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Abstract 

The primary goal of an AmI environment is to help and support the people 

living in it; towards that objective it should be able to identify a user need and 

act accordingly. Many research approaches and commercial tools have 

focused on realizing this concept, which follows the paradigm of the trigger-

action model; however, the majority of them poses several limitations (e.g., 

one trigger can be connected to a single action, artifact-oriented triggers 

mainly). The domain of education would particularly benefit from an AmI 

environment able to monitor students during their educational activities and 

intervene when deemed necessary to help, support or motivate them so as to 

promote the learning process. Nevertheless, despite the fact that the concept 

of the Intelligent Classroom has gained much attention from researchers over 

the past decade, none of the approaches proposed so far offers a generic, 

scalable, fast and easy way to connect triggers with actions.  

Aiming to bridge this gap, this thesis presents a framework and an authoring 

tool that support both developers and educators in defining the behaviors 

(triggers) that lead to context-aware interventions (actions). Following an 

extensive literature review and an iterative elicitation process –based on 

multiple collection methods such as brainstorming, focus groups, observation 

and scenarios– the high-level functional and non-functional requirements that 

both the framework and authoring tool should satisfy were identified.  Based 

on those findings, this work aims to equip the Intelligent Classroom with 

mechanisms that monitor the learners' attention levels and intervene, when 

necessary, to (i) provide motivating activities to distracted, unmotivated or 

tired individuals or (ii) suggest to educators alternative methodologies which 

would be beneficial for the entire classroom.  

In more detail, the LECTOR framework offers a mechanism for identifying 

student behaviors that require remedial actions and intervening when the 
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students need help or support. This mechanism relies on “if-then” rules -

created either by developers or by educators- to define the behavior of the 

classroom environment.  In order to ensure scalability and simplify rules’ 

management, a three (3) step process for connecting a behavior with an 

intervention was introduced. In more detail, the first step requires the user to 

define a behavior, next the conditions under which the behavior becomes a 

trigger have to be described, and during the last step connections between a 

trigger and appropriate interventions are created. This decomposition 

permits a behavior to be associated with multiple triggers, and a trigger with 

multiple interventions that alternate depending on the context of use. 

Furthermore, in contrast to the artifact-oriented recipes that are currently 

supported by the majority of such tools, LECTOR’s rule structure supports the 

creation of user-oriented intervention scenarios. 

Furthermore, LECTOR introduces a sophisticated authoring tool, named 

LECTORstudio, which aims to support both developers and educators in 

creating rules that describe behaviors, triggers, and interventions. However, 

since developers require further assistance in order to integrate the 

appropriate building blocks necessary for programming the AmI environment 

(e.g., actors, context, interventions), LECTORstudio also provides such 

functionality through intuitive user interfaces. 

Lastly, in order to further support the targeted end-users of the Intelligent 

Classroom environment (i.e., students and educators), this work also features 

three (3) additional tools:  LECTORviewer, NotifEye and CognitOS. The former 

two (namely LECTORviewer and NotifEye) aim to support educators in having 

an overview of the students’ attention levels and providing their input 

regarding ambiguous behaviors or scheduled interventions that aim to re-

engage distracted, tired or unmotivated students. CognitOS on the other hand, 

is a sophisticated web-based working environment for students that hosts a 

variety of educational applications, which constitute the communication 

channels through which LECTOR presents the interventions.
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Περίληψη 

Ο πρωταρχικός στόχος ενός περιβάλλοντος Διάχυτης Νοημοσύνης (ΔΝ) είναι 

να βοηθά και να υποστηρίζει τους ανθρώπους που ζουν και κινούνται μέσα σε 

αυτό. Για αυτό το λόγο, ένα τέτοιο περιβάλλον θα έπρεπε να μπορεί να 

αναγνωρίσει τις ανάγκες των χρηστών του και να αντιδρά κατάλληλα για να τις 

ικανοποιήσει. Αυτή η ιδέα δεν είναι καινούρια, πολλές ερευνητικές μελέτες 

αλλά και εμπορικά εργαλεία έχουν προσπαθήσει να την υλοποιήσουν 

ακολουθώντας το διαδεδομένο μοντέλο «έναυσμα-δράση» (trigger-action). 

Ωστόσο, οι περισσότερες από αυτές τις προσεγγίσεις έχουν αρκετά 

μειονεκτήματα όπως το γεγονός ότι ένα έναυσμα (trigger) μπορεί να οδηγήσει 

σε μία και μόνο δράση (action) ή την απαίτηση τα περισσότερα εναύσματα 

(triggers) να προέρχονται από συγκεκριμένες καταστάσεις συσκευών και όχι 

από ανθρώπινες ενέργειες.   

Ο τομέας της εκπαίδευσης θα επωφελούνταν τα πλείστα από ένα περιβάλλον 

Διάχυτης Νοημοσύνης που έχει τη δυνατότητα να παρακολουθεί τους μαθητές 

κατά τη διάρκεια των εκπαιδευτικών τους δραστηριοτήτων και να επεμβαίνει –

όταν κριθεί απαραίτητο– για να τους βοηθήσει και να τους υποστηρίξει 

υποβοηθώντας με αυτόν το τρόπο την διαδικασία μάθησης. Παρόλο που η ιδέα 

της Έξυπνης Τάξης βρίσκεται ήδη αρκετά χρόνια στο προσκήνιο, καμία από τις 

έως τώρα διαθέσιμες προσεγγίσεις δεν προσφέρει ένα γενικό, επεκτάσιμο, 

γρήγορο και εύκολο τρόπο να συνδέονται εναύσματα (triggers) με δράσεις 

(actions). 

Προσπαθώντας να καλύψει αυτό το κενό, αυτή η διατριβή παρουσιάζει μία 

υποδομή (framework) και ένα εργαλείο συγγραφής (authoring tool) για να 

διευκολύνει τους προγραμματιστές αλλά και τους εκπαιδευτικούς να συνδέσουν 

συμπεριφορές μαθητών (εναύσματα) με παρεμβάσεις (δράσεις). Ακολουθώντας 

μία εκτενή βιβλιογραφική έρευνα και μία επαναληπτική διαδικασία συλλογής 

πληροφοριών –βασισμένη σε πολλές μεθόδους όπως κατιδεασμός, ομάδες 
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εστίασης, παρατήρηση και κατασκευή σεναρίων– αναγνωρίστηκαν οι βασικές 

λειτουργικές και μη-λειτουργικές απαιτήσεις του συστήματος. Έχοντας ως βάση 

αυτά τα ευρήματα, αυτή η εργασία στοχεύει να εξοπλίσει την Έξυπνη Τάξη με 

μηχανισμούς που παρακολουθούν τα επίπεδα προσοχής των μαθητών και 

επεμβαίνουν όταν είναι απαραίτητο για: (α) να παρέχουν συναρπαστικές 

δραστηριότητες σε μαθητές που έχουν χάσει το κίνητρο να συμμετέχουν ή έχουν 

κουραστεί ή έχουν αποσπαστεί από τις τρέχουσες δραστηριότητες, ή (β) να 

προτείνουν εναλλακτικές μεθοδολογίες στους καθηγητές για να τα κερδίσουν 

την προσοχή του συνόλου των μαθητών της τάξης.  

Συγκεκριμένα, η υποδομή LECTOR προσφέρει έναν μηχανισμό που 

χρησιμοποιεί τις τεχνολογίες που υπάρχουν ήδη στην Έξυπνη Τάξη για να 

αναγνωρίζει συμπεριφορές μαθητών που απαιτούν επανορθωτικές ενέργειες και 

να επεμβαίνει όταν οι μαθητές χρειάζονται βοήθεια ή υποστήριξη. Αυτός ο 

μηχανισμός βασίζεται σε κανόνες της μορφής «if-then» –που έχουν 

δημιουργηθεί είτε από προγραμματιστές είτε από εκπαιδευτικούς– για να ορίσει 

τη συμπεριφορά του περιβάλλοντος της τάξης. Επιπλέον, εισάγεται μία 

διαδικασία τριών (3) βημάτων για τη σύνδεση συμπεριφορών και παρεμβάσεων. 

Αρχικά απαιτείται ο ορισμός των συμπεριφορών, στη συνέχεια ο ορισμός των 

συνθηκών κάτω από τις οποίες μία συμπεριφορά αποτελεί έναυσμα για 

παρέμβαση, και τέλος η σύνδεση των συμπεριφορών με τις κατάλληλες 

παρεμβάσεις. Αυτός ο κατακερματισμός επιτρέπει μια συμπεριφορά να συνδεθεί 

με πολλαπλά εναύσματα (triggers), και ένα έναυσμα με πολλαπλές παρεμβάσεις. 

Επιπλέον, ένα ακόμα χαρακτηριστικό των κανόνων που μπορούν να 

δημιουργηθούν είναι ότι υποστηρίζουν τη δημιουργία ανθρωποκεντρικών και 

όχι συσκευο-κεντρικών σεναρίων, εν αντιθέσει με τους κανόνες που ήδη 

υποστηρίζονται από την πλειοψηφία των σχετικών εργαλείων. 

Επιπροσθέτως, ο LECTOR προσφέρει ένα εργαλείο συγγραφής (authoring tool) 

που ονομάζεται LECTORstudio και στοχεύει να βοηθήσει τόσο τους 

προγραμματιστές όσο και τους εκπαιδευτικούς να δημιουργούν κανόνες που 

περιγράφουν συμπεριφορές, εναύσματα, και παρεμβάσεις. Ωστόσο, επειδή οι 
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προγραμματιστές χρειάζονται επιπλέον εργαλεία για να ενσωματώσουν τα 

δομικά στοιχεία που είναι απαραίτητα για τον προγραμματισμό του 

περιβάλλοντος της Έξυπνης Τάξης (π.χ., πλαίσιο χρήσης, παρεμβάσεις, 

συσκευές παρουσίασης παρεμβάσεων), το LECTORstudio προσφέρει την 

κατάλληλη λειτουργικότητα μέσα από εύχρηστες γραφικές διεπαφές. 

Τέλος, έχοντας ως στόχο την υποστήριξη των τελικών χρηστών της Έξυπνης 

Τάξης (δηλ. των μαθητών και των εκπαιδευτικών), αυτή η εργασία προσφέρει 

επιπλέον τρία (3) εργαλεία: LECTORviewer, NotifEye και CognitOS. Τα δυο 

πρώτα (LECTORviewer και NotifEye) έχουν ως στόχο να προσφέρουν στους 

εκπαιδευτικούς τη δυνατότητα εκτενούς εποπτείας των εναυσμάτων που 

ανιχνεύονται από τον LECTOR και έκφρασης της δικής τους εκτίμησης για 

διφορούμενες συμπεριφορές ή για παρεμβάσεις που πρόκειται σύντομα να 

ξεκινήσουν. Τέλος, το CognitOS αποτελεί ένα περιβάλλον εργασίας για μαθητές 

το οποίο, μεταξύ άλλων, φιλοξενεί πλήθος εκπαιδευτικών εφαρμογών που 

χρησιμοποιούνται από το LECTOR ως τα κανάλια παρουσίασης και εφαρμογής 

παρεμβάσεων.  
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Chapter 1 

Introduction 

General Objective 
“Ambient Intelligence (AmI) is about sensitive, adaptive electronic 

environments that respond to the actions of persons and objects and cater for 

their needs”.   

Aarts & Wichert [1] 

The above definition highlights the human-oriented nature of AmI 

environments, whose primary goal is to satisfy the needs of the people living 

in them. Towards that objective, an AmI environment should be able to 

recognize the users in it, understand their needs, identify their behavior, and 

act and react in their interest.  Fundamentally, this process entails two basic 

steps (i) identifying a user need and, (ii) acting accordingly; this simplification 

reveals similarities with the trigger-action model [2]–[4], which in the recent 

years has been in the spotlight as a form of programming AmI environments, 

using simple “if trigger, then action” rules. 

Currently, there is an abundance of commercial tools that permit not only 

developers, but non-technical users as well to program their environment. 

However, the majority of them focuses on triggers originating from physical 

artifacts rather than human behaviors, while they also present several 

constraints concerning the extensibility and scalability of the rules that can be 

created. Furthermore, despite the fact that the Intelligent Classrooms already 
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foster a variety of AmI technologies, currently there is no easy way to combine 

them and create custom trigger-action scenarios.   To this end, this work 

proposes a framework and a sophisticated authoring tool that advances the 

way through which both developers and educators create the conditions that 

dictate how certain human-oriented behaviors lead to context-aware 

interventions, and applies such framework in the context of the intelligent 

classroom.  

Motivation & Vision 
Ambient Intelligence (AmI) environments [1] are expected to transparently 

interact with the users either passively, by observing and trying to interpret 

their actions and intentions, or actively by learning users’ preferences and 

adapting their behavior accordingly to improve the quality of life. Particularly, 

according to [5]  “AmI is a user-centric paradigm, it supports a variety of 

artificial intelligence methods and works pervasively, non-intrusively, and 

transparently to aid the user”. In order to be able to act as described, the 

architecture of an AmI Environment should consist of four main layers [6], 

namely: (i) Sensing, (ii) Networking, (iii) Perception and Reasoning, and (iv) 

Acting. It is obvious that such environments evolve around the needs of their 

users and their main objective is to act in an appropriate manner when 

deemed necessary. Indeed, providing the right type of help or support as soon 

as the user needs it, is imperative in many application domains such as 

Ambient Assisted Living (AAL), eHealth, Domestic Life, Learning and 

Education, etc.   

The domain of AAL is already benefited s from a large number of systems 

aiming to facilitate independent living for the elderly and people with 

disabilities. Indicatively, over the past few years many researchers have 

focused on creating reliable fall detection systems, which in case of 

emergency notify the emergency-personnel, care-takers, and/or family 

members [7]–[9]. Similarly, in the case of eHealth, many applications are 

being designed to provide assistance under various situations, including 
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diabetes [10], asthma [11], obesity [12], [13], smoking cessation [14], stress 

management [15], [16], and depression treatment [17]; most of these 

approaches are able to provide specific remedial actions (e.g., automated real-

time educational and behavioral messaging) as soon as an irregularity is 

identified.  

In the case of domestic life, the advancement of Internet of Things (IoT) [18] 

in combination with cloud computing [19] has led to an abundance of web-

enabled devices and services for smart homes [20]. In such environments, 

individual users in their everyday lives interact frequently with various smart 

artifacts in conjunction; for that reason, smart homes became the most 

popular testbed for creating automated tasks based on the preferences, needs 

and daily routines of their inhabitants. Developers can manipulate the 

intelligent facility of a smart home to create useful integrations (e.g., “if 

nobody is at home, turn off all unnecessary electronic devices”, “Save to 

Dropbox all attachments from incoming emails”). However, a new type of 

programming environment is emerging that allows non-technical users to 

specify their own logic over the simple, yet effective trigger-action model [21]–

[27]. Through such environments, users can define triggers (e.g., “if 

temperature falls below 18oC”) that initiate specific actions (e.g., turn on the 

heating) when their conditions are met, thus automating common tasks.  

Programming the behavior of smart homes came quickly to the spotlight and 

an increasing number of solutions appeared, enabling people without 

programming experience to create their own configurations. However, that is 

not the case for domains where triggers go beyond simple sensor readings and 

actions play the role of interventions rather than mere automations (e.g., AAL, 

eHealth, Education). For example, in a classroom environment a student 

“talking” should not trigger a remedial action immediately. On the contrary, 

other contextual information (e.g., “the fact that teacher is talking”, “there is 

an ongoing exam”) should be taken into consideration before reaching a 

conclusion.  
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In the context of this work, the notion of behavior seems more appropriate for 

describing the triggers that originate from or revolve around human activities.  

According to [28], in the domains of biology, chemistry, physics and 

psychology the word behavior is defined as “the way that a person, an animal, 

a substance, etc. behaves in a particular situation or under particular 

conditions”. In addition, taking into consideration the user-oriented nature of 

AmI, the term intervention (“involvement in a difficult situation in order to 

improve it or prevent it from getting worse”  [29]) seems more appropriate for 

describing the actions that the environment undertakes to support its users.  

Furthermore, since AmI environments are expected to behave intelligently 

and adapt their behavior according to user needs [5], any intervention should 

be selected carefully and be delivered in a ubiquitous manner based on the 

current context.  Consider the following example where during a Physics 

course many students (60% of the classroom) show signs of tiredness; since a 

large percentage of the classroom is affected, the system should be able to 

select an intervention that targets a group of people and display it on a public 

artifact such as the classroom board. 

The domain of Education would particularly benefit from an ambient system 

that monitors the learners' attention levels and intervenes, when necessary, to 

(i) provide motivating activities to distracted, unmotivated or tired individuals 

or (ii) suggest alternative learning methodologies to educators, which would 

be beneficial for all students. External stimuli such as pictures and sounds or 

internal stimuli such as personal thoughts usually distract learners during a 

course. Additionally, feelings of fatigue (i.e., Drowsiness and Falling Asleep), 

which are a common phenomenon inside a traditional classroom 

environment, could directly affect the behavior of a student.  Observing 

student behaviors can reveal such attention lapses; hence, a system that is able 

to initiate appropriate interventions when needed seems essential. Despite the 

fact that AmI has already permeated the classroom environment, there is 
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currently no support for linking identified behaviors with interventions, nor 

for educators to create their own integrations. 

These observations nurtured the idea of a framework that supports both 

developers and educators in defining the conditions under which certain 

behaviors lead to context-aware interventions, via a user-friendly 

programming environment. In more detail, the envisioned framework aims 

to:  

 Support the rapid creation of user-oriented behavior-intervention 

(trigger-action) scenarios in contrast to the artifact-oriented recipes 

that are currently supported by the majority of IFTTT-style tools [21], 

[27]. 

 Enable behavior modelling by combining multiple contextual 

information. 

 Support the connection of N behaviors with M interventions.  

 Permit the definition of multimodal and ubiquitous interventions.   

 Provide a mechanism for assessing the efficacy of interventions.   

The approach 
This thesis introduces LECTOR, a framework responsible for (i) monitoring 

the Intelligent Classroom environment, (ii) detecting student behaviors that 

require remedial actions (e.g., inattentive behaviors), and (iii) selecting 

appropriate interventions in order to help or support them throughout the 

educational process. 

LECTOR exploits the potential of AmI technologies to observe student 

behaviors (SENSE), identify whether they require remedial actions (THINK) 

and intervene accordingly -when deemed necessary- in order to fulfill their 

needs (ACT). According to cognitive psychology, the sense-think-act cycle 

stems from the processing nature of human beings that receive input from the 

environment (perception), process that information (thinking), and act upon 

the decision reached (behavior) [30]. This identified pattern constitutes the 
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base for many design principles regarding autonomous agents and traditional 

AI [31]. 

Furthermore, the SENSE-THINK-ACT model is extended here by introducing 

the notion of LEARN. The fact that the nature of this system enables 

continuous observation of behaviors creates the foundation for a mechanism 

that provides updated knowledge to the decision-making components. In 

more detail, the LEARN-ing mechanism is able to (i) incorporate knowledge 

provided by end-users in order to disambiguate identified behaviors and 

assess the acceptance of an intervention, and (ii) auto-rank the suggested 

interventions according to their efficacy. 

In order to support both developers and educators in defining the conditions 

under which certain behaviors lead to context-aware interventions, LECTOR 

features a sophisticated tool, named LECTORstudio. Since the decision-

making mechanisms of LECTOR rely on rule-based conditions, LECTORstudio 

supports the creation of three (3) types of rules:  

I. Rules that “model” a behavior5 based on physical context3.   

II. Rules that “model” the triggers6 based on the behavior5 of actors1 

under specific virtual context4. 

III. Rules that describe the conditions (triggers6 and virtual context4) 

under which an intervention7 is initiated on a specific intervention 

host2. 

Even if this decomposition increases the number of steps that a user must 

complete in order to connect a trigger to an intervention, it offers scalability 

and better rule management. In particular, the three ingredients (i.e., 

behavior, trigger, intervention) are defined in isolation and are only 

connected in terms of their outcome. Therefore, an ingredient can be 

modified independently of the others and as long as its outcomes remain the 

same, no more adjustments will be required for the system to continue to 

operate as prior to the change. This approach not only minimizes unwanted 
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ramifications, but also facilitates collaboration as new rules can be easily 

created by different users given that their “connection points” will always be 

their outcomes. This is inspired by how an Application Programming Interface 

(API) simplifies programming and enables computer programs to evolve 

independently by abstracting the underlying implementation and only 

exposing objects the developer needs. 

The core concepts of this rule-based approach are explained below: 

1. Actors are the (groups of) users of the intelligent environment whose 

behavior needs to be monitored in order to decide whether an 

intervention is required (i.e., student, teacher and classroom).  

2. Intervention hosts can either launch an application with specific 

content or control the physical environment. They are: (i) common 

computing devices such as smartphones, tablets, and laptops or (ii) 

technologically augmented everyday physical objects (e.g., interactive 

white boards, smart lamps, etc.), or (iii) custom made items (e.g., 

student desk).  

3. The physical context encapsulates information regarding physically 

observable phenomena via sensors (e.g., luminance, heart rate, sound 

levels, etc.). 

4. The virtual context refers to any static or dynamic information that is 

provided through software components (e.g., student profiles, course 

schedule).  

5. Behavior is a model that represents the actions of an actor (e.g., a 

student talks, a teacher is walking). 

6. Trigger is the model of a high level behavior that can initiate an 

intervention. 

7. Interventions are the system-guided actions that aim to help or support 

students during the educational process. 

In order to support the creation of such rules in the Intelligent Classroom 

environment, LECTORstudio permits developers to integrate the necessary 
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building blocks (i.e., actors, intervention hosts, physical context, virtual 

context, interventions).  

Contribution 
The primary contributions of this thesis are:  

A. Mechanisms that empower the Intelligent Classroom to: (i) identify 

behaviors that require remedial actions by taking advantage of its AmI 

facilities and (ii) intervene when students need help or support.  

B. A user-friendly authoring tool for supporting both educators and 

developers in creating –in a rapid and easy way– the conditions under 

which certain behaviors lead to context-aware interventions. 

Specifically, users guide the generation of “if-then” rules that dictate the 

behavior of the Intelligent Classroom.   

Secondary contributions are the following:  

 A three (3) step process for connecting behaviors with interventions; this 

decomposition, permits a behavior to be associated with many triggers and 

a trigger with many interventions, depending on the context of use. In 

more detail, the first step is to define a behavior, next the conditions under 

which the behavior becomes a trigger have to be described, and the last 

step is to create a connection between a trigger and an intervention.  

 A rule structure that supports the creation of user-oriented behavior-

intervention scenarios in contrast to the artifact-oriented recipes that are 

currently supported by the majority of IFTTT-style tools. 

 Appropriate infrastructure that enables evaluation of system decisions, 

depending on user input to (i) invalidate identified behaviors, and (ii) 

override system suggestions in case they do not serve their needs. 

 A user-friendly authoring tool that enables developers to integrate the 

building blocks (i.e., actors, intervention hosts, physical context, virtual 

context, interventions) that are required for programming the Intelligent 

Classroom.   
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 Auxiliary tools were also created to serve the needs of educators and 

students. 

Thesis Outline  
The rest of this thesis is organized in the following way:  

 Chapter 2 presents a literature review that aims to (i) examine the state-

of-the-art technology that concentrates on monitoring human 

attention, (ii) reveal methodologies for detecting human behaviors, and 

(iii) identify widely accepted techniques, appropriate for resetting the 

students' attention during lectures. 

 Chapter 3 reviews the related work regarding trigger-action 

programming. 

 Chapter 4 introduces several scenarios that motivated this work and 

outlines the functional and non-functional requirements of the 

proposed framework. 

 Chapter 5 describes the System Architecture in details. 

 Chapter 6 describes the functionality and user interface of the offered 

authoring tool. Furthermore, it explains in details the functionality of 

three (3) auxiliary tools which were created to serve the needs of 

educators and students. 

 Chapter 7 concludes the thesis with a summary of the results and a 

discussion on possible future directions. 
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Chapter 2 

Background Theory 

Chapter 2 presents a literature review that aims to (i) examine the state-of-the-

art technology that concentrates on monitoring human attention, (ii) reveal 

methodologies for detecting human behaviors, and (iii) identify widely 

accepted techniques, appropriate for resetting the students' attention during 

lectures. 

Particularly, the survey’s findings have significantly contributed to: 

A. The creation of a proper knowledge base that aids LECTOR in 

appropriately identifying inattentive behaviors and providing suitable 

interventions (Chapter 5) 

B. The formulation of the framework’s core concepts (Chapter 5) 

C. The definition of the requirements of LECTOR framework (Chapter 4) 

Interactive technology in the classroom 
In the recent past there has been growing interest in how computers and the 

Internet can improve the efficiency and effectiveness of education at all levels. 

Information and communication technologies (ICTs) are acknowledged as 

potentially powerful tools for educational change and reform. When used 

appropriately, different ICTs are claimed to help expand access to 

information, strengthen the relevance of education to the increasingly digital 
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workplace, and raise educational quality by, among others, helping make 

learning and teaching an engaging, active process connected to real life [32]. 

The students benefit particularly from the use of ICTs in education, since 

access to educational information is unlimited, the learning environment is 

enriched, collaboration is promoted, and motivation to learn is enhanced [33]. 

In the recent past, learning with the use of ICT was strongly related to concepts 

such as distance learning [34], educational games [35], intelligent tutoring 

systems and e-learning applications [36]. 

The notion of intelligent classrooms has become prevalent in the past decade 

[37]. Smart classroom is used as an umbrella term, meaning that classroom 

activities are enhanced and augmented through the use of pervasive and 

mobile computing, sensor networks, artificial intelligence, robotics, 

multimedia computing, middleware and agent-based software [38]. Following 

the rationale of augmented technology in the educational environments, new 

means of interaction - such as interactive whiteboards, touch screens and 

tablet PCs - have gained popularity and have become a major tool in the 

educational process, allowing more natural interaction. Smart classrooms, for 

example, may support one or more of the following capabilities: video and 

audio capturing in classroom [39], automatic environment adaptation 

according to the context of use (such as lowering the lights for a presentation) 

[40], lecture capturing enhanced with the instructor's annotations, delivery of 

personalized content [41] and information sharing between class members. 

However, inside a classroom environment, students get distracted from 

educational activities either by internal stimuli (e.g., thoughts and attempts to 

retrieve information from memory) or external stimuli (e.g., pictures, 

sounds); hence they might not always be "present" to take advantage of all the 

benefits that an intelligent classroom has to offer. This observation highlights 

the need of a mechanism that monitors the learners, identifies inattentive 

behaviors and intervenes to appropriately reset attention levels. 
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Attention and Education 
Attention is defined in psychology as the cognitive process of selectively 

concentrating on one aspect of the environment while ignoring other things; 

an indicative example is when listening carefully to what someone is saying 

while ignoring other conversations in a room. In other words, attention means 

focusing the consciousness on a stimulus or a range of stimuli by 

preferentially responding to them.  

Attention is very often considered as a fundamental prerequisite of learning, 

both within and outside the classroom environment, since it plays a critical 

role in issues of motivation and engagement [42]. Obtaining and maintaining 

the students' attention is an important task in classroom management, and 

teachers apply various techniques for this purpose, however currently no 

technological support is available to monitor attention levels of students and 

assist teachers in obtaining optimal attention for the task at hand.  

According to Packard [43], "classroom attention" refers to a complex and 

fluctuating set of stimulus-response relationships involving curriculum 

materials, instructions from the teacher and some prerequisite student 

behaviors (e.g., looking, listening, being quiet, etc.). Such behaviors can be 

rigorously classified as "appropriate" and "inappropriate" [44]. Appropriate 

behaviors include attending to the teacher, raising hand and waiting for the 

teacher to respond, working in seat on a workbook, following in a reading text, 

while inappropriate behaviors include (but are not limited to) getting out of 

seat, tapping feet, rattling papers, carrying on a conversation with other 

students, singing, laughing, turning head or body toward another person, 

showing objects or looking at another class mate. Some of the above behaviors 

would be in fact disruptive to some educational activities. However, the 

students should not be forced to spend their whole day not being children, but 

being quiet, docile, and obedient "young adults" [45]. On the contrary, learning 

can take place more effectively if students’ curiosity, along with their desire to 

think or act for themselves, remains intact. 
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The application of LECTOR in the intelligent classroom does not target to 

creating a system obsessed with silence and lack of movement. On the 

contrary, an intriguing challenge is to disambiguate behaviors that could also 

be indicative of attempts to maintain attention. For instance, students looking 

around the classroom or looking away from their notes could be thinking 

about the material that the instructor is presenting, and fidgeting could be an 

attempt to increase arousal [46]. To this end, the decision-making processes 

for identifying attention vs. inattention should take into consideration the 

behavioral norms of each student before reaching any conclusions (e.g., a 

student doodling while thinking). Furthermore, since students who are 

motivated and sufficiently aroused can sustain prolonged attention [46], the 

main goal of the system is to motivate the students in becoming engaged in the 

learning activities so as to benefit most from the knowledge that the teacher 

and the ICTs have to offer. 

How long do students pay attention? 
As passive listeners, people generally find it difficult to maintain a constant 

level of attention over extended periods of time, while pedagogical research 

reveals that attention lapses are inevitable during a lecture. McKeachie [47] in 

his book on tips for lecturers, suggests that student attention will drift during 

a passive lecture, unless interactive strategies are used to hold student 

attention. This belief is corroborated by [48] that supports that student 

concentration decays in the same way during a passive lecture as does that of 

a human operator monitoring automated equipment, with serious 

implications for learning and performance. Bligh [49], in his book about how 

to lecture, advises that students are not likely to pay close attention to a lecture 

in the first 5 minutes, while they are settling down, nor during the last 5 

minutes, when their attention rises and falls. Similarly, Sousa [50] suggests 

that students' processing of information during a lecture is dependent upon 

their motivation. The more motivated students pay attention longer than the 

less motivated. He suggests that unmotivated students pay attention for an 
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average of 10-20 min, which means that a teacher may see the beginning 

effects of attention decline after 10 minutes of lecturing. The estimation that 

attention degrades after 10 to 30 minutes on task has found support in several 

other studies [51]–[53]. 

However, experimental studies [54], [55] reveal that, unlike common belief 

[49], [50] students do not pay attention continuously for 10-20 minutes during 

a lecture. Instead, their attention alternates between being engaged and non-

engaged in ever-shortening cycles throughout a lecture segment. This 

observation highlights the need for techniques that estimate students' 

attention lapses in real time. 

Monitoring User Attention 
There is a well-established body of research on monitoring human attention 

to determine users' vigilance, concentration level and visual focus of attention. 

Traditional approaches mainly focus on attention monitoring during 

interaction with computer-based applications, where the collected data are 

used either as diagnostic tools or as indications that additional actions should 

be taken to facilitate the task at hand.  

Recent approaches are significantly influenced by the emergence of the 

Ambient Intelligence (AmI) paradigm and the concept of disappearing 

computing, and focus on real world activities (e.g., viewing exhibits in a 

museum, shopping, attending a meeting, driving, etc.), where the attention 

stimuli might be anywhere and the subjects might move unrestrictedly. The 

aforementioned approaches aim to facilitate a broad spectrum of human 

activities by: 

• Analyzing statistical data that represent the user's visual fixations 

• Adapting application content (e.g., learning material) based on user 

preferences and needs 

• Suggesting actions based on users cognitive behavior (e.g., 

remediation) 
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• Interpreting attention as an input modality (e.g., human-robot 

interaction) 

• Restoring user's vigilance in critical situations (e.g., driving) 

From a technical point of view, various solutions are employed. Eye tracking 

is one of the most widely used methods to provide evidence of user's attention, 

since gaze is considered to be a good indicator of a person's attention on 

external objects. However, in open spaces where users' mobility is 

unconstrained, gaze trackers are not that accurate. As an alternative, based on 

the fact that humans pay attention to an external object by orienting 

themselves towards that object to have it in the center of their visual field [56], 

head pose tracking and laser-based orientation scanning are used to estimate 

the user's direction.  

To improve accuracy, many studies augmented gaze-tracking techniques with 

additional cues like sound and context information. According to [56], objects 

which draw a person's attention can be external stimuli (e.g., pictures, sounds, 

etc.). Indicative examples that realize such concepts are discussed in [56], 

where the authors tried to predict at whom a person is looking based on who 

is/was speaking, and in [57] and [58], where content information (e.g., what is 

the next task in the list of pending tasks) is used to predict the visual focus of 

attention. 

The next paragraphs report on state-of-the-art attention monitoring 

technologies and their application in laboratory and real-world scenarios. 

In [59] the authors focus on real-world attention levels. Trying to clarify how 

things such as merchandise in a store or pictures in a museum receive 

attention in the real world, they propose a Sensor of Physical-world Attention 

using Laser scanning (SPAL). The use of a laser scanner is quite challenging, 

since it provides only front-side circumference of any detected objects in a 

measurement area, however, unlike cameras, it poses no privacy problems. 

SPAL includes many important factors when calculating people's attention, 
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i.e., lingering time, direction of people, distance between people and a target 

object. After extracting a human from a group of humans and detecting his/her 

direction in comparison with the position of the target object, the system 

calculates real-world attention levels by using two proposed models: the 

Object-based Attention (OA) and the Distance-weighted Attention (DA) 

models. Furthermore, they define two metrics, value and degree of real-world 

attention levels, to indicate and evaluate people's attention. 

Much literature focuses on driver vigilance and attention monitoring. The 

system in [60] analyzes video sequences in order to determine the visual 

attention of a driver. Measurable cues, like eye blink rate and head rotation 

rate, are collected with a single camera placed on the car dashboard and 

assessed to make determination of the driver's visual attention level. As the 

authors claim, when compared to similar works, the proposed system goes 

beyond classifying visual attention with eye closure metrics, but also shows 

that detecting head rotation could expose other kinds of decreases in visual 

attention. The adopted method to track the head uses color predicates to find 

the lips, eyes, and sides of the face, while the results show that the system can 

track local lip motion like yawning. Despite the challenges posed by 

unexpected conditions that a moving vehicle might face, the system, as 

reported, performed quite well under a variety of daytime illumination levels, 

while it did not encounter any difficulty with the changing background. 

In [61] the authors propose to track focus of attention of several participants 

in a meeting by modeling both the persons head movements and the relative 

locations of probable targets of interest in a room. Taking into consideration 

that when humans pay attention to an external object, they usually orient 

themselves towards the object of interest, so as to have it in the center of their 

visual field, they try to estimate a person's focus of attention based on head 

orientation. To this end, they extend the neural network approach to estimate 

the head pose in more unrestricted situations. In particular, the use of neural 

networks does not limit to estimating the head rotation in pan direction, but 
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also allows the calculation in the tilt direction as well. Concerning the 

detection of a user's focus of attention, they employ the hidden Markov model 

(HMM), which is able to incorporate knowledge about the meeting situation, 

i.e., the approximate location of participants in the meeting. Hence, the 

HMMs are applied to track whom the participants in a meeting are looking at. 

In a more recent work, Stiefelhagen et al. [56] try to estimate the visual focus 

of attention of participants in a meeting room using multiple cues. They 

demonstrate that through the combination of visual and acoustic information 

a higher percentage is achieved on detecting the participants' focus of 

attention. Since visual attention is influenced by external stimuli, they also 

investigate whether it is possible to predict a person's focus of attention based 

on audio information. Hence, microphones are used to detect who is speaking 

while sound history is taken into account in order to improve the audio-based 

prediction. Similarly to their prior work [61], they use neural networks to 

estimate the participants' head poses which are captured by an 

omnidirectional camera that simultaneously tracks participants' faces.  

However, the proposed system is unable to handle significant movements of 

the meeting participants, as the current model relies on probability 

distributions related to participants' locations, limiting its employment in real-

life applications. 

Ba and Odobez [62] aim to address problems of recognizing the visual focus of 

attention (VFOA) of meeting participants following a different approach based 

on participants' head pose. To this end, the head pose observations are 

modeled using a Gaussian mixture model (GMM) or a hidden Markov model 

(HMM) whose hidden states correspond to the VFOA. Contrary to the work 

presented in [56], in the proposed setup, the potential VFOA of a person is not 

restricted to other participants, but includes environmental targets as well (a 

table and a projection screen), which subsequently increases the complexity 

of the task with more VFOA targets spread in the pan and tilt gaze space. To 

address the added complexity, they propose a novel approach to set the model 
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parameters either in GMM or HMM models that represent the associations 

between head poses and visual targets without collecting training data. Their 

method (referred to as cognitive or geometric) models the head pose of a 

person given his upper body pose and his effective gaze target. In this way, no 

training data are required to learn the parameters, but some knowledge of the 

3-D room geometry is necessary. In addition, to account for the fact that people 

have their own head pose preferences for looking at the same given target, 

they adopted an unsupervised maximum a posteriori (MAP) scheme to adapt 

the parameters obtained from either the training data or the geometric 

approaches to the unlabeled head pose data of individual people in meetings. 

In [63] the authors define and address the problem of finding the visual focus 

of attention for a varying number of wandering people (VFOA-W), 

determining where a person is looking when their movement is 

unconstrained. Trying to create a tool that automatically measures the 

effectiveness of printed outdoor advertisements came upon the problem of 

VFOA-W estimation, which poses implications in behavior understanding and 

cognitive science in real-world applications. The authors approach this 

problem by offering a multi-person tracking solution based on a dynamic 

Bayesian network that simultaneously infers the number of people in a scene, 

their body locations, their head locations, and their head pose. For efficient 

inference in the resulting variable-dimensional state-space, they propose a 

Reversible-Jump Markov Chain Monte Carlo (RJMCMC) sampling scheme and 

a novel global observation model, which determines the number of people in 

the scene and their locations. Finally, in order to determine if a person is 

looking at the advertisement or not, they suggest Gaussian Mixture Model 

(GMM)-based and Hidden Markov Model (HMM)-based VFOA-W models, 

which use head pose and location information. 

In multi-agent multi-user environments there is a need of clarifying who is 

talking to whom. Vertegaal et al [64] present an experiment aimed at 

evaluating whether gaze directional cues of users could be used for informing 
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an agent that is it being addressed or expected to speak. Using an eye tracker, 

they measured a subject's gaze at the faces of conversational partners during 

four-person conversations. Results indicated that when someone is listening 

or speaking to individuals, there is a high probability that the person looked at 

is the person listened or spoken to. Hence they conclude that gaze is an 

excellent predictor of conversational attention in multiparty conversations, 

but its predictive power may depend on the individual user and the visual 

design of the conversational system. To support that they implemented FRED, 

a multi-agent conversational system that uses eye input to gauge which agent 

the user is listening or speaking to. 

In [65] the authors present a way to extract user attention and head gestures 

utilizing the shape and texture parameters from a fitted Active Appearance 

Model (AAM). The main advantage of using an AAM is the holistic 

representation of the face. They focus on improving human-robot interaction 

and therefore apply an attention and head gesture estimation which uses the 

AAM shape parameters to estimate the users head pose. For the measure of 

attention the distribution of the head pose over time is used, while to allow a 

more natural dialog the head pose is also very efficiently interpreted as head 

nodding or shaking by the use of adaptive statistical moments. For head pose 

estimation an own dataset is used which consists of mixed facial image 

sequences of male and female people who rotate their heads around. Each 

image of this dataset is labeled by the current head pose, which is determined 

by the so-called Flock of Birds. The Flock of Birds is a two-parted system which 

determines the head pose using magnetic fields. One part is fixed and must be 

positioned near the camera; the other part must be mounted on the top of the 

head. Finally, in order to facilitate users that are restricted in their head 

movements (e.g., demented) and mostly look around only by using eye 

movements, they use a simple eye tracker, which operates with an ordinary 

webcam. 
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The Reading Assistant presented in [66] is a computer-based remediation tool 

that uses visually controlled auditory prompting to help the user with 

recognition and pronunciation of words. This work is a straightforward 

extension of the GWGazer, a system that predicts user alertness and 

attentiveness using eye tracking. The main objective of the Reading Assistant 

is to track the reader's eye movements and, using principles derived from 

reading research, aid the reader by pronouncing words that appear to be hard 

to recognize. The system takes advantage of (i) the ability of unobtrusive eye 

tracking systems to follow eye motion and (ii) the ability of text-to-speech 

software to help children learn to read. As students read text displayed on a 

computer screen, a video camera, mounted below the screen, monitors the 

students' eye motions. The eye tracking system analyzes the infrared video 

image of the eye and computes the coordinates of the gaze-point (the point at 

which the eye is looking) on the screen and sends them to the GWGazer 

application, which keeps track of the user's scan of the displayed text in real 

time. Visual and auditory cues are produced that depend on where the student 

is looking and whether changes in scan pattern indicate difficulties in 

identifying a word. 

In [67] the authors present an empathic software agent (ESA) that aims to 

overcome the challenges of online learning and increase students' motivation 

by stimulating their interest. In online learning the students can lose 

motivation and concentration easily, especially in a virtual education 

environment that is not tailored to their needs and physical contact with 

human teachers is limited.  For that purpose, ESA detects the attention 

information from real-time eye tracking data from each learner and modifies 

instructional strategies based on the different learning patterns of each 

learner. During the learning process, the system records the user's eye gaze 

and pupil dilation and based on these measures, it infers the focus of attention 

and motivational status of the learner and responds accordingly with affective 

(display of emotion) and instructional behaviors. Besides that, ESA uses eye 
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gaze information for non-real-time collection of eye-tracking statistics, such 

as how learners look at images and how long they spend looking at different 

objects. 

Similarly to the ESA system, the AdELE [58] framework supports adaptive e-

learning utilizing not only eye tracking but also content tracking technology. 

This framework ensures not only adaptivity to the users' preferences, 

knowledge level and the real-time tracking of their behavior, but also ensures 

the relevance, accuracy and reliability of the knowledge provided. AdELE 

delivers interfaces adapted to users' needs and provides content adaptation 

according to the gained behavioral information of the user. For that to be 

achieved, they combine fine-grained real-time eye tracking with: (i) 

synchronous content tracking, (ii) a user profiler, (iii) an adaptive multimedia 

learning environment, and (iv) a dynamic background library. In particular, 

adaptivity through eye-tracking is accomplished by observing users' learning 

behavior in real time and monitoring characteristics such as objects and areas 

of focus, time spent on objects, frequency of visits, and sequences in which 

content is consumed.  

In [57] the authors focus on remote instructional collaborative tasks where 

participants are assigned to either a "helper" role or a "worker" role. The helper 

offers the knowledge to guide the operations, while the worker provides the 

physical labor. Such a relationship is similar to a teacher instructing a student 

in a physics experiment or an engineer guiding a technician servicing a 

vehicle. Trying to overcome the challenges of this type of collaboration they 

introduce an "intelligent" video system that provides the right camera feed at 

the right time during a collaborative physical task, so that the helper can have 

the most beneficial view of the worker's environment at each point in time. To 

that end, instead of tracking focus of attention (FOA) via head position, they 

propose that the identification is established based on the user's intention, the 

task properties, people's actions in the workspace, and conversational 
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content. They employed a conditional Markov model to classify FOA from the 

intention decoded from dialogue content and workers' actions. 

Merten and Conati in [68] are concerned about the added value that eye-

tracking technology can offer towards modeling and adapting Intelligent 

Learning Environments. In their work, they use eye-tracking data for 

assessing on-line the user meta-cognitive behavior during the interaction with 

a system. They mainly focus on the capability to effectively learn from free 

exploration and to self-explain instructional material as both these meta-

cognitive skills have shown to improve the quality of student learning. Based 

on the findings of a formal evaluation where they compared three different 

student models with various predictors (i.e., a simple navigation-based 

predictor, a navigation- and timing- based predictor, and a combination of 

navigation- and timing- based predictor with eye-tracking), they concluded 

that more sophisticated predictors improve the recognition of user meta-

cognitive skills and consequently student learning. 

Attention Monitoring in Smart Educational 

Environments 
Attention aware systems have much to contribute to educational research and 

practice. These systems can influence the delivery of instructional materials, 

the acquisition of such materials from presentations (as a function of focused 

attention), the evaluation of student performance, and the assessment of 

learning methodologies (e.g., traditional teaching, active learning techniques, 

etc.) [42]. However, existing approaches [58], [66]–[69] concentrate mainly on 

computer-driven educational activities. This highlights the importance of 

LECTOR, which is able to monitor student behaviors in a real classroom 

setting and suggesting improvements for the learning process.  

Resetting Student Attention 
Literature suggests several strategies to regain student attention and increase 

the level of engagement in learning activities; among them, Active Learning 
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was acknowledged as the most effective instructional method in terms of 

resetting the students' concentration and decreasing attention lapses during 

lectures. Unlike the traditional way of lecturing where students passively 

receive information from the instructor, active learning introduces active 

student participation in the main course. These activities however should be 

appropriately designed to promote thoughtful and meaningful engagement on 

the part of the student and deliver important learning outcomes. Such an 

example of active learning could be a case where the lecturer periodically 

pauses his talk and asks students to clarify their notes with a partner. 

Several studies not only highlight the advantages of active learning, but also 

support that praise, encouragement, reprimands and multimodal cues 

positively affect the students' motivation. 

Michael Prince in [70] examines the effectiveness of active learning. To do so, 

he initially clarifies what active learning is and how it differs from traditional 

engineering education, which is also considered "active" through homework 

assignments and laboratories, then defines different forms of active learning 

(i.e., Active Learning, Collaborative Learning, Cooperative Learning and 

Problem-based Learning) and finally summarizes the most relevant surveys in 

this field. His findings validate that: (i) the introduction of various activities 

during lectures (i.e., Active Learning) can significantly improve recall of 

information and increase student engagement, (ii) Collaborative Learning 

enhances academic achievement, student attitudes and student retention, (iii) 

Cooperative Learning is more effective in promoting a range of positive 

learning outcomes compared to Competitive Learning, and finally (iv) 

Problem-based Learning, the most difficult method to be analyzed due to the 

variety of practices and the lack of a dominant core element, positively 

influences student attitudes and study habits (e.g., students will retain 

information longer and perhaps develop enhanced critical thinking and 

problem-solving skills), but is unlikely to improve their test scores. 



25 

 

In [71] the authors examine four active learning strategies in a within-subjects 

design and explore the effect of these "interventions" on concentration on a 

sample of senior-level students. These evaluated interventions are based on 

basic questioning and peer sharing techniques, including: (i) Student-

Generated Questions, (ii) Guided Reciprocal Peer Questioning, (iii) Think-Pair-

Share, and (iv) Truth Statements. The findings revealed that only two 

interventions had an encouraging influence on students' concentration 

ratings, including Guided Reciprocal Peer Questioning and Student-Generated 

Questions. As the use of questions can encourage students to describe what 

they believe and how they came to believe it, questioning interventions appear 

to help reset student engagement by actively involving the student in 

substantive exchange compared to a mere sharing of what they think. On the 

contrary, both the Truth Statements and Think-Pair-Share interventions 

actually evidenced a lower average end-of-activity concentration rating 

compared to the pre-activity interval.  

The advantages of active learning techniques are also demonstrated in [72]. 

The authors explain that the employment of these techniques is vital because 

of their powerful impact upon students' learning and they propose several 

solutions for incorporating them in the classroom, such as: encouraging 

discussion, allowing the students to consolidate their notes, etc. Another 

interesting observation substantiates that certain alternatives to the lecture 

format could further increase student level of engagement: (i) the feedback 

lecture, which consists of two mini-lectures separated by a small-group study 

session built around a study guide, and (ii) the guided lecture, in which 

students listen to a 20- to 30-minute presentation without taking notes, 

followed by their writing for five minutes what they remember and spending 

the remainder of the class period in small groups clarifying and elaborating 

the material. Finally, besides enumerating the benefits of active learning, the 

authors present the difficulties associated with that instructional approach, 

including limited class time, increased preparation time, difficulty of using 
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active learning in large classes and the lack of materials, equipment, and 

resources.  

Bunce et al [54] perform an experiment in order to investigate how often 

during a lecture segment students report a lapse in their attention and how 

student-centered pedagogical approaches increase attention and motivation. 

College students were equipped with clickers and they were instructed to press 

them when their minds wandered from the material being presented in class. 

Furthermore, to evaluate the effectiveness of alternative teaching techniques, 

the instructors used different pedagogical approaches interchangeably 

(lecture, demonstration, clicker questions, working in student groups or pairs, 

etc.). This study not only concluded that students do not pay attention 

continuously during a 50-min lecture and attention lapses may occur at any 

time, but more importantly demonstrated that the positive effect of student-

centered pedagogical approaches decreases student inattention and adds a 

carryover effect to a subsequent lecture segment. This supports the idea that 

changing pedagogical activities within a class period cannot only be seen as a 

way to present concepts in an alternate format, but may also help engage 

students in subsequent lecture teaching formats. 

A very similar set of results was evidenced by Young et al [48] in their 

exploratory study about students' attention during different lecture formats. 

They adopted a vigilance measurement technique from ergonomics and 

focused on four types of college lectures: (i) traditional "chalk-and-talk" 

lecture, (ii) lecture introducing guest lecturer, (iii) lecture allowing "buzz 

group" discussion and (iv) lecture presenting case studies with video media. 

Their findings validate that: (i) any variation in presentation or media can help 

maintain attention and facilitate deeper learning, and (ii) Buzz groups and 

other interactive sessions do have clear advantages compared to standard 

'chalk-and-talk' lecture format which appear to cause vigilance decrement.  

The work in [73] compares the techniques of encouragement and reprimands 

as a mean to reduce off-task behavior in the classroom. Two experiments were 
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performed involving children with academic and/or behavioral problems in a 

remedial summer program. In both experiments reprimands resulted in lower 

rates of off-task behavior and higher academic productivity than 

encouragement. In contrast to reprimands, encouragement appeared to have 

no systematic effect, improving some students' behavior, causing others' 

behavior to deteriorate, and having no obvious effect on other children. 

Hitz and Driscoll [74], on the other hand, highlight the advantages of 

encouraging students during learning activities. According to their study most 

students thrive in encouraging environments where they receive specific 

feedback and have the opportunity to evaluate their own behavior and work. 

Comparing encouragement and praise, they emphasize that some praise 

statements can potentially lower students' confidence in themselves and lead 

them to focus their attention on extrinsic rewards. Thus, by constantly 

encouraging students, teachers can create an environment in which students 

do not fear continuous evaluation, can make mistakes and learn from them, 

and do not have to strive to meet someone else's standard of excellence.  

Finally, an interesting experiment is presented in [75]; it examines whether 

spatially non-predictive bimodal cues are more effective than unimodal cues 

in capturing spatial attention away from a perceptually demanding central 

task. The results highlight a qualitative difference between the nature of the 

exogenous orientation of visuospatial attention effects triggered by unimodal 

and bimodal cues. In more detail, as evidenced by a comparable magnitude of 

spatial cuing effects in the no perceptual load (i.e., baseline) and high 

perceptual load conditions, the unimodal cues failed to capture participants' 

visuospatial attention exogenously under conditions of high load, whereas 

bimodal cues (which were completely spatially non predictive, i.e., they were 

task irrelevant) successfully captured participants' visuospatial attention 

regardless of any concurrent increase of their visual perceptual load. 
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Discussion 
The study of attention monitoring technologies revealed the challenges, the 

proposed solutions, the appropriate techniques and the results of each 

approach when used in real settings. Besides exposing the technological 

advances, this survey also provided great insights on how such systems can 

monitor a smart classroom environment, identify the student needs and 

suggest improvements for the learning process. For example, eye-tracking can 

monitor student's visual fixations during exercise solving and detect potential 

weaknesses, while head tracking is appropriate for estimating whether the 

student pays attention to the teacher, concentrates on the class board, or 

dawdles with another classmate. Nevertheless, such systems cannot 

effectively address the challenges of a real classroom. A non-exhaustive set of 

the additional constraints that should be taken into account include: 

• Students' attention can be captured by multiple targets (e.g., class 

board, book, teacher, classmates, personal computer, etc.) 

• Learning behaviors differ among students (e.g., doodling while 

concentrating vs. doodling while being bored) 

• Contextual information might cause substantial deviation of attention 

indicators (e.g., Art vs. Literature course)  

• Groups dynamics and collective behaviors greatly affect the decision-

making process (e.g., the whole classroom is laughing at funny 

comment made by the teacher). 

Furthermore, the conducted analysis allowed to identify several cues might 

signify inattention and fall under the following categories: Focus, Speech, 

Location, Posture and Feelings. Additionally, it was revealed that using 

multiple cues (e.g., gaze, head pose, body posture, sound, etc.) can increase 

the accuracy of predicting the student's focus of attention. This information 

highlights the necessity of supporting the combination of multiple 

physiological attributes when modeling a behavior (e.g., head to the left and 

increased sound indicates talking to classmate).  
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Another contribution of this survey was the specification of the contextual 

information needed to support an attention aware Intelligent Classroom that 

intervenes to re-engage tired or unmotivated students. In more detail, such an 

environment must be aware of the current course, the ongoing activity, and 

the characteristics of its students. Furthermore, it was revealed that it is of 

outmost importance to combine diverse contextual information to accurately 

determine the level of attention of each individual or the entire classroom and 

reduce false positives.  

In addition, the study of background theory regarding attention and education 

showed that being able to observe discrete inattention types is really 

important, since it facilitates the process of selecting appropriate 

interventions. As an example, the intervention that will be applied to a student 

who is chatting will be different from the intervention that will be applied to a 

student who is fatigued. This leads to the specification of several student 

behaviors that should trigger interventions (i.e., cheat, chat, disturb, fatigue, 

boredom and out of seat). 

Finally, adjusting the learning process is a key aspect in the intelligent 

classroom; thus, the use of LECTOR in this context should be based on widely 

accepted techniques on resetting student attention. This extensive literature 

survey confirmed that introducing engaging activities into the main lecture 

and changing pedagogies within a class period has remarkable effects on 

students' concentration. However, teachers are not always willing to adopt and 

apply active learning techniques in their daily teaching routine, since the 

available class time is limited (e.g., 50 minutes) and the preparation of the 

required material is time consuming. In an intelligent classroom environment 

though, where the computational resources surplus, LECTOR can 

automatically compile and initiate the appropriate activities based on the 

context of use, the students’ needs and the available time.   
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Chapter 3 

Related Work 

An AmI environment should be able to recognize the users in it, understand 

their needs, identify their behavior, and act and react in their interest.  

Fundamentally, this process entails two basic steps (i) identifying a user need 

and, (ii) acting accordingly; this simplification reveals the similarities with the 

trigger-action model [2]–[4], which in the recent years has been in the spotlight 

as a form of programming AmI environments, using simple “if trigger, then 

action” rules. The goal of this thesis is to offer a framework that advances the 

way through which both developers and educators connect student behaviors 

that signify inattention (triggers) to specific context-aware interventions 

(actions). 

Chapter 3 provides a review of research studies and commercial tools that 

have examined trigger-action programming or related interfaces over the last 

15 years. 

Trigger – Action Programming 
The emergence of the Ambient Intelligence (AmI) paradigm and the 

proliferation of physical Internet of Things (IoT) devices have raised the need 

for appropriate tools that enable users to connect and manage the abundant 

devices and services. According to [3], one of the most straightforward 

approach towards that direction is the trigger-action paradigm, which enables 

users to configure the behavior of a system by specifying triggers (e.g., “if the 
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user has awakened”) and their consequent actions (e.g., “turn on the coffee 

machine”). Trigger-action programming (TAP), has been the focus of many 

research approaches and several commercial devices. 

The Context-aware Application Prototyper (iCAP) [76] enables the description 

of situations and their association with specific actions. Its objective is to 

support inexperienced end-users in building interesting context-aware 

applications for their instrumented environment without writing any code. To 

do so, iCAP features a visual, rule-based system that permits prototyping of 3 

common types of context-aware behaviors: simple if-then rules, relationship 

based actions and environment personalization. In order to create the 

building blocks of a rule, the user has to define the people and artifacts 

involved in it and add them to a repository. Next, an output medium (e.g., cell 

phone) has to be defined by specifying several characteristics, such as its 

category (sound) and type (binary: on/off). As soon as this information is 

available, the user can start building the rule by simply dragging the respective 

components on a visual area (Figure 1). 

 

Figure 1: The user interface of iCAP [76] 

In [77] the authors use the metaphor of recipes for food preparation, where 

users are able to produce a large and varied number of compositions from a 

small set of ingredients.  In their approach, a “digital recipe” follows a simple 

yet effective programming procedure, where variables (ingredients) are 
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initialized before the control statements (preparation). In order to support 

their concept, the authors developed a prototype of a universal remote control 

application that allows users to discover, use, and create digital home recipes. 

This application, named OSCAR (Figure 2), is described in [22]; it permits 

monitoring and manipulation of connections between devices, and enables 

users to create rules that apply to frequent activities. OSCAR runs on a 

touchscreen-based tablet and permits users to browse through devices and 

media sources available on the home network. Upon selection, the user can 

connect the device or media source to other items, obtain its user interface, or 

use it as part of a reusable configuration.  

 

Figure 2:  OSCAR, the application that supports flexible and generic control of devices and 

services in home media networks [22] 

The work in [78] presents an early prototype of a framework that supports the 

creation of mashup editors for Web-enabled smart things. It enables the 

composition of services of different smart things as well as virtual web-

services. An extended version of the Ruote open-source workflow engine is 

available to users for creating their mashups in a very easy manner.  The 

framework communicates with the smart things over their RESTful API and is 

responsible for executing the work-flows created by end-users. 
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Figure 3: The user-interface of homeBLOX [23] 

The authors in [23] present homeBLOX (Figure 3), a system that enables the 

creation of complex home automation scenarios with heterogeneous devices. 

In contrast to other related work, its configuration is process-driven rather 

than rule-based. Each automation task is represented as a sequence of events 

and actions connected to physical and virtual devices. These sequences are 

translated into BPEL code for deployment on a process engine. A table 

application allows users to create sequences by simply dragging the available 

devices on the main canvas and drawing connections between them.  

 

Figure 4: Snapshot of the HomeRules' User Interface 
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HomeRules [24] is a prototype interface for a tangible mobile application 

(Figure 4) that empowers users (with no technical skills) to “program” their 

smart home. The authors built this prototype following a set of guidelines that 

they came up with drawing from their own previous experiences and some 

well-known commercial products such as IFTTT and WigWag.  

Massieu [79] in his thesis presented GALLAG Strip, an approach employing the 

programming-by-demonstration technique for programming sensor-based 

context aware applications. It permits users (with no computer programming 

skills) to program simple “if-then” rule-based applications by physically 

demonstrating their envisioned interactions within a space using the same 

interface that they will later use to interact with the system (i.e., GALLAG-

compatible sensors and devices).   

Locale [80] and Tasker [81] are Android applications (Figure 5) which allows 

users to create situations specifying conditions under which their phone's 

settings should change. The conditions are primarily related to the position 

and orientation of the phone, the date and time, the battery levels, the 

incoming calls, the location and application. For example, an "At Work" 

situation notices that the user’s Location condition is "77 Massachusetts Ave.," 

and changes the phone’s Volume setting to vibrate. In the case of Locale, 

developers can employ existing plug-ins and integrate directly with it through 

the Developer API.  

a.  b.   

Figure 5: (a)Locale's user interface for creating a situation [80]. (b) Tasker’s UI for creating 

tasks and actions 
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Apiant [82] is a Cloud Based API Integration Platform targeting non-technical 

users as well as integration professionals that allows them to connect their 

applications in order to  automate their tasks. Through an automation editor, 

simple users can connect their apps, and when one or more criteria is met 

(triggers), the automation launches sophisticated routines (actions). An 

assembly editor permits customization of the automation without requiring 

coding. 

Atooma is  an application that uses the ‘if-then’ construct for defining rules; 

Atooma's flagship is the Resonance AI software platform [83]. Resonance AI 

offers a set of AIs (not mere APIs) to make things learn routines (home, work, 

etc.), and use them to predict what the user will need. Through the APIs 

developers can listen to context changes and use them to trigger actions. The 

latter is achieved either by a Low Level API or Resonance Distributed Rule 

Engine, allows developers to activate and execute IF-DO rules when users 

enter in (or exit from) a specific context. 

 

Figure 6: WigWag's rule editor for developers (image taken from: www.kickstarter.com) 

WigWag [84] is an open source system that aims to bring intelligence into 

commercial spaces. Through a mobile application it permits users to control 

instantly any internet-connected sensor and device inside a house or an office. 
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It delivers a platform that enables the graphical definition of rules in the form: 

"When" [this] happens "Then" do [that]. Apart from supporting inexperienced 

users with no computer skills, WigWag permits developers to go deeper and 

write Javascript code to modify the rules (Figure 6).  

Zipato [25] is a rule-based system for home control and automation. Zipato 

requires its own gateway, called Zipabox, to which the many devices of the 

system are connected. The devices could come from other manufacturers, but 

must adhere to specific standards. Its Rule Creator is an easy and intuitive 

web-based graphical tool that allows users to easily create and modify their 

automation rules. A library of micro blocks (control functions) is employed to 

provide the flexibility to develop simple and complex control sequences 

(Figure 7).  

 

Figure 7: Zipatos' Rule Creator [25] 

TWINE [26] is a wireless sensor block tightly integrated with a cloud-based 

service (Figure 8). Wi-Fi, temperature and orientation sensors are integrated 

on a durable block made of rubber, while an expansion connector enables the 

employment of other sensors. TWINE focuses on event detection using If-

THEN rules in smart environments. It offers a web application through which 

the users can set up and monitor their “Twines” from any browser. “Twines” 

are rules that trigger messages; a palette of available conditions and actions is 
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available for composing the rules which appear as normal sentences: WHEN 

moisture sensor gets wet THEN text "The basement is flooding!" 

 

Figure 8: TWINE's User Interface [26] 

IFTTT (if-this-then-that) [21] is the most popular TAP ecosystem that allows 

users to create programs (recipes) able to “act” appropriately when certain 

triggers occur. The programs created through IFTTT (Figure 9) are called 

recipes and can utilize many services (e.g., Gmail, Dropbox), social media sites 

(e.g., Facebook, Twitter), and physical devices (e.g., Alexa, Phillips Hue 

lightbulbs), which can be used either as triggers (e.g., if door is locked) or 

actions (e.g., turn of the lights). Its wide acceptance from the users that stems 

from the simple wizard-style interface. Furthermore, its increasing support 

for wearables, smartphone sensors, and other commercial devices, 

contributed to IFTTT becoming tightly coupled with ubiquitous computing.  

Lately, a beta platform has been released for developers that enables them to 

input Javascript code that changes how a recipe runs.  
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Figure 9: IFTTT Applets 

 

Figure 10: Snapshot of the IFTTT platform for developers 

Similarly to IFTTT, Zapier [27] (Figure 11) allows users to combine triggers and 

actions to define various Zaps (tasks). In contrast to IFTTT that limits each task 

to a single trigger and action in order to make things easier for non-technical 

end-users, Zapier permits multiple actions for a single trigger and introduces 
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the notion of filters that provide additional conditional (and/or) control over 

triggers. According to [85], there are some other characteristics that 

differentiate the two systems. In more detail, IFTTT integrates a social 

component for sharing recipes, while it offers a mobile application that allows 

mobile services to be added as services. In the case of Zapier, developers are 

able to define their own services. 

 

Figure 11: Snapshot of Zapier [27] 
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Discussion 
The purpose of the above analysis was to examine current state-of-the-art 

technology that concentrates on trigger-action programming. Indeed, the 

analysis revealed that there are quite a few noteworthy approaches; the 

majority of them is based on rule-based conditions to enable non-technical 

users and developers describe their recipes / programs naturally. Despite the 

limitations stemming from using simple “if-then” rules, which seem to hinder 

the expressivity of the programs that can be created [4], the author in [86] has 

shown that general-purpose programming or scripting languages are not 

necessary or desirable. On the contrary, according to [77], “a task specific 

language with appropriate tool support provides an ideal environment for 

users to create their own applications”. 

Some of these systems [21], [85] are scalable enough and permit developers to 

integrate custom devices and services, while they also provide access to the 

code behind the generated rules, so as to facilitate their tweaking. However, 

others are bound to specific hardware and software [25], [26], [80], [81], [83] 

making their employment in different contexts impossible.  

Interestingly, almost all of the examined systems evolve around device- or 

software- initiated triggers. In more detail, they require users to define, based 

on the status of devices or services (e.g., if temperature reaches 26oC, if 

incoming email from family member), the conditions under which an action 

is performed. However, since the main target group of trigger-action 

programming are unexperienced users, the rule logic should be de-coupled 

from the artifacts and be human-oriented instead. For example, the condition 

“if motion is detected in the hallway” becomes clearer to the simple user when 

expressed otherwise: “if I (or inhabitant) pass through the hallway”. Towards 

that direction, it would be beneficial to support personal user profiles and 

grouping of users with the same needs; however, the latter is supported only 

in few of the studied systems [23], [76]. 
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Finally, none of these approaches incorporates mechanisms for evaluating the 

performed actions. The systems are unaware whether the realized outcome 

was actually what the user intended when she was creating the rule. In 

addition, they do not take into consideration cancellations, which might 

indicate dissatisfaction on behalf of the user.  

Table 1: Comparison of tools that permit trigger-action programming (adapted from [87]) 

Tool 1 2 3 4 5 6 7 8 9 10 11 

iCap ~  ~ ~ ~ ~
OSCAR ~ ~ ~
HomeBLOX 

Gallag Strip ~ ~
Locale ~ ~ ~
Tasker ~ ~
Atooma ~ ~ ~ 

WigWag 

Apiant ~
Zipato ~
TWINE 

IFTTT ~ ~ ~
Zapier ~
LECTOR  

 
the characteristic is totally satisfied 

~  the characteristic is partially satisfied 

 the characteristic is not satisfied 
 
The following list describes the characteristics based on which the examined 

systems were summarized. The results are presented in Table 1.  

1. The tool offers a user interface through which non-technical users are able 

to create rules / recipes  

2. The tool permits developers to tweak the rules / recipes by granting them 

access to code  
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3. The tool features a user friendly and intuitive user interface 

4. The created rules / recipes are user-oriented 

5. The tool permits the integration of custom or third party devices and 

services as triggers 

6. The tool permits developers to create new software artifacts for the system 

7. The tool enables users to add, edit or remove rules easily 

8. The tool permits the definition of multiple conditions and actions per each 

rule 

9. The tool permits the introduction of custom interventions / actions 

10. The tool has the ability to evaluate the actions / interventions 

11. The tool is free  

This thesis aims to equip the Intelligent Classroom with a mechanism that 

takes advantage of its ambient facilities to identify when students require 

assistance and intervenes to support them. Towards that direction, it offers a 

framework -based on the trigger-action model- that aims to address the gaps 

identified in the current state-of-the-art. More specifically, it relies on “if-then” 

rules -created either by developers or educators- to dictate the behavior of the 

AmI environment.  In order to ensure scalability and better rule management, 

a three (3) step process for connecting a behavior with an intervention is 

introduced. In more detail, the first step is to define a behavior, next the 

conditions under which the behavior becomes a trigger have to be described, 

and the last step is to create a connection between a trigger and an 

intervention. This decomposition permits a behavior to be associated with 

many triggers and a trigger with many interventions, depending on the context 

of use. Furthermore, the rule structure supports the creation of user-oriented 

behavior-intervention scenarios in contrast to the artifact-oriented recipes 

that are currently supported by the majority of IFTTT-style tools. 

Additionally, appropriate infrastructure enables the evaluation of system 

decisions, by allowing users to (i) invalidate identified behaviors, and (ii) 

override system suggestions in case they are not appropriate.  
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Finally, a sophisticated user-friendly authoring tool is introduced for 

supporting both developers and educators in creating the rules; the same tool 

enables developers to integrate the building blocks (i.e., actors, intervention 

hosts, physical context, virtual context, interventions) that are required for 

programming the Intelligent Classroom.   
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Chapter 4 

Requirements 

Chapter 4 initially introduces several scenarios that motivated this work and 

afterwards outlines LECTOR’s functional and non-functional requirements. 

Motivating Scenarios  
Scenario building is a widely-used requirements elicitation method [88] that 

can systematically contribute to the process of developing requirements. 

Scenarios are characterizations of users and their tasks in a specified context, 

which offer concrete representations of a user working with a computer 

system in order to achieve a particular goal. Their primary objective in the 

early phases of a development cycle is to generate end user requirements and 

usability aims. 

The following sections present a collection of envisioned scenarios where 

identifying inattentive behaviors and intervening to re-engage the learners' to 

the educational process can benefit learning. 

Monitoring the attention levels of an entire classroom 

On Monday morning the history teacher, Mr. James, enters the classroom and 

announces the topic of the day. These days they are studying the wars of 

Alexander the Great, while the "Battle of Gaugamela" is next in line to analyze. 

During the first fifteen minutes the students pay attention to the teacher that 

narrates the story, the tactics and the military strategies of the young king; 
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soon enough, the students start to lose interest in the historical details and 

demonstrate signs of inattentive behavior. In more detail, John is browsing 

through the pages of a different book, Mary and Helen are whispering to each 

other, Peter stares out the window and Mike struggles to keep his eyes open. 

 

Figure 12:  Re-engaging students by introducing active learning activities 

When identifying that the entire classroom demonstrates signs of vigilance 

decrease, the system recommends that the lecture should be paused for a 

while and a mini quiz game should be started. The teacher finishes up his 

sentence and decides to accept this "intervention". After that positive 

response, a set of questions relevant to the current topic is displayed on the 

classroom board, while their difficulty depends on both the students' prior 

knowledge and the studied material so far. In order to increase students' 

motivation, the teacher reads the questions out loud, provides the necessary 

clarifications and encourages them to choose one out of the four possible 

answers through the application displayed on his/her personal computer. 

During use, the system identifies the topics with the lowest scores and notifies 

the teacher to explain them more thoroughly. 

As soon as the intervention ends, Mr. James resumes the lecture. At this point, 

the students' attention is reset and they begin to pay attention to the historical 

facts. As a result, the mini quiz not only restored their interest but also resulted 

in deeper learning.  

Monitoring the attention levels of an individual student 

During the geography class Kate is distracted by a couple of students that stand 

outside the classroom window. Instantly, the system recognizes that her 
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attention is captured by external stimuli and decides to take immediate action 

to attract her interest back on the lecture. To do so, it displays pictures relevant 

to the current topic on her personal computer while a discreet nudge attracts 

her attention. Kate observes a picture displaying a dolphin with weird colors 

swimming in the waters of Amazon and wonders how it is possible for a 

dolphin to survive in a river; she patiently waits for the teacher to complete his 

narration to ask questions about that strange creature. That way, Kate 

becomes motivated and starts to pay attention to the presentation of America's 

larger rivers. 

 

Figure 13: The educational application reacts to keep the students motivated 

At the same time, Nick is drawing random pictures on his notebook and seems 

to not pay attention to the lecture; however, the system already knows that 

Nick concentrates easier when doodling and decides not to interpret that 

behavior as inattention. The ability to disambiguate student activities depends 

on information that only a human can provide. For that to be achieved, when 

the system identifies a behavior that can be misinterpreted it asks for the 

teacher's opinion; that input not only defines system's next action(s) for that 

particular case, but also re-evaluates the recognition algorithm for that 

student's learning style. 

Monitoring students' fixations during exercise solving 

Mrs. Brown, the Physics teacher, has scheduled to analyze Newton's first law 

today. When she finishes her analysis, she asks her students to work on a 

relevant multiple choice quiz on their course books and instructs the system 

to launch the appropriate application on each student's personal computer.  
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Mark answers correctly to the first question but seems to have trouble 

answering the second one. The system identifies that he reads that question 

over and over again and wavers among the first and the third answer. It 

immediately decides to intervene and asks him if he would like to proceed to 

the next one or to take a hint. Hoping that he will soon remember the correct 

answer, Mark decides to revisit that question later and accepts to move to the 

next question. 

Meanwhile Christine, who has already answered six out of ten questions, 

seems to be distracted; instead of concentrating on the exercise, she stares at 

an irrelevant area on the computer screen for a significant amount of time. By 

examining these indicators, the system estimates that she is no longer 

interested in the task at hand and decides to reverse that situation. To do so, it 

uses a subtle nudge (sound or vibration) to draw her attention and at the same 

time displays an encouraging message that prompts her to continue with her 

work. Those messages are personalized to each student's progress, prior 

knowledge and learning abilities, thus a sentence such as: "Come on, there are 

four more questions to go!" or "You have answered far more difficult 

questions, why do you give up on these ones?" is used in Christine's case to 

tease her. 

Monitoring attention levels during homework 

On Monday afternoon, George is doing his homework in his room; five math 

assignments are due tomorrow and he has just started dealing with the first 

one. For each pending exercise the system displays on the desk surface a small 

reddish box with information about the assignment (e.g., topic, level of 

difficulty, estimated completion time, etc.). Since George is a strong student, 

he solves the first set of problems in less than twenty minutes and notifies the 

system accordingly, which triggers an automatic rearrangement of the 

assignments to highlight the remaining work. George is now ready to start 

working on the second assignment, however the system prompts him to take 

a small break to clear his mind and restore his energy levels.   
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After the short break, George successfully completes two more assignments 

and moves on to the fourth one. At that point, the system identifies he is 

distracted by external stimuli as he is constantly getting off his chair, looks out 

of the window and browses to social network websites while loud music is 

playing in the background. To reengage him to the homework activities, it 

displays encouraging messages such as: "If you start now, you will probably be 

finished by 20:00 to watch your favorite movie", or "Only two assignments to 

go, you will be done in less than an hour" as it recalls that George prefers to 

finish with his homework first and then spend some time relaxing. 

 

Figure 14: Personalized messages to encourage homework activities 
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LECTOR Requirements 
LECTOR framework aims to empower both developers and educators to 

realize the aforementioned indicative scenarios, by defining the behaviors 

that lead to context-aware interventions. This section presents the high-level 

functional and non-functional requirements that LECTOR satisfies, which 

have been collected through an extensive literature review and an iterative 

elicitation process based on multiple collection methods: brainstorming, 

focus groups, observation and scenario building. 

Functional Requirements 

FR-1: Support the modeling of the Physical Context 

LECTOR should be able to facilitate the modeling of the Physical Context, 

which encapsulates information regarding physically observable phenomena 

(e.g., luminance, heart rate, sound levels, etc.). This aims to alleviate the 

diversity of input values coming from heterogeneous sources and create a 

shared data model that can be used by the rule creation mechanisms.  

FR-2: Support the modeling of the Virtual Context 

The Virtual Context refers to any static or dynamic information that is 

provided through software components (e.g., student profiles, course 

schedule). Since, such information may change depending on the classroom 

where the system is running and the characteristics of the classroom students, 

LECTOR should support the modeling of the Virtual Context so as to be used 

by the rule creation mechanisms. 

FR-3: Enable the definition of user groups (Actors) 

Actors are the users of the Intelligent Classroom whose behavior needs to be 

monitored in order to decide whether an intervention is required (i.e., 

Teachers, Students, Classroom). Generally, different types of actors have 

diverse characteristics which need to be taken into consideration when 

building the rules that guide LECTOR’s decision-making mechanisms. To this 

end, LECTOR should permit the creation actor models.  
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FR-4: Enable the modeling of behaviors by combining multiple 

information from the Physical Context 

The term Behavior is used to describe the way that a user or an artifact acts 

(e.g., a user talks, a device switches on). In some cases, multiple cues (from 

diverse sources) are required in order to identify a behavior; to this end, 

LECTOR should permit the definition of a behavior by combining multiple 

information from the Physical Context.   

FR-5: Support the definition of triggers by combining multiple contextual 

information 

The term Trigger is used to describe a high level Behavior that should initiate 

an intervention. A behavior can potentially become a trigger under specific 

context (e.g., the behavior TALKING might initiate the trigger CHATTING if a 

student is talking during a lecture). When defining the conditions under which 

a trigger is initiated, LECTOR should support the combination of multiple 

contextual information.  

FR-6: Support the definition of user-oriented triggers 

LECTOR framework should differentiate from other trigger-action 

programming systems that evolve around device- or software- initiated 

triggers. In more detail, it should not require users to define the conditions 

under which an action is performed based on the status of devices or services 

(e.g., if the microphone detects increased noise). On the contrary, since the 

main target group of LECTOR are non-technical users, the rule logic should be 

de-coupled from the artifacts and be human-oriented instead. For example, 

the condition “if no pressure is detected on the chair” becomes clearer to the 

simple user when expressed otherwise: “if the student is not sitting to his 

chair”. 

FR-7: Enable the combination of multiple behaviors performed by multiple 

actors when specifying the conditions under which a trigger is identified 

The definition of a Trigger should not depend merely on the behavior of a 

single actor; on the contrary, the combination of more than one actor 

behaviors is required, so as to support the realization of more complex 
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scenarios (e.g., if the teacher is talking and the student is whispering then 

STUDENT IS CHATTING). 

FR-8: Enable the definition of the conditions under which an intervention 

rule is initiated 

The term Intervention is used to define the system-guided actions that aim to 

help or support the students in their activities. LECTOR should permit the 

definition of rules that describe the conditions (Triggers and Virtual Context) 

under which an intervention is initiated on a specific presentation host.  

FR-9: Support the connection of N triggers with X interventions 

In order to support the realization of complex scenarios, LECTOR should 

permit the creation of rules that combine multiple triggers with multiple 

interventions. 

FR-10: Support the combination of multiple strategies when creating an 

intervention rule 

The combination of multiple intervention strategies when defining an 

intervention rule results in the realization of much complex scenarios and 

subsequently in the creation of richer interventions. To this end, LECTOR 

should support this functionality. 

FR-11: Permit the ranking and cancelation of interventions 

In order to allow the educators to have the final say regarding the suggested 

interventions, LECTOR should enable them to rank or cancel the system 

suggestions.  

FR-12: Provide a mechanism for assessing the efficacy of interventions 

When the system employs an intervention that is estimated to be useful under 

a particular context of use, then after a reasonable amount of time it should be 

able to re-examine the student’s behavior so as to identify whether the 

intervention was successful. Specifically, if it still detects that the student’s 

behavior is unmodified, then the selected recommendation should be marked 

as ineffective in that context. 
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FR-13: Permit the integration of new software applications that can act as 

interventions 

Intervention strategies are in fact applications running on private or public 

artifacts instantiated at a key point in time with appropriate content. In order 

to act as an intervention, an application is required to conform to AmI-Solertis 

[89] SaaS specifications, ensuring that it will be able to receive and execute 

LECTOR’s commands. In order to be aware of the available intervention 

strategies, LECTOR should permit their integration so that the decision 

making components can employ them when deemed necessary.  

FR-14: Enable the integration of new intervention hosts 

Intervention hosts are (i) common computing devices such as smartphones, 

tablets, and laptops, (ii) technologically augmented everyday physical objects 

(e.g., interactive white boards, smart bulbs, etc.), or (iii) custom made items 

(e.g., student desk). An intervention host can either be used to launch 

applications (e.g., display an educational application instantiated with specific 

content) or control the physical environment (e.g., dim the lights during a 

video presentation). For LECTOR to optimally intervene, the available 

intervention hosts have to be properly defined in a way that conveys the 

information required for creating and deploying an intervention. 

Non-Functional Requirements 

NFR-1: Acceptance Testing Requirements 

A full-scale user-based evaluation should be carried out to ensure developers’ 

acceptance. Participants should have varying levels of experience 

programming applications for AmI environments. The overall score of a 

Standard Usability Scale (SUS) based post-evaluation questionnaire should be 

above 75%.  

NFR-2: Documentation Requirements 

A Quick Start Guide and context sensitive help should be provided. 
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NFR-3: Platform Compatibility Requirements 

From a user perspective, the front-end tools for creating the rules should be 

accessible via any modern Operating System (OS) or web browser. From an 

engineering perspective, the generated rules should be OS-independent as 

long as the required hardware and software meet the necessary operational 

requirements (e.g., availability of the required software libraries, compliant 

runtime environment). 

NFR-4: Maintainability Requirements 

LECTOR should permit easy maintenance in the sense that faulty or worn-out 

components should be repaired or replaced without having to replace still 

working parts and any updates should be verified and validated before their 

final deployment. 

NFR-5: Deployment Requirements 

LECTOR should minimize any deployment requirements for its core 

components. Specifically, the automatically generated runtime components 

responsible for detecting behaviors, triggering and applying interventions 

should be self-contained and standalone, so as to ensure scalability and 

extensibility. 

NFR-6: Interface Requirements 

Software interface requirements include dealing with an existing software 

system, or any interface. In more detail, the LECTOR framework should 

respect and adhere to the formal specifications of any input-providing 

artifacts or artifacts that act as intervention hosts. 
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Chapter 5 

System Architecture 

This work introduces LECTOR, an extensible framework responsible for (i) 

monitoring the Intelligent Classroom environment to detect student behaviors 

that require remedial actions, and (ii) selecting appropriate interventions in 

order to help, or support them throughout the educational process. This 

chapter describes LECTOR’s architecture in detail. 

The Classroom behind LECTOR 
Currently, LECTOR [90] is employed inside an in-vitro technologically 

augmented classroom where educational activities are enhanced with the use 

of pervasive and mobile computing, sensor networks, artificial intelligence, 

multimedia computing, middleware and agent-based software [41], [91], [92]. 

In more detail, the hardware infrastructure includes both commercial and 

custom-made artifacts, which are embedded in traditional classroom 

equipment and furniture. For example, the classroom contains a commercial 

touch sensitive interactive whiteboard, technologically augmented student 

desks [93] that integrate various sensors (e.g., eye-tracker, cameras, 

microphones, etc.), a personal workstation and a smart watch for the teacher, 

as well as various ambient facilities appropriate for monitoring the overall 

environment and the learners' actions (e.g., microphones, user-tracking 

devices, etc.). 
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The software architecture (Figure 15) of the Intelligent Classroom follows a 

stack-based model where the first layer, namely the AmI-Solertis middleware 

infrastructure [89], is responsible for (i) the collection, analysis and storage of 

the metadata regarding the environment’s artifacts and (ii) their deployment, 

execution and monitoring in the AmI-Solertis-enabled systems to formulate a 

ubiquitous ecosystem. The next two layers, namely the ClassMATE and the 

LECTOR frameworks, expose the core libraries and finally the remaining layer 

contains the end-user applications responsible for delivering interventions 

and accepting user input. Specifically, ClassMATE [94] is an integrated 

architecture for pervasive computing environments that monitors the 

ambient environment and makes context-aware decisions; specifically, it 

features a sophisticated, unobtrusive, profiling mechanism in order to provide 

user related data to the classroom’s services and applications. As far as the 

end-user applications are concerned, CognitOS [95] delivers to the students a 

sophisticated environment for educational applications hosting able to 

present interventions. Furthermore, two powerful tools aim to support 

educators in their daily activities; LECTORviewer [96], [97]  provides an 

overview of the students’ attention levels and asks the educator’s opinion 

regarding ambiguous behaviors or scheduled interventions, while NotifEye 

provides notifications regarding important events occurring during the lesson 

time. 

Currently, the Intelligent Classroom employs eye-trackers which can be used 

to observe students' fixations during studying on their personal computers 

(e.g., reading a passage, solving an exercise) to determine their attention level 

(e.g., stares at an insignificant area of the screen), their weaknesses (e.g., the 

student keeps reading the same sentence over and over again), their interests 

(e.g., fascinated with wild life) and their learning styles (e.g., attempts to solve 

the easier assignments first). The combination of eye-tracking data with the 

learner profile can not only reduce false positives, but also discover 
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personalized patterns that can be used to facilitate learning and reset attention 

when necessary (i.e., learning behavior). 

 

Figure 15: The architecture of the Intelligent Classroom 

While being accurate in determining the direction in which the eyes are 

pointing within an application GUI, eye-trackers are very constraining since 

head motions out of specific limits could result to poor visibility of the user’s 

eyes. As a result, these systems are not appropriate for analyzing the visual 

focus of attention in open spaces. To alleviate this constraint, sophisticated 

cameras (e.g., RGB-D camera such as Microsoft Kinect) can track the head 

pose of the learner to be used as a surrogate for gaze. The combination of eye-

tracking and head pose tracking algorithms offers an accurate overview of 

what the students are looking at on the computer screen and on whom or what 

they are focused on (e.g., teacher, class board, etc.). Moreover, the use of 

cameras is ideal for tracking the body posture and the direction of an 

individual student, especially when taking into consideration that they 

constantly move inside the classroom even while seated. Besides learners' 

orientation, camera input also enables the identification of specific gestures 
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that indicate whether a student is paying attention to the lecture or not (e.g., a 

student raising his hand).  

In addition to visual information, microphones can be used to predict of the 

students' focus of attention based on sound information. According to [54], the 

focus of attention is also correlated to sound sources, thus it is possible to 

estimate it based on information regarding who is talking at, or was talking 

before, a given moment. The microphones are placed on the teacher's and 

students' desks to identify who the collocutor is at any time, while this 

installation also permits monitoring of the classroom noise levels, which is a 

reliable indication of inattentive behavior on behalf of the students.  

Finally, considering that students often get up from their seats, either because 

they conform to the teacher's requests (e.g., the teacher might ask a student to 

solve an exercise on the class board) or because they display inattentive 

behavior, it seems essential to track such situations. For that purpose, the 

pressure-sensitive sensors on each learner's chair can be used to identify 

whether the student is seated or not. This kind of information, if combined 

with data received from strategically placed distance sensors (e.g., near the 

class board, near the teacher's desk), introduces a primitive localization 

technique that can be used to estimate the location and the purpose of a 

"missing" individual (e.g., a student is off the desk near the board thus solving 

an exercise, the teacher might walk in the front of the classroom to assist a 

weak student that had just waved). However, if a full-blown localization 

system becomes available, the aforementioned solution will serve as an 

auxiliary validation system. 

The next sections describe how the LECTOR framework enables the Intelligent 

Classroom to intervene appropriately when the students require help or 

support. 
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LECTOR Framework Outline 
LECTOR exploits the potential of AmI technologies to observe either human- 

or artifact-oriented behaviors (SENSE), identify whether they require remedial 

actions (THINK) and intervene (ACT) accordingly -when deemed necessary- in 

order to fulfill the user needs. According to cognitive psychology, the sense-

think-act cycle stems from the processing nature of human beings that receive 

input from the environment (perception), process that information (thinking), 

and act upon the decision reached (behavior) [30]. This identified pattern 

constitutes the base for many design principles regarding autonomous agents 

and traditional AI [31].  

 

Figure 16: The SENSE-THINK-ACT model extended with the notion of LEARN 

LECTOR heavily depends on contextual information in order to (i) make 

informed decisions regarding the meaning of an identified behavior, (ii) select 

appropriate interventions according to student needs. The term Context of Use 

is defined as follows: “Any information that can be used to characterize the 
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situation of entities (i.e., person, place, object) that are considered relevant to 

the interaction between a user and an application, including the user and the 

application themselves. Context is typically the location, identity, and state of 

people, groups, and computational and physical objects”  [98]. Based on the 

above, LECTOR relies on an extensible modeling component responsible for 

collecting and exposing the necessary information. 

 

Figure 17: System architecture 

Furthermore, LECTOR extends the SENSE-THINK-ACT model by introducing 

the notion of LEARN (Figure 16). The fact that the nature of this system enables 

continuous observation of behaviors creates the foundation for a mechanism 

that provides updated knowledge to the decision-making components. In 

more detail, the learning mechanism is able to (i) incorporate knowledge 
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provided by educators in order to disambiguate identified behaviors (e.g., 

staring at the ceiling might indicate that a particular student is thinking 

instead of being distracted) or assess the acceptance of an intervention (e.g., 

the educators cancels an multimedia presentation that was automatically 

scheduled by the system) , and (ii) auto-rank the suggested interventions 

according to their efficacy (e.g., if the stress levels of a student remain high 

despite the fact that an intervention was initiated, then that particular 

intervention is marked as inefficient). 

Figure 17 presents LECTOR’s architecture, which consists of four core 

components: the Sensor Abstraction Layer (SAL), the Behavior Reasoner (BR), 

the Intervention Manager (IM), and the Learning Component (LC). The Sensor 

Abstraction Layer (SAL) is responsible for monitoring the environment and 

transforming the raw sensor readings into meaningful high-level objects. 

These objects constitute the Physical Context and Virtual Context, which are 

processed by the Behavior Reasoner (BR) in order to detect behaviors that 

should trigger interventions. As soon as a trigger is identified, the Intervention 

Manager (IM) consults the Virtual Context and starts an exploratory process in 

order to select an intervention suitable for the current situation. Both the 

Behavior Reasoner and the Intervention Manager are open to user suggestions 

that can override their defaults (e.g., the educator can reject or postpone an 

intervention). 

In order to support both developers and educators in defining the behaviors 

that lead to context-aware interventions, LECTOR features a sophisticated 

tool, named LECTORstudio. Such tool:  

 Supports the creation of user-oriented behavior-intervention scenarios 

in contrast to the artifact-oriented recipes that are currently supported 

by the majority of IFTTT-style tools [21], [27]. 

 Enables the definition of behaviors that combine multiple contextual 

information. 

 Permits the definition of multimodal and ubiquitous interventions. 
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 Supports the connection of N behaviors with M interventions.  

Since the decision-making mechanisms of LECTOR rely on rule-based 

conditions in order to identify behaviors that trigger appropriate 

interventions, LECTORstudio supports the creation of three (3) types of rules 

(Figure 18); even if this decomposition increases the number of steps that a 

user must complete in order to connect a trigger to an intervention, it offers 

scalability and better rule management. The supported types of rules are: 

I. Rules that “model” a behavior5 based on physical context3.   

II. Rules that “model” the triggers6 based on the behavior5 of actors1 

under specific virtual context4. 

III. Rules that specify the conditions (i.e., triggers6 and virtual context4) 

under which an intervention7 is initiated on a specific intervention 

host2. 

The core concepts of this rule-based approach are explained below: 

1. Actors are the users of the intelligent environment whose behavior 

needs to be monitored in order to decide whether an intervention is 

required. 

2. Intervention hosts can either launch an application with specific 

content or control the physical environment. They are: (i) common 

computing devices such as smartphones, tablets, and laptops or (ii) 

technologically augmented everyday physical objects (e.g., interactive 

white boards, smart lamps, etc.), or (iii) custom made items (e.g., 

student desk).  

3. The physical context encapsulates information regarding physically 

observable phenomena via sensors (e.g., luminance, heart rate, sound 

levels, etc.). 

4. The virtual context refers to any static or dynamic information that is 

provided through software components (e.g., student profiles, student 

agenda, course schedule).  
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5. Behavior is the way that a user or an artifact acts (e.g., a user talks, a 

device switches on). 

6. Trigger is the “model” of a high-level behavior that can initiate an 

intervention. 

7. Interventions are the system-guided actions that aim to help, support 

or comfort users in their activities. 

 

Figure 18: Indicative examples of rule types supported by LECTOR 

In the next sections, the respective software components that comprise the 

overall system architecture of the Sense-Think-Act-Learn model will be 

described in details. 
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SENSE: Sensor Abstraction Layer 
LECTOR’s decision-making mechanisms heavily depend on contextual 

information to (i) identify the actual conditions that prevail in the intelligent 

environment at any given time and (ii) act accordingly. The term context has 

been used broadly with a variety of meanings for context-aware applications 

in pervasive computing [99]. The authors in [100] refer to contexts as any 

information that can be detected through low-level sensor readings; for 

instance, in a home environment those readings include the room that the 

inhabitant is in, the objects that the inhabitant interacts with, whether the 

inhabitant is currently mobile, the time of the day when an activity is being 

performed, etc.  

However, in the envisioned Intelligent Classroom contextual awareness goes 

beyond data collected from sensors. Despite the fact that sensorial readings 

are important for recognizing behaviors, in some cases they are inadequate to 

signify whether a behavior should trigger an intervention.  To this end, 

LECTOR utilizes static and dynamic information such as the characteristics of 

the users, the nature of the task at hand, the user agenda, etc., in order to reach 

to valid conclusions. This work employs the term Physical Context to indicate 

data collected from sensors, whereas the term Virtual Context is used for any 

static and dynamic information provided through software components [101]. 

The exploitation of such contextual information enables the THINK 

component to identify behaviors that should trigger interventions. Despite the 

fact that recognizing a behavior mainly relies on sensor readings, the Virtual 

Context is critical to interpret them correctly. For instance, inside a classroom 

environment, excess noise typically indicates that students talk to each other 

instead of listening to the teacher; however, this assumption is incorrect 

during the music class, where the students are expected to sing loudly. 

Furthermore, the Virtual Context is essential for the ACT component, which 

when instructed to intervene, it selects an appropriate intervention and a 
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suitable host for it. These decisions depend heavily on such information; as an 

example, if an intervention occurs during the first ten minutes of a lecture, 

where the main topic has not been thoroughly analyzed by the teacher yet, the 

system starts a short preview that briefly introduces the lecture’s main points 

using entertaining communication channels (e.g., multimedia content).   

Physical Context (Physiological Cues) 

LECTOR requires information regarding the behaviour of the classroom 

actors, as well as their specific physical properties, in order identify 

inattentive behaviors; the available actors inside a classroom are either 

teachers, students or the classroom itself. In order to observe how they 

communicate and interact during a course, LECTOR currently monitors their 

physical characteristics (i.e., physical context) which are considered 

appropriate cues that might signify inattention, and translates them –in a 

context-dependent manner– into specific activities classified under the 

following categories: Focus, Speech, Location, Posture and Feelings (Figure 

19). 

Focus. Identifying an individual’s visual focus of attention provides rich 

information regarding that person, i.e., what is she interested in, what is she 

doing, or how does she react to different visual stimuli [62]. Inside the 

classroom, the visual focus of attention of students or teachers might be drawn 

to other individuals or static objects (e.g., the class board, the window, the 

world map hanging on the wall, etc.).  

Speech. Being able to understand who is speaking during a course and at what 

sound intensity (e.g., whispering, shouting, talking, etc.) is undoubtedly 

helpful for deciphering student-to-teacher or student-to-student 

communication and interaction. That kind of information could possibly 

reveal behaviors such as chatting with classmates while the teacher is 

lecturing.   
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User Location & Posture. Some behaviors that could be classified as 

disruptive are related to the students’ posture and location inside the 

classroom. These behaviors include (but are not limited to) getting out of seat, 

tapping feet, turning the head or the whole body toward another person, etc. 

[43]. 

Feelings. A student’s learning capabilities can be compromised due to feelings 

of fatigue [102] (i.e., Drowsiness, Falling Asleep), while stress and anxiety have 

the same negative impact to learning [103]. 

 

Figure 19: The user’s physiological cues that should be monitored inside a classroom 

environment in order to identify inattentive behaviors 

Virtual Context  

In the Intelligent Classroom, the decision-making mechanisms of LECTOR 

must be able to identify the context (e.g., student status, lecture progress, task 

at hand, etc.) at any given time. In more detail, LECTOR must rely on detailed 

information regarding the nature of each course, such as: (i) topics to be 

covered by the course’s syllabus, (ii) chapter organization, (iii) topic difficulty 

and related concepts, (iv) assignments’ descriptions, (v) deadlines, (vi) 

contributions to the final score, etc., to make appropriate choices regarding 

behavior classification or intervention selection.  
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Furthermore, each learning activity type (e.g., lecture, exam, exercise solving, 

etc.) has its own rules and standards that ensure its smooth realization and 

guarantee optimal benefits for the students. To this end, each type is 

accompanied by a list of irrelevant and/or undesired activities, which are used 

to disambiguate behaviors that in some contexts are classified as attentive and 

in others as inattentive. For example, personal “thinking” is anticipated during 

a written exam, however this is not the case when the teacher is giving a 

lecture.  

Additionally, information concerning each individual student’s learning 

behaviors (e.g., concentrates easier while doodling, etc.), are invaluable for 

interpreting activities that indicate attention for some but inattention for 

others. In order to capture such information, the LECTOR profiling 

mechanism is used to store students’ static personal data (full name, date of 

birth, etc.) along with dynamic context-sensitive data gathered through 

interaction monitoring, such as topics of interest or dislikes, weaknesses or 

strengths, general knowledge, progress and preferred types of learning 

resources.  

Based on the above, in order to make appropriate decisions either when 

attempting to identify a behavior or when investigating possible interventions, 

LECTOR must be aware of the current course, the ongoing activity, and the 

characteristics of the involved students. Students with similar characteristics 

in terms of academic process (e.g., Advanced, Intermediate or Weak 

students), behavioral norms (e.g., Loud Speakers, Loud Thinkers), learning or 

behavioral disorders (e.g., ADHD), etc. are part of the same student group(s).  

SENSE Component Architecture 

LECTOR aims to be deployed in Intelligent Classrooms that incorporate 

infrastructure able to monitor users and artifacts, so as to provide the 

necessary input to the decision-making components for estimating whether 

their behavior requires remedial actions. Such environments are dynamically 
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formed due to the abundance of services and devices that constantly change 

their availability. Hence, in order to ensure scalability, LECTOR is not bound 

to specific technological solutions, but rather enables developers to 

seamlessly integrate new data sources through an intermediate software layer 

that maps the sensed data (i.e., physical and virtual context) to abstract models 

that LECTOR is able to process. 

 

Figure 20: Sensor Abstraction Layer (SAL) 

A newly imported sensor is able to advertise its availability and inform the 

decision-making mechanisms about the characteristics of the environment 

that can be monitored and assessed. Upon a new installation, the Sensor 

Abstraction Layer (SAL), an overview of which is depicted in Figure 20, uses 

standard control APIs to initialize the appropriate delegates, monitor the 

operation of the installed sensor and propagate its events to the decision 

layers. For instance, a component that performs human localization notifies 
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the system that it can provide the location of the user inside the environment. 

As soon as that happens, SAL initializes the appropriate components and 

whenever a new event is emitted due to user movement, it is broadcasted to 

the interested components (i.e., Behavior Reasoner). 

 

Figure 21: Examples of Sensor Models that represent the input values expected by LECTOR 

Inside an AmI environment the available input sources might range from 

simple converters (or chains of converters) that measure physical quantities 

and convert them to signals which can be read by electronic instruments, to 

software components (e.g., a single module, an application, a suite of 

applications, etc.) that monitor human computer interaction and data 

exchange. Undoubtedly, the input types, values and formats are tightly 

coupled with the input source that generated them, hence, this highlights the 

need for an appropriate federation mechanism that will alleviate this diversity 

and will facilitate interoperability. To this end, LECTOR permits developers to 

create Sensor Models that represent the expected input values; these models 

are the common ground between SAL and the other decision layers (i.e., 

Think, Act and Learn components), which rely on high-level values instead of 

raw sensor data. Figure 21 presents some indicative examples of Sensor 
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Models; for instance, the decibel (dB) is used to the measure the sound levels 

of the environment, while monitoring the human body activities provides 

specific values about the movement of the user (i.e., standing, sitting, walking, 

running). For each one of these models, developers can provide one or more 

Sensor Data Translators (Figure 22) which are responsible for effectively 

translating the received data before forwarding them. In some cases, this 

requires a few lines of code (e.g., converting sound frequency (Hz) to sound 

levels (dB)), while in others developers have to provide more sophisticated 

algorithms (e.g., detection of human walking).  

As already mentioned, the term sensor is not used only to describe hardware 

infrastructure, but it encapsulates software components as well.  Consider the 

following example of a Sensor Data Translator that requires simple mapping 

of the data received from an end-user puzzle game application, to the variables 

of the appropriate Sensor Model. The application’s service is able to emit the 

following messages: (i) INACTIVE – when the user has not interacted with the 

system for more than 5 minutes, COMPLETE – when the user has finished the 

puzzle, and (iii) HINT – when the user requests help to continue. In case 

LECTOR has already another model for integrating similar educational games 

(e.g., IDLE, DONE and HELP), the developer responsible for integrating the 

puzzle game must provide the code that makes the appropriate mapping (i.e., 

INACTIVE  IDLE, COMPLETE  DONE and HINT  HELP).  

Finally, the Common Sensor Interface Layer provides mechanisms that enable 

the dynamic registration of sensors, allowing their run-time connection and 

disconnection. 

LECTORstudio supports developers in providing the information required 

during the integration of a new sensor. In more detail, LECTORstudio offers a 

user-friendly interface through which they can (i) define the data models that 

LECTOR’s reasoning components will use, by defining the variables that will 

carry the actual values at runtime, (ii) select one or more services that deliver 

information collected from a particular sensor, and (iii) provide the code that 
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translates the data received from the sensor services to the types described by 

the models. For example, a service exposed by the student’s wrist band is able 

to transmit data regarding her physiological signals. The user interface of 

LECTORstudio is described in details in Chapter 6. 

 

Figure 22: A Sensor Data Translator contains code responsible for effectively translating the 

received data before forwarding them 
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THINK: Behavior Reasoner 
The Behavior Reasoner (BR) is responsible for identifying behaviors that 

require remedial actions; therefore, it constantly monitors the environment 

and when necessary it notifies the intervention manager to decide when and 

how to act. The Decision-Making Component of BR (Figure 23) constitutes the 

core of the THINK mechanism as it collects all the rules that describe 

behaviors and triggers and feeds them with the Physical and Virtual Context 

generated via Sensor Abstraction Layer. Whenever a stimulus is detected by 

the SAL component, the Decision-Making Component initiates an exploratory 

process to determine whether the incoming event indicates that the user needs 

help or support.  

 

Figure 23: Behavior Reasoner 

The first step of this process is to identify whether the sensed data denote a 

human- (e.g., the user is walking) or artifact- behavior (e.g., the oven is on). 

The modeling of such behaviors is realized in the form of high-level if-then 

rules, which combine multiple diverse information acquired from the Physical 

Context (Figure 24a). For instance, consider the behavior “Tachycardia” which 

is modeled as: “Heart rate greater than 100bpm signifies Tachycardia”; in this 

example, the “Heart rate” is a Physical Context attribute whose elevated value 

(> 100bpm) signifies a specific behavior (i.e., Tachycardia).   
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a.  

b.  

Figure 24: The conceptual representation of (a) the behavior model (b) the trigger rule 

 

 

Figure 25: Detect Inattention Flowchart 

As soon as a behavior is detected, the Decision-Making Component further 

examines the current Virtual Context, so as to identify whether that particular 

behavior should trigger an intervention. Similarly to the description of the 

Behavior Models, the decision logic that leads to the identification of 
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intervention triggers is also defined in the form of high-level “if-then” rules 

(Figure 24b). These rules combine various parameters such as identified 

behavior, virtual context, actor, etc., to define the conditions under which the 

system needs to intervene. The outcomes of these rules are high-level 

behaviors, named triggers. When they are identified, the Intervention 

Manager is notified so as to select the appropriate interventions. Consider the 

following rule that describes the trigger “Stress”: “While taking an exam, a 

Student with Tachycardia is Stressed”. In the former example, the virtual 

context (i.e., exam period) under which the behavior “Tachycardia” appears, 

reveals that the user is in a situation (stress) that requires a remedial action. 

The existence of various triggers is really important since they denote 

situations that require special treatment from the Intervention Manager. For 

example, Tachycardia due to Stress requires different handling than 

Tachycardia due to a medical condition.  The entire process of detecting a 

trigger is depicted in the flowchart of Figure 25. 

Observing the physical characteristics of the classroom actors described 

previously in this Chapter, empowers the identification of specific behaviors 

(e.g., Talking, Looking at the Door, Looking at a student, Walking) that might 

occur during a course. Out of context, such behaviors do not provide evidence 

that a student is distracted from the educational process. On the contrary, 

when examined in conjunction with the behavior of any other implicated 

actors and combined with appropriate contextual information (e.g., current 

activity, current course), they might reveal a situation that requires remedial 

actions (e.g., CHEAT, CHAT, DISTURB, FATIGUE, BOREDOM, OUT OF SEAT). 

For example, identifying that a student is talking does not signify that he is 

being inattentive; however, identifying that a student is talking to a classmate 

while the teacher is lecturing provides strong evidence that he is chatting. 

In order to support extensibility, LECTORstudio accommodates the 

composition of new behavior models and trigger rules respectively (see 

Chapter 6). This is an invaluable asset not only for developers, but for non-
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technical users as well, which are enabled to create their own behavior-

intervention scenarios.      

Upon creation, both behavior models and trigger rules are stored in a 

database. Figure 26, presents the employed database schema; in the case of a 

behavior model, the key “properties” is used to store information regarding 

the physical characteristics (i.e., physical context) that should be monitored 

so as to identify a behavior. As far as the trigger rules are concerned, the key 

“context” refers to the virtual context under which the rule should be evaluated 

and the key “actors” describes the users that should be monitored for specific 

behaviors. In both cases, the “outcomeId” is the foreign key to the table 

containing the general details of the behavior / trigger (e.g., name, 

description). 

Before deployment, the stored data are retrieved and the relevant executable 

code is generated so as to be used by the decision-making component. In more 

detail, the data are translated to Javascript code (Figure 27) using 

Handlebars.js [104], an extension of the Mustache web template system [105]. 

Both Handlebars and Mustache are logic-less templating languages that keep 

the view and the code separated, while Handlebars is considered one of the 

most advanced libraries available. Its main difference from Mustache is that it 

permits the developers to add their own helpers (i.e., custom logic). Using 

such a templating system in order to generate the executable code for both 

behavior models and trigger rules ensures that LECTOR is not bound to a 

specific implementation. On the contrary, by simply replacing the templates, 

the system can either employ alternative reasoning techniques or be ported to 

different platforms. 
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Figure 26: The database schema for both the behavior models and trigger rules 



77 

 

a.  

b.  

Figure 27: (a) Snapshot of the Handlebars template, and (b) the generated *.js code  
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ACT: Intervention Manager 

Intervention Types 

The term intervention is defined as “involvement in a difficult situation in 

order to improve it or prevent it from getting worse” [29]. Here it is used to 

describe the system-guided actions that subtly interrupt a course’s flow in 

order to (i) draw the educator’s attention in problematic situations, and (ii) re-

engage distracted, unmotivated or tired students in the educational process. 

Actually, interventions are applications running on private (e.g., student’s 

desk, teacher’s watch) or public (e.g., classroom board) hosts, instantiated at a 

key point in time with appropriate content. Literature review reports that 

several types of interventions can prove to be beneficial in various situations 

occurring in an educational setting (summarized in Table 2).  

Currently, LECTOR features two types of interventions that have been created 

in order to ensure active student participation in the main course. Particularly, 

the student desk and the classroom board are able to instantiate quizzes and 

multimedia presentations, whose appropriate content can keep students 

motivated. These interventions can be applied either to individuals on their 

private artifacts or the entire classroom when displayed on the publicly 

available board. 

Furthermore, taking into consideration the fact that most students thrive in 

encouraging environments where they receive specific feedback, their private 

artifacts (i.e., desk and smart watch) are equipped with a messaging 

mechanism able to provide encouraging messages when deemed necessary. 

The same mechanism is employed on the teacher’s smart watch in order to 

display subtle messages suggesting changes in the lecture format. In more 

detail, LECTOR is able to suggest recapitulation of the lecture topics, 

initiation of a discussion relevant to the current course, repetition of specific 

material and continue lecturing at a lower pace.  
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Table 2: List of available educational interventions 

Intervention Technique Recipient Hosts Range 

Quiz Active Learning Students 

Student Desk, 

Classroom 

Board 

Individual, 

Class-wide 

Multimedia 

Presentation 
Active Learning Students 

Student Desk, 

Classroom 

Board 

Individual, 

Class-wide 

Encouraging 

Messages 
Encouragement Students 

Student Desk, 

Student Smart 

Watch 

Individual 

Initiate 

Discussion 

Changing 

Pedagogies 
Teacher 

Teacher Smart 

Watch 
Class-wide 

Recapitulation 
Changing 

Pedagogies 
Teacher 

Teacher Smart 

Watch 
Class-wide 

Repeat course 

material 

Changing 

Pedagogies 
Teacher 

Teacher Smart 

Watch 
Class-wide 

Lower pace 
Changing 

Pedagogies 
Teacher 

Teacher Smart 

Watch 
Class-wide 

 

ACT Component Architecture 

As soon as an intervention trigger is detected, the Decision-Making 

Component of the Intervention Manager (Figure 28) initiates an exploratory 

process to identify the most appropriate course of action. Evidently, selecting 

a suitable intervention and the proper artifact for hosting it is not a 

straightforward process, as it requires multi-stage analysis of the Virtual 

Context. The first step to accomplish is to consult the “Intervention rules”; 

similarly to the “Trigger rules”, they are high-level “if-then” rules (Figure 29) 

describing the conditions under which one or more interventions should be 

initiated (e.g., if the user has been sitting watching movies for over an hour, 

display a notification to the TV suggesting a short walk). 
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Figure 28: Intervention Manager 

Each intervention rule, upon evaluation, points to one or more intervention 

strategies residing in the “Interventions’ Pool” (IP). The IP includes high-level 

descriptions of the available strategies, which are in fact applications that can 

be used as channels to present interventions dictated by LECTOR.  In order to 

act as an intervention, an application is required to conform to AmI-Solertis 

[89] SaaS specifications, ensuring that it will be able to receive and execute 

LECTOR’s commands.  

 

Figure 29: The conceptual representation of an intervention rule 

Since a specific behavior can originate either from a single user or a group of 

people, the Intervention Manager is able to evaluate and select strategies 

targeting either private or public intervention hosts. Finally, after selecting the 

appropriate intervention(s), the system is able to personalize its (their) content 

according to the current context of use. 
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LECTORstudio enables developers to integrate new intervention strategies 

through the Intervention Pool Editor; that process includes defining (i) the 

scope of the intervention (i.e., private vs. public), (ii) the target user groups, 

(iii) the artifacts that can act as hosts, and (iv) the actual code that initializes 

and runs the respective application to each of the selected hosts. Such 

information permits LECTOR to make informed decisions regarding the 

appropriateness of a strategy under a specific context and initiate it when 

deemed necessary. Furthermore, LECTORstudio features the Intervention 

Rules Editor, which not only facilitate developers, but also permits non-

technical users to tailor the intervention mechanism to their needs and 

preferences. In more detail, they can (i) define the context under which 

LECTOR intervenes, (ii) select one or more intervention strategies, (iii) 

configure them so as to better meet their needs (e.g., determine the video 

sources of a multimedia presentation), and (iv) at the same time customize 

other physical aspects of the intelligent environment (e.g., lights’ intensity, 

blinds’ status, etc.). The user interface of LECTORstudio is described in details 

in Chapter 6. 

Upon creation, the intervention rules are stored in a database. Figure 30, 

presents the employed database schema; the key “triggers” is used to store 

information regarding the behaviors that trigger an intervention, while the 

key “context” refers to the virtual context under which the intervention rule 

should be evaluated. Information regarding the actual strategies that should 

be followed are described in “interventions” and “environment” keys. The 

introduction of the Environment as a separate form of interventions, despite 

the fact that there is no essential difference from an implementation 

perspective between environmental interventions and other software 

applications, aims to assist non-technical users in conceptualizing whether 

their decisions will affect other users of the environment. 
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Figure 30:  The database schema for the intervention rules 

Furthermore, for each intervention rule the database stores statistics such as 

success rate, number of activations and number of cancelations. This type of 

information is important so as to evaluate the efficacy of a rule.  Regarding the 

success rate, the Learning component is able to compare the behavior of the 

user before and a short time after the application of an intervention, so as to 

understand whether the remedial action was effective. For example, consider 

a student that lost interest in the task at hand, and chats with his classmate 
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instead of completing the multiple choice exercise which is launched on his 

personal computer. The system decides to intervene and motivate the student 

by displaying an encouraging message that prompts him to continue with the 

exercise. In case the user’s behavior remains the same (i.e., the user is still in 

chatting) the success rate of that particular intervention decreases.  Hence, in 

the future if a similar situation occurs the Intervention Manager can select an 

intervention with a higher success rate. Similarly, the number of manual 

cancelations can help the decision-making component understand whether 

the intervention is considered appropriate under specific context. 

Before deployment, the stored data are retrieved and the relevant executable 

code is generated so as to be used by the decision-making component of the 

Intervention Manager. Similarly to the translation of the behavior models and 

trigger rules, the trigger rules are translated to javascript code using 

Handlebars.js. 
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LEARN: Learning Component  
Both the Behavior Reasoner and the Intervention Manager should be able to 

“learn” from previous decisions and refine their logic, while they should also 

be open to user suggestions that can override their defaults. In order to 

introduce the notion of LEARN, the proposed system provides a mechanism 

that (i) is able to compare behaviors before and after interventions so as to 

understand whether the selected strategies were efficient, and (ii) takes into 

consideration user input so as to understand whether BR correctly identified 

behaviors or IM selected appropriate interventions (Figure 31).  

 

Figure 31: Learning Component 

Triggers and Interventions History 

The Learning Component (LC) keeps history logs of identified triggers and 

initiated interventions. When the IM applies an intervention estimated to be 

useful under a particular context of use, then after a reasonable amount of 

time (which is specified by the intervention rule) LC is responsible for re-

examining whether the user’s behavior remains the same. Specifically, if it still 

detects that -within a specific time frame- the Behavior Reasoner still identifies 

the same trigger, then the selected recommendation is marked as ineffective 

in that context (Figure 32). To do so, it informs the Intervention Manager to 

decrease the success rate of the rule that led to that particular intervention; 

from that point, IM can select different rules with greater efficiency for that 
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particular context instead of the one that was proven to be unsuccessful 

(Figure 33).  

 

Figure 32: After the initiation of an intervention, if the same trigger is identified within a 

specific time frame, then that intervention is considered unsuccessful. 

 

Figure 33: Determining the efficacy of an applied intervention 

However, this approach does not apply to every intervention rule. For 

instance, consider an intervention programmed to turn off the classroom 
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lights as soon as a presentation starts on the board. In that case, it is irrelevant 

to examine whether “presentation start” is identified again after the lights turn 

off. To this end, each intervention rule is appropriately annotated so that the 

LEARN Component can decide whether it should start its evaluation process 

or not.  

Apart from studying the history log of behaviors immediately after a remedial 

action has been taken, in some cases it is important to track the long-term 

effects of interventions. This approach has the advantage of ignoring false 

positives, such as “fake” behaviors, where students pretend to be engaged to 

an educational activity, when in fact they are not. Instead, the effectiveness of 

an intervention can be verified as soon as the system validates that the student 

has acquired the knowledge taught during the period that the intervention in 

question was applied (i.e., that could occur much later in time e.g., when that 

student scores exceptionally well in a relevant exam). To this end, the 

Learning Component is able to combine performance statistics with past 

contextual information to identify whether the applied interventions had 

positive results.  

User Input 

One of LECTOR’s main objectives is to help and support teachers by enabling 

complete classroom overview and automatic suggestion of engaging activities. 

Towards that direction, teachers can provide valuable input, and namely they 

can (i) reject system decisions regarding identified triggers, and (ii) override 

system suggestions in case they do not serve their needs.  Firstly, the users will 

be able to notify the system in case it has falsely identified an intervention 

trigger. For example, in the case of a student that stares at the ceiling, the 

system wrongly estimates that he is mind wandering and triggers the rule that 

initiates a multiple-choice quiz to re-motivate him. At this point the teacher, 

knowing that this particular student was “thinking” while staring at the ceiling, 

notifies LECTOR that he was not being inattentive; hence, the Behavior 

Reasoner will to incorporate that knowledge for future reference. Secondly, in 
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order to allow the teachers to have the final say regarding the suggested 

interventions, the system permits their ranking, modifications and 

cancellations. To this end, the LEARN Component is responsible for informing 

the Intervention Manager to update the statistics of each intervention rule.  
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Chapter 6 

LECTOR Tools 

This chapter describes the functionality and user interface of LECTORstudio 

[106], a sophisticated authoring tool that permits both developers and non-

technical users to take advantage of LECTOR’s services. Furthermore, 

LECTORstudio permits developers create the appropriate infrastructure 

depending on the target audience and the available ambient facilities.  

Additionally, LECTOR interoperates with three (3) other powerful tools which 

are specifically created to serve the needs of educators and students of the 

intelligent classroom. These tools are explained in details in the following 

sections. 

LECTORstudio: Creating Inattention Triggers 

and Planning Interventions 
LECTORstudio aims to assist developers and educators in the process of 

realizing an attention-aware intelligent classroom that intervenes when 

necessary to re-motivate students.  

To this end, it offers an intuitive UI through which developers can:  

(i) create the classification scheme for organizing the rules responsible for 

detecting behaviors, 

(ii) integrate the available artifacts that can host interventions, 
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(iii) model the physical context which encapsulates information regarding 

physically observable phenomena (e.g., luminance, heart rate, sound 

levels, etc.), 

(iv) describe the actors, i.e., the users whose behavior needs to be 

monitored in order to conclude whether an intervention is required,  

(v) integrate the intervention types that are available through the existing 

hosts. 

Furthermore, it permits both developers and non-technical users to:   

(vi) create rules that reveal intervention triggers,  

(vii) fine-tune the rules responsible for identifying behaviors in the 

monitored environment,  

(viii) create rules according to which specific interventions are initiated.  

Any of the above tasks is a complex procedure that requires the configuration 

of many heterogeneous parameters, which could be overwhelming and 

cumbersome even for experienced developers, let alone non-technical users. 

To this end, LECTORstudio features a wizard-style interface in order to 

transform this complex set of conditions into understandable steps, which is 

ideal for users that lack the necessary technical knowledge since they can just 

follow a preplanned route [107]. 

In more detail, each of the aforementioned tasks is decomposed into 

autonomous chunks, which form logical step-by-step processes to guide the 

users towards achieving their goals; to avoid creating tiring and tedious 

processes, the number of chunks is kept to a minimum, leading to a maximum 

of 3 or 4 steps. Specifically for the tools that target educators, LECTORstudio 

reduces complexity by avoiding the use of technical terms and instead 

speaking the users’ language using words and phrases familiar to teachers. 

Finally, adding up to the clear and informative UI, input controls were 

carefully selected in order to make sure that any user input is well-formed 

according to the functional requirements of the system (e.g., expected types, 
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predefined values, etc.). These practices, along with the adoption of general 

HCI design principles (e.g., consistency, user control and freedom, error 

prevention, etc.), ensure that LECTORstudio reduces, to a large extent, the 

cognitive load and simplifies the overall process for both developers and 

educators. 

Creating the Behavior Classification Scheme 

A two-level classification scheme is employed for organizing the rules 

responsible for detecting behaviors. The first level contains the abstract 

behavior types (e.g., Attention, Focus, Speech, Location, etc.) that should be 

monitored by LECTOR in order to collect valuable information. Yet, the 

concrete behavior outcomes (e.g., Quiet, Whispering, Talking, etc.), are 

described at the second level and contain the respective rules.  The same 

outcome might be recognized by several rules; that is because employing 

different algorithms or monitoring miscellaneous contextual parameters (i.e., 

physical, or virtual context) can lead to the same result. 

 

Figure 34: Snapshot of LECTORviewer’s UI displaying a subset of the available behavior types 

along with their outcomes 



92 

 

Figure 34, presents LECTORviewer’s user interface displaying a subset of the 

available behavior types along with their outcomes. Notably, the selected 

classification scheme leads to an intuitive UI that permits both developers and 

educators to find rules quickly on the basis of the behavior type and outcome. 

As shown, a specific theme is followed per behavior type in order to support 

their recognizability and enhance intuitive interaction. LECTORstudio permits 

developers to create the aforementioned scheme (Figure 35) by providing the 

following:  

 A descriptive name of the behavior type. 

 Presentation details such as description, icon and theme (i.e., font and 

background color), which will be used to create an intuitive UI. 

 The behavior outcomes that also constitute the labels to be employed in 

LECTOR’s reasoning mechanisms.  

 

Figure 35: The process of creating the Behavior Classification Scheme 
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As soon as an outcome is defined, the developer can set its lock status to ON 

(default) or OFF; a locked outcome is not available to educators for adding or 

modifying the relevant rules. For example, the “OWN DESK” outcome of the 

behavior type “LOCATION”, should be locked since only experienced 

developers can provide the appropriate code that identifies whether a student 

sits on her desk. On the other hand, the “BOARD” outcome of the same type 

can remain unlocked, since the educator can fine-tune any rules concerning 

whether an individual’s whereabouts are near the board by manually selecting 

its position on the classroom’s floor plan.  

 

Figure 36: The process of editing the integrated intervention host “Student’s Desk”   
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Integrating the available Intervention Hosts 

The term intervention host is used here to describe (i) common computing 

devices such as smartphones, tablets, and laptops, (ii) technologically 

augmented everyday commercial objects (e.g., interactive white boards, smart 

bulbs, etc.), or (iii) custom made items (e.g., student desk). An Intervention 

host either launches an application with specific content or controls the 

physical environment (e.g., dim the lights during a video presentation). For 

LECTOR to optimally intervene, the available intervention host types have to 

be properly defined. To this end, LECTORstudio allows the modeling of each 

type in a way that conveys the information required for creating and deploying 

an intervention (Figure 37).  

 

Figure 37: The available intervention hosts are displayed in the form of tiles containing 

useful information 

Specifically, developers are expected to define the following (Figure 36): 

 General details about the intervention host, i.e., name, description and 

icon. 

 A unique ID, which will be used by intervention hosts to advertise 

themselves in AmI-Solertis. This information enables LECTOR to 
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communicate with intervention hosts of the same kind in a seamless 

manner. For example, when an intervention is scheduled to be applied on 

every student desk, LECTOR simply asks AmI-Solertis to deliver the 

command to all hosts identified as “DESK”. 

 The host-specific services that should be exposed to developers 

responsible for building and deploying interventions on that particular 

host. For example, a student desk employs various services such as 

CognitOS, Microphone Recorder, Seat tracker, Sound Controller, etc.; 

subsequently, if CognitOS and Sound Controller services are exposed, a 

developer can define an intervention for a student that continuously 

browses out-of-context videos using the former to launch an educational 

application (e.g., Quiz) and the latter to mute the speaker output. 

 The intervention host type, which determines whether it can be used as 

an intervention host or as an intelligent device that can be used to modify 

the conditions of the environment (e.g., lights, blinds, curtains, etc.). 

 The privacy type which could be: (i) public intervention host, (ii) private 

teacher intervention host or (iii) private student intervention host. This 

information is intended to be used by LECTOR’s Intervention Manager to 

identify appropriate hosts for the planned interventions.   

Modeling the Physical Context 

LECTORstudio facilitates the modeling of the physical context (Figure 38), 

which encapsulates information regarding physically observable phenomena 

(e.g., luminance, heart rate, sound levels, etc.). This aims to alleviate the 

diversity of input values coming from heterogeneous sources and create a 

shared data model that can be used by the rule creation mechanisms.  

In more detail, developers can define the type of information that LECTOR will 

be able to process, independently of its source. For instance, the system does 

not need to know that a student has turned his head 23 degrees towards south 

but that he stares out of the window.  
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The first step of creating a physical context property requires:  

 A descriptive name. 

 The relevant services that deliver information collected from the input 

sources. For example, a service exposed by the student’s wrist band is able 

to transmit data regarding her physiological signals.   

 The property’s variables, which are the available fields that will carry the 

actual property value at runtime. The definition of each variable requires 

its name, type (e.g., Number, String, Boolean), default value and available 

values, as well as default unit and other available units. 

The second step of this process includes the translation of the data types 

received from the sensors to the types described by the property’s variables. 

This process requires developers to provide the code that performs the 

mapping from one type to the other. To do so, LECTORstudio employs the 

sophisticated web-editor offered by AmI-Solertis, which automatically 

generates some of the required blocks of code based on information acquired 

from the first step. This alleviates some effort from the developers, while 

along with its built-in autocomplete functionality the editor provides several 

instructions (in the form of commented code) that guide developers in 

building their code.   

 

Figure 38: The process of defining the ‘SOUND’ Physical Context Property  
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Figure 39: The process of editing the actor “Teacher” 

Describing the Actors 

The term Actor is used to describe the users of the intelligent environment 

where LECTOR is employed, whose behavior needs to be monitored in order 

to decide whether an intervention is required. Generally, different types of 

actors have diverse characteristics which need to be taken into consideration 

when building the rules that guide LECTOR’s decision-making mechanisms. 

To this end, LECTORstudio permits developers to insert the following 

information (Figure 39):  

 General details regarding the actor, i.e., name, description and icon. 

 The actor type (i.e., individual or group), which determines whether the 

system’s decisions must rely on the actions of individual users or the 

collective behavior of a group of people. Indicative actor examples, drawn 
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from the intelligent classroom case study, are: (i) Teacher (individual), (ii) 

Student (individual), and (iii) Classroom (group of students). 

 The outcomes that designate which actor behaviors (i.e., virtual properties) 

should be monitored and which should be excluded. Narrowing down the 

virtual properties that need monitoring not only simplifies the process of 

rule creation, since the interface is not cluttered with irrelevant options, 

but also improves the system’s runtime performance as unnecessary 

checks are eliminated. For example, the FOCUS of a student might be the 

“BOARD”, another “STUDENT” or the “TEACHER”; the first two virtual 

properties are legitimate values for the teacher as well. However, the latter 

is a behavior that will never occur.  

 

Figure 40: The available intervention types are displayed in the form of tiles containing 

useful information  

Integrating Intervention Types 

As already mentioned in Chapter 5, the term intervention is used to describe 

the system-guided actions that subtly interrupt a course’s flow in order to (i) 

draw the educator’s attention on problematic situations, and (ii) re-engage 

distracted, unmotivated or tired students in the educational process. Table 2, 

displays the available interventions, which in fact are applications running on 

private (e.g., student’s desk, teacher’s watch) or public intervention hosts (e.g., 

classroom board) instantiated at a key point in time with appropriate content. 

In order to act as an intervention, an application is required to conform to 

AmI-Solertis SaaS specifications, ensuring that it will be able to receive and 

execute LECTOR’s commands. At the same time, LECTOR needs to be aware 

of the available intervention types; for that purpose, LECTORstudio offers a 
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wizard-style interface that permits developers to integrate them in three 

simple steps.  

The first step (Figure 41) requires the general details of the intervention, i.e., 

name and description, as well as the definition of its customizable properties. 

A customizable property is an attribute exposed to educators for configuration. 

For example, when creating an intervention rule that utilizes the “Multimedia 

presentation” application, the educator can select which of the available video 

sources (e.g., YouTube, Dailymotion, etc.) will be used.   

 

Figure 41: The first step of editing the intervention type “Multimedia Presentation”. This step 

requires the definition of the details of that particular intervention type. 

As a second step (Figure 42) developers are expected to define the target (i.e., 

student, teacher, and environment) of the intervention type as well the 

artifacts that are able to employ it. In case the targeted users are students, the 

range (i.e., public or private) of the intervention has to be defined too.  Being 
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aware of the actual recipients and the range is essential for LECTOR’s 

Intervention Manager, which among others is responsible for selecting the 

appropriate intervention type and suitable host(s). For example, if an 

individual student needs motivation, a private intervention is appropriate; on 

the contrary, if the entire classroom requires a remedial action, LECTOR can 

either instantiate a public intervention at a public host or apply collectively 

private interventions to all private student hosts.  

 

Figure 42. The second step of editing the intervention type “Multimedia Presentation”. This 

step requires the definition of the artifacts that can host that particular intervention type. 

As soon as the intervention recipient is defined, the available intervention 

hosts are filtered appropriately narrowing down the acceptable options. At 

this point, the developer must select the host(s) that contain implementations 
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for that intervention type, while at the same time she must define the host-

specific service(s) responsible for instantiating that intervention. For example, 

the “Mini Quiz” intervention can be applied either privately on a student’s desk 

(i.e., CognitOS_App_Launcher service) or publicly on the classroom board 

(i.e., AmIBoard_App_Launcher service).  

Finally, for each of the selected intervention hosts the developer has to provide 

the actual code that initializes and runs the respective application. To do so, 

all the collected information is forwarded to the AmI-Solertis web-based editor, 

which prepares the ground for inserting the necessary lines of code. 

Specifically, the editor initializes the intervention and the selected services per 

host.  

 

Figure 43: The step of selecting and configuring the physical properties that need fine-

tuning. 

Fine-tuning Behavior Recognition Rules 

LECTORstudio permits the modelling of human, agent and artifact behaviors. 

This is achieved through “if-then” rules describing the conditions under which 

specific behaviors occur. As soon as a behavior is detected, the decision-



102 

 

making mechanisms of LECTOR further examine the “Trigger rules” set, so as 

to identify whether at that particular context the identified behavior indicates 

inattention. Creating a behavior recognition rule from scratch would require 

excellent programming skills, implementation of specific scientific 

algorithms and accurate knowledge on what data are being collected by each 

technological artifact. To this end, this functionality is deliberately excluded 

from the version of LECTORstudio that targets educators. 

However, fine-tuning those rules and being able to configure some of their 

high-level attributes is available through a 3-step wizard. The first step 

requires the definition of the context following a process similar to the one 

described for the “context definition” step of the “Create inattention triggers” 

wizard. Next, the educators are expected to select any physical properties they 

wish to configure. Upon selection, a panel with configurable attributes 

enables them to fine-tune the conditions under which a (sub) – activity is 

denoted (Figure 43). Finally, the wizard provides a summative overview and 

the educator can create and deploy the new rule. 

The necessity for the described fine-tuning facility is illustrated by the 

following motivating example. The default rule for the activity SHOUTING –

which belongs to the Speech category– specifies that “if an actor’s sound levels 

range between 85 and 95 decibels, then the actor is shouting”. Since this rule 

is the default one, it applies to every context and triggers as soon as the THINK 

component of LECTOR receives increased sound levels for a specific amount 

of time. However, an exception seems imperative for the Music course where 

students are expected to sing, thus raising the noise levels of the classroom 

higher than usual. Through LECTORstudio, educators can easily create a 

variant of that rule, where only during the music course (i.e., modify a 

contextual property) the threshold of the SOUND physical property that 

triggers the rule will overpass 100 db. 
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Creating Inattention Triggers  

LECTORstudio enables the enrichment of the “Trigger Rules” set by permitting 

developers and educators to easily create and modify rules that signify 

inattention via the respective creation wizard. To fully specify such a rule, an 

user is required firstly to define its conditions, namely (i) the context under 

which the rule should be evaluated, (ii) the implicated actors (e.g., individual 

or group of students, teacher, etc.), (iii) the physical attributes that should be 

monitored for relevant cues, and secondly determine the type of inattention 

that this rule can detect (e.g., disturbing classroom, cheating, chatting, etc.). 

Defining an inattention type not only helps the educators understand the 

source of the problem when an alarm is triggered, but is also used by 

LECTOR’s Intervention Manager to decide which intervention should be 

applied. An indicative example of such an “Inattention Trigger” is the 

following: “During a lecture, if the teacher is talking to the students and some 

of them are too talkative or do not focus on her, then this is a sign that they are 

possibly chatting”. This sentence contains all the information needed to build 

the respective rule: “during a lecture” implies the context, the implicated 

actors are the teacher and the students, whose sound levels should be 

examined to identify whether they are talking, while the students’ focus should 

also be under inspection. Finally, the closing words indicate that “chatting” is 

the inattention type of such behavior.  

Figure 44, presents all the necessary steps to define a new rule that aims to 

detect inattention. Firstly, the user is required to define the context under 

which the newly created rule will be evaluated. Three affirmative statements 

–one for each supported context type– are displayed, prompting the user to 

select whether she agrees with them or not: (i) It (the rule) concerns specific 

courses, (ii) It (the rule) concerns specific activities and (iii) It (the rule) 

concerns specific student groups. Each statement is accompanied by a simple 

yes/no input control with the default value set to “No”. As soon as that value 

changes to “Yes”, a set of relevant options appear representing the expected 
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values for that context, out of which the user can select which will be included 

or excluded from the rule. 

 

 

 

Figure 44: The process of creating an inattention trigger 
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Apart from the context under which an educational activity takes place, a rule 

responsible for triggering inattention alarms requires information regarding 

the implicated actors as well as their specific physical properties that should 

be under inspection; the available actors inside a classroom are either 

teachers or students. In order to observe the way they communicate and 

interact during a course, LECTOR currently monitors some of their physical 

characteristics (i.e., physical context) and translates them, in a context-

dependent manner, into specific activities classified under the following 

categories: Focus, Speech, Location, Posture and Feelings, which are 

considered appropriate cues that might signify inattention (Chapter 5).  

 

Figure 45: The second step of the "Create inattention triggers" wizard requires the selection 

of the implicated actors  

As soon as context is properly defined, the “Create inattention triggers” wizard 

(Figure 45) presents to the user a list of the available actors in the form of 

selectable tiles. When an actor is selected, a panel with his/her relevant 

physical properties is displayed, giving the educator the opportunity to define 

which of them will be included in the rule’s activation condition; the values 

could be used as-is (e.g., focusing at the teacher) or as logical negations of their 

initial value (e.g., not focusing at the teacher).  Additionally, the user can 
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customize the rule by modifying quantitative attributes such as the threshold 

after which that behavior is consider inattention or the cumulative percentage 

of students not paying attention after which an inattention alarm should be 

triggered. 

 

Figure 46: Snapshot of the UI displaying the available inattention Triggers 

 

Figure 47: List of rules that indicate the trigger "Chat" 

Finally, the user can use the wizard to “DEPLOY” the newly created rule. An 

intermediate confirmation step permits the user to preview the rule’s details, 

revise her selections, and if necessary even return to previous steps to make 
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adjustments. The discrete parts of the rule (i.e., context, actors and outcome) 

are represented in the form of tiles containing key information regarding their 

configured aspects, while simple mathematical symbols (e.g., plus sign, 

equals sign, braces, etc.) denote its structure. As a last step, the user must 

determine what kind of inattentive behaviour this rule can detect (e.g., 

disturbing classroom, cheating, chatting, etc.). A finalized rule is immediately 

activated and gets incorporated into LECTOR’s “Trigger Rules” set (Figure 47); 

nevertheless, educators can manually deactivate or re-activate rules when 

deemed necessary. In order to classify the rules and facilitate browsing, 

LECTORstudio presents the available triggers in the form of tiles, where each 

tile redirects the user to an appropriately filtered list of rules (Figure 46). 

Scheduling Interventions 

Finally, through LECTORstudio, developers and educators can: (i) define the 

context under which LECTOR intervenes, (ii) select one or more intervention 

strategies and configure them so as to better meet their needs, and (iii) at the 

same time customize other physical aspects of the intelligent environment 

(e.g., lights’ intensity, blinds’ status, etc.) so as to create the optimal conditions 

for re-motivating distracted students (Figure 48). 

An indicative intervention rule that can be created through LECTORstudio is 

the following: “if students are chatting during a lecture, then launch a 

multimedia presentation (drawing content from YouTube and Google Images) 

on every student’s desk, dim the lights to 50% and half-close the blinds”.  This 

sentence specifies all the available information for building the respective 

intervention rule. Specifically, the foreseen intervention will be applied only 

in case the detected inattention type is “Chatting” and the educational activity 

is a “Lecture” (i.e., context). As regards the actions to be taken, the 

intervention will initiate a customized (from the educator) multimedia 

presentation (i.e., type of intervention) on each desk (i.e., the presentation 

artefact). Finally, certain aspects of the environment will be modified to better 

serve the selected intervention.  



108 

 

 

 

 

Figure 48: The process of scheduling an intervention. 
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An indicative intervention rule that can be created through LECTORstudio is 

the following: “if students are chatting during a lecture, then launch a 

multimedia presentation (drawing content from YouTube and Google Images) 

on every student’s desk, dim the lights to 50% and half-close the blinds”.  This 

sentence specifies all the available information for building the respective 

intervention rule. Specifically, the foreseen intervention will be applied only 

in case the detected inattention type is “Chatting” and the educational activity 

is a “Lecture” (i.e., context). As regards the actions to be taken, the 

intervention will initiate a customized (from the educator) multimedia 

presentation (i.e., type of intervention) on each desk (i.e., the presentation 

artefact). Finally, certain aspects of the environment will be modified to better 

serve the selected intervention.  

Towards defining the context, the user firstly has to specify the situation(s) 

under which the system should intervene. To that end, a list of inattention 

types (e.g., Cheating, Chatting, Disturbing a classmate, etc.) that can be 

detected is presented along with relevant statistics (e.g., frequency, amount of 

rules that can identify it, etc.). Then, she can further scope that intervention 

by customizing the courses, activities and student groups similarly to the other 

LECTORstudio wizards. 

Next, the wizard presents the available interventions in the form of tiles, 

where each tile displays both the intervention recipient (i.e., teacher or 

student) and the intelligent artefacts that can host it. Upon selection, a panel 

with customizable properties appears, enabling the user to select the 

presentation artefact and configure the intervention according to her needs. 

Multiple intervention types can be selected at once, giving the opportunity to 

create complex scenarios. 

Finally, the user can optionally customize the physical aspects of the 

intelligent environment (e.g., lights’ intensity, blinds, etc.), confirm the 

various parameters and deploy the new rule. 
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Heuristic Evaluation 

The wizards targeting both developers and educators were evaluated using the 

heuristic evaluation method in order to eliminate any major usability errors 

before proceeding with user testing. Heuristic evaluation [108] is the most 

popular of the usability inspection methods and is carried out as a systematic 

inspection of a user interface design for usability. The process involves having 

a small set of evaluators examine the interface and judge its compliance with 

recognized usability principles, namely "heuristics". According to [109], 

involving three to five evaluators, is adequate to identify the majority of errors 

since larger numbers do not provide much additional information. The 

process requires that each individual evaluator inspects the interface alone 

and compares it with the "heuristics". As soon as all the evaluators have 

completed the aforementioned process, the discovered usability errors are 

aggregated in a list with references to those usability principles that were 

violated. Next, each evaluator is asked to provide severity ratings [110], 

ranging from zero (“not a usability problem”) to four (“Usability catastrophe”), 

for each problem independently of the other evaluators. Finally, the 

development team ranks each problem with an ease-of-fix ranking ranging 

from zero (“would be extremely easy to fix”) to three (“would be difficult to fix”) 

to designate the amount of effort needed to address it. LECTORstudio was 

evaluated by four User eXperience (UX) experts who inspected the interface 

and judged its compliance with the "heuristics". Their findings revealed 26 

usability issues out of which 16 were ranked as cosmetic problems only. The 

remaining 10 have been prioritized in the list below, with the most severe and 

hardest to fix problems listed first. 

Severity 3 

• When defining the context of the rule, the purpose of the exclusion ‘–’  

button was not obvious to the user (ease of fix: 1) 

• It is not clear to the user which rules trigger inattention alarms and which 

identify student behaviors (ease of fix: 1) 
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• There should be the possibility to associate an intervention rule with an 

existing attention rule (ease of fix: 1) 

• The wizard should also have a back button available for each step (ease of 

fix: 0) 

Severity 2 

• Each completed step of the process should change the color of the circle to 

something else to show that it is saving the information each step of the 

way (ease of fix: 1) 

• When defining the context of the rule, one should be able to select all items 

in a section, i.e., All Courses or All Activities, etc.  (ease of fix: 0) 

• When browsing for a rule the name of its creator should also be visible 

(ease of fix: 0) 

• When creating a rule, the user should be able to provide an identifying 

name (ease of fix: 0) 

• When deploying a rule, the purpose of the left brace sign is not obvious to 

the user (ease of fix: 0) 

• Some literals need revisions because they might be confusing for the users 

(ease of fix: 0) 

User-Based Evaluation 

Overview 

Apart from the heuristic evaluation of LECTORstudio’s rule-creating wizards, 

targeting both developers and non-technical users, the complete functionality 

of LECTORstudio for developers was assessed through a user-based evaluation 

experiment. Through this experiment, several usability errors where 

identified, while great insights where drawn by observing the users interacting 

with the system and noting their comments and general opinion. 

In more detail, five (5) users of ages 25-30 years participated in the experiment. 

According to Nielsen [109], testing a system with five (5) users permits the 
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detection of approximately 85% of the problems in an interface, increasing the 

benefit-cost ratio. All the participants were developers, having worked in 

projects regarding Ambient Intelligence, and therefore familiar with the 

related concept and principles. Particularly, two (2) of them were junior 

developers, two (2) were mid-level developers, while the remaining one (1) 

was a senior developer. 

The experiment was performed in two (2) phases. In the first phase, the 

concept of the LECTOR framework, as well as the functionality offered 

through LECTORstudio, was explained to the users.  This process was 

necessary, since the developers should get acquainted with various new 

concepts such as Actor, Trigger, Behavior, Intervention, Rules, etc., before 

being able to use the system. After the introduction of all necessary 

information, the users were requested to browse freely through 

LECTORstudio in order to get familiarized with it, while they were also 

encouraged to ask any questions or express any comments.   

The second phase of the evaluation experiment was performed the next day 

after the introductory phase for all users, in order to grant them enough time 

to assess the acquired information. In this phase, the users were requested to 

follow a scenario including tasks regarding the major functions of 

LECTORstudio, while they were also encouraged to express their opinions and 

thoughts openly following the thinking-aloud protocol [111]. In order to make 

participants feel comfortable and ensure that the experiment progresses as 

planned, a facilitator was responsible of orchestrating the entire process, 

assisting the users when required and managing any technical difficulties. 

Furthermore, two note-takers were present in order to record any qualitative 

data – such as impressions, comments and suggestions, along with a number 

of quantitative data. More specifically, the completion time, the number of 

help requests and errors made were recorded for each task of the scenario. 

After completing the scenario, the users were handed a 10 item questionnaire 

with five response options ranging from “Strongly agree” to “Strongly 
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disagree”. This questionnaire, namely the System Usability Scale (SUS) [112] 

provides a “quick and dirty”, reliable tool for measuring usability since it: 

 Is a very easy scale to administer to participants 

 Can be used on small sample sizes with reliable results 

 Is valid – it can effectively differentiate between usable and unusable 

systems.  

Finally, the experiment included a debriefing session during which the 

participants were asked some questions regarding their opinion on the tool, 

what they liked or disliked the most, and whether they had suggestions about 

its enhancement. 

The following sections present (i) the findings regarding each system function, 

and (ii) a general discussion for the overall experiment.  

Evaluation Findings per System Functions 

Each user was requested to complete eight (8) tasks (Appendix C) covering the 

majority of LECTORstudio’s functionality. In reality though, the system would 

be used by developers that have been assigned specific roles (e.g., rule creator, 

intervention host integrator), meaning that each developer would have to 

perform only a subset of the available tasks (e.g., a rule-creator would not have 

to integrate a new intervention host). The latter, along with the fact that 

LECTORstudio addresses frequent and not first-time users, will play a key role 

in interpreting the results of this experiment. The findings of this process are 

described below categorized per system function. 

Function 1. Browsing trigger and behavior outcomes 

Evaluated through scenario task 1, 2, 3, 4  

Browsing through the available trigger and behavior outcomes was the first 

thing that users had to do in order to complete Scenario Task 1. Since it was 

their first encounter with the system, most of them thought that the tiles 

displaying the trigger and behavior outcomes were representing the actual 
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rules that lead to the identification of those outcomes. Despite the fact that the 

errors made (Figure 49) –during performing subsequent tasks that required 

browsing through trigger and behavior outcomes– were minimized to zero (0), 

a new representation should be considered. 

 

Figure 49: Errors per user for Function 1 

Function 2. Creating a new behavior outcome 

Evaluated through scenario task 2 

All users experienced difficulties in creating a new behavior outcome. 

Particularly, two (2) issues were identified:  

A. The users expected to find and “Add” button under the respective 

behavior. 

B. When editing a behavior it was not clear that the user could add a new 

outcome through the available tags input control. 
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Function 3. Creating a behavior rule 

Evaluated through scenario tasks 1, 2 

Creating a behavior rule was the main objective of the first task that was 

handed to the users. Most of them made minor errors before being able to 

complete it; however, during their second attempt of creating a behavior rule 

as a sub-task of scenario task 2,  the errors made were minimized to zero(0) for 

users 1, 2, 3 and 5 (Figure 50). User 4 made the same mistake that he had made 

the first time, i.e., he concentrated of the available Filters thinking that 

through the available fields he could create the desired behavior. In general, 

despite the errors made, all users agreed that if they were regular users of this 

system they would be able to create behavior rules easily, since the UI is 

simple and intuitive. Particularly, user 2 stated that he liked the overview of 

the created rule, since it provides all necessary information.  

Regarding the overview, the usability issues that were identified were the 

following:  

A. Each completed step of the wizard should change the color of the circle 

to something else in order to provide adequate feedback that it is saving 

the information at each step of the process. 

B. A next button should be available, permitting users to navigate among 

the wizard steps. 

C. When a rule list is empty, the filters should not be visible since the user 

might get confused. 

D. The “create new” button should be in a more obvious location since 3 

out of 5 users had trouble locating it. 

E. When defining the context of the rule, it was not clear to the users that 

when all context properties of a category are unselected, they are 

automatically included to the rule. 

F. When configuring a physical property, the purpose of the field 

“Percentage” is not clear. 
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Figure 50: Errors per user for Function 3 

Function 4. Integrating a physical context property 

Evaluated through scenario task 2 

The concept of Physical Context Property troubled almost all users. 

Particularly, the majority of them thought that in order to integrate such a 

property, they first had to integrate an artifact. However, the term artifact is 

used to describe only artifacts that can be used as intervention hosts. To this 

end, the main menu items should be reconsidered in order to be more 

intuitive.   

Regarding the process of integrating a Physical Context Property, the usability 

issues that were identified were the following: 

A. There should be an indicator regarding the required fields. 

B. Most users pressed the “Add new attribute” icon by mistake and then 

they could not remove the additional form. 
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Function 5. Creating a trigger rule for an individual student and a group of 

students (classroom) 

Evaluated through scenario tasks 3, 4 

Some steps of creating a trigger rule are similar to the process of creating a 

behavior rule. To this end, the majority of the users completed the related 

tasks without experiencing any difficulties.  

However, some minor issues were identified, in addition to the A, B, C, D, E 

issues described in Function 3:  

A. When selecting an actor, a panel containing its customizable properties 

appears. However, when the user selects more than one actors, the 

order in which those panels appear should be reconsidered.  

B. When the overview of the rule is displayed, the dropdown expecting 

input for the rule outcome should be initialized to the value that was 

implicitly selected by the user when he was browsing through the 

trigger outcomes.  

Function 6. Updating an actor 

Evaluated through scenario task 5 

The respective scenario task was completed with no errors or help request by 

all users. 

Function 7. Integrating an artifact 

Evaluated through scenario task 6 

The respective scenario task was completed with no errors or help request by 

all users, however minor issues were identified: 

A. The field expecting the artifact icon was not clear that the user could 

insert the code of a font icon instead of an actual image 

B. The user should not be able to save an artifact if he / she has not 

provided all the required data.  
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Function 8. Integrating an intervention type 

Evaluated through scenario task 7 

The concept of Interventions troubled almost all users. Particularly, the same 

literal is used to describe both “Intervention Rules” and “Intervention Types”. 

An intervention type is the description of an application that can be used as an 

intervention, while an intervention rule describes the conditions under which 

several interventions can be initiated. Therefore, a different literal should be 

used for each of these functions. 

Furthermore, some minor issues were identified: 

A. The users didn’t understand the purpose of the “core services” input 

control 

B. The users didn’t understand the purpose of the “Customizable 

Properties” form 

C. The users didn’t understand the difference between Units and Default 

Unit of the “Customizable Properties” form. 

Function 9. Creating an intervention rule 

Evaluated through scenario task 8 

Some steps of the process of creating an intervention rule are similar to the 

process of creating a behavior or a trigger rule. To this end, the majority of the 

users completed the related tasks without experiencing any difficulties. One 

user though (user 3), suggested that customizing the environment should not 

be an extra wizard step, instead he suggested that it should be a part of step 2. 

This suggestion should be further investigated in future user-based 

experiments.    

Additionally, a minor issue was identified, in addition to the A, B, C, D, E issues 

described in Function 3:  
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A. When selecting an intervention, it is not clear that the user has to select 

an artifact for presenting the intervention. 

Concluding, some of the identified issues regarding all the examined functions 

(1-9) stem from the lack of experience that some users have in programming 

AmI Environments and their difficulty in understanding the broader concept 

about how LECTOR operates. However, since LECTORstudio targets less 

experienced users as well, their comments will be taken into consideration for 

future improvements. 

Discussion 

Since the experiment included scenario tasks covering the majority of 

LECTORstudio’s functionality, each user should get acquainted with various 

new concepts such as Actor, Trigger, Behavior, Intervention, Rules etc. To this 

end, the experiment included an introductory phase, explaining those 

concepts in details; Nevertheless, all users –during the first 2-3 tasks– 

experienced difficulties in understanding the terms “Triggers”, “Behaviors”, 

“Interventions”, “Artifacts” and “Physical Properties”. However, all agreed 

that with frequent use, one gets easily familiarized with the entire concept. 

This observation is really important, since in reality the system would be used 

by developers that have been assigned specific roles (e.g., rule creator, artifact 

integrator), and use the system frequently.  

The general opinion of the users, as extracted through the debriefing section 

was that LECTORstudio is an intuitive tool, with a pleasant UI that they would 

definitely use for (i) integrating the necessary building blocks and (ii) create 

the rules that dictate the behavior of an AmI environment. This is also 

corroborated by the SUS score (77), which indicates that the tool was marked 

as highly usable. The best way to interpret a SUS score is to convert it to a 

percentile rank through a process called normalization. The graph presented 

in Figure 51 shows how percentile ranks associate with SUS scores and letter 
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grades (from A+ to F) [113]. According to this graph, LECTORstudio’s score (77) 

converts to a percentile rank of 80% and it can be interpreted as a grade of B+. 

 

Figure 51: SUS scores association with percentile ranks and letter grades [113] 

 

Figure 52: SUS score per user 

Figure 52 presents the SUS score per user; considering that SUS has a usability 

threshold of 68%, users 1, 3 and 5 graded the system with a score high above 

the threshold, while users 2 and 4 (Junior developers) provided a score close 

the threshold (70% and 68% respectively). The latter was anticipated, since 
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these users had the minimum experience in programming AmI Environments 

and they faced difficulties understanding the broader concept about how 

LECTOR operates.       

Some of the most notable user comments are presented below: 

 “Very useful tool” (user 1) 

 “It is very simple to use as soon as you get acquainted with the new 

concepts” (user 1)  

 “The design is very nice” (user 2) 

 “I would definitely use it if I were an educator” (user 2) 

 “Nice and Simple” (user 3) 

 “Without the tool, adding such functionality to the environment would 

be a cumbersome process” (user 3) 

 “The rule-creating wizards are nice tools especially for someone with 

no programming skills” (user 4) 

 “I would definitely use it!” (user 5) 

Finally, despite the fact that no user mentioned it, it is believed that 

introducing a dashboard to LECTORstudio would be beneficial. A dashboard 

is defined as “a visual display of data used to monitor conditions and/or 

facilitate understanding” [114], therefore it would enable developers  to get an 

at-a-glance view of the system’s available components and help them form a 

better conceptual model regarding the entire functionality. 

 

  



122 

 

LECTORviewer: Managing the Attention-

Aware Intelligent Classroom 

Description 

LECTORviewer [96], [97] is a web-based tool for managing the attention-aware 

intelligent classroom. It is deployed on the teacher’s personal workstation and 

allows the observation and customization of LECTOR’s decisions regarding 

either individual students or the classroom as a whole. In more detail, 

LECTORviewer offers the following:  

 One-click enabling or disabling of the LECTOR’s monitoring facility.  

 One-click enabling or disabling of the LECTOR’s intervention mechanism. 

 An overview of the attention level of the entire classroom that also 

facilitates focusing on particular students. 

 A mechanism that asks the educator’s opinion regarding ambiguous 

student behaviors. 

 A mechanism that gives educators control over approving or dismissing an 

intervention. 

These functionalities are provided through an intuitive user interface which 

mainly consists of (i) a main dashboard that displays information regarding all 

the classes an educator teaches, and (ii) the representations of each class (i.e., 

class view) containing details about its students, displayed either in a seating 

chart layout or a list view.  

All the classes that an educator teaches can be found in a sortable list on the 

main dashboard, where valuable information is available to the teacher: (i) the 

schedule of the class (e.g., the assignments that are close to a deadline), (ii) 

reminders of important events (e.g., scheduled exam), (iii) details about the 

fluctuation of the attention levels during the last course, and (iv) number of 

successful interventions. This type of information not only helps educators to 

have an overview of the class and better organize future lessons, but also judge 

the efficiency and quality of past courses based on the students’ attention 
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levels. Moreover, by viewing the statistics about the effectiveness of past 

interventions, educators can acquire an understanding of the kind of 

interventions that are appropriate for a specific class or student, and therefore 

more efficiently choose and manage interventions in the future.  

During a course, through LECTORviewer’s class view the educator can get 

insights regarding attentive students or students that are not paying attention 

due to fatigue, mind wandering, or lack of motivation. However, in some cases 

the ability to disambiguate student activities depends on information that only 

a human can provide. For example, students laughing at a teacher’s joke is not 

an indicator of inattention.  To that end, when the system identifies a behavior 

that can be misinterpreted, it asks for the teacher's opinion. These three states 

(i.e., attentive, not attentive and needs revision) are coded with appropriate 

colors (i.e., green, red and orange) which are used throughout the user 

interface so as to help educators easily distinguish the status of the students. 

At the top of the “class view” (Figure 53), the educator can see at a glance the 

attention percentage of the classroom as a whole. A pie chart, located at the 

top left of the page, uses the aforementioned colors to display the percentage 

of attentive or inattentive behaviors, and situations that require revision. At 

the center of the chart the percentage of attentive students is displayed using 

bold and large fonts so as to ensure that the educator will be able to see it even 

from a distance. Furthermore, the legends of the chart can be used as filters 

that modify its contents, thus enabling educators to customize it according to 

their needs. The representation as a pie chart was considered as the best 

alternative to communicate this type of information to educators by displaying 

all the data simultaneously; that is because a person’s visual system needs less 

time to understand graphs (rather than tables), which give numbers shape and 

form  [115]. 

In addition, in order to ensure that educators can freely activate or deactivate 

the monitoring and intervention mechanisms according to the classroom’s 

needs, the top of the page contains the appropriate controls so as to be easily 
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accessible. This functionality is important for an environment full of students 

where unforeseen situations can emerge; for example, the educator could 

observe that interventions are not effective or disrupt the courses flow at a 

given moment, and may wish to stop the system from making suggestions. 

Apart from merely (de)activating interventions, educators can select to start a 

specific intervention when deemed necessary. The latter ensures that 

educators do not rely on the system decisions alone; on the contrary, they can 

initiate custom interventions in case the system (i) fails to identify that the 

students require remedial actions, and (ii) suggests an inappropriate one.    

 

Figure 53: Snapshot of LECTORviewer’s class-view. 

Apart from managing the classroom as a whole, the educators can focus on 

individual students as well. In more detail, there are two alternative layouts 

available for browsing through the classroom students and observing their 

status.  By default a “seating chart” layout is displayed, where students are 

represented in a form that resembles their actual seating arrangements, while 

the educator can easily switch to a “list view” layout, with a rich sorting 

functionality (e.g., alphabetical order, attention level order, etc.). For each 

student, LECTORviewer displays useful information regarding their status, as 

well as the likely reason a student is inattentive. 

When the list view of the class is enabled, more functionality regarding each 

individual student is displayed. For each student, additional information is 

available, such as details regarding her learning style, her attention level, and 
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the reason that led the system to identify that she has lost focus if that is the 

case. Furthermore, in order to provide enough context to the educator, in case 

of inattention or behaviors that need revision, relevant tags that reveal the 

reason are available. An indicative tag is “Mobile”, which is used to annotate 

the behavior of students who are not paying attention because they are looking 

at their smartphones. Finally, next to each student the educator can find the 

appropriate controls for enabling or disabling LECTOR’s monitoring and 

intervention mechanisms for that individual. This is required in a class that is 

constituted of different students with varying backgrounds, personalities, 

behaviors, needs and learning patterns [116]. 

Additionally, a detailed log (Figure 54) is available for each classroom that 

allows educators to revisit –even at a later time– LECTOR’s decisions and mark 

them as accurate or not. A mini view of the log is always available at the sidebar 

of the “class view”, enabling educators to observe at real time LECTOR’s 

decisions without navigating to a new page. However, if needed the educator 

can select to view the entire attention log, through which she can (i) confirm 

or invalidate an identified student behavior, (ii) stop an active intervention and 

optionally replace it with another one, and (iii) rate elapsed interventions. 

Providing such information is really important for “calibrating” LECTOR with 

a specific classroom environment and its students, since this process makes 

the decision-making mechanisms more accurate and less prone to false 

positives. This is a cumbersome task, which requires recalling various 

incidents that occurred during a significant amount of time. In order to 

minimize the amount of information someone has to remember, 

LECTORviewer’s log is equipped with a sophisticated filtering mechanism, 

while each log entry is accompanied with abundant contextual information 

(e.g., timestamp, teacher’s activity at the time, etc). 

Finally, on the top right of the screen important upcoming activities 

concerning the current course are visible. This enables the educator to have a 

quick overview of tasks that are time-critical, thus giving him the opportunity 
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to better organize the activities, while also serving as a reminder. Icons visible 

next to each upcoming activity aid the fast recognition of the activity at just a 

quick glance. 

 

Figure 54: Snapshot of LECTORviewer's detailed log. 

Design Process and Heuristic Evaluation 

An iterative design process was followed throughout the development 

lifecycle of LECTORviewer. The first phase of this process involved the 

creation of low fidelity paper prototypes exhibiting the entire functionality of 

the system. These were initially assessed by three (3) Human Computer 

Interaction experts during a cognitive walkthrough evaluation experiment in 

order to uncover any usability errors. Firstly, the evaluators were asked to 

browse through the paper prototypes and express their thoughts and 

questions about the design, while two coordinators were taking notes of their 

comments. Secondly, they were given a scenario with some tasks to complete 

and they were asked to follow the Thinking-Aloud protocol and pinpoint any 

usability-related issues that they identify. Finally, as soon as their comments 

were consolidated in a single list, they were asked to grade them in terms of 

severity so as to compile a prioritized list with the issues that have to be 

addressed. The evaluation process uncovered various problems regarding not 
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only the design of the User Interface, but also regarding the overall concept. 

The major findings are summarized below: 

 The functionality available to the teacher during class hour should be 

limited to configuring the attention and intervention mechanisms. Other 

operations could possibly overwhelm the user while they would take over 

much of the teaching hour. For example, adding students to the class and 

rearranging their positions should be performed during the teacher’s spare 

time or, even better, a secretary should be responsible for such activities. 

 The edit button was used to reveal the delete and add buttons, while the 

edit screen of an item (e.g., a classroom, a student, a rule) is displayed 

when clicking on its name, independently of the “edit” button, which 

affects the consistency and the expected behavior of the visual interface. 

 One out of three evaluators thought that the “classroom” metaphor (doors, 

books, desks, board) that is used throughout the design would be 

cumbersome for a teacher that uses the system on a daily basis and wants 

to concentrate on important and time-critical tasks. 

 All evaluators pointed out that the lists displaying the rules and 

interventions should be accompanied by a rich filtering mechanism to 

assist the educators in finding whatever they want quickly. 

The major findings of this experiment were mostly related to the complexity 

of the most frequently used screens, and secondly to the metaphors used in 

the design, suggesting their refinement in order to simplify the interaction 

paradigm used to execute time-critical or common functions expected to occur 

on a daily basis. Subsequently, an improved vertical high fidelity interactive 

prototype [117] was created integrating the feedback received and was re-

assessed by five (5) UX experts via heuristic evaluation [108] in order to test the 

overall usability and address any problems before conducting a full-scale user-

based evaluation with the target audience (i.e. educators).   

The problems identified through the experiment where ranked according to 

their severity by the evaluators. The severity ratings range from zero (“not a 
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usability problem”) to four (“Usability catastrophe”) [118] and are used to 

indicate how serious each problem is and how important is to fix it. Next, the 

development team ranked each problem with an ease-of-fix ranking ranging 

from zero (“would be extremely easy to fix”) to three (“would be difficult to fix”) 

to designate the amount of effort needed to address it. This process revealed 

16 usability issues out of which 2 were ranked as cosmetic problems only, 7 

were identified as minor usability problems, and the remaining 7 where 

ranked as major issues, hence the most important to fix. All 16 issues have 

been prioritized in the list below, with the most severe and hardest to fix 

problems listed first.  

Priority 3 

 The extra information that is provided in the list view should also be 

available in the seating chart view (ease-of-fix 1) 

 There should be a summary log for each class, containing diagrams that 

display how many interventions have been done during a course, and the 

success rate of interventions (ease-of-fix 1) 

 It was not clear that the pie chart of attention had filters (ease-of-fix 0) 

 The percentages of the pie chart should be immediately visible without 

having to hover over them (ease-of-fix 0) 

 The focus of the main screen should be the students, everything else is of 

secondary importance. The pie chart and buttons in the upper part of the 

screen is of secondary importance and should be located elsewhere (ease-

of-fix 0) 

 There should be a way to see in which mode I am viewing the class: while 

the course is taking place, or not? (ease-of-fix 0) 

 Instead of Enable/Disable Interventions the button should read 

Enable/Disable Auto-Interventions (ease-of-fix 0) 
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Priority 2 

 There should not be paging in the log for the same day, for each day there 

should be infinite scrolling (ease-of-fix 1) 

 Instead of the label “need revision” the label “uncertain” should be used 

(ease-of-fix 0) 

 In the seating chart layout, there should also be a sign for where the 

teacher’s desk is for orientation purposes (ease-of-fix 0) 

 Since the system is a real-time one, the hour should be visible somewhere 

on the interface (ease-of-fix 0) 

 The messages displaying the status of a student should be clearer (ease-of-

fix 0) 

 It is not clear that the orange color represents the state that the educator 

must revise the system’s decision (ease-of-fix 0) 

 It is not clear that the STOP hand icon stops an active intervention (ease-of-

fix 0) 

Priority 1 

 Upcoming Activities are of secondary importance and should maybe be a 

drawer toolbar (ease-of-fix 1) 

 The title “Log” should be changed to “Reviewer” (ease-of-fix 0) 

According to that list, fixing the identified issues requires minimum effort on 

behalf of the developers. 
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NotifEye: A Smart Watch Application for 

Hosting Interventions 
NotifEye is a smartwatch application able to provide subtle interventions to 

both students or educators. Employing such wearable devices to act as 

intervention hosts seemed natural, since in addition to indicating time they: 

(i) are increasingly available to the market, (ii) are familiar to adults and 

children, (iii) support notifications and reminders, and (iv) are appropriate for 

private interventions.  

 “NotifEye for educators” (Figure 55) can be used to provide informative 

interventions regarding important incidents that occur during a course. In 

more detail, the application is able to display LECTOR messages , while at the 

same time the watch vibrates to alert the user. For example, when the entire 

classroom displays signs of inattention, NotifEye is instructed to deliver the 

short yet meaningful message “CLASSROOM TIRED”, accompanied with an 

exclamation mark icon. The use of self-explanatory icons that require little 

effort to see and understand was imperative for an application running on a 

wearable small-screen device whose target audience must not be distracted 

from its main task (i.e., being a teacher).   

 

Figure 55: Snapshots from NotifEye for educators 
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Furthermore, apart from delivering notifications, the educator’s smart watch 

is used as an input device through which she can communicate useful 

information to LECTOR. Specifically, when a class-wide intervention is about 

to start, NotifEye displays a message asking for approval; in case the educator 

rejects it, LECTOR is notified so as to increase the cancelation percentage of 

the selected intervention accordingly.   

Similar functionality is offered through “NotifEye for students”, which can be 

used to deliver encouraging or inspiring messages to unmotivated individuals. 

Moreover, the students have the opportunity to provide input directly to 

LECTOR in case they find themselves mind-wandering or tired. The latter is 

really important during the adjustment period where the system has to be 

“calibrated” to the needs of each individual student.  

Future work includes extending NotifEye to make use of smart watches’ ability 

of monitoring physical activity and physiological measures in order to identify 

cues of inattention [119] . 
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CognitOS: A Student-Centric Working 

Environment for an Attention-Aware Intelligent 

Classroom 
CognitOS [95] is a sophisticated web-based working environment that hosts 

educational applications, which are also utilized as a channel to present 

LECTOR interventions . For example, a mini-quiz application can be launched 

either explicitly by a student who selects a specific exercise on her book, or 

automatically when LECTOR intervenes to display a fun quiz to keep her 

motivated during a reading assignment.  CognitOS is deployed permanently 

on the technologically augmented desks residing in the intelligent classroom, 

each of which features a 27-inch multitouch-enabled All-in-One PC and 

integrates various sensors (e.g., eye-tracker, camera, microphone, etc.), and 

on demand on the students’ personal smartphones and tablets. 

 

Figure 56: The desktop of CognitOS running on the augmented school desk. 

Figure 56, presents the main working area of CognitOS (i.e., the desktop). It 

follows the metaphor of an actual desk containing virtual student items (e.g., 
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books, pencils, etc.) that can be used to launch the respective applications. In 

more detail, the desktop contains:  

 A pile of books that offers a shortcut to the student’s collection of books. 

The topmost book is always related to the current course and looks open; 

the student can use it to quickly launch the book application with the 

respective content. 

 A pile of notebook pages that acts as a shortcut to student’s collection of 

completed or pending assignments. The first page filters the assignments’ 

list and displays only those related to the current course. 

 The personal card that displays the student’s name and provides access to 

the profile application with the detailed academic record of that student. 

 A computer monitor that can be used to launch the multimedia player for 

presenting such content (i.e., pictures and videos). 

 

Figure 57: A notification appears trying to encourage a student during exercise solving 

A digital educational working environment should allow students to launch 

multiple applications simultaneously (e.g., digital books, dictionary, personal 

documents, etc.); therefore, it requires a mechanism that decides the 

placement of each newly launched application.  To this end, a sophisticated 

algorithm was introduced ensuring that (i) if an application displays additional 
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information related to another application they will always be launched next 

to each other, (ii) the application with which the user had interacted last will 

remain on top and (iii) secondary applications (e.g., calendar, calculator, etc.) 

will occupy less screen real-estate if more important ones are already present. 

Nevertheless, in addition to automatic layout, CognitOS permits the 

rearrangement of any launched applications so that each student can 

customize the working environment according to his/her personal preference.  

However, apart from common application management, CognitOS has the 

ability to present four (4) types of interventions: notices, augmentations, 

alterations and restrictions. As soon as LECTOR plans a specific intervention, 

CognitOS receives a command via AmI-Solertis to launch the appropriate 

application(s). In more detail, an advanced notification mechanism is featured 

for delivering appropriate messages (i.e., notice) to the students who seem 

unmotivated (Figure 57), troubled or disengaged from the task at hand.  

Furthermore, CognitOS features a collection of educational applications that 

can be launched on demand with specific content, so as to present motivating 

material. Each application is available in full- and mini-view; the latter is 

employed to present auxiliary content alongside with other material (i.e., 

augmentation), while full-view applications aim to monopolize the student’s 

interest (i.e., alteration).  Finally, they can also get locked (i.e., restriction), 

denying access to the students, when either the teacher or LECTOR deems 

them irrelevant to the current activity.  
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Chapter 7  

Conclusions and Future Work 

Conclusions 
The primary goal of an AmI environment is to help and support the people 

living in it; towards this objective, it should be able to identify user needs and 

act accordingly. Many research approaches and commercial tools have 

focused on realizing this concept, which follow the fitting paradigm of the 

trigger-action model; however, the majority of them poses several limitations 

as described in Chapter 3. Specifically, the domain of education would 

particularly benefit from an AmI environment able to monitor students during 

their educational activities and intervene when deemed necessary to help, 

support or motivate them so as to enhance the learning process. However, 

despite the fact that the Intelligent Classroom has gained much attention from 

researchers over the past decade, a solution that offers a generic, scalable, fast 

and easy way to connect triggers with actions in the classroom context is not 

currently available.  

Aiming to bridge this gap, this thesis has presented a framework and an 

authoring tool that support both developers and educators in defining the 

behaviors (triggers) that initiate context-aware interventions (actions). This 

framework equips the Intelligent Classroom with attention-aware facilities 

that monitor the learners' attention levels and intervene when necessary to (i) 

provide motivating activities to distracted, unmotivated or tired individuals or 
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(ii) suggest alternative learning methodologies to educators that would be 

beneficial for the entire classroom.  

In more detail, the LECTOR framework offers a mechanism for identifying 

student behaviors that require remedial actions and intervening when the 

students need help or support. This mechanism relies on “if-then” rules -

created either by developers or by educators- to dictate the reaction of the 

classroom environment to student-oriented stimuli.  In order to ensure 

scalability and simplify rules’ management, a three (3) step process for 

connecting a behavior with an intervention has been introduced. In particular, 

the first step requires the user to define a behavior, next the conditions under 

which the behavior becomes a trigger have to be described, and during the 

last step connections between a trigger and appropriate interventions are 

created. This decomposition permits a behavior to be associated with multiple 

triggers, and a trigger with multiple interventions that alternate depending on 

the context of use, hence ensure scalability and reuse. Additionally, the fact 

that a recipe connecting N behaviors with M interventions is composed by 

three independent rules rather than a monolithic one, enables end-users to 

easily manipulate certain parts of the recipe without affecting the others, thus 

simplifying rule management and minimizing ramification. Furthermore, in 

contrast to the artifact-oriented approach offered by the majority of tools that 

enable end-users in creating simple recipes, LECTOR’s rule structure supports 

the creation of user-oriented intervention scenarios, which harmonize with 

the human-centered nature of AmI environments. 

Developers and educators can easily and rapidly create the rules that describe: 

(i) behaviors, (ii) triggers, and (iii) interventions through a sophisticated user-

friendly authoring tool, named LECTORstudio. The findings of the user-based 

evaluation corroborate the fact that LECTORstudio permits not only computer 

experts but also non-technical users to create their own scenarios and 

customize LECTOR’s decision-making process according to their needs. 

Despite the limitations in expressiveness of the programs stemming from the 
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use of “if-then” rules, this work provides appropriate tooling and conceptual 

models that create an ideal environment for users to create their own 

integrations. 

LECTORstudio also enables developers to integrate the building blocks (i.e., 

actors, artifacts, physical context, virtual context, interventions) necessary for 

programming the classroom environment. This functionality permits LECTOR 

to be scalable, easily customizable, and open to new additions (e.g., sensors, 

applications, actors, environments). According to the user-based evaluation 

findings, the general opinion of the evaluators was that it constitutes an 

intuitive and useful tool that they would definitely use to establish the 

conditions that trigger remedial actions and the respective intervention 

strategies, since it minimizes the amount of work required on their behalf. 

Lastly, in order to further support the targeted end-users of this environment 

(i.e., students and educators), this work has also introduced three (3) 

additional tools:  LECTORviewer, NotifEye and CognitOS. The former two 

(namely LECTORviewer and NotifEye) aim to support educators in having an 

overview of the students’ attention levels and providing their input regarding 

ambiguous behaviors or scheduled interventions that aim to re-engage 

distracted, tired or unmotivated students. CognitOS on the other hand, is a 

sophisticated web-based working environment for students that hosts a 

variety of educational applications, which comprise the communication 

channels through which LECTOR presents the interventions. 

The potential of this framework and the encouraging results of its deployment 

in the in-vitro Intelligent Classroom of ICS-FORTH raised the question of 

whether it can be used to support other intelligent environments and domains 

as well. The majority of current state-of-the-art approaches allow non-

technical users to express their preferences through simple “recipes” and 

programs that feature rule-based conditions. LECTOR and its accompanying 

authoring tools streamline such processes, therefore its generalization to 

support other domains constitutes a logical extension. Additionally, the 
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framework not only follows well-established state-of-the-art practices, but in 

some cases it advances the way through which both developers and non-

technical users connect human- or artifact- initiated triggers to specific 

context-aware actions as well. Particularly, LECTOR: 

 Supports the creation of user-oriented behavior-intervention (trigger-

action) scenarios in contrast to the artifact-oriented recipes. 

 Enables the definition of behaviors that combine multiple contextual 

information. 

 Supports the connection of N behaviors with M interventions (where N 

 M).  

 Permits the definition of multimodal and ubiquitous interventions.   

 Provides a mechanism for assessing the efficacy of interventions.   

The above functionality addresses some of the gaps identified in the related 

work discussed in Chapter 3, and introduces some features that would be 

beneficial for a rule-based programming environment. In order to support 

such claim, both LECTOR and LECTORstudio have been deployed in the in-

vitro Intelligent Home 1  of ICS-FORTH, where their potential in such 

environments is being examined.  Specifically, given the ambient facilities 

available through the Intelligent Home, LECTOR aims to realize the scenarios 

described in Appendix D.  

Currently, LECTOR is also employed to support CaLmi [120], a pervasive 

system that aims to reduce the stress of the inhabitants of an Intelligent Home. 

In more detail, LECTORstudio is being used to create rules that (i) guide 

LECTOR in identifying users that require support due to increased stress 

levels, and (ii) that define the interventions (i.e., relaxation techniques) that 

will be initiated depending on the situation. CaLmi employs a wristband that 

collects user psychophysiological signals (i.e., EDA, HRV, ST and 

accelerometer), while it utilizes various contextual data (user agenda, bank 

                                                      
1 See http://ami.ics.forth.gr 
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account transitions and current conditions) in order to better understand the 

user’s daily activities and their impact on stress. As soon as a STRESS trigger is 

identified, LECTOR’s IM component is able to select an appropriate stress 

relief technique and create a relaxing experience (Figure 58). 

 

Figure 58: CaLmi exposes the user to images and videos of natural environments so as to 

help her relax. 

From the accumulated experience it can be concluded that the LECTOR 

framework can be easily generalised to contexts different from the classroom, 

and can therefore provide a generic behaviour intervention mechanism in 

Ambient Intelligence environments.  

Future Work 
Plans for future work include additional steps to fully support the initial 

concept. The first step concerns the improvement of the developed frontend 

tools and backend infrastructure so as to promote their evolution from in-vitro 

prototypes to mature software products.  Towards that direction, 

LECTORstudio and LECTORviewer should be improved according to the 

findings of the heuristic and user-based evaluation experiments. 

Furthermore, full scale user-based experiments will be conducted for all tools, 

including CognitOS and NotifEye, in order to acquire valuable feedback from 

the actual target groups of each tool.  

Additionally, an idea to empower LECTORstudio –the main tool proposed by 

this thesis– would be to provide a graphical user interface through which 

developers would be able to employ visual programming to provide the 
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necessary code when needed. Currently, text-based programming is 

supported through the AmI Solertis web-editor; however, in some cases it 

would be beneficial to alternate to a graphical tool that facilitates coding.    

Another valuable addition to LECTORstudio would be to permit developers to 

modify the available handlebars templates, which are responsible for 

translating the created rules to ‘if-then’ statements. That way, developers 

would be empowered to easily fix any identified issues, or even incorporate 

more elaborated reasoning mechanisms with zero changes to the framework 

itself.  

Regarding the LECTOR framework itself, the LEARNING component should 

be able to expand its knowledge by discovering unknown activity patterns 

directly from the sensed data. That way, each dynamically discovered activity 

pattern would be used to define new behaviors that can be recognized and 

tracked. Towards that direction, a Pattern Discovery Engine should be 

introduced in order to analyze any unlabeled sensed data along with the 

Virtual Context in order to find any “out of vocabulary” recurring behaviors. 

However, this approach would require the active participation of end-users in 

order to identify whether the discovered behaviors should be considered as 

triggers or not. 

Additionally, a long-term user-based evaluation experiment should be 

conducted, in order to acquire valuable feedback regarding the efficacy of 

LECTOR and auxiliary tools under an educational context, and their 

acceptance by both students and educators.  

Finally, the benefits of employing such a framework in other environments 

will be further investigated. LECTOR is planned to be incorporated in 

additional in-vitro simulation spaces2 located at the FORTH-ICS AmI Facility 

Building, such as the Intelligent Hotel Room and the Intelligent Greenhouse. 

These two entirely different environments are ideal testbeds for assessing 

                                                      
2 See http://ami.ics.forth.gr 
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whether the framework is appropriate for general use and identifying any 

shortcomings that need to be addressed before evolving LECTOR into a 

generic tool. 
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Appendix B 

Acronyms 

AmI Ambient Intelligence 

BR Behavior Reasoner 

ICT Information and Communication Technologies 

IM Intervention Manager 

IOT Internet of Things 

IP  Interventions’ Pool 

LC Learning Component 

SAL Sensor Abstraction Layer 

SUS  System Usability Scale 

TAP  Trigger-action programming 

UI User Interface 
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Appendix C 

User-Based Evaluation 

Scenario Tasks 

Task 1. You want to create a new behavior rule stating that:  

“Independently of the current course or activity, a user is considered to be 

talking when the captured sound levels from his / her microphone range 

between 75-85 db”. 

 Each completed step of the wizard should change the color of the circle 

to something else to show that it is saving the information each step of 

the way 

 A next button should be available, permitting users to navigate among 

the wizard steps. 

 When a rule list is empty the filters should not be visible since the user 

might get confused 

  

Task 2. You want to create a new behavior rule for identifying a user with 

Tachycardia.  

Tachycardia is defined as “Heart rate between 100bpm and 200 bpm signifies 

Tachycardia” 
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However, the system does not integrate information about the heart rate 

physiological property. Integrate this property by translating the data received 

from the HearRateService, and populating an attribute named Rate.   

Now try to insert the tachycardia rule. 

Task 3. Based on the behavior that you modeled on step 1 (TALKING), you 

want to create a trigger rule: 

“Excluding the music course, in every other case a student is considered to be 

chatting when the teacher is talking, and he /she is talking or whispering”.  

Task 4. Similarly, you want to create a trigger rule that fires when the entire 

classroom is affected:  

“Excluding the music course, in every other case the entire classroom is 

considered to be chatting when the teacher is talking, and the 30% of students 

are talking or whispering”. 

Task 5. You want to update the actor student and add to the monitored 

behaviors the behavior Tachycardia that you created before. 

Task 6. You want to integrate the following artifact to act as an intervention 

host:  

Student’s Watch (Type: WATCH, Service: VibrationService) 

Task 7. Now, integrate the “encourage student” application that runs on the 

student’s watches and acts as an intervention. 

When employing this intervention the teacher can modify the frequency 

(times / hour) of the messages that the application delivers as well as the 

appearance duration (secs) of each message. 

Task 8. Finally, create the following intervention rule:  

“If the entire classroom is chatting, send an alarm to the teacher’s watch, start 

a multimedia presentation with content related to the courses syllabus and 

dim the classroom lights to 20%.”   
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Appendix D 

Motivating Scenarios for the 

Intelligent Home Use Case 

Domestic Life 
This scenario describes the activities of a three-member family in their 

intelligent home, from the time they wake up in the morning until they go to 

work and school. The family members are (i) John (father), who works at a big 

firm near his home, (ii) Mary (mother), who is unemployed, and (iii) Jimmy, 

who is an elementary school student.  

On Monday at 7:00 the alarm in the parents’ bedroom notifies them to wake 

up. However, five minutes later the system identifies that everyone is still 

asleep; given that it is a working day and it is important to get up in time, the 

system intervenes by turning on the radio and opening the blinds so as to let 

natural light into the room. Mary quickly realizes that they have overslept; she 

nudges John and gets out of bed immediately so as to wake up Jimmy too. John 

heads to the bathroom to shave and brush his teeth. At this point, the system 

knows that since they didn’t wake up in time, John has limited time to drop 

Jimmy at school before going to work; hence as soon as he starts shaving the 

“smart mirror” displays information regarding the traffic towards Jimmy’s 

school. This helps John to select the most appropriate route, avoiding jammed 

roads. 
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At the same time, Mary is at the kitchen preparing breakfast for Jimmy. Since 

today Jimmy has limited time available before leaving for school, the system 

suggests to Mary to make cereal, which require less preparation time 

compared to his regular breakfast, namely omelet. As soon as Jimmy finishes 

up his breakfast, father and son leave the house at around 8:00 AM.     

Now that Mary is alone at the house, she finds the time to review her notes for 

a job interview that she has to attend at 9:30AM. Unfortunately, she starts 

becoming worried about the interview; the system, being aware of her schedule, 

suggests to take some time to do some yoga exercises in order to relieve her 

stress. Mary, knowing that there is enough time to exercise and to get ready 

for the interview she accepts that intervention.  

Ambient Assisted Living 
This scenario describes the activities of Mary’s mother, Helen, in her 

intelligent home. Helen is 70 years old and leaves alone, which is quite 

challenging considering that she suffers from arthritis and owns a wheelchair 

to help her move around the house.  

Yesterday, Helen visited her physician for her scheduled arthritis injections. 

Surprisingly, this morning she wakes up being unable to bend her knees and 

consequently she cannot get on her wheelchair. The system understands that 

Helen is awake for some time but does not get of the bed. Given that Mary is 

probably on the way to her interview, the system decides to inform Helen’s 

secondary caregiver, her son George. In the meanwhile, in order to help Helen 

feel calm, the bedroom speakers play a message saying that George has been 

notified. As soon as George receives a text message explaining the situation, 

he immediately decides to visit his mother; indeed, Helen is still in bed and 

explains to him that she cannot move by herself. George calls her physician, 

who calms him down explaining that this is a common phenomenon after 

knee injections, and suggests that Helen takes a specific medication. Before 
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hanging up, the physician reminds George that his mother should not skip her 

rehabilitation exercises. 

George, before returning home, helps his mother in getting in the wheelchair 

and informs her about the physician’s advices. Helen, continues her daily 

activities but seems to ignore the system’s suggestions for exercising. Getting 

off the chair and walking a short distance, is really important for an 

individual with Helen’s condition. To this end, as soon as the system realizes 

that she has deviated from her rehabilitation routine, a text message is sent 

to her physician and her caregivers. 
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