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Abstract

Zinc is a common material that is often used in modern materials due to its abundance,
low price, non-toxicity, material stability and its great ability to alloy with most metallic
elements. Zinc-containing oxides and chalcogenides are used extensively in a variety of
applications. In this thesis, we consider two characteristic families of Zn-based materials:
Zn chalcogenides and Zn-doped Mn2NiO4.

The Zn-chalcogenide family of materials (ZnS, ZnSe, ZnTe) are direct gap II-VI semicon-
ductors which are excellent base materials for optical device technology due to their large
gap and optical properties. Mn2NiO4, on the other hand, is a well-known material as a
temperature sensor thanks to its negative temperature coefficient of resistance (NTCR)
but its alloys with Zn require further investigation. In this thesis, we employ density
functional theory (DFT) in the Projector-Augmented Wave (PAW) implementation to
calculate the electronic structure and characteristic properties of these materials.

In the first part of the thesis we probe the structural, electronic and optical properties of
the Zn chalcogenide family of materials using first principles calculations. Even though
DFT can produce really accurate results for the ground state, it falls short when it
comes to excited state properties like the semiconductor band-gap and the absorption
spectrum. For a more accurate description, we solve the Bethe-Salpeter Equation in the
GW approximation in order to include many-body effects in our calculations that arise
from the electron-hole interactions like excitons.

The second part of this thesis revolves around Mn2NiO4 and its alloying by the Zn sub-
stitution of Mn. We calculate the ground state structure, magnetization and density of
states of these materials for various concentrations Zn. We then proceed to calculate
the properties of two similar material series of the MnxZnyNizO4 type. Although these
alloys have very promising electronic properties, detailed simulations as well as experi-
ments are missing. In close collaboration with experimental colleagues, we will unravel
the potential of these materials for sensing applications.
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CHAPTER 1

Introduction

This thesis revolves around calculations performed for Zn compounds and Zn-containing
materials. The calculations were carried out using Density Functional Theory(DFT) and
some post-DFT schemes for properties where DFT falls short. Among the Zn compounds
the focus was the family of Zn chalcogenides ZnX, with X being sulfur, selenium or
tellurium, and alloys of the form Mn2.5−xZnxNi0.5O4 and Mn2.5−xZn0.5NixO4. All of
the materials of interest in this thesis are also investigated by two different groups of
experimental colleagues.

1.1 Zn and its compounds

Zn(atomic number: 30) is a relatively abundant element in the earth’s crust, more
abundant than copper that is used widely in its bulk form. It is a transition metal
with electronic configuration: [Ar]3d104s2. In its metallic form it is used for anti-rust
coatings for steel or iron thanks to its easy oxidation, but it can also form a plethora
of compounds with very interesting properties, and especially in the nano-materials
community it has attracted a lot of attention. One of the most famous Zn-nanomaterials
is ZnO, a semiconductor with direct band-gap ≈ 3eV that has been studied in a wide
range of applications from photocatalysis to sensors and supercapacitors [1][2].

Directly bellow O in its periodic table group follow the chalcogens, S, Se and Te. Their
Zn compounds , namely ZnS, ZnSe and ZnTe have very interesting optical and electronic
properties. Like ZnO they are all direct-band gap semiconductors, a much coveted prop-
erty for opto-electronical applications, with band gaps ranging from ≈ 2.2−3.6eV. They
belong to the II-VI semiconductor family and being wide-gap semiconductors they have
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Figure 1.1: The two primitive cells of the structures that the ZnX materials can be
found. Left: The more stable at room temperature Zinc-Blende structure, Right: The
wurtzite structure.

attracted the interest of researchers to study their optoelectronic properties, especially as
blue-lasing materials. Nowadays their nanostructures [3] are also being investigated and
some groups have even managed to synthesize them in layered form [4] and are studied
in a plethora of applications. They crystallize in the cubic zincblende structure at lower
temperatures but can be synthesized in their hexagonal wurtzite structure as well [5].
The atomic structure of the Zinc-Blende and Wurtzite can be seen in Fig. 1.1

In the first part of this thesis the optical properties of these materials are going to
be investigated from first-principles with the goal of recreating their optical absorption
spectra. The results of this part will be presented in Chapter 4.

Another Zn material, not as popular but a very interesting one is the tetragonal spinel
Mn2ZnO4. It has been studied as a potential candidate for a range of energy and energy
storage applications like supercapacitors [6], for Lithium-Ion batteries[7] and as a catalyst
for the production of biofuel [8].

A similar material to Mn2ZnO4 is Mn2NiO4 that crystallizes in the cubic spinel structure
and its mostly known as a temperature sensor material thanks to its negative tempera-
ture coefficient of resistance, good response and low cost [9][10].

Doping-alloying ,depending on the percentage of the introduced element to the parent
material, is well-known method to improve a material’s properties. The effect of Zn and
Ni introduced in the Mn2.5Ni0.5O4 and Mn2.5Zn0.5O4 structures respectively is going to
be explored. The results will be presented in Chapter 5.

1.2 Computational Materials Science

Humans always tended to find ways to predict how a situation would evolve, this was
an evolutionary perk since by being better prepared they had better chances of survival.
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Computational materials science is no different from that human need, its objective
is the prediction of how certain materials would respond in different situations. This
gives an edge to society since by being able to reproduce experimental results and even
predict the properties of unknown materials saves time from experimental researchers
and of course money and the natural resources that would be otherwise used in the
experiments. Computational materials science researchers are in essence no different
from their experimental colleagues, they just conduct virtual experiments. Additionally,
in the virtual experiments one can delve deeper and investigate some properties that are
not easily measured experimentally due to equipment limitations. The computational
materials scientist on the other hand can create the ”perfect experiment”, which is not
always good of course because in the real world the conditions are hardly ever that ideal
and due to computational limitations it is not always easy to recreate the imperfections
of the real world.

There are various tools that make those virtual experiments in materials science, de-
pending on the level of theory one is interested in. Ab-initio calculations use quantum-
mechanics to reproduce very accurate experimental results but due to the computational
load the amount of atoms/electrons that can be included in the calculations is quite lim-
ited. Then there are Monte-Carlo simulations that are more widely used for molecular
and fluid calculations and there are also computer programs for whole device designing.
In this thesis only ab-initio calculations were performed.

The most widely used method to study the ground state properties of materials from
first principles is Density Functional Theory (DFT). Examples of such properties are
their structure, their elastic constants and their density of states. In order to study
excited states of the materials, like optical excitations, at this level of theory DFT is not
enough. The theoretical groundwork of these methods will be discussed in the following
Chapter.
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CHAPTER 2

Theory

2.1 The many electron problem

In the next two chapters some theoretical and computational concepts will be intro-
duced. The content of these chapters was greatly influenced by two books, Solid State
Physics: A shortened version by E. N. Economou [11] and Computational Physics by J.
Thijssen[12].

Since most of the ground state properties of materials are governed by the behaviour
of the material in the quantum level , the Schrödinger’s equation (Eq. 2.1) needs to be
solved for all the volume of the material in order to calculate these properties.

Ĥψ = Eψ (2.1)

Ĥ is the Hamiltonian of the system ,which in this case consists of N electrons and K
nuclei. It takes the form:

Ĥ =

N∑
i=1

p̂2i
2m

+

K∑
n=1

P̂ 2
n

2Mn
+

1

4πε0

1

2

N∑
i,j=1;i 6=j

e2

| ri − rj |

− 1

4πε0

1

2

K∑
n=1

N∑
i=1

Zne
2

| ri −Rn |
+

1

4πε0

1

2

N∑
n,n′=1;n6=n′

Z2
ne

2

| Rn −Rn
′ |

(2.2)
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In the above equation, indices i and n refer to the electrons and nuclei respectively, m
refers to the electron mass and Mn refers to the mass of the nucleus n. The first and third
term describe the kinetic energy and Coulomb interaction of the electrons respectively,
the second and fifth term describe the kinetic energy and Coulomb interaction of the ions
respectively and the fourth term describes the Coulomb interaction between the electrons
and the nuclei. The 1/2 in the coulomb terms is accounting for doulbe-counting.

From Eq.(2.1) and Eq.(2.2) it is deduced that the wavefunction of the system is depen-
dent upon the positions of both electrons and nuclei. This problem is impossible to solve
even with state-of the art computer systems and doesn’t seem it will be possible in the
near future. In order to tackle this obstacle some drastic approximations need to be
made.

2.2 Basic Approximations

A first simplification that can be made is the disentanglement of the electronic and ionic
degrees of freedom. This approximation is called the Born-Oppenheimer approximation
and is well justified by the fact that one proton is ≈ 2000 times heavier than the elec-
tron, thus the nuclei are moving much slower and by the time they have moved, the
electrons will have already adjusted their positions and hence the nuclei seem static to
the electrons. The new Hamiltonian of the electrons takes the form:

ĤBO =
N∑
i=1

p̂2i
2m

+
1

4πε0

1

2

N∑
i,j=1;i 6=j

e2

| ri − rj |
− 1

4πε0

1

2

K∑
n=1

N∑
i=1

Zne
2

| ri −Rn |
(2.3)

while the nuclei are treated separately and the total energy will be the sum of the energy
of the nuclei and that of the electrons.

Even though the Born-Oppenheimer approximation lightens the load considerably, the
second term of Eq.(2.3) is still too much to handle and at this point a really drastic
approximation needs to be made.

The Independent Particle approximation does the trick by considering the movement of
one electron independent of the rest in a potential that is determined in a self-consistent
manner that arises from the other moving electrons and the static nuclei. With this
approximation the previously impossible problem becomes that of solving Eq.(2.1) for
one particle N times, which is feasible. The problem now for one electron takes the
form:

− h̄2

2m
∇2ψ(r) + V̂(r)ψ(r) = Eψ(r) (2.4)

For the electron system, the Hamiltonian is:

7



ĤIP =

N∑
i=1

[
p̂2i
2m

+ V̂(r)

]
(2.5)

The problem now lies in finding the potential V̂ which is not a trivial task. This operator
depends on the wavefunction on which it is acting on and is non-local as it is affected by
the positions of the other electrons of the system. There are methods to solve this prob-
lem like the Hartree-Fock(HF) method, a variational approach, and Density Functional
Theory(DFT). In this thesis, DFT was exclusively used and it’s going to be described
in the next section.

2.3 Density Functional Theory

DFT was first developed by the works of Hohenberg and Kohn [13] and Kohn and Sham
[14] and since then it has become a prominent tool in the computational materials science
community. In [13] is proved that the ground state of an interacting electron gas is a
unique functional of the electron density.

E = E [n(r)] (2.6)

They defined the electron density of the ground state of N electrons as:

n(r) ≡
N∑
i=1

| ψi(r) |2, (2.7)

and the results of their work showed that the density functional that minimizes the energy
is the one that describes the ground state, so a self-consistent scheme can be applied
to find this electron density, the energy and a wide range of ground state properties
that depend on the energy. In order to apply this self-consistent scheme, the electron
density needs to updated, something that is achieved by solving an Independent Particle
Schödinger’s equation for the electrons of the system known as the Kohn-Sham Equation
Eq.(2.8)

[
− h̄

2m
∇2 + V̂ (r) + V̂H(r) + V̂xc(r)

]
ψi(r) = εiψi(r) (2.8)

With:

V̂H =
e2

4πε0

∫
d3r

′
n(r

′
)

1

| r− r′ |
(2.9)

In Eq.(2.8) the first term is the electronic kinetic energy operator, the second is the
electrostatic potential of the nuclei-electrons interaction, the third term, also known as
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Hartree potential Eq.(2.9), is just the non-interacting electron-electron interaction. All
the quantum mechanical effects like exchange and self-interaction are lumped in the
last term. It is obvious that the Born-Oppenheimer approximation has been taken into
account since the kinetic energy and Coulomb interaction of the ions is missing.

In order to apply this self-consistency scheme, a trial electron density is used. With this
density Eq.(2.8) is solved and from the electron wavefunctions that are found, a new
electron density is calculated from Eq.(2.7), if this new density n is different than the
trial, the same procedure is repeated until the convergence criteria are fulfilled. Then
all that is left to do is calculate the total ground state energy that is given by:

E =

N∑
k=1

εk −
1

2

1

4πε0

∫
d3rd3r

′
n(r)

1

| r− r′ |
n(r) + Exc [n]−

∫
d3rVxc [n]n(r) (2.10)

with:

Vxc [n] =
δ

δn
Exc [n] (2.11)

The exact form of the exchange and correlation term is unknown but further approxi-
mations are made to tackle this problem.

2.3.1 Local Density Approximation(LDA)

In the LDA the exchange and correlation potential is approximated by an XC potential
of a homogeneous electron gas that depends only on the electronic density and the
exchange-correlation energy per particle of the gas Eq.(2.12). This approximation holds
well for systems that their electron density doesn’t vary quickly.

Exc =

∫
d3rεxc [n(r)]n(r) (2.12)

2.3.2 Generalized Gradient Approximation(GGA)

GGA, in addition to the electron density, takes into consideration the former’s gradi-
ent, making it a more suitable approximation for systems with more rapidly changing
electronic density (e.g. a surface) Eq.(2.13).

Exc =

∫
d3rεxc [n(r),∇n(r))]n(r) (2.13)

Purdew, Burke and Ernzerhof [15] in their work modified the GGA by introducing an
enhancement factor Fxc to include non-locality effects. Eq.(2.14)
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Exc =

∫
d3rεunifx [n(r)]n(r)Fxc(rs, s) (2.14)

in which:

rs is the Seitz radius: rs = 3

√
3

4πn

s is a density gradient: s = ∇n
2kFn

and kF is the Fermi wavevector: kF =
3
√

3π2n

2.4 Post-DFT Methods

Even though DFT is extremely useful in calculating the ground state properties of ma-
terials it falls short when it comes to excited states. The eigenvalues of the Kohn-Sham
Equations Eq.(2.8) are lagrangian multipliers, a mathematical tool to solve our problem,
but they bear no physical meaning and aren’t accurate for describing electron addition
or extraction energies. The above statement is also supported by the well-known inade-
quacy of DFT in calculating energy band-gaps which it greatly underestimates (see Fig.
2.1).

The single-particle excitation energies can be calculated by the Green function theory
which shows that the quasiparticle energies are given by:

[
−1

2
∇2(r) + V̂H(r)

]
Ψi(r) +

∫
d3r

′
Σ̂(r, r

′
;Ei)Ψi(r

′
) = EiΨi(r) (2.15)

Σ̂ in Eq.(2.15) is the complex self-energy operator and it contains the exchange and
correlation effects while here Ψi is the all-electron wavefunction. Notice that it is non-
local and energy dependent making it very difficult to calculate, so more approximations
are in order. Such an approximation is the GW approximation that will be discussed
in the next section and some of its results showcasing its success can be seen in Fig.
2.1.

2.4.1 GW Approximation (GWA)

GWA is a result of many-body pertubation theory and is based heavily on the work of
Hedin [17] who performed the first self-energy calculation with GWA for the electron
gas. It wasn’t until 1985 that it was used by Hybertsen and Louie[18] for real material
calculations because it is computationally demanding.

In the GW approximation the self-energy introduced in Eq.(2.15) is approximated by an
integral of GW where G is the Green’s function and W the screened Coulomb potential
between electrons. In practice G is easily calculated from the single particle wavefunc-
tions using Eq. (2.16) in which a represent one electron orbitals (for this reason GWA
is uses DFT calculations as its base) and is solved at the limit δ → 0. The screened
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Figure 2.1: Band Gap values for a variety of materials obtained by PBE, G0W0 and
GW0. The experimental values lie on the red line, the DFT values are represented by
circles while the G0W0 and GW0 values are represented by the white and black triangles
respectively. Figure obtained from Ref. [16]

Coulomb potential is just the bare Coulomb potential divided by the dielectric function
of the material.

G(r, r
′
, ω) =

∑
a

ψa(r)ψa(r
′
)

ω − Ea − iδ
(2.16)

A more formal description of the GWA will be provided here. It is based on the Green’s
function theory. The Green’s function of an electron (at zero temperature) is defined as
an expectation value to the many-electron ground state [19]:

G(xt, x
′
t
′
) = −i〈N | T̂ψ(xt)ψ†(x

′
t
′
) | N〉 (2.17)

In Eq(2.17): x describes three three spatial coordinates (r) and the spin of a particle, T
is the time-ordering operator, ψ† | N〉 describes the system with an additional electron
that was introduced in point r and time t. If t

′
< t, G gives the probability amplitude
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to find an electron at point r and time t if an electron was added at point r
′

and time t
′
.

If t < t
′

the state describes electron removal and the propagation of a hole [19].

The core of the approximation can be found in the Hedin’s Equations that link the self-
energy with the screened Coulomb interaction, the polarizability, the Green’s Function
and a Vertex function.

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫
d4d5d6d7

e.ltaΣ(1, 2)

δG(4, 5)
×G(4, 6)G(7, 5)Γ(6, 7; 3) (2.18)

P (1, 2) = −i
∫
d(34)G(1, 3)Γ(3, 4; 2)G(4, 1+) (2.19)

W (1, 2) = υ(1, 2) +

∫
d(34)υ(1, 3)P (34)W (4, 2) (2.20)

Σ(1, 2) = i

∫
d(34)G(1, 3)Γ(3, 2; 4)W (4, 1+) (2.21)

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2) (2.22)

In the above equations 1 ≡ (r1, σ1, t1) and 1+ ≡ (r1, σ1, t1 + δt), 2 ≡ (r2, σ2, t2) and
2+ ≡ (r2, σ2, t2 + δt) and so on with δ a positive infinitesimal. The υ denotes the bare
(unscreened) Coulomb interaction and P is the irreducible polarizability that is used in
the calculation of the screened Coulomb interaction ,W , and Γ is a vertex function that
contains information that the electron and hole interact. Their derivation can be found
in Hedin’s paper [17].

So far no approximation has been made. The more challenging equation from the above is
the vertex function the second term of which is a 20th dimension integral. GWA neglects
vertex corrections leading thus to a simplified form of the above equations:

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) (2.23)

P (1, 2) = −iG(1, 2)G(2, 1+) (2.24)

Note: Polarizability in this form is the Random Phase Approximation.

Σ(1, 2) = iG(1, 3)W (3, 1+) (2.25)
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Σ needs to be calculated self-consistently which is no-easy task but at least is feasible.
Even with just 1 iteration (known as G0W0, can be seen in Fig.2.4) it yields results
much closer to the experiment than PBE. G0 can be calculated from an ordinary DFT
calculation. Eq. (2.15) now can be solved with the self-energy operator from GWA. The
eigenvalues as mentioned before are complex, with the real part being the quasiparticle
energies and the imaginary part being the excited state lifetime.

2.4.2 Bethe-Salpeter Equation

In the GWA the vertex corrections were neglected treating this way the quasi-electron
and a quasi-hole as non-interacting, but in reality they do interact since they have
opposite charges and attract each other. In bulk materials this interaction is greatly
quenched by the surrounding electrons but it is particularly strong in 2-D materials
that can be of the order of 0.5 eV. The quasiparticle formed by an electron and a
hole is named an exciton and its energy cannot be calculated in the GWA. Optical
absorption is a two-particle process and even though in the RPA we can calculate an
absorption spectrum(from GWA calculations) it is not an adequate approximation for
many materials.

The Bethe-Salpeter Equation(BSE) can be used in addition to GW to calculate the two-
quasiparticle (e.g. an exciton’s) eigenergies. BSE is a 4-point equation and can be seen
in Eq.(2.26).

Figure 2.2: The Bethe-Salpeter equation shown by Feynman Diagrams. Single straight
lines with arrows represent the non-interacting Green’s Functions, the double straight
lines represent the interacting Green’s Functions, the single wiggly line represents the
bare Coulomb interaction and finally the double wiggly line represents the screened
Coulomb interaction. Figure taken from [19]

The equation in mathematical form is:

χ(1, 2, 3, 4) = χ0(1, 2, 3, 4) +

∫
d(5678)χ0(1, 2, 3, 4)K(5, 6, 7, 8)χ(7, 8, 3, 4)

K = V −W = VH(5, 7)δ(5, 6)δ(7, 8)−W (5, 6)δ(5, 7)δ(6, 8)

(2.26)
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χ is the density response function and Eq.(2.26) with some mathematical tricks can lead
to an effective two particle Hamiltonian making it possible to calculate the eigenvalues
and eigenvectors. χ is also directly related to the dielectric function , e.g. in Eq. (2.27),
from the imaginary part of which one can create optical spectra.

ε = (1 + χ)ε0 (2.27)
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CHAPTER 3

Computational Methods

This chapter aspires to provide a short introduction to some concepts used in our calcula-
tions and will be referred to in the next two chapters. In Chapter 2 the basic theoretical
concepts upon which DFT and post-DFT methods were built upon were introduced, but
there is a lot that hasn’t been mentioned about the computational approach to solve
these problems.

3.1 Plane waves and Bloch Theorem

As was briefly mentioned in the previous chapter, the calculation needs to include all
the material volume. This is absurdly difficult for a real material since just 1 mole of
it has atoms of the order of 1023 and one to two orders higher number of electrons. To
tackle this problem the Bloch’s Theorem is used for large systems in which some form of
periodicity can be found (atoms in bulk materials are organized periodically). Because
the arrangement of the atoms is periodic the electrostatic potential of the nuclei will
be periodic as well: V (r) = V (r + Rn) with Rn any translation vector of the crystal
lattice.

By using Bloch’s theorem and the periodicity of the system the number of particles for
which the Schrödinger’s equation needs to be solved is dramatically reduced to just the
number of particles in a cell that if repeated infinitely, will reproduce the material. The
wavefunction of the system can then take the form:

ψ(r) = eikru(r), (3.1)
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where u is a periodic function with the periodicity of the cell and it can be expanded in
plane waves:

u(r) =
∑
G′

ũ(G
′
)eiG

′
r (3.2)

So the wavefucntion becomes:

ψ(r) =
∑
G′

ũ(G
′
)ei(k+G

′
)r (3.3)

G in Eq.(3.2) are the reciprocal lattice vectors. More on the reciprocal lattice will be
mentioned in the final section of this Chapter.

Using Eq. (3.3) and assuming a similar form for the periodic potential of the solid in
the independent particle hamiltonial Eq.(2.5):

− h̄
2(k +G)2

2m
ũ(G) +

∑
G′

ũ(G
′
)ṽ(G−G

′
) = Eũ(G) (3.4)

Another problem that needs to be addressed is the basis in which the wavefunctions will
be expressed. The obvious choice is a Plane Wave basis set since it’s a simple one and
occurred naturally in the Bloch wavefunction. In order to have the correct prediction
the basis set should be infinite but this of course is not feasible for numerical solutions
and hence a limit needs to be found that will have a certain degree of accuracy.

This limit is referred to as the Plane-wave cutoff energy and it represents the maximum
reciprocal vector included in the calculation. | G + k |< Gcut. The reciprocal vectors
represent momentum and finally the cutoff energy is given by:

Ecut =
h̄2

2m
Gcut

2 (3.5)

3.2 Pseudopotentials and the Projector Augmented Wave
method

With the above formulation everything looks fine at first but there are yet problems
that need to be tackled. The wavefunctions span through all the calculation space, even
inside the nuclei (or ions if some of the inner electrons are considered inert). That is
quite a challenging area to treat due to the 1/r dependence of the potential and hence for
r < rc where rc is the radius of a nucleus/ion. In this region, the wavefunction behaves
quite peculiar and needs a much larger basis to be correctly described, which is not an
appealing prospect since this would mean increased computation time.
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Figure 3.1: The wavefunction and the potential in contrast to the pseudo-potential and
the pseudo-wavefunction. Figure taken from [20]

This oscilation of the wavefunction was treated with a variety of approaches one of which
is the pseudo-potential method which focuses on finding a potential that will reproduce
the energy eigenvalues and the wavefunctions for r > rc and that the wavefunctions
calculated for r < rc to be smooth and without any points that the wavefunction is
zero. This technique is well justified since the core(nucleus/ion) is not participating in
chemical bonding and most of the material properties. The method is depicted in Fig.
3.1.

In the calculation, most of the core electrons are lumped with the nucleus since they don’t
participate in bond formation and can be considered as inert. The rc then refers to a ra-
dius that determines for which electrons the Schrödinger’s equation will be solved.

A generalization of the pseudo-potential method and a more accurate method is the
Projector-Augmented Wave that was introduced by Blöchl [21]. PAW uses the same
idea to use an auxiliary wavefunction for the core that can be more computationally
efficient but uses a transformation operation, like in Eq.(3.6), to map the pseudo to the
true electron wave function. Then, only the transformed Kohn-Sham equation, Eq. (3.7)
needs to be solved and of course the transformation operator T needs to be determined.
T is the transformation operator and n represents a quantum state.

| ψn〉 = T̂ | ψ̃n〉 (3.6)

T̂ †ĤT̂ | ψ̃n〉 = εnT̂ †T̂ | ψ̃n〉 (3.7)
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3.3 K-point grid

Due to the periodicity of the lattice and Bloch’s theorem, the wavefunction is the same
for a translation r → r + Rn with Rn = n1a1 + n2a2 + n3a3 where the three n are
integers and the three a are the cell’s basis vectors.

ψ(r + Rn) = eikRnψ(r) (3.8)

From the above equation it follows that the value of the wavefunction will be repeated
for k = k + Gm where

Gm =
2lπ

Rn
, l integer (3.9)

The Gm wavevectors are given by:

Gm = m1b1 +m2b2 +m3b3, m1,m2,m3 integers, and (3.10)

b1 ≡ 2π
a2 × a3

a1 · (a2 × a3)
, b2 ≡ 2π

a3 × a1
a2 · (a3 × a1)

, b3 ≡ 2π
a1 × a2

a3 · (a1 × a2)
(3.11)

Where b1, b2 and b3 are basis vectors that form the reciprocal lattice. The volume in
the reciprocal lattice defined by its three basis vectors is called the first Brilluin Zone
and the important thing is that if we calculate the wavefunctions in this area we know
how all of the material will behave. Of course it is not possible to make the calculations
for every point in this zone since there are infinite points, so a grid is used. The finer
the grid the more accurate the calculation. Usually the grid is formed by specifying how
many divisions should be made in the reciprocal basis vectors, e.g. a possible grid would
be 5 × 5 × 5 that would give a total of 125 reciprocal points (k-points) included. Due
to symmetry reasons some of the points are recurring so they are usually excluded and
the number of k-points included are reduced. These final points are called irreducible
k-points.

All the calculations performed in this thesis were performed using DFT in the PAW
method as is implemented by the Vienna ab initio simulation package (VASP ver-
sion 5.4.4), all the k-point grids used were Γ centered Monkhorst-pack grids and the
PBE(Purdew-Burke-Ernzerhof) exchange and correlation functional was used for the
ground state calculations. Our calculations were converged in terms of plane-wave cut-
off energy, number of bands and k-point grid sampling.
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3.4 Computational details for the GWA and BSE

The BSE is solved on a GWA calculation based on a DFT calculation. We find Fig.
3.2 quite enlightening as to how GW and BSE calculations are conducted. The one-
electron wavefunctions and eigenenergies are used to calculate G from Eq.(2.16). Then
using Hedin’s equations the polarizability is calculated which is related to the response
function χ which in turn is related to the dielectric function which it is finally used
for the screened Coulomb interaction W . W together with G are used to calculate the
self-energy which is used to solve the effective Schrödinger’s Eq.(2.15) and obtain the
energy eigenvalues. The eigenenergies, the one-electron orbitals (that might be updated
in some GW types) and the screened coulomb interaction are required for solving the
BSE.

The GWA can be used in many different ways, we tested three of them. We follow
the abreviations used by VASP. The most common one is the G0W0 in which both G
and W are calculated only once, without any self-consistency scheme. Then there is the
partially self-consistent GW0 calculations in which W is still calculated from DFT but G
is updated self-consistently in respect to the eigenvalues but it still uses the same DFT
wavefunctions. And finally the third flavour of GWA that we used is the self-consistent
QPGW0 which in addition to the eigenenergies, the wavefunctions are also updated but
again W remains unchanged.

There are a number of parameters used in a GW calculation. The ones that will be
mentioned in the thesis will be explained briefly:

ENCUTGW: It stands for the energy cutoff of the basis set used for the calculation of
the response function χ and works as the plane wave cutoff energy.

NBANDSV: This parameter determines the number of virtual orbitals (or unoccupied
orbitals) in the calculation.

NOMEGA : It specifies the number of frequency points considered in the frequency
integration (G is frequency dependent hence we integrate for frequency too for the self-
energy.)
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Figure 3.2: Schematic representation of the workflow of a BSE calculation. Figure
obtained from ref. [19].
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CHAPTER 4

Optical Properties of Zn chalcogenides

In this chapter the end goal was the calculation of the absorption spectra of ZnS, ZnSe
and ZnTe, but along the way some other properties of these materials were calculated.
At the beginning the structure of the materials was determined, then their Bandstruc-
ture was calculated and finally the GW approximation and Bethe-Salpeter Equation
calculations were used to evaluate their optical properties.

4.1 Lattice Parameters

The first step in most ground state calculations is the determination of the most sta-
ble atom configuration, and since we are dealing with periodic structures the lattice
parameters are what we are looking for.

In the introduction, the structure of these materials was mentioned briefly but for com-
pleteness of this Chapter they will be mentioned again in more detail.

All of the ZnX materials crystallize in the Zinc-Blende (ZB) structure (also known as
sphalerite), space group: F 4̄3m, Number: 216, which is basically the diamond structure
with Zn at the (0,0,0) and X at the (0.25, 0.25, 0.25) positions. They can also be found
in the wurzite structure which is hexagonal, space group: P63mc, Number:186. In both
structures the chalcogen atoms form tetrahedra with Zn atoms inside. The primitive cell
of the two structures can be seen in Fig.4.1 while the atom positions and basis vectors
for both structures can be seen in Table A.1 of Appendix A. All of the ZnX materials
favour the ZB structure.

To find the lattice parameters, DFT is employed to calculate the ground state energy of
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Figure 4.1: The primitive cells of the two structures of the Zn chalcogenides. The
chalcogen atoms are depicted yellow and Zn is grey. Left: The ZB structure, Right: The
wurtzite structure.

different atom configurations. The configuration with the minimum energy is the most
energetically favoured and the one we are looking for.

In the case of the ZB structure there is only one lattice parameter: a. After an initial
investigation with broader lattice parameter screening we performed a narrower search
to find the most energetically favoured value. The lattice constants were found to be
5.45 Å 5.74 Å and 6.18 Å for ZnS, ZnSe and ZnTe, respectively.

Table 4.1: Experimental data for the ZnX series for the lattice parameter and the Energy-
Band gaps.

a (Å) Egoptical(eV)
ZnS 5.406 [22] 3.73 (300oK)[23], 3.66(300oK)[24]
ZnSe 5.667 [22] 2.81 (20o K)[25]
ZnTe 6.1026 [22] 2.26(300o K) [23] , 2.37(4o K) [26]

The values are in good agreement with experimental data with less than 1.5% devia-
tion from their respective experimental values in Table 4.1. The energy versus lattice
parameter graphs can be seen in Fig.4.2 and 4.3.

The computational parameters used in the above calculations could be considered ac-
curate but the matter of how accurate has yet to be determined. To do this a set of
convergence runs were conducted for the Plane Wave (PW) cutoff-energy (ENCUT),
number of bands (NBANDS) and k-point grid for ZnS. The results can be seen in Table
4.2.

For a 6x6x6 k-point grid the energy is already converged to 0.002eV, 100 bands are
already converged to 0.00001eV and for 600eV PW ENCUT the calculation is converged
to 0.0001eV. A lot of the bands are empty (in this case empty bands = NBANDS − 9)
but it is a good practice to include some in the calculation and it doesn’t do much to
worsen the computational load. Table 4.2 can be used to pick the parameters in such a
way to achieve the desired computational accuracy.
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Figure 4.2: Initial screening of the the Energy-Lattice parameter graphs for the ZB
structure of the three materials. A 10x10x10 k-point grid was used with 1100eV cutoff
energy.

Table 4.2: Convergence investigation for ZnS. Except in the calculations that varied
these quantities 200 bands, 700eV PW ENCUT and a 10x10x10 k-point grid were used.

NBANDS Energy(eV) Kpt-grid Energy(eV) ENCUT Energy(eV)

100 -6.8512960 6x6x6 -6.8482654 200 -6.3992828
150 -6.8512869 8x8x8 -6.8510391 400 -6.8500525
200 -6.8512865 10x10x10 -6.8512865 600 -6.8513130
250 -6.8512867 12x12x12 -6.8513201 700 -6.8512865

14x14x14 -6.8513256 1100 -6.8513244

Additionally, we performed ground-state calculations of the wurtzite structure of these
materials in order to confirm that the cubic ZB is the most stable at lower tempera-
tures (in all our calculations we have 0 Kelvin). Their lattice constants were found by
minimizing the energy versus the three lattice parameters a, c and u (u is a parame-
ter that affects the chalcogen positions) using the Nelder-Mead (simplex) optimization
algorithm. The results of this investigation can be found in Table 4.3.

As can be seen in table 4.3, there is small difference in energies per atom, as expected, as
both can be synthesized easily and can be found in nature. There is a trend showing that
the Zinc-Blende structure is more favourable as the chalcogen atom gets heavier.

4.2 Electronic Properties

4.2.1 Bandstructures

The bandstructures of these materials were also calculated and can be seen in Fig.4.4.
We confirm the well-known direct gap at the Γ point of the Brilluin Zone of these
materials that gives rise to their optoelectronic properties but the DFT band gaps are,
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Figure 4.3: The Energy-Lattice parameter graphs for the ZB structure of the three
materials in the minimum neighbourhood. A 10x10x10 k-point grid was used with
1100eV cutoff energy.

Table 4.3: Lattice Parameters for the two structures of the ZnX materials. All energies
and energy differences are in eV.

Parameter ZnS ZnSe ZnTe
Wurzite ZB Wurtzite ZB Wurtzite ZB

a (A) 3.85 5.45 4.04 5.74 4.35 6.18
c (A) 6.31 - 6.60 - 7.16 -

u 0.374 - 0.375 - 0.374 -
Energy/atom -3,4229 -3.4257 -3.0861 -3.0919 -2.5874 -2.5937

Energy
Difference

0.0028 0.0058 0.0063

as expected, greatly underestimated. This is a well-known weakness of DFT as it is
not suitable for excited states and does not perform well when calculating the electron
addition and extraction energies.

The direct transition at Γ corresponds to the first exciton while the one at Λ to the
second exciton. The band-gaps in the graphs are: ≈ 2.0 eV, 1.2 eV and 1.1 eV for
ZnS, ZnSe and ZnTe, respectively. The DFT bands gaps can be found also in Table
4.5. The bandstructures display other similar features too, like the behaviour of the first
three valence bands, they share similar gradients at the same k-points and hence hole
effective masses too and they all degenerate to one energy at the Gamma point. We
remind at this point that the effective mass of an electron/hole is inversely proportional
to the gradient of the energy in k space. There are also the almost flat bands at ≈ −7
eV that can be attributed to localized d states because of the extremely large mass of
the electrons there. The aforementioned features are also present in the more accurate
bandstructure calculated for ZnS and ZnSe in the GWA by Weidong Luo et al. [27] with
the addition of a band-gap much closer to the experimental values.
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Figure 4.4: Bandstructures of the ZnX materials. PW ENCUT was 1200eV and 40
kpoints in each line were considered. 25



4.3 GWA and BSE calculations

For the GW calculations there were a number of parameters to check out for convergence
and the results of the calculations will be presented in the following tables. In most of
these calculations, the G0W0 approximation was used except the one about the number
of iterations whose the GW0 approximations was used when more than iteration was
used.

Table 4.4: Convergence calculations for ZnS. Other calculations parameters until other-
wise mentioned: ENCUT = 600 eV, NBANDS = 248, NBANDSV = 12, kpoint-grid =
4x4x4 , ENCUTGW = 400eV, NBANDS = 50

G
Iterations

EgDFT EgGW0 ENCUTGW EgDFT EgG0W0

1 1,9931 3,3561 150 1,9931 3,3954
3 1,9931 3,6227 200 1,9931 3,3708
5 1,9931 3,6336 300 1,9931 3,3520
7 1,9931 3,6342 400 1,9931 3,3562

NBANDS EgDFT EgG0W0 ENCUT EgDFT EgG0W0

150 1,9931 3,3485 300 1,9869 3,3481
200 1,9931 3,3524 400 1,9912 3,3554
248 1,9931 3,3562 600 1,9931 3,3561

NBANDSV EgDFT EgG0W0 NOMEGA EgDFT EgG0W0

9 1,9931 3,3561 30 1,9931 3,3588
12 1,9931 3,3561 50 1,9931 3,3561
18 1,9931 3,3562 70 1,9931 3,3596

In Table 4.4 the effect of the GWA flavour can already be seen. With just three iterations
the prediction for the band gap dramatically improves and the energy is converged to
0.01eV. ENCUTGW is converged to 0.001eV for 300eV while NOMEGA and NBANDSV
seemed well converged for all tested values and it would not be wise to lower these
parameters further since they don’t affect the computational time that much. The
only non-GW parameters are the NBANDS and ENCUT for which both the DFT and
GWA band-gap are converged to 0.001eV for 150 bands and 400eV. We performed more
convergence calculations for ZnS and the other two materials as well that can be found
in Tables A.2, A.3 and A.4 of Appendix A.

We then went on to calculate the electronic band gaps for the whole ZnX family using
three different approaches for the GWA. The calculated gaps can be found in table
4.5.

As can be seen from Table 4.5 DFT gap energies are well converged even for a 4x4x4
k-grid while the GW calculations require denser k-point sampling still to reach that
level of accuracy, they are converged to 0.01 eV though when using a 6x6x6 grid. Un-
fortunately, these calculations require tremendous memory, making further investigation
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Table 4.5: Band Gaps (in eV) of the materials as calculated by different flavors of GW
approximation.
Material(k mesh) a (Å) Eg (DFT) Eg (G0W0) Eg (GW0) Eg (QPGW0)

ZnS (4x4x4) 5.45 1.99 3.35 3.62 3.65
ZnS (6x6x6) 5.45 2.00 3.27 3.52 3.57
ZnS (8x8x8) 5.45 2.00 3.26 3.51 3.56
ZnSe (4x4x4) 5.74 1.16 2.43 2.67 2.80
ZnSe (6x6x6) 5.74 1.17 2.34 2.55 2.71
ZnTe (4x4x4) 6.18 1.06 1.92 2.08 2.12
ZnTe (6x6x6) 6.18 1.07 1.84 1.98 2.04

difficult, but a great improvement can be observed when using the GW0 method, that
updates the DFT eigenenergies. Moreover, as we increase the k-point sampling the
energy tends to decrease. Still, the agreement with the experiment in the GW0 and
the QPGW0 approximations is remarkable with ≈ 10% deviation for ZnTe and a much
better agreement for ZnS and ZnSe with their respective band gaps being just ≈ 1-5%
off.

In the literature there is a tendency of the QPGW0 to overestimate the gap and the
results of GW0 are considered more credible even though it is not updating the one-
electron orbitals in its self-consistency scheme. This is attributed to error cancellation
with the negligence of the vertex corrections.

The work of Riefer et al [28] is very similar to ours in which they studied the same
materials. They used DFT in the PAW implementation of VASP but for their ground
state calculations they used a hybrid DFT method (HSE) which they used as a base
for their GWA calculations and they, too, tried different GWA flavours. They were able
to use much denser k-point grids, reaching as high as 18x18x18. In their results all
the band gaps calculated with the GWA were overestimated with the ones closer to the
experiment being with the simple G0W0 method. Khidzir et al [29] studied ZnSe in the
GWA on LDA and found a gap of 1.971eV and had also gathered a lot of other values
found in the literature and it seems there is a great range of band gap values from the
GWA ,from their work with 1.971 eV to 3.26 eV.

4.3.1 Optical Spectra

After the GWA calculations we performed the BSE calculations to get the optical spectra.
Optical spectra can be also calculated in both the DFT and GWA levels of theory but the
calculated excitation energies are not that close to the experimental values usually. We
remind at this point that the polarizability of the GWA matches the one from the random
phase approximation (RPA). In the GWA calculations of the gap the importance of a
dense k-point grid was highlighted so we started by calculating the absorption spectra
of ZnS for various k-point grids for the three levels of theory(DFT, GWA-RPA, BSE)
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in G0W0 approximation. As mentioned in Chapter 3, BSE is used on a preceding GWA
calculation so the energies in BSE differ depending on the type of GWA that it was based
on. The absorption of a material is described by the imaginary part of the dielectric
function so this was the quantity we calculated.

Figure 4.5: Effect of the k-point mesh for three levels of theory of the calculated imagi-
nary part of the dielectric function of ZnS. GWA was used in the G0W0 type.

The effect of the k-point grid in Fig.4.5 is quite prominent in all levels of theory. The most
notable effect is the appearance of more peaks in all levels of theory. This makes perfect
sense because only direct transitions are allowed so denser grid sampling means more
optical transitions. In the DFT level the positions of the peaks of lower grid-sizes does
not change at all at higher grid-sizes, there is just the emergence of new peaks, meaning
the peak positions are converged. The same cannot be said for the other two levels of
theory, where the 1st peak position isn’t adequately converged for the 4x4x4 grid and
is converged to 0.1eV for the 6x6x6 grid while the effect is somewhat more pronounced
for transitions at higher energies. Unfortunately, using denser k-point grid sampling
was prohibitive due to the computational cost, especially the memory requirements.
Even for the 8x8x8 k-point grid, BSE calculations on the other two materials of the
series were stopped because they exceeded the computational capabilities of our system.
Another common feature of the three levels is the diminishing ε2 values on the whole
spectrum.

The effect of the GWA approximation used was also explored. Calculations using the
G0W0, the GW0 and the GW0 types of GWA were performed on ZnS, the results of
which can be seen in Fig.4.6.

The DFT spectra were not shown in Fig.4.6 because they naturally weren’t affected. It
seems the type of GWA that was considered only affects the quasiparicle energies, hence
the peak positions too and slightly ε2 values. The same effect is also reflected in the
BSE spectra which indeed makes sense because the BSE calculation uses the eigenvalues
from the GWA.

Even though we weren’t able to achieve the level of accuracy intended we proceeded to
calculate the optical spectra for the other two materials of the ZnX family for the three
theory levels using the QPGW0 since in our study seems to provide the most accurate
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Figure 4.6: Effect of the GWA flavour on the imaginary part of dielectric function
calculations for ZnS. For these graphs a 6x6x6 kpoint grid was used.

results among the methods used. A 6x6x6 k-point grid was used.

According to our results in Fig.4.7 the most accurate spectra in terms of the first excita-
tion energy are in the RPA and not in the BSE. This is somewhat surprising since in the
RPA excitonic effects are neglected but on the other hand the materials under investi-
gation are in their bulk form and the exciton binding energies are quenched. According
to magnetoreflectance studies in the literature the binding energy of the first exciton
of ZnSe is 17.4 meV[30] while photoluminescence spectra of ZnTe indicate an exciton
binding energy of 12.7 eV [31]. These exciton binding energies exceed the accuracy of
our calculations due to the sparse k-point grid. If we take the binding energy of an exci-
ton to be the difference between the GWA electronic gap and the first peak of the BSE
spectra our calculations give strongly bound excitons of the order of ≈ 100meV.

In Fig. 4.8 the spectra of the whole ZnX family can be seen. The first optical excitation
peak lowers in energy as the chalcogen atom gets heavier following of course the trend
of the band gaps. This is also reflected on the natural colours of these materials. ZnS
having a large band gap, higher in energy than visible light appears in a white hue as
it reflects most of the light back, ZnSe has a lower gap and appears yellow because it
absorbs all light bellow yellow and ZnTe with a considerably lower band gap appears
dark brown as it absorbs more wavelengths. The optical absorption spectrum of ZnSe is
really similar to ZnS but ZnTe seems quite different, for example the second and third
optical transition of ZnTe seem much closer in energy than the respective peaks of ZnS
and ZnTe.

We believe that for a denser k-point grid, absorption spectra closer to the experimental
can be achieved. In the literature Riefer et al [28] were able to adequately reproduce the
optical spectra of the ZnX materials with BSE on G0W0 calculations and a 18x18x18
k-point grid and 0.2 eV broadening of the spectral peaks.
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Figure 4.7: The optical spectra for the ZnX family in the three theory levels using the
QPGW0 approximation.
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Figure 4.8: The BSE absorption spectra for the ZnX family grouped up. These spectra
are based on the QPGW0 approximation on a 6x6x6 k-point grid.
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CHAPTER 5

Complex Zn Materials

In this chapter some complex Zn containing materials will be explored. The materials in
question belong in two series that experimental colleagues of ours have been studying as
temperature sensors, Mn2.5−xZnxNi0.5O4 and Mn2.5−xZn0.5NixO4 for 6 different x values
each. In the first, they started with Mn2.5Ni0.5O4 and went on to replace Mn atoms
with Zn, while in the latter they started with Mn2.5Zn0.5O4 and the rest of the series
have Mn atoms replaced by Ni.

These materials , to the best of our knowledge, haven’t been studied before, so in order
to get a better grasp of the problem, some preliminary calculations were performed in
two similar and well-studied materials. These materials are known to have magnetic
orderings so for all the calculations of this chapter included also the spin of each atom.
We provide an initial guess of magnetic moments and VASP relaxed them to find the
minimum of the energy.

5.1 Mn3O4 and Mn2NiO4

The crystal structures of these materials are quite similar, Mn3O4 crystallizes in the
Hausmannite structure [32] (spacegroup : I41/amd,Number : 141) which is a tetragonal
distortion of the cubic spinel structure(spacegroup : Fd3m,Number : 227). Mn2NiO4

can be found in the inverse spinel structure but is not always completely inversed[33].
In this study we considered only the normal spinel for Mn2NiO4. The primitive cells
and atom positions can be found in Table B.1 of Appendix B. We used these primi-
tive cells to construct various supercells in order to have more options for the doping
concentration.
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Figure 5.1: Left: The hausmannite primitive cell of Mn3O4 and the most stable one.
Right: The spinel primitive cell of the same material. The Jahn-Teller effect of Mn3O4

distorts the octahedra and lowers the energy.

The distortion in the Hausmannite takes place in the octahedra of the structure in
which one of the axis becomes elongated thanks to the Jahn-Teller effect. The Jahn-
Teller effects dictates that for a non-linear system, if two orbitals are spatially degenerate
they will distort to lift the degeneracy, breaking symmetry in the process, in order to
reach a more energetically favoured state.

In both structures the metal ions are located in tetrahedral (A) sites, and twice as many
octahedral(B) sites, with O atoms at the vertices. In the case of Hausmannite Mn2+

and Mn3+ occupy the A and B sites respectively while for the spinel Mn2NiO4, Ni2+ is
at the A and Mn3+ is in the B site.

The difference between the normal and the inverse spinel is that the A site atoms are
switched with half of the B sites, so in the case of Mn2NiO4, the B sites would be
occupied by half Ni - half Mn atoms and the A sites by Mn.

Both their primitive cells contain 14 atoms, or 2 formula units(fu), with 6 metal ions
and 8 O atoms, The two structures can be seen in Figure 5.1.

5.1.1 Ground state properties of Mn3O4

We used the experimental atom positions for the primitive cell provided by [32] as
a starting point. The ground state magnetization of this material undergoes various
transitions [34] and many theoretical groups have studied this material and find it to
be in the anti-ferromagnetic state [[34],[35],[36]]. We performed our own calculations
for some of the possible magnetic configurations and we found out that the most stable
one is the anti-ferromagnetic as well. This is in contrast with the other spinels that
showcase strong anti-ferromagnetic coupling between the A and B sites making them
ferrimagnetic. Our results can be seen in Table 5.1.
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Figure 5.2: Primitive cell of Hausmannite Mn3O4 with the atoms labels used for Table
5.1 shown. The primitive cell contains 2 formula units. Mn atoms are depicted purple
and O atoms red. Mn1 and Mn2 form tetrahedra with their surrounding oxygen atoms
while the rest octahedra.

Table 5.1: Ground State Energy for various magnetic configurations of Mn3O4. Mn1
and Mn2 atoms are in tetrahedral sites while the rest are in octahedral site. Calculation
Parameters: Energy Cutoff=600eV, 200 bands, 9x9x9 k-points grid, the structure was
allowed to relax. FeM, A-FeM and FiM stand for ferromagnetic, anti-ferromagnetic and
ferrimagnetic.
Spin Ordering Mn1(A) Mn2(A) Mn3(B) Mn4(B) Mn5(B) Mn6(B) Energy(eV)

FeM ↑ ↑ ↑ ↑ ↑ ↑ -115,72
A-FeM ↑ ↓ ↑ ↑ ↓ ↓ -116.44

A-FeM 2 ↑ ↓ ↑ ↓ ↑ ↓ -116.70
FiM ↑ ↑ ↓ ↓ ↓ ↓ -116.60
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In the above calculation the cell volume was allowed to relax while keeping the fractional
positions of the atoms fixed in order to get the most stable cell.

According to [37] the experimental values are a= 5.75�A and c = 9.42�A respectively
but if it is to be compared with the spinel cube, a pseudo-cell of this structure has the

parameters a
′

= a ∗
√

2 = 8.14�A and c
′

= c = 9.42�A with a c
′

a′
= 1.157�A. In our

calculations the lattice parameters for the energetically favoured anti-ferromagnetic spin

ordering were found to be: a = 5.71 Å and c=9.84Å with a c
′

a′
= 1.21

Lastly we performed a spin-resolved DOS calculations for the antiferromagnetic Mn3O4.
The results of this calculation can be seen in Fig. 5.3

Figure 5.3: The spin-resolved density of states of the Hausmannite Mn3O4. Negative
values imply spin-down states. Computational Parameters: PW ENCUT = 500 eV,
NBANDS = 250, 5x5x5 k-point grid. This calculation was performed on a 2x1x1 super-
cell of the primitive cell.

Our results for the hausmannite show a band gap of around 0.7eV which is far from the
experimental value of 2.6eV which is to be expected as discussed in the previous chapter
too, but our gap is in close agreement with the results obtained by theoretical groups
like [35].

5.1.2 Mn2NiO4

For the spinel Mn2NiO4 we started again by finding the lattice parameters and the
ground state magnetization using the simplex algorithm. We used a supercell containing
8 formula units (4 primitive cells or 56 atoms in order to have more options later for
the doping percentages) and found its lattice parameter to be a=8.35Å and the oxygen
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parameter x=0.384 Å. These values are in close agreement with the values given for the
inverse spinel by [37] that gives the experimental values: a=8.40Å and x=0.3835.

As mentioned in the beginning of section 5.1.1, spinel materials are usually ferrimagnetic
having opposite magnetic moments for the tetrahedral and octahedral sites of the lattice
and it is for this ordering that we found the lattice parameters. We wanted to make sure
that this is the ground state magnetization so we performed some extra tests, even for
random initial magnetizations for each atom. For the random magnetization we used
the 14 atom primitive cell. After the magnetic moment relaxation the most stable spin
configuration was the ferrimagnetic one with the magnetic moments of the octahedral
(B) sites being opposite to the magnetic moments of the A sites while all the atoms of
the same site being parallel . The results can be seen in Table 5.2 while the results for
the random initial magnetic moments didn’t yield any more favourable configurations
and some are presented in Table B.2 of Appendix B.

Table 5.2: Ground state magnetization investigation for the 56 atom supercell of
Mn4NiO4. In each atom column the number of atoms and the magnetic moments are
given for each spin, both their initials values tried and after the relaxation. All magnetic
moments are given in µB.

Initial Guesses Relaxed State Energy(eV)
Mn Ni O Mn Ni O

Up Down Up Down Up Down Up Down Up Down Up Down
16*3 0 0 8*4 16*0.5 16*0.5 16*3.52 0 0 8*1.2 0 32*0.04 -425.73
16*3 0 8*1 0 16*0.5 16*0.5 16*3.52 0 0 8*1.2 0 32*0.04 -425.73
16*3 0 8*6 0 32*0.5 0 16*3.52 0 0 8*1.2 0 32*0.04 -425.73
0 16*0.5 4*1 4*1 32*0.5 0 0 16*3.52 8*1.2 0 32*0.04 0 -425.73
0 16*3 8*4.0 0 16*0.5 16*0.5 0 16*3.52 8*1.2 0 32*0.04 0 -425.73
0 16*3 8*6 0 32*0.5 0 0 16*3.52 8*1.2 0 32*0.04 0 -425.73

16*3 0 4*1 4*1 16*0.5 16*0.5 16*3.52 0 0 8*1.2 0 32*0.04 -425.73
0 16*3 8*4.0 0 16*0.5 16*0.5 0 16*3.52 8*1.2 0 32*0.04 0 -425.72
0 16*1 8*2 0 16*0.5 16*0.5 0 16*3.52 8*1.2 0 32*0.04 0 -425.71

8*5 8*5 4*6 4*6 16*0.5 16*0.5 8*3.2 8*3.2 1*1.09 7*0.8 9*0.02 23*0.04 -423.41
8*3 8*3 8*1 0 16*0.5 16*0.5 8*3.2 8*3.2 4*0.5 4*0.15 20*0.01 12*0.1 -423.32
6*3 10*2 2*7 6*4 16*1 16*2 6*3.4 10*3.0 5*0.3 3*3 10*0.01 22*0.02 -423.19

16*0.5 0 4*1 4*1 32*0.5 0 16*3.4 0 4*0.9 4*1.2 16*0.04 16*0.04 -423.1
16*3 0 8*1 0 32*0.5 0 16*3 0 8*0.9 0 32*0.02 0 -420.7
6*5 10*7 2*5 6*3 32*0.5 0 16*3.2 0 7*0.01 1*0.06 17*0.01 15*0.02 -420.07

The convergence of our calculations was examined next and can be seen in Table 5.3.
NBANDS again don’t affect our calculation much, with 250 the energy is already con-
verged to the 5th decimal digit. For a 5x5x5 k-point grid the energy is converged to
0.005eV but PW ENCUT seems to need 900eV to converge to 0.01eV.

We also calculated the DOS of this material shown in Fig 5.4. The material seems
metallic with a spin-down gap near the Fermi energy.

5.2 Zn substitutions in Mn2NiO4

We then tried substituting the Mn atoms in the octahedra with Zn. Zn, even though
assumed with a magnetic moment at first, after all the following calculations relaxed
to a 0 magnetic moment. Using the same 56 atom unit cell we tried 5 different Zn
substitutions concentrations 6.25%, 12.5%, 18.75%, 25% and 31.25%. We set up a
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Table 5.3: Convergence Table for Mn2NiO4. In the cases that they didn’t vary the
parameters used are: PW ENCUT = 600eV, k-point mesh = 3x3x3 and NBANDS =
250.

k-point mesh Energy (eV) NBANDS Energy (eV)

3x3x3 -425.66679 250 -425.66679
5x5x5 -425.69395 300 -425.66680
7x7x7 -425.69872 350 -425.66681
9x9x9 -425.69922 400 -425.66681

ENCUT (eV) Energy (eV)

500 -425.72462
600 -425.66679
700 -425.71157
800 -425.75508
900 -425.76864

Figure 5.4: The spin-resolved density of states of the spinel Mn2NiO4. Negative values
imply spin-down states. Computational Parameters: PW ENCUT = 500 eV, NBANDS
= 250, 5x5x5 k-point grid.
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program to find all the unique configurations of the Zn atoms for all the Zn concentrations
and categorized them based on Zn-Zn interactions. In the unit cell used we could find just
three unique distances between possible Zn-Zn pairs and named them first neighbour(fn),
second neighbour (sn) and third neighbour(tn). Our results are presented in the following
tables. In the case of 1 Zn substution there is only one configuration of course. The
three possible Zn-Zn interactions can be seen in Fig. 5.5.

Figure 5.5: The three possible Zn-Zn interactions in the 56 atom supercell of Mn2NiO4,
namely first neighbour, second neighbour and third neighbour. As neighbours we con-
sider only Zn atoms since it is the only part that changes.

Table 5.4: The number of unique substitution configurations and number of Zn-Zn pairs
for various Mn substitution percentages.
Zn substitutions Mn substitution% # of unique configurations # of Zn pairs

0 0.00 1 0
1 6.25 1 0
2 12.50 3 1
3 18.75 8 3
4 25.00 14 6
5 31.25 19 10
6 37.50 16 15
7 43.75 26 21
8 50.00 25 28

All the calculations regarding the Zn substitution in spinel Mn2NiO4 were using 500 PW
ENCUT, 250 bands, were spin-polarized and let cell volume relax.

As can be seen in Tables 5.5 - 5.8 there is a clear preference of the introduced Zn atoms
to stay dispersed and avoid Zn-Zn first neighbour interactions while slightly preferring
second over third neighbours. Since we considered the normal spinel, Zn atoms are sub-
stituting octahedral Mn which all have parallel magnetic orderings, by dispersing Zn a
more uniform magnetization distribution is obtained or else there would be island-like
octahedral areas with Mn and a considerable net magnetic moment and other areas
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Table 5.5: Possible configurations for 2 Zn atoms introduced.
Zn-Zn interactions Energy (eV) Magnetization(µB) Energy Dif.(eV)/unit cell

sn -407.9597 37.7 0.000
fn -407.9446 37.7 0.004
tn -407.7571 37.4 0.050

Table 5.6: Possible configurations for 3 Zn atoms introduced.
Zn-Zn interactions Energy (eV) Magnetization (µB) Energy Dif.(eV)/unit cell

0fn, 3sn, 0tn -399.0574 33.1 0.000
0fn, 2sn, 1tn -399.0416 33.1 0.004
0fn, 0sn, 3tn -399.0097 33.1 0.012
1fn, 2sn, 0tn -398.8479 33.1 0.052
2fn, 1sn, 0tn -398.6491 33.0 0.102
2fn, 0sn, 1tn -398.6398 32.9 0.104
3fn, 0sn, 0 tn -398.3840 32.8 0.168
1fn, 1sn, 1tn

Table 5.7: Possible configurations for 4 Zn atoms introduced.
Zn-Zn interactions Energy (eV) Magnetization (µB) Energy Dif.(eV)/unit cell

0fn, 6sn, 0tn -390.1219 28.0 0.000
0fn, 4sn, 2tn -390.0926 28.0 0.007
0fn, 0sn, 6tn -390.0301 28.1 0.023
1fn, 4sn, 1tn -389.8974 28.1 0.056
1fn, 2sn, 3tn -389.8622 28.1 0.065
2fn, 4sn, 0tn -389.7145 28.1 0.102
2fn, 3sn, 1tn -389.6949 28.1 0.107
2fn, 1sn, 3tn -389.6692 28.1 0.113
2fn, 2sn, 2tn -389.6685 28.1 0.113
3fn, 2sn, tn -389.4878 28.1 0.159
4fn, 0sn, 2tn -389.3098 28.0 0.203
4fn, 2sn, 0tn -389.2545 28.1 0.217
4fn, 1sn, 1tn -389.2449 28.1 0.219
6fn, 0sn, 0tn -388.6897 28.0 0.358
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Table 5.8: Possible configurations for 5 Zn atoms introduced.
Zn-Zn interactions Energy (eV) Magnetization (µB) Energy Dif.(eV)/unit cell

2fn, 7sn, 1tn -380.7232 23.0 0.000
2fn, 6sn, 2tn -380.7071 23.0 0.004
2fn, 5sn, 3tn -380.6773 23.0 0.011
2fn, 4sn, 4tn -380.6749 23.0 0.012
2fn, 2sn, 6tn -380.6455 23.0 0.019
3fn, 6sn, 1tn -380.5154 23.1 0.052
3fn, 5sn, 2tn -380.5102 23.0 0.053
3fn, 4sn, 3tn -380.4794 23.1 0.061
3fn, 3sn, 4tn -380.4655 23.1 0.064
4fn, 4sn, 2tn -380.3083 23.1 0.104
4fn, 2sn, 4tn -380.2960 23.1 0.107
4fn, 5sn, 1tn -380.2647 23.0 0.115
4fn, 3sn, 3tn -380.2355 23.0 0.122
5fn, 3sn, 2tn -380.0668 23.1 0.164
5fn, 4sn, 1tn -380.0659 23.1 0.164
5fn, 2sn, 3tn -380.0484 23.1 0.169
6fn, 2sn, 2tn -379.8799 23.1 0.211
6fn, 3sn, 1tn -379.8175 23.1 0.226
7fn, 2sn, 1tn -379.5206 23.1 0.301

where Zn atoms are gathered with no magnetic moment. The energy gain seems con-
siderable reaching 300 meV per unit cell or 150meV per f.u. for the most-least favoured
configuration for 4 and 5 Zn substitutions. As the doping concentration increases there
aren’t enough octahedra for Zn atoms to completely avoid each other and already for
31.25% Mn substitution with Zn there are no more configurations without fn-fn Zn-Zn
interactions.

As was already mentioned, Zn atoms relaxed to a no-magnetic state and the gradual
reduction of the net magnetic moment is obvious going through the different tables.

The density of states for the most stable configurations was also calculated and can
be seen in Fig. 5.6 while a version with narrower energy range for Fig. 5.6 is given
in 5.7. There are some interesting features in the DOS for the example the spin-down
region close the the Fermi level in which the undoped material and for low substitution
percentage is conducting still but after 18.75% Mn is substituted there are no more states
for the spin-down electrons in the fermi level giving rise to a spin-down gap of ≈ 1.2eV.
This effect is a feature of a generalized blueshifting of the energies that is particularly
noticeable in the regions around -3.5eV, 0eV and 1eV. Another noticeable change is the
emergence of new states (or a band) for the spin-down electrons in the region -3eV to
-2eV for all Zn containing materials that didn’t exist in the undoped one. This new band
seems to get broader with increasing Zn content. Finally there is also a new band for the
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Figure 5.6: Spin-Resolved density of states for the materials with the most stable con-
figuration from each Zn concentration studied and the undoped material.

spin-up electrons at ≈ -1.5eV for the material with the highest Zn concentration.

5.3 The Mn2.5−xZnxNi0.5O4 materials

After our initial calculations we proceeded to the materials studied by our experimental
colleagues. The first material series consists of Mn2.5Ni0.5O4 and its alloys by Zn sub-
stitution , general formula Mn2.5−xZnxNi0.5O4 for 5 different x values, 0.25, 0.5, 0.75,
1.0 and 1.25. These materials are quite similar to the Zn-doped Mn2NiO4 that were dis-
cussed in the previous section but in these materials there are less Ni atoms and hence
half the tetrahedral positions are occupied by more Mn.

Initially we investigated whether these materials prefer the Hausmannite, the spinel or
the inverse spinel crystal structure. The undoped Mn2.5Ni0.5O4 is a material between
the Mn3O4 and Mn2NiO4 in composition, either as the Ni-doped of the former or the
Mn-doped latter. Our calculations indicate that this material, and the rest of the series
as well, prefer considerably the hausmannite structure with an energy difference of ≈
2.5eV per formula unit. We also checked whether the Ni atoms in the un-doped material
prefer the tetrahedra (like the normal spinel) or the octahedral (like the inversed spinel)
positions and it turns out that the two Ni atoms in the supercell prefer the octahedral
positions for ≈ 220 meV. For these calculations we used a 2x1x1 supercell with 900
eV PW ENCUT, 250 bands and a 2x4x4 k-point grid and the cell volume was allowed
to relax while keeping the shape of the cell and the fractional positions of the atoms
fixed.
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Figure 5.7: Another version of Fig. 5.6 with narrower energy range.

We additionally checked the ground state magnetization and we observed a ferrimagnetic
ground state preference for the un-doped material and assumed a similar behaviour from
the rest of the series since the un-doped one is closest to Mn3O4 that is antiferromagnetic.
We performed some convergence runs too for the un-doped case and assumed that the
computational requirements for similar level of accuracy. The convergence results can
be found in Table 5.9

Table 5.9: Convergence table for Mn2.5Ni0.5O4. Unless varied the parameters that were
used were 500 eV PW ENCUT, 250 bands and a 2x4x4 k-point grid.
ENCUT (eV) Energy (eV) NBANDS Energy (eV) k-point grid Energy(eV)

500 -220.41886 250 -220.39720 2x4x4 -220.41866
600 -220.45532 300 -220.39720 3x6x6 -220.43499
700 -220.47461 350 -220.39720
800 -220.50526
900 -220.50737
1000 -220.50737

From here on we decided to use 900 eV ENCUT, 250 bands and a 2x4x4 kpoint grid.
We then went on to calculate the formation energies, magnetization and cell volumes
of these materials. These data can be found in Table 5.10. The formation energy was
calculated using the formula:

Eform = Ematerial −NMnEMn −NNiENi −NZnEZn − 8EO2 , (5.1)
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where N is the number of each atom species in the supercell used and E is the energies
found in their stable forms, namely bcc Mn, fcc Ni, hcp Zn and molecular oxygen.

Table 5.10: Formation energies, magnetization and cell volume for the whole
Mn2.5−xZnxNi0.5O4 series.

Materials Form. Energy(eV)/atom Magnetization (µB) Volume(Å3)
Mn2.50Ni0.50O4 -1.489 18.6 304.70

Mn2.25Zn0.25Ni0.50O4 -1.467 23.1 305.75
Mn2.00Zn0.50Ni0.50O4 -1.446 28.0 306.72
Mn1.75Zn0.75Ni0.50O4 -1.395 23.0 306.29
Mn1.50Zn0.50Ni0.50O4 -1.335 18.1 306.61
Mn1.25Zn1.25Ni0.50O4 -1.283 13.2 307.21

In Table 5.10 the formation energy seems to drop as the Zn doping increases. These
structures are all stable since the formation energy is negative, so it is energetically
favourable to form these structures. The magnetization follows a more peculiar trend
but is easily explained. It increases at first with Zn doping because Zn prefers to re-
place Mn atoms in tetrahedral sites which are opposite to the overall magnetization
and since Zn relaxed to a zero magnetic moment, the overall magnetization increases.
From Mn1.75Zn0.75Ni0.50O4 and for higher concentrations Zn has to replace the Mn in
the octahedral sites and so the magnetization diminishes. The cell volume on the other
hand increases as Zn is larger than Mn until all Mn tetrahedral sites are replaced then
drops slightly and begins to slowly increase again but with almost half the rhythm. The
drop in the cell volume could be attributed to one less Jahn-Teller stretching of the Zn
occupied octahedron.

We also calculated their conductivities which are of the order of 103 S/m with two differ-
ent values for their axes since they are anisotropic in one direction due to the tetragonal
distortion of hausmannite. They can be seen in Talbe 5.11. Even though these values
are three to four orders of magnitude from conductivities of more common metals it
should be noted that these materials are oxides which usually are semiconductors.

Table 5.11: Conductivities for the Mn2.5−xZnxNi0.5O4 material series as calculated in
the independent particle approximation of DFT. All conductivities are given in Mega
Siemens/meter. Indices 1, 2, 3 of the conductivities refer to the main symmetry axis of
the materials.

σ1 MS m−1 σ2 MS m−1 σ3 MS m−1

Mn2.50Ni0.50O4 0.001 0.002 0.002
Mn2.25Zn0.25Ni0.50O4 0.001 0.002 0.001
Mn2.00Zn0.50Ni0.50O4 0.001 0.002 0.001
Mn1.75Zn0.75Ni0.50O4 0.001 0.002 0.001
Mn1.50Zn1.00Ni0.50O4 0.001 0.002 0.000
Mn1.25Zn1.25Ni0.50O4 0.001 0.0026 0.0004
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Figure 5.8: The spin-resolved density of states for the whole Mn2.5−xZnxNi0.5O4 series
and for Mn3O4 for reference. Fermi level is set to 0eV. Computational parameters used:
900eV ENCUT, 250 bands and a 2x4x4 k-point grid.

Then we calculated the DOS of these materials which can be seen in Fig. 5.8 and for
a narrower energy range version in Fig. 5.9. There are similar features to the ones
discussed for the DOS of Zn-doped Mn2.0NiO4. First, there is again the widening of
the energy gap of the spin-down electrons near the fermi level which now for higher
Zn concentrations seems to have some bands again though. There is again an overall
blueshifting that is especially obvious at the spin-down states just below 1eV and the
spin-up states at ≈ 1.5 eV and of course the new spin down states at ≈ 2.5 eV

5.4 Mn2.5−xZn0.5NixO4

The second materials series we were asked to investigate was Mn2.5−xZn0.5O4 and its Ni
alloys by means of Mn substitution for the same 5 concentrations used in the previous
section, one of which is the same (Mn2.0Zn0.5Ni0.5O4).

The structure of the undoped material was expected to be in the hausmannite structure
since it is similar to Mn3O4 and Mn2.0ZnO4 which both are found in that structure in
nature. Our calculations confirmed our expectations for the undoped compound and the
rest of the series preferred the Hausmannite over the spinel by ≈ 2.5 eV per formula unit.
After adding the first Ni atoms we tested which Mn position they prefer to assume and
it seems that the first 2 Ni atoms take the tetrahedral sites , by about ≈ 250 meV while
for higher doping concentrations they are forced to replace octahedral Mn. We continue
to use the same computational parameters from the previous series. We calculate again

44



Figure 5.9: Another version of Fig. 5.8 with narrower energy range.

the Formation energies using Eq.(5.1), magnetization and cell volume.

Table 5.12: Formation energies, magnetization and cell volume for the whole
Mn2.5−xZn0.5NixO4 series.

Materials Form. energy(eV)/atom Magnetization µB Cell Volume(Å3)

Mn2.50Zn0.5O4 -1.588 22.3 309.36
Mn2.25Zn0.5Ni0.25O4 -1.518 25.2 308.03
Mn2.00Zn0.5Ni0.50O4 -1.446 28.0 306.72
Mn1.75Zn0.5Ni0.75O4 -1.362 23.0 303.39
Mn1.50Zn0.5Ni1.00O4 -1.282 18.0 300.08
Mn1.25Zn0.5Ni1.25O4 -1.195 13.0 296.91

Once more the formation energies are getting smaller as the Ni doping increases, the
magnetization follows the same trend as the previous series and can be explained the
same way and finally for this series the cell volume consistently decreases with increasing
Ni doping. The trend in the cell volume can be described by the the smaller radius of
Ni and again once all Mn in tetrahedra are replaced and Mn in octahedra are replaced
the rate that the volume decreases with the concentration can again be explained by less
Jahn-Teller stretched octahedra.

The conductivities were calculated for this series as well with an general increasing trend
as the Ni content increases. These results can be seen in Table 5.13

The DOS for this series was calculated as well and can be seen in Fig. 5.10 and a
narrower energy range version in Fig. 5.11.
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Table 5.13: Conductivities for the Mn2.5−xZn0.50NixO4 material series as calculated in
the independent particle approximation of DFT. All conductivities are given in Mega
Siemens/meter. Indices 1, 2, 3 of the conductivities refer to the main symmetry axis of
the materials.

σ1 MS m−1 σ2 MS m−1 σ3 MS m−1

Mn2.50Zn0.50O4 0.000 0.000 0.000
Mn2.25Zn0.50Ni0.25O4 0.000 0.002 0.000
Mn2.00Zn0.50Ni0.50O4 0.001 0.002 0.001
Mn1.75Zn0.50Ni0.75O4 0.001 0.002 0.002
Mn1.50Zn0.50Ni1.00O4 0.001 0.001 0.004
Mn1.25Zn0.50Ni1.25O4 0.001 0.001 0.004

Figure 5.10: The density of states for the whole Mn2.5−xZn0.5NixO4 series. The fermi
level is set to 0.
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Figure 5.11: Another version of Fig. 5.10 with narrower energy range.

Alloying seems to produce similar effects on all the cases we have studied. We report
again the spin-down gap widening close to the fermi level though for this series the fermi
level is in the ceter of that gap. There is again the shifting of states to higher energies
and the new states emerging at ≈ 2.7 eV.

This half-metallic state has also been reported in the literature by Arras et al [34] who
studied the spinel Mn3O4 and Co3O4 and their mixed oxides and even though both these
oxides exhibit semi-conducting behaviour but their mixed oxides had spin-up states in
the fermi level.
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CHAPTER 6

Conclusions and future prospects

In this thesis we used DFT and post-DFT schemes like the GWA and the BSE to
calculate the ground-state, electronic and optical properties of two Zn-containing family
of materials, the Zn chalcogenides and the Mn-Zn-Ni mixed oxides of the MnxZnyNizO4

general type.

In the first part of the thesis we explored the properties of the ZnS, ZnSe and ZnTe. We
performed DFT calculations and found among others their lattice parameters, preferred
structure, and their bandstructures. We found them all to be in the zinc-blende structure
and direct gap semiconductors all in good agreement with the literature except the band
gap value that was underestimated, a well-known weakness of DFT. To counter this
weakness we employed GWA, in three of its types, and calculated their band gaps, all
within 10% error from experimental values. We then solved BSE to get the optical
spectra of these materials and compare them with other methods like simple DFT and
the GWA (same as RPA) but due to the excessive computational load of GWA and BSE
we were unable to converge our calculations to a satisfactory level in terms of the k-point
grid and the peak of the first optical transition is better described by the RPA.

For the second part of the thesis we started by studying materials similar to MnxZnyNizO4,
in particular hausmannite Mn3O4 and spinel Mn2NiO4. We calculated their density of
states and ground state magnetization and found them to be a anti-ferromagnetic semi-
conductor and ferrimagnetic metal for Mn3O4 and Mn2NiO4 respectively. We then went
on and investigated the effects of Zn-doping by replacing Mn in Mn2NiO4 regarding the
density of states for all possible configurations of that the Zn atoms can assume for 5
Zn concentrations. We found out that the materials prefer Zn atoms to be dispersed
and even with just small concentrations of Zn the density of states changes consider-
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ably with a general blueshifting of the energy states, the emergence of new states in
the valence band and the transition to half-metallic state. We then proceeded to study
the two materials series that our experimental colleagues from FORTH were studying as
temperature sensors, Mn2.5−xZnxNi0.5O4 and Mn2.5−xZn0.5NixO4 for 6 x values ranging
from 0 to 1.25. According to our results these materials crystallize in the hausmannite
structure and seem half-metallic. As the x value increases the effects in the DOS are
similar to the Zn-doping in Mn2NiO4 we report in the same thesis.

There are still a lot more calculations that can be performed to better understand the
materials from the second part of this thesis and along with results from our experimental
colleagues we hope to unravel their properties and potential as thermosensors. On our
end, there is evidence that implies that the electrons in these materials are strongly cor-
related and hence the independent particle approximation that is assumed fails. Among
others we can study these materials with the DFT+U method to tackle this problem.
The Jahn-Teller effect that causes the tetragonal distortion in these lattices is also in-
teresting and its interaction with the substituents requires further investigation.
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APPENDIX A

More data from the GW and BSE calculations of the ZnX
Series
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Table A.1: Atom positions and primitive cells for the ZnX zinc-blende and wurtzite
structures. Atom positions are given in fractional coordinates

Zinc-Blende

Cell

A1 a/2 a/2 0
A2 a/2 0 a/2
A3 0 a/2 a/2

Atom Positions (Fract. Coordinates)

Zn(4a) 0.00 0.00 0.00
X(4c) 0.25 0.25 0.25

Wurtzite

Cell

A1 a/2 −1
231/2 0

A2 a/2 +1
231/2 0

A3 0 0 c

Atom Positions (Fract. Coordinates)

Zn(2b) 1/3 2/3 0
Zn(2b) 2/3 1/3 0.5
X(2b) 1/3 2/3 u
X(2b) 2/3 1/3 (1/2 + u)
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APPENDIX B

More data on the Complex Zn-materials calculations.
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Table B.1: Atom positions and primitive cells for the Hausmannite and spinel structures.
4a and 8a sites are tetrahedral and 8d and 16d sites are octahedral. For the x, y, z we
used the experimental values of 0.3835, 0.25 and 0.375, respectively. Atom positions are
given in fractional coordinates

Hausmannite

Cell

A1 a 0 0
A2 0 a 0
A3 a/2 a/2 c/2

Atom Positions (Fract. Coordinates)

Mn (4a) 0 0 0
Mn (4a) −1/4 1/4 +1/2
Mn (8d) +3/8 −3/8 +1/4
Mn (8d) +3/8 +1/8 +1/4
Mn (8d) −1/8 −3/8 −1/4
Mn (8d) +3/8 −3/8 −1/4
O (16h) −z +(y − z) 2z
O (16h) −z −(y + z) 2z
O (16h) −(y + z − 3/4) −(z − 1/4) (2z–1/2)
O (16h) +(y − z − 1/4) −(z − 1/4) (2z–1/2)
O (16h) +(z − 1/4) +(y + z − 3/4) −(2z–1/2)
O (16h) +(z − 1/4) −(y − z − 1/4) −(2z–1/2)
O (16h) y + z z −2z
O (16h) −y + z z −2z

Spinel Mn2NiO4

Cell

A1 a/2 a/2 0
A2 a/2 0 a/2
A3 0 a/2 a/2

Atom Positions (Fract. Coordinates)

Ni (8a) −1/8 −1/8 −1/8
Ni (8a) +1/8 +1/8 +1/8

Mn (16d) +1/2 +1/2 +1/2
Mn (16d) 0 +1/2 +1/2
Mn (16d) +1/2 0 +1/2
Mn (16d) +1/2 +1/2 0
O (32e) x x x
O (32e) (1/2 – 3x) x x
O (32e) x (1/2 – 3x) x
O (32e) x x (1/2 – 3x)
O (32e) −x −x −x
O (32e) −(1/2 – 3x) −x −x
O (32e) −x −(1/2 − 3x) −x
O (32e) −x −x −(1/2 – 3x)
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Figure B.1: The code used to find all the unique configurations for the various substitu-
tions of Zn in Mn2NiO4. The code was written in Python 3.8
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