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Abstract

Glioblastoma 1s the most malignant brain cancer and 1s not considered a curable disease so far. From
the moment of the first diagnosis and in order to fight against such a greed type of cancer, the real
battle 1s against time. Not only clinical therapeutic progress and empirical confront, but also
experimental data and simulated predictions must be evaluated and reclaimed. In this PhD thesis, a
multidisciplinary framework that integrates basic and translational research 1s presented targeting
both the validation of computer-based predictions of Glioblastoma growth progress, while attempting
a better understanding of Glioblastoma pathophysiology/pathobiology. In this attempt, a carefully
planned combination of i vitro, in vivo and in silico experimental approaches were mobilized.

Patient-specific cell cultures were used mn experimental assays to assess Glioblastoma
pathophysiologic factors and parametrize/initialize/validate the computational predictive algorithms,
accordingly. This thesis can be divided in three areas of focus: 1) primary cell cultures establishment,
1) the biological experiments and 1i1) the use of the computational tools.

1) Tissue from naive-from-treatment patients with (high grade) brain cancer was excised
during the biopsy and/or the partial /gross resection, as routinely done in the clinical
practice. Apart from the immunohistopathological biopsy examination to confirm the
Glioblastoma case, if needed, part of this tissue was used for the transplantation of
immunodeficient mice that served as “living incubators”. Additionally, cryopreservation
of the collected biological sample assured the reduced risk of the genetic drift in the
subsequent procedures. After a short period of direct cell culturing or serial passaging
between lab animals, the primary cell cultures were established for each Glioblastoma
case.

11) Followingly, the primary cell cultures were phenotypically characterized and used in 2D
and 3D experimental assays. The thesis primarily focuses on proliferation and invasion,
two of the most dominant Glioblastoma characteristics. Available protocols were selected
according to the Glioblastoma hallmark under study. Imaging modalities of optical and
advanced fluorescent microscopy were used to monitor the growth of small-sized
avascular Glioblastoma spheroids using imaging protocols optimized per scanning
procedure. All the critical features from the biological experiments were translated so
that Glioblastoma-specific biomarkers could be identified. In addition, 2D and 3D
assays were also used to evaluate the efficacy of specific drugs on primary Glioblastoma
cells.

111) All data collected from the in witro experiments were used for mitialization,
parametrization and validation of Glioblastoma growth predictive computational
algorithms. We used hybrid modeling comprised of two compartments; the discrete,
where tumor cells are treated as individual entities, able to proliferate, die, move or
respond to various stimuli set during the simulation process and the continuous

compartment, which describes extracellular  components of the tumor
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microenvironment using reaction-diffusion equations. The computational model was
used both as an experimental tool that reproduces our n vitro findings and supports our
hypotheses regarding Glioblastoma pathophysiology, and also as a guide to future

experiments when new hypotheses are generated.

Either n vivo or in vitro, Glioblastoma expansion i1s majorly attributed to proliferation and local
spreading. Most of all, Glioblastoma’s heterogenic nature dictates the use of realistic patient-specific
environments. Taken the Glioblastoma critical growth characteristics, we focused on the study of
proliferation and invasion by using the established primary cell lines cultured in 8D conditions. The
well-described US7MG and T98G Glioblastoma cell lines served as control in our experiments.

Focusing on proliferation, the combined i vitro-in silico approach supported that the variance n
tumor staging can be attributed to the differential proliferative capacity of the different Glioblastoma
cell types. More specifically, the intra-tumoral heterogeneity together with the overall proliferation
reflected i both the proliferation rate and the mechanical cell contact inhibition, but not the cell
size, can predict the m vitro evolution of different Glioblastoma cell lines growing under the same
3D conditions.

On the subject of Glioblastoma invasion, we presented that the primary Glhioblastoma spheroids
adopt a novel, cohesive pattern mimicking perivascular invasion in the brain, while the U87MG and
the T98G adopt a typical, starburst, invasive pattern under the same 3D n vitro experimental setup.
Confocal imaging indicated alternative proliferative and adhesive characteristics of the invading cells.
Mathematically, we focused on the role of the intrinsic heterogeneity with respect to cell-to-cell
adhesion. Our proposed mathematical approach suggested that allowing phenotypic heterogeneity
within the tumor population is sufficient for variable invasive morphologies to emerge, which remain

originally undetectable by conventional imaging.

Glioblastoma prognosis remains poor mainly because of the high mter- and intra-tumoral
heterogeneity and the post-surgery relapse. Glioblastoma adjuvant chemotherapy includes
Temozolomide; yet, not all Glioblastoma patients are responsive. The latest trends in Glioblastoma
clinical trals usually refer to Doxorubicin; yet, it 1s unable to adequately overpass the blood brain
barrier. A range of Temozolomide and Doxorubicin concentrations were used to treat the primary
Glioblastoma spheroids based on the ICs values previously estimated m 2D. Using optical
microscopy to monitor the growth pattern, sensitivity to both drugs was observed. Doxorubicin in
general was found to be effective in less concentrated doses. In particular, the effective
concentrations of Doxorubicin and Temozolomide exhibit four orders of magnitude difference. In
order to further discriminate growth inhibition in disabling cell division from cell death, we used
Light Sheet Fluorescence imaging to visualize the drug penetration and necrosis. According to
the fluorescent images, Doxorubicin was able to accumulatively cause necrosis. On the other hand,
i Temozolomide-treated spheroids slight growth-inhibiting effects were observed mm a non-
consistent dose-response relationship. Our results are in line with variable drug responsiveness of
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mdividual Glioblastomas. We have indications regarding the option of a Temozolomide-
Doxorubicin therapeutic scheme to disable proliferaion and increase cytotoxicity against
Glioblastoma. An in vitro drug screening tool was proposed that 1s able to efficiently integrate the
compounds’ testing in 2D and 3D and to further fluorescent-image the drug-induced cell death. We
followingly suggest to extend these observations to the hybrid discrete-continuous model and further
predict the combination or the sequential therapeutic scheme of the two drugs.

Overall, in this PhD thesis, we claim that future research should be based on primary cells directly
collected from patients and that common cell lines should only serve as landmarks to unite studies
of different groups. For every primary established cell line, not only molecular, but also physiological
parameters should be estimated to enable a more precise future clustering of different Glioblastoma
cases. Estimations starting with the typical doubling time and evolving to more delicate features such
as unique Invasive capabilities, death patterns or drug responsiveness and others, are highly
mmportant. To this front, computational models may serve as predictor tools not only for estimating
cancer progress, but also for designing targeted biological experiments and allow a better
understanding of the involved biological phenomena. Simulations of cancer progress should not
anymore be based on theoretical values, especially if clinical translation 1s of interest.

Preparing our future experiments, we additionally set up the technical methods for ex vivo
experimentation and i vivo heterotopic and orthotopic xenografts that are more closely to the
precision medicine and theranostics. Undoubtedly, taking into account the molecular aspects of each
of the physiologic features discussed, as well as additional imaging techniques capable of providing
spatial information of tumor cells physiology and microenvironment will enhance our understanding
regarding Glioblastoma nature, verify and further improve our predictability.

In NeuroOncology, the application of accurate cancer predictive algorithms validated with
experimental data 1s a field concerning both basic and translational researchers, as well as the
clinicians. In any case, by advancing our mathematical approaches and taking advantage of in vitro
and n vivo experimental methodologies, which enable tight control of experimental parameters and
high reproducibility, it may be possible to eventually verify the precise set of their computational
counterparts needed towards a systematic i silico mapping of Glioblastoma ontogenesis. If we target
the holistic description of tumor evolution, we should follow a stepwise approach, where
computational tools can definitely help in 1dentifying the most important parameters affecting the
final outcome.



Mepiinym

To I'oloBfAGOTWHX GUVICTA TOV TILO KOKON O Kal EMIOETIKO KAPKIVO TOU EYKEPAAOL Kal
uexpL onpepa, 8¢ Bewpeltal Lo acbévela. Ao TV TMPWTN CTIYU| TG SIAYVWoNS Kal e
O0TOXO TNV KATATOAEUN O UIOG TOOO ATANCTNG LOPPTG KAPKIVOU, ) TIPAYUATIKY Haym eivatl
Ue To XpOvo. EKTOG amd v Tpo080o TNV KAWVIKY BEPATIEIX KL TNV EUTIELPLKT] AVTIUETWTILON,
TEPAPATIKA SeSOUEVA KL TTPOBAETITIKEG TIPOCOUOLWOELG TIPETEL VA A§LOA0YOVVTAL KAl VX
AVAUOPE®VOVTAL Xe autn TN Awdaktopikn Alxtpifn, éva Slemotnuovikd mAaiclo Tov
olokAnpwvel 1600 TN Baown 6co kat T Meta@paotikn €psuva TapovolaleTal
OTOXEVOVTAG TOGO OTNV EMAANOEVON VTIOAOYLOTIKWV TIPOPAEPEWY YA TNV AVATITUEN TOV
[MowoBractwuatog 660 Kol EMEpeital  pia  kaAVTEPN  Katavomon TG
mabouoloroyiag/maboflodoylag Tov. Xe auTO TO EYXEPNUA, €VOG TIPOCEKTIKOG
oLVSLAGOG TWV in Vitro, in vivo kat in silico TEPAPUATIKWOV TIPOCEYYIOEWVY OXESIAOTNKE.

Iy ev A0yw gpyacia, cuvSLACTNKAV 1] XPTOT) KUTTAPOKAAALEPYELWV EEATOUIKEVUEVWV VA
acBevr] oe TEpApaTikES Slepyaocies o oxéon pe MABO@PLOLOAOYIKOUG TAPAYOVTEG TOU
[oloBractwuatog kat akoAovOws, TPoBAETTIKOlL aAyOpLOUOL TAPAUETPOTIONONKAY,
apxkomomOnkav kat emaAnBevOnkav, avaroya. H epyacia Sopeital ot tpla kOpLa onpela:
i) v eykaBiSpuon TwV TPWTOYEVWV KUTTAPOCELPWY, ii) T BLOA0YIKA TrElpApaTa Kat iii)
XPNOMN VTIOAOYLOTIKWYV EPYUAEIWV KAL TNV AELOAOGYTOT] AUTWV.

i) Ye MpwTo oTAd0 Yvotav 1 tapaiafny .otol amd aobevelg pe (LVPmAov Babuov)
KapKivo Tou eyke@dAov Tou Sev eiyav SexBel Bepamela katd TN Stapkela ™G
Boyiag N/kat ™G UEPIKNG/OAIKNG €YXEPNONG, OTIWG YIVETAL GTNV KOVOVIKY
KAk Stadikacia. [TEpa amd Tig avoooiotomabodoyikes eEetdoels BloYiag wote
va emiBefawbel 1 0xL To TEPLOTATIKO [AOLOBAACTOUATOG, EQPOCOV KPLVOTAV
ATAPA(TNTO, TUNHX TOU LOTOU XPNOLULOTOLOUVTAV Yl TNV EUQPUTEVOT] OE
OVOOOKATECTOAREVA (WA TIOU EEUTNPETOVOAV WG «{WVTOVOL ETMWACTIPEG.
EmumpooOeta, pépog Tov PloAoykol Setypatog amobnkevdtav oe Pabia
KataPuin wote va eEX0@AALOTEL 0 HELWHEVOG KIVEUVOG YEVETIKNG TTAPEKKALONG
KATA TN SLAPKELA TWV PETAYEVESTEPWV Sladikaolwy. Emeita amd pla ocvvtoun
TeploS0 AUEOTG EPYATTNPLAKTG KAAALEPYELAG 1] SLASOXIKWV EMAVEUPUTEVOEWY OE
TEPARATOLWA, 1] TPWTOYEVIG KUTTAPOCELPA TTAPAYyOTAV Yot KABE aoBeV).

ii) ITn  OoUuvéXElR, Ol TPWTOYEVEIS KUTTAPOKAAALEPYELEG xapakTnpilovtav
@ULVOTUTILKA Kol xpnoLpomolovtay o€ 2A kat 3A TEpauaTika mpwTtokoAAa. H ev
AOYyw epyaoia ETIKEVTPWVETAL KUPLWG 0TOV TIOAAATIAXGLAG O Kat Tt Su)6nom, SVo
amo Ta Kuplapya xapaktnplotika tov MoopAractwpatos. Ta TpwTéKoAAa auTd
EMAEYOVTAV AVAAOYX LLE TO UTIO PEAETT) XAPAKTNPLOTIKO TOV ["AoloffAacTmwpatog.
ATIEIKOVIOTIKEG TEXVIKEG OTITIKNG KL TIPONYHUEVNG WIKPOOKOTIAG @Boplopon



XPMNOLLOTOMONKAV YIX TNV TAPAKOAOVON O™ TNG AVATITUENG UIKPWV AVAYYELWYV
o@alpdiwv  TAoPAACTOUATOS HE  ATEIKOVIOTIKA  TPWTOKOAAX  TIOU
BeAtiotomolovvTav avdioya pe v meEpapatiky Stadikacio. ‘OAa T KOpLX
XAPAKTNPLOTIKA  TOU  avayvwplommkav  ota  BloAoylkd  mEpApaTo
UETA@PACTNKAV HE OTOXO TNV TAUTOTOMON BLOSEKTWV €KWV Yyla TO
[Mowpraoctwua. Emmpoéocbeta, Tt600 2A 0600 Kau 3A TPWTOKOAAQ
XPNOLWOTOMONKAV WOTE VA A&LOAOYNOEL 1] ATTOTEAEGUATIKOTITA CUYKEKPLUEVWV
@EAPUAKWY oTa TPWTOoYeV KUTTApA ['AooffAacTwuatog.

iii) To oUvodo Twv deSopévwy OV GLAAEXBN GOV ATIO TA EPYACTNPLAKA TIELPAUATA
XPNOWOTIOMONKAY OTNV  apPXLKOTIO(NOT, TOPAUETPOTIOMON Kal emaAnBevon
UTIOAOYLOTIK®WV ~ TPOPAEMTIKWV  QAyOplOUWY  yla TNV  aQVATTUEN]  TOU
[oloBAacTtowuatog. XpNoWOTOMoaUE TEXVIKEG UBPLOIKNG HOVTEAOTIOMONG
amoteAovUpevn amd Vo TUHATA: To SLaKPLTO, OTIOV TA KUTTAPA AoYL{ovTal WG
SLKPLTEG OVTOTNTES LKAVES Vo TIoAAATAAGLAlovTal, va TEBaivouy, va KivoOvTaL 1)
VO ATIVTAVE O€ TOLKIAQ EpeBiopATA TTOV SLAUOPPDVOVTUL KATA TN SLAPKELX TNG
UTIOAOYLOTIKNG SLSIKAGIOG KL TO GUVEXEG, OTIOU T EEWKUTTAPLX CUCTATIKA TOU
OUOTNUATOG HOVTEAOTIOLOVVTHL [E Xp1ioT eElowoewv avtidpaong-Siayvons. To
UTIOAOYLOTIKO HOVTEAO XPNOLMOTONONKE TOOO WG TEPAUATIKO €pyaAeio oL
QVATIOPLOTA TA EPYAOTNPLAKA EVPNUATA Kol €VIOYVEL TIS UTOOECELS uag
aVa@OPLKA pe TNV Tabo@uaololoyia Tov Moo BAACTOHATOG, OG0 KAl PUE GTOXO VA
KaBodNyNoEL TA HEAAOVTIKA LG TIEPAUATH OTIG TIEPLTITWOELG TIOV EVOAAAAKTIKES
vToBEaelg mpoékuav.

Eite o€ in vivo 1 in vitro eminedo, 1 €€€AEn Tov NolofAaoTOHATOS amodiSeTal Kupiwg oTov
TOAAATIAXGLAG O KL TNV TOTiKN S1m0no. [leploodTtepo amd OAQ, 1) ETEPOYEVIG PUOT] TOV
["A010BAACTOUATOS ETTACCEL TN XPNON PECALCTIKWV EEATOUKEVUEVWV CUOTNUATWY. Me
deSopéva Ta  kalplx  avamTLElAKA  XAPAKTNPWOTIKA Tov  [AowoBAacTtwpatog,
EMKEVTPWONKAUE 0T HEAETN TOU ToAAATAACLOUOV Kol Tng Smbnong pe xpnon
EYKABISPUHEVWV TIPWTOYEVWV KUTTAPOOELPWV TIOU KaAAlepynOnkav oe 3A ouvOnkeg. Ot
TOAD  KOAG pedetnuéves kuttapooelpes TAowopfAactwpatog, U87MG kot  TI8G,
XpnowomomdnkKay wg SeSopéva ava@opas oTo TEPAUATA L.

ETKEVTPWVOUEVOL ApX LKA 6TOV KUTTAPLKO TTOAAATIAACLAG IO, ) CLVSVACTIKY in vitro-in silico
TPOGEYYLOTN UTTOGTHPLEE OTL T TOIKIAOHOP@Ia HeTaV TG oTadl0ToinonG Tov 6ykou SUvatat
va amodoBel otn Sl@opky] auinTikn KAVOTNTA TV SLEPOPWV KUTTAPIK®WV TUTIWV
[MoloBractwuatog. [Tlo cuykekpLPEVa, 1] ETEPOYEVELX EVTOG TOU OYKOU Hall LLE TO CUVOALKO
TOAAATIAXCLAGHO TIOU QVTOVAKAWVTAL TOGO 0TO0 puOUOd TOAAATANCLAGHOV 000 Kol OTN
UNXQAVIKT) KUTTOPLKT avaoTOAN Adyw AN, aAAQ OxL 6T0 KUTTAPLKO PEyeBog, Suvavtal va
TPoBAEYOLV TNV epyaoTnPLAKT] EEEALEN TwV SLd@opwV KUTTAPOoTeElpwV ['AolofAacTOHATOS
IOV LEYAAWVOLV UTIO TG (Steg 3A ouVOTKEC.



Yto Opa ™ Su)nong tov oo AACTOUATOC, TAPOVCLACAUE OTL TA TIPWTOYEVT CPALPISLX
V0BETNoAV £Va VED, CUVEKTIKO HOTIB0 oV aiveTal va pipeital TNy meplayyelakn dmonon
otov eyké@aro, evw ta UB7MG kat ta TI8G oaipidia vioBeToVv TO TUTIKO, AKTIVWTO,
dmOntkdé potifo vmdé TV Six 3A mepapatikn Swatadn. Me xpnomn oULVECTINKNG
uikpookoTiag, PBpédnkav evdeiels ylx Swagopomompéva  aLENTIKA KOl GUVEKTIKA
XOAPAKTNPLOTIKA HETAED TwV Sla@OPETIKWY  SMONTIKWV  KUTTApWwY. Mabnuatikwe,
ETKEVTPWONKAUE 6TO POAO TNG EYYEVOUG ETEPOYEVELAG OE OXECN UE TNV KOTTAPO-TIPOG-
KUTTApPO oLVeEKTIKOTNTA. H mpotewvopevn pabnpatikn pog Tpoceyylon Oekviel OTL
ETTPETIOVTAG (PALVOTUTIIKY ETEPOYEVELN OTOV KAPKLWVIKO TANOuoud elval tkavd wote va
avaSeLlXToUV SLAPOpPES SMONTIKEG LOPPOAOYLIEG OL OTIOLEG TTAPAUEVOUV UN AVIXVEVGLUES OTTV
TPAYUATIKOTNTA LE TIG YVWOTEG ATELKOVIOTIKEG TEXVIKEG.

H mpoyvwon yiwa to Towofrdctowpa mapapével @Twyn kKuplwg etattiag g vymAng
ETEPOYEVELAG PETAEY aoBEVWOV KAl 0TOV OYKO TOU (Slov acbevr), aAdd kat efattiog ™G
UETEYXEPNTIKNG VTTOTPOTNG. H emkovpikn ynueobepamneia katd tov olofAacTtwuatog
mepAappavel tnv TepoloAapidn- wotdo0, ev elval 6Aot ol aobevelg evaiocOnTol oe autn. Ot
O TPOCPATEG TACELS OTIG KAWIKEG HEAETEG TOU ['AOLOBAACTWHATOG CUXVA AVXPEPOVTAL
otn AofopoupuTikivn- woTo000, elval adVaTo Vo TIEPACEL EMAPKWS TOV XIUATEYKEPAALKO
@payuo. ’‘Eva  ebpog ouvykevtpwoewv — TepoloAauidng kat  Aofopouumikivig
xpnowomombnkayv o€ Tpwtoyevy o@alpidia Baciopévo otig ICso TIHEG IOV EKTIUNONKAV O€
2A mepapata. Me xpnon OMTIKNAG UIKPOOKOTING Yl TNV TApakoAovONoen Tou avénTikov
potifov, mapatnpnOnke svaoBnoia kat ota SVO @EAPHAKA. ZE YEVIKEG YPAUUES, T
AofopoupTiikiviy NTAV TLO ATOTEAECUATIKY) O ALyOTEPO OCUUTIUKVWUEVEG OOCELS.
TUYKEKPLIUEVA, Ol OTOTEAECUATIKEG OUYKEVIPWOELS TNG Aofopoupmikivng Kot g
TepoloAapuidng Swagopomombnkav kata Téooepls Tagelg peyéBoug. Me otoOXO VX
SLaKpivou e TTEPETALP®W TNV AVAGTOAN TNG AQUENONG O APON NG KUTTAPLKNG Slalpeons 1
KUTTAPIKO Bdvato, xpnowpomoujoape Amewkovion Aemtng Aéoung POoplopol wote va
OTITIKOTIOOOVE TN Olelcduon TOU @APUAKOU KoL TN VEKPWOT. ZUU@®WVA UE TNG
@Bopilovoeg elKOVEG, 11 AOEOPOVUTILKIVI] NTAV LKAVT] VX TIPOKXAECEL VEKPWOT] LE CWPEVTIKO
TPOTO. ATIO TNV GAAN peEPLE, Ta o@apidla ota omola €ywve aywyn pe TepoloAauidn, un
ONUAVTIKA QVAOTOATIKA QUENTIKA @AWVOUEVH TApaATnPNONKOY OG€ U1 GUOTHUATIKO
docoefaptwuevo TpoOmo. Ta AMOTEAECUATA Hag elval CURPWVA UE TN SLA@POPIKT ATIOKPLOT)
Twv votUTwv tou IoloPAactwpatog. ‘Exovpe evdeifelg oe oxéon pe éva Bepamevtikd
oxnua mov ouvvdvalel TepoloAapidn-AofopovuTikiv HE 0TOXO v aSpAVOTIOCEL TOV
TOAAATIAXGLAG O KAL VA AUENCEL TNV KUTTAPOTOSIKOTNTA KATd Tov ['AooBAactwpatos. Eva
EPYACTNPLAKO EPYOAED SLAAOYNG PAPUAK®WY TIPOTEONKE TO 0TIolo Elval LKAVO va EAEYXEL
EMAPKWG TA SPACTIKA oLOTATIKA o€ 2A kat 3A emimedo KoL EMMAEOV, VA ATIELKOVIEL PE
©Boplopd Tov emayduevo amo To @APUAKO KUTTAPlkO Bdvato. Ilpotelvovpe emiong oe
ETMOUEVO OTASLO VA EMEKTEIVOUIE QUTEG TIG TTAPATNPTOELS 0TO VBPLSIKO SLaKPLTO-CUVEXES
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UTIOAOYLOTIKO HOVTEAO KOL VX TIPOXWPT|COVE 0TV TTPOBAEYT EVOG BEPATIEVTIKOV OXTULATOG
TOUG GUVEVAGHOU TWV SV0 PAPUAKWY o€ EMITESO §OTEWV KAl XPOVIGHOV.

ZUVOAIKA, oe autn TN Awdaxtopikn Awatpipn, Loxvpl{OHaOoTE WG 1 UEAAOVTIKY] €pEuvva
opeidetva BacileTal o€ TPWTOYEVT KUTTAPA IOV GCUAAEYOVTAL aTeELOElag atmd Toug acBevelg
KOl Ol KOLVEG KUTTAPOOELPES Bat TIPETEL val eEUTINPETOVY UOVO WG OTUEIX ava@OPAS HETAED
EPELVNTIKWVY EpYywV amod Sla@opetikes ouades. INa kabe eykabiSpupévn TpwToyevn
KUTTOPOOELPA, OYL UOVO HOPLOKEG, OAAX KAl (PUOLOAOYLKEG TAPAUETPOL B TpEmel va
EKTLLWVTAL WOTE VU ETTPATIEL pia TTLO KPR G LEAAOVTLIKT] KATNYOPLOTION oM TWV SLA@opwVv
meplotatikwv [AooBfAactwpatog. EKTIUNOEG TTOU €KKIVOUV A0 TOV KOLWVOTUTIO XPOVO
KUTTAPLKOU SIMAACLIAGUOU Kol EEAIGOOVTAL OE TILO AETITEMAETTA XAPAKTNPLOTIKAE, OTIWG
eldkol unyaviopol SmONTIKWVY poTiwV, KLTTAPLKOU BAVATOU 1] ATIOKPLOTG OE (PAPHAKX KAl
dAAa, eival vymANg onuaciag. Me yvwpova autd, T VTTOAOYLOTIKA HOVTEAQ UTTOPOUV VA
eCUTINPETNOOVV WG TIPOPAETTTIKA epyaieiar OXL LOVO TNG KAPKIVIKNG EEEALENG, AAAQ KAL TOV
oxXeSLA0HOU OTOXEVUEVWY BLOAOYIKWVY TEPAUATWY KOl Vo MITPEPYOLV TNV KAAVTEPT
KATAVON 0N TWV EUTAEKOUEVWV BLOAOYIKWV @aLVOUEVWVY. OL TTIPOGOUOLWOELS TNG KAPKLIVIKNG
eCEAMENG Sev TpEMEL TAEOV VA €§apTWVTAL ATIO OEWPNTIKES TIUES, I8lwG OTAV TO EVSLAPEPOV
ETIKEVTPWVETAL OTNV KALVIKI] LETAPPACTIKOTNTA.

ETmA£0V, TIPOETOUACAUE TNV TEXVIKTY BAOT YIA TA AUECH LEAAOVTIKA LG TIEPAUATO TTOV
OTOXEVOLV TOCO OE ex Vivo TEPAUATH 000 Kal 6€ 0pBOTOTIKA EEVOUOOYXEVUATA, TA OTO(X
glval O KOVTA OTOV AvOpWTO KAl OTr XPNOT OTOXEVHEVWV KOl EEATOULKEVUEVWV
SLYyVWOTIKWV TEGT. Avapu@ofnmnta, AapBavovtag vty TG LOPLUKES TITUXEG KABEVOG atd
TA (PUOLOAOYIKA XOPAKTINPLOTIKA ToL oulnTinkav, KaBws Kol TPOCHETEG TEXVIKEG
ATEIKOVIONG KOVEG VA TIAPEXOUV YXWPLKN TIANPO@OPNOT Yl TN @UGLoAoyia Kol TO
HKPOTIEPLBAAAOV TWV OYKWV, 1] KATAVOT 0N LAG OYXETIKA UE TN (pUom Tou ['AooAacTwpaTog
Ba evioxvBel onpavtikd, evo Ba emaAnBedoovpe kat Ba BEATIWOOVHE TEPALTEPW TNV
KovOTNTA Kol akpifela Twv tpoPAEYPewv pag.

It Nevpo-Oykodoyia, 1 e@apupoyr opbwv aAyoplOuwv mTPOYvwoNng TOU KAPKIVOL
EMKUVPWUEVWV UE TEPARATIKA SeSopéva etval éva medlo TTov a@opad TO00 Toug Baoikols
000 KOl TOUG UETAPPAOCTIKOUG EPEVVNTEG, KABWGS KAl TOUG KALVIKOUG YlXTPoUG. X KaOe
TEPIMTWON, BEATIWVOVTAS TIG LABNUATIKEG TIPOCEYYIOELS LAG KAl EKUETAAAEVOUEVOL in Vitro
Kal in vivo TEPAPATIKA pHeB0S0A0YlEG, OL OTIOlEG ETLTPEMOVY TOV AUOTNPO EAEYXO TWV
TEPAPATIKOV TTAPALETPWV KAl VPNAN eTtavaAnPLpudtnTa, PTopel TEAIKA Vo EMITUYXOVUE VO
0AOKANPWOOVHE 660 TO SLVATOV TO GCUVOAO TWV UTIOAOYLOTIK®WV TIAPAUETPWY, LETARANTWV
KOl PUNYXAVIOU®Y TIOU amalTOUVTAL TPOG WL CUCTNUATIKY in silico yaptoypa@non tng
avaTTuEnG Kot €€EALENG Tov Mo PAACTWHATOG. AV OTOXEVGOUE GTNV OALOTIKI TIEPLYPAPT
™G EEALENG TOV YKoV, Bt TIPETIEL VAL AKOAOVO|COVE Lt OTASLOKT, KALLAKWTT) TIPOCEYYLOT,
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The following glossary introduces a short way to understand the main terms used in this manuscript.

All definitions are Glioblastoma-related.

General Information

World Health Organization (WHO) =
specialized international agency concerned
with the health

Glioblastoma (GB) = primary parenchymal
WHO grade 1V brain cancer

Extracellular Matrix (ECM) = structural and
biochemical cell microenvironment
Translational biomarkers = the mmpact of a
certain compound upon the physiology of the
related tissue or organ

Translational biology = the translation of basic
biologic findings

In vitro = (“within the glass”, Latin)
experiment performed outside a living
organism

In wvivo = (“within the Iving”, Latin)
experimentation on a living organism

In silico = experimentation performed via

computer simulation

Cancer Hallmarks

Necrosis = progressive and most-often
irreversible form of cellular death

Invasion = migration of the cancer cells
towards neighboring tissue through the ECM

Infiltrative edema = imaging biomarker of
Glioblastoma composed by cancer cells and

retention fluids surrounding the tumor lesion

bulk

Invasive rim = the marginal cancer cells of the
mfiltrative zone

Migration mechanisms = the morphologic,
biomechanical and molecular functions
mvolved in cell motility

Inter-tumoral heterogeneity = Glioblastoma
subtypes differ between patients
Intra-tumoral heterogeneity = a given
Glioblastoma tumor 1s composed by several
sub-clones

Proliferation = cancer expansion as a result of
cellular growth and division

Doubling time = a constant rate between cell
divisions

In vitro
Primary cell cultures = cell cultures
established directly from collected biological
samples in a patient-specific way
Secondary cell lines = a primary cell cultures’
sub-culture of a given stability
Glioblastoma cell lines = cell cultures of
Glioblastoma either primary or secondary
Multicellular spheroids = 2 vitro spherical
aggregates of cells, a 3D culture technique

In vivo

Animal models = the induced cancer
development n lab animals

Xenografts = a graft of cancer sample
mmplanted to an animal recipient



In silico
Mathematical modeling = the abstract
mathematical translation of a biological
process
Cancer predictive algorithms = computational
modeling of the complex cancer growth
progress
Simulations = the outcome of a mathematical
model that represents a biological process or
set of processes
Cellular automata (CA) = discrete cell-based
models of tumor growth
Continuous modeling = simulation of the sub-
cellular ~ components  diffusion  using
continuous variables
Hybrid discrete-continuous modeling = the
simulated integration of both gradients and
mdividual cells by the use of continuous and
discrete variables, respectively

Imaging

Light Sheet Fluorescence Microscopy
(LSFM) = fluorescence optical technique
using light-sheet to illuminate, a.k.a. Selective
Plane Illumination Microscopy (SPIM)
Optical Microscopy = the use of visible light to
allow a magnified view of objects

Glossary |13

Confocal Microscopy = fluorescence optical
technique using a focused laser beam to create
a scanning point of light to illuminate
Fluorescence Molecular Tomography (FMT)
= volumetric 1maging technique that accounts
for the diffusive propagation of photons n
tissue

Fluorescence Stereomicroscope (FSM) =
fluorescent dissecting microscope

Magnetic Resonance Imaging (MRI) =
biomedical 1imaging technique of both
anatomical and physiological markers
Fluorophores = chemical compounds that re-
emit photons most usually of longer
wavelength upon excitation

Probes = fluorescent physiologic markers
Image analysis = refers to several digital image
processing techniques

Imaging cancer pathophysiology = mn situ
characterization of cancer-related processes

Drug screening

Preclinical drug screening = non-clinical or
experimental testing  of  therapeutic
compounds toxicity

Theranostics = the use of specific-targeted

diagnostic tests for patient-centered care
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Thesis preface

The work included mn this PhD study was part of a larger multidisciplinary project aiming at a better
understanding, characterization, and translation of Glioblastoma, the most malignant cancer of the
central nervous system. In the introductory chapter the state of the art in vitro-in vivo-in silico
Glioblastoma phenocopying methods are described. Within the next section, the heterogenic nature
of the Glioblastoma 1s shown and the primary or secondary Glioblastoma cell Iines used are
described in means of the parental, the engrafted, and the established Glioblastoma cells. In the
following chapter, the Glioblastoma growth progress 1s examined both mn vitro and i silico. The
mathematical model used in this study is parametrized and mitialized accordingly. Regarding the
mvestigation over the invasive Glioblastoma nature, a cohesive Glioblastoma invasive pattern 1is
presented in the fourth chapter, not observed before, when comparing primary and secondary
Glioblastoma spheroids cultured in an ECM-like substrate. In the fifth chapter, the drug sensitivity
of Glioblastoma cells in Doxorubicin and Temozolomide 1s observed and further correlated to
necrosis-induced mechanisms and/or cell cycle arrest. Given the above, an unconventional
therapeutic scheme 1s discussed combining Temozolomide and Doxorubicin for small Glioblastoma
tumors and a possible way of computationally modeling this hypothesis 1s presented. In the overall
conclusions section the main findings of this thesis are summarized and future perspectives are given.
A report of the research accomplishments during the PhD 1s also provided, along with the relevant
published studies. Finally, in the APPENDIX section, preliminary results on the subject of
Glioblastoma necrosis are shown.

Overall, throughout this PhD work,

= A total of 22 patients were sampled; 13 of them were male and 9 of them were female. 20
out of 22 were histopathologically diagnosed with Glioblastoma.

= A total of 47 xenografts were generated; 6 of them were intracranially engrafted and 41
animals were subcutaneously injected either as a part of serial passaging or not.

= A total of 4 primary cell cultures were established; 3 of them were physiologically
characterized.
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Thesis Impact

Overall, the PhD contribution can be summarized as:

1.

[

6.

We introduced a new protocol regarding the primary Glioblastoma cell cultures. There have
been many protocols described in the literature regarding the lab treatment of the primary
Glioblastoma cells, but none of them 1is yet universally accepted.

We generated 3D hanging drop cell cultures for both primary and secondary Glioblastoma
cell cultures i various growth media for monitoring tumor evolution, as well as for drug
screening.

We established the technical expertise to prepare orthotopic xenografts in the facilities of
the Institute.

We optimized the LSFM-confocal imaging protocols. Such a step is proven crucial in order
to better monitor spatio-temporarily the Glioblastoma progress.

We experimented with the FMT, a promising preclinical imaging modality in order to
monitor Glioblastoma growth evolution 2 vivo. We observed that the FMT tomographic
algorithm that produces the 3D tumor reconstruction was inadequate for observing the GB
pathophysiology.

Glioblastoma pathophysiology/pathobiology was assessed n vitro regarding growth, invasion
and response to treatment. New experimental findings were observed in all three
Glioblastoma hallmarks tested. Specifically: 1) through an i vitro/in silico study focusing on
proliferation, we demonstrated that the mtra-tumoral heterogeneity together with the overall
proliferation reflected in both the proliferation rate and the mechanical cell contact inhibition,
can sufficiently predict the in vitro evolution of different Glioblastoma cell lines, 1) the
primary Glioblastoma spheroids adopt a novel, cohesive mvasive pattern mimicking
perivascular invasion in the brain, not reported before mn vitro for Glioblastoma, and 11) in
pre-chinical drug screening, we tested m vitro (2D and 3D) two widely known drugs,
Temozolomide and Doxorubicin. We used LSFM 1maging to visualize the drug penetration
and the cell death and we found extensive necrosis on Doxorubicin-treated spheroids relative
to Temozolomide-treated spheroids.

We constructed a hybrid, discrete-continuous computational model based on the biological
question and the potential biological mechanisms mvolved so as to account for the critical
Glioblastoma hallmarks needed per application. We then properly mitialized, parametrized
and validated the computational model according to the data derived from our biological
experiments. The ability of both validating the model’s outcome, as well as guiding the
biological experiments as indicated by the computational results was also supported.

An in vitro drug-screening method was proposed that 1s able to efficiently integrate the
compounds’ testing in 2D and 3D and to further LSFM-image the drug-induced cell death.
This way, not only the effect of the compounds under study in the cells 1s observed, but also

the physiology-related mechanism of action 1s also considered.
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9. From the beginning, we hypothesized that the Glioblastoma heterogenic nature can be better
described by the additional use of primary cell lines in parallel to secondary cell lines. The
results of the experiments conducted are mn favor of this hypothesis showing considerably
different proliferative, invasive and death patterns, as well as drug responsiveness.
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1. Background

This chapter summarizes all the basic mn vitro, in vivo and in silico models used in GB research
and argues in favor of a fused avatar model that combines them all. A brief overview of the key

objectives related to the Thesis 1s given.

In 1926, the term ‘spongioblastoma multiforme’ was firstly introduced by P. Bailey and H. Cushing
[1] and also, a couple of years later, by L. Davis [2] in a seminal effort to classify brain neoplasms.
Etymologically, the term ‘spongioblastoma’ was mspired from the morphology of the cells identified
within the samples and the considerable developmental origin of growth. The term ‘multiforme’
referred to their polymorphous appearance. More specifically however, the most malignant and
aggressive form of all was ‘glioblastoma (GB) multiforme’, most frequently observed among all their

cases.

Nowadays, the term ‘multiforme’ is considered redundant, and GB 1s attributed to half of the
primary intra-axial tumors. According to the revised World Health Organization (WHO)
classification [3, 4], GB 1s a Grade IV astrocytoma, a glioma arising most usually from (astro-) ghal
cells and their precursors [5], representing the ~ 209% of all primary intracranial tumors. Penetration
mto brain parenchyma differentiates GB from malignant meningioma, whilst necrosis 1s the main
macroscopic difference of GB from WHO grade III anaplastic astrocytoma. GB 1s considered to
be an end-stage disease [6].

Most GB symptoms are considered non-specific. The impairments and deficits that a brain tumor
1s responsible for may be ascribed to the location of its first appearance. They later consohidate and
deteriorate as the tumor develops. GB lesions are generally reported to the hemispheric white matter
tracts and symptoms are determined according to the structures and tissues affected varying between
silent progress to severe functional fluctuations.

Prognosis and Treatment

The estimated prognosis for the GB 1s grim due to the high propensity, almost inevitable, for tumor
recurrence and the duration of survival without treatment 1s estimated to be 4-7 months whereas a
median survival of 12 to 15 months is expected following resection and/or adjuvant treatments, whilst
a b or 10 year survival estimated for the 3 and 1% of patients diagnosed with GB, respectively [7, 8].
Disease first therapeutic management 1s maximal safe resection followed by routine chemotherapy,
most commonly with temozolomide [9], and usually anti-anglogenic treatment as maintenance
therapy [10-12]. Second-line approaches are radiotherapy and immunotherapy [13], whilst there 1s
no monotherapy applied. Additively to treatment resistance 1s the mevitable suboptimal tumor

debulking in such a sensitive organ as the brain, further elminating the chance for good prognosis.
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Hallmarks

The clinically observable GB hallmarks are mvasiveness dominating against surrounding normal
brain tissue, excessive and convulsive proliferation [14] and intricate vascularization underpinned
from both pre-existing brain vessels recruitment and newly-generated angiogenic ones [14-16]. Those
features mostly recapitulate its pathophysiology [17]. The final diagnostic criteria of GB, given by
WHO description, are microvascular hyperplasia, cellular proliferation, nuclear atypia, architectural
disruption (microcysts), (pseudopalisading) necrosis and peritumoral edema [6, 7, 18] identified
using differential diagnosis of both histopathological examination of biopsy material and 1image-
guided verification. It has to be noted that the proper tissue sampling during biopsy 1s of high
mmportance [19, 20], since the phenomenon of co-existing grade markers and intra-tumoral spatial
heterogeneity in the same region is highly probable and able to mislead treatment strategy.

Facts & Theories

The pathophysiology of GB together with its imited therapeutic potential clarifies the reasons why
the probability of tumor relapsing after (gross) removal is very high. There 1s no efficient way to
completely remove the tumor because of the tentacle-like infiltration of the surrounding parenchyma,
mostly known as the peritumoral infiltrative edema [21, 22]. In other words, GB cells migrate away
from the mam tumor bulk following normal brain neural tracts and vessels [23], even forming
daughter masses the so called secondary structures of Scherer [24]. The invasion to the brain stroma
1s most usually occurred in response to paracrine chemotactic gradients and haptotactic interaction
with extracellular matrix (ECM) which, along with the heterogenic nature, lead to mability of overall
healing. Common drug delivery agents, irrespective of their efficiency, fail to access the tumor
regional targets because of the blood brain barrier (BBB) existence in normal maternal vessels [12],
while the peritumoral edema and the dysfunctional vessel network within the tumor nsufficiently
supply the tumor with nutrients, oxygen and drugs increasing aggressiveness and resistance. The lack
of common consensus in imaging criteria (e.g. Response Assessment in Neuro-Oncology - RANO
[25], Response Evaluation Criteria In Solid Tumors - RECIST [26], etc.) and the general
difficulties for evaluating and closely monitoring (pseudo-) progression also comprise a major
problem in overall progression [27].

Secondary GB extracranial metastases, though rare, usually situate in visceral organs [28]. As a matter
of fact, the theory of cancer circulating cells (C'TCs) 1s supported also for GB cases [27, 29, 30].
However, although GB migrating cells locally invade brain parenchyma en masse or as single cells
[31], and whether or not invading vasculature, they rarely establish successful micrometastases [29].

Existing theories converge on the 1dea that intratumoral heterogeneity 1s established and maintained
i early stages of the disease [20].Either referring to extracranial colonization or multifocal and
recurrent GB, the current most conventional and dominant hypothesis 1s in favor of cancer stem
cells (CSCs). CSCs enable self-renewal, are mmmortalized and maintain proliferative capacity
exhibiting plasticity [32, 33]. Worth noted, therapy resistance 1is attributed both to mability to
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overpass the BBB and failure to effectively target the CSCs [34]. CSCs are also characterized by
tumor-initiating abilities that can also be seen in those cells that exhibit spheroidal structure
generation 1 3D cultures m vitro or tumor mass formation when engrafted i vivo under lab
conditions [35]; also heterogeneous due to epigenetic transformations after seeding. Alternative
theories on the origin, establishment and expansion of GB pathogenesis refer to neuroectodermal
derivation [36], neural stem cell migration and differentiation failures during brain neurogenesis [37-
40] and other (micro-)environmental causes [41].

All these facts and theories conclude that it 1s of great importance to faithfully represent in controlled
conditions the patient’s disease individually i order to promote precise therapeutic potential.
Moreover, there are many peculiarities of GB physiology regarding proliferation and cell death
patterns, Invasion, genotypic and phenotypic heterogeneity, neovascularization, as well as
microenvironment complexity when compared to other malignancies requiring improved preclinical
models capable of recapitulating this complexity. Thus, it 1s evident why GB research remains an
open challenge demanding systemic and multidisciplinary efforts. Current experimental approaches
i the direction of predictive preclinical modeling together with their advantages, lmitations and
their potential applications are discussed below serving as a summarized overview of the current state
of GB understanding and modeling approaches.

1.1 Phenocopying GB: approaches, advantages, limitations

Phenocopying GB, or generally any type of human cancer, provides meaningful feedback of its
pathobiology/pathophysiology when carefully organizing experimental procedures by means of both
basic/prechinical and translational research are conducted. GB involves processes at multiple scales
from sub-cellular to cellular and further to tissue level that interact with each other spatiotemporarily
to produce the complexity we observe. No matter the nature of the GB model under study, the
essential features needed to be met are to adequately reflect GB spatiotemporal pathophysiology, to
ensure heterogeneity and emerging capabilities, as well as to enable reproducibility and stability
adding prognostic value. Currently, three possible and complementary approximations (Table 1)
have emerged on the subject of phenocopying GB trends, each having advantages and lmitations:

1) 1n vitro cell culturing either by using cell lines or by establishing one in the laboratory
using patient-derived human cells

11) 1n vivo generated animal models to further recapitulate GB conditions

111) 1n silico designed predictive algorithms which enable GB progression predictions at
micro-, meso- and/or macro- scopical level, while systematically integrating
experimental and/or clinical data to aid in hypothesis testing and scientific
understanding.

Table 1 summarizes the different inn vitro, i vivo and in silico models depicting the currently most

representative approaches and their respective level of physiology. It has to be clarified that the
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macro-, meso- and micro-scopic scales are defined according to tissue/organ, cellular and
subcellular/molecular interactions, respectively. In the following sections each approach 1s analyzed.

Tables 2-4 summarize the key points of the different types of models, as well as their origins. Relevant
examples are also given per model. The preclinical value of each model 1s also discussed regarding
both user-centered parameters and the level of compliance with the actual GB pathophysiology.
More specifically, the models are compared based on their experimental convenience,
reproducibility, controllability and feasibility, as well as their cost-effectiveness trade-off, their level
of physiology and their potency to differentiate. In addition, their potential to be used for biomarker
1dentification, their predictive power regarding the actual GB pathophysiology and their translational
power are also discussed and depicted in Tables 2-4.

The challenge for better prognosis and efficient personalized treatment 1s to properly integrate all
the available information so as to identify molecular alterations present in GB samples, reveal the
mtense GB heterogeneity, reconstruct, as accurately as possible, the complex network of iteractions
of cells that mnfluence their dynamic behavior and functional role and account for the complex
mteractions of GB cells with their microenvironment. These multi-scale processes do not operate
idependently but communicate with each other. In order to cope with the massive amount of data
that need to be analyzed and synthesized at genetic, epigenetic, metabolic and phenotypic level,
mathematical and computational methods are inevitably required. Thus, GB research appears to
additionally get the interest of computational fields of research such as biomformatics and systems
biology. On top of that, multi-scale, mathematical models that take to account feedbacks between
the intracellular dynamics, cellular processes and interactions with the local microenvironment are
also highly important.

Table 1. Categorizing GB types of phenocopying models.

Type of study Type of model Scaling
. 2D or 3D micro-
1n vilro .
lab on a chip meso-
carcinogen-induced
.. : meso-
1n vivo transgenic
macro-
allografts / xenografts
: . micro-
in silico cellular automata/continuous/hybrid eSO
o PBPKs :
macro-

It can be considered that phenocopying GB in the microscopic level 1s not directly reflected to the
GB physiologic parameters and the biological tumor ontology. However, none ideal GB model can
be designed 1if critical signaling pathways and microenvironmental constituents mvolved are not

mvestigated [42, 43]. Especially regarding the (sub-) cellular/molecular metabolic features, to recent
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venerable relevant studies [44-46] would rather be referred that further emphasize on research
techniques and mechanisms of action. The genetic and proteomic microarrays of GB cells appear
to additionally get the interest of computational fields of research such as bioinformatics.

1.1.1 Cell cultures

Especially for the biological experiments, the minimum requested parameters to phenocopy GB are
genetic, epigenetic and phenotypic characteristics that facilitate the growth and death rate monitoring,
the mnvasive capacity tracking and the regulation of the nutrients-waste equilibrium; correlated to
either trophic gradients or vasculature [5, 47]. All in vitro studies enable the high potential of
reproducibility between experiments because of the controllable customized lab conditions, as well
as the emphasis on a single or few desired features [48]. This way, they provide valuable information
about several aspects of GB pathophysiology and pathobiology. However, desired homology to the
complex GB clinical nature 1s not possible since cell culturing offers information in only the micro-
and meso-scopic level (Figure 1) and fails to replicate the anatomical, functional and
microenvironmental brain and brain tumor conditions [49-51].
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Table 2. Summary of in vitro GB models. An example of 2D and 3D cell culture is given (brightfield
images). Scalebars are set to 100pm. The last image was adopted from [52] referring to a LOC
model of sub-cellular resolution in GB invasion microfluidics. The arguments of the evaluation of
each model vary between “-“, referring to a zero contribution, and “+”, “++” and “+++” to
discriminate the level of compliance.

Thrombotic

channel
Perfused

channel

Currently, cancer research and pharmaceutical industry focus on the development of more advanced
cell culture models capable of better describing the nteractions between cancer cells and the
complex microenvironment. By cell culturing, either in 2D or in 3D, the vast majority of GB
hallmarks may be artificially produced. For example, as described in [53], a physiologic feature such
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as vascular mimicry; one of the most characteristic GB mechanisms of neo-vascularization followed
by GB cells and not endothehal ones, 1s resembled using an assay which enables tube formation.
However, even when multicellular spheroid-formed [54], cultures do not replicate in detail tumor’s
characteristic structure and complex physiology [55]. On the other hand, lab-on-a-chip (LOC) as
depicted in Table 1 refers to a rather alternative 3D in vitro integrated micro-physiological trial which
enables wet lab-scale experimentation carried out in reduced-size automated circuit [56]. LOC
mnovative technology 1s common to cancer research, and especially GB [52], since the resemblance
to mn vivo physiology 1s remarkable, the conditions tested are controllable and the biomimetic
screening 1s efficient and selective [57] leading cell culturing deeper than aggregation [58]. In the
following, description of the most widely used 2 vitro GB models 1s given. Table 2 summarizes the
main features of the in vitro models and presents their main advantages and disadvantages.

Conventional 2D monolayer cell cultures growing in substrates and incubation conditions that
closely resemble cells’ natural environment have shown considerable habilities for drug evaluation
of the inn vivo response, although they have played an important role in drug discovery, development
and understanding in the past. Despite the simplicity and cost-effectiveness of culturing cells as
monolayers, there 1s no nutrient or waste, signal or drug gradient formed 1n their microenvironment
and cells grow flat-embedded which has nothing to do with the multidimensional tissue structures
reflecting the abnormal physiology of a solid tumor [47]. On the contrary, the tissue-inspired 3D cell
cultures are more beneficial regarding a variety of characteristics and are supposed to be a bridge
over in vitro and 1 vivo research [47, 59]. It has to be noted though that not all cell cultures maintain
the ability to aggregate; a factor strongly depending by the growth medium whether chemically
defined and/or serum free or supplemented [5, 60-62]. In general, all 3D techniques share the
common principles of overcoming the cell’s itrinsic characteristic of attaching to a surface and
enhancing cell-to-cell adhesion. More specifically, 3D tumors develop as avascular tumor masses
that allow non-uniform exposure to nutrients and oxygen, generating subregional heterogeneity and
alternative cell-to-cell and cell-to-matrix interactions. 3D cell cultures also display gradient
distribution in exposure to drug molecules when treated, which makes the drug response more
realistic. Additionally, gene expression typically varies among the cells depended on their localization
i the tumor mass, which facilitates the maintenance and study of the various molecularly and
phenotypically different clones that co-exist in tumor cell lines.

Arguably regarding drug screening, 3D cultures shall serve as preliminary animal testing in the same
way that preclinical studies precede phase trials to humans. In an attempt to explain differential drug
response in 3D drug screening, as it 1s known, cellular genetic content dictates its phenotype,
however, cells growing in 3D recapitulate ECM and stromal interactions leading to phenotypically
distinct behaviors. Thus, introducing mstability in the 3D experimentation makes reproducibility
and consistency questionable and along with the anatomical and diffusive constrains different results

appear regarding drug penetration and efficacy [63].
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A more optimal and neurocentric cell cultural condition that preserves the sub-anatomical brain
structure 1s the organotypic ex vivo implantation of GB cells in the form of cell aggregates within
brain slices [49, 64]. Though closer to brain physiology than artificial microenvironments, more
adaptive and much easier to handle, yet the need for exogenous trophic factors supply to maintain
stability for a short period of time positions this technique in between the mn vitro and the in vivo

experimentation [65].

There are plenty of established GB cell lines reported i bibliography, assigned to the vast majority
of GB molecular subtypes [4, 66, 67]. Depending on the type of the experiment in progress the
researcher has to decide the most suitable one. For example, the US7MG cells comprise an
established GB cell line derived from a patient diagnosed with glioma WHO grade IV (aka GB)
[68]. This cell line 1s one of the most known and well-characterized since it 1s in lab use for many
years. Moreover, their full-genome analysis exists. US87MG is used both to be further analyzed and
as a control line. However, thorough genetical and phenotypical description of this particular cell
line; or any other cell line under consideration, no matter its human origin, declares the high potency
of alterations through years and between the different research groups [69]. In other words, these
cells, even 1f deeply frozen in low passages, are over 4 years old, a fact that determines a controversy
whether they are still the same cells maintaining all the heterogeneities and dormancies or have been
transformed to a partially homogeneous population, especially when taking into account their
mtrinsic aberrant genome profile [70]. Interestingly, genetic drifts and cultural shifts even in a single
lab scale make evident the need for regular cell line authentication that 1s now widely recognized and
required by a number of journals [69]. On the other hand, no matter the level of modification,
because of their widespread use among researchers U87MG along with the U251 and the T98G

stand for control cell lines in order to maintain relevance between GB studies [5].

The demand for better translational models that more precisely recapitulate the genetic and
phenotypic heterogeneity of the original tumor and could better approximate the therapeutic efficacy
has led researchers to the use of patient-derived GB cells. As stated in [71], engrafted cell lines
originated by malignant gliomas fail to have clinical relevance in therapeutic outcome prediction, as
m the case of mn vitro drug screening. This 1s the reason why the idea of using patient-derived GB
cells in order to assess GB 1n an individualized way is getting more and more interest nowadays [72].
Biological material 1s sampled directly from brain tissue lesions during biopsy or maximal safe
partial/gross resection. Retrospectively, it has been shown that the more gross the resection the better
the prognosis since the 1solated infiltrative GB cells that are not removed will eventually cause tumor
relapse [73]. The vast majority of the research protocols regarding patient involvement criteria refer
to candidates with GB symptomatology usually naive from treatment since most of the therapeutic
schemes have a strong impact on cancer cell biology [14, 74]. The tissue particles sampled, with
regional or not criteria [20], are processed in lab conditions for the establishment of patient-specific
short-term GB cell cultures. Less than 5% of the total mitial tumor mass [30, 35] preserves the
mtrinsic ability of multi-potent proliferating and subsequent aggregation into ellipsoid structures
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when cultured in non-adherent substrate. The CSCs are a subset of those cells capable to initiate a
tumor mass [38], thus they are also able to develop into xenografts when engrafted either in the same
or in a different organ/tissue of origin, overpassing host’s incongruous conditions [30]. The initial in2
vivo location of CSCs’ niche 1s speculated to be related to hypoxia, the bulk of the tumor mass. The
constant secretion of factors evoked by low-oxygen concentration enables the undifferentiation of
CSCs within hypoxic regions along with their tendency towards blood vessels chemotaxis [35, 75]. It
has to be also noted that there are controversies regarding the relationship between CSCs and the
cell of origin of GB [40]. With lineage tracing within the cancer cells subpopulations of different GB
specimens examined, 1t has been revealed that not all precursor cells where present prior to

malignancy, suggesting that the cell of origin 1s deceptive regarding either the dominant clone or the
CSCs [39]. In the case of GB, these cells are called GB stem cells or GSCs [76].

It has to be noted that there have been many protocols described in the literature regarding the lab
treatment of the primary GB cells [61, 77, 78], but none of them 1s yet universally accepted. In
general, the primary cancer cells need to survive, aggregate and proliferate under the currently most
accepted chemically-defined serum-free and EGF/FGF supplemented medium [5, 60, 62, 79-81].
Serum-free or serum-containing and/or chemically-defined media are expected to promote different
phenotypical behaviors within a certain population of cancer cells and further encourage clonal
selectivity. In other words, when facing with a new, completely undescribed and of unknown
composition biopsy sample of human GB cells it 1s rather demanding to check the cells’ behavior
under different, but yet standardized, trophic conditions. It has to be noted here that right after their
violent excision of the maternal tissue, GB cells, no matter their level of adaptation, need trophic
factors and mitogens to sustain environmental shock [55]. However, this 1s the one side of the coin
since the sensitivity to external stimuli 1s eventually lost after prolonged subsequent passages of
monolayer cultures [47]. According to relevant protocols [61, 77, 78], there 1s an argument regarding
the period of time that, under a fixed setup of conditions and media, primary cells preserve the same
charactenstics with those excised from the patient and/or the ability to grow as neurospheres [60].
Additionally, spontaneous senescence, independently to cultural conditions, has been interpreted as

a major drawback of primary GB cell hne stabilization over time [82].

Epithelial-to-mesenchymal and mesenchymal-to-epithelial (EMT-MET) transition has been shown
to be mduced also by the differential presence and potency of growth factors [30]. To be more
specific, the circulatory cancer cells (CTCs) that are associated with the EMT-MET transition n vivo,
change between the two phenotypical status as a matter of the imbalance of epithelial features and
the in-activation of certain biochemical pathways of metabolism, growth and movement [27].
Hallmarks of GB cancer related to this transition include (a) the proliferation rate fluctuations, (b)
migration and invasion phenomena and (c) cell-to-cell and/or cell-to-matrix adhesion and polarity
phenomenal shifts.

In the meanwhile, in each step of the procedure of culturing the primary GB cells, histopathological

and immunohistochemical examinations must be evaluated to validate the phenotypic profile of the
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collected cells and the patient’s biopsy. Also, each sample must be deeply frozen to allow reusability
and further studies. It has been shown [79] that properly cryopreserved specimens are satisfyingly
able to maintain viability levels, genetic and phenotypic mosaicism, as well as other evoked
modifications when compared to fresh primary cell cultures. Conditional stability can be also
maintained through passaging of the primary cells when consecutively engrafted in hosts’
environment. In other words, when either orthotopically or ectopically engrafted, GB cells can be
assumed to be exposed to a stable microenvironment within the host’s stroma, but also between
different hosts of the same strain [83]. In this case, the cells preservation might be achieved through
1 vivo serial passaging in ‘living incubators’; a process described later.

micro-scopic meso-scopic macro-scopic
level level level
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predictive algorithms
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Figure 1. Current trends regarding phenocopying GB. All levels of scaling (left-right arrows), either
experimental or clinical, along with the most indicative imaging techniques (above images) are
presented. The microscopic level is mainly dedicated to (sub-) cellular and microenvironmental
features. The mesoscopic level is referred to the 3D cell cultures and ex/znn vivo implants, while the
macroscopic level is only referred to in wvivo models either of human or rodent origin. The
computational models have no lmitations regarding the level of scaling. Inclined arrows beneath
indicate tendency towards particular characteristics.
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1.1.2 Animal models

Obviously, in vitro cancer models are by far more controllable than animal ones and serve as a
substandard model [47] to state GB’s pathophysiology. However, stable experimental conditions are
of high importance since variability enhances mstability of the cancer cell population under study.
In other words, animal GB models serve as both “living incubators” for environmental stability and
as 1 vivo tumor models to recapitulate GB. When growing within the host, the conditions for the
tumor are supposedly stable under the assumption that animals of the same strain, gender, age and
welght maintain the same environment for the implanted cells when engrafted in the same region
following a standard experimental protocol. As symbolized before, cancer cells within lab animals
might be considered as growing in living incubators [47] and the effects of the applied experiment
are observed overall [71]. Many i1 vivo GB models in animals, most often rodent (especially murine)
[42, 84], have been established, as also depicted in Table 3. These include:

(1) chemically-induced (CI) models via carcinogens; mostly studying environmental causes
of mutagenesis mn a realistic brain microenvironment, whilst relative not corresponding to GB
phenotypically and declaring a rather incidental reproducibility [5, 71],

(2) genetically-engineered models based on driver, glioma-related, genetic modifications
(GEM) [33]. They examine the role of specific 1solated pathways, avoiding the interference of
irrelevant (or not) alterations [85]. They also allow an immune response and the BBB constrained
drug disposition [5]. Nevertheless, they are imited regarding GB heterogeneity and predicting drug
response [86] and they fail to be controlled or reliably reproduced [5, 71, 87], and

(8) transplants, which may be:

a. allografts, or syngeneic models (SM), where the donor and the recipient are of the
same nbred immunocompetent lineage so as the transplant not to be rejected and progress
to a native environment suitable for immunotherapy assessment, but the tissue 1s of murine

glioma cell lines [5] or not of human origin [88], or

b. patient-derived xenografts (PDX or xenolines [89]), either orthotopic (PDOX) or
ectopic, referring to immunodeficient (or not, [87, 90]) animals engrafted with human
material of primary or secondary cell lines to mimic the parental tumor in means of both
macroscopic and microscopic characteristics and mechanisms [71, 91]. Nevertheless, the
tumor stroma 1s murine; alternatively, even though the transplant i1s of human origin, it
spreads in a non-donor’s cellular scaffold with non-human factors being present [86, 92].

Animal models serve mostly as macroscopic translational platforms to test therapy efficacy and GB
progression. They necessitate advanced imaging techniques of high resolution capable of monitoring
physiological and molecular GB processes. Another important aspect of amimal usage n
experimentation relates to bioethical issues arising by a general scientific disposition of eventually
eliminating the number of lab animals. However, in order to focus on critical GB hallmarks of any
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physiological level, it 1s inevitable to use animals. Interestingly, not only the animal model, but also
the region of the lesion are of major importance. Followingly, one of the most unlimited and
prevalent, yet of multiple variability, animal modeling technique is discussed; transplants.

A diagnosed GB clinical case can be image-reported, usually accidently, in full conformation, which
means that any attempt of description is arbitrary and limited to the present and future time points.
Additionally, the chance to find an untreated case of GB post-operationally prior to recurrence is
limited. Also, most of the techniques available to scan and evaluate the progress of the neoplasm are
1mmaging modalities mostly applied to a macroscopic level of description. Either 12 vitro or mn vivo,
human cancer surrogate “avatars” substitute the parental GB tumor and experimentally monitor the
pathophysiology of the disease from the very first moment, displaying as many real GB characteristics
as possible with no additional hassle for the patient. Local stability regarding conditions is attained
when xenografting animals with the fresh or pre-cultured human tumor tissue sample. Also, the
steady and constant supply of nutrients, growth factors and oxygen 1s established. However, the
region of engraftment determines the final set of surrounding environmental parameters, which are
of great importance for the development and progress of the implant.

The engrafted GB cells within the host have three potentials:

1. mability to form a tumor,

2. form a tumor mass delineated within the host’s tissue, and

3. form a focal tumor which infiltrates the surrounding environment and penetrates towards
periphery [14].

Tissue biopsies from aggressive GB clinical cases exhibit a more mvasive xenograft phenotype, which
is sufficiently correlated with worse survival likelihood [14]. Surrounding microenvironment has
mdeed a very essential contribution to the tumor establishment within the host. Either of primary or
of secondary origin the seeded cells, there have been reported differences regarding the occurrence
of the disease in mouse models when ortho- or trans- injected [14, 61, 92].
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Table 3. Summary of in vivo GB models. Examples are given per method. The upper image is a
fluorescent image of GFP-expressing subcutaneously engrafted primary GB cells overlaid to the
host’s color image. The image below was adapted from [93] referring to a comparative fluorescence
cryosection image on the host’s brain color image of iRFP-expressing GB cells. The arguments of

« ¢«

the evaluation of each model vary between “-“, referring to a zero contribution, and “+”, “++” and
“+++” to discriminate the level of compliance.




Background |29

In general, a complex neoplasm-host cellular nterplay 1s established when an implant 1s
stereotactically and orthotopically engrafted into a mouse. Some of the host’s components that
support this front, as reported in [71], are:

1. the anatomical barriers; an organ has cytoarchitecture
2. the ECM molecules

3. the cytokines and growth factors

4. the cellular determinants, such as endothelial cells

5. the tissue-specific progenitor cells, and

6. the immune cells; (not directly) within brain.

To be more specific, unlike subcutaneous engraftment, when GB cells are orthotopically implanted
i the brain (as illustrated in the mouse brain section in Figure 1), the mouse molecular neuronal
background regarding growth factors, cytokines etc. 1s altered. Within the bramn, perineuronal
satellitosis in means of glioma cells allocating juxtacellularly to neuronal bodies is achieved [39].
Obwiously, transferring cells to the organ of origin is more natural than heterotopic engraftment [87].
Another crucial GB hallmark, infiltrativeness within the host brain parenchyma is lost in heterotopic
engraftment [14]. However, mouse brain lacks homology to the human brain [47] and this is the
main reason why xenografts can well-approximate, but are also discrete from the clinical cases. More
importantly, the severe combined immunodeficiency of the host in order to accept the implant 1s
most often unavoidable [87] [61, 71]. Clearly, independently of the region of the engraftment the
mmmune response detected 1s remarkably eliminated on the contrary to the tumor of origin.
Especially when referring to preclinical drug screening studies, the absensce of the BBB in
subcutaneously engrafted tumors further rebates the rehability of the animal brain tumor model [87].
With regard to animal GB models other than rodents, Drosophila models though more descriptive
when tracking early oncogenic and metastatic events, they lack both immune and neo-angiogenic
responses [94].

The time from the primary cells ijection to the onset of neurological deficits following stereotactic
brain engraftment in PDOXs varies between two to eleven months between different studies [61,
95], usually approaching the life span of the lab animal. It has to be noted that ime-efficiency can
be promoted through flank-injection of secondary GB cell lines [96]. However, these models are
less close to the successful generation of a GB PDOX [88]. On the other hand, many researchers
recommend the procedural heterotopic transplantation passaging through “living incubators” to
promote cell stability to primary cell cultures prior to forming a PDOX [5, 91]. However, since clone
selection pressure processes propagate evolutionary dissimilarities between patient GB and the serial
PDXs, the direct formation of PDOXSs can be considered harder to succeed yet closer to the primary

tumor of origin [91].
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1.1.3 Mathematical modeling

It becomes evident that biological experiments in all levels of complexity are highly important aiding
our understanding of GB pathology and potential therapy efficacy. Yet, they are highly demanding
and time-consuming in a way that becomes impossible to test the effect of every single potential
variable on GB evolution. On top of that, because of the multifaceted processes involved and the
variable methods used, they produce a vast amount of data that need a systematic organization and
mterpretation that can be given by the formal language of mathematics. As the involved biological
processes are complex and interrelated, the great research challenge 1s to appropriately incorporate
them nto a complete, mathematical description, utilizing the available knowledge and data to better
understand and predict how tumors evolve, directing conditions and verifying hypotheses which
cannot be easily tested i the laboratory.

In general, mathematical and computational (a.k.a. mn sifico) modeling unfold into two broad and
complementary directions: (1) statistical models, aiming towards the identification of disease-
associated and disease-driving alterations where molecular signatures, regulatory pathways and
mechanisms related to targeted disease phenotypes are searched through analyzing a vast amount of
data including imaging data from diverse imaging modalities, OMICS and existing information and
knowledge; and (1) mechanistic, first-principle-based models, aiming at describing and
understanding the principles underlying tumor evolution by taking into account the hallmarks of

cancer, the tumor microenvironment and their complex interactions.

First-principle-based mathematical and computational models are widely used to describe the
complex evolution of tumors as they can manage the multiscale nature of the biological processes
mvolved, integrate the information from multiple biological experiments [97, 98] and/or clinical
examinations [99-102]. Furthermore, the models predict behaviors of the system that can guide new
targeted experiments [89, 103]. Numerous mathematical models have been also proposed to
describe glioma progression [98, 104-107] including critical aspects of tumor evolution such as inter-
and mntra-tumor heterogeneity [108-110], molecular signaling and metabolism [44, 111], cell-to-cell
and cell-to-matrix adhesion [105, 107, 112-115], remodeling of the extracellular space [116, 117],
irregular anglogenesis [105, 118-120] and evolutionary dynamics [80, 121], as well as treatment
outcomes [101, 122, 123] and others. As it i1s denoted in Figure 2, in silico brain tumor predictive
algorithms enable GB simulation with an adjustable scaling of the available data of reference where
experiments are carried out computationally. It becomes evident that given the complex
complementary biological interactions, the mathematical approaches are necessary to faithfully
integrate them in a competent time period. By definition, 2 silico models lack any experimental
error, are cheap, accurate, non-interversional and, generally, imesaving as they can provide a rapid
means to systematically test the influence of individual and multiple cellular components under a
spectrum of environmental conditions. In other words, critical GB physiological hallmarks are
thought to be translated into their computational counterparts enabling tumor progress prediction.
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Yet, though patient-oriented, most 12 silico models proposed are either theoretical or generic, lacking
proper, patient-specific parametrization as they require data which are impossible to collect at the
required spatial and temporal scale. These models are most often parameterized integrating pre-
existing data reported in the literature derived from different research groups not following the same
procedures that may not reflect any real tumor type. Thus, they usually fail to be close to reality due
to arbitrary parametrization and lack of ground truth validation [19, 98, 99, 121, 124]. The
identification of a plausible mechanistic model and its proper parameterization able to quantitatively
explain a large set of data that were not used to calibrate the model and predict the
clinical/experimental outcome remains a demanding challenge although recent efforts drive research
focus towards this direction [100].
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Figure 2. Discrimination of multiscale computational models. Simulated examples are given per
scale, while the relevant spatiotemporal ranges are denoted. Metabolic and structural components
are less than few nanometers big, the average human cell size is approximately twenty microns in
diameter, whilst no submillimeter tumor is detectable by conventional imaging. Equilibration of
metabolite concentrations ranges between milliseconds to tens of seconds. Time scale of genetic
regulation takes minutes and time constants associated with cell growth range between hours to days.

Such models enable the exploration of multiple hypotheses that allow a better understanding of
tumor evolution and its complex components, which cannot be easily tested in the laboratory. There
1s a debate whether mathematical modeling introduces subjective causality and whether the observed
results are emergent phenomena. Nevertheless, an intrinsic implementation characteristic of such
models 1s doubtably correlated to their proposed applications in representing an experiment while
optimizing the relevant parameters and/or predicting the progress of a data-driven initialization.

Computational models may be of any scale. Multiscaled computational models deal with many scales.
As depicted m Table 4, several mathematical approaches have been proposed to describe the
complex, multiscale spatiotemporal tumor evolution. Among them, continuous or analytical
mathematical models are commonly used to describe tumors at tissue level focusing more on the
collective, averaged behavior of tumor cells. Continuous modeling is usually mathematically simpler
using time-dependent growth laws (exponential or logistic) and more clinically relevant [125]. The
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continuum methods approximate tumor cells and their microenvironment as continuous variables
described by reaction-diffusion type of equations or continuous mechanical models. It has been
recognized that both biochemical and biomechanical forces affect brain tumor dynamics, therapy
delivery and response and thus, they should be taken into account combined to increase predictive
power and clinical impact. Reaction-diffusion models are mathematically described as a system of
nonlinear partial differential equations (PDEs) able to be numerically solved, and often used to
spatiotemporally describe cell reactions in means of proliferation and changing transition states and
cell diffusion in means of migration. Computational models can simulate in 2D or 3D and are able
to be applied in any dataset and there are recent references reviewing all types of modeling GB
progress and relevant applications [107, 125, 126]. However, on the case of GB therapy
computational modeling there are contradictory opinions regarding their possible feasibility [127] or

not prior to clinical implementation [126].

On the other hand, individual-cell-based models using discrete and hybrid discrete-continuous
mathematics can describe the behavior of each cancer cell individually bridging the scaling gap with
its behavior within the tumor microenvironment [128]. Individual-cell-based models can incorporate
various phenotypes, describe the behavior of each cancer cell individually as it mnteracts with its
microenvironment and account for stochasticity in the cellular events. These models are in general

more suitable to describe in vitro experiments and small-sized tumors.

A common example of discrete modeling 1s the cellular automaton (CA) which is a dynamic rule-
based model where time, space and cell states are discredited. CAs can describe macroscopy, yet
based on predominantly microscopic parameters. In CA models, each tumour cell operates
mdividually (i.e. grows, divides, moves and dies) and interacts locally with other neighboring cells
following a set of biologically-inspired rules. As mentioned before, CA models have been also
extended to hybrid HDC models in an attempt to additionally designate the interactions between
cells and the microenvironment. These models integrate data from both experimental and/or clinical
sources and have been widely used to describe critical aspects of tumour evolution and nvasion
mcluding genotype to phenotype relations [129], inter- and intra-tumoral heterogeneity [104, 113],
the effect of autocrine/paracrine signaling on cell proliferation and motility [129, 130], cell-to-cell
and cell-to-matrix adhesion [104, 112, 114, 131, 132], phenotypic plasticity [133-135], the formation
of mvasive branches [108], evolutionary dynamics [136, 137], the interplay with the brain anatomic
features [100, 138] and the microenvironmental factors [139], as well as treatment outcomes [101,
140].

Although always existing, the popularity of big data and machine leaning approaches in healthcare
and cancer domain has been recently regained because of the high-throughput platforms, multiple
and diverse 1maging modalities, as well as fast computation and hardware development. The ability
of (advanced) machine learning algorithms to incorporate big data independently of origin or
meaning and extract key quantitative and qualitative features, while dictating important variables,

make them an important tool in mathematical oncology [141]. This way, novel across data features,
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even potential parameters, can be shown to have a direct impact on the disease progression and can
be further integrated m first-principle-based computational modeling. Furthermore, apart from
feature selection, machine learning can be helpful in the generalizability of the mechanistic
computational models in means of increasing data fitting accuracy and amplifying the predictability
of the model [142]. Instead of 1solating key factors, by using machine learning, computational GB
models can be performed in large-scale datasets and evaluate more than one variables at a ime or
combinations of them. However, as no standardized imaging or experimental protocols exist per

clinical GB case so far, the extracted features are usually of not-known clinical or biological relevance.

Another mathematical approach widely used m the drug discovery and development 1s the
physiologically-based pharmacokinetic models (PBPKs) where both preclinical and clinical results
are extrapolated into whole-body physiology of drug activity. These models assume each organ or
compartment as a complex sub-system and determine the detailled concentrations of drugs
mcorporate mechanistic understanding of the pharmacokinetic and pharmacodynamic behavior of
a drug and its metabolites. Though PBPKs more roughly estimate the tumor’s sufficient and
necessary conditions, yet the available results consider critical aspects of the organism such as the
BBB and /or renal excretion [143]. However, irrespectively of the mathematical approach, the
biological data are necessary for all the computational models parameterization and validation in
order to faithfully represent the biological processes.
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Table 4. Summary of in silico GB models. Examples are given per method. First, a discrete model
represented by a lattice of (non-)occupied cells of a cancerous region. Second, the image depicts the
reaction-diffusion model’s prediction regarding the vasculature of a simulated whole-tumor overlaid to the
respective DCE-MRI image. Followingly, a small tumor spreads as predicted by a hybrid model. The last
image refers to a PBPK whole-body model description where the tumor is represented by an additional
organ following GB physiology rules. The arguments of the evaluation of each model vary between “-,
referring to a zero contribution, and “+”, “++” and “+++” to discriminate the level of compliance. The data-
driven computational models can be compared with respect to the biological phenomenon, either clinical
or experimental, under study.
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Given the complex interactions and heterogeneity involved in GB progression, morphology and
drug resistance, predicting the outcomes of preclinical and clinical studies a prioriis difficult. It has
to be clarified that the complex brain and the brain tumor ontogeny can be dithicult presented mn a
deterministic mathematical framework. However, parameter and model decision stochasticity could
more adequately describe phenomenologically different growth pattern dynamics to mechanistically
same simulated tumors, in favor of inter-tumoral individuality and genetic and/or phenotypic
heterogeneity. Clearly, better understanding of GB pathophysiology could lead to better future
treatment for patients. In case that the computational model is theoretical and the value of the
parameters incorporated is arbitrary or averaged and not the best fit of experimental and/or clinical
data, then, although it can provide valuable msights, it lacks validation. It can be postulated that a
continuously optimized data-driven mathematical model that mcorporates the underlying
mechanisms and the involved interactions can explain the potential outcomes and provide guidelines
for optimal therapy planning, better understanding of GB pathophysiology and dictate future testable
experiments. In other words, computational simulations enable the identification of discrete factors
that are involved in both tumor growth and therapy response, as well as their spatiotemporal
evolution in differentiating conditions; something that is not an option in wet experimentation. This
way, hypotheses are tested and experiments are guided in the most cost-effective and time-efficient

ray. Ideally, a pan-cancer model would have translated all the critical biological parameters and
mtegrated them into their computational counterparts; considering individualized GB cases, but on
the other hand enabling unsupervised broaden predictions in absence of validation data.

1.2 Different perspectives in approaching GB pathophysiology

Mechanistically, all cancer procedures can be considered to hijack normal cells’” mechanisms, but
also to mismanage them from the organism’s beneficial/survival scope. In other words, cancer
pathophysiology 1s an altered version of its common components. However, mutations determine
cancer cell fate and depending on the triggered/driver alterations, they can be extrapolated to cancer
pathophysiology. Identifying and targeting therapeutically all the disease-associated mutations in
every heterogeneous GB sample would be one path of the road. The other way 1s to focus on their
phenotypic footprint, that is the way all these alterations are coordinated to produce GB
pathophysiology in various conditions. This 1s the reason why we believe that the use of primary
human cells in lab experiments will allow a better understanding of GB underlying mechanisms such
as heterogeneity, invasion and neo-vascularization. On top of that, therapy efficacy strongly depends
on all those mechanisms. The development of preclinical models where all in2 vitro, in vivo and in
stlico mformation 1s combined could more faithfully represent the individual patient’s tumor and
microenvironment towards the development of precision medicine.

Undoubtedly, the importance of advanced quantitative imaging methods and the 1dentification of
critical translational biomarkers are evident [144]. Spatial labeling data providing information with
regards to cell proliferation, cell death, cell motility, cell distribution, metabolite distribution,
microvessel distribution and components of the ECM are more than important considering the need
for reliable understanding of the biological phenomena to be mcluded within a mathematical
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description constrain. In other words, the 1maging techniques ranging from conventional and
confocal microscopy, Light Sheet Fluorescence Microscopy and OptoAcoustics, as well as micro
MRI/CT, bioluminescence and MRI/PET imaging (indicatively mentioned in Figure 1) are able to
provide dynamic spatial information of different scaling in real time [145] for the different GB
hallmarks under study.

1.2.1 Imaging techniques

Biological imaging refers to any technique used to monitor a biological experiment. For centuries,
the most useful tool of a researcher used to be the optical microscope where we traditionally used
light to magnify and investigate objects or features too small to be detected by the naked human eye.
However, since the need for not only superficial structures and phenomena observations became
evident, the different imaging techniques evolved to a wide spectrum of resolution, penetration depth,
photonics and scaling of iterest. This way, imaging techniques can be discriminated into the micro-,
meso- and macroscopic level according to the size of the sample and/or the tissue depth to be
scanned. The modality used to wvisualize the phenomena under study can vary between light,
fluorescence, radioactivity or even sound! Interestingly, apart from the anatomical iformation
depicted mn the captured digital images, another more important aspect is the physiologic status under
which the biological phenomena take place. Hence, the use of laboratory animals in any biological
application 1s closely correlated to the imaging experimental technique to be utilized. Notably, in
favor of the 3R ethical endeavors (reduction, refinement, replacement), imaging can substantially
reduce the number of animals included in a research study.

Image Processing

The substandard visual qualitative image analysis has to be replaced by robust image processing and
analysis since high-throughput experiment produce delicate quantitative imaging data. It 1s obvious
that robust 1image processing 1s accompanied by computer power and developing computational
algorithms allowing for the refined analysis of large numbers of images mn a (semi-)automated way,
rather than having a user sit at a bench and look at a screen while not excluding subjective biases.
This multdisciplinary task involves both programming specialists and empirically-driven biologists
in order to sequentially acquire the proper image, remove the background noise, segment the image
m order to 1dentify the regions of interest, filter the 1mage to model the signal intensity, register if
needed to another image and extract, or even classify, features [146]. Off course, there is no golden
rule for the mmage process to be followed per experimental protocol and/or biological application
and the certain 1maging technique used to capture the digital image has to be taken into account a
PrIOrL

Imaging Modalities

There are several imaging techniques used for the observation of the biological applications using
laboratory animals. One common classification between the imaging techniques is according to their
application into clinical practice and/or their use only for experimental purposes.
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Main Imaging Techniques in the Clinical Practice

Clinical imaging techniques are applied to both laboratory animals and human since they are invasive
up to an acceptable extent. It 1s evident though that their micro-versions have been customized for
laboratory animal scanning slightly modified from those applied to human. Followingly, three well-
known clinical imaging techniques are briefly described regarding real time live whole-body imaging
of lab animals [147].

= Computed Tomography (CT)

CT 1s the 2D or 3D reconstruction of the tomographic data produced by the differential tissue
absorption of x-rays. CT 1s considered an mvasive imaging technique because of the demands of
1onizing radiation. Though 1t can provide less detailled anatomical information, it 1s widely
commercially available because of its cost- and time-effectiveness and it 1s usually combined to
functional imaging techniques [148].

=» Magnetic Resonance Imaging (MRI)

MR imaging technique 1s based on the differential distribution of paramagnetic gadolintum (Gd)
based tracers or water protons within the body and their detection trough radiofrequency pulses
within an applied magnetic field. MRI imvolves different sequences dedicated to different physiologic
aspects; even quantification of chemical species within tissue. This way, MRI 1s not just a non-invasive
anatomical mmaging technique of high volumetric resolution, but also it can provide physiological
and functional information [147, 148].

=» Positron Emission Tomography (PET)

PET 1s a method of nuclear medicine regarding radionuclide imaging which combines both
functional and molecular imaging. In other words, PET employs positron emitters physiologic
tracers depending on the application, even radiolabeled drugs. PET machinery 1s expensive, it
provides poor spatiotemporal resolution and the need for radioactive compounds, § and y radiation,
1s unavoidable. These are the main reasons why most often PET i1s combined to hybrid imaging with
other techniques providing anatomical information [147].

Main Preclinical Imaging Techniques

Preclinical imaging techniques are developed in order either to renew older modalities or to establish
new ones. They are common among lab animal experiments and most usually customized.

= Fluorescence Molecular Tomography (FMT)

FMT 1s a form of optical imaging where fluorescent probes serve as optical reporter systems that
when externally excited at a certain wavelength they emit photons in a shifted wavelength that can be
detected through charged-coupled detector (CCD) cameras. It is considered a molecular imaging
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technique since the probes used are administrated or expressed to the lab animal according to the
target physiological biomarker [146]. The 1dea 1s to enhance the image contrast, yet light transport
through the scattering tissue 1s non-linear, thus penetration depth and resolution are suboptimal but
can be further improved by using theoretical models regarding tissue light transport and probe’s
kinetic estimates [145].

=>» Opto- or Photo- Acoustics (PA)

PA 1s a combination of optical imaging and ultrasound, where acoustic signals produced by
photothermal expansion are generated by non-ionizing pulsed laser light absorbance and detected
through an acoustic detector. In other words, PA has the accuracy of the spectroscopy and the depth
resolution of the ultrasound ranging between micro- and meso-scopic scaling and being capable of

both molecular and functional imaging with the minimum invasiveness [147].
=» Light Sheet Fluorescence Microscopy (LSFM)

Optical 1maging of tumor spheroids 1s technically challenging, since these are large and highly
scattering specimens. LSFM or Single plane illumination microscopy (SPIM) is a novel optical
microscopy technique firstly introduced to life sciences in 2004 [149] and 1s based on fluorescence
mmaging enabling laser light-sheets to illuminate the sample to be scanned in a way of avoiding
photodamage. It provides excellent optical sectioning and high contrast 1mages as opposed to
confocal microscopy with deep penetration of light into the specimen and high 1mage acquisition
speed. It combines optical sectioning, the main characteristic of confocal and two photon
microscopes, with multi-angle and multispectral imaging which are performed i optical and
fluorescence tomography. The biggest advantage of LSFM 1maging 1s that it can be applied on whole-
body live small animal molecular scanning with mimimum harm when combined to optical
projection tomography [147]. LSFM has the potential to overcome several of the challenges that
prevent high resolution imaging of live tumor spheroids.

Translational Imaging

As denoted above, an imaging discipline serves more than just monitoring the anatomical extension
of a certain target within the body. The 1dentification and parametrization of detectable biological
features mto imaging biomarkers are called translational imaging. This way, along with the anatomical,
the physiological, functional and molecular type of information 1s translated within the digital images
to provide prognostic, monitoring and predictive value. Several emerging potentials arise by

translational imaging and therefore, the techniques are just the tool to assess the hidden mnfo.

It 1s obvious that from the moment of the experimental indications of a certain feature that can
potentially be identified as a biomarker, there are many translational gaps and assumptions to be
evaluated before it can be routinely used into clinic practice. Imaging laboratory animals is for the
moment the most reliable way to test the hypothesis under study before extrapolating to the human
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[150]. In other words, translational imaging provides to the experimenter the way to bridge the Basic
Research with the Medicine and theranostic applications.

1.2.2 In vitro, in vivo, in silico

Either adherent culturing or organotypic-like spheroid formation, cell cultures, even when human-
derived, are supposed to be more suitable for rough drug screening and pre-clinically testing of
experimental active drug substances. On the other hand, phenocopying GB using animal models
enables the closest-to-maternal mimicry of the mechanisms of tumor mitiation and progression.
Though this approximation comes out with treatment options, most often, evaluation in chinic fails.
The reason for this discrepancy is because tumor models do not reflect the biological properties of
the patient’s tumor as a whole. Also, pharmacokinetics, as well as cellular heterogeneity and
physiology in animals differs from that of humans [71]. In addition, in2 vitro experiments and animal
models are highly demanding and time-consuming, while they produce an amount of data that needs
systematic interpretation and understanding to be clinically meaningful. It becomes evident that a
complementary path 1s needed to overcome those hurdles and better succeed in the fight against

GB.

As recommended by lab animal welfare societies, the most recent research trends argue against
animal experimentation, with an exception regarding Drosophila melanogaster and lower
mvertebrates, and recommend their eventual replacement by cell cultures and computational
simulations. Nevertheless, regarding cancer evolution predictability, the computational models need
to be supplied with the less arbitrary data possible. In other words, if the input data meticulously
reflect the cancer pathophysiology, the computational predictive power 1s amplified. If this is the
case, the most reasonable approach 1s by experimental procedure and by the use of translational
biomarkers to describe the cancer genetic or phenotypical features, unique for each patient.

Imaging modalities, together with other experimental techniques, provide post-process descriptive
iformation regarding the GB physiology under research, indicative of the micro-, meso- and/or the
macro-scopic level, depending on the method. It has to be noted that the final clinical occurrence
mvolved 1s a result of an interplay between all levels within the tumor mass. For example, if only
focusing on the cancer cells characteristics without taking into consideration the surrounding ECM,
the principle 1s confined to generalization. The unrecorded experience of the clinicians, even 1if not
experimentally proven, also supports this front and further provides data for the models. In other
words, the more descriptive the models’ mput needs to be, the more laboratory and clinical
specialties are required to collaborate in order to successfully parametrize and initialize GB
predictive computational models. Nevertheless, m siico modeling cannot yet serve as an
experimental, preclinical or clinical substitute.

So, after all, which 1s the right model to phenocopy GB? The question to be tackled 1s what each
model 1s able to offer while minimizing cost and time. Taken individually none of the
approximations described above efficiently enables the overall description of GB. The differences
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among the techniques are mainly attributed to their level of clinical relevance and the insight they
provide regarding the GB complexity; properties which are both important and complementary.
Alternatively, the proper choice to approximate the disease depends on what 1s more close to the
patient’s specific case. Going deeper to this claim, the ideal GB model to study GB pathophysiology
1s not necessarily the same with the one needed to assess a patient-specific approximation and vice
versa. Yet, no model is self-standing by means of feasibility and it has to be clarified that there 1s not,
at least not yet, a golden rule for the most convenient and representative GB model. All types of
models described earlier have been used to serve certain purposes or combined to serve others.
Also, a GB avatar model can be assumed to combine advantages from all model types; by
xenografting the biopsy tissue samples of the patient in the form of collected tissue fragments or
cultured cells or even spheroids in order to create his mouse models and by reforming the data to
simulate the case for predictive purposes of the disease progress or the therapeutic outcome and the
survival [61]. Alternatively, we speculate that a future GB avatar can be a fusion of advanced n vitro-
m vivo-in silico modeling in a way that all forces are called against GB and i favor of precise
theranostics where all the required experimental steps are repeated until a valid prediction outcome
for the patient. As described in Figure 3, mn vitro-in vivo-in silico modeling 1s an iterative procedure
of parameters-variables-methods that 1s fed from data derived from each patient. Repeated
refinement, guidance of new experiments and constant re-establishment of the major components
needed (filtering) are organized and conducted for valid predictions. To go back to the patient, an
extrapolation/translation step 1s also needed in order to make patient-specific predictions. This step
also needs refinement, repetition and coordination together with the previous step for the best

possible outcome with clinical relevance.

N A\l
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o - . . Data Analysis Translation Parametrization Dry Execution Prediction
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< N
\%‘m

Avatar model Patient

Figure 3. Systems Biology example in phenocopying GB. The step-by-step procedure from the in
vitro-in vivo-in silico fused avatar model towards the personalized medical scheme. A path of
constant feedback should be followed from the initial data collection and translated mput towards
the model parametrization and predictive output to be validated and vice versa.
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For the moment, the use of lab animals 1s inevitable because of 1) the complex nature of GB
regarding multiple subtypes and imtrapatient clonal heterogeneity [20, 85, 151] which further
discriminate patient cohorts, 11) together with the practical difficulties of maintaining tissue sample
abilities post-operatively, and 11) the misleading current primary cell handling protocols. After
dissociation and short-term culture of collected GB cells, their subsequent implantation to hosts
enables the stability of the environmental conditions i order to establish the patient’s personal cell
line. Meanwhile, assumed the homology to human, the more realistic representation of the actual
GB clinical image refers to the relevant orthotopically transplanted mouse model. Good research
practice elucidates lab animals’ welfare by eliminating time of overall tumor progress monitoring
after the appearance of neurological or other symptoms. Nevertheless, in order to prevent the use
of lab ammals, the policy of forming the primary cell cultures and the animal models must be
followed as a first step [61], whilst subsequently, a database of all the cases will be formed so that the
idea of 1n silico clinical trials' could be open. Taken this for granted, no other animal experiments
would be of mterest since the patient case would be matched to the relevant recorded one. Various
markers and lab examinations would correlate the patient case of interest to the relevant primary cell
culture already established, accordingly. To this future front, a consolidated protocol for both
clinicians and researchers should be prepared and followed by multiple centers and mstitutes under
generally accepted bioethics. Furthermore, this proband concept is not only important for reducing
animal experiments, but also essential for fast growing and highly mvasive tumors such as GB where
time 1s critical. This way, biological mput data would be at the disposal of all bioengineering
researchers able to be combined, evaluated and complemented, so that arbitrary and theoretical
parameters would be eventually replaced in a data-driven way. After all, “a chain is as strong as its
weakest link” and the adaptivity of either holistic or reductionist models discussed in conditional,
replicable, stochastic, emerging and individualized terms, 1s about to guarantee fidelity n
phenocopying GB process.

! See also the Avicenna project .


https://cordis.europa.eu/project/rcn/110724_en.html
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2. Primary GB cells isolation and characterization

This chapter aims at describing the basic nitial steps repeated for every GB patient included mn
this project. These steps include the patient eligibility criteria, the tissue sample collection, the
xenotransplantation and the establishment of the primary cell culture. The characteristics of the

GB cell lines used are presented accordingly.

One of the most characteristic features of GB that limits therapeutic potential is heterogeneity [152];
both different molecular GB subtypes [6, 153] and subclonal cell populations coexist within the same
tumor [20, 33, 154]. Hence, the importance of individualized GB treatment and understanding of
patient-specific GB pathophysiology 1s evident and research plans towards this aim are of great
mterest.

As explained in the introductory section, the use of the widely scientifically-studied common GB cell
lines passaged in lab conditions for decades [70] 1s nowadays questionable with respect to their
clinical relevance 1n therapeutic outcome prediction and to their ability of representing the extensive
heterogeneity observed among patients [69]. To this front, a common GB trend 1s the use of patient-
dertved GB cells to enable preclinical physiologic estimations and personalize therapeutic strategy.
Basic researchers cooperate with clinicians in order to isolate GB cells and promote the
establishment of short-term primary GB cell cultures [14, 61, 78, 79], which provide additional
results back to the patient. Established methods for biological research and early drug discovery
utilize cell lines grown on plastic culture flasks. Over the years, the ability of these 1 vitro systems to
provide biologically-relevant answers and describe drug effects 1s limited due to the fact that they are
too simplistic and do not include key players of the phenomenon. Hence, researchers seem to
mobilize more realistic experimental approaches such as 3-dimensional (3D) cell cultures [47, 54,
155-157] and/or ex/in vivo implantations [61, 88, 92, 158] to better imitate cancer in a mechanistic
and conditional way. Biological 3D models comprise an important step to describe the early phases
of tumor progression before going to the complexity of 12 vivo systems.

The mitial step of this work is to utilize primary tumor cells collected from GB patients and
subsequently cultivated 12 vitro in an attempt to describe the establishment procedure of the primary
cell Iines and their key physiologic characteristics.

2.1 Sampling procedure

Brain tissue sample 1s collected from the lesions during biopsy or maximal safe (gross or partial)
resection of patients with indications of GB based on symptoms and MR images, while still naive
from treatment and later histologically proved to be GB cases. Small samples of different, non-
necrotic, tumor regions were obtained and immediately transferred to cool sterile normal saline
solution. All samples and data are anonymously provided with the informed patients’ consents by
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the Neurosurgical Clinic of the General University Hospital of Heraklion, Crete, Greece. In order
to 1identify each GB case, the acronym GBP (GB patient) along with the serial number of the patient
was given at each sample and maintained throughout the whole procedure. The protocol has been
approved by the Hospital’s Ethical Committee (Protocol number: 442120205-2018).

2.2 Establishment of the primary cell cultures and mouse engraftment

Following sampling in the surgical room, GB cells are directly transported to the lab, where the tissue
1s mechanically dissociated. After gradually removing all cell debris and dead tissue parts, cancer GB
cells are cultured as monolayers in standard lab conditions. As regards the media used 1n cultivation,
in line with the literature [62], we most commonly used the Dulbecco’s modified Eagle medium
(DMEM) as base medium, alone or mixed, and/or Neurobasal medium. DMEM was either serum-
free plus cytokines (FGF2-EGF, Peprotech, UK) and B27 (ThermoFisher Scientific, UK) or plus
10% of fetal bovine serum (FBS) supplemented with 50pg/ml gentamycin (PANREAC Applichem,
Germany), briefly mentioned as DMEM-++. This 1s the zero passage or PO cell culture of the relevant
GB case. As explained before, there 1s much heterogeneity between GB cases and the selective
protocol of tissue handling 1s slightly modified per case.

Early in vitro growing GBs were also 1 vivo passaged once in order to further preserve conditional
stability and assist the GB cells survive, aggregate and proliferate. Specifically, a concentrated amount
of single cell suspension solution, complemented with 309% Matrigel (Corning”, USA) to enhance
connectivity, was either orthotopically or ectopically injected to male NOD/SCID/IL2Ry null (NSG

strain) most commonly 2-months-old mice.

Orthotopic implantation

When stereotactically engrafted into the brain, the injection site was -2.0 A/P (anterior-posterior axis),
-2.3 D/V (dorsal-ventral axis) and -2.0 M/L (medial-lateral axis) from the bregma targeting the
striatum of the right hemisphere; so that moving disorder can be easily detectable after tumor
formation. The mjected material was dramned using a Hamilton syringe (30G, ThermoFisher
Scientific, UK) following a small burr hole using a drill. The rate of the injection was 0.1ul/1.5min
plus 3 minutes for the needle removal to avoid tissue damage. Anesthesia was a common mix of
Ketamine/Xylazine solution’ of one or two intraperitoneal repetitions and all the procedures were
i sterility. Antibiotics (Neomycin, ThermoFisher Scientific, UK) was used during the recovery

2 Common mouse cocktail dose 0.1mL/20g mouse weight which contains 87.5 mg/kg Ketamine and 12.5
mg/kg Xylazine for 20-30 minutes of induced anesthesia.
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period after stitching and the animals were monitored for any neurological symptoms. None animal
was detected positive for tumor formation in the brain or elsewhere after necropsy following cervical
dislocation. Orthotopic implantations were limited to the first three GB cases and the secondary cell
lines since we believe that prior to the primary GB cell culture establishment there 1s low success
rate.

Ectopic implantation

The subcutaneous mjections were conducted to the right flank. Using this approach, GB cells are
exposed to a stable microenvironment within the murine host’s stroma [83], in immunosuppressed
human-like ‘living mcubators’. Most usually within one month, a small-sized tumor was formed
within the host, subsequently removed and re-cultured. For each GB case, after the first passage
within the animal, one part of the 1solated GB cells was deeply frozen; another part was histologically
examined to check whether the homology 1s preserved from the patient to the lab animal, and the
rest was frequently checked regarding physiological behavior stability until the primary GB cell line
was successfully established. After the first implantation, the cells were collected and re-cultured until
the cell culture was successfully established. In order to discriminate the serial subcutaneous passages,
they were numbered accordingly (P1, P2, etc.). All possible steps were taken to avoid animal
suffering at each stage of the experiments. All animal experimental protocols were conducted in
accordance with and under the approval of the Foundation for Research and Technology Ethics

Committee and the General Directorate of Veterinary Services, Region Crete (permit numbers: EL
91BIODbr 01 and EL 91 BIOexp 02).

2.3 Characterization of the established primary GB cells

It 1s worth mentioning that acquiring this kind of longitudinal data 1s an arduous task, particularly
due to hmited availability of GB cases and subsequently, constrained cell culturing success. For these
reasons, we report our results from the analysis of a prelimimary longitudinal data set of six GB cases.

GBPO1

The first case included in this project was a 26-years-old male patient hospitalized with personality
disorder and diagnosed with GB in the basal gangha after the first biopsy. Patient GBP01 was
sampled for GB cells 1solation both from the main brain lesion during biopsy and the following gross
removal, as well as post-surgery vein blood was collected. Unfortunately, the patient deceased a year
after.

Though the histopathological examination of the sampled tissue was a typical GB case, the isolated
cells were unable to survive in cultivation. It has to be noted that both animal orthotopic

transplantations failed due to anesthesia.

Patient GBPO1 1s a case report regarding the extracranial GB tumor growth. The high intracranial

pressure because of the edema resulted in the skull absence after surgery and the gradual meningeal,
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subcutaneous and finally, skin invasion. Interestingly, unlike the GB cells directly sampled from the
primary tumor, there were circulating GB cells extracted from the blood sample that better
responded to lab culture conditions. The GB CTCs detected were too adhesive, immediately
attached to the flask’s surface. As it can be seen in Figure 4, even after a month in cultivation the GB
cells are importantly many. This 1s why we subcutaneously engrafted an unknown but dense
concentration of these cells following the described procedure, but no tumor was detected up to the
aged animal’s death (15-months-old, natural causes).

Figure 4. Circulating GB cells from patient GBPO01 in cultivation after a day (A) and after a month
in cultivation with supplemented DMEM. Scalebar is set to 50 microns.

GBPO3

The second case 1s a 76-years-old male patient with de novo GB close to the left brain motor area;
also called GBP03. The post-biopsy MRI scans of the relevant patient are shown in Figure 5.
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T2-FLAIR

Figure 5. Post-biopsy Magnetic Resonance (MR) images from patient GBP03. On the left, a coronal
T1-MR image where the highly necrotic ring-shaped lesion can be seen frontotemporally in the left
hemisphere, near motor area. Notice the mark of biopsy cavity formed by the trepanation of the
skull. On the right, an axial T2-FLAIR MR image is shown, where the bright peritumoral infiltrative
edema is remarkably extended causing space-occupation of the left hemisphere and internal pressing
of the lateral ventricle.

There 1s no GBP03-P0O cells left frozen or in cultivation since all were immediately engrafted
ectopically after sampling. GBP03 cells were serially passaged up to animal GXP7 (GB xenograft
passage number 7). Followingly, the immunohistopathological recordings of the original patient
tumor along with indicatively the first two passages are presented including both morphological
description and routine brain tumor histological markers. As it can be seen m Figure 6, the
morphological features are similar between the original tumor and the implants, however the
surrounding host stroma 1s nrrelevant to the brain parenchyma. Proliferation marker Ki67and p53
oncoprotein expression profile are increased through passaging, while the neuronal markers are
decreased as expected. The immunohistopathological profile of the xenografts 1s not changeable
through passages.
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Figure 6. Immunohistopathological images of the GBP03 original and engrafted tumor biopsies. (A)
Eosin and hematoxylin (H&E) staining to show morphological characteristics. White asterisk
indicates necrosis in the engrafted tumor but not the original one, while black cross marks the murine
subcutaneous fat. (B) The proliferation marker Ki67 is altered from 10-12% in the original tumor
up to 90-100% to the second murine passage. (C) p53 varies from negative up to a mutated suggestive
gene expression pattern. (D) For the original tumor, the neuronal markers expression pattern is
S$100°+ and neurophilaments‘-, while in the murine host it is focally positive (black circle) for the
neurophilaments and S100+ in the indicative peripheral nerve (black arrow). DAB is used as
chromogen and H&E as counterstain. Original magnifications at 400x (GXP2 H&E images are at
40x and 200x).

8 Marker of the neural crest.

* Neurofilaments (NF) are intermediate filaments found in the cytoplasm of neurons.
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An empirical observation from our findings in the case GBP03 (and others) 1s that the more the
primary cells were passaged the faster the tumor detection after engraftment, but not necessarily the
growth rate. This observation was not further investigated regarding the cell transformations occurred
between passages, yet it is in line with relevant studies [61]. The anticipated results are that after
passage four (more or less) the cells can be considered as stabilized regarding growth characteristics
[61]. A subcutaneous growing tumor is observed in Figure 7 as it is shown in the animal in naked
eyes and after fluorescence excitation. In Figure 8, the tumor growth progress of the engrafted
animals by using GFP-transfected” GBP03 cells was monitored in the i vivo live FMT imaging. As
it has been mvestigated, FM'T 1s suitable for tumor detection and qualitative characterization of
tumor progress, but not correlated to anatomical information or tumor cell density since signal
enhancement cannot be linearly translated. Notice that in Figure 8C, unlike what 1s known from the
literature about the tumor’s necrotic core formation being enhanced over time [159], the bigger the
tumor the higher the cellularity in the center region.

Figure 7. Animal GBP03-GXP3. The multi-nodular subcutaneous growing tumor as it can be
observed (A) in photograph and (B) after fluorescence excitation. Arrows indicate the tumor blood
vessels that are depicted like shadows since they do not express any fluorophore.

°> GBP03 GB cells were lentivirusly-transfected so as to permanently express the green fluorescence
protein (GFP).
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Figure 8. The FMT-scanned subcutaneous tumor of the animal GBP03-GXP3 1s shown in XY and
XZ projections 25 (A) and 27 (B) days after engraftment. In (C), the XY projections of the injected
GBP03-GXP4 animal are shown, scanned every 2 days after tumor detection. Pseudocolor band
indicates cell density.

GBP06

The third case, called GBPO6 cell line, was collected during the gross resection of a 47-years-old
female patient with a tumor in the medulla proven to be a secondary GB, which was gradually
evolved to grade IV from lower grades within a time period of approximately 20 years.
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Figure 9 depicts the morphology of the histopathological examination of the original tumor.
Interestingly, lower grades coexist within the biopsy sample along with the grade IV GB
charactenistics. The engrafted tumor yet resembles the morphologic features of the high grade
component. Notice that already in passage 2 the proliferation index Ki67 has turned from 5% in the
original tumor to almost 1009 in the xenogratft.
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Figure 9. (A) Ornginal GBP06 tumor histology. Upper image are H&E images of the high (200x
magnification, left) and the low grade component (400x magnification, right). The
immunophenotype is suggestive for wild type pJs3gene expression and proliferation index Ki67 ~ 5%.
Black arrow indicates glomeruloid capillary formations. (B) Xenograft tumor of GBP06-GXP2.
Black arrows in the H&E image (100x magnification) indicate the host stroma (upper) and the
engrafted tumor (lower). The p53 protein expression pattern is suggestive of mutated ps3gene, while
Ki67 proliferation index 1s almost 100%. DAB is used as chromogen and H&E as counterstain.

GBPO6 cells were serially passaged up to animal GXP4. Interestingly, though none obvious mistake
during engraftment method was noticed, passage 1 and few other passages next appeared to form
tumor masses intraperitoneally, apart from the subcutaneous. GBP06 cells were treated so as to
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express three different colors (GFP, mCherry and Venus). As denoted in Figure 10, intraperitoneal
masses observed post-mortem with a fluorescence stereomicroscope (FSM, Leica, Germany)
appeared to have a non-uniform color distribution. These masses were separately cultivated and re-
mjected to animals, but though there were formed xenografts, neither the high growth rate nor the
color discrimination were maintained.

Figure 10. Intraperitoneal FSM images of the animal GBP06-GXP1 captured post-mortem. (A)
Excitation with the three wavelengths. (B) Brightfield image overlaid to image A. GB cells express
three colors and though all are excited, only GFP is dominant among the masses formed
intraperitoneally.

GBPO8

The forth sample, called GBPOS8, was provided during biopsy by a 53-years-old male patient with
primary GB i the temporal-occipital left hemisphere.

As 1t 1s shown in Figure 11, there are similarities and differences between the original and the
xenograft tumors (GXP1 and GXP2). All tumors are composed of highly atypical glal cells. The
neoplastic cells in the xenograft tumors are more round, while in the original tumor many cells are
elongated. The immunophenotype of the neoplastic cells 1s similar in the original and the xenograft
tumors. The neoplastic cells are GFAP™+, vimentin'+, synaptophysin™-, neurophilaments- and EMA'-.

® Glial Fibrillary Protein (GFAP); a glial marker.
"Vimentin is a protein of the human cells cytoskeleton.
8 Synaptophysin is a marker protein of neuroendocrine cells.

% Epithelial Membrane Antigen (EMA)
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In the original tumor, cells rarely express p53, while in the xenograft tumors almost all cells express
high levels of p53 protein. The proliferation index in the original tumor 1s around 259, while in the
xenograft tumors 1s almost 100%.

A a‘ v iy > g Whe o 3 ® tl’lg ‘
& iy YO VAP vl

- 5 . ";”, e & ﬁ. : “—--.og;\ & > P
e wmentm"} g LPT Ki67 M‘."z}: g .

w’

Figure 11. Immunohistopathological examination of the GBP08 original tumor (A), GXP1 (B) and
GXP2 (C). DAB is used as chromogen and H&E as counterstain. Original magnifications at 400x.

GBP13

The fifth case described in this section 1s referred to a 61-years-old female GB patient sampled
during total resection. The nodular lesion 1s located mn the left hemisphere fronto-temporally.
Unfortunately, the patient deceased from heart breakdown during the recovery period.

Asitis depicted in Figure 12, the GBP13 mouse line appeared to most faithfully represent the typical
histopathologic features of GB. More specifically, xenograft GXP1 recapitulated most of the
characteristics of the primary GB tumor: palisaded necrosis, capillary proliferation, heterogeneous
GFAP positivity of GB cells, absence of neurotic differentiation, proliferation index around 25%,
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and p53 expression pattern suggestive of wt ps3 gene. As regards the GXP2, it resembles GB with a
lot of giant cells (giant cell variant). Neoplastic cells are also GFAP positive and NF negative.
Proliferation index 1s around 20%, and p53 expression pattern 1s suggestive of wt pi3 gene.

Nevertheless, unlike the other GB primary cell lines established, the GBP13 cells, because of their
discrepancy of very slow proliferative rate i vivo and mability to survive mn vitro independently to
the tissue culture medium used, were not able to be used as a cell line. No further experiments were
conducted using this GB case.
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Figure 12. Immunohistopathological examination of the GBP13 tumors. (A) Original tumor: Black
arrow indicates a p53-positive cell. (B) GXP1: Black arrows indicate the pseudopalisading necrosis
and the p53-positive cells. (C) GXP2: Black arrows indicate a giant cell and p53-positive cells. H&E
stain, DAB as a chromogen. Original magnifications at 200x and 400x.
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2.4 Characterization of the secondary GB cell lines

Both the U87MG and the T98G GB cell lines were used as control, since they are considered as
GB representative [70, 160], as explained in the previous chapter. As expected, the proliferative
capacity of both cell lines 1s high (=100%).

U87MG

The U887MG or U-87 MG (ATCC® HTB-14", USA) were sampled from a male patient in 1966
and they are most likely GB of CNS origin [69]. U87MG present a mesenchymal phenotype, though
few are known regarding the clinical status of the patient they were collected from. It has to be noted
that on the subject of the wide use of the US7MG cell line in GB research and not only, counting
more than 1700 references, there are recent works that misidentify this particular cell line when
compared to the mitial frozen stock [69, 70].

TI8G

The TI8G or T9I8-G (ATCC" CRL-1690"™, USA) were sampled from a 61-years-old male GB
Caucasian patient in 1970’s. T98G 1s a well-known secondary GB cell line of fibroblast-like
morphology, usually used in drug screening and molecular GB experimental models [36, 160]. In
his pioneering work back in 1979, Stein [161] estimated for the first time the stability of this particular
cell Iine regarding growth properties. Unlike other GB cell lines, as for example the US7MG [69,
162], the T98G cell line 1s supposed to be representative of GB proliferative and invasive phenotype
I ex vivo, 1n vitro and 1n vivo studies.

2.5 Discussion
Both primary and secondary GB cell lines were used for the purposes of this study.

In order to describe the primary GB cells as closely as possible to the tumor of origin, cells from the
lowest possible passages were used for the physiologic characterization. This way the primary GB
cell Iines used for the biological experiments were the GBP0O1-P0O, GBP03-P1, GBP06-P0, GBP0S-
PO and GBP13-P0, unless otherwise stated.

The U87MG and the TI98G cell Iines served as a reference, as well as the control between
experiments since our own-established GB cell lnes are not standardized regarding their
pathophysiology/pathobiology.

Whenever needed, the GB cells were lentivirusly transfected in order to permanently express a
certain fluorophore; denoted as an acronym after the cell culture name or as empty whether no

transfection occurred.
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3. Tumor growth over time

Tumor growth expansion 1s considered one of the critical GB hallmarks. Here, the 3D GB
proliferative constants are evaluated for both primary and secondary GB cell cultures 2 vitro and

1n silico.

Excessive proliferation is the most crucial cancer hallmark independently to the cancer type [159].
GB tumors have a remarkable rapid growth that has a critical role regarding the space-occupation
and the development of intracranmal pressure, usually the main reason of the GB symptomatology
[163]. As 1t 1s well-understood, both cell division and local spreading are responsible for cancer
expansion [164, 165] comprising the most important aspects for cancer progress [159, 166].
Doubling time 1s defined as the average duration of cell growth and division as reflected by the cell
cycle ‘clock’ [167].

3.1 In vitro experiments

Here, as an imitial step towards understanding the GB heterogeneity among patients, we focus on
proliferation. Doubling times, the average cell sizes, the spontaneous cell death rates, as well as the
3D growth rate over time of the in-house-established primary GB cell lines, as well as the US7MG
and the T98G secondary GB cell lines are estimated.

Doubling time assay

We used the GBP03-P1, GBP06-PO and GBP0O8-P0O primary GB cell lines, as well as the US7MG

to measure the doubling time intervals of the diftferent cell types used we applied a simple protocol
in adherent cultures. In a 24-well plate, 20000cells/ml of supplemented DMEM were seeded per
cell type at day zero. The plate was incubated n standard lab conditions for approximately a week.
Whenever needed, cell culture medium was carefully renewed avoiding the adherent (active) cell
population to be disturbed.

Every 24 hours after seeding, the culture medium of one well per cell type was removed and trypsin-
EDTA (Sigma-Aldrich, Germany) 1X solution was added for 1-2 minutes. After another 1 minute
of trituration in order to produce a single cell solution, all the context was removed from the well
and was transferred to a 2ml eppendorf tube. As a final step, 4% formaldehyde was added to
permanently fix the cells within the tube which was stored to the refrigerator for further use. The
procedure was repeated up to the point that 100% cell confluence was achieved. The cell
concentration for each cell type was measured with a 24-hours mterval by using a Neubauer

hemocytometer.
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Cell size estimation

A divided petri dish was plated with a single cell solution of ~2000cells/ml and was incubated in
standard lab conditions overnight to let the cells adhere i the surface of the dish. Accordingly,
brightfield images of attached single cells were captured i 40x magnification and known acquisition
parameters to a Leica DFC310 FX mverse wide-field microscope (Leica, Germany). To check size
and shape homogeneity between each cell population so that to assure that the estimated average
cell size would be representative, we captured a photograph of a single cell solution within the fixed
grid dimensions of the Neubauer hemocytometer.

3D spheroid generation

We used the hanging-drop technique in order to produce spheroids from each cell type, as
recommended in [47, 155, 168]. A single cell solution of 625cells/50ul of supplemented double-
filtered DMEM was imitially seeded per well in a 96-well hanging drop plate (3D Biomatrix, USA).
Two rows of wells per cell type were plated so that approximately 24 spheroids were produced.
Agarose solution of 19 w/v was added to plate’s reservoirs to prevent evaporation of the droplets.
After 2-4 days of cells aggregating at the bottom of each droplet, we could consider that the spheroids
were finally formed. The growth progress of the spheroids was monitored over time via photographs
taken under set acquisition parameters to a Leica DFC310 FX mverse wide-field microscope (Leica,
Germany) for pre-decided critical time points (2-days interval).

Data analysis

The average doubling time of each cell line was estimated using exponential linear regression on the
doubling time data. The average cell size of each cell line was estimated by segmenting the area of
approximately 10 randomly selected cells in brightfield images to ImageJ [169] and averaging. The
tumor expansion of the 3D spheroids was again estimated based on the area shown in their
brightfield images. The growth curve was estimated by the mean area value + standard deviation over
time. All the above measurements were evaluated per cell type and many experiments were

performed for each cell type.

3.1.1 Results

A usual answer of what a common human (cancer) cell diameter could be 1s about 10 to 100
microns [170, 171], and actually, most computational approaches assume cell size within 10-30
microns [112]. In 2D cultures of low confluence, the cell size and shape are in resting state and not

crucially influenced by neighboring cells. As depicted in

Figure 13, there 1s much homogeneity in the US7MG cell culture with the cells conforming a rather
prolonged typically observed shape, with a soma cell size varying between 19 to 24 microns in
diameter (see also Table 5). As regards the T98G cells, the typical average cell size observed was 20
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microns in diameter and their shape was distinctively flat and polarized. On the contrast, all primary
cells used i this study were smaller and typically round with not many cellular protrusions compared
to US7MG cells, yet cells of the same cell line appear to differ within the same population. In case
of both the U87MG and the T98G cells, it i1s expected that after all these years in lab conditions
there 1s not much morphological diversity within the cell population and that the cell soma size
adequately represents the cell line. On the other hand, regarding primary cells, the cell size 1s only
an average of all possible phenotypes within each cell ine. More specifically as denoted in Table 5,
GBPO03 cells have an average cell diameter of 19 microns, whilst GBP0O6 are approximately 16
microns and GBPOS8 are close to 15 microns in diameter. Also, US7MG cells, when growing in
adherent cultures, intrinsically form aggregates when much confluent. On the contrary, the primary
cells studied here seem to continue as monolayers no matter the level of confluence. Obviously, the
average cell size of a certain cell population, no matter how well represented in 2D, it is not
maintained when growing in 3D culturing since other physiological parameters that will be discussed
next also affect the cell surface-to-volume ratio altering both size and shape.
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Figure 13. U87MG and T98G cells along with primary GB cells growing as monolayers (left column,
40x magnification) and as hanging-drop spheroids (Initial Day in middle column and Final Day in
right column, 4x magnification). Scale bars are 50 and 100 microns, respectively. The initial day is
set to be the first day of cell aggregation in spheroidal shape after seeding, meaning Day 2-4.
Accordingly, the final day is the time point where spheroids start to deform and decompose, usually
approaching well’s borders. This day is Day 14 for most primary spheroids.
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Table 5. Mean cell sizes and doubling times (+ standard deviation) as estimated from the in vitro
experiments for the respective cell lines.

U87MG 21.5 30.8 +2.5

198G 20 28.2 +1.7
GBPO3 19 25.4 0.5
GBP06 16 23.5 0.7
GBP0S8 15 23.0 £1.5

Based on the literature, glioma cells usual doubling time ranges from 24 h to a couple of days [172],
but more often established primary GB cell lines are recorded to vary few days [60, 79, 173].
Especially for the US87MG cells, they are supposed to have a population doubling time
approximating 34 hours, according to their product sheet (ATCC® HTB-14™ USA). Accordingly
for the T98G cell line, the ATCC proposed doubling time estimate 1s 28 h. Our measurements
presented in Table 5 are in line with the bibliographic records. Specifically, US7MG cells have a
mean doubling time of 30.8 +2.5 h, which 1s the slowest division between the cell types we use,
followed by the T98G which divide approximately every 28.2 1.7, as expected. Among the primary
cell lines, GBPO3 cells divide approximately every 25.4 0.5 h, while GBP06 and GBP08 have
similar doubling times estimated at 23.5 £0.7 h and 23.0 £1.5 h, respectively.

The hanging-drop technique used here to generate the 3D spheroids 1s a method conditionally
approaching the real avascular tumoral state i vivo [47]. The spheroid size was determined with
optical microscopy and monitored over time. It should be noted that, the imaging approach used
here cannot give any quantitative estimate of the compactness of the cells or any other spatial
mformation including the number of the cells, the cell size, shape and polarity, which are definitely
different between 2D and 3D structures.

In general, we observe that both primary and secondary GB cells need approximately 4 days from
single cell solutions to aggregate into spheroidal structures; while during this starting period, they
seem to suppress proliferation capacity. However, most often, primary and T98G cells aggregate
sooner than US7MG ones after seeding.

Figure 13, illustrates the growth area of the inn vitro spheroidal domains as imaged in 2D brightfield

mmages at the imitial and final day. The growth curves of each cell line are shown in Figure 14. An
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apparent difference between patients, but also between primary and conventional cell lines can be
observed. To be more specific, all primary spheroids grow larger than the U87MG and the T98G
cells. GBP06 and GBPOS8 primary spheroids follow an immitial fast growing, exponential phase that
slows down after approximately 6 days. U87MG and T98G spheroids have an almost linear growth
pattern. It has to be noted that the T98G spheroids appear to deform at some level after
approximately Day 5 (see Figure 13). This 1s the reason why we additionally tested the generation of
the hanging drop T98G spheroids with supplemented DMEM with 5% BME. As often proposed in
such assays [155], it was proven that the presence of some ECM-like substrate also enables better
cell adhesion. The morphology of the control T98G spheroids i1s smoother in the presence of a
small BME quantity regarding the surface boundaries observed in the optical microscope. However,
mdependently to the presence of the BME component, the growth pattern of the control spheroids
1s shghtly different. Since the growth pattern over time does not alter, we preferred to use the no-
BME control spheroids for comparison. Nevertheless, as it would be described later on chapter 4,
BMLE 1s also used to evoke the mvasion condition and this is why we preferred not to alter the 3D
spheroid generation protocol only for the T98G. Taken together with the observations regarding
mvasion, we suggest that in order to better approximate tumorigenic models by using the T98G GB
cell Iine 1t 1s recommended to use adhesive materials.

It has to be clarified that the spheroids reach the well’s borders before the plateau and decay phases
are observed. The patients GBPO6 and GBP08 adopt a high growth pattern, whilst the patient
GBPO03 follows an itermediate growth rate closer to the US7MG cell line. As already mentioned,
especially for the primary cell lines, the mitial distribution of the subclones, when plating the cells
(Day zero), 1s random. This eventually leads to a multi-factorial subclonal spheroid growth integrated
to average estimations.
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Figure 14. Growth of the tumor spheroid area over time for the in vitro experiments of each cell
line.

3.2 In silico experiments

In previous computational studies, the significance of the proliferative rate has been shown. More
specifically, in [174], the proliferation rates of different breast cancer patients are estimated from
subsequent MR 1mages in conjunction with a simple logistic tumor growth model and show that the
proliferation rate estimates could discriminate patient’s survival and response to therapy. In another
study [175], the role of experimental and simulated diffusion gradients in 3D tumors affecting
nutrient, oxygen and drug availability within the tumor and subsequently controlling cell proliferative
rate 1s examined. A mathematical model parameterized from monolayer experiments 1s used to
quantify the diffusion barrier in 3D experiments. In a recent study [164], acquisition of physiologic
parameters from multicellular tumor spheroids including proliferation and death spatial profiles are
used to constrain and parametrize a mathematical agent-based model that addresses several cell
growth mechanisms necessary to explain the experimental observations and reductively translates

them to tumor progress over time.

The aim of this work was first to mathematically study the important components affecting the growth
dynamics of tumor spheroids when motility 1s inhibited, mainly including the inter- and intra-tumoral
heterogeneity with respect to cell proliferation, and second, to parametrize the mathematical model
based on experimentally-estimated parameter values of primary GB cell lines in order to increase
clinical relevance. Three primary GB cell cultures were used in the experiments, as well as the well-
known U887MG GB cell line as control. All the biological experiments included were performed
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simultaneously under the same initial and growth conditions. A hybrd, individual, cell-based
mathematical model was used to predict the growth curves of the tumor spheroids and parametrized
based on the experimental data. Variations in several mathematical model parameters were explored
i order to quantify their effect on tumor growth expansion. The simulated results were compared
to the experimental data from the relevant 3D cell cultures and showed that in combination with the
proliferation rate, additional factors like the mechanical cell contact inhibition are necessary to
predict the n vitro evolution of the different GB cell lines under study.

3.2.1 Computational model implementation of tumor spheroids

As explained previously, in general, mathematical models attempt to translate tumor physiology
hallmarks [67] into computational parameters and the predicted output 1s subsequently validated
using as ground truth either the experimental [89, 129] or the clinical results [101, 176].

A simplistic on-lattice HDC mathematical model was used to describe the observed tumor growth
of the 3D 11 vitro experiments. In the context of the HDC model, each individual cell 1s described
by a discrete cellular automaton, while the local microenvironment is approximated by PDEs. Cell
processes are asynchronously and randomly updated. This ensures that in each iteration every cell
arbitrarily receives a different priority in the update queue. Cell movement and cell life cycle
(including proliferation and death) are sequentially executed every t,, = 0.8 h. In the following, a
concise description of the HDC model 1s provided, while more thorough description can be found
i [177] or in [112], where the model was initially proposed.

Computational domain

To simulate a central slice of the 3D inn vitro tumor spheroids, we set up a 2D regular lattice of size
L =5 mm. The 2D computational domain represents a planar slice through a 3D spheroid. Each
h X h square lattice site can accommodate only a single cell, thus the lattice site defines the cell size.

The same lattice 1s used by both the discrete and the continuous compartments.

Continuous compartment

We assume that oxygen 1s the only limiting molecule required by the cells in order to proliferate.
The whole grid 1s constantly supplied with oxygen. It has to be clarified though that this assumption

oversimplifies the real tumor physiology regarding nutrient supply and waste drainage.

The spatiotemporal evolution of oxygen 1s described by the PDE shown in (1). Oxygen diffuses with
diffusion constant D, from the boundaries of the computational domain, naturally decays at rate «,

and 1s consumed by the tumor cells at rate y,.

do(x,y,t)

2 = D,7%0(x,7,8) — 0006, Y, )6t — €o0(x,, 1) (1)
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The term ¢; j € {0,1} indicates the presence or not of a tumor cell at the lattice point i, j. In order
to mimic the laboratory conditions of the medium, oxygen concentration was set to its maximal value
at the edge of the computational domain through the application of Dirichlet boundary conditions.
Tumor cells die if the local oxygen concentration drops below a random threshold. Specifically, the
threshold 1s assumed to be 0deadly-(1+7), where r , a random number from the uniform interval, 1s
[-0.5,0.5] and 0deadiy is 0.2(ND)". This is done to desynchronize cell death. Tumor cells die if the

local oxygen concentration drops bellow 0g4egq1y -

Discrete compartment

Each tumor cell 1s an individual entity with its own traits. Sets of these traits are assumed to represent
a cellular phenotype. A more detailed description of the cell life cycle can be found in [177, 178].

In this work, two mechanisms of tumor cells are mainly considered; proliferation and death. Cellular
movement has been neglected considering that the protocol of the in vitro experiments do not
conditionally allow cell motility. When a cell dies, its location 1s immediately treated as empty space.
On the other hand, the live cells incrementally prepare for proliferation at every time step, until the
cell age reaches their doubling time. At that moment, the cell searches for a nearby empty space at
the 1-Moore neighborhood. If no empty space 1s available, the search 1s expanded to the 2-Moore
neighborhood (see Figure 15) and the process is repeated up to r-Moore neighborhood, where r 1s
defined as the proliferation depth and determines the maximum neighborhood size. Examples of
Moore neighborhood can be seen in Figure 15. If more than one empty space 1s found in the same
neighborhood, one of them 1s randomly chosen.

10 A random non-dimensionalized value for the oxygen threshold.
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Figure 15. Example of a cell (shown in black) attempting to proliferate. Firstly, the cell searches the
1-Moore neighborhood highlighted by the gray squares in the left image. Being unable to find an
empty space, it searches the 2-Moore neighborhood indicated by the gray squares in the center and
right images. As an empty space is found, the orange cell is pushed towards the empty space as
shown in the central figure. The latter movement frees the empty space on the 1-Moore
neighborhood and allows the proliferating cell to place an identical cell (also shown in black) to the
adjacent empty space (right image).

As shown 1n Figure 15, when an empty space 1s found on a neighborhood other than the 1-Moore,
cells are pushed away from the location of the proliferating cell towards the empty space i order to
create an empty space to the 1-Moore neighborhood. Then the cell resets its cell age and places a
copy of itself at the adjacent empty space. If no empty space has been found, the cell enters a
quiescent state at which it constantly searches for empty space, without further increasing its age. The
extended proliferating rim describes the maximum distance over which a cell 1s capable of pushing
other cells away i order to create space for its proliferation and reflects the mechanical growth

mhibition processes observed in growing cell populations [164].

3.2.2 Results

In this work, the i vitro-estimated doubling times and cell sizes of three in-house-established
primary GB cell lines, as long as of the US7MG cells, were used to mitialize the individual-cell-based
mathematical model in an attempt to predict their different growth patterns. A sensitivity study was
performed where the effect of important factors aftecting tumor spheroid expansion such as the
doubling time, the cell size, the depth of the proliferative rim, as well as the co-existence of multiple
clones with different proliferative capacities within the tumor were computationally explored. We
argue that, as expected, proliferation 1s one of the most defining characteristics regarding tumor
expansion and that tumor predictive computational models should prioritize these remarkable
variances between individuals and not just based on theoretically defined values.

Computational Parameter Study

Prior to parametrizing and predicting the growth pattern of the multicellular spheroids, a simple
parameter study was performed to determine the extent at which the doubling time and cell size
affect the 3D growth simulation, as well as to explore the effect of additional parameters that could
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play a significant role in tumor expansion including the depth of the proliferative rim and mtra-
tumoral heterogeneity.

The discrete and the continuous part of the computational model were parametrized accordingly to
meet the experimental setup as shown in Table 6. The length L of the computational domain equals
to Smm to resemble approximately the size of the hanging drop plate. Both the oxygen decay rate
and the cell’s oxygen consumption rate were adopted from [112]. To numerically solve the PDE (1),
its parameters have been non-dimensionalized (ND) by using 0,4, T and L, which correspond to
the maximum oxygen concentration, the computational iteration time and the domain length,
respectively. Dirichlet boundary conditions were used to lock the boundaries to the maximum
oxygen concentration to simulate the so-assumed adequate and stable nutrients’ availability, since
the culture medium during the experiment 1s periodically refreshed. Also, the alternating directions
mmplicit method was used to numerically solve the PDE [179, 180].

At first, we explored the effect of the doubling time on tumor expansion keeping the rest modeling
parameters constant. Specifically, we assumed a tumor cell of size equal to 18um and considered a
depth of proliferative rim equal to 2 cells, while varying the doubling time from 15.5h to 35.5h.
Figure 16 (left graph) shows the growth curves of the tumors with different doubling times. As
expected, increased proliferative capacity results in increased tumor expansion. If a reference time
point 1s picked at 10 days, we can calculate the absolute increase of area yielded by the decrease of
the doubling time. When the doubling time is reduced from 35.5h to 30.5h, the area increases by
approximately 24.46%; while comparing the respective areas between the doubling times 20.5h and
15.5h, the area 1s increased by 54.87%. We can thus conclude that the expansion area 1s affected
more, when the doubling times are lower. As expected, the effect 1s accumulative, thus 1if a

later/earlier time point was picked the differences would increase/decrease, respectively.

Table 6. The computational parameters used to initialize the HDC model. Non-dimensionalized (ND).

Domain length, L Smm (Methods-Computational Domain)
Cell (& lattice) size, h 14-20pum (Methods-Computational Domain)
Iteration time, T 8h ((Methods-Computational Domain, [177])
Oxygen consumption, ¥, 1.25 10" M cell's' (Methods-Computational Domain, [112])
Maximum Oxygen, Oy qx 6.7 10° M O. cm” (Methods-Continuous Compartment, [112])
Oxygen decay rate, o 0.0125 (ND) ( Methods-Continuous Compartment, [103, 112,
166])
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We also explore the effect of cell size on the observable tumor expansion. It should be noted that if
counting of the tumor cell population was possible on the in vitro experiments, then this parameter
would make no difference. We vary the cell size from 14 to 20pm, while keeping the doubling time
constant and equal to 25.5h and the proliferation depth equal to 2 cells. Figure 16 (middle), shows
that by increasing the cell size, the tumor expansion increases as well, as expected. Indicatively, by
comparing the values at simulation time 10 days, the area relatively increases by 21.5%, 29.8% and

31.1% as the cell size increases from 14pum, 16pm and 18pum to 16pum, 18pum and 20pm, respectively.
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Figure 16. Growth of the tumor spheroid area over time as predicted from the computational model
related to altering doubling time from 15.5h to 35.5h (left), the cell size from 14 to 20 microns
(middle) and the proliferation depth from 1 to 5 (right).

The depth of the proliferative rim significantly affects the tumor expansion as it increases the number
of proliferative cells. Figure 16 (right) illustrates the effect that different prohferation depths have on
the tumor area over time. The proliferation time was set to 25.5h and the cell size to 18um. At the
reference point of 10 days, as the proliferation depth increases from 1 to 5 cells with a step of 1 cell,
the area increases relatively to its previous value by 94.7%, 58.49%, 38.9% and 31.3%. In other words,
a considerable higher expansion of the tumor area (94.79%) 1s observed when the proliferation depth
1s increased from 1 to 2, as compared to a change from depth 4 to 5. As the proliferation depth
mcreases, less cells enter the quiescent state, and proliferate instead; this 1s why the growth area 1s
mcreased.

To further investigate the role of heterogeneity between our cases, we proceed by performing
simulations which contain multiple phenotypes identical in all traits except for their respective
doubling time. All phenotypes have their cell size set to 18um and proliferation depth (r) equal to 2
cells. The proliferation time 1s randomly selected for each phenotype at the beginning of the
simulation from a uniform distribution in the interval (15.5, 35.5) hours. As shown in Figure 17, to

lustrate the impact of the phenotypic multitude, two scenarios are considered mspired by [112];
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one at which the number of phenotypes 1s 100 (shown in green line), and another where 10
phenotypes are randomly selected (shown in purple line). Additionally, given the randomness of the
phenotypic initialization, each experimental scenario 1s repeated 50 times. Figure 17 also shows the
area expansion over time for three monoclonal examples with doubling times 15.5h (red dashed
line), 25.5h (blue dashed line) and 35.5h (yellow dashed line). Figure 18 illustrates the doubling time
of the populations that survive over time. As it can be seen, the mean minimum and the mean
maximum values of the doubling time are constant for a long period of time indicating the presence
of both the fastest and the slowest populations within the tumor, yet the frequency of these
populations becomes progressively unequal with the fastest population to actually overpopulate
within the tumor. Thus, a decline to minimum values of the mean doubling time 1s observed.
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Figure 17. Monoclonal and polyclonal tumor area expansion. For the polyclonal case two scenarios
are considered; one at which the number of phenotypes are 100 (green line) and another where 10
phenotypes are randomly selected (purple line). Each experiment is repeated 50 times and the
corresponding standard deviation is also shown. The mean area of three monoclonal examples with
doubling times 15.5h (red dashed line), 25.5h (blue dashed line) and 35.5h (yellow dashed line) is
also illustrated.
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Figure 18. Doubling time of the populations that survive over time in a polyclonal tumor. Two
scenarios are considered; one at which the number of phenotypes are 100 and another where 10
phenotypes are randomly selected. Each experiment is repeated 50 times. The minimum, maximum
and average doubling times for both scenarios are shown, as well as their corresponding standard
dewviations.

Comparison between Biological and Computational Results

In the following, we assumed monoclonal populations and parametrized the mathematical model
based on the estimated experimental values for the doubling time and cell size for the different GB
cell lines. We also parameterized the model without taking into account the 1 vitro estimates of cell
sizes and kept the cell size and all the other parameters constant in all the experiments. Parameters
within the range of the experimental biological observations were chosen to achieve the best-fitting
growth curves. It has to be noted that both the simulated and the biological experiments had an initial
seeding population of approximately 625 cells per spheroid per cell type. The simulations show that
the in vitro estimates of cell sizes do not improve the model predictability and that accounting only

for differences in doubling time among GB lines results in very similar growth curves.

The values used by the in silico model regarding the doubling time were 33h for the US7MG cells,
25h, 23h and 22h for the GBP03, the GBP06 and the GBPO08, respectively; all inspired by their
biological counterparts. Figure 19 shows the i vitro growth curves and the n sifico predicted ones
for all the GB cell lines. Based on the selected doubling time values and keeping the proliferation
depth equal to 2, the growth curves of US7MG and GBPO03 cell lines are closely approximated by
the 1n silicomodel. However, the GBP06 and GBPOS cell lines diverge significantly from the i vitro
results indicating that proliferation alone 1s necessary, but not sufficient to explain the tumor
expansion of different GB cell lines growing under the same initial conditions. Hence, additional
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phenomena should be taken into account. For example, increasing the proliferative depth and/or
consider the possibility that multiple phenotypes with various proliferative capacities coexist within
such tumors, then the 2 vitro and in silico growth curves would come in line as our parameter study
analysis previously revealed. Alternatively one could advocate that GBP06 and GBP08 contain
phenotypes with higher proliferation depth than U87MG (and GBP03) which are expected to thrive
i compact environments such as a solid spheroid. It should be noted that the proliferative depth
could also be affected by the development of ECM substrate in 3D cultures, even in the conditional
absence of a relevant substrate [47], as in our biological experiments. This, along with antagonistic
and synergetic relationships of subclones within the growing spheroid could alter the mechanical
responses of dividing cells, reflected in terms of proliferation depth to our mathematical model.
However, our biological approach did not take mto account a priori this parameter, but it was the
computational approach that indicates such possible behavior suggesting that ECM production and
distribution might also be different in the different cell lines.

Figure 19 also shows the simulated growth curves for the GBP06 and GBPO0S8 after changing their
proliferation depth values from 2 to 4 and 3, respectively. The in vitro data better correlate the
relevant 1 silico data. Also notice that setting the proliferation depth of GBP06 higher than the
GBPO08 1s important to achieve their corresponding growth patterns, where GBP06 grows faster than
GBPO8, given that the doubling time of the former 1s higher than the latter and that small differences
i their cell sizes are not adequate to reverse their growth patterns. Another point that should be
marked 1s that the subsequent decline observed after Day 8 in the 2 vitro growth curves of these two
cell types cannot be predicted by the computational model. This is because the computational model
we use does not account for inhibitory stimuli that are probably developed in real growing tumors,
since this was beyond the scope of this study.
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Figure 19. In vitro spheroidal growth as opposed to in sifico for all four cell types with the final
chosen sets of doubling times (33h for the US7MG cells, 25h, 28h and 22h for the GBP03, the
GBPO06 and the GBP0S, respectively) and fixed proliferation depth equal to 2. Two additional
simulated growth curves are depicted with different proliferation depth values for the GBP06 (r=4,
yellow dashed line) and the GBP08 (=3, purple dashed line) spheroids.

3.3 Discussion

This work utilizes primary tumor cells collected from GB patients and subsequently cultivated n
vitro as 31D tumor spheroids and computational approaches to study, experimentally parametrize
and predict the growth dynamics of tumor spheroids focusing on proliferation. At first, a parameter
study was performed n order to evaluate the extent to which important factors such as the doubling
time, the cell size, the depth of the proliferative rim, as well as the co-existence of multiple clones
with different proliferative capacities within the tumor, affect tumor spheroid expansion when
motility 1s inhibited. The experimentally estimated doubling times and cell sizes of three mn-house-
established primary GB cell lines, as long as of the US7MG cells, were then used to parametrize the
computational individual-cell-based model.

Opverall the parameter study verifies the significant effect of proliferation (depicted in both the
cellular doubling time and the depth of the proliferative rim) on tumor expansion [164] and
underlines additional factors that could play an important role on tumor growth curves including the
mtra-tumoral heterogeneity that has been widely observed in GB. We also observe that a multiclonal
population with the same mean proliferation exhibits a greater tumor expansion than the
corresponding monoclonal population because fitter clones survive over time driving tumor
expansion at higher rates. Furthermore, the clonal heterogeneity within the tumor mass allows

different clones to be selected every time an experiment 1s performed. Thus, a variation is observed
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i the growth curves. The variance 1s cumulative, increases over time and can reach a difference of
100um 1n radius after 14 days of growth (Figure 17). Furthermore, the simulations also show that
although the mean growth curves are quite similar, the variance highly depends on the mitial number
of different clones coexisting within the tumor mass such that fewer imtial clones in the population
produce higher variability (Figure 18).

Comparing the m vitro experiments with the mn silico predictions, we observe that although the
proliferation rate 1s necessary, yet it 1s not sufficient, to describe the growth curves we observe
experimentally. The simulations show that additional factors including the intra-tumoral
heterogeneity together with the overall proliferative capacity reflected in both the proliferation rate
and the mechanical cell contact inhibition can predict the evolution of different GB cell Lnes.
Nevertheless, further investigation of the underlying mechanisms is critical.

In general, the compactness of the spheroids can be assigned to two factors in mesoscopic terms: a.
the cellularity, in means of cells’ size and shape given the space, and b. the levels of stress tolerance,
reflecting their response against internal forces within the spheroid which vary between division and
entering quiescence state, also known as ‘contact inhibition’. As smaller in size and quicker regarding
divisions, GBP06 and GBPO0S cells appear to grow larger in 3D over time than the other two cell
types mainly because of their promoted proliferative capacity reflected by the higher proliferation
depth in the respective simulated growth curves (see Figure 19). However, this 1s only an assumption
for our 1 silico trals since there 1s no indication of the spheroids cell density and proliferation depth
to our experimental protocol and this 1s a limitation of our method needed to be taken into account
m future work.

The migratory capability of our cells 1s conditionally blocked to our experiments so that it can be
assumed to play a minor role i the proliferative characteristics studied here. However, when the
different cell populations grow in 3D, both KCM can be produced, and the cell shape and polarity
could also be affected, such that cell-to-cell and cell-to-matrix adhesion properties could be further
explain the divergence observed over time in growth patterns between the m vitro and in silico
experiments (see also chapter 4).

We suggest that, instead of using bibliographic values usually referenced by common GB cell lines,
cell doubling time was found to critically enhance the in silico predictability, but is msufficient to
holistically describe differences i tumor growth over time among the different GB cell lines. The
mechanical cell responses to internal forces obtained during the growth of a compact tumor should
be further mvestigated experimentally, as well as the important role of intra-tumoral heterogeneity.
The 1importance of quantitative methods to provide spatial information of proliferative, quiescent
and necrotic cells, as well as additional features including the remodeling of ECM and phenotypic

distribution regarding intra-tumoral heterogeneity affecting tumor expansion becomes evident.
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4. Invasive patterns adopted 1n vitro and 1n silico

The clinical imaging biomarker of the infiltrative edema 1s translated to the mvasive capacity of

the GB cells when they are conditionally able to migrate. The invasive morphology of the GB cell

cultures 1s physiologically characterized in vitro and in silico.

GB cells, are migratory and invade the neighboring brain parenchyma, en masse or as single cells
[31], and expand, characterizing GB as a diffusive rather than a focal disease [75]. Furthermore,
regardless of whether GB cells mvade the vasculature, their capability of establishing successful
micrometastases 1s limited [29]. Nevertheless, during this process, another typical GB hallmark
develops, the infiltrative peritumoral region edema [11, 21, 35, 181], which, apart from the invasive
cancer cells, also includes cells of the immune system, neuronal cells and fibroblasts, as well as other
cell components of the tumor microenvironment [154, 159, 182]. During surgical resection, there is
a procedural empirical difference between GB and other tumor types that does not allow the GB
tumor mass to be excised as a monoblock, because GB 1s supposed to be a resilient tumor type.
Taking into consideration these two facts, surrounding edema and incomplete/subtotal surgical
removal (in combination with safe access), it becomes evident that it 1s virtually impossible from a
technical point of view to totally exempt the patient from the malignancy. As a result, tumor relapse
may occur [29] in the original or nearby brain regions, which further devastates overall survival [8].

It should be noted that tumor growth and expansion are generally attributed to both proliferation
and local spreading [164, 165]. Invasion 1s a complex, multiscale phenomenon involving processes
at different spatial and temporal scales. Migrating tumor cells can mechanistically move by different
modes, ranging from single cell to collective locomotion, or even to whole-tissue expansion [183].
The molecular pathways during movement are complex and involve both energy utilization and
response to stimuli, either chemical or mechanical or both. The mnvasive process necessitates both
locomotion and proteolysis and mvolves both cell-to-matrix and cell-to-cell adhesion mechanisms.
More specifically, it 1s believed that in multi-cellular mvasion, transmembrane integrins are highly
expressed at the “leading edge” tumor cell protrusions (pseudopodia), where they form focal contacts
with the actin cytoskeleton. In addition, mechanical feedback through cell-to-cell junctions [184]
and/or cell adhesion proteins such as N- and E-cadherin (though the latter 1s believed to have limited
expression in the brain) contribute to the collective migration of glioma cells by promoting direction
sensing. Interestingly, differential expression of cadherins has been observed in GB samples as well
as disorganization and instability in cell-to-cell interactions [113, 185-191] supporting the presence
of intratumoral heterogeneity with respect to cell-to-cell adhesion leaving open questions about its
role n invasion.
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Collective invasion 1s driven by gradients of growth factors, cytokines, etc., as well as by different
matrix degrading enzymes. Growth factors, such as Transforming Growth Factor- (7GF-f), alter
cellular connectivity and interaction [192]. Degrading enzymes called Matrix MetalloProteinases
(MMPs) are expressed and secreted by the tumor cells and further enable cellular dispersion [192].
Migration towards or away from a diffusible chemical stimulus 1s defined as “chemotaxis” and the
diffusible molecules serve as either chemoattractants or chemorepellents, respectively. “Haptotaxis”
on the other hand, refers to cell motility towards ECM bound molecules gradients, which are
triggered by anabolic and catabolic rearrangements. Interestingly, apart from the biochemically-
driven haptotaxis, it has been shown that ECM mechanical characteristics, such as stiffness and
composition, are sufficient (but not necessary) to promote haptotactic invasion and that cells stratify
an adaptive plasticity against relevant ECM-coordinated movement [31].

A number of quantitative i vitro models have been developed over the past decades to study glioma
mvasion, most of which are based on the original trans-well or Boyden chamber assay systems [193-
195], where single cells invade from an upper chamber through an ECM-like membrane or an ECM-
coated filter to a lower chamber in response to chemoattractants. The latest trends in phenocopying
GB 1n general and regarding invasion, mainly involve patient-derived cells -to individualize tumor
properties [33, 61] and 3D 1 vitro experiments- to better mimic the parental tumor pathophysiology
[47, 157]. Tumor spheroids as a model system can be well characterized and have been shown to
reproduce the spatial organization and micro-environmental factors of i vivo micro tumors, such as
relevant gradients, establishment of cell-to-ECM adhesion and cell-to-cell interactions and deposition
of ECM. Recent studies have shown that when glioma cells grow in vitro as multi-cellular spheroids,
they are able to recapitulate invasive strategies observed i vivo including the collective behavior [49,

196].

A comprehensive overview of the mathematical models developed for GB progression and therapy
response from the clinical perspective and personalized medicine are summarized in [125]. In
addition, a thorough review summarizing major studies related to GB invasion can be found in
Alfonso et al. [107]. Among these studies, the particular importance of the microenvironment and
the central role of cell-to-cell and cell-to-ECM interactions on the evolution of invasion are
extensively explored, as well as the mechanisms of phenotypic plasticity and adaptation. Nevertheless,
most models focus on single-cell migration phenomena. Furthermore, the role of intra- and inter-
tumoral heterogeneity and particularly with respect to cell-to-cell adhesion properties 1s less studied.
Anderson [112] accommodates in his model phenotypes with different adhesion properties,
however these properties are subject to mutations and thus, vary through time. In that approach,
additional properties of cancer cells mcluding their proliferation and migration rates that can
supplant the role of heterogeneous cell-to-cell adhesion interactions are also imvolved. Domschke et
al. [197] studied the role of cell adhesion variability on the mvasive pattern formation. In their model,
variability 1s taken into account again in a time-dependent manner where cancer cells sequentially
mutate into more aggressive phenotypes with respect to cell-to-cell and cell-to-matrix adhesion

properties. Furthermore, the local interplay of neighboring cells 1s not considered. Reher et al. [113]
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systematically explored the effect of both intrinsic and extrinsic cues of adhesion heterogeneity yet,
specifically on tumor cell dissemination. Overall, none of these studies focuses on the mtrinsic
heterogeneity with respect to the mterplay of co-existing phenotypes with different cell-to-cell

adhesion properties and its impact on alternative invasion patterns.

In this work, we study the invasive potential of GB cells under a set of basic experimental parameters,
by means of forcing the U87MG and the T98G cells and the three in-house-established primary GB
cell lines to form 3D cell cultures at an ECM-like substrate. Our biological experimental results
consistently show that the two types of tumor spheroids display different invasive patterns suggesting
that different mechanisms of cell motility are adopted. The individual-cell-based computational
model was applied accounting also for heterogeneity i cell-to-cell adhesion properties of the cells
to predict the variety of the mvasive morphologies and kinetics observed. Inspired by the model-
driven parameters, we further on confocal-scanned the T98G spheroids and we show preliminary
results of the cell-to-cell adhesion and proliferation statuses adopted during invasion. Improving our
understanding of the underlying mechanisms, which drive and/or regulate the different invasion
patterns observed among the GB subtypes will offer opportunities for alternative and GB type-
specific drug targets to prevent post-operative tumor relapse. Furthermore, predicting the various
mvasive morphologies will potentially help to better assess the extension of invasion, which remains

undetectable by conventional imaging modalities.
4.1 Methods

4.1.1 In vitro experiments
Invasion assay

We used the GBP03-P1, GBP06-P0O and GBP0O8-P0O primary GB cell lines, as well as the US7MG

generated using the hanging-drop technique as explained previously. The 3D spheroids were formed
in a Perfecta3D 96-well hanging drop plate (3D Biomatrix, USA) by seeding a single cell suspension
solution of approximately 600 cells/50 pl of supplemented DMEM per well for each cell type used.
An agarose solution of 19% w/v was added to the plate’s reservoirs to prevent evaporation of the
droplets.

After 4 days of spheroid formation, twenty spheroids per each cell type were transferred to a 96-well
U-bottom plate, mitially cooled on ice for 15-20 minutes. The invasion solution was made by diluting
ice-cold BME Pathclear (Basement Membrane Extracts, Amsbio, Cultrex”, UK) in supplemented
DMEM in a 1:1 ratio. In the U-bottom plate, 100pl of the invasion solution was added per well
containing either a primary or a U87MG spheroid. Subsequently, the U-bottom plate was
centrifuged for 5 minutes at 300rpm, at 4° C in order to place the spheroids in the center of each
well, homogeneously distribute the invasion matrix and eliminate bubbles within it. Incubation for 1
hour at 37° C was followed to allow solidification of the matrix. As a final step, 100pl of warm

supplemented DMEM was added per well and the plate was placed at a 37° C humidified cell culture
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mcubator to promote invasion to the semi-solid gel-ike ECM matrix. The same procedure was
followed to prepare the confocal samples in the glass-bottom dishes (Greimer, USA); yet more than
one spheroid was transferred per chamber.

Negative control

As a negative control experiment, spheroids of each cell line were examined by means of growing in
the absence of the ECM-like substrate (i.e. in supplemented DMEM-F12" alone). It should be noted
that none of the cell lines used exhibit invasion in the absence of ECM and no exogenous ECM 1s
required for the spheroid formation via the hanging drop technique.

Confocal imaging

Imaging of the mvasive T98G spheroids was done n cells decorated by three different fluorescent
probes. Initially, the T98G cells were treated using the PKH26 (Sigma-Aldrich, Germany) protocol
by following the manufacturer’s instructions, as well as transfected with GFP or GFP linked to E-
cadherin plasmids. Cells were loaded before plating with the lipophilic PKH26 red fluorescent
(working solution of 4ul/ml buffer) which was used to monitor their proliferative history. Transfected
cells were cytoplasmically expressing either GFP or GFP/E-cadherin. After the invasion assay, the
spheroids were permanently fixed with 49% PFA and washed to remove the medium’s phenol red.
The fixed cells were treated with the nuclear dye Draq7 (Biostatus, UK) overnight at 1:200 dilution
to label the nuclel. Invasive T98G spheroids were imaged using a LSM 710, AxioObserver (Carl
Zeiss, Germany) confocal microscope m 10x and 40x magnification scanned at 543nm, 488nm and
640nm.

Image segmentation and analysis

Spheroids were monitored using a Leica DFC310 FX inverse wide-field fluorescence microscope
(Leica, Germany) over a total period of up to 12 days and photographed every 24h, using a 4x
objective lens and fixed acquisiion parameters. The brightfield images were semi-automatically
segmented in Matlab 6.1 (The MathWorks Inc., Natick, MA, USA).

Tumor expansion kinetics were evaluated based on: 1) the time evolution of the tumor spheroid core,
and 11) time evolution of the overall invasive rim [198]. The whole invasive area was measured by

estimating the maximum radius taken from the core center that encloses all the invasive cells. To

1 DMEM/F12 Medium is a 1:1 synthetic mixture of DMEM and Ham’s F-12 Medium; rich and complex,
containing all 21 amino acids, 10 vitamins, glucose, zinc, and iron among other components. Together, it
combines the high amount of glucose, amino acids and vitamins of DMEM, and the diversified components
of F-12.
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estimate the invasive rim, the radius of the core maternal spheroid was subtracted from the whole
mvasive radius. The mnvasive kinetic profile was quantitatively generated by statistically analysing all
results over time with regression analysis of mean valueststandard deviation.

4.1.2 Mathematical approach

In this work, we build on the HDC model originally proposed by Anderson [112], but modify several
aspects. Specifically, in order to focus on cell-to-cell adhesion, we consider the ECM to be a
homogeneous passive scaffold where cells are allowed to migrate, but matrix degradation and
remodeling are not considered. In our HDC approach, the phenotypic properties of the tumor cells
mclude proliferation, motility, cell-to-cell adhesion, oxygen consumption and death.

We assume that cell properties are intrinsic properties that are not regulated by the
microenvironment. We account for heterogeneous cell populations, which differ only with respect
to cell-to-cell adhesion properties. The rest phenotypic properties of the cells are kept the same for
all cells, unless otherwise stated. The cell adhesive property 1s applied during cell movement and
generalizes the attractive rule used in Aubert et al. [114]. Specifically, this property describes a cell’s
preference to bind with a variable number of other cells n its new position. Thus, cells select their
preferred neighborhood as they move. Cells with low cell-to-cell adhesive properties prefer empty
neighborhoods, whereas cells with high adhesive properties are attracted towards highly populated
areas. Cell movement approximates a random walk in a 2D regular lattice, but it 1s biased towards
the adhesion preference of the cell. If explicitly stated, mspired by its mutative biological counterpart,
we additionally mtroduced an intrinsic state transition probability where cells are allowed to
stochastically switch phenotype regarding cell-to-cell adhesion only during proliferation and with
probability Py, Otherwise it 1s assumed that the adhesive property 1s inherited by the daughter
cells during proliferation and it 1s fixed throughout tumour evolution. We assumed oxygen to be the
only limiting source needed by the tumor cells to grow.

The mathematical model used 1s the same as in chapter 3 and in [80, 199], yet a more detailed
description of the methodological approach follows.

Computational domain

We assume that each h X h lattice site fits a single cell, as previously described, yet of fixed cell size
equal to h=20pm.

Cell death

Lack of oxygen triggers cell death. The spatiotemporal evolution of oxygen (0) 1s described n the
PDE (1). Tumor cells die if the local oxygen concentration drops bellow 04¢qq1y. Dead cells are

essentially treated as empty space.
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Cell proliferation

The proliferation age of the tumor cells was approximated by the relevant doubling time n the
biological experiments (see chapter 3). To proliferate, cells must find empty space for their daughter
cells. Otherwise, the cell enters a quiescent state while 1t keeps searching for empty space. If a
quiescent cell finds an empty space, it immediately proliferates. The neighborhood chosen for the
proliferation was the Moore neighborhood of size r equal to 2 (for more details also see [80]).

Cell movement

In general, tumor cell motility involves highly complex mechanisms, yet for simplicity and in an
attempt to focus on cell adhesion, we only assumed random, diffusive movement and accounted for
cell-to-cell adhesion forces. Cells are allowed to move towards empty neighboring locations in the
Moore neighborhood. The diffusion equation (2) is discretized to movement probabilities for each
mdividual cell as has been described in [177]. In
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¢ and D, denote the cancer cells concentration and their diffusion coefficient, respectively.

The mechanism of adhesion preference is formulated as follows: a cell will only move to empty
adjacent locations with neighbors equal to its adhesion preference, which can vary between 0 (non-
populated area) and 7 (highly populated area). Schematically, cell movement under the iclusion of
cell adhesion preference 1s shown in Figure 20.

O O (O Figure 20. Cell movement depending on adhesion preference. Circles
. Tepresent cancer cells. The dark grey circle depicts the cancer cell, under
0 2 5 O O mvestigation. The numbers depict the occupation of each neighborhood,

excluding the cell under study. The numbers can thus take values between
| 0 (non-populated area) and 7 (highly populated area). Cells move to empty
o 1 2 sites depending on their adhesion preference. Thus, if for example the
cancer cell under study has adhesion preference equal to 0, then it will
move left randomly selecting one of the three possible positions.
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Description of phenotypes

Phenotypes with different adhesion preferences were allowed to coexist and interact within the tumor.
The different phenotypes are referred based on their preference adhesion value. A phenotype with
low adhesion value corresponds to a cell with loose cell-to-cell adhesive interactions that prefers to
be alone, while a phenotype with high adhesive value implies that a cell forms strong adhesive
mteractions, attracted by high populated neighborhoods. We categorize our phenotypes as follows:
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we call phenotypes with adhesion preference 0 and 1, low adhesive; phenotypes with preference 6
and 7, highly adhesive; and those with adhesion preference in [2, 5], middle adhesive phenotypes.

4.2 Results

The mvasion of the well-described U87MG and T98G, as well as of three primary GB cell lines was
studied m this work. In the 3D invasion assay, cell migration was fully ECM-dependent since no
mvasion was observed 1n its absence. Spheroids were monitored over a total period of 12 days and
the invasive patterns formed were consistently observed i all the experiments per cell type.

4.2.1 Invasive pattern of U87MG cells over time

Figure 21 presents consecutive brightfield images of a representative US7MG spheroid undergoing
mvasion within a 24-hour time interval (excluding the last two images, t216 and t288). As shown 1n
Figure 21, US7MG cells exhibited an immediate invasive phenotype within the first 24h after seeding.
They extended symmetrically from the core maternal spheroid towards the periphery within the
ECM-like substrate following a non-cohesive migration pattern. In accordance with relevant studies
[157, 195, 200], random prolonged cellular protrusions were also observed; yet no noticeable cell
path track in the ECM was detected in the brightfield images. This type of outgrowth behaviour
continues until approximately 72h with slight variation. After 96h, the most distant cells had reached
the boundaries of the well. In line with previous reports [200], at this time, satellite cell clusters were
also starting to form, and invasion adopted a more complex dynamic behavior. Interestingly, after
288h of allowed invasive condition with no nutritional exhaustion, the surrounding aggregates
seemed to deform, whilst the maternal spheroid, that had remarkably grown, had no more defined

borders, while all peripheral cells were prolonged.

Figure 21. Invasion of the U87MG spheroids over time. Brightfield images at a 4x magnification and
scalebar 1s set at 100pum. White arrows indicate cell aggregates.

Figure 22 shows the temporal evolution of the average values of the core and mvasive radn from all
the experiments for the US7MG spheroids based on the segmented brightfield images. The time
evolution of the negative control experiments is also depicted. Considering that after 96h, the most
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distant invasive cells of the US7MG spheroids reach the boundaries of the well, we focus on this
time period.

The mvasive radius of the US7MG spheroids showed a rapid expansion the first 24h that slowed
down at later times. The opposite behaviour 1s observed for the core radius which evolves slower
than the invasive radius. After the first 24h, the mean expansion speed equals to 9pm/h for the

U87MG cells. The expansion speed the first 24h 1s estimated equal to 32.7um/h for the US7MG
cells.

—. 1200 ) ,—‘}

£ Lo

=1000 -~

0 ¥

< 800 4 —0—invasion in vitro

e ,'f ~&—core in vitro
600 7 ~&~ control in vitro

Il

400 /

Figure 22. Time evolution of tumour core and invasive radii for the U87MG spheroids with and
without the invasive condition. The radii from twenty spheroids per timepoint were analysed with
regression analysis. The error bars denote the standard deviation.
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4.2.2 Invasive pattern of T98G cells over time

In Figure 23, T98G spheroidal growth expansion from two indicative spheroids 1s presented over
time with and without the invasive condition. The respective spatiotemporal evolution curves are
depicted in Figure 24. After day 8, the invasive T98G spheroids reach a plateau, which can be
attributed to the fact that the mvasive cells extend up to the borders of the well. A radial, non-
symmetric mvasion is observed. Under the invasion-blocked condition, the T98G spheroids evolve
similarly to the core of the invasive spheroids over time. This might be indicative of a proliferation-
assocliated nvasion.

Figure 23. T98G spheroids over time without (A) and with (B) the ECM-like substrate. Brightfield
images at 4x magnification. Scalebar is set at 100um.
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Figure 24. The spatiotemporal evolution of the invasive (whole area, invasive rim and core) and the
control T98G spheroids.
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4.2.3 Invasive pattern of primary cells over time
GBP03

Primary GBP03-P1 spheroids adopted an apparently alternative, cohesive invasive morphology with
boundary instabilities, not reported before in relevant studies [49, 158, 183, 196, 201]. Figure 25
lustrates the evolution of the mvasion pattern of a representative primary spheroid. The same
mvasive pattern was consistently observed in all primary GB spheroids of the same patient that we
tested. Initially, few mnvasive cells seem to asymmetrically exit away from the maternal core spheroid
towards the periphery. At intermediate time points, the invading cells appear to collectively form a
cohesive, sheet-like structure (as described 1n [183]). Finally, in the following time points until 288h,
the invasive pattern appears unaltered, but still enhanced.

to =24 = t48 = t72

.

Figure 25. Invasion of the primary GB spheroids over time. Brightfield images at a 4x magnification
and scalebar 1s set at 100pum.

The temporal evolution of the average values of the core and mvasive radi, as well as of the negative
control, from all the experiments for the primary GBP03 spheroids based on the segmented
brightfield images 1s depicted i Figure 26. We focus on the first 96h for comparative reasons with
the US7MG cells.

The invasive radius of the primary spheroids displayed a slow expansion during the first 24h that
was followed by a faster inear expansion. Various mechanisms can affect the motility of the GB cells
m vitro ncluding stress as the cells are transferred to an invasion matrix [157] and ECM production
by the tumor cells [47], which dynamically alter their kinetics. Although interesting, the exact
underlying molecular mechanisms involved i motlity regulation are beyond the scope of the
present study. In both the U87MG and the primary spheroids, the core radius evolves slower than
the mvasive radius. After the first 24h, the GBP03 mean expansion speed equals to 7.1um/h.
Nevertheless, in the first 24h the expansion speed 1s considerably different between the GBP03 and
the US7MG and estimated equal to 1.7 and 32.7 pum/h, respectively.
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Figure 26. Time evolution of tumour core and invasive radii for GBP03-P1 spheroids with and
without the invasive condition. The radii from twenty spheroids per timepoint were analysed with
regression analysis. The error bars denote the standard deviation.

GBP06

The mvasive phenotype that was observed in the GBP0O6-P0 cells following the same invasion assay
was similar to that of the GBP03-P1, but of different dynamics. In general, as it can be seen in Figure
27, the GBP0O6 spheroids were less expansive over time.

vl

Figure 27. The mvasive morphology adopted by the GBP06-PO spheroids under the same
experimental setup. Photomicrographs are brightfield images at a 4x magnification and scalebar is
set at 100 microns.
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GBP08

As with the GBP03 and the GBP06, also the GBP0O8-P0 cells appear to collectively and cohesively
mvade the surrounding ECM-like substrate under the same experimental setup (see Figure 28).
Interestingly, as it can also be shown n Figure 29, the mitial delay was replaced by a highly expansive
phenotype over time after 72h of free invasion.

Figure 28. The invasive morphology adopted by the GBP08-P0O spheroids under the same

experimental setup. Photomicrographs are brightfield images at a 4x magnification and scalebar 1s
set at 100 microns.
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Figure 29. The invasive growth dynamics of all the GB cell lines tested. The radius of the invasive
rim is plotted over time.
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4.2.4 In silico experiments
We further on investigated the invasive profiles of the U87MG and the GBP03 spheroids with the
HDC model.

The in silico tumor was mitialized to a size close to the initial tumor size of the biological experiment
and grew for 9 days unless a cell reached the edge of the computational domain within a proximity
of 5 cells. Thus, a disc of size approximately 140um in radius for the US87MG and of 200um for the
primary cells located in the center of the computational domain was mitially assumed completely
filled with cancer cells. The simulations were repeated 50 times for each cell line. Variation in the
computational results derived from the randomness in the cellular movement and the arbitrary
mitialization of cellular phenotypes and cell age. To describe the different invasion patterns observed,
we assumed that tumors are composed of phenotypes with different adhesive properties. Specifically,
we focus on the temporal evolution of the core and the mvasive radii, as well as the local compactness
and local sparseness of the tumor.

A spectrum of different morphologies arises when phenotypes of various cell-to-cell adhesion
properties are combined. These morphologies vary from highly compact, where invasion 1s hardly
observed, to cohesive patterns and even to non-cohesive migration patterns, under the same
microenvironmental conditions. As expected, highly adhesive phenotypes strongly attract and are
attracted by many other cells, thus forming dense and symmetric patterns with limited motility and
reduced mvasive radius. On the other hand, phenotypes with loose cell-to-cell interactions adopt
non-cohesive migration strategies and travel unbiased further away from the maternal spheroid
showing decreased compactness and increased mvasive expansion and sparseness. Interestingly, the
mterplay of these phenotypes can produce a variety of different dynamics for the expansion of the
core and mvasion radii, as well as a variety of morphologies with different overall compactness and
sparseness. In this set, all the experiments were performed with fixed proliferation and diffusion

rates equal to 3lh and 5 - 10™%¢m? /s, respectively.

We observed that in order to describe the US7MG cell line, low adhesive phenotypes and highly
adhesive phenotypes should be considered. The latter are necessary to describe the maternal
immotile core, while the former represent the highly migrating mvasive cells. Figure 30a shows the
simulated results of the U87MG invasive spheroids at 96h. Few phenotypes of low adhesiveness can
also be observed trapped within the core due to spatial competition. The proliferation time was set
equal to 31h and the diffusion coefficient was set equal to D, = 5 - 10~%cm?/s.
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Figure 30. In silico predictions of the U87MG cell type: a) snapshot of the simulated US7MG
spheroid at 96h (left), b) the temporal evolution of the core radius and c) the invasive radius for both
the in vitro and 1n silico experiments over time.

4.2.4c Phenotypes of middle and high adhesiveness resemble the mvasive pattern of the primary spheroids
To recapitulate the cohesive primary cell line morphology, phenotypes with middle to strong cell-
to-cell adhesive interactions were assumed. Low adhesive phenotypes were excluded from this
experiment. We should note that alternative combinations of phenotypes may possibly produce
similar results, as for example using only the middle adhesive phenotypes. However, in that case the
tumor compactness initially decreases and only after a period of time increases forming a compact
core. On the contrary, including phenotypes with high adhesion, an almost immediate increase in
tumor compactness was observed better resembling the core expansion of the i vitro experiments.
The diffusion coefficient was set to D, = 2 - 1078¢m? /s and the proliferation time was set to 25h,
mn accordance to the doubling time estimate. A snapshot at 152h of the tumor evolution 1s illustrated
m Figure 31a. As can be seen in Figure 31b, apart from the trapped cells in the core, we can observe
that relatively low adhesive phenotypes (types 2, 3, 4) tend to appear in the tips of the tumor sprouts,
while phenotypes with relatively stronger cell-to-cell adhesive interactions (types 5, 6 and 7) are more
likely to be found closer to the tumor core. Interestingly, all phenotypes coexist within the tumor,
increasing their populations as tumor evolves, with the phenotypes of types 4 and 5 to be
systematically present at higher. Moving towards the center, the tumor becomes denser and after
approximately 150h necrotic cells start to appear. It 1s noteworthy that as time passes new gaps are
formed, while the gaps already formed between the sprouts gradually close without trapping any of
the highly adhesive phenotypes.
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Figure 31. In silico predictions of the primary cell type. A snapshot of the simulated primary
spheroid at 96h (A) and the temporal evolution of the invasive radmus of both the i viztro and in
silico experiments (B) are shown.

4.2.4d Temporal evolution predictions of spheroid expansion

Note that, 1 silico, for the primary GBP03 cell type, we cannot distinguish the core from the invasive
areca based on the distribution of phenotypes, as we can do for the US7MG spheroids due to their
mixed spatial distribution. Thus, for the primary spheroids, we focus only on the temporal evolution
of the mvasive radius. Furthermore, in order to better approximate the different kinetics observed
before and after the first 24h, we assumed two distinct phases mn tumor expansion governed by
different motility rates i addition to the single motility rates. Specifically for the U87MG spheroids,
we set the diffusion coefficient in the time period [0, 24]h equal to D,; = 1.5 - 1078 ¢m? /s and for
the rest period equal to D, = 3 - 1072 ¢m?/s. On the other hand, for the primary GB cell line we
assumed D =4-1071%m?/s and D, = 4-1078¢m?/s. The temporal evolution of the
expansion for both the US7MG and the primary spheroids 1s shown in Figure 30 and Figure 31,
respectively. The relative in vitro observations are also shown for direct comparison. By allowing
different motility rates at the different growth phases the mn vitro and the in silico curves converge for
both cell types.

4.2.4e The role of proliferation and motility rates

Variation in proliferation time and diffusion coefficient affects overall tumor growth and morphology.
Specifically, for the US7MG simulations, mcreased proliferation rate substantially affects the cell
population, increases the expansion rate of the core and also affects the expansion rate of the invasive
radius. On the other hand, increased motility rate considerably increases the invasive radius, but
only slightly affects the expansion of the core and the cell population. Note that counterintuitively,
icreasing the proliferation of the US7MG cell type results in decrease of the overall compactness
and ncrease of the sparseness after a time period. Due to the significantly less space competition,
the outgrowth of the mvasive cells 1s favored relative to the growth of the core cells.

Notably, for the primary spheroids, proliferation strongly affects the expansion of the invasive radius,
as well as the cell population. Increased proliferation also results in more smooth and round tumors
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mcreasing tumor compactness and reducing sparseness. Similarly, increasing the motility rate of the
primary cells results in increase of both the mnvasive radius and the cell population as it allows more
free space for cell growth and motlity. Increase i motility rate considerably decreases the

compactness of the spheroid and mncreases sparseness.

Interestingly, variations in proliferation and motility rates also alter the relative frequency of
phenotypes. Overall, for the primary GB spheroids, we observed that by either increasing the
motility of the cells or decreasing their proliferation, less compact tumors are formed allowing more
free space for the middle adhesive phenotypes to relatively increase their population. We should
note however, that by selectively inhibiting the proliferation of the middle adhesive phenotypes, the
highly adhesive phenotypes dominate in the population forming fully compact tumors.

An ntrinsic state transition probability of tumor cells was mtroduced to allow them to stochastically
change phenotype during mitosis with probability equal to 0.5. For the simulations regarding the
U87MG cells, we assume four possible phenotypes with adhesive values 0, 1, 6 and 7 (low and highly
adhesive). All transitions among these phenotypes are possible and are equally likely. For the
simulations of the primary cells, we assume six possible phenotypes (middle and highly adhesive)
with adhesive values 2, 3, 4, 5, 6 and 7. Again, each phenotype has an equal probability of being
selected. The new phenotype was randomly chosen and applied to both daughter cells.

The result of this phenotypic switch was that now the self-organization of cells reflected in the diverse
frequency of each phenotype as tumor evolves 1s not evident and all phenotypes mvolved have equal
representation in the population. Regarding the US7MG cell type in particular, although slight
changes were observed i the tumor expansion, interestingly, cell aggregates peripherally to the
maternal spheroid similar to those appearing at the later stages of U87MG spheroids invasion (Figure
21) were also observed. Regarding the primary GB spheroids, we observed that an equal contribution
of all phenotypes i the tumor composition introduces an eventual decrease of the overall cell
population and tumor expansion and prompts the formation of a denser tumor similar to the
morphology observed after 120h in the respective biological experiment (Figure 25). Thus, allowing
random phenotype transition in both cases could possibly predict the morphologies observed at later
time points, although alternative mechanisms triggered by the evolving tumor microenvironment and
not necessary requiring mitosis could account for these morphologies, too. Even more, a
microenvironmental regulated phenotypic switch could also be a potential mechanism explaining

the evolution of the invasion pattern.

4.2.5 TImaging the physiology of invasion

Both the computational modeling results and the experimental observations of the T98G (not only)
mvasive spheroids indicated the mmportance of at least two major factors during mvasion;
proliferation and cell-to-cell adhesion. To qualitatively validate our above hypothesis, as well as
earlier studies [202, 203] proposing a connection between proliferation and invasion, we assessed
the distribution and topology of physiologic fluorescent markers. More specifically, Figure 32 depicts
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the maximum intensity projection of a T98G spheroid after 24h of free imvasion. The PKH26 signal
mtensity (red) that 1s inversely correlated to proliferation, indicates that highly proliferative cells
populate the outer invasive rim. Additionally, sporadic mitotic cells (blue) are observed (arrows)
within the invasive rim. Interestingly, the dividing cells can be also found perpendicularly to the plane
of focus. Overall, these are in support of concurrent proliferation and mvasion processes. When
focusing at the invasive regions, the cytoplasmic GFP expression (green) is indicative of the cellular
protrusions and/or cytoskeleton rearrangements formed during invasion. The E-cadherin expressing
cells are localized in the regions of cell contact during invasion. These mvasive phenotypic features
mcluding strands of numerous cells, cell-to-cell discontinuous cohesiveness and sporadic
proliferation, resemble the collective cell invasive pattern [183].

Figure 32. Confocal image of a T98G invasive spheroid after 24h. B. Magnified illustrated invasive
region. C. The brightfield image of the invasive spheroid of image A. D.-E. An invasive region in
both fluorescent and brightfield images. Cells that are in contact appear to have E-cadherin
expression at the adhesive spots. High PKHZ26 (red) signal intensity indicates low proliferative activity.
Nuclei are shown in blue. GFP is shown in green. White arrows depict dividing cells. Scalebar is set
at 100pum.

4.3 Discussion

In this work, we explored the invasive potential of GB cells using a rather simple, but yet realistic,
set of experimental parameters. We utilized patient-derived cancer cells along with the established
and commonly used US7MG and T98G cell lines. GB cells are cultured i 3D in an ECM-like
substrate. Our biological experiments show that the two types of tumor spheroids, the primary and

the secondary, display considerably distinct invasive patterns suggesting different mechanisms of cell
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migration. Surprisingly, none of the primary cell lines developed a similar invasive pattern as of the
one expected from the bibliography or observed in both the secondary cell lines. In an attempt to
explore possible mechanisms involved, an individual cell-based mathematical approach was adopted
to indicate the potential role of the intrinsic heterogeneity with respect to cell-to-cell adhesion on
tumor morphology and growth dynamics.

It has to be clarified that the mvasive capacity is not necessarily correlated to the aggressiveness of
the cell line. Furthermore, not all GB cell cultures expressing the same invasive phenotype evoke
the same underlying mechanisms and/or are necessarily genotypically related. Comparative studies
between both phenotypic and molecular descriptions should be carried out in cell lines, since several
GB molecular subtypes have been classified [20, 76]. For this application, the GBP03 and the
UB7MG cell lines were chosen.

We implemented the 3D tumor spheroid invasion assay [157, 204] in order to investigate the initial
steps of mvasion from spheroids formed using single cell suspensions. The main advantage of this
assay as compared to standard trans-well assays 1s that it can recapitulate the basic 3D structure of
tumours and replicate features of collective cell invasion observed in vivo. In addition, this is a simple,
quick and standardized assay that enables analysis of mvasion with high reproducibility in a 96-well
plate format. However, we should note that monitoring of mvasion in the existing 3D spheroid
mvasion assays relies on brightfield imaging of the spheroid from the bottom of 96-well U-plates,
which confines microscopic analysis of 3D spheroids to a 2D plane leading to exclusion of cell

clusters invading in the depth dimension.

Based on the in vitro mvasive protocol followed here, the two GB cell lines used, exhibited a
markedly different mvasive pattern. In consistence with other studies [157, 195, 201, 204-207],
U87MG cells appeared to colonize the ECM via a process indicating non-cohesive, starburst
migration. On the other hand, the GB primary spheroids kept expanding to massively conquer the
surrounding regions rather than individually migrating potentially governed by homotypic attraction
[208]. A unique, collective mvasive pattern with morphological instabilities of cohesive protrusions
near the boundary resembling perivascular invasion in the brain [49] was observed. It 1s well
recognized that exploring the physiological and molecular patterns of these cells might enable the
design of novel therapeutics targeting the recurrence process. The ability to early detect the
phenotypic composition of an evolving tumor 1s undoubtedly of significant prognostic value.

In order to further investigate potential mtrinsic mechanisms involved in the mvasion patterns
observed, an idividual-cell-based computational model accounting for intra-tumoral heterogeneity
was developed. More specifically, different cell-to-cell adhesive properties adopted by the GB cells
were assumed, although additional or even alternative mechanisms could also play a role in the
observed tumor behaviour. Reher et al. [113] have extensively studied mathematically the role of
cell adhesion heterogeneity specifically on cell dissemination opening the question of whether this
heterogeneity 1s present in gliomas and how it affects the migration mechanisms and tumor
morphology. In support to our work, recent studies [113, 185-191] have shown differential
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expression of cadherins, as well as observable disorganization and instability in cell-to-cell
mteractions within various GB cell Iines. Primary cells most usually overexpress cell adhesion
molecules such as integrins or cadherins, whilst common/established cell lines do not [45, 55, 113,
209]. Furthermore, complementing cell-to-cell, cell-to-KCM interactions were also shown
computationally to play an important role i tumor nvasion with cell-to-cell interactions affecting
predominantly the invasion pattern and cell-to-ECM influencing the invasion speed [112, 210]. A
variety of mathematical models have been developed to describe the emergence of invasion in cancer
cells and GB specifically as summarized in Alfonso et al. [107] yet, to the best of our knowledge,
none of these studies focuses on the formation of invasive patterns, by taking into account the
mterplay of co-existing phenotypes with different cell-to-cell adhesion properties on tumor evolution
and morphology. In this work, tumor expansion and morphology were explored and compared with
the i vitro experimental data. Tumor expansion was quantitatively evaluated based on the temporal
growth of the tumor spheroid core and the invasive radi. In general, tumor expansion 1s attributed
to both the proliferative and mugratory capacity of tumour cells. Thus, their role on tumor
morphology and evolution was also mvestigated under the proposed framework.

Interestingly, we showed that by selecting (during model mitialization) phenotypes with different cell-
to-cell adhesion preference to coexist within the tumor 1s sufficient to resemble the distinct invasion
patterns and the expansion rates we observed in vitro between the primary and the US7MG cells.
We also observed that variation in proliferation time and diffusion coefhicient affects overall the
tumor compactness, sparseness as well as the tumor expansion rates and changes the relative
frequency of phenotypes according to cell type indicating potential mechanisms that could alter
tumor evolution and mhibit invasion. Forcing a strong dependence between adhesiveness and
proliferation to mimic a potential “go-or-grow” mechanism, we observed that although for the
US7MG cells such hypothesis could possibly apply, proliferation plays a more complex and
mmportant role for the primary cells under the specific modelling assumptions. Interestingly, we also
observed that by allowing cells to randomly switch phenotypes throughout tumor evolution, the self-
organization of cells reflected in the diverse frequency of each phenotype was lost and all phenotypes
mvolved have equal representation in the population with an impact on the evolution of the primary
cell type. More specifically, in the primary tumors, we observed that by disabling the phenotypic
switch, both the total tumor population and expansion increased indicating that random phenotypic
switch with respect to cell-to-cell adhesion does not favor tumor evolution.

It has to be noted that though the main aim of this work was to describe the different invasive
morphologies experimentally observed, hypotheses of environmentally-triggered motility such as the
“go-or-grow” [211] and/or hypoxia-driven migration [212, 213] regarding the proliferation to
migration and/or adaptation to cell death switch would be nteresting to be included in our future
work in order to explore their role in tumor morphology and dynamics. Additionally, 1t would be
also mteresting to extend our proposed mathematical model in 3D and explore whether and to what
extend the observed morphologies are affected, although the work of Anderson [214] has shown

very similar invasive patterns between the 2D and 3D implementation of his model. On top of that,
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the effect of a more realistic description of the motility in a lattice-free framework that does not limit
the possible directions of cell movement [132] would be also of interest.

GB cells have been shown to exhibit a different invasive phenotype among different ECM
components [64, 215], mainly regarding collagen type [216, 217] and nigidity/stiffness [31, 218, 219].
In addition, GB spheroids are also able to self-produce ECM [164] (see also APPENDIX Figure
44), while ECM deposition dynamically changes over time, a fact that should also be taken mto
account n our future mvestigations. Use of time-lapse cell migration monitoring will be of
mmportance to verify the direction and velocity of cell movement, as well as the sprouting
development. In future studies, more advanced imaging modalities should also be employed, such
as light-sheet fluorescence microscopy (LSFM) or multispectral optoacoustic imaging (MSO'T),
which offer superior resolution at the sub-cellular level [145]. The prelimmary results of the
physiologic markers we show regarding both proliferation and cell-to-cell adhesion using confocal-
mmaged T98G imvasive spheroids are in this direction. The confocal 1maging invasion assay was
proved easier to be applied in the T98G spheroids. Yet, a comparative study between all GB invasive
spheroids should be formed and extrapolated to further molecular markers. In combination with
optical reporters of cell physiology, 1.e. apoptosis, cell junctions, cell division, neural markers, etc.,
it will be of great benefit to further dissect the GB mvasion properties and even better approximate
the cellularity within a given tumor volume. Another technique that could be beneficial as a measure
of compactness of the spheroids could be the immunohistopathological examination of permanently
fixed spheroids, where specific markers of cellularity are available. On top of that, more advanced
hybrid spheroid 3D invasion assays such as co-cultures with organotypic brain slices [220] (see also
APPENDIX Figure 45) and microfluidic platforms [221, 222] are still under development and could
be used to better recapitulate 2 vivo conditions accounting for interactions among different cells,
shear forces and vasculature.
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5. Pre-clinical 1n vitro and in silico drug screening

The Temozolomide-Doxorubicin therapeutic paradox 1s targeted. An m vitro drug screening
protocol 1s proposed combining 2D and 3D experiments with LSFM 1maging to monitor the drug-

mduced impact on the primary GB cells. A potential computational approach 1s assumed.

Adjuvant Temozolomide (T'MZ) chemotherapy is considered the front line GB treatment along with
maximal safe surgical resection and radiotherapy. Prognosis remains poor mainly because of the
high inter- and intra-tumoral heterogeneity and post-surgery relapse. GB recent trends in preclinical
[223-226] and clinical [227-229] trials usually refer to Doxorubicin (DOX); a well-known (breast)
cancer chemotherapeutic which is also approved from the FDA (Food and Drug Administration).
For example, as depicted in Figure 33, there are currently at least four clinical trials worldwide
recruiting GB eligible patients to test DOX-derivatives and DOX-excipients either as a monotherapy
or adjuvantly.

‘ Status ‘ Study Title ‘ Conditions ‘ Interventions ‘
Recruiting Prolonged Exposure to Doxorubicin in Patients With Glioblastoma Multiforme and Diffuse Intrinsic Pontine Glioma » Glioblastoma (GBM)  « Drug: Doxorubicin s Meyer Children's Hospital
« DIPG Florence, Italy
» Brainstem Glioma,
Pediatric
* (and 5 more )
Not yet Doxorubicin-loaded Anti-EGFR-immunoliposomes {C225-Ls-dox] in High-grade Gliomas = Glioblastoma + Drug: C225-ILs-dox
recruiting
Recruiting A Study to Evaluate the Safety, Tolerability and Immunogenicity of EGFR(V)-EDV-Dox in Subjects With Recurrent Glioblastoma Multiforme (GEM) + Glioblastoma + Drug: EGFR(V)-EDV-Dox » John Hopkins Hospital

Recruiting

Astrocytoma, Grade [V

Using MRI-Guided Laser Heat Ablation to Induce Disruption of the Peritumoral Blood Brain Barrier to Enhance Delivery and Efficacy of Treatment of « Glioma + Device: MRI-guided laser
Pediatric Brain Tumors « Pilocytic Astrocytoma ablation

« Anaplastic Astrocytoma * Drug: Doxorubicin

Baltimore, Maryland, United States

» Lenox Hill Hospital, Northwell

Health
New York, New York, United States

= Washington University School of

Medicine
Saint Louis, Missouri, United States

« {and 6 more ) + Drug: Etoposide
« f{and 2 more...)

Figure 33. List of current GB clinical trials involving DOX worldwide. Provided by the clinicaltrials.gov.

Taken for granted the sonorous impact of the two drugs in chemotherapy and GB’s symptoms
restraint necessity, the research regarding possible alternatives in the therapeutic schemes proposed
1s evident. Apart from the novel idea to administrate an old chemotherapeutic of wide applicability,
the few relevant studies that exist aim at either the explanation of the DOX mechanism of action
and toxicity to the GB cells [223, 226], the combined TMZ-DOX treatment option [223, 229] or
the DOX drug delivery potentials within the brain [225, 226, 230] and the GB cells [231]. It has to
be clarified that there is also recent literature concerning the i vivo combination of the two drugs,
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yet in cancer types other than GB [232-234]. As regards the in silico approximation of a TMZ-DOX
combination there is none to our knowledge. Nevertheless, there are computational works for the
population dynamics and treatment responses based on biological data dedicated to the simulation
of other drug combinations applied in GB progress, such as the use of co-treatment TRAIL (tumor
necrosis factor TNF-related apoptosis-inducing ligand)-TMZ. therapy in order to predict induced
cell death [235] or to other cancer types as well, such as drug response prediction in breast cancer
depending on dosage [175] or the combination of an inhibitor of proliferative endothelial cells and
a cytotoxic drug for the proliferative tumor cells [103]. There is a variety of TMZ simulations
concerning the drug efficacy prediction in GB patients based on (follow up) imaging data [236, 237].
On the other hand, there are many DOX-related bioengineering references related to the DOX-
induced senescence in the cancer cell population and the effective dosage in treatment planning [175,
178]. In order to better-understand the explanations proposed, it 1s crucial to describe the key

features of each drug.
TMZ

TMZ. 1s a lipophilic imidazotetrazine derivative of a DNA-alkylating agent (dacarbazine) which was
firstly introduced in cancer therapy in the 1970’s to target melanoma cancer. Lately, TMZ was
advanced to GB and astrocytoma patients [238] and has the trade names Temodar®, Temodal®,
Temcad” and others [239]. TMZ is well-distributed in the brain being able to overpass the restrictive
BBB with a bioavailability of 98% when orally administrated [240]. It has to be noted that the brain
tumor-to-plasma TMZ-disposition 1s most usually higher than the brain-to-plasma one since the BBB
permeability of the diseased brain tissue 1s higher and therefore, the ipophilic TMZ. 1s supposed to
be better-delivered through the compromised BBB towards the tumor lesion [241]. TMZ. is a small
prodrug (see Figure 34) that is rapidly hydrolyzed to its short-lived active metabolite (MTIC") at
physiologic pH, with no need for an enzymatic reaction [238]. MTIC 1s further on metabolized to
react with the DNA. The well-described molecular mechanism of TMZ can be summarized as
blocking the cell division process by disrupting the DNA replication and subsequent G2/M cell cycle
arrest accompanied or not by cell death. Half of the TMZ-treated GB patients do not positively
respond 1n treatment [239], vet to date, no other chemotherapeutic against GB has been reported
to be more effectual. In TMZ-sensitive GB cells, the MTIC’s active compound most usually adds a
methyl group in the purine DNA bases; N” (709%) or O" (9%) positions of the guanine residues
resulting in the incorporation of a thymine residue opposite to the methylguanine or N* (69%) position

12 TMZ is hydrolyzed in physiologic pH within the cell and gives its active compound, MTIC or 3-methyl-
(triazen-1-yl) imidazole-4-carboxamide. Followingly, MTIC prevents cell division by disrupting normal
DNA replication. MTIC rapidly degrades to 5-aminoimidazole-4-carboxamide (AIC) and
methyldiazonium ion which is an active alkylating species. This species produces methyl adducts at the
accessible nucleophilic atoms in DNA.
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of the adenine residue followed by the eventual activation of the mismatch repair mechanism up to
apoptosis depending on the DNA damage extent [238, 239]. TMZ. response may also vary between
senescence (G0 phase option) which is the most likely to occur, autophagy preceding apoptosis and
required to induce senescence or apoptosis, but not necrosis (less than 5% of cell death), all triggered
by the single-base lesion methylguanine O' residue in a temporal manner [242]. TMZ-resistant cells
most usually overexpress the O methyltransferase (MGMT) and other relevant components and/or
have limited DNA repair mechanisms so that the tolerance of the treated cells 1s increased [239].
Especially for the MGMT, it 1s not only the MGM'T protein expression levels that have been
correlated to the TMZ response, but also the MGMT promoter which, if hypermethylated, 1s
assoclated with enhanced TMZ responsiveness both 1 vitro and in chinic [238]. When comparing
TMZ-resistant GB cell lines to the parental cell line of which they derived from, both migration and
proliferation appear to increase [243]. It has to be noted that the U87MG cell line 1s bibliographically
categorized as TMZ-sensitive, whilst the T98G 1s supposed to be TMZ-resistant [239]. As regards
the bibliographic ICs values, the recommended dosage for the cells varies between 10-1000uM or
even more depending on the cell line, the cell culture (2D or 3D) and the cytotoxicity assay used
[239], for the animals is 120 mg/kg/day [239] and for the patients is 150-200 mg/m’once per day for
5 days every 28 consecutive days [238, 244].
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1 e )f\o.ﬂ
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Temozolomide (TMZ) Doxorubicin (DOX)

Figure 34. Structural formula of TMZ (left) and DOX (right), both FDA-approved
chemotherapeutics. TMZ is a small molecule of ~194 Da, whilst DOX i its most common wild
type form is a natural product of ~ 543 Da.
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DOX

DOX is one of the oldest chemotherapeutics being reported from the 1970’s, routinely used for
various cancer types. It is the generic name of the drugs Adriamycin®, Rubex® and others. DOX
1S cytotoxic, a non-selective class I anthracycline and antitumor antibiotic, extracted
from Streptomyces peucetius var. caesius [245]. DOX has the major side-effect of cardiotoxicity
[226] in means of heart pumping capability and this is why it has to be administrated in lower doses
if intravenously mjected and there 1s a lifeime maximum dose depending on the patient. Especially
regarding the brain interstitium, DOX is unable to overpass the BBB because of 1) high molecular
weight, 1) low lipophilicity and 11) the efflux from the CSF (cerebrospinal fluid) due to the p-
glycoprotein [226]. The main reason why DOX is not widely used in GB treatment 1s that in order
to achieve adequately effective concentration within the brain via systematic administration, the
adverse reaction to avoid congestive heart failure is possible. The maximum recommended
cumulative dose for patients is 450-550 mg/m’ [246]. Interestingly, there is no pill for DOX. On the
other hand though, it has been shown that the effective concentration against GB cells 1s extremely
low = 10-50 ng/ml [226] or ~ 0.05uM in 2D and 0.17uM in 3D in vitro studies [247]. There has
been reported pH-related chemoresistance regarding DOX; DOX influx 1s not facilitated in the
common cancerous acidic extracellular pH and DOX efficacy increases in alkaline intracellular pH
[248]. DOX is considered a cell cycle-specific chemotherapeutic because it affects only dividing
tumor cells. The mechanism of action of DOX 1s not fully understood. More specifically, it disrupts
the DNA repair mediated by the topoisomerase II resulting in a large number of DNA fragments,
it itself intercalates genomic and mitochondrial DNA molecules inhibiting transcription and it
mcreases quinone type iron-mediated free radical production which damage the cell structure up to
cell death [245]. DOX most usually promotes necrosis of the previously proliferating cells 24h after
treatment [249] and even prolonged late effect [250]. As an anthracycline, DOX within the body 1s
characterized by a rapid distribution phase and a slow elimination phase, but the drug’s distribution
1s slow within the tumor since it shows high affinity for the biomolecules. However, there 1s no need
for excessive doses to assess the mner tumor regions since DOX is stored within the cell and re-
released after cell death [251] to accumulatively affect neighboring cells. A unique characteristic of
DOX is that, unlike other chemodrugs, it has autofluorescence often used to identify interaction
with the cancer cells [252].

In this work, the own-established primary GBPO08-P0 cell culture was used, together with the well-
studied US7MG cell line which served as control. The primary GB cell line 1s used in order to result
in unbiased treatment outcome and better recapitulate the GB heterogenic nature, while the
secondary one to standardized the initial drug concentrations and efficacy. 3D spheroids were
generated and treated with a range of TMZ and DOX concentrations, based on the ICs values
previously estimated m 2D. Optical microscopy was used to monitor the growth pattern for up to
approximately 12 days after treatment. Sensitivity to both drugs was observed; DOX in general was
found to be effective i less concentrated doses. In order to further discriminate growth mhibition
i disabling cell division from eventually leading to cell death, we used LSFM 1mmaging to visualize
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the drug penetration and cell death. According to the fluorescent images, DOX was able to
accumulatively cause necrosis. On the other hand, in TMZ-treated spheroids, growth-inhibiting
effects were observed i a non-consistent dose-response relationship. Our results are in line with
variable drug responsiveness of individual GBs. The option of a TMZ-DOX therapeutic scheme to
disable proliferation and increase cytotoxicity against GB 1s indicated. The results can be further
used to parametrize and validate our GB predictive computational algorithm to support this
hypothesis and simulate possible therapeutic schemes including a metronomic combination of the
two drugs. Such a feasibility is presented n the last section.

5.1 Methods

5.1.1 Adherent cultures and drug treatment

Our own-established GBP08-PO primary GB cell culture was used. The U87MG cell line was used
as a control for the 2D experiments to standardize the drug concentrations with bibliographic ones.
Cells were cultured m 48-well plates iIn DMEM++ in standard lab conditions. Twenty four hours

after seeding (50000 cells/ml/well) cells were drug-treated and incubated for 72hrs.

5.1.2 Cell viability assay
The MTT (3-[4, 5- dimethylthiazol-2-y1]-2, 5-diphenyl tetrazolium bromide) n vitro toxicology assay
was carried out as per manufacturer’s recommendations (Sigma Aldrich, USA). Absorbance was

spectrophotometrically measured at 590nm and the background absorbance was measured at

660nm.

5.1.8 Spheroid generation and drug treatment

An nitial single cell suspension solution of approximately 625 GBP0O8-PO0 cells was used to generate
the spheroids via the hanging drop technique. The spheroids were grown for up to 23 days and
treated with a range of concentrations of the anticancer agents DOX and TMZ from day 4 to day 7
(as in [178])", based on the ICx values previously estimated in 2D. From this point onward, half of
the medium was replaced with fresh every two days. Every three days, photographs of the growing
spheroids were captured in a Leica DFC310 FX mverse wide-field fluorescence microscope (Leica,
Germany) using a 4x magnification and standard acquisition parameters in order to monitor the
spheroid growth.

5.1.4 LSFM imaging
We employed LSFM 1maging to investigate the response of the GB primary spheroids to the front
line chemotherapeutic agents, DOX and TMZ, respectively.

13 10ul of medium were removed of each well and replaced by the appropriate drug solution so that the
final dilution (1:5) was conducted within the well. Control spheroids were treated with 1:1000
dimethylsulfoxide (DMSQO) solvent, in which all the drugs stock solutions were diluted.
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Apparatus description

As illustrated in Figure 35, the custom built LSFM is composed of two separate light paths, one for
tllumination and one for detection that are established on orthogonal axes. For the specimen
llumination, a set of continuous wave diode lasers are used. Each laser beam 1s introduced with the

use of a flip mirror in the illumination path, resulting to three separate co-incident and co-aligned
beams. The selected laser line 1s expanded and then directed to a cylindrical lens and between them,
an 1r1s diaphragm defining the beam diameter and a vertical slit enhancing the performance of the
cylindrical doublet are placed. The laser beam 1s shaped by the cylindrical lens into a thin plane of
light (light sheet) and focused on the corner mirror. After the mirror the formed light sheet 1s imaged
through a 2x telescope to the back focal plane of the illumination objective (Mitutoyo, Plan Apo,
5x/0.14, WD=84.0mm). The detection path i1s composed of a second microscope objective
(Mitutoyo, Plan Apo, 10x/0.28, WD=33.5mm) that is used in order to collect the emitted light and
project it through an apochromatic doublet tube lens (I'TL.200, Thorlabs) on a thermoelectrically
cooled, electron multiplying CCD camera (1004x1002 pixels sensor, pixelsize: 8pm) (Ixon DV88)5,
ANDOR Technology). Right after the detection objective, an 1ris diaphragm is placed in order to
alter the numerical aperture (NA) of the detection and thus, control the depth of field. Between the
ris and the tube lens a filter wheel 1s placed with various bandpass emission filters (479/40nm,
512/17nm, 605/70 and 700/40nm) in order to record the desired part of the emitted spectrum as

appropriate for each biomarker.

detection
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Figure 35. LSFM apparatus

For appropriate imaging results only a very thin region around the focal plane of the specimens has
to be illuminated. Moreover, the light sheet has to be established orthogonally to the detection axis
with its thinnest part placed in the middle of the field of view. The resolution of the LSFM 1s defined
by the properties of the detection (lateral resolution) and the illumination (axial resolution) axis,
respectively. As a result, the resolution 1s anisotropic. The combination of multiple views of the

specimen along different direction can result in almost 1sotropic resolution similar to the lateral one.
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Sample preparation
The sample 1s placed and stabilized inside fluorinated ethylene propylene (FEP) tubes that contain

an index matching aqueous solution of Cygel (Biostatus, UK). FEP tubes were chosen due to their
refractive index that 1s similar to that of water. The tubes are then inserted inside a tank made by
antireflection optical glass (Hellma Analytics), filled with warmed water in order to maintain Cygel
solidification and stabilization of the spheroid. The specimen 1s mounted to a sample holder with 4
degrees of freedom. Four motorized software controlled stages (8MT175, 8MR180, Standa) allow
the micrometric translation along x, y, and z-axes and rotation around the vertical y-axis.

DOX penetration into the spheroids was determined by direct imaging of its inherent fluorescence.
In order to assess the cell viability and death, spheroids were additionally counterstained with the
far-red nuclear dye Draq7 (Biostatus, UK) 16-20hrs before loading them to the LSFM microscope.

Imaging Procedure

The spheroids were 1maged in our custom LSFM setup using the excitation wavelength at 635nm,
while detection was performed with two bandpass emission filters (605/70 and 700/40nm) for DOX
and Draq7, respectively. Each spheroid was imaged sequentially at 4 different projections (07, 907,
180°, and 270°) of 45-65 optical sections each.

5.1.5 Data analysis

Drug response was evaluated measuring spheroids area reductance as opposed to control untreated
spheroids in regular intervals, from day 4 (before the drug treatment) and for up to 14 days at least.
Spheroid area was segmented using the Image]. The growth curves were analyzed using Prism 5
software (GraphPad Software, Inc., USA) with regression analysis. The dose-response curves were
also generated using the formula 9%growth inhibition= ((positive control-test value)*100)/ positive
control of the 2D spectroscopic measurements evaluated on day 3 after treatment, where the positive

control corresponds to the viable cell population estimate of the untreated cells.

The same formula was used for the surface values of the 3D spheroids for the day 10 after treatment
as opposed to the log[c| of the relevant drug concentrations. Positive control corresponds to the
surface of the untreated spheroid and test value corresponds to the surface of the treated spheroid
under study. The ICs was defined as the drug concentration where half of the cell population and

the surface area was inhibited, respectively for the 2D and the 3D assays.

For the LSFM scans, stacks were created for each projection and maximum intensity projections/3D
projections were produced using Image]. Diametrical projections (0” with 180°, and 90" with 270°)
were registered and fused together for all the emission data and finally, the two resulting pairs were

combined together in order to achieve the 1sotropic resolution n all directions.
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5.2 Results

The responsiveness in TMZ and DOX of a primary GB cell line was studied n this work using 2D
and 3D 1 vitro assays. LSFM-scans of the control and the drug-treated spheroids were used to
discriminate the cell death from the growth inhibition effect.

5.2.1 In vitro drug responsiveness

Figure 36 depicts the dose-response curves for the 2D and the 3D assays for the case of TMZ (left)
and DOX (right). Unlike the DOX-treated cells which appear to have the same dose-related
responsiveness in both assays, the TMZ-treated cells revealed a different pattern between the two
assays tested. More specifically, a non-consistent dose-response pattern was observed in the 3D

experiments.
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Figure 36. Dose-response curves for the 2D and the 3D experiments regarding TMZ (left) and DOX
(right).

Comparing the effective dose regime of the two drugs in the primary GB spheroids, we observed
that DOX appeared to be very effective even in three orders of magnitude less than TMZ.. In Figure
37, the brightfield images of the respective untreated (control) and treated spheroids with TMZ. of
500uM and DOX of 0.9uM are shown. Notice that unlike the TMZ-treated spheroids which have
no apparent difference to the control ones, the DOX-treated spheroids have reduced in size and a
surrounding pool of dead cells after day 7 indicating a “dying” spheroid. The relevant growth-
mhibition curves over time are depicted in Figure 38. Notice the fictitious threshold of DOX
concentration at around 0.3uM. Above this concentration threshold we observed that spheroid
recovery 1s not allowed. Additionally, unlike in the 2D experiments, in the 31D experiments three
days after DOX treatment there 1s no obvious response independently to the dosage.
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Figure 37. Brightfield images of the control and the drug-treated spheroids over time. The US7MG
spheroids are used as a reference cell line. One representative concentration is presented from each

drug. Scale bar is set at 100 microns.
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Thesis overall achievements]|102

5.2.2 Cell viability monitoring using LSFM imaging

The patient-derived GB spheroids treated with the commonly used anti-cancer agents TMZ. and
DOX were scanned using LSFM imaging at day 7 and day 11 to estimate spheroid cell viability using
the cell death nuclear stain Draq7. LSFM further enabled discrimination between cell death and
growth mhibition after treatment. As it can be seen m Figure 39, both the control untreated GB
spheroid and the TMZ-treated one appear to grow similarly exhibiting a same death pattern in both
time points. The control and the TMZ-treated spheroid are of the same size. It has to be noted that
the center of the specimen has a reduced resolution analysis since the size of the spheroid in both
cases reached the penetration depth limit of the LSFM modality. On the contrary, the DOX-treated
spheroid appears to have a spotted death pattern, especially after day 7, which 1s in Iine with the
temporal growth-inhibition curves. Furthermore, we can observe that the dead cells are not
colocalized with the drug molecules that can be also 1maged due to the autofluorescent DOX
properties; thus, a DOX-affected cell 1s not necessarily a dying cell at least within the time window
of our observations. As expected [253], DOX penetration and accumulation was more pronounced
in the cells of the spheroid periphery. In day 11, the indication of the brightfield images (Figure 37)
that all DOX-treated spheroids more or less die after day 7 1s evidenced. It has to be clarified that
the physiology of the spheroids regarding the distribution of the drug and the necrotic cells becomes
apparent with the LSFM 1maging technique, whereas the most typically used optical microscopy 1s
limited to the growth patterns.
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Figure 39. Cell death of the live LSFM-scanned primary GB spheroids. The intrinsic cytotoxicity of
arepresentative untreated spheroid is depicted (upper row). A representative TMZ-treated spheroid
cell death pattern 1s also shown (middle row), as well as a DOX-treated one (lower row). DOX is
also marked with green. The max intensity z stacks are depicted for two time points. In day 11, the
control and the TMZ-treated spheroids are so large that the center of the specimen could not be
properly scanned reaching the penetration scanning depth limit of the modality. Scale bar is set at
100 microns.

5.3 Discussion

An 1 vitro drug screening protocol was proposed combining 2D and 3D experiments on primary
GB cells. TMZ and DOX were the two drugs evaluated in this work. Given the growth mhibiting
effects observed in witro for the two drugs, as well as the reported mechanisms of action, we
mvestigated whether this result can be further discriminated in either cell proliferation arrest and/or
cell death using LSFM 1maging.

Interestingly, we observed that unlike DOX which shows a similar dose-response pattern in both 2D
and 3D experiments, TMZ has a noisy unidentified response pattern in 3D (see Figure 36). In
general, the core difference between the 2D and 3D experiments that makes the latter possessing
features of real solid avascular tumors lies in several aspects including diffusion gradients of the drug,
oxygen and nutrients, as well as interaction and competition among cells for nutrients and space.
Considering both the TMZ molecular mechanism of action [238, 239] and the experimental
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evidence, there 1s a possibility that the chemoresistance in TMZ, in the 3D experiments may be
partially attributed in hypoxia. More specifically, the main difference between the 2D and the 3D
drug screening assays used 1s that when i 3D, the diffusion of the drug 1s not immediate towards all
the tumor regions as in 2D and additionally, there 1s a gradient of the oxygen (and other nutrients)
from the periphery towards the core of the spheroid. As it can be seen i Figure 39, though TMZ
molecules cannot be seen due to lack of fluorescence, there is no differential pattern of the induced-
cell death compared to the control spheroids. Thus, it can be assumed that:

1) the TMZ. 1s adequately distributed to all spheroid regions at the time point observed; the
assumption 1s valid if the theoretical high TMZ. disposition [241] 1s considered

11) or TMZ. does not cause death

111) and/or TMZ. needs a longer time period to affect the cells.

However, 1t has been shown that the TMZ. efficacy 1s essentially reduced under hypoxic conditions
when tested for the U25IN GB cell Iine [254]. Additionally, as previously mentioned, down-
regulation of both the MGMT protein and the MGMT promoter expression levels have been
correlated to higher TMZ. responsiveness [238]. Also, in a recent research [255], the imner hypoxia-
preserved GB cells of the tumor mass were more TMZ, chemoresistant and this was MGMT-related
since hypoxia-induced factors, such as HIF1-a, may alter the MGMT phenotype. Hence, in future
experiments, chemically-induced hypoxia in the 2D assay, as well as the expression MGMT levels
have to be tested to further explain the TMZ. response pattern in 3D.

Another interesting feature depicted in Figure 38 Figure 39%1s the delayed DOX-related response
from day 7 to day 10. In the LSFM images of in both day 7 and day 11 the drug molecules are evenly
distributed 1n the spheroid regions and additionally, the cell death pattern of day 7 is not
morphologically different from the respective untreated spheroid. Though the exact DOX
mechanism of action i1s not known, the internalization of the DOX molecules within the cells 1s
considered to take more than 24h [242, 256]. More specifically, there is evidence that the drug
molecules are consumed from the exposed cells, they bound to nuclear elements and react with
them causing the proliferative cells to die and deform. The uptake rate can be obviously related to
the delay period of each of the cascade events such as the cell type, the administration method (here
2D or 3D), the cell cycle state, the chromatin composition, the mismatch repair mechanisms, etc.
Following the nuclear and cellular membranes damage, the active drug molecules are re-distributed
to the ECM and are able to be re-consumed by the neighboring cells and so on [251]. This way, no
matter whether the exposure to the drug i1s ended, the drug affects the cells accumulatively and for a

prolonged time period.

In this study we also aimed at presenting the use of our custom built LSFM setup for the study of
tumor spheroids, the optimization of imaging protocols and the effect of chemotherapy. LSFM is
particularly well suited for fluorescence imaging of large, sensitive living specimens, such as tumor
spheroids, as it provides true optical sectioning capabilities, good spatial resolution and minimal
phototoxicity. To better illustrate the utility of LSFM for drug screening, LSFM 1s capable of
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providing physiology related information, as compared to the traditionally used brightfield images
that are mostly limited to monitoring growth. Our results demonstrate the potential of this technology
to quantitatively assess the distribution, drug penetration and cytotoxic potency of anti-neoplastic
agents n living 3D cell cultures and to serve as a useful tool in preclinical drug screening towards
mdividualized therapy. Such a high sensitivity imaging technique 1s expected to serve the ambitious
goal of approaching personalized cancer simulations based on patient-specific data in order to
optimize therapy decisions after successful translation in the clinical setting.

5.3.1 Proposed computational approach

We could further use the LSFM images to validate and parametrize a preclinically-driven custom
computational predictive model. Taken the image-guided indications and the theoretically-
supported hypothesis about the differential drug-induced mechanisms triggered in the primary GB
cells, we can parametrize accordingly our HDC model so that it can reproduce the conducted
biological experiments and extrapolate them to a combined drug therapeutic scheme. To our
knowledge, this 1s the first time a computational predictive algorithm is proposed to be used to
predict the TMZ-DOX effect in GB enabling a drug screening tool that 1s difficult to be

experimentally tested and challenging to be clinically applied.

A formalized mterpretation of the biological findings of this work could serve i two ways: 1)
validation of the experimental data under the hypothesis that the proliferative GB cells enter the
quiescence state after TMZ treatment and die after DOX treatment, as well as 11) predict the TMZ.-

DOX combination effect in relation to both the dosage and the timing.
In brief:

The oxygen (representing all nutrients) and the drug concentrations are modeled as continuous
elements, while the GB cells are assumed as discrete entities capable of proliferating, entering the
quiescence state or die. As the invasion 1s conditionally blocked in the 12 vitro experiments, the HDC
model does not account for cellular movement. As a first step, all tumor cells are considered

phenotypically identical, unless otherwise stated.

Especially for the two drugs, driven by the experimental assays used and the relevant biological
findings, the 2D experiments are simulated first and followingly, extrapolated in 3D. In the 2D
simulations the growth-inhibition curves are translated so as to represent the cytostatic state
probability for the TMZ-treated cells and the cytotoxic state probability for the DOX-treated ones
(see also [178]). Both TMZ and DOX are considered to affect the proliferative tumor cells in a
proportional way to the administrated concentration and the DOX-effect is considered irreversible.
The drug 1s provided once and in the 2D experiments 1s followingly discontinued, while in the 3D
experiments, the drug concentration 1s subdivided every 48h. The drugs are assumed to be
homogeneously distributed when administered. Additionally, DOX 1s considered to have a
prolonged effect over ime independently to the concentration subtraction. As with the previous
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applications also here, the 3D computational approach represents the planar central slice of the
simulated spheroids.
Computational domain

We assumed an h X h lattice site which fits a single cell of fixed size equal to h=15um, as in vitro
estimated (for more details see [80] or chapter 3).

Cell proliferation

At each 1iteration period, cells are able to divide in case their proliferation age approaches their
doubling time which equals to xx=20h, as 1 vitro estimated (for more details see [80] or chapter 3).
A cell proliferates in case of nearby empty space.

Cell cycle arrest

The cell enters the quiescent GO state in case 1t keeps searching for empty space to proliferate. We

also assume quiescence in case of TMZ-treated cells.
Cell death

We consider either spontaneous or drug-induced cell death. The spontaneous cell death 1s nutrient-
dependent triggered by the lack of oxygen and equals to the 109% of the total population, as i vitro
estimated (for more details see [80] or chapter 3). Cells are also able to undergo necrosis in case of:
1) terminal proliferation arrest (or long-lasting quiescent period) in response to TMZ. treatment
and/or 1) response to DOX treatment. We assumed that dead cells first enter the necrosis procedure
followed by the lysis, where dead cells are treated as empty space.

5.3.2 Proposed clinical administration methods for DOX

As it has been explained earlier, there 1s a strong difficulty in achieving an efficient DOX systemic
concentration in the GB lesion within the brain without prompting cardiotoxicity or other adverse
reactions [246]. This is the reason why there are several current studies investigating alternative
methods of administration that will not deteriorate the drug’s active compounds efficacy, but, more
crucially, will be harmless for the GB patient. Some of the clinical and/or experimental tested
techniques dedicated in brain cancer are the microdialysis [257], drug molecules modifications and
nano-carriers [258], reversible opening of the BBB [259], local drug administration [226]. We have
clinical findings in favor of drug delivery systems directly inserted within the tumor cavity as implants
that can be put during the scheduled operation of the patient and can be externally controlled for
dosage and repetitions from the medical doctor. Such an implant in the form of a mechanical pump

1s under construction from our group.

There 1s still missing knowledge regarding the observed results in this study. As regards the potential
m silico application, assuming a positive correlation between the drug concentration and the
probability of a cell to die, we can conclude that by allowing cells to also undergo cytostasis, the dose
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needed for a cell to die can be reduced compared to the case where cells are only allowed to live or
die from a given drug. This hypothesis 1s in favor of a potential synergy between cytostatic and
cytotoxic drugs aiming at overall dose reduction. In any case, investigating the molecular status of the
GBPO08-PO primary GB cells that were studied will further argue on the mechanisms of action
mdicated here for the two drugs. Another imitation of our approach was that we did not investigate
the cell death type; we 1dentified only the distribution pattern of the necrosis marker Draq 7. Finally,
the best way to assess the combination or the sequential therapeutic scheme 1s to conduct the
biological experiments of the TMZ-DOX combination concentrations and treatment schedule as it
will be proposed by the computational predictive algorithm.

TMZ. is reported to be efficient in half of the GB patients and also TMZ-resistance usually occurs
after the drugis discontinued [260]. The inter- and intra- tumoral heterogeneity of GB indicates both
primary and secondary resistance mechanisms. In other words, the clinical experience does not
guarantee TMZ-treatment success and the experimental facts verify that even in the case of a
responsive GB cells population, not all cells respond and the timing of the treatment 1s important.
On the other hand, DOX 1s considered a not suitable chemotherapeutic in brain oncology.
Alternative therapeutic schemes and time-efficient drug screening tools should be generated i order
to enrich our understanding of the GB pathophysiology and the therapeutic planning.



Overall conclusions|108

6. Overall conclusions

Brain cancer is not limited to the primary lesion that can be clinically observed through imaging or
surgically excised. The massive proliferation 1s a defining characteristic of the tumor nature, essential
for its progress. GB 1s constantly aggressively growing intra-axially, disturbing brain functionality.
When focusing i such a greed form of cancer, proliferation underlying processes become
mcompatible in cancer progress. In GB, heterogeneity is another typical hallmark, not only among
patients with differences between GB molecular subtypes, but more unexpectedly, between different
regions of the same tumor with the presence of intra-tumoral subclonal dormancies. We claim that
future research should be based on primary cells directly collected from patients and that common
cell lines should only serve as landmarks to unite studies of different groups. For every primary
established cell line, not only molecular, but also physiological parameters should be estimated to
enable a more precise future clustering of different GB cases. Estimations starting with the typical
doubling time as shown here and evolving to more delicate features, such as delineation of necrotic

and hypoxic regions or invasive capability or others, are highly important.

The invasive cancer cells’ properties are also factors that highlight the importance of personalized
therapeutic planning to eliminate recurrence and improve the patient’s quality of life. Along this line,
to study the mvasive patterns of our primary and secondary GB cell lines, we cultured them as
spheroids that better mimic 2 vivo growth. Surprisingly, unlike earlier published work suggesting
migration as single cells, we found that GB spheroids follow a cohesive, tissue-folding-like migration.
We used this information to parametrize our HDC tumor growth model to reproduce and further
mvestigate the mechanistic aspect of this observation. Our results indicate that the distinct cell-to-cell
adhesive forces within growing spheroids 1s a major contributor and needs to be further molecularly
validated. In-depth understanding of different invasion patterns among GB subtypes and its potential
mechanisms that might drive/regulate the observed heterogeneity will offer opportunities for
alternative drug targets to prevent GB relapsing post-operatively and improve our understanding of

the extension of mvasion, which still remains undetectable by conventional imaging modalities.

On the subject of the differential drug responsiveness of GB regarding the TMZ and DOX-treated
primary GB spheroids, based on our findings, we hypothesize a potential synergy between cytostatic
and cytotoxic drugs aiming at overall dose reduction with maximal tumor elimination. The cytostatic
TMZ. 1s currently the front line chemotherapeutic in GB treatment, but not all GB patients are
adequately responsive; including the patient’s cells we tested. On the other hand, DOX 1s difficult
to be applied i the CNS tumors mainly because the effective tumor dosage i1s accompanied by
severe cytotoxicity in additional targets within the body. A probabilistic, HDC model capable of
additionally incorporating drug-induced cytostatic/cytotoxic growth inhibition mechanisms was
proposed to describe the evolution and response of the treated spheroids depending on the
properties of the drug. Additional experiments that combine the two drugs and study the various
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mechanisms of action evoked after treatment in both the molecular and the mesoscopic level would
be of great interest.

In this study, we targeted at the GB pathophysiology description and we argued in favor of the utility
of the computational models as predictor tools. Simulations of cancer progress, either mn vitro or
stlico, should not anymore be based on theoretical values, especially if clinical translation is of interest.
If we target the holistic description of tumor evolution, we should follow a stepwise approach, where
computational tools can definitely help i identifying the most important parameters affecting the
final outcome. Overall, we propose that by advancing our mathematical approaches and taking
advantage of in vitro and in vivo experimental approaches, which better mimic the clinical GB image,
it may be possible to eventually verify the precise set of their computational counterparts needed
towards a systematic 2 silico mapping of GB progression.
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7. Thesis overall achievements
A brief description summarizing the PhD research accomplishments during the last three years follows.

As regards the academic records:

=>» 5 lab rotations, 2 undergraduate theses and 1 postgraduate thesis were guided.

= 8 lectures were given in the courses Neurosurgery (A. Vakis, Medical School), Brain
Connectivity Analysis Using EEG/MEG (V. Sakkalis, Medical School), Bioinformatics and
Simulation of Physiological Systems (Tsiknakis Manolis, Department of Informatics
Engineering).

=>» The following courses were successfully examined: Neurosurgery (Grade 10, Medical
School), Molecular Oncogenesis (Grade 9, Department of Biology), Programming I (Grade
8, Department of Mathematics), C++ (Grade 5.5, Department of Computer Science)

=» 5" International Lab Animal Course of the Federation of European Laboratory Animal
Science Associations (FELASA) on “Care and Use of Laboratory Animals: mice, rats and
zebrafish”, June 4-15, University of Crete (Biology Department) and IMBB-FORTH,
Heraklion, Greece, 2018 (FELASA Certificate ID: 051/15_16_2018)

= 1" Technology Summer Conference of the European Society for Molecular Imaging - ESMI,
TOPIM TECH on “MULTIPARAMETRIC IMAGING”, July 10 - 15, MAICh, Chania,
Greece, 2016

= Biophotonics and Molecular Imaging (BiIMI) Summer School, July 27 - 31, IESL- FORTH
and Department of Biology, University of Crete, Heraklion, Greece, 2015

= Writing and approval of the scientific protocol by the General Hospital of Heraklion
Scientific Committee (Protocol number: 442120205-2018) as regards the bioethical

procedures and the protocols used.

The following fellowships/awards were given for the PhD support:

08.2018-11.2018: Post Graduate Fellowship funded by FORTH

08.2017-07.2018: General Secretariat for Research and Technology (GSRT) and Hellenic
Foundation for Research and Innovation (HFRI) (Scholarship Number:
130178/12/31-7-2017)

01.2017-07.2017: Post Graduate Fellowship funded by FORTH

06.2016: Winning prize of the best free announcement in the 30" Panhellenic Conference
of Neurosurgery

01.2016-12.2016: Post Graduate Fellowship funded by FORTH

03.2015-12.2015: Trainee / Associated Researcher Fellowship funded by FORTH
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The research works publicly announced were:
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J, Sakkalis V', “Integrating in vitro experiments with n stlico approaches for Glioblastoma
mvasion: the role of cell-to-cell adhesion heterogeneity”, Nature Scientific Reports, 2018,
8(1): p. 16200

M.-E. Oraiopoulou, E. Tzamali, G. Tzedakis, A. Vakis, J. Papamatheakis, and V. Sakkalis,
“In Vitro/In Silico Study on the Role of Doubling Time Heterogeneity among Primary
Glioblastoma Cell Lines”, BioMed Research International, 2017, vol. 2017, Article 1D
8569328, 12 pages

Oraiopoulou M.E., Tampakaki M., Tzamali E., Tamiolakis T'., Makatounakis V., Vakis F.
A., Zacharakis G., Sakkalis V., Papamatheakis J., “The T98G Glioblastoma cell line
phenotypic characterization”, Tissue and Cell, Elsevier, 2018. (under review)

Oraiopoulou M-E, Tzamali E, Papamatheakis J, Sakkalis V, “Phenocopying Glioblastoma:
A Review” (2018, under submission to the Journal of Translational Oncology)

M-E Oraiopoulou, E Tzamali, G Tzedakis, S E Psycharakis, E Parasiraki, A F Vakis, G
Zacharakis, ] Papamatheakis, V Sakkalis, “The Temozolomide-Doxorubicin paradox in

primary Glioblastoma in vitro-in silico preclinical drug screening”, (2018, to be submutted)

Conference Papers (1)

1.

S. E. Psycharakis, E. Liapis, A. Zacharopoulos, M.-E. Oraiopoulou, J. Papamatheakis, V.
Sakkalis, and G. Zacharakis, “High resolution volumetric imaging of primary and secondary
tumor spheroids using multi-angle Light Sheet Fluorescence Microscopy (LSFM)”, 40"
International Conference of the IEEE, Engineering in Medicine and Biology (EMB),

Honolulu, Hawaii, United States, 2018.

Oral Presentations (6)

1.

3.

Stylianos  Psycharakis, Maram-Eleni Oraiopoulou, Evangelos Liapis, Athanasios
Zacharopoulos, Joseph Papamatheakis, Vangelis Sakkalis and Giannis Zacharakis (2018)
“Imaging cancer development and therapeutic response on patient-derived live cell
organoids using multi-projection light sheet fluorescence microscopy” World Molecular
Imaging Congress, Seattle, WA, USA

Oraiopoulou M.E. (2017) “Computational prediction of the invasive pattern observed in
primary and secondary Glioblastoma spheroids” Conference of Clinical and Translational
Oncology, Heraklion, Greece

Qpatomovrov M.E., TlapoAq E., MamapatOaidxkng 1., Zakkars E., Mavwiiton K.,
Bdaxng A. (2017) “NEO MONTEAO EPMHNEIAY THX AIHOHTIKHZ ZYMIIEPI®OPAZX
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G. (2017) “Hybrid PhotoAcoustic and Confocal Laser Scanning Microscopy” 12" Annual
Meeting, European Molecular Imaging Meeting, Cologne, Germany

Kouyevtakng I'., MavwAiton K., QparorovAiov M.E., Mamapatdaidkng 1., Bakng A.
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The application of accurate cancer predictive algorithms validated with experimental data is a field concerning both basic
researchers and clinicians, especially regarding a highly aggressive form of cancer, such as Glioblastoma. In an aim to enhance
prediction accuracy in realistic patient-specific environments, accounting for both inter- and intratumoral heterogeneity, we use
patient-derived Glioblastoma cells from different patients. We focus on cell proliferation using in vitro experiments to estimate cell
doubling times and sizes for established primary Glioblastoma cell lines. A preclinically driven mathematical model parametrization
is accomplished by taking into account the experimental measurements. As a control cell line we use the well-studied USTMG
cells. Both in vitro and in silico results presented support that the variance between tumor staging can be attributed to the
differential proliferative capacity of the different Glinblastoma cells. More specifically, the intfratumaoral heterogeneity together with
the overall proliferation reflected in both the proliferation rate and the mechanical cell contact inhibition can predict the in vitro
evolution of different Glioblastoma cell lines growing under the same conditions. Undoubtedly, additional imaging techniques
capable of providing spatial information of tumor cell physiology and microenvironment will enhance our understanding regarding
Glioblastoma nature and verify and further improve our predictability.

1. Introduction and understanding of patient-specific GB pathophysiology
is evident and research plans towards this aim are of great

Glioblastoma (GB), a grade IV glioma as categorized by the  interest.

World Health Organization (WHO) [1], is one of the most
aggressive brain cancer types [2] with a poor prognosis for
the patient [3], despite the rapid advances in technology and
novel therapeutics. One of the most characteristic features
of GB that limits therapeutic potential is heterogeneity
[4]; both different molecular GBE subtypes [5, 6] and sub-
clonal cell populations coexist within the same tumor [7-
9]. Hence, the importance of individualized GB treatment

The use of the widely scientifically studied common
GB cell lines passaged in lab conditions for decades [10] is
nowadays questionable with respect to their clinical relevance
in therapeutic outcome prediction and to their ability of
representing the extensive heterogeneity observed among
patients [11]. To this front, a common GB trend is the use
of patient-derived GE cells to enable preclinical physio-
logic estimations and personalize therapeutic strategy. Basic



researchers cooperate with clinicians in order to isolate GB
cells and promote the establishment of short-term primary
GB cell cultures [12-15], which provide additional results
back to the patient. Established methods for biological
research and early drug discovery utilize cell lines grown on
plastic culture flasks. Over the years, the ability of these in
vifro systems to provide biologically relevant answers and
describe drug effects is limited due to the fact that they
are too simplistic and do not include key players of the
phenomenon. Hence, researchers seem to mobilize more
realistic experimental approaches such as 3-dimensional (31)
cell cultures [16-20] and/or ex/in vivo implantations [14, 21-
23] to better imitate cancer in a mechanistic and conditional
way. Biological 3D models comprise an important step to
describe the early phases of tumor progression before going
to the complexity of in vive systems.

Biological experiments are strongly linked with compu-
tational and mathematical (in silico) models. In silico models
offer a systematic framework of understanding the under-
lying biological processes integrating knowledge and infor-
mation from multiple biological experiments and/or clinical
examinations [24]. By predicting the behavior of the system,
new targeted experiments can be designed. In that way, the
process of mathematical modeling validation is an iterative
refinement procedure [25], which terminates when a valid
and biologically plausible and concrete description of the
system that reproduces the observed cellular behaviors and
growth patterns is found. Several mathematical approaches
have been proposed to describe the complex, multiscale
spatiotemporal tumor evolution. According to their mathe-
matical perspective, these approaches can be classified into
continuum and discrete models. Continuous mathematical
models are commonly used to describe tumors at tissue
level focusing more on the collective, averaged behavior of
tumaor cells [26-28]. On the other hand, individual-cell-
based models using discrete and hybrid discrete-continuous
(HDC) mathematics can describe the behavior of each cancer
cell individually as it interacts with its microenvironment.
Individual-cell-based models are in general more suitable to
describe in vifro experiments, animal models, and small-sized
tumors [29-34].

In general, such mathematical models attempt to translate
tumor physiology hallmarks [35] into computational param-
eters and the predicted output is subsequently validated using
as ground truth either the experimental [36, 37] or the clinical
results [38, 39]. As it is well-understood. both cell division
and local spreading are responsible for cancer expansion
[40, 41] comprising the most important aspects for cancer
progress [30, 42]. Doubling fime is defined as the average
duration of cell growth and division as reflected by the cell
cycle “clock” [43]. GB tumors have a remarkable rapid growth
that has a critical role regarding the space-occupation and
the development of intracranial pressure, usually the main
reason of the GB symptomatology [44]. In previous studies,
the significance of the proliferative rate has been shown. More
specifically, in [45]. the proliferation rates of different breast
cancer patients are estimated from subsequent Magnetic
Resonance (MR) images in conjunction with a simple logistic
tumor growth model and show that the proliferation rate
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estimates could discriminate patient’s survival and response
to therapy. In another study [46], the role of experimental
and simulated diffusion gradients in 3D tumors affecting
nutrient, oxygen, and drug availability within the tumor
and subsequently controlling cell proliferative rate is exam-
ined. A mathematical model parameterized from monolayer
experiments is used to quantify the diffusion barrier in
3D experiments. In the recent study [40]. acquisition of
physiologic parameters from multicellular tumor spheroids
including proliferation and death spatial profiles is used
to constrain and parametrize a mathematical agent-based
model that addresses several cell growth mechanisms neces-
sary to explain the experimental observations and reductively
translates them to tumor progress over time.

This work utilizes primary tumor cells collected from GB
patients and subsequently cultivated in vitro as 3D tumor
spheroids. As an initial step towards understanding the GB
heterogeneity among patients, we focus on proliferation.
The aim of this work is first to mathematically study the
important components affecting the growth dynamics of
tumor spheroids when motility is inhibited, mainly including
the inter- and intratumoral heterogeneity with respect to cell
proliferation and, second, to parametrize the mathematical
model based on experimentally estimated parameter val-
ues of primary GB cell lines in order to increase clinical
relevance. Doubling times and the average cell sizes of in-
house-established primary GB cell lines from three different
patients are used The well-known US7MG GRE cell line is
also used as control in the experiments. All the biological
experiments are performed simultaneously under the same
initial and prowth conditions. A hybrid, individual, cell-
based mathematical model is used to predict the growth
curves of the tumor spheroids and parametrized based on the
experimental data. Variations in several mathematical model
parameters are explored in order to quantify their effect on
tumor growth expansion. The simulated results are compared
to the experimental data from the relevant 3D cell cultures
and show that, in combination with the proliferation rate,
additional factors like the mechanical cell contact inhibition
are necessary to predict the in vifro evolution of the different
GB cell lines under study.

2. Methods

2.1 Sampling Procedure. Brain tissue sample is collected from
the lesions during biopsy or gross resection of patients with
indications of GB based on symptoms and MR images, while
still naive from treatment and later histologically proved to
be GBE cases. For the purposes of this study, we used the
primary cells of three different patients. The first is a 70-
year-old male patient with de nove GB close to the left
brain motor area, also called GBPO03 cells. The second, called
GEP06 cell line, was collected from a 47-years-old female
patient with a tumor in the medulla proven to be a secondary
GB, which was gradually evolved to grade IV from lower
grades within a time period of approximately 20 years. The
third sample, called GBP08, was provided by a 53-year-old
male patient with also primary GB in the temporal-occipital
left hemisphere. All samples are anonymously provided with
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the informed patients” consent by the Neurosurgical Clinic of
the General University Hospital of Heraklion, Crete, Greece,
while the protocol has been approved by the Institutional
Ethical Committees. Because of the relatively low success rate
of the primary cell culture establishment, we are limited to
these three GB cases for this work.

2.2 Primary Cell Cultures. Later to tissue sampling in saline
solution, the specimens are immediately transferred to the
lab where they are mechanically dissociated into smaller
parts and supplemented culture medium is added (Dulbecco’s
maodified Eagle medium (DMEM) with 10% fetal bovine
serum (FBS) and 1% gentamycin). After gradually removing
all cell debris and dead tissue parts, cancer GB cells are
cultured as monolayers in standard lab conditions.

Asexplained before, there is much heterogeneity between
GB cases and the protocol of tissue handling is slightly
madified per case. An ectopic, subcutaneous implantation to
immunodeficient mice is a procedural step that takes place
whether the conditional stability cannot be preserved in vitro
so that it cannot be assured that the isolated GB cells will
survive and proliferate in flask. Therefore, lab animals serve
as “living incubators” and usually, after the first implantation,
the cells are collected and recultured until the cell culture
is successfully established. In this work, GBP03 cells are
passaged once, while GBP06 and GBP0S cells are directly
used. All possible steps are taken to avoid animal suffering
at each stage of the experiments.

2.3. Doubling Time Assay. We use the GBP03, GRP0#&, and
GBPOS primary cell lines as well as the Us7MG cells (ATCC=
HTB-14™, USA) as control line. In order to measure the
doubling time intervals of the different cell types used we
apply a simple protocol in adherent cultures. In a 24-well
plate, 20000 cells/ml of supplemented DMEM are seeded per
cell type at day zero. The plate is incubated in standard lab
conditions for approximately a week. Whenever needed, cell
culture medium is carefully renewed avoiding the adherent
(active) cell population to be disturbed.

Every 24 hours after seeding, the culture medium of one
well per cell type is removed and trypsin-EDTA (Sigma-
Aldrich, Germany) 1x solution is added for 1-2 minutes.
After another 1 minute of trituration in order to produce
a single cell solution, all the context is removed from the
well and is transferred to a 2ml Eppendorf tube. As a final
step, 4% formaldehyde is added to permanently fix the cells
within the tube which is stored to the refrigerator for further
use. The procedure is repeated up to the point that 100%
cell confluence is achieved. The cell concentration for each
cell type is measured with a 24-hour interval by using a
hemocytometer.

2.4, Cell Size Estimation. A divided Petri dish is plated with
a single cell solution of ~2000 cells/ml and is incubated in
standard lab conditions overnight to let the cells adhere
in the surface of the dish. Accordingly, brightfield images
of attached single cells are captured in 40x magnification
and known acquisition parameters to an inverted light
microscope (Leica, Germany). To check size and shape
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homogeneity between each cell population so that to assure
that the estimated average cell size will be representative, we
capture a photograph of a single cell solution within the fixed
grid dimensions of the hemocytometer.

2.5. D Spheroid Generation. We use the hanging-drop tech-
nique in order to produce spheroids from each cell type,
as recommended in [16, 17, 47]. A single cell solution of
625 cells/50ul of supplemented double-filtered DMEM is
initially seeded per well in a 96-well hanging-drop plate
(3D Biomatrix, USA). Two rows of wells per cell type are
plated so that approximately 24 spheroids are produced.
Agarose solution of 1% w/v is added to plate’s reservoirs to
prevent evaporation of the droplets. After 2-4 days of cells
agpregating at the bottom of each droplet, we can consider
that the spheroids are finally formed. The growth progress
of the spheroids is monitored over time via photographs
taken under set acquisition parameters to an inverted light
microscope (Leica, Germany) for predecided critical time
points (2-day interval).

2.6. Data Analysis. The average doubling time of each cell
line is estimated using exponential linear regression on the
doubling time data. The average cell size of each cell line is
estimated by segmenting the area of approximately 10 ran-
domly selected cells in brightfield images to Image] [48] and
averaging. The tumor expansion of the 3D spheroids is again
estimated based on the area shown in their brightfield images.
The growth curve is estimated by the mean area value +
standard deviation over time. All the above measurements are
evaluated per cell type and many experiments are performed
for each cell type.

2.7 Computational Model Implementation of Tumor Sphe-
roids. A simplistic HDC mathematical model is used to
describe the observed tumor growth of the 3D in vitro experi-
ments. In the context of the HDC model, each individual cell
is described by a discrete cellular automaton, while the local
microenvironment is approximated by partial differential
equations (PDE). In the following, a concise description of
the HDC model is provided, while more thorough descrip-
tion can be found in [49].

2.71 Computational Domain. To simulate a central slice of
the 31} in vitro tumor spheroids, we set up a 2D regular lattice
of size L = 5mm. We assume that each h = h square lattice
site fits a single cell; thus the lattice site defines the cell size
as well. The same lattice is used by both the discrete and the
continuous compartments.

2.72. Continuwous Compartment. For simplicity, we assume
that oxygen is the only limiting molecule required by the
cells in order to proliferate. The spatiotemporal evolution
of oxygen is described by the partial differential equation
(PDE) shown in (1). Oxygen is assumed to diffuse through
the domain with diffusion coefficient I, decays naturally at
arate a,, and is consumed by the tumor cells at a rate y,,. The
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Frgure I: Example of a cell (shown in black) attempting to proliferate. Firstly, the cell searches the 1-Moore neighborhood highlighted by the
gray squares in {a). Being unable to find an empty space, it searches the 2-Moore neighborhood indicated by the gray squares in (b) and (c).
As an empty space is found, the orange cell is pushed towards the empty space as shown in (b). The latter movement frees the empty space
on the I-Moore neighborhood and allows the proliferating cell to place an identical cell (also shown in black) to the adjacent empty space (c).

term c(i, j) is 1 if there is a tumor cell at the location i, j or 0
otherwise.

20021 _ by vz, yut) -, a0 pet). O

at o
2.73. Discrete Compartment. Each tumor cell is an individual
entity with its own traits. Sets of these traits are assumed to
represent a cellular phenotype. A more detailed description
of the cell life cycle can be found in [49, 50].

In this work, two mechanisms of tumor cells are mainly
considered: proliferation and death. Cellular movement has
been neglected considering that the protocol of the in vitro
experiments does not conditionally allow cell motility. Cells
die if the local oxygen concentration drops below a defined
threshold 0,4, - When a cell dies, its location is immediately
treated as empty space. On the other hand, the live cells
incrementally prepare for proliferation at every time step,
until the cell age reaches their doubling time. At that moment,
the cell searches for a nearby empty space at the 1-Moore
neighborhood. If no empty space is available, the search is
expanded to the 2-Moore neighborhood (see Figure 1) and
the process is repeated up to r-Moore neighborhood, where r
is defined as the proliferation depth and determines the max-
imum neighborhood size. Examples of Moore neighborhood
can be seen in Figure 1. If more than one empty space is found
in the same neighborhood, one of them is randomly chosen.

As shown in Figure 1, when an empty space is found
on a neighborhood other than the 1-Moore, cells are pushed
away from the location of the proliferating cell towards the
empty space in order to create an empty space to the I-
Moaore neighborhood. Then the cell resets its cell age and
places a copy of itself at the adjacent empty space. If no
empty space has been found, the cell enters a quiescent state
at which it constantly searches for empty space, without
further increasing its age. The extended proliferating rim
describes the maximum distance over which a cell is capable
of pushing other cells away in order to create space for its
proliferation and reflects the mechanical growth inhibition
processes observed in growing cell populations [40].

3. Results

In this work, the in vitro estimated doubling times and cell
sizes of three in-house-established primary GB cell lines,
as long as of the UBTMG cells, are used to initialize the
individual-cell-based mathematical model in an attempt to
predict their different growth patterns. A sensitivity study is
performed where the effects of important factors affecting
tumor spheroid expansion such as the doubling time, the
cell size, and the depth of the proliferative rim and the
coexistence of multiple clones with different proliferative
capacities within the tumor are computationally explored.
‘We argue that, as expected, proliferation is one of the most
defining characteristics regarding tumor expansion and that
tumor predictive computational models should prioritize
these remarkable variances between individuals and not just
based on theoretically defined values.

3.1 In Vitro 2D Culfures

3.L1L Cell Size Estimation. A usual answer of what a com-
mon human (cancer) cell diameter could be is about 10
to 100 microns [51, 52], and actually, most computational
approaches assume cell size within 10-30 microns [29]. In
2D cultures of low confluence, the cell size and shape are
in resting state and not crucially influenced by neighboring
cells. As depicted in Figure 2, there is much homogene-
ity in UB7MG culture with the cells conforming a rather
prolonged typically observed shape, with a soma cell size
varying between 19 and 24 microns in diameter (see also
Table 1). On the contrast, all primary cells used in our
study are smaller and typically round with not many cellular
protrusions compared to US7MG cells, yet cells of the same
cell line appear to differ within the same population. In case
of UBTMG cells, it is expected that after all these years in lab
conditions there is not much morphological diversity within
the cell population and that the cell soma size adequately
represents the cell line. On the other hand, regarding primary
cells, the cell size is only an average of all possible phenotypes
within each cell line. More specifically as denoted in Table 1,
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Ficune 2: US7MG cells along with primary GB cells growing as monolayers ((a) 40x magnification) and as hanging-drop spheroids (initial
day in (b) and final day in (c), 4x magnification). Scale bars are 50 and 100 microns, respectively. The initial day is set to be the first day of cell
aggregation in spheroidal shape after seeding, meaning Days 2-4. Accordingly, the final day is the time point where spheroids start to deform
and decompose, usually approaching well’s borders. This day is Day 14 for most primary spheroids.

TaBLE I: Mean cell sizes and doubling times (+standard deviation) as estimated from the in vitro experiments for the respective cell lines (first

column). The in silico values used to initialize the HDC model regarding the doubling time are also shown.

In vitro estimations

In silico values

Cell type o s EE

Cell diameter (um) Doubling time (h) Doubling time (h)
Us7TMG 215 308+25 33
GBP03 19 254+05 25
GBPo6 16 235+07 23
GBPo8 15 230+15 2

GBP03 cells have an average cell diameter of 19 microns,
while GBP06 are approximately 16 microns and GBP0S are
close to 15 microns in diameter. Also, US7MG cells, when
growing in adherent cultures, intrinsically form aggregates
when much confluent. On the contrary, the primary cells
studied here seem to continue as monolayers no matter the
level of confluence. Obviously, the average cell size of a certain
cell population, no matter how well represented in 2D, it is
not maintained when growing in 3D culturing since other
physiological parameters that will be discussed next also
affect the cell surface-to-volume ratio altering both size and
shape.

3.1.2. Doubling Time Estimation. Based on literature, glioma
cells usual doubling time ranges from 24h to a couple
of days [53], but more often established primary GB cell
lines are recorded to vary few days [12, 54, 55]. Particularly
for US7MG cells, they are supposed to have a population
doubling time approximating 34 hours, according to their
product sheet (ATCC HTB-14, USA). Our measurements
presented in Table 1 are in line with the bibliographic records.
Specifically, US7MG cells have a mean doubling time of 30.8
+ 2.5h, which is the slowest division between the cell types
we use. Among the primary cell lines, GBP03 cells divide
approximately every 25.4 + 0.5h, while GBP06 and GBP08
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FiGURE 3: Growth of the tumor spheroid area over time for the in vitro experiments of each cell line.

have similar doubling times estimated at 23.5 + 0.7 h and 23.0
+ 1.5 h, respectively.

3.2 In Vitro GB Spheroids. The hanging-drop technique used
here to generate the 3D spheroids is a method conditionally
approaching the real avascular tumoral state in vive [17].
The spheroid size is determined with optical microscopy and
monitored over time. It should be noted that, the imaging
approach used here cannot give any quantitative estimate of
the compactness of the cells or any other spatial information
including the number of the cells, the cell size, shape, and
polarity, which are definitely different between 2D and 3D
structures.

In general, we observe that both primary and US7MG
cells need approximately 4 days from single cell solutions
to aggregate into spheroidal structures, while during this
starting period, they seem to suppress proliferation capacity.
However, most often, primary cells agpregate sooner than
US7MG ones after seeding.

Figure 2 illustrates the growth area of the in wvitro
spheroidal domains as imaged in 2D brightfield images at the
initial and final day. The growth curves of each cell line are
shown in Figure 3. An apparent difference between patients,
but also between primary and conventional cell lines, can
be observed. To be more specific, all primary spheroids
grow larger than the USTMG cells. GBP06 and GBPOS
primary spheroids follow an initial fast growing, exponential
phase that slows down after approximately 6 days. USTMG
spheroids have an almost linear growth pattern. It has to be
clarified that the spheroids reach the well’s borders before the
plateau and decay phases are observed. The patients GBP0&
and GBPO0& adopt a high growth pattern, while the patient
GBP03 follows an intermediate growth rate closer to the
USTMG cell line. As already mentioned, especially for the
primary cell lines, the initial distribution of the subclones,
when plating the cells (Day zero), is random. This eventually

leads to a multifactorial subclonal sphereid growth integrated
to average estimations.

3.3, Computational Parameter Study. Prior to parametriz-
ing and predicting the growth pattern of the multicellular
spheroids, a simple parameter study is performed to deter-
mine the extent at which the doubling time and cell size
affect the 31 growth simulation, as well as explore the effect
of additional parameters that could play a significant role in
tumor expansion including the depth of the proliferative rim
and intratumoral heterogeneity.

The discrete and the continuous part of the computational
model are parametrized accordingly to meet the experimen-
tal setup as shown in Table 2. The length L of the com-
putational domain equals 5mm to resemble approximately
the size of the hanging-drop plate. Both the oxygen decay
rate and the cells oxygen consumption rate were adopted
from [29]. To numerically solve the PDE (1). its parameters
have been nondimensionalized by uwsing o__. 7, and L,
which correspond to the maximum oxygen concentration,
the computational iteration time, and the domain length,
respectively. Dirichlet boundary conditions are used to lock
the boundaries to the maximum oxygen concentration to
simulate the so-assumed adequate and stable nutrients’ avail-
ability, since the culture medium during the experiment
is periodically refreshed. Also, the alternating directions
implicit method is used to numerically solve the PDE [56, 57].

At first, we explore the effect of doubling time on tumor
expansion keeping the rest modeling parameters constant.
Specifically, we assume a tumor cell of size equal to 18 pm
and consider a depth of proliferative rim equal to 2 cells,
while varying the doubling time from 155h to 35.5h. Fig-
ure 4(a) shows the growth curves of the tumors with different
doubling times. As expected. increased proliferative capacity
results in increased tumor expansion. If a reference time
point is picked at 10 days, we can calculate the absolute
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Tapwe 2: The computational parameters used to initialize the HD'C model.

Parameter

Value

Domain length, L

Cell (& lattice) size, b
Iteration time, T

Oxygen consumption, y,
Maximum oxygen, o,

Oxygen decay rate, ag

5 mm (methods-computational domain)
14-20 pm (methods-computational domain})
8h (methods-computational domain [49])
6251077 Mcell " 57" (methods-computational domain [29])
71075 M 0, em™ (methods-continuous compartment [29]}
0.0125 (ND) (methods-continuous compartment [29, 30, 58])

15 038 25
0.7 i
i /
2
06 ! /-'
1 - H /
- 0.5 1 f
= s P
E 0.4 by
E 1
0.3 1 /
< 05 i
0.2 1
0.5 F
0.1 " {
. o e
0 ] a -
. 0 5 10 15
Time (days} “Time (days)
— Iy =155 — fu=305 — cellygp =W — cellge =14 =1 _ s=d
— fpr = A5 — gl =335 — oellgge =18 — r=12 — r=5
—— g =355 — cellygge = 16 sz
(=) [23] (ich

Fiaune 4: Growth of the tumor spheroid area over time as predicted from the computational model related to altering doubling time from
15.5h to 35.5h (a), the cell size from 14 to 20 microns (b}, and the proliferation depth from 1to 5 (c).

increase of area yielded by the decrease of the doubling time.
When the doubling time is reduced from 355h to 30.5h,
the area increases by approximately 24.46%; while comparing
the respective areas between the doubling times 20.5h and
155 h, the area is increased by 54.87%. We can thus conclude
that the expansion area is affected more, when the doubling
times are lower. As expected, the effect is accumulative; thus
if a later/earlier time point was picked the differences would
increase/decrease, respectively.

‘We also explore the effect of cell size on the observable
tumor expansion. It should be noted that if counting of the
tumor cell population was possible on the in vifro experi-
ments, then this parameter would make no difference. We
vary the cell size from 14 to 20 um, while keeping the doubling
time constant and equal to 25.5 h and the proliferation depth
equal to 2 cells. Figure 4(b) shows that, by increasing the
cell size, the tumor expansion increases as well, as expected.
Indicatively, by comparing the values at simulation time 10
days, the area relatively increases by 21.5%, 29.8%, and 31.1% as
the cell size increases from 14 pm, 16 pm, and 18 ym to 16 pm,
18 um, and 20 pm, respectively.

The depth of the proliferative rim significantly affects
the tumor expansion as it increases the number of prolif-
erative cells. Figure 4(c) illustrates the effect that different

proliferation depths have on the tumor area over time. The
proliferation time was set to 25.5 h and the cell size to 18 ym.
At the reference point of 10 days, as the proliferation depth
increases from 1 to 5 cells with a step of 1 cell, the area
increases relatively to its previous value by 94.7%, 58.4%,
38.9%, and 31.3%. In other words. a considerable higher
expansion of the tumor area (94.7%) is observed when the
proliferation depth is increased from 1 to 2, as compared to a
change from depth 4 to 5. As the proliferation depth increases,
less cells enter the quiescent state and proliferate instead; this
is why the growth area is increased.

To further investigate the role of heterogeneity between
our cases, we proceed by performing simulations which
contain multiple phenotypes identical in all traits except for
their respective doubling time. All phenotypes have their
cell size set to 18 pm and proliferation depth (r) equal to 2
cells. The proliferation time is randomly selected for each
phenotype at the beginning of the simulation from a uniform
distribution in the interval (15.5, 33.5) hours. As shown in
Figure 5, to illustrate the impact of the phenotypic multitude,
two scenarios are considered inspired by [29]: one at which
the number of phenotypes is 100 (shown in green line)
and another where 10 phenotypes are randomly selected
(shown in purple line). Additionally, given the randomness
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F1gune 5: Monoclonal and polyclonal tumor area expansion. For the polydonal case two scenarios are considered: one at which the number
of phenotypes is 100 {green line) and another where 10 phenotypes are randomly selected (purple line). Each experiment is repeated 50 times
and the corresponding standard deviation is also shown. The mean area of three monoclonal examples with doubling times 15.5 h (red dashed
line), 25.5h (blue dashed line), and 35.5 h (yellow dashed line) is also illustrated.
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Fraune 6 Doubling time of the populations that survive over time in a polyclonal tumor. Two scenarios are considered: one at which the
number of phenotypes is 100 and another where 10 phenotypes are randomly selected. Each experiment is repeated 50 times. The minimum,
maximum, and average doubling times for both scenarios are shown, as well as their corresponding standard deviations.

of the phenotypic initialization, each experimental scenario
is repeated 50 times. Figure 5 also shows the area expansion
over time for three monoclonal examples with doubling
times 15.5 h (red dashed line), 25.5h (blue dashed line), and
35.5h (yellow dashed line). Figure 6 illustrates the doubling
time of the populations that survive over time. As it can be
seen, the mean minimum and the mean maximum values

of the doubling time are constant for a long period of time
indicating the presence of both the fastest and the slowest
populations within the tumor, yet the frequency of these
populations becomes progressively unequal with the fastest
population to actually overpopulate within the tumor. Thus,
a decline to minimum values of the mean doubling time is
observed.
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Froune 7: In vitro spheroidal growth as opposed to in silico for all four cell types with the final chosen sets of doubling times as shown in
Table 1 and fixed proliferation depth equal to 2. Two additional simulated growth curves are depicted with different proliferation depth values
for the GBP0G (r = 4, yellow dash dotted line) and the GEPO8 (r = 3, purple dash dotted line) spheroids.

3.4. Comparison of Biological and Computational Results. In
the following, we assume monoclonal populations and para-
metrize the mathematical model based on the estimated
experimental values for the doubling time and cell size for
the different GB cell lines. We also parameterize the model
without taking into account the in vifro estimates of cell sizes
and keep the cell size and all the other parameters constant
in all the experiments. Parameters within the range of the
experimental biological observations are chosen to achieve
the best-fitting growth curves. It has to be noted that both
the simulated and the biological experiments have an initial
seeding population of approximately 625 cells per spheroid
per cell type. The simulations show that the in vitro estimates
of cell sizes do not improve the model predictability and that
accounting only for differences in doubling time among GB
lines results in very similar growth curves.

Table 1 shows the parameters used by the in silico model
regarding the doubling time. Figure 7 shows the in vitro
growth curves and the in silico predicted ones for all the GB
cell lines. Based on the selected doubling time values and
keeping the proliferation depth equal to 2, the growth curves
of UR7MG and GBP03 cell lines are closely approximated by
the in silico model. However, the GBP06 and GBPOS cell lines
diverge significantly from the in vifro results indicating that
proliferation alone is necessary, but not sufficient to explain
the tumor expansion of different GB cell lines growing under
the same initial conditions. Hence, additional phenomena
should be taken into account. For example, increasing the
proliferative depth and/or consider the possibility that mul-
tiple phenotypes with various proliferative capacities coexist
within such tumors, then the in vitro and in silico growth
curves would come in line as our parameter study analysis

previously revealed. Alternatively one could advocate that
GEP06 and GBPOS contain phenotypes with higher prolif-
eration depth than US7MG (and GBP03) which are expected
to thrive in compact environments such as a solid spheroid.
It should be noted that the proliferative depth could also be
affected by the development of extracellular matrix (ECM)
substrate in 3D cultures, even in the conditional absence of
a relevant substrate [17], as in our biological experiments.
This, along with antagonistic and synergetic relationships
of subclones within the growing spheroid, could alter the
mechanical responses of dividing cells, reflected in terms of
proliferation depth to our mathematical model. However, our
biological approach did not take into account a priori this
parameter, but it was the computational approach that indi-
cates such possible behavior suggesting that ECM production
and distribution might also be different in different cell lines.

Figure 7 also shows the simulated growth curves for the
GBEP06 and GBPOS after changing their proliferation depth
values from 2 to 4 and 3, respectively. The in vifro data
better correlate the relevant in silico data. Also notice that
setting the proliferation depth of GEP06& higher than the
GRPO8 is important to achieve their corresponding growth
patterns, where GBP06 grows faster than GEPOS, given that
the doubling time of the former is higher than the latter and
that small differences in their cell sizes are not adequate to
reverse their growth patterns. Another point that should be
marked is that the subsequent decline observed after Day 8
in the in vitro growth curves of these two cell types cannot
be predicted by the computational model. This is because the
computational model we use does not account for inhibitory
stimuli that are probably developed in real growing tumors,
since this was beyond the scope of this study.
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4, Discussion

This work utilizes primary tumor cells collected from GB
patients and subsequently cultivated in vitro as 3D tumor
spheroids and computational approaches to study, exper-
imentally parametrize. and predict the growth dynamics
of tumor spheroids focusing on proliferation. At first, a
parameter study is performed in order to evaluate the extent
to which important factors such as the doubling time, the
cell size, and the depth of the proliferative rim, as well as
the coexistence of multiple clones with different proliferative
capacities within the tumor, affect tumor spheroid expansion
when motility is inhibited. The experimentally estimated
doubling times and cell sizes of three in-house-established
primary GB cell lines, as long as of the US7MG cells, are then
used to parametrize the computational individual-cell-based
maodel.

Overall the parameter study verifies the significant effect
of proliferation (depicted in both the cellular doubling time
and the depth of the proliferative rim) on tumor expan-
sion [40] and underlines additional factors that could play
an important role on tumor growth curves incuding the
intratumoral heterogeneity that has been widely observed in
GB. We also observe that a multiclonal population with the
same mean proliferation exhibits a greater tumor expansion
than the corresponding monodonal population because fitter
clones survive over time driving tumor expansion at higher
rates. Furthermore, the clonal heterogeneity within the tumor
mass allows different clones to be selected every time an
experiment is performed. Thus, a variation is observed in
the growth curves. The variance is cumulative, increases over
time, and can reach a difference of 100 um in radius after
14 days of growth (Figure 5). Furthermore, the simulations
also show that although the mean growth curves are quite
similar, the variance highly depends on the initial number
of different clones coexisting within the tumor mass such
that fewer initial clones in the population produce higher
variability (Figure 6).

Comparing the in vitro experiments with the in silico
predictions, we observe that although the proliferation rate
is necessary, yet it is not sufficient, to describe the growth
curves we observe experimentally. The simulations show that
additional factors including the intratumoral heterogeneity
together with the overall proliferative capacity reflected in
both the proliferation rate and the mechanical cell contact
inhibition can predict the evolution of different GB cell
lines. Nevertheless, further investigation of the underlying
mechanisms is critical.

In general, compactness of the spheroids can be assigned
to two factors in mesoscopic terms: {a) the cellularity, in
means of cells” size and shape given the space, and (b) the
levels of stress tolerance, reflecting their response against
internal forces within the spheroid which vary between
division and entering quiescence state, also known as “contact
inthibition.” As smaller in size and quicker regarding divisions,
GBP06 and GBPO8 cells appear to grow larger in 3D over
time than the other two cell types mainly because of their
promoted proliferative capacity reflected by the higher prolif-
eration depth in the respective simulated growth curves (see
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Figure 7). However, this is only an assumption for our in silico
trials since there is no indication of spheroids cell density and
proliferation depth to our experimental protocol and this isa
limitation of our method needed to be taken into account in
future work

The migratory capability of our cells is conditionally
blocked to our experiments so that it can be assumed to play
a minor role in the proliferative characteristics studied here.
However, when the different cell populations grow in 3D,
both ECM can be produced. and the cell shape and polarity
could also be affected, such that cell-to-cell and cell-to-matrix
adhesion properties could be further explain the divergence
observed over time in growth patterns between the in vitro
and in silico experiments.

We suggest that, instead of using bibliographic values
usually referenced by common GB cell lines, cell doubling
time was found to critically enhance the in silico predictability
but is insufficient to holistically describe differences in tumor
growth over time among the different GB cell lines. The
mechanical cell responses to internal forces obtained during
the growth of a compact tumor should be further investigated
experimentally, as well as the important role of intratumoral
heterogeneity. The importance of gquantitative methods to
provide spatial information of proliferative, quiescent, and
necrotic cells as well as additional features including the
remodeling of ECM and phenotypic distribution regard-
ing intratumoral heterogeneity affecting tumor expansion
becomes evident.

5. Conclusions

The massive proliferation is a defining characteristic of the
tumor nature, essential for its progress. When focusing on
such a greed form of cancer. such as GB, constantly growing
intra-axially and apgressively disturbing brain functionality,
proliferation underlying processes become incompatible in
cancer progress. In GB, heterogeneity is another typical
hallmark, not only among patients with differences between
GB molecular subtypes, but more unexpectedly, between
different regions of the same tumor with the presence of
intratumoral subclonal dormancies. We claim that future
research should be based on primary cells directly collected
from patients and that common cell lines should only serve
as landmarks to unite studies of different groups. For every
primary established cell line, not only molecular but also
physiological parameters should be estimated to enable a
maore precise future clustering of different GB cases. Estima-
tions starting with the typical doubling time as shown here
and evolving to more delicate features such as delineation of
necrotic and hypoxic regions or invasive capability or others
are highly important. To this front, computational models
may serve as predictor tools not only for estimating cancer
progress [59], but also for designing targeted biological
experiments. Simulations of cancer progress, either in vitro or
in silico, should not anymore be based on theoretical values,
especially if clinical translation is of interest. If we target the
holistic description of tumor evolution, we should follow a
stepwise approach, where computational tools can definitely
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help in identifying the most important parameters affecting
the final outcome.
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. Glioblastoma cells adopt migration strategies toinvade into the brain parenchyma ranging from
individual to collective mechanisms, whese role and dynamics are not yet fully understocd. In this

: work, we explore Glioblastoma heterogeneity and recapitulate its invasive patterns bothin vitro, by

. utilizing primary cells along with the U87MG cell line, and in silico, by adopting discrete, individual cell-
. based mathematics. Glioblastoma cells are cultured three-dimensionally in an ECM-like substrate. The
primary Glicblastoma spheroids adopt a novel cohasive pattern, mimicking perivascularinvasion in the
- brain, while the U87MG adopt a typical, starburst invasive pattern under the same experimental setup.
Mathematically, we focus on the role of the intrinsic heterogeneity with respect to cell-to-cell adhesion.
: Our proposed mathematicalapproach mimics the invasive morphologies observed in vitro and predicts
. the dynamicsoftumour expansion. The roleofthe proliferation and migration is also explored showing
that their effect on tumour morphology is differaent per cell type. The proposed model suggests that

- allowing cell-ta-cell adhesive heterogeneity within the tumour population is sufficient for variable
invasive morphologies to emerge which remain originally undetectable by conventionalimaging,

: indicating that exploration in pathological samples is needed to improve our understanding and reveal
potential patient-specific therapeutic targets.

¢ Glioblastoma (GB) is a very aggressive, highly infiltrative’” cancer of the Central Nervous System classified as
¢ grade IV glioma by the World Health Organization with multiple molecular subtypes® and extensive intra-* and
: inter-patient heterogeneity™. GB cclls migrate into the neighbouring brain parenchyma and cxpand, characteriz-
. ing GB as a diffusive rather than a focal discase”. It becomes evident that it is virtually impossible from a technical
: point of view to totally exempt the patient from the malignancy even in the case of gross resect ion®. As a result,
¢ tumour relapse may occur” in the eriginal or ncarby brain regions'” from the invasive cells that arc left over. On
. top of that, broad heterogeneity in GBs has been identified at the genotype, phenotype and molecular evolu-
¢ tion level even within the same tumour, whereas spatially distinct tumour samples display different sul:uqrp-l:s".
¢ Inter-and intra-tumoural heterogeneity is a major biological property of GB tumours that reflects the continuous,
¢ spontaneous, and/or drug-driven evolution of cancer cells. GB is subject to clonal and epigenctic evolution, as
well as microenvironmental forces that all together result in recurrence, therapy resistance and poor prognosis
: in spite of recent advances. The dynamic interplay of various sub-populations that coexist within a tumour fur-
¢ ther limits progress in implementing novel, effective treatment strategics. Although current treatment usually
¢ alleviates the symptoms, GB remains a dinical challenge exhibiting very poor prognosis with less than 10% of
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Figure 1. Invasion of the U87MG spheroids over time. Brightficld images at a 4x magnification and scalcbar is
sct at 100 pm. White arrows indicate cell aggregates.

Figure 2. Invasion of the primary GB spheroids over time. Brightficld images at a 4x magnification and scalcbar

is set at 100 pm.

Results

In vitro experiments. The invasion of primary and US7MG GB spheroids was studiced in this work.
Doubling time estimation experiments (as described in the Suppl y text) sh d that both cell types are

highly proliferative with cell population mean doubling times of30.8hand 25 4h for the US7MG and the primary
cell line, respectively. In the 3D invasion assay, cell migration was fully ECM-dependent, since no invasion was
observed in its absence. Spheroids were monitored over a total period of 12 days and the invasive patterns formed
were consistently observed in all the experiments per cell type.

Invasive pattern of UB7MG cells over time.  Fig. 1 presents consccutive brightficld images of a repre-
sentative US7MG spheroid undergoing invasion within a 24-hour time interval (excluding the last two images,
216 and t288). As shown in Fig. 1, US7MG cells exhibited an immediate invasive phenotype within the first 24h
after sceding. They extended symmetrically from the core maternal spheroid towards the periphery, within the
ECM:-like substrate, following a non-cohesive migration pattern. In accordance with relevant studics™**, ran-
dom prolonged cellular protrusions were also observed; yet no noticeable cell path track in the ECM was detected
in the brightficld images. This type of outgrowth behaviour continues until approximately 72 h with slight var-
iation. After 96 h, the most distant cells had reached the boundaries of the well. In linc with previous reports®,

at this time, satellite cell clusters were also starting to form, and i dopted a more complex dynamic
behaviour. Interestingly, after 288 h of allowed invasive condition with no nutritional exhaustion, the surrounding
aggregates seemed to deform, whilst the maternal spheroid, that had remarkably grown, had no more defined
borders, while all peripheral cells were prolonged.

Invasive pattern of primary cells over time. Primary GB spheroids adopted an apparently alternative,
cohesive invasive morphology with boundary instabilities, not mpom:d before in relevant studies' %7, Fig. 2
illustrates the evolution of the invasion pattern of a rep ive primary spheroid. The same invasive pattern
was consistently observed in all primary GB spheroids of the same patient that we tested. Initially, few invasive
cells seem to asymmetrically exit away from the maternal core spheroid towards the periphery. At intermediate
time points, the invading cells appear to collectively form a cohesive, sheet-like structure (as described in'?).

Finally, in the following time points, until 288 h, the invasive pattern app Itered, but still enhanced.

Growth dynamics of tumour spheroids.  Fig. 3 shows the temporal evolution of the average values of
the core and invasive radii from all the experiments for both the U87MG and the primary spheroids, based
on the segmented brightficld images. The time evolution of the negative control experiments is also depicted.
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adhesiveness

Figure 4. Snapshots of various morphologies emerging by combining phenotypes with different cell-to-cell
adhesion properties. Cell-to-cell adhesiveness ranges from 0 (blue) to 7 (red) colour indicating low to strongly
adhesive phenotypes, respectively. All snapshots are captured at the end of the simulation process, which
corresponds to 112, 160, 144, 184, 216 and 216 h respectively, from lefi to right.
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Figure 5. In silico predictions of the US7TMG cell type: (a) Snapshot of the simulated Us7MG spheroid at 96h
(left), (b) the temporal evolution of the core radius, and (c) the invasive radius for both the in vitro and in silico

experiments over time.
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Figure 6. In silico predictions of the primary cell type: (a) snapshot of the simulated primary spheroid at 36 h
(left), (b) the temporal evolution of the invasive radius of both the in vitro and in silico experiments,

We should note that alternative combinations of phenotypes may possibly produce similar results, as for example
using only the middle adhesive phenotypes. However, as can be seen in Supplementary Text: Fig. I, in that case the
tumour compactness initially decreases and only after a period of time increases forming a compact core. On the
contrary, including phenotypes with high adhesion, an almost immediate increase in tumour compactness was
observed, better resembling the core expansion of the in vitro cxperiments. The diffusion cocfficicnt was sct to
D=1z- 10 % cm* s and the proliferation time was set to 25h, in accordance to the doubling time estimate. A
snapshot at 152h of the tumour evolution is illustrated in Fig. 6a (see also Supplementary video 5V2 and the
Supplementary Text: Fig. K). As can be seen in Fig. 6b, apart from the trapped cells in the core, we can observe
that relatively low adhesive phenotypes (types 2, 3, 4) tend to appear in the tips of the tumour sprouts, while phe-
notypes with relatively stronger cell-to-cell adhesive interactions (types 5, 6 and 7) are more likely to be found
closer to the tumour core. Interestingly, all phenotypes coexist within the tamour, increasing their populations as
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equal contribution of all phenotypes in the tumour composition introduces an eventual decrease of the overall
cell population and tumour expansion and prompts the formation of a denser tumour (Supplementary Text:
Figs BB and CC), similar to the morphology observed after 120h in the respective biological experiment (Fig. 2).
Thus, allowing random phenotype transition in both cases could possibly predict the morphologics obscrved at
later time points, although alternative mechanisms triggered by the evolving tumour microenvironment and not
necessary requiring mitosis could account for these morphologies too. Even more, a microenvironmental reg-
ulated phenotypic switch could also be a potential mechanism explaining the evolution of the invasion pattern.

Discussion

In this work, we explored the invasive potential of GB cells using a rather simple, but yet realistic, set of experi-
mental parameters. We utilized patient-derived cancer cells of a GB patient along with the established and com-
monly used U87TMG cell line. GB cells are cultured in 313 in an ECM-like substrate. Our biological experiments
show that the two types of tumour spheroids display considerably distinct invasive patterns suggesting different
mechanisms of cell migration. In an attempt to explore possible mechanisms involved, an individual cell-based
mathematical approach was adopted to indicate the potential role of the intrinsic heterogeneity with respect to
cell-to-cell adhesion on tumour morphoelogy and growth dynamics.

We implemented the 31 tumour spheroid invasion assay™* in order to investigate the initial steps of invasion
from spheroids formed using single cell suspensions. The main advantage of this assay as compared to standard
trans-well assays is that it can recapitulate the basic 3D structure of tumours and replicate features of collective
cell invasion observed in vivo. In addition, this is a simple, quick and standardized assay that enables analysis of
invasion with high reproducibility in a 96-well plate format. However, we should note that monitoring of inva-
sion in the existing 3D spheroid invasion assays relies on brightficld imaging of the spheroid from the bottom of
96-well U-plates, which confines microscopic analysis of 31 spheroids to a 2D plane leading to exclusion of cell
clusters invading in the depth dimension.

Based on the in vitro invasive protocol followed here, the two GB cell lines used, exhibited a markedly different
invasive pattern. In consistence with other studies™ 84, Us7MG cells appeared to colonize the BECM via a
process indicating non-cohesive, starburst migration. On the other hand, the GGB primary spheroids kept expand-
ing to massively conguer the surrounding regions rather than individually migrating potentially governed by
homotypic attraction™. A unigue, collective invasive pattern with morphological instabilitics of cohesive protru-
sions near the boundary resembling perivascular invasion in the brain® was observed. It is well recognized that
exploring the physiological and molecular patterns of these cells might enable the design of novel therapeutics
targeting the recurrence process. The ability to early detect the phenotypic compaesition of an evolving tumour is
undoubtedly of significant prognostic value.

In order to further investigate potential intrinsic mechanisms involved in the invasion patterns observed, an
individual-cell-based computational model accounting for intratumoural heterogeneity was developed. More
specifically, different cell-to-cell adhesive properties adopted by the GB cells were assumed, although additional
or even alternative mechanisms could also play a role in the observed tumour behaviour. Reher et al.™ have exten-
sively studied mathematically the role of cell adhesion heterogeneity specifically on cell dissemination, opening
the question of whether this heterogeneity is present in gliomas and how it affects the migration mechanisms and
tumour morphalogy. In support to our work, recent studies'**" have shown differential expression of cadher-
ins, as well as observable disorganization and instability in cell-to-cell interactions within various GB cell lines.
Primary cells most usually overexpress cell adhesion molecules, such as integrins or cadherins, whilst common/
established cell lines do not'™ 4%, Furthermore, complementing cell-to-cell, cell-to-ECM interactions were also
shown computationally to play an important role in tumour invasion, with cell-to-cell interactions affecting pre-
dominantly the invasion pattern and cell-to-ECM influencing the invasion speed™*. A variety of mathematical
maodels have been developed to describe the emergence of invasion in cancer cells and GB specifically, as sum-
marized in Alfonso ef al*. Yet, to the best of our knowledge, none of these studics focuses on the formation
of invasive patterns, by taking into account the interplay of co-existing phenotypes with different cell-to-cell
adhesion propertics on tumour evolution and morphology. In this work, tumour expansion and morphology
were explored and compared with the in vitro experimental data. Tumour expansion was quantitatively evaluated
hased on the temporal growth of the tumour spheroid core and the invasive radii. Furthermore, additional met-
rics including the locally derived sparseness and compactness were used to describe the morphologies. In general,
tumour expansion is attributed to both the proliferative and migratory capacity of tumour cclls. Thus, their role
on tumour morphology and evolution was also investigated under the proposed framework.

Interestingly, we showed that by selecting (during model initialization) phenotypes with different cell-to-cell
adhesion preference to coexist within the tumour is sufficient to resemble the distinct invasion patterns and the
expansion rates we observed in vitro between the primary and the US7MG cells. We also observed that varia-
tion in proliferation time and diffusion cocfficient affects overall the tumour compactness, sparseness, as well
as the tumour expansion rates and changes the relative frequency of phenotypes according to cell type, indicat-
ing potential mechanisms that could alter tumour evolution and inhibit invasion. Forcing a strong dependence
hetween adhesiveness and proliferation to mimic a potential “go-or-grow” mechanism (Supplementary Text:
Figs M and N}, we observed that although for the USTMG cells such hypothesis could possibly apply, prolifer-
ation plays a more complex and important role for the primary cells under the specific modelling assumptions.
Interestingly, we also observed that by allowing cells to randomly switch phenotypes throughout tumour evolu-
tion, the self-organization of cells, reflected in the diverse frequency of each phenotype, was lost and all pheno-
types involved have equal representation in the population with an impact on the evolution of the primary cell
type. More specifically, in the primary tumours, we observed that by disabling the phenotypic switch, both the
total tumour population and expansion increased, indicating that random phenotypic switch with respect to
cell-to-cell adhesion does not favour tumour evolution.
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to preserve conditional stability and support the GB cells’ survival, aggregation and proliferation. Aliquots of
zero stage, as well as various passages of in vifro cell tissue were cryopreserved, nucleic acids were extracted for
further analysis and immunchistopathology was performed. The average doubling time intervals were estimated
following a simple protocol in adherent cultures for both the established primary GB culture and the USTMG cell
line which was used as a control (as described in®). All possible steps and procedures have been approved by the
Institutional Ethical Committees.

Invasion assay. GB spheroids were generated using the hanging-drop technique. The 31 spheroids were
formed in a Perfecta3D) 96-well hanging drop plate {31 Biomatrix, USA) by seeding a single cell suspension solu-
tion of approximately 600 cells/50 pl of supplemented DMEM per well for each cell type used. An agarose solution
of 1% wiv was added to the plate’s reservoirs to prevent evaporation of the droplets.

After 4 days of spheroid formation, twenty spheroids per each cell type were transferred to a 96-well U-bottom
plate, initially cooled on ice for 15-20 minutes. The invasion solution was made by diluting ice-cold BME
Pathclear (Basement Membrane Extracts, Amshio, Cultrex®, UK} in supplemented DMEM in a 1:1 ratio. In
the U-bottom plate, 100 pl of the invasion solution was added per well containing either a primary or a US7MG
spheroid. Subsequently, the U-bottom plate was centrifuged for 5 minutes at 300 rpm, at 4 *C in order to place the
spheroids in the centre of cach well, homogeneously distribute the invasion matrix and eliminate bubbles within
it. Incubation for 1 hour at 37 °C was followed to allow solidification of the matrix. As a final step, 100 pl of warm
supplemented DMEM was added per well and the plate was placed at a 37 "C humidified cell culture incubator to
promote invasion to the semi-solid gel-like ECM matrix.

Negat'wecontrol. As a negative control experiment, spheroids of each cell line were examined by means of
growing in the absence of the ECM-like substrate (i.e. in supplemented DMEM-F12 alone). It should be noted
that none of the cell lines used exhibit invasion in the absence of ECM and no exogenous ECM is required for the
spheroid formation via the hanging drop technigue.

Image segmentation and analysis. Spheroids were monitored using a Leica DFC310 FX inverse
wide-field fluorescence microscope (Leica, Germany) owver a total period of up to 12 days and photographed every
24h, using & 4x objective lens and fixed acquisition parameters. The brightficld images were semi-automatically
scgmented in Matlab 6.1 (The MathWaorks Inc., Natick, MA, USA).

Tumour expansion kinetics were evaluated based on: i) the time evolution of the tumour spheroid core, and ii)
time evolution of the overall invasive rim®. The whole invasive area was measured by estimating the maximum
radius taken from the core centre that encloses all the invasive cells. To estimate the invasive rim, the radius of the
core maternal spheroid was subtracted from the whole invasive radius. The invasive kinetic profile was quantita-
tively generated by statistically analysing all results over time with regression analysis of mean values +standard
deviation,

Mathematical approach. In cellular automaton (CA) moedels, each tumour cell operates individu-
ally (i.e. grows, divides, moves and dies) and interacts locally with other neighbouring cells following a set of
biologically-inspired rules. CA models have been also extended to hybrid discrete-continuous (HDC) models
in an attempt to additionally describe the interactions between cells and the microenvironment. These models
integrate data from both experimental and/or clinical sources and have been widely used to describe critical
aspects of tumour evolution and invasion, including genotype to phenotype relations®, inter- and intra-tumoral
heterogencity'™, the effect of autocrine/paracrine signalling on cell proliferation and motility™*, cell-to-cell and
cell-to-matrix adhesion?*=1574%7, phenotypic plasticity”-*, the formation of invasive branches™, evolutionary
dynamica’-s'“. the int:r‘:llay with the brain anatomic features™® and the microenvironmental factors™, as well as
treatment outcomes™

In this work, we build on the HDC model originally proposed by Anderson™, but modify scveral aspects.
Specifically, in order to focus on cell-to-cell adhesion, we consider the ECM tobe a homogeneous passive scaffold
where cells are allowed to migrate, but matrix degradation and remodelling are not considered. In our HDC
approach, the phenotypic propertics of the tumour cells include proliferation, motility, cell-to-cell adhesion, oxy-
gen consumption and death. We assume that cell properties are intrinsic propertics that are not regulated by the
microenvironment. We account for heterogeneous cell populations, which differ only with respect to cell-to-cell
adhesion properties. The rest phenotypic properties of the cells are kept the same for all cells, unless otherwise
stated. The cell adhesive property is applied during ccll movement and generalizes the attractive rule used in
Aubert et al.™. Specifically, this property describes a cell's preference to bind with a variable number of other cells
in its new position. Thus, cells select their preferred neighbourhood as they move. Cells with low cell-to-cell
adhesive properties prefer empty neighbourhoods, whereas cells with high adhesive properties are attracted
towards highly populated areas. Cell movemnent approximates a random walk in a 2I) regular lattice, but it is
biased towards the adhesion preference of the cell. Cell division is a fundamental process that may change cell
phenotype based on genetic, epigenetic, and/or stochastic decisions. If explicitly stated, inspired by its biological
counterpart, we additionally introduced an intrinsic state transition probability, where cells are allowed to sto-
chastically switch phenotype regarding cell-to-cell adhesion only during proliferation and with probability P
Otherwise it is assumed that the adhesive property is inherited by the daughter cells during proliferation and it 1s
fixed throughout tumour evolution. We assumed oxygen to be the only limiting source needed by the tumor cells
to grow.

Cell processes are updated asynchronously and randomly (see Supplementary Text: In silico methods). This
ensures that in each iteration every cell arbitrarily receives a different priority in the update queune. Cell movement
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Description of phenotypes. Phenotypes with different adhesion preferences were allowed to coexist and
interact within the tumour. The different phenotypes are referred based on their preference adhesion value. A
phenotype with low adhesion value corresponds to a cell with loose cell-to-cell adhesive interactions that prefers
to be alone, while a phenotype with high adhesive value implies that a cell forms strong adhesive interactions,
attracted by high populated neighbourhoods. We categorize our phenotypes as follows: we call phenotypes with
adhesion preference 0 and 1, low adhesive; phenotypes with preference 6 and 7, highly adhesive; and those with
adhesion preference in [2, 5], middle adhesive phenotypes.

Data Availability
All data generated and analysed during this study are included in this published article (and its Supplementary
Information files).
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APPENDIX

Followingly, preliminary results of interesting observations through the experiments regarding
necrosis and invasion GB physiologic characteristics are briefly described.

GB cell death in 2D and 3D

Interestingly, during the observation of the MR 1mages of the GB patients included in our study, as
well as by taking into account the empirical clinical knowledge, the next remark was noted: the vast
majority of the GB tumor within the brain lesion is necrotic. However, as stated before [99], this
necrotic pattern 1s common between all GB cases and can be attributed in both hypoxia formation
due to nutrient-deficiency, as well as to another critical feature of the tumor growth, the mtrinsic cell
death probability of the cancer cells. This spontaneous GB cell death 1s considered to be mainly
necrosis, rather than apoptosis or autophagy [261].

The mtrinsic cell death rate of the different GB cell lines was estimated as an initial step to assess the
spontaneous death of the GB cells. The methods used were the trypan blue assay, the MT'T assay,
as well as the Fluorescence-Activated Cell Sorting (FACS) with both Annexin V (marker of
apoptosis) and the propidium iodide (PI, marker of necrosis) for the quantification of cell death.
The cell death rate estimates are presented in Table 7 for the different GB cell cultures and are a
mean percentage from the experiments conducted with the different protocols. The data produced
should be further analyzed in order to finalize the values. Bibliographic values for the spontancous
cell death in gliomas are 5-11% [262] and our preliminary results are in line to the reported ones.

Table 7. The spontaneous cell death estimates for the different GB cell lines used in our study.

US7MG 6
TI98G 11
GBP03-P1 8
GBP06-PO 7
GBP08-P0O 11

To better mimic the 12 vivo growth conditions, we used the hanging-drop technique to generate 3D
cultures for the GBP03-P1 and the U87MG cell lines and evaluate the cell death in 3D untreated



APEENDIX]|150

spheroids. The spheroids growth was monitored for up to 14 days by bright field microscopy. As
denoted before, the primary GB spheroids grow more rapidly than the U87MG spheroids.
Concurrently, we measured cell death within spheroids using a combination of LSFM imaging with
Draq7 and flow cytometry with PI after enzymatic dissociation of the spheroids. LSFM imaging has
the major advantage of live cell mimaging. Yet, since the experiment is terminal, a different
representative spheroid was scanned at each time point. All images were analyzed regarding the
average signal intensity and z-stacks were generated from multiple frames.

In Figure 45, dead cells are detected in the middle hypoxic region and expanding towards necrotic
region through time in both cell types with U87MG showing the highest necrotic rate as evaluated
i FACS. However, the procedure of the spheroid dissociation in order to produce a single cell
solution 1s not efficient and there 1s a cell loss at each repetition. Therefore, the absolute values of
the FACS experiments cannot be considered. The two different cell types can only morphologically
be compared since LSFM signal enhancement 1s also not quantitative. As denoted in Figure 45, the
necrotic population of the primary GB spheroids was depicted over time. In submillimeter
dimensions, multiple necrotic foct were shown which subsequently expand towards the center to
form a core (dead cells are marked with red). The necrotic population percentages of both spheroid
types cannot be correlated to the levels of the spontaneous cell death as estimated in the 2D cultures.
Additional phenomena contribute to the cell death and earlier time points should be also evaluated

(e.g. the time point when the spheroids are just aggregated).

Nevertheless, as seen in Figure 45, the necrotic core is eventually configured (and not existing from
the beginning) within the spheroid through time because of the restricted nutrient diffusion. In more
detail, in the upper part, the merged images of the primary spheroids expressing GFP and treated
with Draq7 (red) are displayed, indicating necrosis in the middle region which further expands
towards center. The brightfield image of the spheroid in 5x objective LSFM lens 1s also shown. Note
the walls of the sampling tube near the margins of the ~ 800um-diameter spheroid. In the lower part,
the U87MG spheroids have necrotic cells distributed similarly to the primary spheroids, respectively.
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Day 7 Day 11

61.42% 72%

Figure 40. (A) LSFM max intensity z stack images of the GBP03-P1 primary GB spheroids in day 7
(Ileft) and day 11 (right) after seeding. All cells express GFP and necrotic cells are labeled with Draq7
(red). The small image is the relevant brightfield image of the primary spheroid stabilized live sample
within the FEP tube. (B) LSFM max intensity z stack images fused to the brightfield ones of the
U87MG spheroids. Necrosis is denoted with Draq7 (red). The percentages represent the dead cells
as estimated by the respective FACS scans. Scalebar is set at 100 microns.

To further evaluate our results, we permanently fixed the primary spheroids to
immunohistopathologically confirm the existence of the necrotic foci. As it can be seen 1n, there are
also necrotic regions seen as empty space that are surrounded by pseudopalisades (areas with denser
cellularity) and few apoptotic cells which are positive for caspase 3 (aC3, arrow heads). In Figure 42,
an image of the materials used n order to prepare the spheroid histology samples 1s shown. Because
of the small size (<Icm’) of the spheroids, more than one fixed samples were put in flat-bottom 96-
well plates and stabilized using a dense agar solution. Since the spheroids have no color, in order for
the experimenter to handle the specimens, small-sized banana peels were marked with ink pigments
and used as landmarks (see also [263]).
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Figure 41. Immunohistopathological image of a GBP03-P1 spheroid of day 11. A non-necrotic (left)
region is compared to a necrotic one (right). The non-necrotic region is homogeneous with rare
apoptotic cells (aC3 positive). The necrotic area 1s composed by small cavities, formed because of
loss of the cohesion as a result of the increased number of dead cells (arrow heads denote both
necrotic-apoptotic cells). Proliferation is the same for both areas (95%). Eosin and hematoxylin stain,
DAB as a chromogen, hematoxylin as counterstain. Original magnifications are 40x and 400x.
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Figure 42. Histopathological sample preparation of the spheroids. (A) Small-sized banana peels were
marked with ink pigments. (B) Flat-bottom 96-well plates were used to give shape to the sample.
More than one permanently fixed spheroids are put at each well in a dense agar solution. A banana

peel 1s used as a landmark of the sample.

In these set of experiments, there 1s evidence regarding the formation of necrotic foct and not of the
necrotic core as depicted in avascular submillimeter GB tumors using LSFM 1maging and
immunohistopathological methods. Our results need to be further validated, yet are in line to several
theories of the GB growth progress [264] and the mechanisms of the necrosis formation [17, 18].

Necrosis 1s an essential characteristic of GB growth that needs to be taken into consideration also in
the in silico approaches. In Figure 43, a possible GB tumor snapshot of the simulated growth
progress 1s shown. Notice that the dead cells mitially form necrotic foci that evolve to a rather central
necrotic core. The computational model used 1s a simple CA model that accounts for differential
cell division, vessel sources formation and occlusion pressures, as well cell death and quiescence.
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The 1dea 1s that using simple rule-based models like this one that was inspired by Conway’s “Game
of Life”, the fundamental GB hallmarks can be reproduced and form the typical morphology of
small GB tumors. Assessing the pathophysiology of GB necrosis formation and evolution, as well as
fostering the intrinsic glioma cell death 1s a current treatment target to several studies [262, 265] and
will further promote our GB ontogenesis understanding and the importance of necrosis as a GB
diagnostic feature.
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Figure 43. A simulated small-sized tumor with a CA model accounting only for proliferation,
nutrients supply and cell death.
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GB invasion unexpected findings

Supplementary figures on the subject of GB invasion (as described in chapter 4) are shown. First, in
Figure 44, the spontancous ECM production of the U87MG spheroids 1s depicted when growing as
control, meaning in the absence of ECM-substrate. This observation 1s common among the hanging

drop spheroid generation and may be experimental evidence regarding the conditional adaptation
of the US7MG cell line.

Figure 44. U87MG hanging drop spheroids 15 days after seeding. Scalebar is set at 100 microns.

Additionally to the experiments conducted regarding the invasion for the US7MG and the GBP0O3
separately, in Figure 45, the co-culture of both cell types 1s shown. The GBP03-P1 were treated so
as to permanently express mCherry (red). Notice that the dominant invasive phenotype 1s that of the
US7MG though the GBP03 are a growing region within the larger spheroid. The 1mages were

captured from a fluorescence optical microscope, thus the resolution 1s poor.

Figure 45. Co-culture of the US87MG-empty and the GBP03-P1-mCherry (red) following the
invasion assay (as described in chapter 4). Scalebar is set at 100 microns.






