gaze
and pupil dilation and based on these measures, it infers the focus of attention
and motivational status of the learner and responds accordingly with affective

(display of emotion) and instructional behaviors. Besides that, ESA uses eye
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gaze information for non-real-time collection of eye-tracking statistics, such
as how learners look at images and how long they spend looking at different

objects.

Similarly to the ESA system, the AdELE [58] framework supports adaptive e-
learning utilizing not only eye tracking but also content tracking technology.
This framework ensures not only adaptivity to the users' preferences,
knowledge level and the real-time tracking of their behavior, but also ensures
the relevance, accuracy and reliability of the knowledge provided. AdELE
delivers interfaces adapted to users' needs and provides content adaptation
according to the gained behavioral information of the user. For that to be
achieved, they combine fine-grained real-time eye tracking with: (i)
synchronous content tracking, (ii) a user profiler, (iii) an adaptive multimedia
learning environment, and (iv) a dynamic background library. In particular,
adaptivity through eye-tracking is accomplished by observing users' learning
behavior in real time and monitoring characteristics such as objects and areas
of focus, time spent on objects, frequency of visits, and sequences in which

content is consumed.

In [57] the authors focus on remote instructional collaborative tasks where
participants are assigned to either a "helper" role or a "worker" role. The helper
offers the knowledge to guide the operations, while the worker provides the
physical labor. Such a relationship is similar to a teacher instructing a student
in a physics experiment or an engineer guiding a technician servicing a
vehicle. Trying to overcome the challenges of this type of collaboration they
introduce an "intelligent" video system that provides the right camera feed at
the right time during a collaborative physical task, so that the helper can have
the most beneficial view of the worker's environment at each point in time. To
that end, instead of tracking focus of attention (FOA) via head position, they
propose that the identification is established based on the user's intention, the

task properties, people's actions in the workspace, and conversational
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content. They employed a conditional Markov model to classify FOA from the

intention decoded from dialogue content and workers' actions.

Merten and Conati in [68] are concerned about the added value that eye-
tracking technology can offer towards modeling and adapting Intelligent
Learning Environments. In their work, they use eye-tracking data for
assessing on-line the user meta-cognitive behavior during the interaction with
a system. They mainly focus on the capability to effectively learn from free
exploration and to self-explain instructional material as both these meta-
cognitive skills have shown to improve the quality of student learning. Based
on the findings of a formal evaluation where they compared three different
student models with various predictors (i.e., a simple navigation-based
predictor, a navigation- and timing- based predictor, and a combination of
navigation- and timing- based predictor with eye-tracking), they concluded
that more sophisticated predictors improve the recognition of user meta-

cognitive skills and consequently student learning.

Attention Monitoring in Smart Educational
Environments

Attention aware systems have much to contribute to educational research and
practice. These systems can influence the delivery of instructional materials,
the acquisition of such materials from presentations (as a function of focused
attention), the evaluation of student performance, and the assessment of
learning methodologies (e.g., traditional teaching, active learning techniques,
etc.) [42]. However, existing approaches [58], [66]-[69] concentrate mainly on
computer-driven educational activities. This highlights the importance of
LECTOR, which is able to monitor student behaviors in a real classroom

setting and suggesting improvements for the learning process.

Resetting Student Attention

Literature suggests several strategies to regain student attention and increase

the level of engagement in learning activities; among them, Active Learning
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was acknowledged as the most effective instructional method in terms of
resetting the students' concentration and decreasing attention lapses during
lectures. Unlike the traditional way of lecturing where students passively
receive information from the instructor, active learning introduces active
student participation in the main course. These activities however should be
appropriately designed to promote thoughtful and meaningful engagement on
the part of the student and deliver important learning outcomes. Such an
example of active learning could be a case where the lecturer periodically

pauses his talk and asks students to clarify their notes with a partner.

Several studies not only highlight the advantages of active learning, but also
support that praise, encouragement, reprimands and multimodal cues

positively affect the students' motivation.

Michael Prince in [70] examines the effectiveness of active learning. To do so,
he initially clarifies what active learning is and how it differs from traditional
engineering education, which is also considered "active" through homework
assignments and laboratories, then defines different forms of active learning
(i.e., Active Learning, Collaborative Learning, Cooperative Learning and
Problem-based Learning) and finally summarizes the most relevant surveys in
this field. His findings validate that: (i) the introduction of various activities
during lectures (i.e., Active Learning) can significantly improve recall of
information and increase student engagement, (ii) Collaborative Learning
enhances academic achievement, student attitudes and student retention, (iii)
Cooperative Learning is more effective in promoting a range of positive
learning outcomes compared to Competitive Learning, and finally (iv)
Problem-based Learning, the most difficult method to be analyzed due to the
variety of practices and the lack of a dominant core element, positively
influences student attitudes and study habits (e.g., students will retain
information longer and perhaps develop enhanced critical thinking and

problem-solving skills), but is unlikely to improve their test scores.
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In [71] the authors examine four active learning strategies in a within-subjects
design and explore the effect of these "interventions" on concentration on a
sample of senior-level students. These evaluated interventions are based on
basic questioning and peer sharing techniques, including: (i) Student-
Generated Questions, (ii) Guided Reciprocal Peer Questioning, (iii) Think-Pair-
Share, and (iv) Truth Statements. The findings revealed that only two
interventions had an encouraging influence on students' concentration
ratings, including Guided Reciprocal Peer Questioning and Student-Generated
Questions. As the use of questions can encourage students to describe what
they believe and how they came to believe it, questioning interventions appear
to help reset student engagement by actively involving the student in
substantive exchange compared to a mere sharing of what they think. On the
contrary, both the Truth Statements and Think-Pair-Share interventions
actually evidenced a lower average end-of-activity concentration rating

compared to the pre-activity interval.

The advantages of active learning techniques are also demonstrated in [72].
The authors explain that the employment of these techniques is vital because
of their powerful impact upon students' learning and they propose several
solutions for incorporating them in the classroom, such as: encouraging
discussion, allowing the students to consolidate their notes, etc. Another
interesting observation substantiates that certain alternatives to the lecture
format could further increase student level of engagement: (i) the feedback
lecture, which consists of two mini-lectures separated by a small-group study
session built around a study guide, and (ii) the guided lecture, in which
students listen to a 20- to 30-minute presentation without taking notes,
followed by their writing for five minutes what they remember and spending
the remainder of the class period in small groups clarifying and elaborating
the material. Finally, besides enumerating the benefits of active learning, the
authors present the difficulties associated with that instructional approach,

including limited class time, increased preparation time, difficulty of using
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active learning in large classes and the lack of materials, equipment, and

resources.

Bunce et al [54] perform an experiment in order to investigate how often
during a lecture segment students report a lapse in their attention and how
student-centered pedagogical approaches increase attention and motivation.
College students were equipped with clickers and they were instructed to press
them when their minds wandered from the material being presented in class.
Furthermore, to evaluate the effectiveness of alternative teaching techniques,
the instructors used different pedagogical approaches interchangeably
(lecture, demonstration, clicker questions, working in student groups or pairs,
etc.). This study not only concluded that students do not pay attention
continuously during a 50-min lecture and attention lapses may occur at any
time, but more importantly demonstrated that the positive effect of student-
centered pedagogical approaches decreases student inattention and adds a
carryover effect to a subsequent lecture segment. This supports the idea that
changing pedagogical activities within a class period cannot only be seen as a
way to present concepts in an alternate format, but may also help engage

students in subsequent lecture teaching formats.

A very similar set of results was evidenced by Young et al [48] in their
exploratory study about students' attention during different lecture formats.
They adopted a vigilance measurement technique from ergonomics and
focused on four types of college lectures: (i) traditional "chalk-and-talk"
lecture, (ii) lecture introducing guest lecturer, (iii) lecture allowing "buzz
group" discussion and (iv) lecture presenting case studies with video media.
Their findings validate that: (i) any variation in presentation or media can help
maintain attention and facilitate deeper learning, and (ii) Buzz groups and
other interactive sessions do have clear advantages compared to standard

'chalk-and-talk' lecture format which appear to cause vigilance decrement.

The work in [73] compares the techniques of encouragement and reprimands

as a mean to reduce off-task behavior in the classroom. Two experiments were
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performed involving children with academic and/or behavioral problems in a
remedial summer program. In both experiments reprimands resulted in lower
rates of off-task behavior and higher academic productivity than
encouragement. In contrast to reprimands, encouragement appeared to have
no systematic effect, improving some students' behavior, causing others'

behavior to deteriorate, and having no obvious effect on other children.

Hitz and Driscoll [74], on the other hand, highlight the advantages of
encouraging students during learning activities. According to their study most
students thrive in encouraging environments where they receive specific
feedback and have the opportunity to evaluate their own behavior and work.
Comparing encouragement and praise, they emphasize that some praise
statements can potentially lower students' confidence in themselves and lead
them to focus their attention on extrinsic rewards. Thus, by constantly
encouraging students, teachers can create an environment in which students
do not fear continuous evaluation, can make mistakes and learn from them,

and do not have to strive to meet someone else's standard of excellence.

Finally, an interesting experiment is presented in [75]; it examines whether
spatially non-predictive bimodal cues are more effective than unimodal cues
in capturing spatial attention away from a perceptually demanding central
task. The results highlight a qualitative difference between the nature of the
exogenous orientation of visuospatial attention effects triggered by unimodal
and bimodal cues. In more detail, as evidenced by a comparable magnitude of
spatial cuing effects in the no perceptual load (i.e., baseline) and high
perceptual load conditions, the unimodal cues failed to capture participants'
visuospatial attention exogenously under conditions of high load, whereas
bimodal cues (which were completely spatially non predictive, i.e., they were
task irrelevant) successfully captured participants' visuospatial attention

regardless of any concurrent increase of their visual perceptual load.
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Discussion

The study of attention monitoring technologies revealed the challenges, the
proposed solutions, the appropriate techniques and the results of each
approach when used in real settings. Besides exposing the technological
advances, this survey also provided great insights on how such systems can
monitor a smart classroom environment, identify the student needs and
suggest improvements for the learning process. For example, eye-tracking can
monitor student's visual fixations during exercise solving and detect potential
weaknesses, while head tracking is appropriate for estimating whether the
student pays attention to the teacher, concentrates on the class board, or
dawdles with another classmate. Nevertheless, such systems cannot
effectively address the challenges of a real classroom. A non-exhaustive set of

the additional constraints that should be taken into account include:

. Students' attention can be captured by multiple targets (e.g., class
board, book, teacher, classmates, personal computer, etc.)

. Learning behaviors differ among students (e.g., doodling while
concentrating vs. doodling while being bored)

. Contextual information might cause substantial deviation of attention
indicators (e.g., Art vs. Literature course)

. Groups dynamics and collective behaviors greatly affect the decision-
making process (e.g., the whole classroom is laughing at funny

comment made by the teacher).

Furthermore, the conducted analysis allowed to identify several cues might
signify inattention and fall under the following categories: Focus, Speech,
Location, Posture and Feelings. Additionally, it was revealed that using
multiple cues (e.g., gaze, head pose, body posture, sound, etc.) can increase
the accuracy of predicting the student's focus of attention. This information
highlights the necessity of supporting the combination of multiple
physiological attributes when modeling a behavior (e.g., head to the left and

increased sound indicates talking to classmate).
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Another contribution of this survey was the specification of the contextual
information needed to support an attention aware Intelligent Classroom that
intervenes to re-engage tired or unmotivated students. In more detail, such an
environment must be aware of the current course, the ongoing activity, and
the characteristics of its students. Furthermore, it was revealed that it is of
outmost importance to combine diverse contextual information to accurately
determine the level of attention of each individual or the entire classroom and

reduce false positives.

In addition, the study of background theory regarding attention and education
showed that being able to observe discrete inattention types is really
important, since it facilitates the process of selecting appropriate
interventions. As an example, the intervention that will be applied to a student
who is chatting will be different from the intervention that will be applied to a
student who is fatigued. This leads to the specification of several student
behaviors that should trigger interventions (i.e., cheat, chat, disturb, fatigue,

boredom and out of seat).

Finally, adjusting the learning process is a key aspect in the intelligent
classroom; thus, the use of LECTOR in this context should be based on widely
accepted techniques on resetting student attention. This extensive literature
survey confirmed that introducing engaging activities into the main lecture
and changing pedagogies within a class period has remarkable effects on
students' concentration. However, teachers are not always willing to adopt and
apply active learning techniques in their daily teaching routine, since the
available class time is limited (e.g., 50 minutes) and the preparation of the
required material is time consuming. In an intelligent classroom environment
though, where the computational resources surplus, LECTOR can
automatically compile and initiate the appropriate activities based on the

context of use, the students’ needs and the available time.
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Chapter 3
Related Work

An AmI environment should be able to recognize the users in it, understand
their needs, identify their behavior, and act and react in their interest.
Fundamentally, this process entails two basic steps (i) identifying a user need
and, (ii) acting accordingly; this simplification reveals the similarities with the
trigger-action model [2]-[4], which in the recent years has been in the spotlight
as a form of programming AmI environments, using simple “if trigger, then
action” rules. The goal of this thesis is to offer a framework that advances the
way through which both developers and educators connect student behaviors
that signify inattention (triggers) to specific context-aware interventions

(actions).

Chapter 3 provides a review of research studies and commercial tools that
have examined trigger-action programming or related interfaces over the last

15 years.

Trigger — Action Programming

The emergence of the Ambient Intelligence (AmI) paradigm and the
proliferation of physical Internet of Things (IoT) devices have raised the need
for appropriate tools that enable users to connect and manage the abundant
devices and services. According to [3], one of the most straightforward
approach towards that direction is the trigger-action paradigm, which enables

users to configure the behavior of a system by specifying triggers (e.g., “if the
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user has awakened”) and their consequent actions (e.g., “turn on the coffee
machine”). Trigger-action programming (TAP), has been the focus of many

research approaches and several commercial devices.

The Context-aware Application Prototyper (iCAP) [76] enables the description
of situations and their association with specific actions. Its objective is to
support inexperienced end-users in building interesting context-aware
applications for their instrumented environment without writing any code. To
do so, iCAP features a visual, rule-based system that permits prototyping of 3
common types of context-aware behaviors: simple if-then rules, relationship
based actions and environment personalization. In order to create the
building blocks of a rule, the user has to define the people and artifacts
involved in it and add them to a repository. Next, an output medium (e.g., cell
phone) has to be defined by specifying several characteristics, such as its
category (sound) and type (binary: on/off). As soon as this information is

available, the user can start building the rule by simply dragging the respective

components on a visual area (Figure 1).
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Figure 1: The user interface of iCAP [76]
In [77] the authors use the metaphor of recipes for food preparation, where
users are able to produce a large and varied number of compositions from a
small set of ingredients. In their approach, a “digital recipe” follows a simple

yet effective programming procedure, where variables (ingredients) are
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initialized before the control statements (preparation). In order to support
their concept, the authors developed a prototype of a universal remote control
application that allows users to discover, use, and create digital home recipes.
This application, named OSCAR (Figure 2), is described in [22]; it permits
monitoring and manipulation of connections between devices, and enables
users to create rules that apply to frequent activities. OSCAR runs on a
touchscreen-based tablet and permits users to browse through devices and
media sources available on the home network. Upon selection, the user can
connect the device or media source to other items, obtain its user interface, or

use it as part of a reusable configuration.
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Figure 2: OSCAR, the application that supports flexible and generic control of devices and
services in home media networks [22]

The work in [78] presents an early prototype of a framework that supports the
creation of mashup editors for Web-enabled smart things. It enables the
composition of services of different smart things as well as virtual web-
services. An extended version of the Ruote open-source workflow engine is
available to users for creating their mashups in a very easy manner. The
framework communicates with the smart things over their RESTful API and is

responsible for executing the work-flows created by end-users.
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The authors in [23] present homeBLOX (Figure 3), a system that enables the
creation of complex home automation scenarios with heterogeneous devices.
In contrast to other related work, its configuration is process-driven rather
than rule-based. Each automation task is represented as a sequence of events
and actions connected to physical and virtual devices. These sequences are
translated into BPEL code for deployment on a process engine. A table
application allows users to create sequences by simply dragging the available

devices on the main canvas and drawing connections between them.
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HomeRules [24] is a prototype interface for a tangible mobile application
(Figure 4) that empowers users (with no technical skills) to “program” their
smart home. The authors built this prototype following a set of guidelines that
they came up with drawing from their own previous experiences and some

well-known commercial products such as IFTTT and WigWag.

Massieu [79] in his thesis presented GALLAG Strip, an approach employing the
programming-by-demonstration technique for programming sensor-based
context aware applications. It permits users (with no computer programming
skills) to program simple “if-then” rule-based applications by physically
demonstrating their envisioned interactions within a space using the same
interface that they will later use to interact with the system (i.e., GALLAG-

compatible sensors and devices).

Locale [80] and Tasker [81] are Android applications (Figure 5) which allows
users to create situations specifying conditions under which their phone's
settings should change. The conditions are primarily related to the position
and orientation of the phone, the date and time, the battery levels, the
incoming calls, the location and application. For example, an "At Work"
situation notices that the user’s Location condition is "77 Massachusetts Ave.,"
and changes the phone’s Volume setting to vibrate. In the case of Locale,
developers can employ existing plug-ins and integrate directly with it through

the Developer API.
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Figure 5: (a)Locale's user interface for creating a situation [80]. (b) Tasker’s UI for creating
tasks and actions
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Apiant [82] is a Cloud Based API Integration Platform targeting non-technical
users as well as integration professionals that allows them to connect their
applications in order to automate their tasks. Through an automation editor,
simple users can connect their apps, and when one or more criteria is met
(triggers), the automation launches sophisticated routines (actions). An
assembly editor permits customization of the automation without requiring

coding.

Atooma is an application that uses the ‘if-then’ construct for defining rules;
Atooma's flagship is the Resonance Al software platform [83]. Resonance Al
offers a set of Als (not mere APIs) to make things learn routines (home, work,
etc.), and use them to predict what the user will need. Through the APIs
developers can listen to context changes and use them to trigger actions. The
latter is achieved either by a Low Level API or Resonance Distributed Rule
Engine, allows developers to activate and execute IF-DO rules when users

enter in (or exit from) a specific context.
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Figure 6: WigWag's rule editor for developers (image taken from: www.kickstarter.com)
WigWag [84] is an open source system that aims to bring intelligence into
commercial spaces. Through a mobile application it permits users to control

instantly any internet-connected sensor and device inside a house or an office.
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It delivers a platform that enables the graphical definition of rules in the form:
"When" [this] happens "Then" do [that]. Apart from supporting inexperienced
users with no computer skills, WigWag permits developers to go deeper and

write Javascript code to modify the rules (Figure 6).

Zipato [25] is a rule-based system for home control and automation. Zipato
requires its own gateway, called Zipabox, to which the many devices of the
system are connected. The devices could come from other manufacturers, but
must adhere to specific standards. Its Rule Creator is an easy and intuitive
web-based graphical tool that allows users to easily create and modify their
automation rules. A library of micro blocks (control functions) is employed to
provide the flexibility to develop simple and complex control sequences

(Figure 7).
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Figure 7: Zipatos' Rule Creator [25]
TWINE [26] is a wireless sensor block tightly integrated with a cloud-based
service (Figure 8). Wi-Fi, temperature and orientation sensors are integrated
on a durable block made of rubber, while an expansion connector enables the
employment of other sensors. TWINE focuses on event detection using If-
THEN rules in smart environments. It offers a web application through which
the users can set up and monitor their “Twines” from any browser. “Twines”

are rules that trigger messages; a palette of available conditions and actions is
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available for composing the rules which appear as normal sentences: WHEN

moisture sensor gets wet THEN text "The basement is flooding!"

\l" TWINE «I:LLJ Jj«IN Twines w ©Support  WEForums © Account (O Sign out
How rules work
OFFICE TWINE Door alert Y
ow to use sensors
Email me when someone opens the door.
temperature
3 F
edit
. = “omotoTwine
magswitch c_]l
closed #
WHEN  switch is opened 3
vibration oemors
Omg ‘ trigger after open for .1 [;] seconds

untrigger after closed for 10 [;) seconds

i i 73 Plug in a sensor to use It.
orientation s |+ Add a condftion 7 |

back
battory 888 THEN text message +
(' Flip me upside down to go ".hﬂ The door's been opened.
117 left
to 025551000 You have 100 free notifications left. Upgrade to Twine Plus
Vibration sensitivity -
1000 milli-g & ) )
|+ Add an action 5

Figure 8: TWINE's User Interface [26]
IFTTT (if-this-then-that) [21] is the most popular TAP ecosystem that allows
users to create programs (recipes) able to “act” appropriately when certain
triggers occur. The programs created through IFTTT (Figure 9) are called
recipes and can utilize many services (e.g., Gmail, Dropbox), social media sites
(e.g., Facebook, Twitter), and physical devices (e.g., Alexa, Phillips Hue
lightbulbs), which can be used either as triggers (e.g., if door is locked) or
actions (e.g., turn of the lights). Its wide acceptance from the users that stems
from the simple wizard-style interface. Furthermore, its increasing support
for wearables, smartphone sensors, and other commercial devices,
contributed to IFTTT becoming tightly coupled with ubiquitous computing.
Lately, a beta platform has been released for developers that enables them to

input Javascript code that changes how a recipe runs.
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Field label

Visibility

@ Hidden from user Chosen by user

Value

New email from FromAddress : Subject

Figure 10: Snapshot of the IFTTT platform for developers
Similarly to IFTTT, Zapier [27] (Figure 11) allows users to combine triggers and
actions to define various Zaps (tasks). In contrast to IFTTT that limits each task
to a single trigger and action in order to make things easier for non-technical

end-users, Zapier permits multiple actions for a single trigger and introduces
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the notion of filters that provide additional conditional (and/or) control over

triggers. According to [85], there are some other characteristics that

differentiate the two systems. In more detail, IFTTT integrates a social

component for sharing recipes, while it offers a mobile application that allows

mobile services to be added as services. In the case of Zapier, developers are

able to define their own services.
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Discussion

The purpose of the above analysis was to examine current state-of-the-art
technology that concentrates on trigger-action programming. Indeed, the
analysis revealed that there are quite a few noteworthy approaches; the
majority of them is based on rule-based conditions to enable non-technical
users and developers describe their recipes / programs naturally. Despite the
limitations stemming from using simple “if-then” rules, which seem to hinder
the expressivity of the programs that can be created [4], the author in [86] has
shown that general-purpose programming or scripting languages are not
necessary or desirable. On the contrary, according to [77], “a task specific
language with appropriate tool support provides an ideal environment for

users to create their own applications”.

Some of these systems [21], [85] are scalable enough and permit developers to
integrate custom devices and services, while they also provide access to the
code behind the generated rules, so as to facilitate their tweaking. However,
others are bound to specific hardware and software [25], [26], [80], [81], [83]

making their employment in different contexts impossible.

Interestingly, almost all of the examined systems evolve around device- or
software- initiated triggers. In more detail, they require users to define, based
on the status of devices or services (e.g., if temperature reaches 26°C, if
incoming email from family member), the conditions under which an action
is performed. However, since the main target group of trigger-action
programming are unexperienced users, the rule logic should be de-coupled
from the artifacts and be human-oriented instead. For example, the condition
“if motion is detected in the hallway” becomes clearer to the simple user when
expressed otherwise: “if I (or inhabitant) pass through the hallway”. Towards
that direction, it would be beneficial to support personal user profiles and
grouping of users with the same needs; however, the latter is supported only

in few of the studied systems [23], [76].

41



Finally, none of these approaches incorporates mechanisms for evaluating the
performed actions. The systems are unaware whether the realized outcome
was actually what the user intended when she was creating the rule. In
addition, they do not take into consideration cancellations, which might

indicate dissatisfaction on behalf of the user.

Table 1: Comparison of tools that permit trigger-action programming (adapted from [87])

Tool 1 2 3 4 5 6 7 8 9 |10 | 11
iCap vV | X |~ |V~~~ X~ XV
OSCAR v X ~ ~ X X ~ X X X v
HomeBLOX v X v X X X v X X X v
Gallag Strip vV | X |~ |~ | V(XX | VXXX
Locale vV |~ |~ X |~ | V|V XX XX
Tasker vV | X |~ X |~ | V|V VXXX
Atooma v |V |~ X |~ |V | V|~ X x x
WigWag v v v | v v v N v x| x| x
Apiant v v ~ b 4 v v v v X X X
Zipato v v v X v v v v ~ X X
TWINE v X v X v X v |V X X X
IFTTT v |V ~ X ~ |V |V X ~ X X
Zapier v v v b 4 v v v X ~ X X

LECTOR

v the characteristic is totally satisfied
~ the characteristic is partially satisfied
% the characteristic is not satisfied

The following list describes the characteristics based on which the examined

systems were summarized. The results are presented in Table 1.

1. The tool offers a user interface through which non-technical users are able
to create rules / recipes
2. The tool permits developers to tweak the rules / recipes by granting them

access to code
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3. Thetool features a user friendly and intuitive user interface

4. The created rules / recipes are user-oriented

5. The tool permits the integration of custom or third party devices and
services as triggers

6. The tool permits developers to create new software artifacts for the system

7. The tool enables users to add, edit or remove rules easily

8. The tool permits the definition of multiple conditions and actions per each
rule

9. The tool permits the introduction of custom interventions / actions

10. The tool has the ability to evaluate the actions / interventions

11. The tool is free

This thesis aims to equip the Intelligent Classroom with a mechanism that
takes advantage of its ambient facilities to identify when students require
assistance and intervenes to support them. Towards that direction, it offers a
framework -based on the trigger-action model- that aims to address the gaps
identified in the current state-of-the-art. More specifically, it relies on “if-then”
rules -created either by developers or educators- to dictate the behavior of the
AmlI environment. In order to ensure scalability and better rule management,
a three (3) step process for connecting a behavior with an intervention is
introduced. In more detail, the first step is to define a behavior, next the
conditions under which the behavior becomes a trigger have to be described,
and the last step is to create a connection between a trigger and an
intervention. This decomposition permits a behavior to be associated with
many triggers and a trigger with many interventions, depending on the context
of use. Furthermore, the rule structure supports the creation of user-oriented
behavior-intervention scenarios in contrast to the artifact-oriented recipes

that are currently supported by the majority of IFTTT-style tools.

Additionally, appropriate infrastructure enables the evaluation of system
decisions, by allowing users to (i) invalidate identified behaviors, and (ii)

override system suggestions in case they are not appropriate.
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Finally, a sophisticated user-friendly authoring tool is introduced for
supporting both developers and educators in creating the rules; the same tool
enables developers to integrate the building blocks (i.e., actors, intervention
hosts, physical context, virtual context, interventions) that are required for

programming the Intelligent Classroom.
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Chapter 4
Requirements

Chapter 4 initially introduces several scenarios that motivated this work and

afterwards outlines LECTOR’s functional and non-functional requirements.

Motivating Scenarios

Scenario building is a widely-used requirements elicitation method [88] that
can systematically contribute to the process of developing requirements.
Scenarios are characterizations of users and their tasks in a specified context,
which offer concrete representations of a user working with a computer
system in order to achieve a particular goal. Their primary objective in the
early phases of a development cycle is to generate end user requirements and

usability aims.

The following sections present a collection of envisioned scenarios where
identifying inattentive behaviors and intervening to re-engage the learners' to

the educational process can benefit learning.

Monitoring the attention levels of an entire classroom

On Monday morning the history teacher, Mr. James, enters the classroom and
announces the topic of the day. These days they are studying the wars of
Alexander the Great, while the "Battle of Gaugamela" is next in line to analyze.
During the first fifteen minutes the students pay attention to the teacher that

narrates the story, the tactics and the military strategies of the young king;
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soon enough, the students start to lose interest in the historical details and
demonstrate signs of inattentive behavior. In more detail, John is browsing
through the pages of a different book, Mary and Helen are whispering to each

other, Peter stares out the window and Mike struggles to keep his eyes open.

Figure 12: Re-engaging students by introducing active learning activities

When identifying that the entire classroom demonstrates signs of vigilance
decrease, the system recommends that the lecture should be paused for a
while and a mini quiz game should be started. The teacher finishes up his
sentence and decides to accept this "intervention". After that positive
response, a set of questions relevant to the current topic is displayed on the
classroom board, while their difficulty depends on both the students' prior
knowledge and the studied material so far. In order to increase students'
motivation, the teacher reads the questions out loud, provides the necessary
clarifications and encourages them to choose one out of the four possible
answers through the application displayed on his/her personal computer.
During use, the system identifies the topics with the lowest scores and notifies

the teacher to explain them more thoroughly.

As soon as the intervention ends, Mr. James resumes the lecture. At this point,
the students' attention is reset and they begin to pay attention to the historical
facts. As a result, the mini quiz not only restored their interest but also resulted

in deeper learning.

Monitoring the attention levels of an individual student
During the geography class Kate is distracted by a couple of students that stand

outside the classroom window. Instantly, the system recognizes that her
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attention is captured by external stimuli and decides to take immediate action
to attract her interest back on the lecture. To do so, it displays pictures relevant
to the current topic on her personal computer while a discreet nudge attracts
her attention. Kate observes a picture displaying a dolphin with weird colors
swimming in the waters of Amazon and wonders how it is possible for a
dolphin to survive in a river; she patiently waits for the teacher to complete his
narration to ask questions about that strange creature. That way, Kate
becomes motivated and starts to pay attention to the presentation of America's

larger rivers.

= e M

Figure 13: The educational application reacts to keep the students motivated
At the same time, Nick is drawing random pictures on his notebook and seems
to not pay attention to the lecture; however, the system already knows that
Nick concentrates easier when doodling and decides not to interpret that
behavior as inattention. The ability to disambiguate student activities depends
on information that only a human can provide. For that to be achieved, when
the system identifies a behavior that can be misinterpreted it asks for the
teacher's opinion; that input not only defines system's next action(s) for that
particular case, but also re-evaluates the recognition algorithm for that

student's learning style.

Monitoring students' fixations during exercise solving

Mrs. Brown, the Physics teacher, has scheduled to analyze Newton's first law
today. When she finishes her analysis, she asks her students to work on a
relevant multiple choice quiz on their course books and instructs the system

to launch the appropriate application on each student's personal computer.

47



Mark answers correctly to the first question but seems to have trouble
answering the second one. The system identifies that he reads that question
over and over again and wavers among the first and the third answer. It
immediately decides to intervene and asks him if he would like to proceed to
the next one or to take a hint. Hoping that he will soon remember the correct
answer, Mark decides to revisit that question later and accepts to move to the

next question.

Meanwhile Christine, who has already answered six out of ten questions,
seems to be distracted; instead of concentrating on the exercise, she stares at
an irrelevant area on the computer screen for a significant amount of time. By
examining these indicators, the system estimates that she is no longer
interested in the task at hand and decides to reverse that situation. To do so, it
uses a subtle nudge (sound or vibration) to draw her attention and at the same
time displays an encouraging message that prompts her to continue with her
work. Those messages are personalized to each student's progress, prior
knowledge and learning abilities, thus a sentence such as: "Come on, there are
four more questions to go!" or "You have answered far more difficult
questions, why do you give up on these ones?" is used in Christine's case to

tease her.

Monitoring attention levels during homework

On Monday afternoon, George is doing his homework in his room; five math
assignments are due tomorrow and he has just started dealing with the first
one. For each pending exercise the system displays on the desk surface a small
reddish box with information about the assignment (e.g., topic, level of
difficulty, estimated completion time, etc.). Since George is a strong student,
he solves the first set of problems in less than twenty minutes and notifies the
system accordingly, which triggers an automatic rearrangement of the
assignments to highlight the remaining work. George is now ready to start
working on the second assignment, however the system prompts him to take

a small break to clear his mind and restore his energy levels.
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After the short break, George successfully completes two more assignments
and moves on to the fourth one. At that point, the system identifies he is
distracted by external stimuli as he is constantly getting off his chair, looks out
of the window and browses to social network websites while loud music is
playing in the background. To reengage him to the homework activities, it
displays encouraging messages such as: "If you start now, you will probably be
finished by 20:00 to watch your favorite movie", or "Only two assignments to
go, you will be done in less than an hour" as it recalls that George prefers to

finish with his homework first and then spend some time relaxing.

= " Well done! One more to go! ‘ sl

= 7\
// =

Figure 14: Personalized messages to encourage homework activities
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LECTOR Requirements

LECTOR framework aims to empower both developers and educators to
realize the aforementioned indicative scenarios, by defining the behaviors
that lead to context-aware interventions. This section presents the high-level
functional and non-functional requirements that LECTOR satisfies, which
have been collected through an extensive literature review and an iterative
elicitation process based on multiple collection methods: brainstorming,

focus groups, observation and scenario building.

Functional Requirements

FR-1: Support the modeling of the Physical Context

LECTOR should be able to facilitate the modeling of the Physical Context,
which encapsulates information regarding physically observable phenomena
(e.g., luminance, heart rate, sound levels, etc.). This aims to alleviate the
diversity of input values coming from heterogeneous sources and create a

shared data model that can be used by the rule creation mechanisms.

FR-2: Support the modeling of the Virtual Context

The Virtual Context refers to any static or dynamic information that is
provided through software components (e.g., student profiles, course
schedule). Since, such information may change depending on the classroom
where the system is running and the characteristics of the classroom students,
LECTOR should support the modeling of the Virtual Context so as to be used

by the rule creation mechanisms.

FR-3: Enable the definition of user groups (Actors)

Actors are the users of the Intelligent Classroom whose behavior needs to be
monitored in order to decide whether an intervention is required (i.e.,
Teachers, Students, Classroom). Generally, different types of actors have
diverse characteristics which need to be taken into consideration when
building the rules that guide LECTOR’s decision-making mechanisms. To this

end, LECTOR should permit the creation actor models.
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FR-4: Enable the modeling of behaviors by combining multiple
information from the Physical Context
The term Behavior is used to describe the way that a user or an artifact acts

(e.g., a user talks, a device switches on). In some cases, multiple cues (from
diverse sources) are required in order to identify a behavior; to this end,
LECTOR should permit the definition of a behavior by combining multiple

information from the Physical Context.

FR-5: Support the definition of triggers by combining multiple contextual
information
The term Trigger is used to describe a high level Behavior that should initiate

an intervention. A behavior can potentially become a trigger under specific
context (e.g., the behavior TALKING might initiate the trigger CHATTING if a
student is talking during a lecture). When defining the conditions under which
a trigger is initiated, LECTOR should support the combination of multiple

contextual information.

FR-6: Support the definition of user-oriented triggers

LECTOR framework should differentiate from other trigger-action
programming systems that evolve around device- or software- initiated
triggers. In more detail, it should not require users to define the conditions
under which an action is performed based on the status of devices or services
(e.g., if the microphone detects increased noise). On the contrary, since the
main target group of LECTOR are non-technical users, the rule logic should be
de-coupled from the artifacts and be human-oriented instead. For example,
the condition “if no pressure is detected on the chair” becomes clearer to the
simple user when expressed otherwise: “if the student is not sitting to his
chair”.

FR-7: Enable the combination of multiple behaviors performed by multiple

actors when specifying the conditions under which a trigger is identified
The definition of a Trigger should not depend merely on the behavior of a

single actor; on the contrary, the combination of more than one actor

behaviors is required, so as to support the realization of more complex
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scenarios (e.g., if the teacher is talking and the student is whispering then

STUDENT IS CHATTING).

FR-8: Enable the definition of the conditions under which an intervention
rule is initiated
The term Intervention is used to define the system-guided actions that aim to

help or support the students in their activities. LECTOR should permit the
definition of rules that describe the conditions (Triggers and Virtual Context)

under which an intervention is initiated on a specific presentation host.

FR-9: Support the connection of N triggers with X interventions
In order to support the realization of complex scenarios, LECTOR should
permit the creation of rules that combine multiple triggers with multiple

interventions.

FR-10:Support the combination of multiple strategies when creating an
intervention rule
The combination of multiple intervention strategies when defining an

intervention rule results in the realization of much complex scenarios and
subsequently in the creation of richer interventions. To this end, LECTOR

should support this functionality.

FR-11:Permit the ranking and cancelation of interventions
In order to allow the educators to have the final say regarding the suggested
interventions, LECTOR should enable them to rank or cancel the system

suggestions.

FR-12:Provide a mechanism for assessing the efficacy of interventions

When the system employs an intervention that is estimated to be useful under
a particular context of use, then after a reasonable amount of time it should be
able to re-examine the student’s behavior so as to identify whether the
intervention was successful. Specifically, if it still detects that the student’s
behavior is unmodified, then the selected recommendation should be marked

as ineffective in that context.
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FR-13:Permit the integration of new software applications that can act as
interventions
Intervention strategies are in fact applications running on private or public

artifacts instantiated at a key point in time with appropriate content. In order
to act as an intervention, an application is required to conform to AmI-Solertis
[89] SaaS specifications, ensuring that it will be able to receive and execute
LECTOR’s commands. In order to be aware of the available intervention
strategies, LECTOR should permit their integration so that the decision

making components can employ them when deemed necessary.

FR-14:Enable the integration of new intervention hosts

Intervention hosts are (i) common computing devices such as smartphones,
tablets, and laptops, (ii) technologically augmented everyday physical objects
(e.g., interactive white boards, smart bulbs, etc.), or (iii) custom made items
(e.g., student desk). An intervention host can either be used to launch
applications (e.g., display an educational application instantiated with specific
content) or control the physical environment (e.g., dim the lights during a
video presentation). For LECTOR to optimally intervene, the available
intervention hosts have to be properly defined in a way that conveys the

information required for creating and deploying an intervention.

Non-Functional Requirements

NFR-1: Acceptance Testing Requirements

A full-scale user-based evaluation should be carried out to ensure developers’
acceptance. Participants should have varying levels of experience
programming applications for AmI environments. The overall score of a
Standard Usability Scale (SUS) based post-evaluation questionnaire should be
above 75%.

NFR-2: Documentation Requirements

A Quick Start Guide and context sensitive help should be provided.
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NFR-3: Platform Compatibility Requirements

From a user perspective, the front-end tools for creating the rules should be
accessible via any modern Operating System (OS) or web browser. From an
engineering perspective, the generated rules should be OS-independent as
long as the required hardware and software meet the necessary operational
requirements (e.g., availability of the required software libraries, compliant

runtime environment).

NFR-4: Maintainability Requirements

LECTOR should permit easy maintenance in the sense that faulty or worn-out
components should be repaired or replaced without having to replace still
working parts and any updates should be verified and validated before their

final deployment.

NFR-5: Deployment Requirements

LECTOR should minimize any deployment requirements for its core
components. Specifically, the automatically generated runtime components
responsible for detecting behaviors, triggering and applying interventions
should be self-contained and standalone, so as to ensure scalability and

extensibility.

NFR-6: Interface Requirements

Software interface requirements include dealing with an existing software
system, or any interface. In more detail, the LECTOR framework should
respect and adhere to the formal specifications of any input-providing

artifacts or artifacts that act as intervention hosts.
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Chapter 5
System Architecture

This work introduces LECTOR, an extensible framework responsible for (i)
monitoring the Intelligent Classroom environment to detect student behaviors
that require remedial actions, and (ii) selecting appropriate interventions in
order to help, or support them throughout the educational process. This

chapter describes LECTOR’s architecture in detail.

The Classroom behind LECTOR

Currently, LECTOR [90] is employed inside an in-vitro technologically
augmented classroom where educational activities are enhanced with the use
of pervasive and mobile computing, sensor networks, artificial intelligence,
multimedia computing, middleware and agent-based software [41], [91], [92].
In more detail, the hardware infrastructure includes both commercial and
custom-made artifacts, which are embedded in traditional classroom
equipment and furniture. For example, the classroom contains a commercial
touch sensitive interactive whiteboard, technologically augmented student
desks [93] that integrate various sensors (e.g., eye-tracker, cameras,
microphones, etc.), a personal workstation and a smart watch for the teacher,
as well as various ambient facilities appropriate for monitoring the overall
environment and the learners' actions (e.g., microphones, user-tracking

devices, etc.).
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The software architecture (Figure 15) of the Intelligent Classroom follows a
stack-based model where the first layer, namely the AmI-Solertis middleware
infrastructure [89], is responsible for (i) the collection, analysis and storage of
the metadata regarding the environment’s artifacts and (ii) their deployment,
execution and monitoring in the AmI-Solertis-enabled systems to formulate a
ubiquitous ecosystem. The next two layers, namely the ClassMATE and the
LECTOR frameworks, expose the core libraries and finally the remaining layer
contains the end-user applications responsible for delivering interventions
and accepting user input. Specifically, ClassMATE [94] is an integrated
architecture for pervasive computing environments that monitors the
ambient environment and makes context-aware decisions; specifically, it
features a sophisticated, unobtrusive, profiling mechanism in order to provide
user related data to the classroom’s services and applications. As far as the
end-user applications are concerned, CognitOS [95] delivers to the students a
sophisticated environment for educational applications hosting able to
present interventions. Furthermore, two powerful tools aim to support
educators in their daily activities; LECTORviewer [96], [97] provides an
overview of the students’ attention levels and asks the educator’s opinion
regarding ambiguous behaviors or scheduled interventions, while NotifEye
provides notifications regarding important events occurring during the lesson

time.

Currently, the Intelligent Classroom employs eye-trackers which can be used
to observe students' fixations during studying on their personal computers
(e.g., reading a passage, solving an exercise) to determine their attention level
(e.g., stares at an insignificant area of the screen), their weaknesses (e.g., the
student keeps reading the same sentence over and over again), their interests
(e.g., fascinated with wild life) and their learning styles (e.g., attempts to solve
the easier assignments first). The combination of eye-tracking data with the

learner profile can not only reduce false positives, but also discover
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personalized patterns that can be used to facilitate learning and reset attention

when necessary (i.e., learning behavior).

LECTORviewer NotifEye

®
Aml Solertis
@

Intelligent Sensing Personal
Artifacts Infrastructure Devices

h CognitOS

Figure 15: The architecture of the Intelligent Classroom

While being accurate in determining the direction in which the eyes are
pointing within an application GUI, eye-trackers are very constraining since
head motions out of specific limits could result to poor visibility of the user’s
eyes. As a result, these systems are not appropriate for analyzing the visual
focus of attention in open spaces. To alleviate this constraint, sophisticated
cameras (e.g., RGB-D camera such as Microsoft Kinect) can track the head
pose of the learner to be used as a surrogate for gaze. The combination of eye-
tracking and head pose tracking algorithms offers an accurate overview of
what the students are looking at on the computer screen and on whom or what
they are focused on (e.g., teacher, class board, etc.). Moreover, the use of
cameras is ideal for tracking the body posture and the direction of an
individual student, especially when taking into consideration that they
constantly move inside the classroom even while seated. Besides learners'
orientation, camera input also enables the identification of specific gestures
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that indicate whether a student is paying attention to the lecture or not (e.g., a

student raising his hand).

In addition to visual information, microphones can be used to predict of the
students' focus of attention based on sound information. According to [54], the
focus of attention is also correlated to sound sources, thus it is possible to
estimate it based on information regarding who is talking at, or was talking
before, a given moment. The microphones are placed on the teacher's and
students' desks to identify who the collocutor is at any time, while this
installation also permits monitoring of the classroom noise levels, which is a

reliable indication of inattentive behavior on behalf of the students.

Finally, considering that students often get up from their seats, either because
they conform to the teacher's requests (e.g., the teacher might ask a student to
solve an exercise on the class board) or because they display inattentive
behavior, it seems essential to track such situations. For that purpose, the
pressure-sensitive sensors on each learner's chair can be used to identify
whether the student is seated or not. This kind of information, if combined
with data received from strategically placed distance sensors (e.g., near the
class board, near the teacher's desk), introduces a primitive localization
technique that can be used to estimate the location and the purpose of a
"missing" individual (e.g., a student is off the desk near the board thus solving
an exercise, the teacher might walk in the front of the classroom to assist a
weak student that had just waved). However, if a full-blown localization
system becomes available, the aforementioned solution will serve as an

auxiliary validation system.

The next sections describe how the LECTOR framework enables the Intelligent
Classroom to intervene appropriately when the students require help or

support.
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LECTOR Framework Outline

LECTOR exploits the potential of AmI technologies to observe either human-
or artifact-oriented behaviors (SENSE), identify whether they require remedial
actions (THINK) and intervene (ACT) accordingly -when deemed necessary- in
order to fulfill the user needs. According to cognitive psychology, the sense-
think-act cycle stems from the processing nature of human beings that receive
input from the environment (perception), process that information (thinking),
and act upon the decision reached (behavior) [30]. This identified pattern
constitutes the base for many design principles regarding autonomous agents

and traditional AI [31].

SENSE

ACT THINK

e
Physical & Virtual Inattention
SENSE Context Trigger ACT
1> THINK —> Teacher
Commoeon Input Interface Behavior Reasoner Intervention Manager Input

A
Sensor Readings
Application Status
Learner Profiles
Course schedule

Intervention
Command

Classroom Environment
(Sensors, Student Applications, Teacher Applications, Learner Profiles, Course schedule)

Figure 16: The SENSE-THINK-ACT model extended with the notion of LEARN
LECTOR heavily depends on contextual information in order to (i) make
informed decisions regarding the meaning of an identified behavior, (ii) select
appropriate interventions according to student needs. The term Context of Use

is defined as follows: “Any information that can be used to characterize the
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situation of entities (i.e., person, place, object) that are considered relevant to
the interaction between a user and an application, including the user and the
application themselves. Context is typically the location, identity, and state of
people, groups, and computational and physical objects” [98]. Based on the
above, LECTOR relies on an extensible modeling component responsible for

collecting and exposing the necessary information.
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Figure 17: System architecture
Furthermore, LECTOR extends the SENSE-THINK-ACT model by introducing
the notion of LEARN (Figure 16). The fact that the nature of this system enables
continuous observation of behaviors creates the foundation for a mechanism
that provides updated knowledge to the decision-making components. In

more detail, the learning mechanism is able to (i) incorporate knowledge
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provided by educators in order to disambiguate identified behaviors (e.g.,
staring at the ceiling might indicate that a particular student is thinking
instead of being distracted) or assess the acceptance of an intervention (e.g.,
the educators cancels an multimedia presentation that was automatically
scheduled by the system) , and (ii) auto-rank the suggested interventions
according to their efficacy (e.g., if the stress levels of a student remain high
despite the fact that an intervention was initiated, then that particular

intervention is marked as inefficient).

Figure 17 presents LECTOR’s architecture, which consists of four core
components: the Sensor Abstraction Layer (SAL), the Behavior Reasoner (BR),
the Intervention Manager (IM), and the Learning Component (LC). The Sensor
Abstraction Layer (SAL) is responsible for monitoring the environment and
transforming the raw sensor readings into meaningful high-level objects.
These objects constitute the Physical Context and Virtual Context, which are
processed by the Behavior Reasoner (BR) in order to detect behaviors that
should trigger interventions. As soon as a trigger is identified, the Intervention
Manager (IM) consults the Virtual Context and starts an exploratory process in
order to select an intervention suitable for the current situation. Both the
Behavior Reasoner and the Intervention Manager are open to user suggestions
that can override their defaults (e.g., the educator can reject or postpone an

intervention).

In order to support both developers and educators in defining the behaviors
that lead to context-aware interventions, LECTOR features a sophisticated

tool, named LECTORstudio. Such tool:

o Supports the creation of user-oriented behavior-intervention scenarios
in contrast to the artifact-oriented recipes that are currently supported
by the majority of IFTTT-style tools [21], [27].

e Enables the definition of behaviors that combine multiple contextual
information.

e Permits the definition of multimodal and ubiquitous interventions.
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e Supports the connection of N behaviors with M interventions.

Since the decision-making mechanisms of LECTOR rely on rule-based
conditions in order to identify behaviors that trigger appropriate
interventions, LECTORstudio supports the creation of three (3) types of rules
(Figure 18); even if this decomposition increases the number of steps that a
user must complete in order to connect a trigger to an intervention, it offers

scalability and better rule management. The supported types of rules are:

I.  Rulesthat “model” a behavior® based on physical context®.
II. Rules that “model” the triggers® based on the behavior® of actors!
under specific virtual context®.
III.  Rules that specify the conditions (i.e., triggers® and virtual context*)
under which an intervention’ is initiated on a specific intervention

host?.
The core concepts of this rule-based approach are explained below:

1. Actors are the users of the intelligent environment whose behavior
needs to be monitored in order to decide whether an intervention is
required.

2. Intervention hosts can either launch an application with specific
content or control the physical environment. They are: (i) common
computing devices such as smartphones, tablets, and laptops or (ii)
technologically augmented everyday physical objects (e.g., interactive
white boards, smart lamps, etc.), or (iii) custom made items (e.g.,
student desk).

3. The physical context encapsulates information regarding physically
observable phenomena via sensors (e.g., luminance, heart rate, sound
levels, etc.).

4. The virtual context refers to any static or dynamic information that is
provided through software components (e.g., student profiles, student

agenda, course schedule).

62



5. Behavior is the way that a user or an artifact acts (e.g., a user talks, a
device switches on).

6. Trigger is the “model” of a high-level behavior that can initiate an
intervention.

7. Interventions are the system-guided actions that aim to help, support
or comfort users in their activities.

I. Heart rate greater than 100bpm signifies Tachycardia.

Il. During taking an exam, a Student with Tachycardia is Stressed.

ll. If student is Stressed during geography class, display a geography game on his desk.

Figure 18: Indicative examples of rule types supported by LECTOR
In the next sections, the respective software components that comprise the
overall system architecture of the Sense-Think-Act-Learn model will be

described in details.
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SENSE: Sensor Abstraction Layer

LECTOR’s decision-making mechanisms heavily depend on contextual
information to (i) identify the actual conditions that prevail in the intelligent
environment at any given time and (ii) act accordingly. The term context has
been used broadly with a variety of meanings for context-aware applications
in pervasive computing [99]. The authors in [100] refer to contexts as any
information that can be detected through low-level sensor readings; for
instance, in a home environment those readings include the room that the
inhabitant is in, the objects that the inhabitant interacts with, whether the
inhabitant is currently mobile, the time of the day when an activity is being

performed, etc.

However, in the envisioned Intelligent Classroom contextual awareness goes
beyond data collected from sensors. Despite the fact that sensorial readings
are important for recognizing behaviors, in some cases they are inadequate to
signify whether a behavior should trigger an intervention. To this end,
LECTOR utilizes static and dynamic information such as the characteristics of
the users, the nature of the task at hand, the user agenda, etc., in order to reach
to valid conclusions. This work employs the term Physical Context to indicate
data collected from sensors, whereas the term Virtual Context is used for any

static and dynamic information provided through software components [101].

The exploitation of such contextual information enables the THINK
component to identify behaviors that should trigger interventions. Despite the
fact that recognizing a behavior mainly relies on sensor readings, the Virtual
Context is critical to interpret them correctly. For instance, inside a classroom
environment, excess noise typically indicates that students talk to each other
instead of listening to the teacher; however, this assumption is incorrect

during the music class, where the students are expected to sing loudly.

Furthermore, the Virtual Context is essential for the ACT component, which

when instructed to intervene, it selects an appropriate intervention and a
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suitable host for it. These decisions depend heavily on such information; as an
example, if an intervention occurs during the first ten minutes of a lecture,
where the main topic has not been thoroughly analyzed by the teacher yet, the
system starts a short preview that briefly introduces the lecture’s main points

using entertaining communication channels (e.g., multimedia content).

Physical Context (Physiological Cues)

LECTOR requires information regarding the behaviour of the classroom
actors, as well as their specific physical properties, in order identify
inattentive behaviors; the available actors inside a classroom are either
teachers, students or the classroom itself. In order to observe how they
communicate and interact during a course, LECTOR currently monitors their
physical characteristics (i.e., physical context) which are considered
appropriate cues that might signify inattention, and translates them -in a
context-dependent manner- into specific activities classified under the
following categories: Focus, Speech, Location, Posture and Feelings (Figure

19).

Focus. Identifying an individual’s visual focus of attention provides rich
information regarding that person, i.e., what is she interested in, what is she
doing, or how does she react to different visual stimuli [62]. Inside the
classroom, the visual focus of attention of students or teachers might be drawn
to other individuals or static objects (e.g., the class board, the window, the

world map hanging on the wall, etc.).

Speech. Being able to understand who is speaking during a course and at what
sound intensity (e.g., whispering, shouting, talking, etc.) is undoubtedly
helpful for deciphering student-to-teacher or student-to-student
communication and interaction. That kind of information could possibly
reveal behaviors such as chatting with classmates while the teacher is

lecturing.
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User Location & Posture. Some behaviors that could be classified as
disruptive are related to the students’ posture and location inside the
classroom. These behaviors include (but are not limited to) getting out of seat,
tapping feet, turning the head or the whole body toward another person, etc.

[43].

Feelings. A student’s learning capabilities can be compromised due to feelings
of fatigue [102] (i.e., Drowsiness, Falling Asleep), while stress and anxiety have

the same negative impact to learning [103].

Stressed

Yawning Feelings Speech
student student / teacher
Tired
Exhausted pering
Laughing
Other
Other
Walking User Posture User Location Own desk
student / teacher student / teacher x
Sitting Other Desk
Standing Board
Other Other Exit Doo
Other User
Desk Device
User Focus
student / teacher Board
Exit Door

Person of Interest

Figure 19: The user’s physiological cues that should be monitored inside a classroom
environment in order to identify inattentive behaviors

Virtual Context

In the Intelligent Classroom, the decision-making mechanisms of LECTOR
must be able to identify the context (e.g., student status, lecture progress, task
at hand, etc.) at any given time. In more detail, LECTOR must rely on detailed
information regarding the nature of each course, such as: (i) topics to be
covered by the course’s syllabus, (ii) chapter organization, (iii) topic difficulty
and related concepts, (iv) assignments’ descriptions, (v) deadlines, (vi)
contributions to the final score, etc., to make appropriate choices regarding

behavior classification or intervention selection.
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Furthermore, each learning activity type (e.g., lecture, exam, exercise solving,
etc.) has its own rules and standards that ensure its smooth realization and
guarantee optimal benefits for the students. To this end, each type is
accompanied by a list of irrelevant and/or undesired activities, which are used
to disambiguate behaviors that in some contexts are classified as attentive and
in others as inattentive. For example, personal “thinking” is anticipated during
a written exam, however this is not the case when the teacher is giving a

lecture.

Additionally, information concerning each individual student’s learning
behaviors (e.g., concentrates easier while doodling, etc.), are invaluable for
interpreting activities that indicate attention for some but inattention for
others. In order to capture such information, the LECTOR profiling
mechanism is used to store students’ static personal data (full name, date of
birth, etc.) along with dynamic context-sensitive data gathered through
interaction monitoring, such as topics of interest or dislikes, weaknesses or
strengths, general knowledge, progress and preferred types of learning

resources.

Based on the above, in order to make appropriate decisions either when
attempting to identify a behavior or when investigating possible interventions,
LECTOR must be aware of the current course, the ongoing activity, and the
characteristics of the involved students. Students with similar characteristics
in terms of academic process (e.g., Advanced, Intermediate or Weak
students), behavioral norms (e.g., Loud Speakers, Loud Thinkers), learning or

behavioral disorders (e.g., ADHD), etc. are part of the same student group(s).

SENSE Component Architecture

LECTOR aims to be deployed in Intelligent Classrooms that incorporate
infrastructure able to monitor users and artifacts, so as to provide the
necessary input to the decision-making components for estimating whether

their behavior requires remedial actions. Such environments are dynamically
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formed due to the abundance of services and devices that constantly change
their availability. Hence, in order to ensure scalability, LECTOR is not bound
to specific technological solutions, but rather enables developers to
seamlessly integrate new data sources through an intermediate software layer
that maps the sensed data (i.e., physical and virtual context) to abstract models

that LECTOR is able to process.

LECTORstudio

Aml-Solertis Code Sensor Model

Editor Editor

sensor Data Abstract Sensor
Translators B

Common Sensor Interface Layer

( Dynamic registration handlers

Physical &
Virtual Context

Figure 20: Sensor Abstraction Layer (SAL)
A newly imported sensor is able to advertise its availability and inform the
decision-making mechanisms about the characteristics of the environment
that can be monitored and assessed. Upon a new installation, the Sensor
Abstraction Layer (SAL), an overview of which is depicted in Figure 20, uses
standard control APIs to initialize the appropriate delegates, monitor the
operation of the installed sensor and propagate its events to the decision

layers. For instance, a component that performs human localization notifies
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the system that it can provide the location of the user inside the environment.
As soon as that happens, SAL initializes the appropriate components and
whenever a new event is emitted due to user movement, it is broadcasted to

the interested components (i.e., Behavior Reasoner).
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Down Status off
Front g \Volume
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Closed Status g On
Sitting Status Off
Standing Movement Open
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Walking Body » Half-open
Running Cislans Closed
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Figure 21: Examples of Sensor Models that represent the input values expected by LECTOR

Inside an AmlI environment the available input sources might range from
simple converters (or chains of converters) that measure physical quantities
and convert them to signals which can be read by electronic instruments, to
software components (e.g., a single module, an application, a suite of
applications, etc.) that monitor human computer interaction and data
exchange. Undoubtedly, the input types, values and formats are tightly
coupled with the input source that generated them, hence, this highlights the
need for an appropriate federation mechanism that will alleviate this diversity
and will facilitate interoperability. To this end, LECTOR permits developers to
create Sensor Models that represent the expected input values; these models
are the common ground between SAL and the other decision layers (i.e.,
Think, Act and Learn components), which rely on high-level values instead of
raw sensor data. Figure 21 presents some indicative examples of Sensor
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Models; for instance, the decibel (dB) is used to the measure the sound levels
of the environment, while monitoring the human body activities provides
specific values about the movement of the user (i.e., standing, sitting, walking,
running). For each one of these models, developers can provide one or more
Sensor Data Translators (Figure 22) which are responsible for effectively
translating the received data before forwarding them. In some cases, this
requires a few lines of code (e.g., converting sound frequency (Hz) to sound
levels (dB)), while in others developers have to provide more sophisticated

algorithms (e.g., detection of human walking).

As already mentioned, the term sensor is not used only to describe hardware
infrastructure, but it encapsulates software components as well. Consider the
following example of a Sensor Data Translator that requires simple mapping
of the data received from an end-user puzzle game application, to the variables
of the appropriate Sensor Model. The application’s service is able to emit the
following messages: (i) INACTIVE - when the user has not interacted with the
system for more than 5 minutes, COMPLETE - when the user has finished the
puzzle, and (iii) HINT - when the user requests help to continue. In case
LECTOR has already another model for integrating similar educational games
(e.g., IDLE, DONE and HELP), the developer responsible for integrating the
puzzle game must provide the code that makes the appropriate mapping (i.e.,

INACTIVE - IDLE, COMPLETE - DONE and HINT - HELP).

Finally, the Common Sensor Interface Layer provides mechanisms that enable
the dynamic registration of sensors, allowing their run-time connection and

disconnection.

LECTORstudio supports developers in providing the information required
during the integration of a new sensor. In more detail, LECTORstudio offers a
user-friendly interface through which they can (i) define the data models that
LECTOR’s reasoning components will use, by defining the variables that will
carry the actual values at runtime, (ii) select one or more services that deliver

information collected from a particular sensor, and (iii) provide the code that
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translates the data received from the sensor services to the types described by
the models. For example, a service exposed by the student’s wrist band is able
to transmit data regarding her physiological signals. The user interface of

LECTORstudio is described in details in Chapter 6.

Sensor and Application Data Model of Physical Context Property

Datavaluel —»
® Variable 1

!
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Semantic web
technologies

= Al algorithms
General
programming

Figure 22: A Sensor Data Translator contains code responsible for effectively translating the
received data before forwarding them

71



THINK: Behavior Reasoner

The Behavior Reasoner (BR) is responsible for identifying behaviors that
require remedial actions; therefore, it constantly monitors the environment
and when necessary it notifies the intervention manager to decide when and
how to act. The Decision-Making Component of BR (Figure 23) constitutes the
core of the THINK mechanism as it collects all the rules that describe
behaviors and triggers and feeds them with the Physical and Virtual Context
generated via Sensor Abstraction Layer. Whenever a stimulus is detected by
the SAL component, the Decision-Making Component initiates an exploratory

process to determine whether the incoming event indicates that the user needs

help or support.
Behavior
Behavior Models
Models Editor
Sensor Abstraction Decision Making Code LECTORstudio
— [
Layer (SAL) Physical & Component Generator

Virtual
Context

Intervention
Trigger

Trigger

Trigger Rules
Rules Editor

Figure 23: Behavior Reasoner

The first step of this process is to identify whether the sensed data denote a
human- (e.g., the user is walking) or artifact- behavior (e.g., the oven is on).
The modeling of such behaviors is realized in the form of high-level if-then
rules, which combine multiple diverse information acquired from the Physical
Context (Figure 24a). For instance, consider the behavior “Tachycardia” which
is modeled as: “Heart rate greater than 100bpm signifies Tachycardia’; in this
example, the “Heart rate” is a Physical Context attribute whose elevated value
(> 100bpm) signifies a specific behavior (i.e., Tachycardia).
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Figure 25: Detect Inattention Flowchart
As soon as a behavior is detected, the Decision-Making Component further
examines the current Virtual Context, so as to identify whether that particular
behavior should trigger an intervention. Similarly to the description of the

Behavior Models, the decision logic that leads to the identification of
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intervention triggers is also defined in the form of high-level “if-then” rules
(Figure 24b). These rules combine various parameters such as identified
behavior, virtual context, actor, etc., to define the conditions under which the
system needs to intervene. The outcomes of these rules are high-level
behaviors, named triggers. When they are identified, the Intervention
Manager is notified so as to select the appropriate interventions. Consider the
following rule that describes the trigger “Stress”: “ While taking an exam, a
Student with Tachycardia is Stressed’. In the former example, the virtual
context (i.e., exam period) under which the behavior “Tachycardia” appears,
reveals that the user is in a situation (stress) that requires a remedial action.
The existence of various triggers is really important since they denote
situations that require special treatment from the Intervention Manager. For
example, Tachycardia due to Stress requires different handling than
Tachycardia due to a medical condition. The entire process of detecting a

trigger is depicted in the flowchart of Figure 25.

Observing the physical characteristics of the classroom actors described
previously in this Chapter, empowers the identification of specific behaviors
(e.g., Talking, Looking at the Door, Looking at a student, Walking) that might
occur during a course. Out of context, such behaviors do not provide evidence
that a student is distracted from the educational process. On the contrary,
when examined in conjunction with the behavior of any other implicated
actors and combined with appropriate contextual information (e.g., current
activity, current course), they might reveal a situation that requires remedial
actions (e.g., CHEAT, CHAT, DISTURB, FATIGUE, BOREDOM, OUT OF SEAT).
For example, identifying that a student is talking does not signify that he is
being inattentive; however, identifying that a student is talking to a classmate

while the teacher is lecturing provides strong evidence that he is chatting.

In order to support extensibility, LECTORstudio accommodates the
composition of new behavior models and trigger rules respectively (see

Chapter 6). This is an invaluable asset not only for developers, but for non-
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technical users as well, which are enabled to create their own behavior-

intervention scenarios.

Upon creation, both behavior models and trigger rules are stored in a
database. Figure 26, presents the employed database schema; in the case of a
behavior model, the key “properties” is used to store information regarding
the physical characteristics (i.e., physical context) that should be monitored
so as to identify a behavior. As far as the trigger rules are concerned, the key
“context” refers to the virtual context under which the rule should be evaluated
and the key “actors” describes the users that should be monitored for specific
behaviors. In both cases, the “outcomeld” is the foreign key to the table
containing the general details of the behavior / trigger (e.g., name,

description).

Before deployment, the stored data are retrieved and the relevant executable
code is generated so as to be used by the decision-making component. In more
detail, the data are translated to Javascript code (Figure 27) using
Handlebars.js [104], an extension of the Mustache web template system [105].
Both Handlebars and Mustache are logic-less templating languages that keep
the view and the code separated, while Handlebars is considered one of the
most advanced libraries available. Its main difference from Mustache is that it
permits the developers to add their own helpers (i.e., custom logic). Using
such a templating system in order to generate the executable code for both
behavior models and trigger rules ensures that LECTOR is not bound to a
specific implementation. On the contrary, by simply replacing the templates,
the system can either employ alternative reasoning techniques or be ported to

different platforms.
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B var RuleSchema = new mongoose.Schema( {

T name: String,

B ruleCategoryld: {

9 type: mongeoose. Schema.Objectld,

1@ required: true

11 I

12 context: {}.

13w actors: [{

14 actorld: String,

15 outcomes: [{

16 oid: { type: String 1,

17 cid: { type: String 1},

18 time: { type: Number },

19 timeType: { type: String },

20 percentage: { type: Number },

21 type: { type: String } //Include, Exclude
22 1]

23 1,

244, properties: [{

25 propertyld: String,

208 attributes: [{

27 name: { type: String },

28 value: {},

29 unit: { type: String },

30 type: { type: String },

A function: { type: String },

32 duration: { type: Number },

33 timeType: { type: String },

24 percentage: { type: Number }

35 1]

36 1,

7w outcomeId: {

38 type: mongoose. Schema.Objectld,

39 required: true

40 I

41 enabled: { type: Boolean, default: true },
42 activations: { type: Number, default: @ 1},
43 success: { type: Mumber, default: 8 },

44 creationDate: { type: Date, default: Date.now |,
45 author: { type: String, default: 'Maria Korozi' }
46 });

Figure 26: The database schema for both the behavior models and trigger rules



b.

Figure 27: (a) Snapshot of the Handlebars template, and (b) the generated *.js code
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ACT: Intervention Manager

Intervention Types

The term intervention is defined as “involvement in a difficult situation in
order to improve it or prevent it from getting worse” [29]. Here it is used to
describe the system-guided actions that subtly interrupt a course’s flow in
order to (i) draw the educator’s attention in problematic situations, and (ii) re-
engage distracted, unmotivated or tired students in the educational process.
Actually, interventions are applications running on private (e.g., student’s
desk, teacher’s watch) or public (e.g., classroom board) hosts, instantiated at a
key point in time with appropriate content. Literature review reports that
several types of interventions can prove to be beneficial in various situations

occurring in an educational setting (summarized in Table 2).

Currently, LECTOR features two types of interventions that have been created
in order to ensure active student participation in the main course. Particularly,
the student desk and the classroom board are able to instantiate quizzes and
multimedia presentations, whose appropriate content can keep students
motivated. These interventions can be applied either to individuals on their
private artifacts or the entire classroom when displayed on the publicly

available board.

Furthermore, taking into consideration the fact that most students thrive in
encouraging environments where they receive specific feedback, their private
artifacts (i.e., desk and smart watch) are equipped with a messaging
mechanism able to provide encouraging messages when deemed necessary.
The same mechanism is employed on the teacher’s smart watch in order to
display subtle messages suggesting changes in the lecture format. In more
detail, LECTOR is able to suggest recapitulation of the lecture topics,
initiation of a discussion relevant to the current course, repetition of specific

material and continue lecturing at a lower pace.
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Table 2: List of available educational interventions

Intervention Technique Recipient Hosts Range
Student Desk,
. Individual,
Quiz Active Learning  Students Classroom
Class-wide
Board
Student Desk,
Multimedia Individual,
Active Learning  Students Classroom
Presentation Class-wide
Board
Student Desk,
Encouraging
Encouragement  Students Student Smart  Individual
Messages
Watch
Initiate Changing Teacher Smart
Teacher Class-wide
Discussion Pedagogies Watch
Changing Teacher Smart
Recapitulation Teacher Class-wide
Pedagogies Watch
Repeat course Changing Teacher Smart
. ) Teacher Class-wide
material Pedagogies Watch
Changing Teacher Smart
Lower pace Teacher Class-wide
Pedagogies Watch

ACT Component Architecture

As soon as an intervention trigger is detected, the Decision-Making
Component of the Intervention Manager (Figure 28) initiates an exploratory
process to identify the most appropriate course of action. Evidently, selecting
a suitable intervention and the proper artifact for hosting it is not a
straightforward process, as it requires multi-stage analysis of the Virtual
Context. The first step to accomplish is to consult the “Intervention rules”;
similarly to the “Trigger rules”, they are high-level “if-then” rules (Figure 29)
describing the conditions under which one or more interventions should be
initiated (e.g., if the user has been sitting watching movies for over an hour,

display a notification to the TV suggesting a short walk).
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Figure 28: Intervention Manager
Each intervention rule, upon evaluation, points to one or more intervention
strategies residing in the “Interventions’ Pool” (IP). The IP includes high-level
descriptions of the available strategies, which are in fact applications that can
be used as channels to present interventions dictated by LECTOR. In order to
act as an intervention, an application is required to conform to AmI-Solertis
[89] SaaS specifications, ensuring that it will be able to receive and execute

LECTOR’s commands.

Intervention Rule:  undler [TENIEEEEN AND AND ... AND
F o T Ano T Ano . Ano KT

THEN ON AND
ON AND

AND

Intervention N ON Interv. Host N

Figure 29: The conceptual representation of an intervention rule
Since a specific behavior can originate either from a single user or a group of
people, the Intervention Manager is able to evaluate and select strategies
targeting either private or public intervention hosts. Finally, after selecting the
appropriate intervention(s), the system is able to personalize its (their) content
according to the current context of use.
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LECTORstudio enables developers to integrate new intervention strategies
through the Intervention Pool Editor; that process includes defining (i) the
scope of the intervention (i.e., private vs. public), (ii) the target user groups,
(iii) the artifacts that can act as hosts, and (iv) the actual code that initializes
and runs the respective application to each of the selected hosts. Such
information permits LECTOR to make informed decisions regarding the
appropriateness of a strategy under a specific context and initiate it when
deemed necessary. Furthermore, LECTORstudio features the Intervention
Rules Editor, which not only facilitate developers, but also permits non-
technical users to tailor the intervention mechanism to their needs and
preferences. In more detail, they can (i) define the context under which
LECTOR intervenes, (ii) select one or more intervention strategies, (iii)
configure them so as to better meet their needs (e.g., determine the video
sources of a multimedia presentation), and (iv) at the same time customize
other physical aspects of the intelligent environment (e.g., lights’ intensity,
blinds’ status, etc.). The user interface of LECTORstudio is described in details

in Chapter 6.

Upon creation, the intervention rules are stored in a database. Figure 30,
presents the employed database schema; the key “triggers” is used to store
information regarding the behaviors that trigger an intervention, while the
key “context” refers to the virtual context under which the intervention rule
should be evaluated. Information regarding the actual strategies that should
be followed are described in “interventions” and “environment” keys. The
introduction of the Environment as a separate form of interventions, despite
the fact that there is no essential difference from an implementation
perspective between environmental interventions and other software
applications, aims to assist non-technical users in conceptualizing whether

their decisions will affect other users of the environment.
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var InterventionRuleSchema = new mongoose.Schemal {
name: String,

r

triggers: [{ id: { type: String }, included: { type: Boolean } }]
context: { I,
interventions: [{
id: { type: mongoose. Schema. Objectld },
artefactId: { type: mongoose. Schema. Objectld },
attributes: [{
name: String,
attrType: String,
Value: [],
fromalue: String,
toVWalue: String,
Tags: [],
defaultUnit: String,
Function: String

[—
[a—

.
environment: [{
artefactId: { type: mongoose.Schema.0bjectld },
interventionld: { type: mongoose.Schema.ObjectId },
attributes: [{
name: String,
attrType: String,
Value: [],
fromValue: String,
toValue: String,
Tags: [],
defaultUnit: String,

Function: String

[a—
[a—

3]
11
enabled: { type: Boolean, default: true },

r

|
il
activations: { type: MNumber, default: 8 }

’

success: { type: Number, default: @ },

[—

Figure 30: The database schema for the intervention rules

Furthermore, for each intervention rule the database stores statistics such as
success rate, number of activations and number of cancelations. This type of
information is important so as to evaluate the efficacy of a rule. Regarding the
success rate, the Learning component is able to compare the behavior of the
user before and a short time after the application of an intervention, so as to
understand whether the remedial action was effective. For example, consider

a student that lost interest in the task at hand, and chats with his classmate
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instead of completing the multiple choice exercise which is launched on his
personal computer. The system decides to intervene and motivate the student
by displaying an encouraging message that prompts him to continue with the
exercise. In case the user’s behavior remains the same (i.e., the user is still in
chatting) the success rate of that particular intervention decreases. Hence, in
the future if a similar situation occurs the Intervention Manager can select an
intervention with a higher success rate. Similarly, the number of manual
cancelations can help the decision-making component understand whether

the intervention is considered appropriate under specific context.

Before deployment, the stored data are retrieved and the relevant executable
code is generated so as to be used by the decision-making component of the
Intervention Manager. Similarly to the translation of the behavior models and
trigger rules, the trigger rules are translated to javascript code using

Handlebars.js.
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LEARN: Learning Component

Both the Behavior Reasoner and the Intervention Manager should be able to
“learn” from previous decisions and refine their logic, while they should also
be open to user suggestions that can override their defaults. In order to
introduce the notion of LEARN, the proposed system provides a mechanism
that (i) is able to compare behaviors before and after interventions so as to
understand whether the selected strategies were efficient, and (ii) takes into
consideration user input so as to understand whether BR correctly identified

behaviors or IM selected appropriate interventions (Figure 31).

Behavior Reasoner User Input

(BR)

User Front-end Applications

Virtual Context

Dynamic
Context Static User
Context Profiles

Params
Params

Intervention
Manager (IM)

Figure 31: Learning Component

Triggers and Interventions History

The Learning Component (LC) keeps history logs of identified triggers and
initiated interventions. When the IM applies an intervention estimated to be
useful under a particular context of use, then after a reasonable amount of
time (which is specified by the intervention rule) LC is responsible for re-
examining whether the user’s behavior remains the same. Specifically, if it still
detects that-within a specific time frame- the Behavior Reasoner still identifies
the same trigger, then the selected recommendation is marked as ineffective
in that context (Figure 32). To do so, it informs the Intervention Manager to
decrease the success rate of the rule that led to that particular intervention;

from that point, IM can select different rules with greater efficiency for that
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particular context instead of the one that was proven to be unsuccessful

(Figure 33).

Trigger A
Trigger A

1

1
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Figure 32: After the initiation of an intervention, if the same trigger is identified within a
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specific time frame, then that intervention is considered unsuccessful.
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Figure 33: Determining the efficacy of an applied intervention

However, this approach does not apply to every intervention rule. For

instance, consider an intervention programmed to turn off the classroom
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lights as soon as a presentation starts on the board. In that case, it is irrelevant
to examine whether “presentation start” is identified again after the lights turn
off. To this end, each intervention rule is appropriately annotated so that the
LEARN Component can decide whether it should start its evaluation process

or not.

Apart from studying the history log of behaviors immediately after a remedial
action has been taken, in some cases it is important to track the long-term
effects of interventions. This approach has the advantage of ignoring false
positives, such as “fake” behaviors, where students pretend to be engaged to
an educational activity, when in fact they are not. Instead, the effectiveness of
an intervention can be verified as soon as the system validates that the student
has acquired the knowledge taught during the period that the intervention in
question was applied (i.e., that could occur much later in time e.g., when that
student scores exceptionally well in a relevant exam). To this end, the
Learning Component is able to combine performance statistics with past
contextual information to identify whether the applied interventions had

positive results.

User Input

One of LECTOR’s main objectives is to help and support teachers by enabling
complete classroom overview and automatic suggestion of engaging activities.
Towards that direction, teachers can provide valuable input, and namely they
can (i) reject system decisions regarding identified triggers, and (ii) override
system suggestions in case they do not serve their needs. Firstly, the users will
be able to notify the system in case it has falsely identified an intervention
trigger. For example, in the case of a student that stares at the ceiling, the
system wrongly estimates that he is mind wandering and triggers the rule that
initiates a multiple-choice quiz to re-motivate him. At this point the teacher,
knowing that this particular student was “thinking” while staring at the ceiling,
notifies LECTOR that he was not being inattentive; hence, the Behavior

Reasoner will to incorporate that knowledge for future reference. Secondly, in
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order to allow the teachers to have the final say regarding the suggested
interventions, the system permits their ranking, modifications and
cancellations. To this end, the LEARN Component is responsible for informing

the Intervention Manager to update the statistics of each intervention rule.
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Chapter 6
LECTOR Tools

This chapter describes the functionality and user interface of LECTORstudio
[106], a sophisticated authoring tool that permits both developers and non-
technical users to take advantage of LECTOR’s services. Furthermore,
LECTORstudio permits developers create the appropriate infrastructure

depending on the target audience and the available ambient facilities.

Additionally, LECTOR interoperates with three (3) other powerful tools which
are specifically created to serve the needs of educators and students of the
intelligent classroom. These tools are explained in details in the following

sections.

LECTORstudio: Creating Inattention Triggers
and Planning Interventions

LECTORstudio aims to assist developers and educators in the process of
realizing an attention-aware intelligent classroom that intervenes when

necessary to re-motivate students.
To this end, it offers an intuitive UI through which developers can:

(1) create the classification scheme for organizing the rules responsible for
detecting behaviors,

(ii)  integrate the available artifacts that can host interventions,
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(iii) model the physical context which encapsulates information regarding
physically observable phenomena (e.g., luminance, heart rate, sound
levels, etc.),

(iv)  describe the actors, i.e., the users whose behavior needs to be
monitored in order to conclude whether an intervention is required,

(v) integrate the intervention types that are available through the existing

hosts.
Furthermore, it permits both developers and non-technical users to:

(vi)  create rules that reveal intervention triggers,
(vii) fine-tune the rules responsible for identifying behaviors in the
monitored environment,

(viii) create rules according to which specific interventions are initiated.

Any of the above tasks is a complex procedure that requires the configuration
of many heterogeneous parameters, which could be overwhelming and
cumbersome even for experienced developers, let alone non-technical users.
To this end, LECTORstudio features a wizard-style interface in order to
transform this complex set of conditions into understandable steps, which is
ideal for users that lack the necessary technical knowledge since they can just

follow a preplanned route [107].

In more detail, each of the aforementioned tasks is decomposed into
autonomous chunks, which form logical step-by-step processes to guide the
users towards achieving their goals; to avoid creating tiring and tedious
processes, the number of chunks is kept to a minimum, leading to a maximum
of 3 or 4 steps. Specifically for the tools that target educators, LECTORstudio
reduces complexity by avoiding the use of technical terms and instead
speaking the users’ language using words and phrases familiar to teachers.
Finally, adding up to the clear and informative UI, input controls were
carefully selected in order to make sure that any user input is well-formed

according to the functional requirements of the system (e.g., expected types,
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predefined values, etc.). These practices, along with the adoption of general
HCI design principles (e.g., consistency, user control and freedom, error
prevention, etc.), ensure that LECTORstudio reduces, to a large extent, the
cognitive load and simplifies the overall process for both developers and

educators.

Creating the Behavior Classification Scheme

A two-level classification scheme is employed for organizing the rules
responsible for detecting behaviors. The first level contains the abstract
behavior types (e.g., Attention, Focus, Speech, Location, etc.) that should be
monitored by LECTOR in order to collect valuable information. Yet, the
concrete behavior outcomes (e.g., Quiet, Whispering, Talking, etc.), are
described at the second level and contain the respective rules. The same
outcome might be recognized by several rules; that is because employing
different algorithms or monitoring miscellaneous contextual parameters (i.e.,

physical, or virtual context) can lead to the same result.

4) Speech (2 Rules) ( Edit )

QUIET TALKING WHISPERING SHOUTING
2 RULES NO RULES NO RULES NO RULES

(No Rules) ( Edit )

? Location (No Rules ( edit )

BOARD EXIT DOOR
NO RULES NO RULES

Figure 34: Snapshot of LECTORviewer’s Ul displaying a subset of the available behavior types
along with their outcomes
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Figure 34, presents LECTORviewer’s user interface displaying a subset of the
available behavior types along with their outcomes. Notably, the selected
classification scheme leads to an intuitive UI that permits both developers and
educators to find rules quickly on the basis of the behavior type and outcome.
As shown, a specific theme is followed per behavior type in order to support
their recognizability and enhance intuitive interaction. LECTORstudio permits
developers to create the aforementioned scheme (Figure 35) by providing the

following:

e A descriptive name of the behavior type.

e Presentation details such as description, icon and theme (i.e., font and
background color), which will be used to create an intuitive UI.

e The behavior outcomes that also constitute the labels to be employed in

LECTOR’s reasoning mechanisms.

CATEGORY DETAILS OUTCOMES
Name: Current Outcomes:
Location @ Board
Qwn Desk

Description:

Type:
Activity M Add new outcomes:

lcon: Type in the outcome name ...
fa-map-pin

Theme:

Font color:

font-blue-hoki

Primary color:

bg-blue-hoki

Secondary color:

bg-blue-dark

B Edit Category

Figure 35: The process of creating the Behavior Classification Scheme
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As soon as an outcome is defined, the developer can set its lock status to ON
(default) or OFF; a locked outcome is not available to educators for adding or
modifying the relevant rules. For example, the “OWN DESK” outcome of the
behavior type “LOCATION”, should be locked since only experienced
developers can provide the appropriate code that identifies whether a student
sits on her desk. On the other hand, the “BOARD” outcome of the same type
can remain unlocked, since the educator can fine-tune any rules concerning
whether an individual’s whereabouts are near the board by manually selecting

its position on the classroom’s floor plan.

Edit Artefact; Student's Desk

DETAILS

Artefact Name:

Student's Desk

Type Id:

DESK

Description:

lcon:

fa-laptop

+ This artefact can be used as an intervention host

Type: Public artefact Teacher artefact (private) e Student artefact (private)

ARTEFACT SERVICES select the services that run on this artefact...

WindowManagerService x JEERIEP
B Edit

Figure 36: The process of editing the integrated intervention host “Student’s Desk”
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Integrating the available Intervention Hosts

The term intervention host is used here to describe (i) common computing
devices such as smartphones, tablets, and laptops, (ii) technologically
augmented everyday commercial objects (e.g., interactive white boards, smart
bulbs, etc.), or (iii) custom made items (e.g., student desk). An Intervention
host either launches an application with specific content or controls the
physical environment (e.g., dim the lights during a video presentation). For
LECTOR to optimally intervene, the available intervention host types have to
be properly defined. To this end, LECTORstudio allows the modeling of each
type in a way that conveys the information required for creating and deploying

an intervention (Figure 37).

Artefacts

¢ LIGHTS

SERVICES SERVICES SERVICES SERVICES

» VibrationService » WindowManagerserv... » WindowManagerserv... » LightsService
BLINDS o

BLINDS

SERVICES
» BlindsService

Figure 37: The available intervention hosts are displayed in the form of tiles containing
useful information

Specifically, developers are expected to define the following (Figure 36):

e General details about the intervention host, i.e., name, description and
icon.
e A unique ID, which will be used by intervention hosts to advertise

themselves in Aml-Solertis. This information enables LECTOR to
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communicate with intervention hosts of the same kind in a seamless
manner. For example, when an intervention is scheduled to be applied on
every student desk, LECTOR simply asks Aml-Solertis to deliver the
command to all hosts identified as “DESK”.

The host-specific services that should be exposed to developers
responsible for building and deploying interventions on that particular
host. For example, a student desk employs various services such as
CognitOS, Microphone Recorder, Seat tracker, Sound Controller, etc.;
subsequently, if CognitOS and Sound Controller services are exposed, a
developer can define an intervention for a student that continuously
browses out-of-context videos using the former to launch an educational
application (e.g., Quiz) and the latter to mute the speaker output.

The intervention host type, which determines whether it can be used as
an intervention host or as an intelligent device that can be used to modify
the conditions of the environment (e.g., lights, blinds, curtains, etc.).

The privacy type which could be: (i) public intervention host, (ii) private
teacher intervention host or (iii) private student intervention host. This
information is intended to be used by LECTOR’s Intervention Manager to

identify appropriate hosts for the planned interventions.

Modeling the Physical Context

LECTORstudio facilitates the modeling of the physical context (Figure 38),

which encapsulates information regarding physically observable phenomena

(e.g., luminance, heart rate, sound levels, etc.). This aims to alleviate the

diversity of input values coming from heterogeneous sources and create a

shared data model that can be used by the rule creation mechanisms.

In more detail, developers can define the type of information that LECTOR will

be able to process, independently of its source. For instance, the system does

not need to know that a student has turned his head 23 degrees towards south

but that he stares out of the window.
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The first step of creating a physical context property requires:

e A descriptive name.

e The relevant services that deliver information collected from the input
sources. For example, a service exposed by the student’s wrist band is able
to transmit data regarding her physiological signals.

e The property’s variables, which are the available fields that will carry the
actual property value at runtime. The definition of each variable requires
its name, type (e.g., Number, String, Boolean), default value and available

values, as well as default unit and other available units.

The second step of this process includes the translation of the data types
received from the sensors to the types described by the property’s variables.
This process requires developers to provide the code that performs the
mapping from one type to the other. To do so, LECTORstudio employs the
sophisticated web-editor offered by AmlI-Solertis, which automatically
generates some of the required blocks of code based on information acquired
from the first step. This alleviates some effort from the developers, while
along with its built-in autocomplete functionality the editor provides several
instructions (in the form of commented code) that guide developers in

building their code.

ound
icrophone ror

DETAILS:
Context Property Name: async function startUp(){

Sound

Services:

ar micstatus = await studentSound.getSound();

ATTRIBUTES

Attribute name: Default value range: Default unit: .
micstatus.levels.length;

Level 55 65 dg|
elsCat - 1; it++)

Type: Standard values units:
levels[i] * micStatus.levels[i+1];

Range v Add alternative values Add available units

7 levelstnt);

v Thisis an editable Attribute u

come(outcome);

Figure 38: The process of defining the ‘SOUND’ Physical Context Property
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Edit Actor: Teacher

PROPERTIES
DETAILS
Actor Name: SPEECH
Teacher + Quiet + Talking + Whispering
Description:
P + Shouting
lcon:
fa-hriefcase + Board v Student v Desk Device
This is a class-wide actor + Exit Door Teacher + Student of I...
LOCATION
+ Board + Own Desk + Other Desk
v Exit Door
POSTURE
+ Walking + Sitting + Standing

Figure 39: The process of editing the actor “Teacher”

Describing the Actors

The term Actor is used to describe the users of the intelligent environment
where LECTOR is employed, whose behavior needs to be monitored in order
to decide whether an intervention is required. Generally, different types of
actors have diverse characteristics which need to be taken into consideration
when building the rules that guide LECTOR’s decision-making mechanisms.
To this end, LECTORstudio permits developers to insert the following

information (Figure 39):

e General details regarding the actor, i.e., name, description and icon.
e The actor type (i.e., individual or group), which determines whether the
system’s decisions must rely on the actions of individual users or the

collective behavior of a group of people. Indicative actor examples, drawn
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from the intelligent classroom case study, are: (i) Teacher (individual), (ii)
Student (individual), and (iii) Classroom (group of students).

e The outcomes that designate which actor behaviors (i.e., virtual properties)
should be monitored and which should be excluded. Narrowing down the
virtual properties that need monitoring not only simplifies the process of
rule creation, since the interface is not cluttered with irrelevant options,
but also improves the system’s runtime performance as unnecessary
checks are eliminated. For example, the FOCUS of a student might be the
“BOARD”, another “STUDENT” or the “TEACHER”; the first two virtual
properties are legitimate values for the teacher as well. However, the latter

is a behavior that will never occur.

_ MULTIMEDIA PRES... o CONTROL LIGHTS o CONTROL BLINDS o

TEACHER Intervention STUDENTS Intervention ENVIRONMENT ENVIRONMENT
Intervention Intervention
ARTEFACTS: ARTEFACTS:
» TEACHER'S WATCH » STUDENT'S DESK ARTEFACTS: ARTEFACTS:
) BOARD » LIGHTS » BLINDS

Code not generated

Figure 40: The available intervention types are displayed in the form of tiles containing
useful information

Integrating Intervention Types

As already mentioned in Chapter 5, the term intervention is used to describe
the system-guided actions that subtly interrupt a course’s flow in order to (i)
draw the educator’s attention on problematic situations, and (ii) re-engage
distracted, unmotivated or tired students in the educational process. Table 2,
displays the available interventions, which in fact are applications running on
private (e.g., student’s desk, teacher’s watch) or public intervention hosts (e.g.,
classroom board) instantiated at a key point in time with appropriate content.
In order to act as an intervention, an application is required to conform to
AmlI-Solertis SaaS specifications, ensuring that it will be able to receive and
execute LECTOR’s commands. At the same time, LECTOR needs to be aware

of the available intervention types; for that purpose, LECTORstudio offers a
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wizard-style interface that permits developers to integrate them in three

simple steps.

The first step (Figure 41) requires the general details of the intervention, i.e.,
name and description, as well as the definition of its customizable properties.
A customizable property is an attribute exposed to educators for configuration.
For example, when creating an intervention rule that utilizes the “Multimedia
presentation” application, the educator can select which of the available video

sources (e.g., YouTube, Dailymotion, etc.) will be used.

Edit Intervention Multimedia Presentation

DETAILS:

Intervention Name:

Multimedia Presentation

Description:

CUSTOMIZABLE PROPERTIES

Property name: Default value:
Video sources r
Type: Standard values:

Add alternative values

Figure 41: The first step of editing the intervention type “Multimedia Presentation”. This step
requires the definition of the details of that particular intervention type.

As a second step (Figure 42) developers are expected to define the target (i.e.,
student, teacher, and environment) of the intervention type as well the
artifacts that are able to employ it. In case the targeted users are students, the

range (i.e., public or private) of the intervention has to be defined too. Being
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aware of the actual recipients and the range is essential for LECTOR’s
Intervention Manager, which among others is responsible for selecting the
appropriate intervention type and suitable host(s). For example, if an
individual student needs motivation, a private intervention is appropriate; on
the contrary, if the entire classroom requires a remedial action, LECTOR can
either instantiate a public intervention at a public host or apply collectively

private interventions to all private student hosts.

Edit Intervention Multimedia Presentation

1 ®

DETAILS ARTEFACTS

Configure the intervention Select the compatible artefacts

Intervention Range:
*  Students Teacher Environment

Privacy:

v Public v Private

ARTEFACTS

STUDENT artefact PUBLIC artefact

#+ STUDENT'S DESK # BOARD

Artefact Services Artefact Services

v WindowManagerService v WindowManagerService

Core Services Core Services

Figure 42. The second step of editing the intervention type “Multimedia Presentation”. This
step requires the definition of the artifacts that can host that particular intervention type.

As soon as the intervention recipient is defined, the available intervention
hosts are filtered appropriately narrowing down the acceptable options. At

this point, the developer must select the host(s) that contain implementations
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for that intervention type, while at the same time she must define the host-
specific service(s) responsible for instantiating that intervention. For example,
the “Mini Quiz” intervention can be applied either privately on a student’s desk
(i.e., CognitOS_App_Launcher service) or publicly on the classroom board

(i.e., AmIBoard_App_Launcher service).

Finally, for each of the selected intervention hosts the developer has to provide
the actual code that initializes and runs the respective application. To do so,
all the collected information is forwarded to the AmI-Solertis web-based editor,
which prepares the ground for inserting the necessary lines of code.
Specifically, the editor initializes the intervention and the selected services per

host.

VWhich of the following physical properties zre concerned?

ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES
o Orientation o Rate o Blinking Rate o Level
o Status
£ SOUND
LEVEL m
Duration: Percentage:
1 min ¥ 25 | W

Value range:

55 db 65

Figure 43: The step of selecting and configuring the physical properties that need fine-
tuning.

Fine-tuning Behavior Recognition Rules
LECTORstudio permits the modelling of human, agent and artifact behaviors.
This is achieved through “if-then” rules describing the conditions under which

specific behaviors occur. As soon as a behavior is detected, the decision-
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making mechanisms of LECTOR further examine the “Trigger rules” set, so as
to identify whether at that particular context the identified behavior indicates
inattention. Creating a behavior recognition rule from scratch would require
excellent programming skills, implementation of specific scientific
algorithms and accurate knowledge on what data are being collected by each
technological artifact. To this end, this functionality is deliberately excluded

from the version of LECTORstudio that targets educators.

However, fine-tuning those rules and being able to configure some of their
high-level attributes is available through a 3-step wizard. The first step
requires the definition of the context following a process similar to the one
described for the “context definition” step of the “Create inattention triggers”
wizard. Next, the educators are expected to select any physical properties they
wish to configure. Upon selection, a panel with configurable attributes
enables them to fine-tune the conditions under which a (sub) - activity is
denoted (Figure 43). Finally, the wizard provides a summative overview and

the educator can create and deploy the new rule.

The necessity for the described fine-tuning facility is illustrated by the
following motivating example. The default rule for the activity SHOUTING -
which belongs to the Speech category- specifies that “ifan actor’s sound levels
range between 85 and 95 decibels, then the actor is shouting”. Since this rule
is the default one, it applies to every context and triggers as soon as the THINK
component of LECTOR receives increased sound levels for a specific amount
of time. However, an exception seems imperative for the Music course where
students are expected to sing, thus raising the noise levels of the classroom
higher than usual. Through LECTORstudio, educators can easily create a
variant of that rule, where only during the music course (i.e., modify a
contextual property) the threshold of the SOUND physical property that

triggers the rule will overpass 100 db.
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Creating Inattention Triggers

LECTORstudio enables the enrichment of the “Trigger Rules” set by permitting
developers and educators to easily create and modify rules that signify
inattention via the respective creation wizard. To fully specify such a rule, an
user is required firstly to define its conditions, namely (i) the context under
which the rule should be evaluated, (ii) the implicated actors (e.g., individual
or group of students, teacher, etc.), (iii) the physical attributes that should be
monitored for relevant cues, and secondly determine the type of inattention
that this rule can detect (e.g., disturbing classroom, cheating, chatting, etc.).
Defining an inattention type not only helps the educators understand the
source of the problem when an alarm is triggered, but is also used by
LECTOR’s Intervention Manager to decide which intervention should be
applied. An indicative example of such an “Inattention Trigger” is the
following: “During a lecture, if the teacher is talking to the students and some
of them are too talkative or do not focus on her, then this is a sign that they are
possibly chatting”. This sentence contains all the information needed to build
the respective rule: “during a lecture” implies the context, the implicated
actors are the teacher and the students, whose sound levels should be
examined to identify whether they are talking, while the students’ focus should
also be under inspection. Finally, the closing words indicate that “chatting” is

the inattention type of such behavior.

Figure 44, presents all the necessary steps to define a new rule that aims to
detect inattention. Firstly, the user is required to define the context under
which the newly created rule will be evaluated. Three affirmative statements
-one for each supported context type- are displayed, prompting the user to
select whether she agrees with them or not: (i) It (the rule) concerns specific
courses, (ii) It (the rule) concerns specific activities and (iii) It (the rule)
concerns specific student groups. Each statement is accompanied by a simple
yes/no input control with the default value set to “No”. As soon as that value

changes to “Yes”, a set of relevant options appear representing the expected
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values for that context, out of which the user can select which will be included

or excluded from the rule.

Create Attention Rule

(:)— 2 3

CONTEXT ACTORS DEPLOY

Define the Context Define the Actors Preview and Save

# DEFINE THE CONTEXT

- »
'\Em It concerns speaﬂc courses.

Yes It concerns specific activities.

N

(@)(®) Lecture ©e) Bxam (@)(®) Exercisesolving  (@)(8) FreeTime

p

-:Em [t concerns specific student groups.

Create Attention Rule

& STUDENT seect v

1 (2)
u SPEECH

CONTEXT ACTORS ©)(e) Quiet ©)(2) Talking ®)(2) Whispering ©)(@) Shouting
Define the Context Define the Actors
®)(®) Desk Device ©)(@) Student ©)(®) Board )@ Teacher
@ DEFINE THE ACTORS
©)(e) Exit Door
Which of the following actors are concerned? LOCATION
8)(8) ExitDoor ©)(®) Other Desk ©)(®) OwnDesk 8)(8) Board
CLASSROOM
POSTURE
. . i . '©)(®) Walking ©) (@) Sitting @) (@) Standing
. “ - PHYSIOLOGICAL CHARACTERISTICS
(@) Laughing &)@ Yawning 0 @) Tachycardia ®)(@) Eyes Closing

Create Attention Rule

1 ’ 4®

CONTEXT ACTORS DEPLOY

Define the Context Define the Actors Preview and Save

& PREVIEW

The following rule will be created

@ OUTCOME

& courses & PHYSIOLOGICAL A Stress .
oAl CHARACTERISTICS

Tachycardia
@ ACTIVITIES
© txam —_
4% STUDENTS
oAl

Figure 44: The process of creating an inattention trigger
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Apart from the context under which an educational activity takes place, a rule
responsible for triggering inattention alarms requires information regarding
the implicated actors as well as their specific physical properties that should
be under inspection; the available actors inside a classroom are either
teachers or students. In order to observe the way they communicate and
interact during a course, LECTOR currently monitors some of their physical
characteristics (i.e., physical context) and translates them, in a context-
dependent manner, into specific activities classified under the following
categories: Focus, Speech, Location, Posture and Feelings, which are

considered appropriate cues that might signify inattention (Chapter 5).

()
1 ) 3

# DEFINE THE ACTORS

wWhich of the following actors are concerned?

£ CLASSROOM

SPEECH

Quiet Talking Whispering Shouting

Board Student Desk Device Exit Door Student of I...

Figure 45: The second step of the "Create inattention triggers" wizard requires the selection
of the implicated actors

As soon as context is properly defined, the “Create inattention triggers” wizard
(Figure 45) presents to the user a list of the available actors in the form of
selectable tiles. When an actor is selected, a panel with his/her relevant
physical properties is displayed, giving the educator the opportunity to define
which of them will be included in the rule’s activation condition; the values
could be used as-is (e.g., focusing at the teacher) or as logical negations of their

initial value (e.g., not focusing at the teacher). Additionally, the user can
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customize the rule by modifying quantitative attributes such as the threshold
after which that behavior is consider inattention or the cumulative percentage
of students not paying attention after which an inattention alarm should be

triggered.

A Attention (2 Rules) ( edit )

INATTENTION DISTURB
1 RULE 1 RULE

CHEAT CLASS CHEAT CLASS CHAT

NO RULES 1 RULE 1 RULE

MIND WANDERING BOREDOM
NO RULES 1 RULE

Figure 46: Snapshot of the UI displaying the available inattention Triggers

FILTERS Fitter the rules ...

Qutcomes: Actors:
Select Inattention Outcomes... - Select Actors... -
Context:
Select Courses... - Select Activities... - Select Student Groups... -
e ™
{ Filter Rules )
\ /
e~ I
& COURSES « SPEECH « SPEECH A CHAT
@ Al Whispering Talking
@ ACTIVITIES @ Focus I —
Student —
S All
% STUDENTS
@Al
T
& COURSES 4 SPEECH « SPEECH A CHAT
S Al Talking Talking
Whispering
[# ACTIVITIES —
® Lecture, Exardse Sohing @ FOCUS pu—
ecture, Exercise S0lving 1 Teacher
& STUDENTS

Figure 47: List of rules that indicate the trigger "Chat"
Finally, the user can use the wizard to “DEPLOY” the newly created rule. An
intermediate confirmation step permits the user to preview the rule’s details,

revise her selections, and if necessary even return to previous steps to make
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adjustments. The discrete parts of the rule (i.e., context, actors and outcome)
are represented in the form of tiles containing key information regarding their
configured aspects, while simple mathematical symbols (e.g., plus sign,
equals sign, braces, etc.) denote its structure. As a last step, the user must
determine what kind of inattentive behaviour this rule can detect (e.g.,
disturbing classroom, cheating, chatting, etc.). A finalized rule is immediately
activated and gets incorporated into LECTOR’s “Trigger Rules” set (Figure 47);
nevertheless, educators can manually deactivate or re-activate rules when
deemed necessary. In order to classify the rules and facilitate browsing,
LECTORstudio presents the available triggers in the form of tiles, where each

tile redirects the user to an appropriately filtered list of rules (Figure 46).

Scheduling Interventions

Finally, through LECTORstudio, developers and educators can: (i) define the
context under which LECTOR intervenes, (ii) select one or more intervention
strategies and configure them so as to better meet their needs, and (iii) at the
same time customize other physical aspects of the intelligent environment
(e.g., lights’ intensity, blinds’ status, etc.) so as to create the optimal conditions

for re-motivating distracted students (Figure 48).

An indicative intervention rule that can be created through LECTORstudio is
the following: “if students are chatting during a lecture, then launch a
multimedia presentation (drawing content from YouTube and Google Images)
on every student’s desk, dim the lights to 50 % and half-close the blinds’. This
sentence specifies all the available information for building the respective
intervention rule. Specifically, the foreseen intervention will be applied only
in case the detected inattention type is “Chatting” and the educational activity
is a “Lecture” (i.e., context). As regards the actions to be taken, the
intervention will initiate a customized (from the educator) multimedia
presentation (i.e., type of intervention) on each desk (i.e., the presentation
artefact). Finally, certain aspects of the environment will be modified to better

serve the selected intervention.
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Figure 48: The process of scheduling an intervention.
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An indicative intervention rule that can be created through LECTORstudio is
the following: “if students are chatting during a lecture, then launch a
multimedia presentation (drawing content from YouTube and Google Images)
on every student’s desk, dim the lights to 50 % and half-close the blinds’. This
sentence specifies all the available information for building the respective
intervention rule. Specifically, the foreseen intervention will be applied only
in case the detected inattention type is “Chatting” and the educational activity
is a “Lecture” (i.e., context). As regards the actions to be taken, the
intervention will initiate a customized (from the educator) multimedia
presentation (i.e., type of intervention) on each desk (i.e., the presentation
artefact). Finally, certain aspects of the environment will be modified to better

serve the selected intervention.

Towards defining the context, the user firstly has to specify the situation(s)
under which the system should intervene. To that end, a list of inattention
types (e.g., Cheating, Chatting, Disturbing a classmate, etc.) that can be
detected is presented along with relevant statistics (e.g., frequency, amount of
rules that can identify it, etc.). Then, she can further scope that intervention
by customizing the courses, activities and student groups similarly to the other

LECTORstudio wizards.

Next, the wizard presents the available interventions in the form of tiles,
where each tile displays both the intervention recipient (i.e., teacher or
student) and the intelligent artefacts that can host it. Upon selection, a panel
with customizable properties appears, enabling the user to select the
presentation artefact and configure the intervention according to her needs.
Multiple intervention types can be selected at once, giving the opportunity to

create complex scenarios.

Finally, the user can optionally customize the physical aspects of the
intelligent environment (e.g., lights’ intensity, blinds, etc.), confirm the

various parameters and deploy the new rule.
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Heuristic Evaluation

The wizards targeting both developers and educators were evaluated using the
heuristic evaluation method in order to eliminate any major usability errors
before proceeding with user testing. Heuristic evaluation [108] is the most
popular of the usability inspection methods and is carried out as a systematic
inspection of a user interface design for usability. The process involves having
a small set of evaluators examine the interface and judge its compliance with
recognized usability principles, namely "heuristics". According to [109],
involving three to five evaluators, is adequate to identify the majority of errors
since larger numbers do not provide much additional information. The
process requires that each individual evaluator inspects the interface alone
and compares it with the "heuristics". As soon as all the evaluators have
completed the aforementioned process, the discovered usability errors are
aggregated in a list with references to those usability principles that were
violated. Next, each evaluator is asked to provide severity ratings [110],
ranging from zero (“not a usability problem”) to four (“Usability catastrophe”),
for each problem independently of the other evaluators. Finally, the
development team ranks each problem with an ease-of-fix ranking ranging
from zero (“would be extremely easy to fix”) to three (“would be difficult to fix”)
to designate the amount of effort needed to address it. LECTORstudio was
evaluated by four User eXperience (UX) experts who inspected the interface
and judged its compliance with the "heuristics". Their findings revealed 26
usability issues out of which 16 were ranked as cosmetic problems only. The
remaining 10 have been prioritized in the list below, with the most severe and

hardest to fix problems listed first.

Severity 3

[

e When defining the context of the rule, the purpose of the exclusion ‘-
button was not obvious to the user (ease of fix: 1)
e Itis not clear to the user which rules trigger inattention alarms and which

identify student behaviors (ease of fix: 1)
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e There should be the possibility to associate an intervention rule with an
existing attention rule (ease of fix: 1)
e The wizard should also have a back button available for each step (ease of

fix: 0)
Severity 2

e Each completed step of the process should change the color of the circle to
something else to show that it is saving the information each step of the
way (ease of fix: 1)

e When defining the context of the rule, one should be able to select all items
in a section, i.e., All Courses or All Activities, etc. (ease of fix:0)

e When browsing for a rule the name of its creator should also be visible
(ease of fix: Q)

e When creating a rule, the user should be able to provide an identifying
name (ease of fix: 0)

e When deploying a rule, the purpose of the left brace sign is not obvious to
the user (ease of fix: 0)

e Some literals need revisions because they might be confusing for the users

(ease of fix: 0)
User-Based Evaluation

Overview

Apart from the heuristic evaluation of LECTORstudio’s rule-creating wizards,
targeting both developers and non-technical users, the complete functionality
of LECTORstudio for developers was assessed through a user-based evaluation
experiment. Through this experiment, several usability errors where
identified, while great insights where drawn by observing the users interacting

with the system and noting their comments and general opinion.

In more detail, five (5) users of ages 25-30 years participated in the experiment.

According to Nielsen [109], testing a system with five (5) users permits the
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detection of approximately 85% of the problems in an interface, increasing the
benefit-cost ratio. All the participants were developers, having worked in
projects regarding Ambient Intelligence, and therefore familiar with the
related concept and principles. Particularly, two (2) of them were junior
developers, two (2) were mid-level developers, while the remaining one (1)

was a senior developer.

The experiment was performed in two (2) phases. In the first phase, the
concept of the LECTOR framework, as well as the functionality offered
through LECTORstudio, was explained to the users. This process was
necessary, since the developers should get acquainted with various new
concepts such as Actor, Trigger, Behavior, Intervention, Rules, etc., before
being able to use the system. After the introduction of all necessary
information, the users were requested to browse freely through
LECTORstudio in order to get familiarized with it, while they were also

encouraged to ask any questions or express any comments.

The second phase of the evaluation experiment was performed the next day
after the introductory phase for all users, in order to grant them enough time
to assess the acquired information. In this phase, the users were requested to
follow a scenario including tasks regarding the major functions of
LECTORstudio, while they were also encouraged to express their opinions and
thoughts openly following the thinking-aloud protocol [111]. In order to make
participants feel comfortable and ensure that the experiment progresses as
planned, a facilitator was responsible of orchestrating the entire process,
assisting the users when required and managing any technical difficulties.
Furthermore, two note-takers were present in order to record any qualitative
data - such as impressions, comments and suggestions, along with a number
of quantitative data. More specifically, the completion time, the number of

help requests and errors made were recorded for each task of the scenario.

After completing the scenario, the users were handed a 10 item questionnaire

with five response options ranging from “Strongly agree” to “Strongly
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disagree”. This questionnaire, namely the System Usability Scale (SUS) [112]

provides a “quick and dirty”, reliable tool for measuring usability since it:

e Isavery easy scale to administer to participants
e Can be used on small sample sizes with reliable results
e Is valid - it can effectively differentiate between usable and unusable

systems.

Finally, the experiment included a debriefing session during which the
participants were asked some questions regarding their opinion on the tool,
what they liked or disliked the most, and whether they had suggestions about

its enhancement.

The following sections present (i) the findings regarding each system function,

and (ii) a general discussion for the overall experiment.

Evaluation Findings per System Functions

Each user was requested to complete eight (8) tasks (Appendix C) covering the
majority of LECTORstudio’s functionality. In reality though, the system would
be used by developers that have been assigned specific roles (e.g., rule creator,
intervention host integrator), meaning that each developer would have to
perform only a subset of the available tasks (e.g., a rule-creator would not have
to integrate a new intervention host). The latter, along with the fact that
LECTORstudio addresses frequent and not first-time users, will play a key role
in interpreting the results of this experiment. The findings of this process are

described below categorized per system function.

Function 1. Browsing trigger and behavior outcomes

Evaluated through scenario task 1, 2, 3, 4

Browsing through the available trigger and behavior outcomes was the first
thing that users had to do in order to complete Scenario Task 1. Since it was
their first encounter with the system, most of them thought that the tiles

displaying the trigger and behavior outcomes were representing the actual
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rules that lead to the identification of those outcomes. Despite the fact that the
errors made (Figure 49) -during performing subsequent tasks that required
browsing through trigger and behavior outcomes- were minimized to zero (0),

a new representation should be considered.

Function 1 - Errors
4.5

3.5

2.5

1.5

0.5

User 1 User 2 User 3 User 4 User 5

Figure 49: Errors per user for Function 1
Function 2. Creating a new behavior outcome

Evaluated through scenario task 2

All users experienced difficulties in creating a new behavior outcome.

Particularly, two (2) issues were identified:

A. The users expected to find and “Add” button under the respective

behavior.

B. When editing a behavior it was not clear that the user could add a new

outcome through the available tags input control.
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Function 3. Creating a behavior rule

Evaluated through scenario tasks 1, 2

Creating a behavior rule was the main objective of the first task that was
handed to the users. Most of them made minor errors before being able to
complete it; however, during their second attempt of creating a behavior rule
as a sub-task of scenario task 2, the errors made were minimized to zero(0) for
users 1, 2, 3 and 5 (Figure 50). User 4 made the same mistake that he had made
the first time, i.e., he concentrated of the available Filters thinking that
through the available fields he could create the desired behavior. In general,
despite the errors made, all users agreed that if they were regular users of this
system they would be able to create behavior rules easily, since the UI is
simple and intuitive. Particularly, user 2 stated that he liked the overview of

the created rule, since it provides all necessary information.

Regarding the overview, the usability issues that were identified were the

following:

A. Each completed step of the wizard should change the color of the circle
to something else in order to provide adequate feedback that it is saving
the information at each step of the process.

B. A next button should be available, permitting users to navigate among
the wizard steps.

C. When arule list is empty, the filters should not be visible since the user

might get confused.

D. The “create new” button should be in a more obvious location since 3

out of 5 users had trouble locating it.

E. When defining the context of the rule, it was not clear to the users that
when all context properties of a category are unselected, they are

automatically included to the rule.

F. When configuring a physical property, the purpose of the field

“Percentage” is not clear.
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Function 3 - Errors
W Scenario Task 1 Scenario Task 2
2.5
2
1.5
1
0.5
0
User 1 User 2 User 3 User 4 User 5

Figure 50: Errors per user for Function 3

Function 4. Integrating a physical context property

Evaluated through scenario task 2

The concept of Physical Context Property troubled almost all users.
Particularly, the majority of them thought that in order to integrate such a
property, they first had to integrate an artifact. However, the term artifact is
used to describe only artifacts that can be used as intervention hosts. To this
end, the main menu items should be reconsidered in order to be more

intuitive.
Regarding the process of integrating a Physical Context Property, the usability
issues that were identified were the following:

A. There should be an indicator regarding the required fields.

B. Most users pressed the “Add new attribute” icon by mistake and then

they could not remove the additional form.
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Function 5. Creating a trigger rule for an individual student and a group of
students (classroom)

Evaluated through scenario tasks 3, 4

Some steps of creating a trigger rule are similar to the process of creating a
behavior rule. To this end, the majority of the users completed the related

tasks without experiencing any difficulties.

However, some minor issues were identified, in addition to the A, B, C, D, E

issues described in Function 3:

A. When selecting an actor, a panel containing its customizable properties
appears. However, when the user selects more than one actors, the

order in which those panels appear should be reconsidered.

B. When the overview of the rule is displayed, the dropdown expecting
input for the rule outcome should be initialized to the value that was
implicitly selected by the user when he was browsing through the

trigger outcomes.

Function 6. Updating an actor

Evaluated through scenario task 5

The respective scenario task was completed with no errors or help request by

all users.

Function 7. Integrating an artifact

Evaluated through scenario task 6

The respective scenario task was completed with no errors or help request by

all users, however minor issues were identified:

A. The field expecting the artifact icon was not clear that the user could

insert the code of a font icon instead of an actual image

B. The user should not be able to save an artifact if he / she has not
provided all the required data.
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Function 8. Integrating an intervention type

Evaluated through scenario task 7

The concept of Interventions troubled almost all users. Particularly, the same
literal is used to describe both “Intervention Rules” and “Intervention Types”.
An intervention type is the description of an application that can be used as an
intervention, while an intervention rule describes the conditions under which
several interventions can be initiated. Therefore, a different literal should be

used for each of these functions.
Furthermore, some minor issues were identified:

A. The users didn’t understand the purpose of the “core services” input

control

B. The users didn’t understand the purpose of the “Customizable

Properties” form

C. The users didn’t understand the difference between Units and Default

Unit of the “Customizable Properties” form.

Function 9. Creating an intervention rule

Evaluated through scenario task 8

Some steps of the process of creating an intervention rule are similar to the
process of creating a behavior or a trigger rule. To this end, the majority of the
users completed the related tasks without experiencing any difficulties. One
user though (user 3), suggested that customizing the environment should not
be an extra wizard step, instead he suggested that it should be a part of step 2.
This suggestion should be further investigated in future user-based

experiments.

Additionally, a minor issue was identified, in addition to the A, B, C, D, E issues

described in Function 3:
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A. When selecting an intervention, it is not clear that the user has to select

an artifact for presenting the intervention.

Concluding, some of the identified issues regarding all the examined functions
(1-9) stem from the lack of experience that some users have in programming
AmI Environments and their difficulty in understanding the broader concept
about how LECTOR operates. However, since LECTORstudio targets less
experienced users as well, their comments will be taken into consideration for

future improvements.

Discussion

Since the experiment included scenario tasks covering the majority of
LECTORstudio’s functionality, each user should get acquainted with various
new concepts such as Actor, Trigger, Behavior, Intervention, Rules etc. To this
end, the experiment included an introductory phase, explaining those
concepts in details; Nevertheless, all users -during the first 2-3 tasks-
experienced difficulties in understanding the terms “Triggers”, “Behaviors”,
“Interventions”, “Artifacts” and “Physical Properties”. However, all agreed
that with frequent use, one gets easily familiarized with the entire concept.
This observation is really important, since in reality the system would be used

by developers that have been assigned specific roles (e.g., rule creator, artifact

integrator), and use the system frequently.

The general opinion of the users, as extracted through the debriefing section
was that LECTORstudio is an intuitive tool, with a pleasant UI that they would
definitely use for (i) integrating the necessary building blocks and (ii) create
the rules that dictate the behavior of an AmI environment. This is also
corroborated by the SUS score (77), which indicates that the tool was marked
as highly usable. The best way to interpret a SUS score is to convert it to a
percentile rank through a process called normalization. The graph presented

in Figure 51 shows how percentile ranks associate with SUS scores and letter
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grades (from A+ to F) [113]. According to this graph, LECTORstudio’s score (77)

converts to a percentile rank of 80% and it can be interpreted as a grade of B+.
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Figure 51: SUS scores association with percentile ranks and letter grades [113]
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Figure 52 presents the SUS score per user; considering that SUS has a usability
threshold of 68%, users 1, 3 and 5 graded the system with a score high above
the threshold, while users 2 and 4 (Junior developers) provided a score close

the threshold (70% and 68% respectively). The latter was anticipated, since
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these users had the minimum experience in programming AmI Environments
and they faced difficulties understanding the broader concept about how

LECTOR operates.

Some of the most notable user comments are presented below:

“Very useful tool’ (user 1)

o “It is very simple to use as soon as you get acquainted with the new
concepts’ (user 1)

o “The design is very nice’ (user 2)

o “I'would definitely use it if I were an educator’ (user 2)

e “Nice and Simple” (user 3)

o “Without the tool, adding such functionality to the environment would
be a cumbersome process’ (user 3)

o “The rule-creating wizards are nice tools especially for someone with

no programming skills’ (user 4)

o “I'would definitely use it!” (user 5)

Finally, despite the fact that no user mentioned it, it is believed that
introducing a dashboard to LECTORstudio would be beneficial. A dashboard
is defined as “a visual display of data used to monitor conditions and/or
facilitate understanding” [114], therefore it would enable developers to get an
at-a-glance view of the system’s available components and help them form a

better conceptual model regarding the entire functionality.
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LECTORUviewer: Managing the Attention-
Aware Intelligent Classroom

Description

LECTORviewer [96], [97] is a web-based tool for managing the attention-aware
intelligent classroom. It is deployed on the teacher’s personal workstation and
allows the observation and customization of LECTOR’s decisions regarding
either individual students or the classroom as a whole. In more detail,

LECTORviewer offers the following:

e One-click enabling or disabling of the LECTOR’s monitoring facility.

e One-click enabling or disabling of the LECTOR’s intervention mechanism.

e An overview of the attention level of the entire classroom that also
facilitates focusing on particular students.

e A mechanism that asks the educator’s opinion regarding ambiguous
student behaviors.

e A mechanism that gives educators control over approving or dismissing an

intervention.

These functionalities are provided through an intuitive user interface which
mainly consists of (i) a main dashboard that displays information regarding all
the classes an educator teaches, and (ii) the representations of each class (i.e.,
class view) containing details about its students, displayed either in a seating

chart layout or a list view.

All the classes that an educator teaches can be found in a sortable list on the
main dashboard, where valuable information is available to the teacher: (i) the
schedule of the class (e.g., the assignments that are close to a deadline), (ii)
reminders of important events (e.g., scheduled exam), (iii) details about the
fluctuation of the attention levels during the last course, and (iv) number of
successful interventions. This type of information not only helps educators to
have an overview of the class and better organize future lessons, but also judge

the efficiency and quality of past courses based on the students’ attention
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levels. Moreover, by viewing the statistics about the effectiveness of past
interventions, educators can acquire an understanding of the kind of
interventions that are appropriate for a specific class or student, and therefore

more efficiently choose and manage interventions in the future.

During a course, through LECTORviewer’s class view the educator can get
insights regarding attentive students or students that are not paying attention
due to fatigue, mind wandering, or lack of motivation. However, in some cases
the ability to disambiguate student activities depends on information that only
a human can provide. For example, students laughing at a teacher’s joke is not
an indicator of inattention. To that end, when the system identifies a behavior
that can be misinterpreted, it asks for the teacher's opinion. These three states
(i.e., attentive, not attentive and needs revision) are coded with appropriate
colors (i.e., green, red and orange) which are used throughout the user

interface so as to help educators easily distinguish the status of the students.

At the top of the “class view” (Figure 53), the educator can see at a glance the
attention percentage of the classroom as a whole. A pie chart, located at the
top left of the page, uses the aforementioned colors to display the percentage
of attentive or inattentive behaviors, and situations that require revision. At
the center of the chart the percentage of attentive students is displayed using
bold and large fonts so as to ensure that the educator will be able to see it even
from a distance. Furthermore, the legends of the chart can be used as filters
that modify its contents, thus enabling educators to customize it according to
their needs. The representation as a pie chart was considered as the best
alternative to communicate this type of information to educators by displaying
all the data simultaneously; that is because a person’s visual system needs less
time to understand graphs (rather than tables), which give numbers shape and

form [115].

In addition, in order to ensure that educators can freely activate or deactivate
the monitoring and intervention mechanisms according to the classroom’s

needs, the top of the page contains the appropriate controls so as to be easily
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accessible. This functionality is important for an environment full of students
where unforeseen situations can emerge; for example, the educator could
observe that interventions are not effective or disrupt the courses flow at a
given moment, and may wish to stop the system from making suggestions.
Apart from merely (de)activating interventions, educators can select to start a
specific intervention when deemed necessary. The latter ensures that
educators do not rely on the system decisions alone; on the contrary, they can
initiate custom interventions in case the system (i) fails to identify that the

students require remedial actions, and (ii) suggests an inappropriate one.
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Figure 53: Snapshot of LECTORviewer’s class-view.
Apart from managing the classroom as a whole, the educators can focus on
individual students as well. In more detail, there are two alternative layouts
available for browsing through the classroom students and observing their
status. By default a “seating chart” layout is displayed, where students are
represented in a form that resembles their actual seating arrangements, while
the educator can easily switch to a “list view” layout, with a rich sorting
functionality (e.g., alphabetical order, attention level order, etc.). For each
student, LECTORviewer displays useful information regarding their status, as

well as the likely reason a student is inattentive.

When the list view of the class is enabled, more functionality regarding each
individual student is displayed. For each student, additional information is
available, such as details regarding her learning style, her attention level, and
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the reason that led the system to identify that she has lost focus if that is the
case. Furthermore, in order to provide enough context to the educator, in case
of inattention or behaviors that need revision, relevant tags that reveal the
reason are available. An indicative tag is “Mobile”, which is used to annotate
the behavior of students who are not paying attention because they are looking
at their smartphones. Finally, next to each student the educator can find the
appropriate controls for enabling or disabling LECTOR’s monitoring and
intervention mechanisms for that individual. This is required in a class that is
constituted of different students with varying backgrounds, personalities,

behaviors, needs and learning patterns [116].

Additionally, a detailed log (Figure 54) is available for each classroom that
allows educators to revisit —even at a later time- LECTOR’s decisions and mark
them as accurate or not. A mini view of the log is always available at the sidebar
of the “class view”, enabling educators to observe at real time LECTOR’s
decisions without navigating to a new page. However, if needed the educator
can select to view the entire attention log, through which she can (i) confirm
or invalidate an identified student behavior, (ii) stop an active intervention and
optionally replace it with another one, and (iii) rate elapsed interventions.
Providing such information is really important for “calibrating” LECTOR with
a specific classroom environment and its students, since this process makes
the decision-making mechanisms more accurate and less prone to false
positives. This is a cumbersome task, which requires recalling various
incidents that occurred during a significant amount of time. In order to
minimize the amount of information someone has to remember,
LECTORviewer’s log is equipped with a sophisticated filtering mechanism,
while each log entry is accompanied with abundant contextual information

(e.g., timestamp, teacher’s activity at the time, etc).

Finally, on the top right of the screen important upcoming activities
concerning the current course are visible. This enables the educator to have a

quick overview of tasks that are time-critical, thus giving him the opportunity

125



to better organize the activities, while also serving as a reminder. Icons visible
next to each upcoming activity aid the fast recognition of the activity at just a

quick glance.
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Figure 54: Snapshot of LECTORviewer's detailed log.

Design Process and Heuristic Evaluation

An iterative design process was followed throughout the development
lifecycle of LECTORviewer. The first phase of this process involved the
creation of low fidelity paper prototypes exhibiting the entire functionality of
the system. These were initially assessed by three (3) Human Computer
Interaction experts during a cognitive walkthrough evaluation experiment in
order to uncover any usability errors. Firstly, the evaluators were asked to
browse through the paper prototypes and express their thoughts and
questions about the design, while two coordinators were taking notes of their
comments. Secondly, they were given a scenario with some tasks to complete
and they were asked to follow the Thinking-Aloud protocol and pinpoint any
usability-related issues that they identify. Finally, as soon as their comments
were consolidated in a single list, they were asked to grade them in terms of
severity so as to compile a prioritized list with the issues that have to be

addressed. The evaluation process uncovered various problems regarding not
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only the design of the User Interface, but also regarding the overall concept.

The major findings are summarized below:

e The functionality available to the teacher during class hour should be
limited to configuring the attention and intervention mechanisms. Other
operations could possibly overwhelm the user while they would take over
much of the teaching hour. For example, adding students to the class and
rearranging their positions should be performed during the teacher’s spare
time or, even better, a secretary should be responsible for such activities.

e The edit button was used to reveal the delete and add buttons, while the
edit screen of an item (e.g., a classroom, a student, a rule) is displayed
when clicking on its name, independently of the “edit” button, which
affects the consistency and the expected behavior of the visual interface.

e One out of three evaluators thought that the “classroom” metaphor (doors,
books, desks, board) that is used throughout the design would be
cumbersome for a teacher that uses the system on a daily basis and wants
to concentrate on important and time-critical tasks.

e All evaluators pointed out that the lists displaying the rules and
interventions should be accompanied by a rich filtering mechanism to

assist the educators in finding whatever they want quickly.

The major findings of this experiment were mostly related to the complexity
of the most frequently used screens, and secondly to the metaphors used in
the design, suggesting their refinement in order to simplify the interaction
paradigm used to execute time-critical or common functions expected to occur
on a daily basis. Subsequently, an improved vertical high fidelity interactive
prototype [117] was created integrating the feedback received and was re-
assessed by five (5) UX experts via heuristic evaluation [108] in order to test the
overall usability and address any problems before conducting a full-scale user-

based evaluation with the target audience (i.e. educators).

The problems identified through the experiment where ranked according to
their severity by the evaluators. The severity ratings range from zero (“not a
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usability problem”) to four (“Usability catastrophe”) [118] and are used to
indicate how serious each problem is and how important is to fix it. Next, the
development team ranked each problem with an ease-of-fix ranking ranging
from zero (“would be extremely easy to fix”) to three (“would be difficult to fix”)
to designate the amount of effort needed to address it. This process revealed
16 usability issues out of which 2 were ranked as cosmetic problems only, 7
were identified as minor usability problems, and the remaining 7 where
ranked as major issues, hence the most important to fix. All 16 issues have
been prioritized in the list below, with the most severe and hardest to fix

problems listed first.
Priority 3

o The extra information that is provided in the list view should also be

available in the seating chart view (ease-of-fix 1)

e There should be a summary log for each class, containing diagrams that
display how many interventions have been done during a course, and the

success rate of interventions (ease-of-fix 1)
e Itwas not clear that the pie chart of attention had filters (ease-of-fix 0)

e The percentages of the pie chart should be immediately visible without

having to hover over them (ease-of-fix 0)

e The focus of the main screen should be the students, everything else is of
secondary importance. The pie chart and buttons in the upper part of the

screen is of secondary importance and should be located elsewhere (ease-

of-fix 0)

e There should be a way to see in which mode I am viewing the class: while

the course is taking place, or not? (ease-of-fix 0)

e Instead of Enable/Disable Interventions the button should read

Enable/Disable Auto-Interventions (ease-of-fix 0)
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Priority 2

e There should not be paging in the log for the same day, for each day there

should be infinite scrolling (ease-of-fix 1)

e Instead of the label “need revision” the label “uncertain” should be used

(ease-of-fix 0)

e In the seating chart layout, there should also be a sign for where the

teacher’s desk is for orientation purposes (ease-of-fix 0)

e Since the system is a real-time one, the hour should be visible somewhere

on the interface (ease-of-fix 0)

o The messages displaying the status of a student should be clearer (ease-of-

fix 0)

e [t is not clear that the orange color represents the state that the educator

must revise the system’s decision (ease-of-fix 0)

e Itisnotclear thatthe STOP hand icon stops an active intervention (ease-of-

fix 0)
Priority 1

e Upcoming Activities are of secondary importance and should maybe be a

drawer toolbar (ease-of-fix 1)
e The title “Log” should be changed to “Reviewer” (ease-of-fix 0)

According to that list, fixing the identified issues requires minimum effort on

behalf of the developers.
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NotifEye: A Smart Watch Application for
Hosting Interventions

NotifEye is a smartwatch application able to provide subtle interventions to
both students or educators. Employing such wearable devices to act as
intervention hosts seemed natural, since in addition to indicating time they:
(i) are increasingly available to the market, (ii) are familiar to adults and
children, (iii) support notifications and reminders, and (iv) are appropriate for

private interventions.

“NotifEye for educators” (Figure 55) can be used to provide informative
interventions regarding important incidents that occur during a course. In
more detail, the application is able to display LECTOR messages , while at the
same time the watch vibrates to alert the user. For example, when the entire
classroom displays signs of inattention, NotifEye is instructed to deliver the
short yet meaningful message “CLASSROOM TIRED”, accompanied with an
exclamation mark icon. The use of self-explanatory icons that require little
effort to see and understand was imperative for an application running on a
wearable small-screen device whose target audience must not be distracted

from its main task (i.e., being a teacher).

( 10:09

NOTIFEYE Multimedia
Starting in Smart
Board

T

60%
of the students are
TIRED

OK

Dismiss
CANCEL

Figure 55: Snapshots from NotifEye for educators
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Furthermore, apart from delivering notifications, the educator’s smart watch
is used as an input device through which she can communicate useful
information to LECTOR. Specifically, when a class-wide intervention is about
to start, NotifEye displays a message asking for approval; in case the educator
rejects it, LECTOR is notified so as to increase the cancelation percentage of

the selected intervention accordingly.

Similar functionality is offered through “NotifEye for students”, which can be
used to deliver encouraging or inspiring messages to unmotivated individuals.
Moreover, the students have the opportunity to provide input directly to
LECTOR in case they find themselves mind-wandering or tired. The latter is
really important during the adjustment period where the system has to be

“calibrated” to the needs of each individual student.

Future work includes extending NotifEye to make use of smart watches’ ability
of monitoring physical activity and physiological measures in order to identify

cues of inattention [119] .
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CognitOS: A Student-Centric Working
Environment for an Attention-Aware Intelligent
Classroom

CognitOS [95] is a sophisticated web-based working environment that hosts
educational applications, which are also utilized as a channel to present
LECTOR interventions . For example, a mini-quiz application can be launched
either explicitly by a student who selects a specific exercise on her book, or
automatically when LECTOR intervenes to display a fun quiz to keep her
motivated during a reading assignment. CognitOS is deployed permanently
on the technologically augmented desks residing in the intelligent classroom,
each of which features a 27-inch multitouch-enabled All-in-One PC and
integrates various sensors (e.g., eye-tracker, camera, microphone, etc.), and

on demand on the students’ personal smartphones and tablets.

@
My Medi,
My
Book
°

B
| w
= Johnathan (“ e
smith ¥ gxcercis
- i

Figure 56: The desktop of CognitOS running on the augmented school desk.

Figure 56, presents the main working area of CognitOS (i.e., the desktop). It

follows the metaphor of an actual desk containing virtual student items (e.g.,
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books, pencils, etc.) that can be used to launch the respective applications. In

more detail, the desktop contains:

e A pile of books that offers a shortcut to the student’s collection of books.
The topmost book is always related to the current course and looks open;
the student can use it to quickly launch the book application with the
respective content.

e A pile of notebook pages that acts as a shortcut to student’s collection of
completed or pending assignments. The first page filters the assignments’
list and displays only those related to the current course.

e The personal card that displays the student’s name and provides access to
the profile application with the detailed academic record of that student.

¢ A computer monitor that can be used to launch the multimedia player for

presenting such content (i.e., pictures and videos).

« My Exercises Activity B
:. Johnathan Smith
Complete the most suitable way a), b) or c) of saying the underlined parts in sentences 1-5 in another
Grammar
1. When | was small | was not allowed to sing in the bathroom.
Grade 3

a) | was let

R b) I couldn't
Lesson 3: Self evaluation

Due 15.07.2017

c) | didn't

>

I have never been to this theater before.

a) it's never
Activity A
y O b) it was never
P ) it's the first time
Activity B -
3. We never run out of time for practice.
Activity C ') a) always have

b) sometimes walk
c) like to have

»

. I haven't seen one of her films for a long time.
a) it's a long time since I've seen
b) | have seen for a long time

c) | spent a long time to see

@

We spent a long time rehearsing for the show. Hey Johnathan! x

a) we took our time You are doing great today! Keep up the good

b) it took us a long time work!

¢)itcostalot
|l Thank Y I Dont

Figure 57: A notification appears trying to encourage a student during exercise solving
A digital educational working environment should allow students to launch
multiple applications simultaneously (e.g., digital books, dictionary, personal
documents, etc.); therefore, it requires a mechanism that decides the
placement of each newly launched application. To this end, a sophisticated

algorithm was introduced ensuring that (i) if an application displays additional
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information related to another application they will always be launched next
to each other, (ii) the application with which the user had interacted last will
remain on top and (iii) secondary applications (e.g., calendar, calculator, etc.)
will occupy less screen real-estate if more important ones are already present.
Nevertheless, in addition to automatic layout, CognitOS permits the
rearrangement of any launched applications so that each student can

customize the working environment according to his/her personal preference.

However, apart from common application management, CognitOS has the
ability to present four (4) types of interventions: notices, augmentations,
alterations and restrictions. As soon as LECTOR plans a specific intervention,
CognitOS receives a command via AmlI-Solertis to launch the appropriate
application(s). In more detail, an advanced notification mechanism is featured
for delivering appropriate messages (i.e., notice) to the students who seem
unmotivated (Figure 57), troubled or disengaged from the task at hand.
Furthermore, CognitOS features a collection of educational applications that
can be launched on demand with specific content, so as to present motivating
material. Each application is available in full- and mini-view; the latter is
employed to present auxiliary content alongside with other material (i.e.,
augmentation), while full-view applications aim to monopolize the student’s
interest (i.e., alteration). Finally, they can also get locked (i.e., restriction),
denying access to the students, when either the teacher or LECTOR deems

them irrelevant to the current activity.
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Chapter 7
Conclusions and Future Work

Conclusions

The primary goal of an AmlI environment is to help and support the people
living in it; towards this objective, it should be able to identify user needs and
act accordingly. Many research approaches and commercial tools have
focused on realizing this concept, which follow the fitting paradigm of the
trigger-action model; however, the majority of them poses several limitations
as described in Chapter 3. Specifically, the domain of education would
particularly benefit from an AmI environment able to monitor students during
their educational activities and intervene when deemed necessary to help,
support or motivate them so as to enhance the learning process. However,
despite the fact that the Intelligent Classroom has gained much attention from
researchers over the past decade, a solution that offers a generic, scalable, fast
and easy way to connect triggers with actions in the classroom context is not

currently available.

Aiming to bridge this gap, this thesis has presented a framework and an
authoring tool that support both developers and educators in defining the
behaviors (triggers) that initiate context-aware interventions (actions). This
framework equips the Intelligent Classroom with attention-aware facilities
that monitor the learners' attention levels and intervene when necessary to (i)

provide motivating activities to distracted, unmotivated or tired individuals or
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(ii) suggest alternative learning methodologies to educators that would be

beneficial for the entire classroom.

In more detail, the LECTOR framework offers a mechanism for identifying
student behaviors that require remedial actions and intervening when the
students need help or support. This mechanism relies on “if-then” rules -
created either by developers or by educators- to dictate the reaction of the
classroom environment to student-oriented stimuli. In order to ensure
scalability and simplify rules’ management, a three (3) step process for
connecting a behavior with an intervention has been introduced. In particular,
the first step requires the user to define a behavior, next the conditions under
which the behavior becomes a trigger have to be described, and during the
last step connections between a trigger and appropriate interventions are
created. This decomposition permits a behavior to be associated with multiple
triggers, and a trigger with multiple interventions that alternate depending on
the context of use, hence ensure scalability and reuse. Additionally, the fact
that a recipe connecting N behaviors with M interventions is composed by
three independent rules rather than a monolithic one, enables end-users to
easily manipulate certain parts of the recipe without affecting the others, thus
simplifying rule management and minimizing ramification. Furthermore, in
contrast to the artifact-oriented approach offered by the majority of tools that
enable end-users in creating simple recipes, LECTOR’s rule structure supports
the creation of user-oriented intervention scenarios, which harmonize with

the human-centered nature of AmI environments.

Developers and educators can easily and rapidly create the rules that describe:
(i) behaviors, (ii) triggers, and (iii) interventions through a sophisticated user-
friendly authoring tool, named LECTORstudio. The findings of the user-based
evaluation corroborate the fact that LECTORstudio permits not only computer
experts but also non-technical users to create their own scenarios and
customize LECTOR’s decision-making process according to their needs.

Despite the limitations in expressiveness of the programs stemming from the
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use of “if-then” rules, this work provides appropriate tooling and conceptual
models that create an ideal environment for users to create their own

integrations.

LECTORstudio also enables developers to integrate the building blocks (i.e.,
actors, artifacts, physical context, virtual context, interventions) necessary for
programming the classroom environment. This functionality permits LECTOR
to be scalable, easily customizable, and open to new additions (e.g., sensors,
applications, actors, environments). According to the user-based evaluation
findings, the general opinion of the evaluators was that it constitutes an
intuitive and useful tool that they would definitely use to establish the
conditions that trigger remedial actions and the respective intervention

strategies, since it minimizes the amount of work required on their behalf.

Lastly, in order to further support the targeted end-users of this environment
(i.e., students and educators), this work has also introduced three (3)
additional tools: LECTORviewer, NotifEye and CognitOS. The former two
(namely LECTORviewer and NotifEye) aim to support educators in having an
overview of the students’ attention levels and providing their input regarding
ambiguous behaviors or scheduled interventions that aim to re-engage
distracted, tired or unmotivated students. CognitOS on the other hand, is a
sophisticated web-based working environment for students that hosts a
variety of educational applications, which comprise the communication

channels through which LECTOR presents the interventions.

The potential of this framework and the encouraging results of its deployment
in the in-vitro Intelligent Classroom of ICS-FORTH raised the question of
whether it can be used to support other intelligent environments and domains
as well. The majority of current state-of-the-art approaches allow non-
technical users to express their preferences through simple “recipes” and
programs that feature rule-based conditions. LECTOR and its accompanying
authoring tools streamline such processes, therefore its generalization to

support other domains constitutes a logical extension. Additionally, the
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framework not only follows well-established state-of-the-art practices, but in
some cases it advances the way through which both developers and non-
technical users connect human- or artifact- initiated triggers to specific

context-aware actions as well. Particularly, LECTOR:

e Supports the creation of user-oriented behavior-intervention (trigger-
action) scenarios in contrast to the artifact-oriented recipes.

e Enables the definition of behaviors that combine multiple contextual
information.

e Supports the connection of N behaviors with M interventions (where N
= M).

e Permits the definition of multimodal and ubiquitous interventions.

e Provides a mechanism for assessing the efficacy of interventions.

The above functionality addresses some of the gaps identified in the related
work discussed in Chapter 3, and introduces some features that would be
beneficial for a rule-based programming environment. In order to support
such claim, both LECTOR and LECTORstudio have been deployed in the in-
vitro Intelligent Home ! of ICS-FORTH, where their potential in such
environments is being examined. Specifically, given the ambient facilities
available through the Intelligent Home, LECTOR aims to realize the scenarios

described in Appendix D.

Currently, LECTOR is also employed to support CaLmi [120], a pervasive
system that aims to reduce the stress of the inhabitants of an Intelligent Home.
In more detail, LECTORstudio is being used to create rules that (i) guide
LECTOR in identifying users that require support due to increased stress
levels, and (ii) that define the interventions (i.e., relaxation techniques) that
will be initiated depending on the situation. CaLmi employs a wristband that
collects user psychophysiological signals (i.e., EDA, HRV, ST and

accelerometer), while it utilizes various contextual data (user agenda, bank

! See http://ami.ics.forth.gr
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account transitions and current conditions) in order to better understand the
user’s daily activities and their impact on stress. As soon as a STRESS trigger is

identified, LECTOR’s IM component is able to select an appropriate stress

relief technique and create a relaxing experience (Figure 58).

Figure 58: CaLmi exposes the user to images and videos of natural environments so as to
help her relax.

From the accumulated experience it can be concluded that the LECTOR
framework can be easily generalised to contexts different from the classroom,
and can therefore provide a generic behaviour intervention mechanism in

Ambient Intelligence environments.

Future Work

Plans for future work include additional steps to fully support the initial
concept. The first step concerns the improvement of the developed frontend
tools and backend infrastructure so as to promote their evolution from in-vitro
prototypes to mature software products. Towards that direction,
LECTORstudio and LECTORviewer should be improved according to the
findings of the heuristic and wuser-based evaluation experiments.
Furthermore, full scale user-based experiments will be conducted for all tools,
including CognitOS and NotifEye, in order to acquire valuable feedback from

the actual target groups of each tool.

Additionally, an idea to empower LECTORstudio -the main tool proposed by
this thesis— would be to provide a graphical user interface through which

developers would be able to employ visual programming to provide the
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necessary code when needed. Currently, text-based programming is
supported through the AmI Solertis web-editor; however, in some cases it

would be beneficial to alternate to a graphical tool that facilitates coding.

Another valuable addition to LECTORstudio would be to permit developers to
modify the available handlebars templates, which are responsible for
translating the created rules to ‘if-then’ statements. That way, developers
would be empowered to easily fix any identified issues, or even incorporate
more elaborated reasoning mechanisms with zero changes to the framework

itself.

Regarding the LECTOR framework itself, the LEARNING component should
be able to expand its knowledge by discovering unknown activity patterns
directly from the sensed data. That way, each dynamically discovered activity
pattern would be used to define new behaviors that can be recognized and
tracked. Towards that direction, a Pattern Discovery Engine should be
introduced in order to analyze any unlabeled sensed data along with the
Virtual Context in order to find any “out of vocabulary” recurring behaviors.
However, this approach would require the active participation of end-users in
order to identify whether the discovered behaviors should be considered as

triggers or not.

Additionally, a long-term user-based evaluation experiment should be
conducted, in order to acquire valuable feedback regarding the efficacy of
LECTOR and auxiliary tools under an educational context, and their

acceptance by both students and educators.

Finally, the benefits of employing such a framework in other environments
will be further investigated. LECTOR is planned to be incorporated in
additional in-vitro simulation spaces?located at the FORTH-ICS AmlI Facility
Building, such as the Intelligent Hotel Room and the Intelligent Greenhouse.

These two entirely different environments are ideal testbeds for assessing

2 See http://ami.ics.forth.gr
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whether the framework is appropriate for general use and identifying any
shortcomings that need to be addressed before evolving LECTOR into a

generic tool.
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Appendix B
Acronyms

Aml

BR

ICT

IM

10T

IP

LC

SAL

SUS

TAP

Ul

Ambient Intelligence

Behavior Reasoner

Information and Communication Technologies
Intervention Manager

Internet of Things

Interventions’ Pool

Learning Component

Sensor Abstraction Layer

System Usability Scale

Trigger-action programming

User Interface
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Appendix C

User-Based Evaluation
Scenario Tasks

Task 1. You want to create a new behavior rule stating that:

“Independently of the current course or activity, a user is considered to be
talking when the captured sound levels from his / her microphone range
between 75-85db’.

e FEach completed step of the wizard should change the color of the circle
to something else to show that it is saving the information each step of
the way

e A next button should be available, permitting users to navigate among
the wizard steps.

e When a rule list is empty the filters should not be visible since the user
might get confused

Task 2. You want to create a new behavior rule for identifying a user with

Tachycardia.

Tachycardia is defined as “ Heart rate between 100bpm and 200 bpm signifies
Tachycardia”’
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However, the system does not integrate information about the heart rate
physiological property. Integrate this property by translating the data received

from the HearRateService, and populating an attribute named Rate.

Now try to insert the tachycardia rule.

Task 3. Based on the behavior that you modeled on step 1 (TALKING), you

want to create a trigger rule:

“Excluding the music course, in every other case a student is considered to be

chatting when the teacher is talking, and he /she is talking or whispering”.

Task 4. Similarly, you want to create a trigger rule that fires when the entire

classroom is affected:

“Excluding the music course, in every other case the entire classroom is
considered to be chatting when the teacher is talking, and the 30% of students

are talking or whispering”.

Task 5. You want to update the actor student and add to the monitored

behaviors the behavior Tachycardia that you created before.

Task 6. You want to integrate the following artifact to act as an intervention

host:

Student’s Watch (Type: WATCH, Service: VibrationService)

Task 7. Now, integrate the “encourage student” application that runs on the
student’s watches and acts as an intervention.

When employing this intervention the teacher can modify the frequency
(times / hour) of the messages that the application delivers as well as the

appearance duration (secs) of each message.

Task 8. Finally, create the following intervention rule:
“Ifthe entire classroom is chatting, send an alarm to the teacher’s watch, start
a multimedia presentation with content related to the courses syllabus and

dim the classroom lights to 20%.”
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Appendix D

Motivating Scenarios for the
Intelligent Home Use Case

Domestic Life

This scenario describes the activities of a three-member family in their
intelligent home, from the time they wake up in the morning until they go to
work and school. The family members are (i) John (father), who works at a big
firm near his home, (ii) Mary (mother), who is unemployed, and (iii) Jimmy,

who is an elementary school student.

On Monday at 7:00 the alarm in the parents’ bedroom notifies them to wake
up. However, five minutes later the system identifies that everyone is still
asleep; given that it is a working day and it is important to get up in time, the
system intervenes by turning on the radio and opening the blinds so as to let
natural light into the room. Mary quickly realizes that they have overslept; she
nudges John and gets out of bed immediately so as to wake up Jimmy too. John
heads to the bathroom to shave and brush his teeth. At this point, the system
knows that since they didn’t wake up in time, John has limited time to drop
Jimmy at school before going to work; hence as soon as he starts shaving the
“smart mirror” displays information regarding the traffic towards Jimmy’s
school. This helps John to select the most appropriate route, avoiding jammed

roads.
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At the same time, Mary is at the kitchen preparing breakfast for Jimmy. Since
today Jimmy has limited time available before leaving for school, the system
suggests to Mary to make cereal, which require less preparation time
compared to his regular breakfast, namely omelet. As soon as Jimmy finishes

up his breakfast, father and son leave the house at around 8:00 AM.

Now that Mary is alone at the house, she finds the time to review her notes for
a job interview that she has to attend at 9:30AM. Unfortunately, she starts
becoming worried about the interview; the system, being aware of her schedule,
suggests to take some time to do some yoga exercises in order to relieve her
stress. Mary, knowing that there is enough time to exercise and to get ready

for the interview she accepts that intervention.

Ambient Assisted Living

This scenario describes the activities of Mary’s mother, Helen, in her
intelligent home. Helen is 70 years old and leaves alone, which is quite
challenging considering that she suffers from arthritis and owns a wheelchair

to help her move around the house.

Yesterday, Helen visited her physician for her scheduled arthritis injections.
Surprisingly, this morning she wakes up being unable to bend her knees and
consequently she cannot get on her wheelchair. The system understands that
Helen is awake for some time but does not get of the bed. Given that Mary is
probably on the way to her interview, the system decides to inform Helen’s
secondary caregiver, her son George. In the meanwhile, in order to help Helen
feel calm, the bedroom speakers play a message saying that George has been
notified. As soon as George receives a text message explaining the situation,
he immediately decides to visit his mother; indeed, Helen is still in bed and
explains to him that she cannot move by herself. George calls her physician,
who calms him down explaining that this is a common phenomenon after

knee injections, and suggests that Helen takes a specific medication. Before
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hanging up, the physician reminds George that his mother should not skip her

rehabilitation exercises.

George, before returning home, helps his mother in getting in the wheelchair
and informs her about the physician’s advices. Helen, continues her daily
activities but seems to ignore the system’s suggestions for exercising. Getting
off the chair and walking a short distance, is really important for an
individual with Helen’s condition. To this end, as soon as the system realizes
that she has deviated from her rehabilitation routine, a text message is sent

to her physician and her caregivers.
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