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Abstract

Today, Cloud and HPC workloads tend to use different approaches for
managing resources. However, as more and more applications require a mix-
ture of both high-performance and data processing computation, convergence
of Cloud and HPC resource management is becoming a necessity. Cloud-
oriented resource management strives to share physical resources across ap-
plications to improve infrastructure efficiency. On the other hand, the HPC
community prefers to rely on job queueing mechanisms to coordinate among
tasks, favoring dedicated use of physical resources by each application.

In this work, we design a combined Slurm-Kubernetes system that is
able to run unmodified HPC workloads under Kubernetes, alongside other,
non-HPC applications. First, we containerize the whole HPC execution en-
vironment into a wvirtual cluster, giving each user a private HPC context,
with common libraries and utilities built-in, like the Slurm job scheduler.
Second, we design a custom Slurm-Kubernetes protocol that allows Slurm to
dynamically request resources from Kubernetes. Essentially, in our system
the Slurm controller delegates placement and scheduling decisions to Kuber-
netes, thus establishing a centralized resource management endpoint for all
available resources. Third, our custom Kubernetes scheduler applies different
placement policies depending on the workload type. We evaluate the per-
formance of our system compared to statically partitioned Kubernetes and
Slurm-based HPC clusters and demonstrate its ability to allow the joint ex-
ecution of applications with seemingly conflicting requirements on the same
infrastructure with minimal interference.
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Chapter 1

Introduction

Cloud and HPC computing environments are mostly similar in hardware
specifications, but differ largely in the software stack and how it manages
available resources. Cloud providers use virtualization mechanisms to facil-
itate sharing, whereas in HPC clusters workloads are allocated resources,
based on requirements given by the user when submitting the respective job.

As the complexity of modern applications increases, it is not uncommon
for deployments to include parallel provisioning of backend services such as
web servers and databases, as well as on-demand execution of data analytics
pipelines and HPC codes. For such workloads, it is essential to accommodate
both resource allocation schemes on the same hardware infrastructure, ex-
ploiting resource sharing, but also avoiding interference as much as possible.

We aim at combining the best features of HPC, Big Data and Cloud to cre-
ate an infrastructure and ecosystem, where users deploy complex applications
processing large amounts of data with the simplicity and efficiency provided
by cloud infrastructures. It is not uncommon for an application workflow to
rely on 5 different frameworks, such as Apache Spark [4], Dask [5], Tensor-
flow [8]/Keras [6], Katka [2], and MPI [7]. In this context, we were faced
with the challenge of mixing different types of execution frameworks as part
of the same processing pipeline, as well as running multiple such pipelines
on a shared HPC cluster.

In this work, we explore the convergence of Cloud and HPC in a common,
container-based environment, backed by Kubernetes, the most prominent
distributed container orchestration framework [9]. Containers are gaining
ground as the preferred deployment method in the Cloud, as they imple-
ment a convenient packaging scheme for applications, they are lightweight
when running, and provide isolation between instances for security purposes.
Kubernetes provides abstractions for hardware resources and automatically
scales service replicas to meet demand, while providing redundancies to cope
with unadvertised failures.



To make application pipelines scalable and reproducible, we opted to
containerize all individual components and use a high-level workflow orches-
tration framework. This proved to be a natural match with the Kubernetes
environment and its microservices architecture, thus we decided early on to
deploy Kubernetes on all cluster nodes.

The HPC world has cautiously been following the containerization trend,
primarily utilizing containers as a portable method to bundle applications
with associated library dependencies. These containers are then typically
submitted as jobs using Slurm, a popular workload manager responsible for
coordinating the allocation of resources throughout the cluster, via submis-
sion queues shared among multiple users.

To run HPC applications in Kubernetes, we introduce the concept of a
virtual cluster, as a group of multiple container instances that function as a
unified cluster environment from the user’s perspective.

Virtual clusters allow the seamless integration of MPI steps in workflows
by offering an easily deployable, portable, and extensible HPC environment
that is created on demand in containers. By using virtual clusters, whose
Slurm setups delegate job placement to the central Kubernetes scheduler, we
have been able to run unmodified HPC workloads in Kubernetes, making it
possible to colocate them with other workloads and services over the same
physical hardware. In addition Genisys maximizes the cluster’s efficiency
when running multiple parallel workflow steps.

Each node in a virtual cluster embeds all necessary libraries and utilities,
as well as a private Slurm deployment; the user working inside a virtual clus-
ter can only view and manage jobs submitted from within the same context.
In practice though, each such Slurm setup does not function independently.
We extend the Slurm controller with a custom protocol, to communicate with
the central Kubernetes scheduler when requiring resources, effectively placing
Kubernetes in charge of resource allocations for the whole cluster. Moreover,
we developed Genisys, a custom Kubernetes scheduler that distinguishes be-
tween “HPC” and “Data Center” type services (typical Kubernetes deploy-
ments that run in other containers), in order to apply different allocation
policies and maximize overall usage. In cases where HPC workloads do not
consume all resources in the nodes at which they spread out, Genisys places
data center services where spare CPU cycles are available, while constantly
satisfying their user-defined performance targets. Therefore, HPC and data
center workloads execute transparently on the same infrastructure, achieving
high levels of CPU utilization.

This integration has several benefits:

e Compatibility: Supporting Slurm inside the virtual clusters is crucial
in order to keep compatibility with existing scripts written for Slurm.
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e Colocation: By following the approach of containerizing the whole run-
time environment and using Kubernetes as the substrate, we are able
to run hybrid workloads on top of the same physical cluster, optimizing
for high utilization and avoiding static cluster partitioning for HPC and
data center tasks.

e Portability: The containerized environment offered with virtual clusters
allows users to install different dependencies without polluting the bare
metal infrastructure or requiring different versions of the same libraries.
Each user can create personalized container images containing only the
libraries required by the specified workload. It also makes the migration
to a different physical cluster supporting Kubernetes possible, just by
transferring the container images to the other system and deploying
them using the same Kubernetes scripts.

Through the scope of this work we present a method to run HPC work-
loads in Kubernetes using portable and extensible containerized environ-
ments called virtual clusters. Virtual clusters include Slurm, so users can
run existing scripts unmodified, and are deployed alongside other Kubernetes
services on the same physical cluster. To avoid resource allocation conflicts,
we integrate Slurm with Kubernetes, by extending the Slurm controller to
delegate placement decisions to Genisys, our custom Kubernetes scheduler
(Genisys). We compare our system’s performance to vanilla Slurm, an Un-
managed and a Partitioned cluster scenario running multiple workloads. Our
results indicate that Genisys is able to perform to near unmodified Slurm lev-
els while outperforms Unmanaged by 35% and Partitioned by 38% across all
workloads.

The main contributions of this work are:

e Virtual Clusters: Virtual Clusters offer a containerized run-time envi-
ronment able to run HPC workloads utilizing Slurm and supporting
RDMA operations while offering per user isolation. The concept Vir-
tual Cluster is the backbone of this work as it offers portability and
compatibility with existing scripts through Slurm.

e Genisys: Genisys is our custom Kubernetes scheduler able to apply
custom resource allocation and placement policies for both HPC and
data-center workloads. In contrast to the default Kubernetes scheduler,
Genisys is crucial in this context as attempts to fit as many as possible
HPC tasks to the underlying infrastructure while offering a Kubernetes
- Slurm communication interface.

e Slurm Modification: We modified the Slurm controller in order to com-
municate with Genisys in order to place tasks and allocate resources.

11



This type of modification is needed in order to avoid resource over-
lapping between HPC and data-center tasks as by default there is no
communication between Slurm and Kubernetes.
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Chapter 2

Design Overview

2.1 Virtual Cluster Design

A virtual cluster, is a group of container instances that virtualizes an environ-
ment to run HPC workloads that use MPI and other software frameworks.
From the perspective of applications, virtual clusters are indistinguishable
from physical nodes that execute instances of MPI processes in parallel, as
all physical processing cores, RAM, the low-latency InfiniBand network, and
accelerators are available in each container context. FEach virtual cluster
spans all physical nodes and multiple virtual clusters can co-exist over the
same set of physical nodes, as shown in Fig. 2.1, which presents the high-level
concepts of the overall design.

Inside each virtual cluster, as part of the bundled software stack, we
deploy a private Slurm context, so users can invoke existing scripts to run
HPC workloads. One of the virtual cluster nodes acts as the Slurm controller,
while all virtual cluster nodes run the Slurm agent and register with the
controller. Configuration of the Slurm deployment is automatically done
at virtual cluster initialization. Unmodified, the virtual-cluster-local Slurm
would perform resource allocation and scheduling of Slurm jobs as if it were in
control of the whole cluster. Each independent Slurm installation is isolated
inside its own containers and does not account for the presence of other
containers running and consuming computing resources; that being other
virtual clusters or typical Kubernetes services.

2.2 Single-point Resource allocation

To schedule and place workloads across multiple virtual clusters and prevent
the interference introduced by overlapping jobs, we have modified the Slurm
controller’s placement mechanism to delegate all respective decisions to the
external Kubernetes scheduler. The Kubernetes scheduler in this scheme



is the central authority that has the full knowledge of the cluster’s current
resource allocations and acts as a global coordinator for new requests. More-
over, Genisys, our custom Kubernetes scheduler implementation (described
in 3.2) distinguishes between “HPC” and “Data Center” type workloads, in
order to improve the overall utilization of available hardware. Data center
services do not use virtual clusters, but are deployed in Kubernetes as de-
ployments, jobs, or other API objects that execute containers alongside the
ones used by virtual clusters.

MPI app
MPI app Virtual cluster 1

Slurm
controller te
|
|

ol Custom

plugin

e Central

Scheduler

Physical cluster

Figure 2.1: Each container instance of a virtual cluster runs in a different physical
machine, while multiple virtual clusters may run in parallel. The custom Slurm
job placement plugin communicates with Genisys to perform job placement. These
jobs are visible at the Kubernetes level as “dummy allocations”.

Fig. 2.1 illustrates the steps involved in the communication between vir-
tual clusters and the cluster-wide Kubernetes scheduler (HPC workloads),
which works by the following description:

1. On job initialization Slurm sends an allocation request to the main
Kubernetes controller via our custom plugin. In this request Slurm
specifies the resources needed for the job (node count, CPU count,
etc.).

2. Our modified version of Slurm uses a custom Kubernetes plugin written
in Golang making use of the Kubernetes API in order to forward these
allocations to Genisys. This plugin takes as input the Slurm job’s spec-
ifications and creates a Kubernetes allocation of placeholder “dummy
pods”t. We specify as “dummy pods” a Kubernetes deployment that

LA pod is a set of one or more container instances running as a single entity in Kubernetes.
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is directly mapped to an actual Slurm job and is responsible for allo-
cating the resources needed by the corresponding Slurm job. Dummy
allocations have specific CPU and memory requirements that match the
requirements of the submitted Slurm job.

3. On receiving a dummy allocation for a Slurm job placement, Genisys
iterates over the cluster nodes and checks if a set of nodes with enough
resources for the job is available. If so, the custom controller schedules
dummy containers allocating the resources from Kubernetes.

4. This allocation is communicated back to the plugin as a node list.

5. The plugin, in turn, forwards the response to the Slurm controller. The
node list contains the selected nodes for the Slurm job deployment. If
no suitable set of nodes is found over this period, the controller saves
the allocation on a priority queue for later deployment.

Dummy containers are practically idle; they consume no resources them-
selves, but act as placeholders for the allocation of resources that will be used
by the actual jobs inside the virtual cluster. Also, note that this design is
not dependent on the container runtime used by Kubernetes, and should be
compatible with future versions of Kubernetes that use containerd directly,
skipping Docker, as well as modified deployments with Singularity containers.

2.3 Slurm-Kubernetes Interface

We have modified the decision making part of the Slurm controller that runs
inside virtual clusters in order to override the default placement policy and
delegate the respective decision to the Kubernetes scheduler. The Slurm
controller uses a node bitmap in order to represent the reservation state of
the available HPC nodes and find suitable nodes to place incoming jobs.
For job placement, Slurm uses the _job_test () function, which is called by
the controller when a new job arrives. _job_test() takes as input the job’s
resource requirements and a node bitmap containing the Slurm’s node state.
As a next step, it checks if a set of computing nodes is available, in order to
place the job by calling _select_nodes (). The latter takes as input the job’s
resource requirements, and if an available node list for the job placement is
found, it returns a list with the selected nodes and proceeds to mark them as
allocated in the node bitmap. If the selection process returns an empty node
list, then Slurm schedules the job for later placement, else Slurm proceeds to
start the job on the nodes selected.

To delegate all job placement decisions to the Kubernetes scheduler, we
have overridden Slurm’s node selection process and forward the job placement
request externally. First, we reset the node bitmap after the _select_nodes ()

15



function returns, in order to keep it unmodified from the Slurm’s selection
process. Second, we implement a custom plugin written in Golang that takes
as an input the Slurm’s job resource requirements (CPU cores, node count
and memory limit per process) and creates a mirror Kubernetes allocation of
“dummy pods” using the same resources, to be scheduled by Genisys. After
the dummy pods are placed by the scheduler, the custom plugin returns a
node list with the selected nodes back to the Slurm controller for the spec-
ified job. On receiving the list, Slurm modifies the node bitmap and places
the job.

The custom plugin, which implements the interfacing between Slurm and
Kubernetes, runs next to each Slurm controller. On startup, it reads the
Kubernetes cluster configuration, to be able to communicate with the Ku-
bernetes API server, and records the virtual cluster’s namespace, to create
placeholder allocations using the corresponding service account. Then, it is
ready to create dummy pods representing Slurm jobs. The plugin constantly
monitors the state of such deployments until all pods are scheduled success-
fully. When the dummy pods are ready, it fetches the list of nodes that the
containers have been placed on and forwards it back to the Slurm controller,
for the actual Slurm job to be deployed.

2.4 Placement Policies

Genisys ensures each virtual cluster does not share resources with other vir-
tual clusters or data-center services. When a data-center service or HPC job
is deployed, Genisys iterates over an internal free resource list for each node
and attempts to find which nodes have enough free resources for the task
to fit in. If resource over subscription is not enabled Genisys will always
place tasks on nodes with enough free resources to fit in. Furthermore, the
scheduler supports two different placement policies:

e The Least Loaded Selection Policy attempts to find a list with the least
loaded nodes on the cluster in order to place the task. The main ad-
vantage of this policy is that by choosing the least loaded nodes we
are able to fit more jobs on a given set of nodes running in parallel,
achieving higher cluster resource utilization. On the other hand, if the
total cluster workload size is small we are going to use a high number
of nodes at low utilization, thus achieving low power efficiency.

e The Max Loaded Selection Policy attempts to to find a list with the max
loaded nodes that the task fits in. The main advantage of this policy
is that in low to moderate cluster utilization Genisys is able to pack as
many services using the least number of nodes, allowing for high cluster
energy efficiency. The main drawback is that if the workload consists
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of multiple multi-node tasks, we might not be able to fit as many tasks
on the cluster in contrast to when spreading the load (as some ”loaded”
nodes will not have enough free resources).

In general, Genisys does not schedule “HPC” workloads for execution,
when they require more resources to execute than what is available. There-
fore, Slurm queues inside virtual clusters wait for running “HPC” workloads
to free enough resources when they finish executing.

For data center workloads, Genisys always allows sharing of resources.
Genisys estimates the aggregate resources that are required for the data cen-
ter workload to achieve a user-defined performance objective (e.g. latency,
throughput). It manages four types of resources: number of cores, memory
size, I/O bandwidth, and network bandwidth. Genisys performs its estima-
tions using a feedback control loop similar to Skynet. Afterwards, it decides
on the size, the number, and the placement of containers to physical nodes
using the max-load or least-loaded policy approach.

Datacenter app B

Datacenter resources 1
Datacenter app

Metric
S

entral Physical cluster

Scheduler

Figure 2.2: Genisys periodically monitors the performance of data center applica-
tions, to compare their current performance against their target, and adjusts the
size and the number of pods according to the difference.

Fig. 2.2 illustrates the steps involved to properly size and place data center
workloads in the underlying Kubernetes nodes.

1. Users issue a request for a new data center workload along with the
required performance objective, i.e. a webserver with ten milliseconds
latency.

2. For new applications, Genisys creates one pod with the following spec,
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one CPU core, one gigabyte of memory, ten megabytes per second of
I/O and network throughput, and places it in the best fitting physical
node. For running applications, it adapts the size and number of pods to
minimize the difference of the observed versus the current performance.

. Periodically, Genisys gets feedback about the performance of the work-

load and if it differs significantly from the target, Genisys triggers the
procedure to adjust the size and the number of pods accordingly.

. Finally, Genisys places the newly created pods (if any), in the best

fitting servers.

Kube Master

metrics [ Central
Scheduler

Periodically get
performance rics

Kube Worker 1 Kube Worker 2 Kube Worker N

Figure 2.3: Genisys is an external pod scheduler, monitoring metrics using
Prometheus and a custom metric server. The custom metric server inserts metrics
into the metrics database of Prometheus.

Figure 2.3 illustrates the steps, executed once every second, to capture
application metrics:

1.

Each Node.js server periodically queries the application metrics and
appends them in a file.

. The Prometheus agent pod reads the new entries from the file and

advertizes them to the Prometheus driver pod.

. The Prometheus driver pod receives the metrics from all active agents

and sends them to the Prometheus DB pod.
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4. The Prometheus DB pod collects the metrics from the driver pod and
stores them in its database.

5. The custom metric server pod, queries the application metrics from the
Prometheus DB pod, and stores them locally.

6. Genisys requests the pod metrics from the custom metric server using
the metric server API.

In cases where no performance metrics are available for a data center
service, the user can define the resources need by the service in a static
manner.

1. User issues a request for a new data center workload along with the
required resources that are needed for execution (eg. CPU, memory,
number of containers).

2. Genisys iterates over the current cluster’s nodes in order to find a suit-
able set that the job fits into (according to the selected placement pol-

icy).

3. If a set of nodes is available then Genisys binds the job to the selected
nodes.

4. If the cluster does not have enough free resources for the job to fit,
then the job gets scheduled on the next selection cycle and remains in
pending state.

Colocating HPC tasks with the data center services is configurable. The
default behaviour allows tasks of both types to use the same nodes and share
resources. The other option is to perform type-based placement, implicitly
partitioning the nodes by placing HPC tasks on some nodes and data center
tasks on others. This approach may minimize interference introduced by task
colocation, but also reduces resource utilization efficiency.
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Chapter 3

Implementation

In the following sections we describe how virtual clusters are prepared, de-
ployed, and integrated with Kubernetes, starting with the containerization
of the HPC context and then to the implementation details of the Genisys
scheduler that allows the serial execution of HPC workloads, as well as effi-
ciently colocating data center jobs.

3.1 Preparing and Deploying Virtual Clusters

Virtual cluster container images are prepared as “typical” Docker images,
by starting from some base Linux distribution and adding layer after layer
of development tools, libraries, and other software. Our reference images
are based on CentOS and the Mellanox OpenFabrics Enterprise Distribution
(OFED), which includes Open MPI with InfiniBand support as well as other
libraries. In addition, we install several extra libraries and frameworks (i.e.,
CUDA, GROMACS, TensorFlow, Horovod, and others), the Slurm workload
manager, as well as utilities to help in evaluating application performance.
This base container recipe is available to our users, so they can tailor it to
their needs, with different software versions or a completely diverse set of
libraries and tools.

Upon instantiation, each virtual cluster container actually runs the SSH
daemon as its primary process. The instance startup script first waits for all
pods (nodes in the virtual cluster) to be ready and then creates all necessary
configuration on the first pod: keys for password-less SSH connectivity, MPI
hostfile, and Slurm configuration at /etc/slurm.conf. When done, it loops
over all other pods and copies over the configuration. As the last step, it
starts the Slurm controller (the first pod serves as the controller) and Slurm
agents on all pods. Each virtual cluster is deployed using a Kubernetes
DaemonSet, which assigns one pod per physical machine. As MPI developers
usually assume similar capabilities and equal network-level distances across



nodes, placing a single pod in each node is more convenient and produces
expected results.

3.2 Scheduling Extensions to Support Hybrid Work-
loads

The scheduling of dummy pods does not require a custom Kubernetes sched-
uler, however without special arrangements for HPC workloads, the default
scheduler may place multiple HPC jobs on the same nodes, maximizing in-
terference. To this end, we have extended our Genisys scheduler to support
both “HPC” and “Data Center” workloads and enforce different types of
placement policies.

To support HPC workloads, we label these types of tasks as “SLURM-
JOB” in order to distinguish them from other workloads running on the same
cluster. Allocations for Slurm applications happen in a static manner and
Genisys can be configured to avoid colocating them with other jobs marked as
“SLURM-JOB?”, in order to keep performance optimal and avoid interference.
This policy may be selected because of the lack of available metrics offered
by MPI applications and their sensitivity due to synchronization barriers.

On the other hand, for data center workloads that include a user-defined
performance objective, which Genisys must achieve during their execution.
Genisys monitors periodically (every ten seconds) the performance of each
running data center service to get feedback about the effectiveness of its cur-
rent resource allocation. In case of a performance violation in a workload,
Genisys increases its resource allocation according to the measured drop in
performance. Correspondingly, in case of significant increase in performance,
Genisys decreases the estimation according to feedback from runtime perfor-
mance. For the new resource estimations, Genisys, considers also the history
about previous performance measurements, which is affected mainly by the
workload mix.

Genisys uses an extension of the Kubernetes API server, the custom met-
ric server, for monitoring the performance objectives of data center work-
loads, and the Prometheus monitoring system [1] to collect application met-
rics. Prometheus includes a pod for the Prometheus database that stores
the metrics, and a driver pod that collects application metrics from multi-
ple application agent pods. Genisys requires applications to bundle a REST
server that exposes all performance metrics of interest to an endpoint (e.g.,
/metrics) to Prometheus. We augment the containers of each application
we use in our data center workloads to include a REST server written in
Node.js. Genisys is implemented next to the default Kubernetes scheduler,
which means that depending on the definition of each service, we can choose
either the default scheduler or Genisys.
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For data center workloads that do not support user-defined performance
objectives, Genisys allocates resources in a static manner for each service
instance. The user has to define the resources that the workload is going to
use prior to submission.
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Chapter 4

Experimental Methodology

We evaluate our system by running a mixture of MPI workloads and other
services on the same cluster, and measuring the overall efficiency through
the total runtime of all applications combined and the individual runtime
per application. Typically, on a Slurm-only cluster, jobs request a specific
amount of resources that are assigned in a static manner. In contrast, we
colocate HPC with non-HPC tasks in the dynamic resource allocation en-
vironment provided by Genisys and investigate what are the performance
advantages of running a Genisys-managed unified cluster compared to a (i)
static partitioned and (ii) unmanaged cluster.

Our hardware setup consists of 5 identical servers, each with a single
32-core/64-thread AMD EPYC 7551P processor (running at 2.00GHz) and
128GB of memory, for 320 hyperthreads in total. All servers have SSDs
installed as their primary storage devices, used by Docker for running con-
tainers, and are interconnected via 56Gb/s InfiniBand supporting RDMA
operations. The software stack is based on Red Hat Enterprise Linux 7.6
and vanilla Kubernetes 1.19.7.



In order to evaluate the performance of HPC tasks, we have created a multi
step MPI workload using benchmarks from the NAS Parallel Benchmark
Suite [11], a set of scientific benchmarks which have become widely accepted
as a reliable indicator of MPI performance. The exact benchmarks used
in the workload are presented in the table below with the configured
parameters.:

HPC Benchmarks and Sizes

Benchmark || Description CPU CPU CPU Benchmark
Name Threads | Threads | Threads | Classes
(Pilot (Small | (Large
work- work- work-
load) load) load)
CG Conjugate Gradient, 32-128 32 - D

irregular memory ac-
cess and communica-

tion

EP Embarrassingly Par- 16-64 16 128 D-E
allel

SP Scalar Penta-diagonal | 64 16 64 D
solver

FT discrete 3D fast 128 - - D

Fourier Transform,
all-to-all communica-
tion

MG Multi-Grid on a se- - - 128 E
quence of meshes,
long- and short-
distance communi-
cation, memory inten-

sive

LU Lower-Upper Gauss- | 32 32 128 C
Seidel solver

BT Block Tri-diagonal 64 16 64 D
solver
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The “Data Center” workload consists of Nginx [26] and memcached [16]
deployments, as well as a series of Spark benchmarks from the Spark-Bench
[20] performance suite. The “Data Center” applications and benchmarks are
presented on the table below with the configured parameters.

Data Center Workloads and Sizes
Benchmark Description CPU CPU CPU Workload Size
Name Threads | Threads | Threads
(Pilot (Small | (Large
work- work- work-
load) load) load)

Memcached A distributed 6 2 12 (Pilot work-
memory object load) 200 mil-
caching system, lion (Small
intended to speed workload) 50
up dynamic web million (Large
applications by al- workload) 200
leviating database million YCSB
query load. This operations
application is
memory intensive

Nginx A web server, 6 2 12 (Pilot work-
load balancer and load) 200000
HTTP cache. This (Small work-
application is CPU load) 200000
intensive. (Large work-

load) 200000
requests

Sparkpi Computes an ap- 15 8 24 (Pilot workload)
proximation to pi. 200000 (Small

workload) 50000
(Large work-
load) 200000
slices

LR Runs Logistic Re- | 15 8 24 (Pilot workload)
gression over the 200000 (Small
input dataset. workload) 50000

(Large work-
load) 200000
slices

KMeans Runs the KMeans | 15 8 24 (Pilot workload)
algorithm over the 200000 (Small
input dataset. workload) 50000

(Large work-
load) 200000
slices

We run these these workloads in 7 different configurations:
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e Genisys Least Loaded Policy: We deploy both workloads at the
same time, colocating them over the same physical resources. We use
the Genisys scheduler to place the data center deployments, while in-
side virtual clusters we deploy the workloads using our modified ver-
sion of the Slurm workload manager that communicates with Genisys
for placement decisions. For this scenario, we use the Genisys’s Least
Loaded Policy, that chooses the least loaded nodes in order to place the
tasks.

e Genisys Max Loaded Policy: We deploy both workloads at the
same time, colocating them over the same physical resources. We use
the Genisys scheduler to place the data-center deployments, while in-
side virtual clusters we deploy the workloads using our modified ver-
sion of the Slurm workload manager that communicates with Genisys
for placement decisions. For this scenario we use the Genisys’s Max
Loaded Policy that chooses the max loaded nodes that the tasks fit in
for placement.

e Unmanaged: We deploy both HPC and data center workloads at the
same time, colocating them over the same physical resources. We use
the default Kubernetes scheduler and an unmodified Slurm workload
manager in the virtual clusters.

e Partitioned: We deploy both HPC and data center workloads at the
same time, however at different nodes, as we statically partition the
cluster into a 2-node Kubernetes and a 3-node Slurm partition. The
Kubernetes partition runs with an unmodified Kubernetes scheduler,
while the Slurm partition uses the default Slurm controller. We deploy
both HPC and data center workloads at the same time, colocating them
over the same physical resources. As in the Unmanaged scenario, we use
the default Kubernetes scheduler and an unmodified Slurm workload
manager in virtual clusters.

e Thread Partitioned 50%: We partition the cluster’s nodes by giving
the (50%) of each node’s CPU capacity to the Kubernetes cluster while
the rest (50%) to the Slurm controller. In the cluster’s nodes we run
both unmodified Kubernetes and Slurm managers, configured to each
use half the CPU resources of each node. We deploy both HPC and
data center workloads at the same time, colocating them over the same
physical resources.

e Thread Partitioned 75%: We partition the cluster’s nodes by giving
the (75%) of each node’s CPU capacity to the Kubernetes cluster and
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(75%) to the Slurm controller. In the cluster’s nodes we run both un-
modified Kubernetes and Slurm managers, configured to each use (75%)
the CPU resources of each node. We deploy both HPC and data center
workloads at the same time, colocating them over the same physical
resources. In this scenario HPC and data center workloads partially
overlap over the same physical resources as Slurm and Kubernetes see
a total of (150%) of each node’s resources available.

e Slurm-Kubernetes Dedicated (baseline): We run the HPC work-
loads under a 5-node unmodified Slurm cluster. Afterwards we run the
data center workload on a 5-node Kubernetes cluster. We use this sce-
nario as a performance baseline for the results of the above scenarios,
as this is the typical scenario for a Slurm and Kubernetes installation
time-sharing the same resources.

Deployment Scenarios Description

Deployment Sce- Description

nario

Genisys Least For this scenario, we use the Genisys’s Least Loaded Policy, that
Loaded Policy chooses the least loaded nodes in order to place the tasks.

Genisys Max For this scenario we use the Genisys’s Mazx Loaded Policy that chooses
Loaded Policy the max loaded nodes that the tasks fit in for placement.

Unmanaged We deploy both HPC and data center workloads at the same time,

colocating them over the same physical resources. We use the default
Kubernetes scheduler and an unmodified Slurm workload manager in
the virtual clusters.

Partitioned We statically partition the cluster into a 2-node Kubernetes and a 3-

node Slurm partition. The Kubernetes partition runs with an unmod-
ified Kubernetes scheduler, while the Slurm partition uses the default
Slurm controller. We deploy both HPC and data center workloads at

the same time.

Thread Partitioned || We partition the cluster’s nodes by giving the (50%) of each node’s
50% CPU capacity to the Kubernetes cluster while the rest (50%) to the
Slurm controller.

Thread Partitioned || We partition the cluster’s nodes by giving the (75%) of each node’s
5% CPU capacity to the Kubernetes cluster and (75%) to the Slurm con-
troller. In this scenario HPC and data center workloads partially over-
lap over the same physical resources as Slurm and Kubernetes see a
total of (150%) of each node’s resources available.

Slurm-Kubernetes We run the HPC workloads under a 5-node unmodified Slurm cluster.
Dedicated (base- Afterwards we run the data center workload on a 5-node Kubernetes
line) cluster.

4.1 Workload Generation

In order to evaluate our system under different conditions, we create three
workloads consisting of both HPC and data center tasks.
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e Pilot workload: We choose realistic HPC task sizes and their dis-
tribution by following traces outlined in [28], which analyzes the HPC
workloads run on the Lomonosov-2 supercomputer, categorized accord-
ing to resource allocation sizes and CPU consumption.

e Small task size workload: We choose both HPC and data center
tasks of small sizes. In theory small tasks will be able to match more
efficiently the cluster’s resources and achieve higher node utilization.

e Large task size workload: We choose both HPC and data center
tasks of large sizes. In theory large tasks will not be able to match the
cluster’s resources efficiently and will achieve lower node utilization.

We describe these workloads below:

4.1.1 Pilot Workload

In order to generate the HPC workload we follow the same job size distri-
bution as described in [28] by allocating (5%) of the workload’s CPU time
to 16 thread, (20%) to 32 thread, (65%) 64 thread, and (10%) to 128 thread
jobs. We classify these 4 job categories as small (16 threads), medium (32
threads), medium-large (64 threads) and large (128 threads).

As the Nginx workload we spawn a deployment consisting of 5 Nginx
servers each one allocating 6 CPU threads. The Nginx servers act as web
servers serving a static web page with images for each request. In order to
load the servers we use the Apache Bench [3] utility with 200 thousand total
requests. The higher the Nginx performance the faster the workload finishes.

As the memcached workload we spawn a deployment consisting of 5 mem-
cached servers each one allocating 6 CPU threads. Such a memcached cluster
may in practice implement a distributed memory object caching system, in-
tended to speed up dynamic web applications by alleviating database query
load. This application is memory intensive. In order to load the deploy-
ment we use the YCSB workload generator [13] with a 200 million operation
workload. The higher the memcached performance the faster the workload
finishes.

For each spark workload we spawn 5 Spark workers each one allocating
20 CPU threads as a Kubernetes job. When the spark benchmark finishes
the Spark workers get deleted freeing up the allocated resources.

4.1.2 Small Task Size Workload

In order to generate the HPC workload we chose MPI tasks of small (16
threads) and medium (32 threads) categories.
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As the Nginx workload we spawn a deployment consisting of 5 Nginx
servers, each one allocating 2 CPU threads. The Nginx servers act as web
servers serving a static web page with images for each request. In order
to load the servers we use the Apache Bench [3] utility with 200,000 total
requests. The higher the Nginx performance the faster the workload finishes.

As the memcached workload we spawn 3 identical deployments consisting
of 5 memcached servers, each allocating 2 CPU threads. Such a memcached
cluster may in practice implement a distributed memory object caching sys-
tem, intended to speed up dynamic web applications by alleviating database
query load. This application is memory intensive. In order to load the deploy-
ment we use the YCSB workload generator [13] with a 50 million operation
workload. The higher the memcached performance the faster the workload
finishes.

For each Spark workload we spawn 5 Spark workers, each allocating 8
CPU threads as a Kubernetes job. When the Spark benchmark finishes the
Spark workers get deleted freeing up the allocated resources.

4.1.3 Large Task Size Workload

In order to generate the HPC workload we choose MPI tasks of large (64 and
128 threads) categories.

As the Nginx workload we spawn a deployment consisting of 5 Nginx
servers, each allocating 12 CPU threads. The Nginx servers act as web
servers serving a static web page with images for each request. In order
to load the servers we use the Apache Bench [3] utility with 200,000 total
requests. The higher the Nginx performance the faster the workload finishes.

As the memcached workload we spawn 3 identical deployments consisting
of 5 memcached servers, each allocating 12 CPU threads. Such a memcached
cluster may in practice implement a distributed memory object caching sys-
tem, intended to speed up dynamic web applications by alleviating database
query load. This application is memory intensive. In order to load the
deployment we use the YCSB workload generator [13] with a 200 million
operation workload. The higher the memcached performance the faster the
workload finishes.

For each Spark workload we spawn 5 Spark workers each one allocating
24 CPU threads as a Kubernetes job. When the Spark benchmark finishes
the Spark workers get deleted freeing up the allocated resources.
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Chapter 5

Experimental Evaluation

The main purpose of this work is to integrate HPC workloads to the Ku-
bernetes ecosystem. There multiple approaches that we compare Genisys
against in order to measure the relative performance.

For the first approach we deploy both Kubernetes and Slurm over the
same phyasical cluster, while this allows for both HPC and data center tasks
to be executed over the same infrastructure, it introduces performance viola-
tions to both HPC and data center tasks. The lack of communication between
Kubernetes and Slurm for placement decisions lead to resource overlapping
between different kinds of jobs.

For the second approach we split the cluster into two partitions, one for
running Slurm and another for data center tasks using Kubernetes. While
this approach eliminates the interference introduced as data center and HPC
tasks run different partitions, it can lead to underutilized resources. When
both Kubernetes and Slurm are restricted to their respective partitions, if
theone of the two partitons is underutilized, the second partition will not
be able to leverage the spare resources leading to larger execution times and
larger queues of waiting jobs.

5.1 Genisys Max Loaded Policy vs Genisys Least Loaded
Policy Performance Comparison

In this section we compare the performance of the three workloads between
Genisys’s Max Loaded versus Least Loaded policies. In general the Least
Loaded scenario is able to run more tasks in parallel and achieve higher
cluster utilization, as spreading the tasks to the least loaded nodes allows for
more efficient fitting of the tasks when compared to choosing the most loaded
nodes. In the case of the Max Loaded scenario, filling the most loaded nodes
first often leads to situations where tasks that request a specific number of
nodes cannot fit into the cluster. Some nodes of the cluster are fully loaded



and the number of nodes with enough space is smaller than the requested
number of nodes.

In the first graphs of Fig. 5.7, Fig. 5.8 and Fig. 5.9 figures we see the
execution time for individual task, as well as the total execution time for
each workload. Genisys’s Least Loaded Policy is represented by the blue
bars, while Genisys’s Max Loaded Policy is represented by the green bars.
On average, across all the three workloads, the Least Loaded policy achieved
(14%) lower total execution times when compared to Max Loaded, as it was
able to fit the tasks better to the cluster resources and run more tasks in
parallel. There was also a (4%) higher individual task performance when
using the Least Loaded policy. We assume that this performance banefit is
observed due to the spread of the workloads across more nodes, resulting in
better utilization of the cluster’s resources. Across all workloads the Least
Loaded policy was able to achieve (17%) higher total CPU utilization in the
cluster.

After this comparison we conclude that the Least Loaded Policy is better
for both resource utilization and performance. In the next sections we use
the Least Loaded Policy in order to evaluate Genisys in other configurations.

5.2 Genisys vs Unmanaged Cluster Performance Com-
parison

One approach to colocate both HPC and Datacenter tasks under the same
physical infrastructure would be to deploy both Kubernetes and Slurm over
the same cluster. While this approach allows users to run both HPC and data
center tasks as both Kubernetes and Slurm would be available, it introduces
high interference between the tasks as Kubernetes and Slurm are not able to
coordinate task placement. This lack of coordination may lead to resource
over-subscription as both Kubernetes and Slurm see each individual node’s
resources as (100%) available. Especially in the case of MPI tasks, this
resource over-subscription may have catastrophic results in their performance
as the threads running in congested nodes will finish slower than the rest
of the threads, leading in slower execution times for the whole job. MPI
threads running on other nodes usually spin until the slower threads finish
the execution, which leads in high waste of the cluster resources.

On the other hand, Genisys achieves coordination between Kubernetes
and Slurm regarding task placement and always guarantees that each task
will have enough resources on the nodes that it is going to be placed.

In order to evaluate and prove that the above assumption is correct, we
run the three workloads using Genisys’s Least Loaded Policy, Genisys’s Max
Loaded Policy and Unmanaged scenarios and show the performance of each
individual task while also the total execution time of each workload.
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In Figures Fig. 5.7, Fig. 5.8 and Fig. 5.9 we can see the execution per-
formance and CPU utilization for each workload across all scenarios. These
figures although not used in this section are probably useful as they represent
the total system performance across all scenarios.

5.2.1 Pilot Workload Evaluation

Performance Comparison Under Pilot Workload (Genisys versus Unmanaged)

~- Genisys (Least Loaded Node Selection)
aaaaaaaaaaa
Slurm Dedicated - k8s Dedicated

Execution Time Normalized
(lower is better)

CG-128-D  FT-128:D 5P-64-D EP-64-E BT-64-D €G-32:D) LU-32-C EP-16-0 CG-16-D Sparkpi LR KMeans  Memcached Nginx Total Workload
(x2) (x2) (xa) (xa) (x5) (x10) (xa) (x3) (x2) (x6) (x2) (x2) Execution Time.
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Figure 5.1: The execution time of each workload between Genisys and Unmanaged
when using the Pilot workload. In the first graph we show the individual execution
time of each workload step. The execution time is normalized to the execution
of the workloads when running in dedicated Slurm and Kubernetes installations.
The last bar group shows the execution time of the whole workload. In the second
graph we show the cluster’s CPU utilization for each different scenario.

We first compare the performance between the Genisys and Unmanaged
scenarios and investigate if there is a speedup for the total and individual
execution times of the Pilot workload when Genisys is used. The main goal
of this experiment is to show that the interference introduced under the
Unmanaged Scenario is not viable and that Genisys is able to improve the
execution times of tasks to near native levels.

In the first graph of Fig. 5.1 we see the individual execution times of
the MPI and data center tasks, while also the total execution time for each
scenario. Genisys’s Least Loaded Policy is represented by the blue label,
while the Unmanaged scenario by the red label. The total execution time
needed by Genisys’s Least Loaded Policy to complete the combined workload
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is 11200 seconds, which is (25%) faster when compared to Unmanaged (14633
seconds).

Because of the resource overlapping between the data center and MPI
tasks, the individual task performance suffers under the Unmanaged sce-
nario. On average the individual execution times are (59%) faster when
using Genisys compared to Unmanaged.

In the second graph of Fig. 5.1 we see the CPU utilization for the du-
ration of each scenario. Genisys achieves higher average CPU utilization
(90%) compared to (71%) of the Unmanaged. In the case of the Unmanaged
scenario, because of the lack of coordination on task placement, both Kuber-
netes and Slurm place tasks on oversubscribed nodes, while leaving the some
of the cluster’s nodes underutilized.

In the case of Slurm, the node selection is done serially by default, so
when a job comes for placement it is placed in the first N cluster’s nodes
that it fits into. This kind of selection can leave underutilized nodes. For
example if the users specify the node count that their jobs need to run, at
first the jobs will fill serially the cluster nodes and the last jobs submitted
may wait in the queue even if there are enough resources for them to run. In
this case there may be underutilized nodes at the end of the partition.

In the case of Kubernetes, the default scheduler was used, which places
tasks in a round-robin fashion.

Due to the lack of coordination, the default scheduler spreads the tasks
across all nodes while Slurm places the tasks in the first four nodes. This
leads to low resource usage of the fifth node, as only data center tasks are
placed there.

5.2.2 Small Task Size Workload Evaluation

Next we compare the performance between the Genisys and Unmanaged sce-
narios when using the Small Task Size Workload. Earlier we assumed that
choosing smaller-sized tasks for the workload should lead to higher cluster
utilization. In this case though we observe lower CPU utilization when com-
pared to the Pilot workload. This behaviour is justified as the smaller size
for the data center tasks leaves resource gaps, as do not run as efficiently in
the cluster’s nodes as in the Pilot case.

In total, the time needed for the Genisys-managed scenario to complete
the small workload is 6100 seconds, (63%) faster when compared to Unman-
aged (11700 seconds). In the first graph of Fig. 5.2 we see the individual
execution times of the MPI and data center tasks while also the total execu-
tion time for each scenario.

Genisys’s Least Loaded Policy is represented by the blue label while the
Unmanaged scenario by the red label. Due to interference between the MPI
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Performance Comparison Under Small Workload (Genisys versus Unmanaged)
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Figure 5.2: The execution time of each workload between Genisys and Unmanaged
when using the small workload. In the first graph we show the individual execution
time of each workload step. The execution time is normalized to the execution
of the workloads when running in dedicated Slurm and Kubernetes installations.
The last bar group shows the execution time of the whole workload. In the second
graph we show the cluster’s CPU utilization for each different scenario.

and data center tasks in the Unmanaged scenario, the average individual task
completion time is (64%) faster when using Genisys.

The average CPU utilization is (80%) when using Genisys, (22%) higher
compared to Unmanaged (58%). Similarly to the Pilot workload, Unmanaged
Slurm places the tasks on the first 4 nodes, while Kubernetes spreads tasks
using its default scheduler, leading to the underutilization of the fifth node.

5.2.3 Large Task Size Workload Evaluation

We now compare the performance between the Genisys and Unmanaged sce-
narios when using the Large Task Size Workload. We have assumed that by
choosing large-sized tasks for the workload the total cluster utilization will
be lower compared to the other two workloads, as the fitting of the large jobs
will not be as efficient compared to the smaller ones.

In total, the time needed for the Genisys-managed scenario to complete
the large workload is 9700 seconds, (18%) faster when compared to Unman-
aged (11700 seconds). In the first graph of Fig. 5.3 we see the individual
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Performance Comparison Under Large Workload (Genisys versus Unmanaged)
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Figure 5.3: The execution time of each workload between Genisys and Unmanaged
when using the large workload. In the first graph we show the individual execution
time of each workload step. The execution time is normalized to the execution
of the workloads when running in dedicated Slurm and Kubernetes installations.
The last bar group shows the execution time of the whole workload. In the second
graph we show the cluster’s CPU utilization for each different scenario.

execution times of the MPI and data center tasks while also the total execu-
tion time for each scenario.

Genisys’s Least Loaded Policy is represented by the blue label while the
Unmanaged scenario by the red label. Due to interference between the MPI
and data center tasks in the Unmanaged scenario, the average individual task
completion time is (55%) faster when using Genisys.

The average CPU utilization is (76%) when using Genisys, (4%) lower
compared to Unmanaged (82%). In contrast to the previous cases the Un-
managed scenario achieves higher CPU utilization, due to lower task-fitting
efficiency under Genisys as the task sizes are larger. In the Unmanaged sce-
nario both Kubernetes and Slurm clusters have access to 100% of each node’s
resources leading to over-subscription and higher total utilization. In spite
of this phenomenon, Genisys achieves lower total and individual execution
times due to reduced interference and less MPI spinning.
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5.3 Genisys vs Partitioned Cluster Performance Com-
parison

As shown from the Unmanaged approach, if performance is a concern then it
is not viable to run both Kubernetes and Slurm on top of the same physical
nodes without a synchronization mechanism.

One other approach would be static partitioning of cluster nodes into a
Kubernetes and a Slurm cluster. As in the Unmanaged case, the Partitioned
approach allows users to run both data center and HPC tasks on top of the
Cluster, while ensuring optimal performance for both kinds of tasks as there
is no resource overlapping. While this approach eliminates the interference
introduced by resource overlapping, it may lead to low cluster utilization, in
cases of workload imbalances between the two partitions. For example, if the
Slurm partition experiences high load, while the Kubernetes partition is un-
derutilized, Slurm will never be able to utilize resources from the Kubernetes
partition.

In the Genisys case we would not observe the above problem as we avoid
cluster partitioning and Genisys keeps the same resource accounting for both
HPC and data center tasks.

In order to evaluate the above assumption, we run the three workloads
using Genisys’s Least Loaded Policy, Genisys’s Max Loaded Policy, and Par-
titioned scenarios and show the performance of each individual task while
also the total execution time of each workload.

In Figures Fig. 5.7, Fig. 5.8 and Fig. 5.9 we can see the execution per-
formance and CPU utilization for each workload across all scenarios. These
figures although not used in this section are probably useful as they represent
the total system performance across all scenarios.

5.3.1 Pilot Workload Evaluation

We first compare the performance between the Genisys and Partitioned sce-
narios and investigate if there is a speedup for the total and individual exe-
cution times for the Pilot workload when Genisys is used compared to Par-
titioned.

The main goal of this experiment is to show that when using Genisys
we have better resource utilization as both HPC and data center workloads
are not restricted to their respective partitions and when one partition is
underutilized the other one will be able to leverage the free resources.

In the first graph of Fig. 5.4 we see the individual execution times of
the MPI and data center tasks while also the total execution time for each
scenario.

Genisys’s Least Loaded Policy is represented by the blue label while the
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Performance Comparison Under Pilot Workload (Genisys versus Partitioned)
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Figure 5.4: The execution time of each workload between Genisys and Partitioned
when using the Pilot workload. In the first graph we show the individual execution
time of each workload step. The execution time is normalized to the execution
of the workloads when running in dedicated Slurm and Kubernetes installations.
The last bar group shows the execution time of the whole workload. In the second
graph we show the cluster’s CPU utilization for each different scenario.

Partitioned scenario by the orange label. In the case of the Partitioned
scenario, due to restriction of the workloads to their corresponding partition,
Slurm can not leverage resources from the Kubernetes cluster even when the
execution of the data center tasks finishes. This results in a higher total
workload execution time of 15800 seconds, (34%) slower when compared to
Genisys (11200 seconds).

Between the Genisys and Partitioned, the average individual task com-
pletion time is (4%) lower in the Genisys case, we assume that this is because
Genisys spreads the tasks across all the cluster nodes and is able to better
utilize the RDMA network of the cluster.

In the second graph of Fig. 5.4 we see the CPU utilization for the duration
of each scenario. Genisys achieves higher average CPU utilization (90%)
compared to (75%) of Partitioned, as in the Partitioned case when the data
center workload finishes Slurm is not able to utilize the Kubernetes nodes.
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Performance Comparison Under Small Workload (Genisys versus Partitioned)
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Figure 5.5: The execution time of each workload between Genisys and Partitioned
when using the small workload. In the first graph we show the individual execution
time of each workload step. The execution time is normalized to the execution
of the workloads when running in dedicated Slurm and Kubernetes installations.
The last bar group shows the execution time of the whole workload. In the second
graph we show the cluster’s CPU utilization for each different scenario.

5.3.2 Small Task Size Workload Evaluation

As a next step we compare the performance between Genisys and Partitioned
under the Small Task Size Workload. The total time needed for the comple-
tion of the Genisys scenario is 6100 seconds, (52%) faster when compared to
Partitioned (10400 seconds).

Similarly to the Pilot workload, because workloads are restricted to their
allocated partitions in the Partitioned scenario, the HPC workload is not
able to leverage resources from the Kubernetes partition even when there are
idle resources under Kubernetes. This leads to higher completion times of
the Partitioned workload when compared to Genisys.

In the first graph of Fig. 5.5 we see the individual execution times of
the MPI and data center tasks while also the total execution time for each
scenario. Genisys’s Least Loaded Policy is represented by the blue label while
the Partitioned scenario by the orange label. In the second graph we see the
CPU utilization of the cluster under each scenario.

The average CPU utilization of the cluster when using Genisys is (92%),
compared to (62%) when Partitioned, as in the latter case the Slurm workload
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runs for a prolonged period of time due to partition related restrictions.

5.3.3 Large Task Size Workload Evaluation

Performance Comparison Under Large Workload (Genisys versus Partitioned)
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Figure 5.6: The execution time of each workload between Genisys and Partitioned
when using the large workload. In the first graph we show the individual execution
time of each workload step. The execution time is normalized to the execution
of the workloads when running in dedicated Slurm and Kubernetes installations.
The last bar group shows the execution time of the whole workload. In the second
graph we show the cluster’s CPU utilization for each different scenario.

As a next step we compare the performance between Genisys and Par-
titioned under the Large Task Size Workload. The total time needed for
the completion of the Genisys scenario is 9700 seconds, (28%) faster when
compared to Partitioned (12900 seconds).

Similarly to the Pilot workload, because workloads are restricted to their
allocated partitions in the Partitioned scenario, the HPC workload is not
able to leverage resources from the Kubernetes partition even when there are
idle resources under Kubernetes. This leads to higher completion times of
the Partitioned workload when compared to Genisys.

In the first graph of Fig. 5.6 we see the individual execution times of
the MPI and data center tasks while also the total execution time for each
scenario. Genisys’s Least Loaded Policy is represented by the blue label while
the Partitioned scenario by the orange label. In the second graph we see the
CPU utilization of the cluster under each scenario.
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The average CPU utilization of the cluster when using Genisys is (78%),
compared to (64%) when Partitioned, as in the latter case the Slurm workload
runs for a prolonged period of time due to partition related restrictions.

5.4 Genisys vs Thread Partitioned Cluster Performance
Comparison

Performance Comparison Under Pilot Workload
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Figure 5.7: The execution time of each workload step in six different scenarios when
using the Pilot workload. In the first graph we show the individual execution times
of each workload step. The execution time is normalized to the execution of the
workloads when running in dedicated Slurm and Kubernetes installations. The
last bar group shows the execution time of the whole workload. In the second
graph we show the cluster’s CPU utilization for each different scenario.

Another approach to run both HPC and data center tasks under the same
infrastructure would be to statically partition the cluster’s nodes by giving
(50%) and (75%) of each node’s CPU capacity to the Kubernetes cluster while
the rest (50%) and (75%) respectively to the Slurm controller. While this is
an uncommon approach it would be interesting to compare it to Genisys, as
Genisys allows resource sharing between data center and HPC tasks over the
same physical nodes in a similar manner.
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Performance Comparison Under Small task Workload
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Figure 5.8: The execution time of each workload step in six different scenarios when
using the small workload. In the first graph we show the individual execution time
of each workload step. The execution time is normalized to the execution of the
workloads when running in dedicated Slurm and Kubernetes installations. The
last bar group shows the execution time of the whole workload. In the second
graph we show the cluster’s CPU utilization for each different scenario.

5.4.1 Genisys vs Thread Partitioned 50% Comparison

We first compare the performance between the Genisys and Thread Parti-
tioned 50% scenarios and investigate if there is a speedup for the total and
individual execution times across all three workloads when Genisys is used
compared to Thread Partitioned 50%.

The main goal of this experiment is to show that under Genisys we are
going to have better resource utilization as both HPC and data center work-
loads are not restricted to their respective partitions and when one partition
is underutilized the other one will be able to leverage the free resources.

In the first graph of Fig. 5.7, Fig. 5.8 and Fig. 5.9 figures we see the
individual execution times of the MPI and data center tasks while also the
total execution time for each scenario.

Genisys’s Least Loaded Policy is represented by the blue label while the
Thread Partitioned 50% scenario by the yellow label. In the case of the
Thread Partitioned 50% scenario, due to restriction of the workloads to their
corresponding partition, Slurm can not leverage resources from the Kuber-
netes side even when the execution of the data center tasks finishes. This
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Performance Comparison Under Large task Workload
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Figure 5.9: The execution time of each workload step in six different scenarios when
using the large workload. In the first graph we show the individual execution time
of each workload step. The execution time is normalized to the execution of the
workloads when running in dedicated Slurm and Kubernetes installations. The
last bar group shows the execution time of the whole workload. In the second
graph we show the cluster’s CPU utilization for each different scenario.

results in higher total workload execution time, (44%) slower when compared
to Genisys.

Between Genisys and Thread Partitioned 50%, the average individual
task completion time is (4.5%) lower in the Genisys case. We assume that
this happens because in the Thread Partitioned 50% case a higher number
of data center and HPC tasks are colocated over the same time periods and
the interference is higher than with Genisys.

On average, across all three workloads, Genisys achieves higher average
CPU utilization (82%), compared to (56%) of the Thread Partitioned 50%.
In the latter case when the data center workload finishes, Slurm is not able
to utilize the Kubernetes nodes. Also due to the smaller number of threads
available to both Slurm and Kubernetes, the tasks can not fit as efficiently
as when running with Genisys.

5.4.2 Genisys vs Thread Partitioned 75% Comparison

In the case Thread Partitioned 75% scenario, both Kubernetes and Slurm
cluster have access to 75% of each node’s resources, in total this approach

45



allows resource overlapping as combined the two platforms can load each
node to up 150%.

Genisys’s Least Loaded Policy is represented by the blue label while the
Thread Partitioned 75% scenario by the dark blue label. In the case of
the Thread Partitioned 75% scenario, resource overlapping of the workloads
running on the same nodes results in higher total workload execution time,
(47%) slower when compared to Genisys. Another important factor that
contributes to the slower execution is the partitioning of the platform as
when one of the data center or HPC workloads finishes, the workload that is
still running is restricted to its respective partition.

Between Genisys and Thread Partitioned 75%, the average individual
task completion time is (28%) lower in the Genisys case. In the Thread
Partitioned 75% case, the resource overlapping on the congested nodes leads
to interference and higher execution times.

On average, across all the three workloads, Genisys achieves higher av-
erage CPU utilization (82%), compared to (68%) of the Thread Partitioned
75%. In the latter case when the data center workload finishes, Slurm is
not able to utilize the Kubernetes nodes. Also due to the smaller number
of threads available to both Slurm and Kubernetes, the tasks can not fit as
efficiently as when running with Genisys.
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Chapter 6

Related Work

6.1 HPC-Cloud Convergence

The integration of HPC job management in the context of Kubernetes has been
addressed in the past. In [21], the authors use a utility called hpc-connector that
acts as an HPC job proxy: Users submit respective Kubernetes jobs with the ap-
propriate settings, and hpc-connector forwards them to the HPC cluster, monitors
their execution, and collects their results. This solution can probably be used with
containers to address portability issues. On the other hand, the main focus is on
HPC job management with a Kubernetes-compatible interface; the HPC and cloud
clusters are treated as two separate environments making it impossible to monitor
and place cloud and HPC workloads over the same physical cluster.

A similar approach is presented in [30], where a Kubernetes installation is
interfaced to a Torque-based HPC cluster, using a custom tool called Torque-
Operator. Although this study offers the flexibility of running containerized cloud
and HPC jobs over the same front end interface through the WLM operator, it
again distinguishes the cloud and HPC runtime environments by using two different
clusters. On the contrary, our approach aims to completely integrate the runtime
and management environment of an HPC system in the Kubernetes framework,
using a single hardware setup.

6.2 Performance of Containers in HPC

One critical aspect of the containerization of HPC workloads is runtime perfor-
mance when compared to an actual physical cluster. Related work has measured
the network performance of containerized HPC codes, and findings suggest that
there is little to no performance overhead when an InfiniBand network is used
[12]. I/O performance of the HPC nodes is also very important as the process of
checkpointing when running MPI applications at large scales is an I/O intensive
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task that has the potential to dominate the execution time [22]. In [10], it is shown
that Docker containers do not suffer from any performance overhead under syn-
thetic I/O workloads. In general, Docker containers do not introduce significant
performance overheads, while in some cases they can provide better QoS due to
the usage of cgroups resource limiting mechanisms when compared with a bare
metal runtime environment [17, 18, 15].

6.3 Workload Scheduling

There is a plethora of papers that handle the scheduling of workloads with the main
goal of increasing the utilization in the infrastructure. Sparrow [25] and Eagle [14],
handle the scheduling of tasks of applications in clusters. Sparrow is a fully dis-
tributed scheduler that randomly selects a set of candidate servers to execute each
incoming task; it assigns tasks to the fastest server. With its simplistic scheduling
policy, Sparrow can schedule hundred thousands tasks in a few milliseconds. How-
ever, it is not appropriate for scheduling workloads with conflicting goals as in our
case, i.e., resource sharing for some applications and resource dedication for others.
Eagle implements a hybrid scheduler with a centralized component that handles
the long-running applications and a distributed component for the short-running
applications. The centralized component, performs careful placement, whereas the
distributed component emphasizes on quick placement of tasks. Our approach is
a hybrid scheduler like Eagle, however, with different goals.

Ursa [19] is a task scheduler for spark-monotasks [24] and Rhythm [29] is a data
center scheduler that ensures the latency of latency-critical applications. Both
works colocate “compatible” tasks to increase the utilization in the underlying
infrastructure. The main limitation of these systems is that they do not guard
against interference, in case of a scheduling error. This results in a significant
and sudden drop in performance if interference occurs at a selected node. In
contrast, our approach constantly monitors application performance and adjusts
container placement and resource allocations at runtime to achieve a user-defined
performance target.

Control loops for dynamically adjusting resources based on runtime perfor-
mance have been used in systems such as SLAOrchestrator [23] and Sky-net [27].
The former tries to optimize cost of services when running in the Cloud, while the
latter optimizes hardware efficiency by colocating more applications on the same
nodes, as long as they acheive their user-defined performance targets. Genisys’s
handling of data center tasks is based on Skynet, but it has also been extended to
allocate HPC tasks with different, placement-based constraints.
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Chapter 7

Conclusion and Future Work

This work presents a method to run HPC workloads in Kubernetes using portable
and extensible containerized environments called virtual clusters. Virtual clusters
include Slurm, so users can run existing scripts unmodified, and are deployed
alongside other Kubernetes services on the same physical cluster. Without any
additional changes, the resulting hybrid resource allocation environment would
have individual Slurm instances operating within their virtual cluster constraints,
unaware of what is happening at the overall cluster-level, where decisions are made
by Kubernetes. To avoid resource allocation conflicts, we integrate Slurm with
Kubernetes, by extending the Slurm controller to delegate placement decisions to
Genisys, our custom Kubernetes scheduler.

Our evaluation results indicate that it is not only possible to colocate data
center tasks with HPC jobs when remaining CPU cycles are available, but with
appropriate scheduling it can be beneficial to overall performance. Overall Genisys
+ virtual clusters are able to integrate Slurm into the Kubernetes ecosystem with
minimal performance overhead across all the task categories. The evaluation shows
that with the use of Genisys it is possible to reduce the execution time of combined
workloads compared to unmanaged and partitioned approaches.

At this point the main resource limiting mechanism that Genisys uses is Linux’s
completely fair scheduler (CFS) in order to allocate container resourses for both
HPC and data center jobs. While this approach is convenient as CFS is the
main resource limiting method for containers in Kubernetes, it can lead to lower
performance when multiple jobs are collocated over the same physical nodes. We
believe there are benefits in using affinity based placement for HPC jobs using the
cpuset Linux’s cgroup mechanism and place them on dedicated CPU cores in order
to reduce interference even further. Through previous experimentation with both
CPU limiting mechanisms we found out that it is possible to use both of them on
parallel each one for different kind of jobs.
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Chapter 8

Appendix

In this section we are going to describe in detail each Genisys Kubernetes
component and its main methods.

8.1 Pod Placement Controller

In order for Genisys to schedule Kubernetes Pods, we implemented a custom
Placement Controller in Golang.

The main function of this component is the Pod_Scheduler() method.
The “Pod_Scheduler()” method iterates over the Kubernetes Pods that are in
“Pending” state. If a Pod is in “Pending” state it means that it has not yet
been scheduled to an appropriate node. When “Pod_Scheduler()” chooses a
Pod for scheduling, it checks first if the Pod’s Deployment object has multi-
ple replicas of this Pod to be scheduled. In the case that the Pod’s deploy-
ment has multiple replicas then the Pod_To_Node_Finder(Pod *v1.Pod)
method is called. This method checks if a set of Nodes is available for the
deployment’s Pods to fit. At this stage the node selection is done according
to the selected placement policy of the controller. If the Deployment fits
in the cluster’s resources then we mark the Deployment to be scheduled by
increasing its priority, which guarantees that the deployment is going to be
scheduled and that there is going to be set of nodes with enough available
resources for the deployment to fit. As a next step, the “Schedule_Pod(Pod
*v1.Pod))” function is called for each Pod of the deployment, which binds
the Pod to the appropriate node.



8.2 Resource Updater Controller

The Resource Updater Controller Genisys component is responsible for up-
dating the cluster’s deployment and node resources. For example, if a de-
ployment gets deleted or finishes its tasks then Genisys should be able to
update the resource’s state and free the unused resources.

The Resource_Bandwidth Updater Nodes() function iterates over all
the running Pods of the cluster and for each Pod it finds the Node that it is
running in. After this step, it updates the Node by adding the Pod’s allo-
cated resources to the Node allocation. When the execution of this method
finishes, each Node allocation is updated. In order to update the cluster’s
resource state this method is called every 10 seconds. During this method’s
execution we pause the scheduling of Deployments.

The Resources_Bandwidth_Updater_Deployments() function iterates
over all the running “Data Center” type Pods of the cluster and for each Pod
it enforces the CPU, Network, I/O, Memory allocations by using the cgroups
resource limiting kernel mechanism. This function ensures that each running
Pod is not going to exceed its resource allocation.

For each Kubernetes Virtual Cluster user, the Resources_Limiter_Virtu-
al_Clusters() function iterates over the generated dummy resource reser-
vation Pods, and calculates the resource allocation for each user’s Virtual
Cluster Nodes. As a next step for each Virtual Cluster Node, the function
uses the cgroups resource limiting kernel mechanism in order to enforce re-
source limits.
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8.3 Slurm Connector

In order for Genisys to free resources allocated by finished, deleted or failed
Slurm jobs, we need a mechanism to communicate with each Virtual Cluster.
The Slurm Connector component communicates with each Virtual Cluster
and gets information about the status of the Slurm jobs running on it.

The Get_Pods_Slurm_Job_Id _Per_Namespace(Slurm_Job_ID string,
User string) function gets as input the Slurm job ID and the User that the
Virtual Slurm cluster belongs to and returns if the specified Slurm Job still
exists on the cluster. If the Job is still running then the function returns
“Valid”, in any other case it returns “Invalid”.

The Slurm_Job_Deallocator() function iterates over the generated dummy
resource reservation Pods for each Slurm user and checks if the Slurm job for
the specified dummy pods still exists. If the Slurm Job is no longer “Valid”
then the “Slurm_Job_Deallocator()” deletes all the dummy pods mapped to
the job thus freeing the allocated resources. This function is called periodi-
cally every 100 milliseconds.

53



8.4 Kubernetes API Communicator

Kubernetes API Communicator component contains the methods needed for
Genisys to communicate and fetch objects from the Kubernetes API server
using the Golang client.

The Get_Dummy_Slurm_Pods(User string) function fetches and returns
the Pod objects referring to the Slurm dummy allocations for the specified
user ID.

The Get_Dummy_Slurm_Pods_All Users() function fetches and returns
the Pod objects referring to the Slurm dummy allocations for the whole clus-
ter.

The Get_Virtual Cluster_Pods(User string) function fetches and re-
turns the Pod objects referring to the Virtual Cluster Nodes for the specified
user 1D.

The Get_Pod_By_Name(Pod Name string) function gets as input the
name of a Pod, fetches and returns the Pod object from the API server.

The Get_Deployment_Of Pod(Pod *v1.Pod) function gets as input a
Pod object and returns the Deployment object of the specified Pod.

The Get_Pod_User(Pod *v1.Pod) gets as input a Pod object and re-
turns the User’s ID for the specified Pod.

The Get_Pods_all Users fetches and returns the whole Pod object list of
the cluster’s Pods.

The Get_Pods_Of_User(User string) function fetches and returns all the
Pod objects referring to the specified user ID.

The Get_Nodes() function fetches and returns all the Node objects of the
cluster.
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