
Faceted Search with Object Ranking and

Answer Size Constraints

Konstantinos Manioudakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Associate Prof. Yannis Tzitzikas

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

University of Crete
Computer Science Department

Faceted Search with Object Ranking and Answer Size Constraints

Thesis submitted by
Konstantinos Manioudakis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Konstantinos Manioudakis

Committee approvals:
Yannis Tzitzikas
Assistant Professor, University of Crete

Thesis Supervisor

Dimitris Plexousakis
Professor, University of Crete

Committee Member

Kostas Magoutis
Associate Professor, University of Crete

Committee Member

Departmental approval:
Antonis Argyros
Professor, University of Crete

Director of Graduate Studies

Heraklion, February 2020

Faceted Search with Object Ranking and Answer Size
Constraints

Abstract

Faceted Search is a widely used interaction scheme in e-commerce, digital li-
braries, and recently also in Linked Data. Surprisingly, object ranking in the
context of Faceted Search is not well studied in the literature. In this thesis we
propose an extension of the model with two parameters that enable specifying the
desired answer size and the granularity of the sought object ranking. These param-
eters allow tackling the problem of too big or too small answers and can specify
how refined the sought ranking should be. Then we provide an algorithm that
takes as input these parameters and by considering the hard-constraints (filters)
and the soft-constraints (preferences) that the user has formulated while interact-
ing with the system, as well as the statistical properties of the underlying dataset
(through various frequency-based ranking schemes), it produces an object ranking
that tries to satisfy these parameters. Then we present extensive simulation-based
evaluation results (over several datasets) which provide evidence that the proposed
model also improves the answers and reduces the user’s average cost (9.7% and
7.4%) as well as the maximum cost (21.8% and 26.8%), when applying hard and
soft constraints respectively. Finally, we propose the required GUI extensions and
present an implementation of the model.

Πολυεδρική Αναζήτηση με Κατάταξη Αντικειμένων

και Περιορισμούς Μεγέθους Απάντησης

Περίληψη

Η Πολυεδρική Αναζήτηση (Faceted Search) είναι ένα ευρέως χρησιμοποιούμενο

υπόδειγμα διαλογικής αναζήτησης στο ηλεκτρονικό εμπόριο, τις ψηφιακές βιβλιο-

θήκες, και πρόσφατα στα Διασυνδεδεμένα Δεδομένα. Απροσδόκητα, η κατάταξη αν-

τικειμένων στο πλαίσιο της Πολυεδρικής Αναζήτησης δεν είναι καλά μελετημένη στη

βιβλιογραφία. Σε αυτήν την εργασία προτείνουμε μία επέκταση του μοντέλου αλλη-

λεπίδρασης με δύο παραμέτρους που καθιστούν εφικτό τον καθορισμό του μεγέθους

της απάντησης και της λεπτομερειακότητας της επιθυμητής κατάταξης αντικειμένων.

Αυτές οι παράμετροι επιτρέπουν την αντιμετώπιση του προβλήματος των υπερβολικά

μεγάλων ή υπερβολικά μικρών απαντήσεων και μπορούν να καθορίζουν πόσο εκλεπ-

τυσμένη πρέπει να είναι η ζητούμενη κατάταξη. ΄Επειτα παρέχουμε έναν αλγόριθμο

που δέχεται ως είσοδο αυτές τις παραμέτρους και λαμβάνοντας υπ’ όψιν τους περιορ-

ισμούς που έχει εκφράσει διαλογικά ο χρήστης, είτε είναι αυστηροί-περιορισμοί (φίλ-

τρα), ή χαλαροί-περιορισμοί (προτιμήσεις), καθώς και τις στατιστικές ιδιότητες του

υποκείμενου συνόλου δεδομένων (μέσω διάφορων μεθόδων κατάταξης βασισμένων

στη συχνότητα), παράγει μία κατάταξη αντικειμένων που προσπαθεί να ικανοποιήσει

αυτές τις παραμέτρους. ΄Επειτα παρουσιάζουμε εκτεταμένα αποτελέσματα από αξι-

ολόγηση μέσω προσομοίωσης σε πολλά σύνολα δεδομένων, τα οποία καταδεικνύουν

ότι το προτεινόμενο μοντέλο βελτιώνει τις απαντήσεις και μειώνει το μέσο κόστος

του χρήστη (9.7% και 7.4%) καθώς και το μέγιστο κόστος του χρήστη (21.8% και

26.8%), όταν εκφράζονται αυστηροί και χαλαροί περιορισμοί αντίστοιχα. Τέλος, προ-

τείνουμε τις αναγκαίες επεκτάσεις της γραφικής διεπαφής χρήστη και παρουσιάζουμε

μια υλοποίηση του μοντέλου.

Ευχαριστίες

Αρχικά, θα ήθελα να ευχαριστήσω θερμά τον επόπτη καθηγητή μου κ. Γιάννη

Τζίτζικα για την ορθή καθοδήγηση και ουσιαστική συμβολή του στην ολοκλήρωση

της παρούσας μεταπτυχιακής εργασίας. Ακόμη θέλω να εκφράσω τις ευχαριστίες μου

στους κ. Δημήτρη Πλεξουσάκη και κ. Κώστα Μαγκούτη για την προθυμία τους να

συμμετέχουν στην τριμελή επιτροπή. Δεν θα μπορούσα να παραλείψω τις ευχαριστίες

μου στους συναδέλφους του εργαστηρίου Παναγιώτη Παπαδάκο, Γιάννη Μαρκετάκη

και Μιχάλη Μουνταντωνάκη, που ήταν πάντα πρόθυμοι να με βοηθήσουν. Επίσης θα

ήθελα να ευχαριστήσω το Ινστιτούτο Πληροφορικής του Ιδρύματος Τεχνολογίας και

΄Ερευνας για την πολύτιμη υποστήριξη σε υλικοτεχνική υποδομή και τεχνογνωσία,

καθώς και για την υποτροφία που μου προσέφερε καθ΄ όλη τη διάρκεια της μεταπ-

τυχιακής μου εργασίας. Τέλος, θα ήθελα να ευχαριστήσω τους γονείς μου για τη

συμπαράσταση και την υποστήριξη που μου έδωσαν όλα αυτά τα χρόνια.

Contents

Table of Contents i

List of Tables iii

List of Figures v

1 Introduction 1

2 Context and Related Work 5

2.1 Background . 5

2.1.1 Faceted Search . 5

2.1.2 Preference-enriched Faceted Search 5

2.2 Related Work . 6

2.2.1 In Faceted Search Systems 6

2.2.2 In Databases . 7

2.2.3 Learning to Rank Approaches. 7

3 The Proposed Approach 9

3.1 Modeling the Data Space and the Interaction of Faceted Search (and
Preference-enriched Faceted Search) 9

3.1.1 The Data Space . 9

3.1.2 Modeling the Interaction (sessions of hard and soft constraints) 10

3.2 The Extended Model . 11

3.3 The SmartFSRank Ranking Method 12

3.3.1 AppendBlocks . 13

3.3.2 BreakBlock . 14

4 Evaluation 17

4.1 Simulation-based Evaluation: Preliminaries 17

4.1.1 Objectives and Related Work 17

4.1.2 Datasets . 18

4.1.3 Common Scenarios . 18

4.2 Simulation-based Evaluation for BreakBlocks 19

4.2.1 Simulation Process and Metrics 19

i

4.2.2 Ranking Methods . 20
4.2.3 The General Algorithm . 20
4.2.4 Results of the scenario SFind 21
4.2.5 Summary of Findings (for SFind) 27
4.2.6 Testing Other M and MB values 29
4.2.7 Explaining Results about Average Rank 30

4.3 Simulation-based Evaluation for AppendBlocks 31
4.3.1 Benefit from AppendBlocks 31
4.3.2 Simulation-based Evaluation 31

5 Implementation and Comparison to Related Systems 35
5.1 Implementation . 35
5.2 Efficiency . 35
5.3 Extensions of the Graphical User Interface 37
5.4 Comparison with Related Systems 40

6 Conclusion 41
6.1 Future Work . 42

Bibliography 43

A Notations 47

B Evaluation measurements 49

ii

List of Tables

1.1 An example dataset of hotels . 2

3.1 Formulas for calculating scorehc per conjunct 14

4.1 The datasets used for evaluation 18

4.2 Baselines and methods to test in SFind scenario 21

4.3 Improvement on SFind for hard constraints sessions with policy
LevelsE (positive numbers indicate improvement) 24

4.4 Improvement on SFind for soft constraints sessions with policy LevelsE
(positive numbers indicate improvement) 25

4.5 Average performance of ranking methods on SFind with policy LevelsE
(positive numbers signify improvement) 25

4.6 Improvement on SFind for hard constraints sessions with policy
LevelsG (positive numbers indicate improvement) 26

4.7 Improvement on SFind for soft constraints sessions with policy Levelssc
(positive numbers indicate improvement) 27

4.8 Effects of ranking policies on SFind (average results on hard con-
straints sessions) . 27

4.9 Effects of ranking policies on SFind (average results on soft con-
straints sessions) . 28

4.10 Average performance of ranking methods on hard constraints ses-
sions for various values of MB . 29

4.11 Average performance of ranking methods on soft constraints sessions
for various values of MB . 30

4.12 Average results of AppendBlocks evaluation 33

5.1 Specifications of the machine used for evaluation 36

5.2 Execution times on SFind for hard constraints sessions with policy
LevelsG . 37

5.3 Execution times on SFind for soft constraints sessions with policy
LevelsE . 38

5.4 Comparison with Related Systems 40

A.1 Summary of notations used in Sections 3.1 and 3.2 47

iii

B.1 Measurements on SFind for hard constraints sessions with policies
LevelsE and LevelsG . 49

B.2 Measurements on SFind for soft constraints sessions with policies
LevelsE and Levelssc . 50

B.3 Measurements on DCars for both hard and soft constraints sessions 50
B.4 Measurements on DRest for both hard and soft constraints sessions 51
B.5 Measurements on DHotels for both hard and soft constraints sessions 51
B.6 Measurements on DFish700 for both hard and soft constraints sessions 52
B.7 Measurements on DFish10K for both hard and soft constraints sessions 52
B.8 Evaluation results in each dataset for R = 10 and R = 20 53

iv

List of Figures

1.1 Hierarchy for Location facet . 2
1.2 Left: A typical FS response with filters and preferences. Right:

The response of the extended FS with approximate results and more
refined ranking. 2

2.1 An overview of problems and approaches in related work 6

4.1 Impact of Automatic Ranking (average in all datasets, hard con-
straints, M=10, MB=1, policy LevelsE) 25

4.2 Impact of Automatic Ranking (average in all datasets, soft con-
straints, M=10, MB=1, policy LevelsE) 26

4.3 Average performance of Rfreq in LevelsE and LevelsG, for hard
constraints sessions . 28

4.4 Average performance of Rfreq in LevelsE and Levelssc, for soft
constraints sessions . 28

5.1 The automatic ranking settings as provided in the GUI 38
5.2 An example where a user searches for restaurants in Tokyo that

offer brunch. The left side shows a typical FS response with 2
filters, while the right side shows the response of the extended FS
which provides a more refined ranking. 39

5.3 Information about the scores of an object 39

v

vi

Chapter 1

Introduction

Faceted Search (FS) is the established information access scheme in e-commerce
for more than 10 years [26, 31]. It is widely used in areas such as digital libraries
[29, 15], semantic web [10], Linked Data [20] and Knowledge Graphs in general [9].
FS is essentially a session-based interactive method for gradual query formulation
(commonly over a multidimensional information space) through simple clicks that
offers to the user an overview of the result set (groups and count information) and
never leads to empty results sets. At each state of the interaction, users explore
the set of objects that satisfy the various restrictions they have specified up to that
point. The result set is called the focus. Objects inside the focus are unranked, e.g.
when the user examines an online prospectus for buying a new camera, or ranked,
e.g. when the user explores available hotels which are ordered with respect to price,
star rating or other criteria (default or user specified in the form of preferences as
in the case of Preference-enriched Faceted Search - PFS [35]). The focus is ranked
also in cases where FS is applied after a keyword search query, e.g. as in Google
Scholar. Although object ranking in FS is already used in commercial systems (as
mentioned earlier), the scientific literature on this topic is not extensive. Previous
research has mainly focused on facet ranking, i.e. on methods for deciding which,
and in what order, facets to present, an issue that is important if the domain of
the dataset is wide (e.g. faceted search over DBpedia). In this thesis we elaborate
on the objects ranking, in the context of Faceted Search in domain specific settings,
where the set of useful facets is known (as in product buying, bookings, etc). Even
if Faceted Search solves the problem of empty answers, it cannot solve the problem
of too big or too small answers. In such cases, the user has to make extra actions
(for restricting a big answer or for relaxing a too small answer).

To tackle these problems, in this thesis we propose an extension of the FS
model that is enriched with two parameters that enable specifying the desired
answer size and the granularity of the sought object ranking. These parameters
allow tackling the problem of too big or too small answers and can specify how
refined the sought ranking should be. Then we provide an algorithm that takes
as input these parameters and by considering the hard-constraints (filters), the

1

2 CHAPTER 1. INTRODUCTION

soft-constraints (preferences), as well as the statistical properties of the dataset,
produces an object ranking that satisfies these parameters.

Table 1.1: An example dataset of
hotels

Object Location Stars Price
o1 Hyogo 4 308
o2 Hyogo 4 226
o3 Hyogo 4 265
o4 Kyoto 4 218
o5 Hyogo 4 402
o6 Hyogo 3 209
o7 Kyoto 4 293
o8 Hyogo 4 460
o9 Hyogo 4 208
o10 Hyogo 3 396
o11 Hyogo 5 528
o12 Kyoto 4 81

Japan

Kanto Tokyo

Kansai

Hyogo

Kyoto

Osaka

Figure 1.1: Hierarchy for Loca-
tion facet

• Hard-Constraints (Filters): (Stars = 4) & (Price in [200, 2000])

• Soft-Constraints (Preferences) : Location ‘Hyogo’ best

Location

Kansai (8)

Hyogo (6)

Kyoto (2)

Price

[200, 2000] (8)

Stars

4 (8)

Facets Ranked objects Facets Ranked objects after R = 10, MB = 3

FS with Preferences FS with Preferences and Object Ranking and Answer Size Constraints

Location

Kansai (8)

Hyogo (6)

Kyoto (2)

Price

[200, 2000] (8)

Stars

4 (8)

Figure 1.2: Left: A typical FS response with filters and preferences. Right: The
response of the extended FS with approximate results and more refined ranking.

To grasp the idea, Table 1.1 shows a small set of hotels Obj = {o1, . . . , o12}
described by three facets F = {Location, Stars, Price} where the terms of the
facet Location are hierarchically organized as shown in Figure 1.1. The left side
of Figure 1.2 sketches the GUI of a typical FS system that shows the 8 hotels
that satisfy the hard-constraints (filters) that the user has selected (in our case
4 stars and price in [200, 2000]), and notice that these hotels are partitioned in
two buckets based on the soft-constraints (preferences) that the user has specified
(in our case the user has expressed a preference on the location Hyogo). Now the
right side of Figure 1.2 sketches the GUI according to the extended model that

3

we introduce, where we assume that the user has asked for 10 objects, and for a
more refined ranking, e.g. that no bucket should contain more than 3 hotels. We
can see that two more hotels have appeared (approximate results) and that none
of the blocks of the new focus contains more than 3 hotels.

To the best of our knowledge, no other work has focused on the problem of too
big or too small answers and on the granularity of object ranking in the context
of Faceted Search. To tackle these issues several questions arise including: how
to consider in the object ranking all kinds of input (filters, preferences as well as
the statistical properties of the datasets), how to evaluate (in a cost effective and
repeatable way) whether such extensions improve the interaction with the user,
and how to enrich the interaction with rank explanation services. Issues of system
efficiency and optimization are out of scope of this thesis (however we do report
efficiency results).

In a nutshell, the main contributions of this work are: (a) the extension of
FS with two parameters expressing the desired ranking and size properties of the
answer, (b) the formulation of the corresponding object ranking problem in a
context that assumes both hard- and soft-constraints, and the discussion of the
solvability of the problem, (c) the algorithm SmartFSRank for producing the object
ranking that is based on the factorization of the problem into two simpler sub-tasks,
as well as on the adoption of frequency-based ranking schemes, (d) the description
of a simulation-based evaluation framework for evaluating the impact of such object
ranking methods, and (e) extensive simulation-based evaluation results. The main
finding is that the extended model apart from being customizable to answer size
and ranking granularity constraints (that enables tackling the problem of too small
or big answers), it improves the answers and reduces the average navigation cost,
as evidenced by the simulation based evaluation over five datasets from different
domains.

This thesis is organized as follows: Chapter 2 presents the background and an
overview of the related work. Chapter 3 describes the data representation and the
baseline interaction, introduces the extended model and provides the algorithms for
realizing that model. Chapter 4 presents simulation-based procedures and results,
while Chapter 5 discusses the implementation of the model and its efficiency, the
extensions of the GUI, as well as a comparison with related systems. Finally,
Chapter 6 concludes this thesis and identifies issues for future work and research.

Parts of this work have been published in the following papers:

1. (published) Extending Faceted Search with Automated Object Ranking. In
Metadata and Semantic Research, Emmanouel Garoufallou, Francesca Fal-
lucchi, and Ernesto William De Luca (Eds.). Springer International Pub-
lishing, Cham, 223–235, 2019.

2. (on submission) Faceted Search with Object Ranking and Answer Size Con-
straints. In Transactions on Information Systems, ACM, 2020

4 CHAPTER 1. INTRODUCTION

Chapter 2

Context and Related Work

Section 2.1 discusses the background and Section 2.2 the related work.

2.1 Background

2.1.1 Faceted Search

Faceted Search (or Faceted Exploration), is a widely used interaction scheme for
Exploratory Search. It is the de facto query paradigm in e-commerce [26, 31] and
in digital libraries [29, 15]. It is also used for exploring RDF Data (e.g. see [34] for
a recent survey, and [20] for a recent system), as well as general purpose knowledge
graphs [9]. Faceted exploration can facilitate web search, e.g. in the news domain
[1]. It has also been applied for automatically summarizing web search results, e.g.
[14]. Informally we could define it as a session-based interactive method for query
formulation (commonly over a multidimensional information space) through simple
clicks that offers an overview of the result set (groups and count information),
never leading to empty results sets.

2.1.2 Preference-enriched Faceted Search

Although preferences have been studied in the context of databases, e.g. see [28]
for a survey, and lately in query languages for RDF e.g. [24, 30, 25, 27]), in
Faceted Search systems there are only a few related works. Preference-enriched
Faceted Search (for short PFS), is an extension of FS that supports preferences,
i.e. apart from actions for specifying filters, it offers actions that allow the user
to rank facets, values, and objects using best, worst, preferTo actions (i.e. rela-
tive preferences), aroundTo actions (over a specific value), and other criteria (see
[35]). Apart from “primitive” preferences, the user is able to compose object re-
lated preference actions, using Priority, Pareto, Pareto Optimal (i.e. skyline) and
other. The distinctive features of PFS is that it allows expressing preferences over
attributes whose values can be hierarchically organized (and/or multi-valued), it

5

6 CHAPTER 2. CONTEXT AND RELATED WORK

supports preference inheritance, and it offers scope-based rules for resolving auto-
matically the conflicts that may arise. As a result, users are able to restrict their
current focus by using the faceted interaction scheme (hard restrictions) that lead
to non-empty results, and rank according to preference the objects in the focus.
Recently, PFS has been used in various domains, e.g. for offering a flexible process
for the identification of fish species [32], as a Voting Advice Application [33] and
it has been expanded with geographic anchors for being appropriate for the ex-
ploration of datasets that contain also geographic information [18]. PFS has also
been used in the context of spoken dialogue systems [23].

2.2 Related Work

There is related work from several areas including FS systems, Databases, and
Learning to Rank approaches. An overview of the related problems and approaches
is shown in Fig. 2.1.

Explicit

Object Ranking

Trivial

(single)

Expressive and

Composite (PFS)

Faceted Search Databases

Many Answers

Problem

TF-IDF Probabilistic

IR

Preferences

Implicit

(training data)

Learning

to Rank

Explicit in

the Query

(Order by)

Preferences

Figure 2.1: An overview of problems and approaches in related work

2.2.1 In Faceted Search Systems

The concept of automatic ranking in faceted search is not recent, and there are
numerous approaches, as regards what to rank, and how to rank, as discussed in
the survey [34]. Past research has primarily focused on methods only for facet
ranking, i.e. for deciding in what order to place the facets. In many works (e.g
[12, 11]), the proposed methods depend on the frequency of facet values. The
technique described in [37] dynamically ranks the facets depending on the query.
In addition, they define different metrics for numeric and qualitative facets, and
also recommend ordering the values of each facet with respect to their frequency
in descending order. Now [7], relies on a different technique based on set-cover,
to produce a ranking of facets. In other works, various metrics have been utilized
such as facet navigational cost [17] (i.e. how many facet values are available), and

2.2. RELATED WORK 7

facet balance [21] (i.e how evenly the facet values are distributed). Lately, methods
for selecting facets from knowledge graphs have also been investigated [9].

Object ranking (in FS systems) is already used in commercial systems. For
instance, the online hotel platform booking.com offers a ranking method based on
a number of properties. However, this topic has not been studied in the scientific
literature extensively. In [26] (Chapter 9) a ranking method based on facet values
is briefly described through an e-shopping example. According to PFS, and the
system Hippalus [22], users may define the objects’ ranking by formulating prefer-
ence actions. In the context of PFS, [33] introduced a method for quantifying the
degree of match between an object and the user’s preference actions. This aims
at showing the user how positive the top-ranked objects are. In the same context,
[23] introduces a number of features, specifically, selectivity and entropy, that are
exploited for ranking the applicable facets at each point of the user session.

2.2.2 In Databases

Automatic ranking is an issue that has also been studied in the field of databases.
A related problem, called the Many Answers Problem, appears when the result
tuples of a query are too many and no ordering has been specified (no ORDER BY
clause). One of the first approaches for this issue [3], relies on the well established
IR framework of TF-IDF weights and cosine similarity.

An alternative approach for the Many Answers Problem [5], is based on Prob-
abilistic Information Retrieval. Specifically, they consider the attributes not spec-
ified in the query and measure two scores: a global score which reflects the global
importance of unspecified attributes and a conditional score which captures the
strengths of dependencies between specified and unspecified attributes. The esti-
mation of these scores is done automatically from a workload of past queries. An
evaluation with users revealed higher quality in comparison to the approach in [3].

Now [4] proposed a solution that aims in requesting only a few constraints
from the user in order to drill down to a single tuple from a set of ranked or
unranked query results. They base their approach on the decision tree model.
Specifically, inner nodes represent attributes, leaf nodes are tuples and edges are
labelled by attribute values. During the process, attributes are chosen dynamically,
with regard to their selectivity and information gain. The target is to choose
the minimum number of attributes during this process, until the desired tuple is
reached. Finally, another line of works that deal with tuple ranking in databases,
are those that support explicit preferences, see [28] for a survey.

2.2.3 Learning to Rank Approaches.

Lately, in the field of Information Retrieval, there is an increasing interest on
adopting Machine Learning methods for document ranking [19]. These approaches
are based on creating a ranking model, by training a ML model on user data,
typically collected from past search queries (e.g. number of document clicks, user

8 CHAPTER 2. CONTEXT AND RELATED WORK

ratings, etc.) A Learning to Rank approach for faceted search is proposed in
[36]. That work aims in optimizing the weights of a facet based TF-IDF scoring
formula. Specifically, documents and queries are expressed as sets of facet-value
pairs. After training the learning methods on user data, they are able to estimate
the optimal weights of the formula, given a user query and a list of previously
judged documents.

Chapter 3

The Proposed Approach

Section 3.1 describes the data representation and the baseline interaction, Section
3.2 introduces the extended model and Section 3.3 provides the algorithms for
realizing that model.

3.1 Modeling the Data Space and the Interaction of
Faceted Search (and Preference-enriched Faceted
Search)

Before introducing the extended model we first have to model the context, i.e.
the structure of the underlying data space (in §3.1.1), as well as, the basics of the
interaction of FS and PFS (in §3.1.2), also for reasons of self-containedness.

3.1.1 The Data Space

We consider datasets in the form multidimensional data with hierarchically orga-
nized values and multi-valued attributes.

Definition 1 (Data Space). Let Obj = {o1, . . . , on} be the set objects. We have
K facets F = {F1, . . . , FK} each associated with a taxonomy (Ti,≤i) where Ti
is a set of terms, or values, while ≤i is a (possible empty) partial order over
Ti enabling to organize the values of Ti hierarchically. Each object o ∈ Obj is
described by associating it with one or more values from each facet. Let ~oi denote
the description of oi in that space, i.e. ~oi = (oi1, . . . , oiK) where oij ∈ Tj ∪ {ε},
where ε denotes the missing value, and let ~Obj be the set of descriptions of all
objects in Obj. �

Note that the above definition of taxonomy, includes linearly ordered terms,
i.e. it captures numerically-valued facets. Consequently, this definition captures
datasets like the one in Table 1.1.

9

10 CHAPTER 3. THE PROPOSED APPROACH

3.1.2 Modeling the Interaction (sessions of hard and soft con-
straints)

In the following we assume the data space defined previously. In the interaction
scheme of Faceted Search the user explores the data space and expresses gradually
a set of hard constraints.

Definition 2 (Hard Constraint). A hard constraint hc is any conjunction of terms
over T = T1 ∪ . . . ∪ TK . �

The user through a GUI formulates such conjunction with simple clicks. For
reasons of space, we do not describe here the GUI, nor the user actions of Faceted
Search, nor how the clicks define the hc (the interested reader can refer to [34]). In
general, any Boolean expression over T is a hard constraint, however conjunctions
are most widely used.

Definition 3 (Extension). The extension of a hard constraint hc, denoted by
E(hc), is the subset of Obj that satisfies the conjunction hc. The extension of a
term ti ∈ Ti is defined in a way for considering the semantics of taxonomies (if
they exist), i.e. it equals the objects having that term or a narrower term, formally:
E(ti) = Etmp(ti) ∪ {Etmp(tx) | tx ≤ ti} where Etmp(ti) = {oj ∈ Obj | oji = ti}.
The extension of a boolean expression is defined straightforwardly (by interpreting
conjunction with ∩, disjunction with ∪, and negation with set-minus). �

In our running example, the extension of (Stars = 4) ∧ (200 ≤ Price ≤ 2000)
is {o1, o2, o3, o4, o5, o7, o8, o9}.

Definition 4 (Soft Constraint). A soft constraint sc is any set of preference ac-
tions of the preference language defined in [35]. �

In brief these preference actions define a preference relation (a binary relation)
over each Ti, denoted by �i.

In our running example, the preference action Hyogo �Location Kyoto, results
in the following preference bucket order: 〈(Hyogo), (Kyoto), ({Tokyo,Osaka})〉.

It is also worth noting that, preference inheritance is supported. For example,
if the user had issued the preference action Kansai �Location Kanto, then the
resulting bucket order would be 〈({Hyogo,Kyoto,Osaka}), (Tokyo)〉.

There are preference actions for composing these in order to define a preference
relation over all possible elements of the data space i.e. over V = T1 × . . . × TK .
Note that since an object can be associated with more than one value from a facet
(not in this example), it is more precise to define V as the Cartesian product
P(T1)× . . .× P(TK) where P(Ti) denotes the powerset of Ti.

Now since the description of the objects ~Obj is a subset of V (i.e. ~Obj ⊆ V), a
set of soft constraints sc defines a preference relation over Obj denoted as (Obj,�sc
). From (Obj,�sc) a bucket order of Obj, i.e. a linear order of subsets of Obj, is
produced though topological sorting (see [35] for details). In our running example,

3.2. THE EXTENDED MODEL 11

the preference action Hyogo �Location Kyoto results in the following bucket order
of the objects in focus: 〈({o1, o2, o3, o5, o8, o9}), (o4, o7,)〉.

Let denote the bucket order byBOsc, i.e. BOsc = 〈b1, . . . , bZ〉 where b1 contains
the most preferred objects, while bZ the least preferred. All sets bi (1 ≤ i ≤ Z)
form a partition of Obj (i.e. they are pairwise disjoint and their union is Obj).
The number of blocks Z ranges between 1 and |Obj|. Obviously, if Z = |Obj| then
the ranking forms a linear order of Obj, while if Z = 1 then all objects are equally
ranked (this is true if the sc is empty, e.g. at the beginning of the interaction).
Equivalently, we can say that the aforementioned approach ranks the objects i.e.
it computes a function r(sc, ~o) ∈ [1..Z] where Z ≤ |Obj|, assigning to each object
a natural number (the index of the block to which it belongs, e.g. the objects in
the most preferred block receive rank equal to 1).
In PFS, the user explores the data space and expresses gradually a set of hard
and soft constraints. At each state of the interaction, the user gets those objects
that satisfy the formulated hard constraints hc, ordered in blocks according to the
expressed preferences sc. This is the essential part of the model of PFS [35] and
it is implemented in the system Hippalus[22].

Definition 5 (The Answer given Hard and Soft Constraints). Given a hard con-
straint hc and a soft constraint sc, the answer according to the PFS interac-
tion, is the set of objects E(hc) ordered by the restriction of �sc on E(hc), i.e.
(E(hc),�sc |E(hc)). �

Definition 6 (User Session). A user session us is a series of actions, s = 〈a1, . . . , an〉
where each ai is a hard or a soft constraint. Let hc(us) denote the hard constraints
in us, and sc(us) denote the soft constraints in us. �

3.2 The Extended Model

Parameters of the Extended Model. This thesis proposes extending the model
with two parameters

• MB: Maximum Block size. E.g. if MB = 1 then the system should return a
linear order of objects, if MB = 2 the answer should not contain ties between
more than 2 objects.
• R: number of requested objects.

With these two parameters several requirements can be tackled:

• Too many objects: R forces the system to rank the objects for returning the
best R objects.
• Too few objects: R forces the system to also return approximate objects
• Arbitrary order: MB forces the system to rank the objects so that no block

has more than MB objects, and in this way the rank is not arbitrary

Characterizing a bucket order L. Let L be a bucket order L = 〈b1, . . . , bz〉,
i.e. a possible ranked answer, and let objects(L) denote the set of objects that
occur in L. The answer L could be characterized according to various criteria:

12 CHAPTER 3. THE PROPOSED APPROACH

• HCsat. We could say that L satisfies the hard constraints hc, if objects(L)
are exactly those that satisfy hc, i.e. objects(L) = E(hc)

• SCsat. We could say that L satisfies the soft constraints sc (i.e. it respects
the preference order), if L ⊇�sc|E(hc). This means that the order relation-
ships of L contain all order relationships of the preference relation �sc that
involve objects in the focus (i.e. objects in E(hc)). In other words, automatic
ranking is used only for ranking the objects in each block of the preference
order (it never “violates” the blocks, it just adds relationships, and these
relationships do not create any cycle).

• MBsat. We could say that L satisfies a maximum allowable block size MB,
if |bi| ≤MB for each 1 ≤ i ≤ z.

• Rsat. We could say that L satisfies R, if L contains exactly R objects.

It is not hard to see that it is not always possible to find an L that satisfies all
of the above criteria. For instance if the objects that satisfy the hc are less than
R, i.e. |E(hc)| < R, then the system should either return less objects (sacrificing
Rsat), or should try to return R objects by extending E(hc) with the R− |E(hc)|
in number “closest” objects (sacrificing HCsat). On the other extreme, if those
that satisfy the hc are more than R, then the system should rank them and return
the best of them. This is another case of an L that is not HCsat, since it contains
less objects than those satisfying hc. A problem statement that includes more
requirements follows:

Definition 7 (Problem Statement). Given a user session us with hard and soft
constraints, a parameter R specifying the number of desired objects, a parameter
MB specifying the maximum allowable block size, compute and return to the user
the “best” (with respect to HCsat, SCsat, MBsat, Rsat) answer L.

What remains is to clarify what “best” means. A first objective is to produce
one or more L that satisfy all the criteria if possible. In case there are more than
one, then a method to select one of them is needed. To this end, dataset statistics
and other metrics (as we have seen in the related work) can be used. For example,
frequently or rarely occurring values could be promoted. If there is no L that
satisfies all hard constraints, then one that “better approximates” a bucket order
that satisfies them all needs to be found. This issue is elaborated in the next
section.

3.3 The SmartFSRank Ranking Method

Here, an algorithm is defined that provides a solution to the problem statement
(as defined in Def. 7). In general the algorithm exploits PFS, if supported, and it
tries to satisfy R by ranking and approximate matching, and MB through ranking
based on statistical properties of the data. Note that the algorithm can be applied

3.3. THE SMARTFSRANK RANKING METHOD 13

even if PFS is not supported (in that case there is one block, i.e. z = 1). In brief,
the algorithm SmartFSRank, Alg. 1, first tries to satisfy hc (line 1), and then sc
(Part 1, line 2) by exploiting the PFS-based ranking method. Then it tries to
satisfy R (Part 2, lines 5-7), and finally MB (Part 3, lines 8-13). In Part 2, if R is
greater than the size of the current focus, then more objects (not satisfying hc) have
to be added and this should be based on the approximate satisfaction of the hard
constraints. This selection is done by AppendBlocks that is analyzed in §3.3.1.
In Part 3, the block breaking for satisfying MB can be based on frequency (the
user may prefer frequent or rare values and this is specified by the last parameter
DVpref) and it is done by BreakBlock that is analyzed in §3.3.2.

Algorithm 1 SmartFSRank

Input: Obj, hc, sc,MB,R,DVpref
Output: A ranked answer that satisfies hc, sc,MB and R.

1: A← E(hc); . The objects satisfying the hc
2: /** Part (1): Apply the PFS method to satisfy sc*/
3: Compute (A,�sc |A) which is a series of blocks L = 〈b1, . . . , bZ〉.
4: /** Part (2): Satisfy R */
5: if |A| < R then . need to add more objects
6: L← L.AppendBlocks(R− |A|); . Add new blocks to the answer
7: end if
8: /** Part (3): Satisfy MB*/
9: for each b ∈ L do

10: if |b| > MB then . If block b does not satisfy MB
11: Replace b by BreakBlock(b,MB, 1, DVpref)
12: end if
13: end for

3.3.1 AppendBlocks

The idea is to score each object according to its distance from the hc. Having
such a scoring function, a method to realize AppendBlocks is to score each object
not in E(hc) and return the R − |E(hc)| objects that have the highest score.
This method guarantees that it will return the objects which maximize the score,
i.e. those that better approximate the information need, as expressed by the hc.
As regards the scoring, below is detailed a method based on facet types. Let
hc = c1 ∧ . . . ∧ cn, where each conjunct ci is a hard constraint like Fi = ti, e.g
Stars = 4. If oj is an object, oji denotes the value of oj on the facet Fi. Table
3.1 defines the score per conjunct based on the facet type. The first column
corresponds to the case where a conjunct is satisfied, while the second presents the
formulas used when a conjunct is not satisfied. In both cases the scores range in the
interval [0, 1]. In the last row, corresponding to the case where the terminology
is structured as a taxonomy, a similarity measure that reflects the distance in
the taxonomy is defined. For a term x ∈ Fi, let up(x) = { t ∈ Fi | x ≤i t}.

14 CHAPTER 3. THE PROPOSED APPROACH

The similarity between two terms x and y, is defined as the Jaccard similarity
of their greater nodes, specifically: simtax(x, y) = |up(x)∩up(y)|

|up(x)∪up(y)| and then define

scoretaxonomy(Fi = ti, oj) = simtax(ti, oji).
As an example, consider the terms of facet Location which are hierarchically

organized as shown in Fig. 1.1. We can calculate similarities between terms like
simtax(Hyogo,Kyoto) = 2

4 = 0.5 and simtax(Hyogo, Tokyo) = 1
5 = 0.2

Table 3.1: Formulas for calculating scorehc per conjunct

score type oj satisfies ci oj does not satisfy ci
scoreflatterminology(Fi = ti, oj) 1 0

scorenumeric(Fi = ti, oj) 1 1− |ti−oji|
maxom∈Obj{|ti−omi|}

scoreinterval(Fi ∈ [a, b], oj) 1 scorenumeric(Fi = a+b
2 , oj)

scoretaxonomy(Fi = ti, oj) simtax(ti, oji) simtax(ti, oji)

Back to the running example of Fig. 1.2, we can now see how the scores of
the approximate results were calculated, regarding the constraint Stars = 4. They
both have Stars = 3, so their score 1 according to the numeric case of the above
table is: scorenumeric(Stars = 4, 3) = 1 − |4−3|4−0 = 1 − 1

4 = 0.75. As for the
Price facet, the specified constraint is the interval [200, 2000]. Both hotels that
appear in the approximate results have a price inside this interval, therefore their
score for this constraint is 1. (as defined in Table 3.1, row 4, column 2). To
better understand how the formula on numeric intervals works, consider the above
constraint on Price and a hotel having price 100. The formula relies on the distance
from the interval’s center. The center is (2000 + 200)/2 = 1100, and the distance
is 1100 - 100 = 1000. Then this distance is normalized by the maximum such
distance in the dataset. In this dataset, for this constraint on Price facet the max
distance is 1100 - 12 = 1088. Finally, the score is calculated as 1 - (1000/1088) =
1 - 0.92 = 0.08.

Definition 8 (HCscore). The consolidated score of an object oj with respect to
hc = c1 ∧ . . . ∧ cn, can be defined as: scorehc(oj) = 1

n

∑n
i=1 scoretype(ci)(oj)

where type(ci) ∈ {flatterminology, numeric, interval, taxonomy}

This formula can be considered as the baseline. It expresses how close oj is
with respect to a point that satisfies hc. The exact algorithm for AppendBlocks
is Alg. 2. It returns the bucket order to be appended.

3.3.2 BreakBlock

For breaking each block that does not satisfy MB an idea is to score each ob-
ject of the block according to its discrimination value. Rare elements are harder
to find, therefore it could be reasonable to promote objects that have rare val-
ues, i.e. those with higher discrimination value. On the other hand, frequent

1Assuming that the range of the facet Stars, in the dataset, is the set {0,1,2,3,4,5}.

3.3. THE SMARTFSRANK RANKING METHOD 15

Algorithm 2 AppendBlocks
Input: Num
Output: A bucket order to be appended

1: CO ← Obj \ E(hc); . The candidate objects
2: for each o ∈ CO do
3: o.score← scorehc(o); . compute the score of o wrt hc
4: end for
5: COsorted ← Sort(CO, score, descending); . sort CO wrt score attribute in

desc. order
6: i← 0;
7: A← ε;
8: while |A| < Num do . While the objective of Num objects is not reached
9: A← A ∪ COsorted[i];

10: i+ +;
11: end while
12: Return A;

values may correspond to popular values, therefore it could be also reasonable to
promote frequent values, i.e. those that appear in several objects. As we shall
see in the section about GUI, the GUI allows the user to specify whether rare
or frequent values are preferred. In any case it is necessary to define and com-
pute the discrimination value. Such a formula can be applied to each object of
any block that does not satisfy MB to order its objects. Then, such blocks will
break to smaller ones satisfying MB. The discrimination value (dV) of an object
oj = (oj1, . . . , ojk) can be defined by taking the average inverse frequency, i.e.:
dVw(oj) = 1

k ∗
∑

i=1,k
1

freqw(oji)
. Note that frequency can be defined in various

ways, this is why the above formula uses freqw where w ∈ {g, ga,E}. Specifically
the frequency of a value t ∈ Fi, can be defined globally (freqg), or with respect to
the objects that have value in facet Fi (freqga), or in the current focus E (freqE).

Formally: freqg(oji) =
|{ox∈Obj | oxi=oji}|

|Obj| (1),

freqga(oji) =
|{ox∈Obj | oxi=oji}|
|{oy∈Obj | oyi 6=ε}| (2), freqE(oji) =

|{ox∈E | oxi=oji}|
|E| (3).

Note that if oji = ε, i.e. null, then freq{g,E}(oji) = number of objects having
null (just like an ordinary value). Other ways to define the discrimination value
of an object can be also considered. For example, in sessions where soft con-
straints have been set, the dVsc of an object oj = (oj1, . . . , ojk) could be defined
as the average inverse frequency in the facets used by the soft constraints sc, i.e:
dVw,sc(oj) = 1

|sc| ∗
∑

i=1,|sc|
1

freqw(oji)
, assuming that facets F1, . . . , F|sc| are the ones

used in sc.

In general it makes sense to consider a series of “tie breaking” methods, for
making sure that all ties can be broken so that MB is eventually satisfied. Each
such method can be assigned a level, meaning that if the application of the level
i method does not break a tie, then the level i + 1 method is applied. The exact

16 CHAPTER 3. THE PROPOSED APPROACH

Algorithm 3 BreakBlock
Input: b,MB, level,DVpref where b does not satisfy MB.
Output: A bucket order of the objects of b that satisfies MB.

1: A← objects(b); . the objects occuring in b
2: for each o ∈ A do
3: o.dv ← DV (o, level); . compute the discrimination value of o at level
4: end for
5: if DVpref = Rare then
6: Sort(A, dv, descending); . sort A wrt dv attribute in desc. order
7: else if DVpref = Frequent then
8: Sort(A, dv, ascending); . sort A wrt dv attribute in asc. order
9: end if

10: Let B = 〈b1, . . . , bF 〉 the resulting blocks . after the previous sorting
11: for each b ∈ B do
12: if |b| > MB then . if bi still does not satisfy MB
13: Bnew ← BreakBlock(b,MB, level + 1, DVpref); . recursive call with

+1 level
14: end if
15: Replace in B the block b by the series of blocks Bnew
16: end for
17: Return B;

algorithm for BreakBlock is Alg. 3. Various series of levels can be used, that are
referred to with the term ranking policies, such as:
LevelsE = 〈dvE , dvG, lexicographic〉, LevelsG = 〈dvG, dvE , lexicographic〉.
According to the first series, the algorithm first breaks the block b with respect
to the discrimination value in the focus (i.e. freqE). If MB is still not satisfied,
it uses freqg (recursively only for that block). At level 3 it uses the lexicographic
order with respect to the name of the object. Note that this ensures that the
algorithm terminates and that it will return a bucket order that certainly satisfies
MB. One key point is that a cost is paid only if needed i.e. only for the blocks
that do not satisfy MB (line 12 of Alg. 3).

Chapter 4

Evaluation

Section 4.1 motivates simulation-based evaluation and provides related preliminary
material. Section 4.2 presents simulation-based procedures and results related to
object ranking, while Section 4.3 presents simulation-based procedures and results
related to approximate objects.

4.1 Simulation-based Evaluation: Preliminaries

§4.1.1 describes the objectives and the related work of simulation-based evaluation
in general, §4.1.2 describes the datasets used for carrying out the simulations, while
§4.1.3 discusses two common search scenarios that will be simulated.

4.1.1 Objectives and Related Work

Objectives. The main purpose of the extended model, is to assist the user in
finding the desired object. In order to evaluate the extended model with respect
to that perspective, a simulation based evaluation has been conducted, since this
can be repeatable (and thus reproducible), more objective and less laborious than
an evaluation with users. In comparison to an arbitrary ranking of objects (within
blocks), a good object ranking should provide an interaction experience with re-
duced number of hard constraints hc, reduced number of preferences sc, higher
rankings of target objects, and lower navigation cost.

Previous Work on Simulation-based Evaluation. There are only a few works
that evaluate faceted search through simulations. These works deal with various
aspects of the interaction, including facet selection ([38], [37]), interface personal-
ization ([16], [13]), and the Many Answers Problem ([4]). In the latter, which is
more related to the topic of this thesis, they measured the cost as the expected
number of queries (each on a single attribute) that need to be answered until the
focus contains only the desired tuple (so no preferences are supported). This is
equivalent to measuring the number of hard constraints in our evaluation setting

17

18 CHAPTER 4. EVALUATION

(if preferences are ignored). However, they focus on facet ranking, not object
ranking.

4.1.2 Datasets

In these simulations 5 datasets were used. The first contains descriptions of 50
cars, described by 21 facets, the second contains information for 119 restaurants
described by 22 facets, the third contains information for 382 hotels described
by 18 facets, the fourth includes information for 700 fish species organized in 23
facets, and the last one is also for Fish species but has 10,000 objects. Table 4.1
summarizes their contents.

Table 4.1: The datasets used for evaluation

Dataset Objects Facets Type of contents
DCars 50 21 Car models
DRest 119 22 Restaurants in Japan
DHotels 382 18 Hotels in Japan
DFish700 700 23 Fish species
DFish10K 10,000 23 Fish species

4.1.3 Common Scenarios

Since there are several parameters related to a simulation, a rising question is what
values to use and why. For this reason, two main scenarios (or use cases) that will
be used in the simulations are identified below:

• Precision Oriented. This scenario considers users that search for specific
items. The interaction stops when the user finds the sought object. It is
assumed that a user finds the sought object when it is ranked in the top 10
results. For this reason in this scenario the termination condition M (see
§4.2.1) is set equal to 10. In addition, as in most search engines, the system is
required to rank linearly the results, therefore MB is set to 1. This scenario
is denoted by SFind.

• Recall Oriented. This scenario assumes users that want to get information
not only for one object, but for a set of objects relevant to their criteria.
For this type of information need it is necessary for the system to return
a minimum number of results, typically 10 or more. For this reason the
parameter R is set equal to 10. This scenario is denoted by SInform.

Apart from the above cases, other cases will also be investigated (in §4.2.6).

4.2. SIMULATION-BASED EVALUATION FOR BREAKBLOCKS 19

4.2 Simulation-based Evaluation for BreakBlocks

§4.2.1 describes the simulation process and metrics, §4.2.2 the evaluated ranking
methods, §4.2.3 provides the exact simulation algorithm, and §4.2.4 presents the
simulation results for SFind, while §4.2.5 summarizes them. More experiment
results (for other values of M and MB) are given in §4.2.6. The results related to
Average Rank metric are explained in §4.2.7.

4.2.1 Simulation Process and Metrics

Process. The simulated sessions correspond to users that try to find a target
object by sequentially adding either hard constraints (e.g Stars=4) or soft con-
straints (e.g prefer Stars 4 best) that match the object’s description (the conjuncts
correspond to the object’s facet-value pairs). The initial ordering of the objects is
random, but the same in all simulated user sessions. The process terminates when
the desired object is ranked in the top-M (e.g. M = 10) positions of the focus.
During the process the metrics about the session are obtained and finally statistics
are calculated. The specific measures used are described next.

Quality Metrics. The following metrics are calculated in each session:

1. Number of constraints. How many constraints (either hard or soft) the user
needs to set in order to find the target object.

2. Navigation cost. The cost that a user pays trying to find the target object,
that depends on the number of constraints and the cost of each constraint
(this will be detailed below).

3. Average rank. Indicates how high or low the target object is ranked through
a session. It is equal to the average value of the object’s different (decreas-
ing) ranks through a session. Note that two ranking methods in the same
simulation case, could have the same number of constraints and navigation
cost, however the one that ranks higher the sought objects, will get a better
(lower) average rank, and thus this metric will allow us to distinguish these
two ranking methods. In addition, the computation of rank at each step of
the interaction should be accurate even if there are buckets, i.e. it should
be computed just like the expected search length [6], e.g. if target=o1, and
L = 〈{o2}, {o1, o3}〉 then the rank of o1 is 2.5. The above calculation is
denoted as CurrentRank(L, o1).

After all sessions for a dataset are complete, the average and maximum values of
the above metrics are calculated and reported. A better ranking method should
result in lower average and maximum values for all metrics.

Measuring the Navigation Cost. Let Clicks be the number of clicks of the simulated

20 CHAPTER 4. EVALUATION

user for specifying the hc (or the sc). Above it was assumed that the navigation
cost, denoted by NC, is defined by NC = |Clicks|. However a more refined
measuring is also possible, i.e.

NC =
∑

c∈Clicks
cost(c) (4.1)

where cost(c) is the cost of the particular click c. The latter depends on the
number of zoom-in points of that facet (the terms that appear in the left panel
and the user can click for refining the focus). If only a few, then the cost is
small, if many the cost is higher, e.g. it is much easier to select the correct zoom
point from a list of 4 zoom points, than from a list of 15 zoom points. Based
on this rationale, the formula cost(c) = |ZoomPoints| can be used. Note that
by measuring this cost in the simulation, it is feasible to use other formulas as
well, e.g. cost(c) = 1 + log10 |ZoomPoints|. The formula is calculated as follows:
Consider a bucket order L as defined in section 3.2. Suppose that for the facet Fi,
there are d in number different values among the objects in the buckets of L. In
other words, in the current state of the interaction, if the user decides to form a
constraint on facet Fi, then he has to select one from the d in number different
values. This notation |ZoomPoints(L,Fi)| = d will be used later in the simulation
algorithms (specifically in Alg. 5).

4.2.2 Ranking Methods

The results from three main ranking methods will be compared:

• Rrnd: No automatic ranking

• Rrare: Automatic ranking based on discrimination value, preferring rare
values

• Rfreq: Automatic ranking based on discrimination value, preferring common
values

The performance of three ranking policies, which concern the last two ranking
methods, will also be compared:

• LevelsE = 〈dvE , dvG, lexicographic〉

• LevelsG = 〈dvG, dvE , lexicographic〉

• Levelssc = 〈dvG,sc, dvG, dvE , lexicographic〉

4.2.3 The General Algorithm

The exact steps of the simulation process are shown in algorithm SimulatedUser

(Alg. 4) which in turn uses the algorithm SimulatedSession (Alg. 5). Alg. 4
takes a parameter M that determines the stopping condition, i.e. the interaction

4.2. SIMULATION-BASED EVALUATION FOR BREAKBLOCKS 21

stops if the sought object is in the first M positions of the focus. This parameter
is in turn passed to Alg. 5. Note that each o ∈ Obj is a candidate target. The
parameter P determines the number of random permutations of facet values to
consider for each object. For each object o, P sessions are simulated, by calling
Alg. 5 P times with o as target. In each session all metrics are calculated. In
general, the constraints applied in each session may vary (they are set on different
facets). As a result, the measurements in each of the P sessions, are different. After
completing the P sessions, the value of each metric is calculated as the average of
the measurements taken in each individual session for the corresponding metric.
Since the number of permutations may be extremely large, the iteration is done on
a fixed number of random permutations (e.g P = 10). Notice that the paremeter
P is used in lines 8-13 of Alg. 4. The parameter CT takes either the value Hard
or the value Soft and determines if the simulated sessions will be comprised of
hard or soft constraints correspondingly. Finally, the last parameter RankMethod
specifies which ranking method to use, i.e Rrnd, Rrare or Rfreq.

4.2.4 Results of the scenario SFind

The scenario SFind was simulated on each dataset, by executing Alg. 4 with the
following parameters: MB = 1, R = 0,M = 10, P = 10. Table 4.2 summarizes the
configurations that will be evaluated making clear which cases were considered as
baselines and which as methods to test 1.

Table 4.2: Baselines and methods to test in SFind scenario

Parameters for Alg. 4 Baseline/Method to test
CT = Hard,RankMethod = Rrnd Baseline
CT = Hard,RankMethod = Rrare Method to test
CT = Hard,RankMethod = Rfreq Method to test
CT = Soft,RankMethod = Rrnd Baseline
CT = Soft,RankMethod = Rrare Method to test
CT = Soft,RankMethod = Rfreq Method to test

All three ranking policies were tested in this scenario. LevelsE was tested
for both hard constraints and soft constraints sessions. LevelsG was tested only
on hard constraints sessions, because in soft constraints sessions the focus does
not change and as a result dvG(oj) = dvE(oj) for each object oj ∈ Obj. Finally,
Levelssc was tested only on soft constraints sessions, since dvG,sc can be defined
only if sc 6= ∅.

To understand the effect of automatic ranking based on the measurements,
the difference between the metric results in baselines and the methods to test is
calculated. This difference is expressed as a percentage to the metric value of the
corresponding baseline. To make this clear, consider the following case. When

1In DFish10K , the simulation was run for 1000 randomly selected target objects, in all tests.

22 CHAPTER 4. EVALUATION

Algorithm 4 SimulatedUser

Input: Obj,MB,R,M,P,CT,RankMethod
Output: Mean Average Rank, Max Average Rank, Average Constraints, Max
Constraints, Average Navigation Cost, Max Navigation Cost

1: /** Part (1) Initializing the variables for holding values of metrics */
2: avgRanks ← float array of size |Obj|; . Average rank for each object
3: constraints ← float array of size |Obj|; . Number of constraints for each

object
4: navigationCosts ← float array of size |Obj|; . Navigation cost for each object
5: /** Part (2) Estimating quality metrics for each object in the dataset */
6: for each o← (v1, . . . , vk) ∈ Obj do
7: target ← o;
8: for each p = 1 . . . P do
9: SimulatedSession(Obj,MB,R,M,CT,RankMethod, target);

10: end for
11: avgRanks[target] ← avgRanks[target] / P; . Average rank for target;
12: constraints[target] ← constraints[target] / P; . Average constraints for

target
13: navigationCosts[target] ← navigationCosts[target] / P; . Average

navigation cost for target
14: end for
15: /** Part (3) Calculating metrics for the dataset */
16: MeanAverageRank ← average(avgRanks);
17: MaxAverageRank ← max(avgRanks);
18: AverageConstraints ← average(constraints);
19: MaxConstraints ← max(constraints);
20: AverageNavigationCost ← average(navigationCosts);
21: MaxNavigationCost ← max(navigationCosts);

tested SFind in DFish700 with hard constraints sessions and policy LevelsE , the
average navigation cost (calculated with the formula cost(c) = |ZoomPoints|)
with Rrnd (baseline) was 247.57 but with Rfreq (method to test), it fell to 232.63
(note that the navigation cost shows how many facet values were presented to the
user in total throughout the simulated session). So this difference expressed as a
percentage to the baseline is (247.57 − 232.63)/247.57 = 14.94/247.57 = 6.03%.
The above process was repeated for both types of sessions (hard constraints based
and soft constraints based), and for each ranking policy.

Testing LevelsE . Table 4.3 shows the improvement of automatic ranking methods
on each metric, for hard constraints and LevelsE .

We observe that Rfreq performs better than Rrare, in all metrics except for
Mean Avg. Rank in DHotels, and Max Navigation Cost in DFish700. For instance,

4.2. SIMULATION-BASED EVALUATION FOR BREAKBLOCKS 23

Algorithm 5 SimulatedSession

Input: Obj,MB,R,M,CT,RankMethod, target
Output: Average Rank, Number of Constraints, Navigation Cost

1: target = (v1, . . . , vk)
2: Get a random permutation (a1, . . . , ak) of the values (v1, . . . , vk)
3: /** Part (1) Initializing a new session */
4: hc← ∅; . The set of hard constraints for the current session
5: sc← ∅; . The set of soft constraints for the current session
6: tempRank ← CurrentRank(L, target); . holds object rank for this session
7: tempConstraints ← 0; . holds number of constraints for this session
8: tempNavigationCost ← 0; . holds navigation cost for this session
9: /** Part (2) Simulating session by setting constraints sequentially */

10: for each ai ∈ (a1, . . . , ak) do
11: if CT = Hard then
12: hc← hc ∪ {Fi = ai};
13: end if
14: if CT = Soft then
15: sc← sc ∪ {prefer term Fi...ai “best′′};
16: end if
17: A← E(hc); . The objects satisfying the hc
18: Compute (A,�sc |A) which is a series of blocks L = 〈b1, . . . , bZ〉.
19: L← SmartFSRank(Obj, hc, sc,MB,R,RankMethod);
20: tempConstraints++;
21: tempRank ← tempRank + CurrentRank(L, target);
22: tempNavigationCost ← tempNavigationCost + |ZoomPoints(L, Fi)|;
23: /** Part (3) Checking termination condition and obtaining metrics for this

session */
24: if CurrentRank(L, target) ≤M then
25: tempRank ← tempRank / tempConstraints;
26: avgRanks[target] ← avgRanks[target] + tempRank;
27: constraints[target] ← constraints[target] + tempConstraints;
28: navigationCosts[target] ← navigationCosts[target] + tempNavigation-

Cost;
29: break;
30: end if
31: end for
32: return;

24 CHAPTER 4. EVALUATION

Table 4.3: Improvement on SFind for hard constraints sessions with policy LevelsE
(positive numbers indicate improvement)

Dataset Ranking
Method

Mean
Avg.
Rank
(%)

Max
Avg.
Rank
(%)

Avg.
Con-
str.
(%)

Max
Con-
str.
(%)

Avg.
Nav.
Cost
(%)

Max
Nav.
Cost
(%)

DCars Rrare -3.91 -48.42 2.80 7.14 -2.62 -12.38
DCars Rfreq 0.00 -25.30 2.80 7.14 -1.51 -0.65
DRest Rrare -7.21 -89.39 0.00 -10.71 -4.17 -41.04
DRest Rfreq 5.98 36.07 6.35 17.86 4.01 -21.11
DHotels Rrare 2.33 -56.02 1.50 -40.74 -3.03 -43.98
DHotels Rfreq 0.19 -17.88 3.01 -29.63 -0.18 -27.83
DFish700 Rrare -4.69 -111.97 -1.67 0.00 -1.71 8.76
DFish700 Rfreq 1.20 -104.40 3.33 30.00 6.03 3.63
DFish10K Rrare -8.88 -106.87 -2.80 0.00 -3.66 -12.06
DFish10K Rfreq 6.86 -3.53 5.59 20.00 5.52 0.57

we can see that in DRest, Avg. Constraints are reduced by 6.3% and Avg. Navi-
gation Cost is reduced by 4%, when using Rfreq.

The reason Mean Avg. Rank is not improved when enabling automatic ranking,
is correlated with the decrease of Avg. Constraints and this will be explained (and
supported by more experiments) later in Section 4.2.7.

Another noteworthy observation is that Rfreq reduces the Max Constraints in
all datasets except DHotels. This shows that Rfreq reduces the hard constraints
the user has to formulate not only on average, but in the worst case scenarios as
well. These results indicate that for hard constraints sessions, Rfreq should be
preferred as a ranking method.

Table 4.4 shows the improvement of automatic ranking methods on each met-
ric, for soft constraints and LevelsE . At first we see that Rfreq improves Avg.
Constraints and Max Constraints more than Rrare. Rfreq also improves Avg.
Navigation Cost better than Rrare, except for DRest. For the rest of the metrics,
Rrare performs better in 3 datasets and worse in 2. From these results it is not
clear which ranking method should be preferred in soft constraints sessions.

In Tables 4.3, 4.4, 4.6, 4.7 the best values in each column are highlighted,
indicating the maximum gain for each metric in the simulation of each case. To
see the corresponding raw measurements, the interested reader can refer to Tables
B.1 - B.2 in the Appendix B.

To further summarize the results, Table 4.5 presents the average improvement
of each ranking method across all datasets. This is illustrated more clearly in
Figures 4.1 and 4.2. We see that Rfreq performs clearly better in all metrics for
hard constraints sessions. For soft constraints sessions, although Rfreq performs
slightly worse than Rrare w.r.t Mean Avg. Rank and Max Avg. Rank, it improves
the other metrics more than Rrare. For instance, Rfreq reduces Avg. Constraints
by 2.2% and Max Constraints by 16.2%.

4.2. SIMULATION-BASED EVALUATION FOR BREAKBLOCKS 25

Table 4.4: Improvement on SFind for soft constraints sessions with policy LevelsE
(positive numbers indicate improvement)

Dataset Ranking
Method

Mean
Avg.
Rank
(%)

Max
Avg.
Rank
(%)

Avg.
Con-
str.
(%)

Max
Con-
str.
(%)

Avg.
Nav.
Cost
(%)

Max
Nav.
Cost
(%)

DCars Rrare -1.66 -1.96 0.96 20.00 -0.65 -11.50
DCars Rfreq 1.66 -7.54 0.96 20.00 0.98 6.39
DRest Rrare -0.19 -13.95 1.69 0.00 6.40 16.57
DRest Rfreq 4.83 -2.37 3.39 0.00 3.12 6.93
DHotels Rrare 3.61 -57.52 0.81 -11.11 -2.86 9.52
DHotels Rfreq 1.80 -58.06 2.44 -5.56 2.86 4.68
DFish700 Rrare 1.02 -79.58 0.00 0.00 0.79 -0.06
DFish700 Rfreq 0.00 -70.64 1.83 11.76 2.13 -1.38
DFish10K Rrare 4.29 -48.49 -0.88 0.00 -2.38 0.00
DFish10K Rfreq -3.05 -96.19 2.63 55.00 0.90 35.36

Table 4.5: Average performance of ranking methods on SFind with policy LevelsE
(positive numbers signify improvement)

Con-
straint
Type

Ranking
Method

Mean
Avg.
Rank
(%)

Max
Avg.
Rank
(%)

Avg.
Con-
str.
(%)

Max
Con-
str.
(%)

Avg.
Nav.
Cost
(%)

Max
Nav.
Cost
(%)

Hard Rrare -4.47 -82.53 -0.03 -8.86 -3.04 -20.14
Hard Rfreq 2.84 -23.01 4.22 9.07 2.78 -9.08
Soft Rrare 1.42 -40.30 0.52 1.78 0.26 2.90
Soft Rfreq 1.05 -46.96 2.25 16.24 2.00 10.40

Avg.
Constraints

Max
Constraints

Avg.
Navigation

Cost

Max
Navigation

Cost

Mean
Avg.
Rank

Max
Avg.
Rank

−50

0

Im
p

ro
ve

m
en

t
(%

)

Rrare Rfreq

Figure 4.1: Impact of Automatic Ranking (average in all datasets, hard constraints,
M=10, MB=1, policy LevelsE)

26 CHAPTER 4. EVALUATION

Avg.
Constraints

Max
Constraints

Avg.
Navigation

Cost

Max
Navigation

Cost

Mean
Avg.
Rank

Max
Avg.
Rank

−40

−20

0

20

Im
p

ro
ve

m
en

t
(%

)

Rrare Rfreq

Figure 4.2: Impact of Automatic Ranking (average in all datasets, soft constraints,
M=10, MB=1, policy LevelsE)

Table 4.6: Improvement on SFind for hard constraints sessions with policy LevelsG
(positive numbers indicate improvement)

Dataset Ranking
Method

Mean
Avg.
Rank
(%)

Max
Avg.
Rank
(%)

Avg.
Con-
str.
(%)

Max
Con-
str.
(%)

Avg.
Nav.
Cost
(%)

Max
Nav.
Cost
(%)

DCars Rrare 0.38 -53.80 2.80 6.67 11.14 4.40
DCars Rfreq 0.00 6.57 2.80 20.00 2.82 1.76
DRest Rrare -4.08 -73.04 -4.92 -68.42 0.63 -16.60
DRest Rfreq 4.79 -13.70 3.28 5.26 9.45 13.33
DHotels Rrare 1.69 -6.23 3.01 -29.17 4.78 -17.51
DHotels Rfreq -0.99 -69.28 5.26 -16.67 6.98 10.51
DFish700 Rrare -2.92 -62.49 -0.83 -41.67 -1.54 -16.89
DFish700 Rfreq 4.23 -22.93 4.96 12.50 4.42 -4.26
DFish10K Rrare -3.89 -90.20 -0.69 0.00 0.48 0.00
DFish10K Rfreq 5.96 5.28 6.25 15.00 6.56 6.29

Testing LevelsG. Let’s now focus on LevelsG. Table 4.6 presents the results of
SFind for ranking policy LevelsG, for hard constraints. One noteworthy observation
is thatRfreq, again (as in Tables 4.3 and 4.5) performs better thanRrare in general.

Testing Levelssc. Table 4.7 presents the results of SFind for the ranking policy
Levelssc for soft constraints. We see that, and in comparison to Table 4.4, Rfreq
performs better than Rrare in most cases. So the policy Levelssc seems to improve
the performance of Rfreq.

Comparing LevelsE vs LevelsG. To compare LevelsE with LevelsG, Table 4.8
shows the average performance of each ranking method among all datasets, for hard
constraints sessions. At first we observe that LevelsG improves the performance of
Rrare in most metrics (w.r.t Avg. Constraints and Max Constraints it is slightly

4.2. SIMULATION-BASED EVALUATION FOR BREAKBLOCKS 27

Table 4.7: Improvement on SFind for soft constraints sessions with policy Levelssc
(positive numbers indicate improvement)

Dataset Ranking
Method

Mean
Avg.
Rank
(%)

Max
Avg.
Rank
(%)

Avg.
Con-
str.
(%)

Max
Con-
str.
(%)

Avg.
Nav.
Cost
(%)

Max
Nav.
Cost
(%)

DCars Rrare -0.83 -11.64 1.90 14.29 4.34 4.96
DCars Rfreq 0.83 -9.79 0.95 14.29 3.65 8.54
DRest Rrare -9.20 -43.50 -3.42 -11.11 0.00 -8.20
DRest Rfreq 0.96 13.45 5.13 16.67 13.11 3.32
DHotels Rrare 3.18 -42.07 0.00 -23.53 1.17 -0.57
DHotels Rfreq 0.42 -36.57 3.25 -11.76 5.02 14.54
DFish700 Rrare -0.72 -87.10 -0.93 -6.67 -2.96 -6.12
DFish700 Rfreq -1.37 -42.72 1.85 6.67 0.56 5.58
DFish10K Rrare 2.83 -43.97 0.00 0.00 -0.30 0.00
DFish10K Rfreq -4.83 -96.47 4.35 52.50 5.01 33.64

Table 4.8: Effects of ranking policies on SFind (average results on hard constraints
sessions)

Policy Ranking
Method

Mean
Avg.
Rank
(%)

Max
Avg.
Rank
(%)

Avg.
Con-
str.
(%)

Max
Con-
str.
(%)

Avg.
Nav.
Cost
(%)

Max
Nav.
Cost
(%)

LevelsE Rrare -4.47 -82.53 -0.03 -8.86 -3.04 -20.14
LevelsG Rrare -1.76 -57.15 -0.13 -26.52 3.10 -9.32
LevelsE Rfreq 2.84 -23.01 4.22 9.07 2.78 -9.08
LevelsG Rfreq 2.80 -18.81 4.51 7.22 6.05 5.53

decreased). Moreover, it improves Rfreq in all metrics except for Avg. Constraints
(see Fig. 4.3 for an illustration). Therefore, LevelsG should be the preferred to
LevelsE .

With respect to soft constraints sessions, LevelsE and LevelsG are compared
in Table 4.9. It is clear from all the metrics that Levelssc, has a negative effect on
Rrare. However, for Rfreq we get better Avg. Constraints, Avg. Navigation Cost
and Max Avg. Rank (see Fig. 4.4 for an illustration).

4.2.5 Summary of Findings (for SFind)

From Table 4.5 we can see that Rfreq performs better than Rrare on average, for
both hard and soft constraints sessions.

As regards the ranking policy, Table 4.8 shows that LevelsG improves the
performance of Rrare and Rfreq. Now, Table 4.9 shows that Rrare performs better
in LevelsE , while for Rfreq some metrics are improved in Levelssc but others are
worse than in LevelsE . Finally, all tables show that Rfreq has mostly positive

28 CHAPTER 4. EVALUATION

Table 4.9: Effects of ranking policies on SFind (average results on soft constraints
sessions)

Policy Ranking
Method

Mean
Avg.
Rank
(%)

Max
Avg.
Rank
(%)

Avg.
Con-
str.
(%)

Max
Con-
str.
(%)

Avg.
Nav.
Cost
(%)

Max
Nav.
Cost
(%)

LevelsE Rrare 1.42 -40.30 0.52 1.78 0.26 2.90
Levelssc Rrare -0.95 -45.66 -0.49 -5.40 0.45 -1.99
LevelsE Rfreq 1.05 -46.96 2.25 16.24 2.00 10.40
Levelssc Rfreq -0.80 -34.42 3.11 15.67 5.47 13.12

Avg.
Constraints

Max
Constraints

Avg.
Navigation

Cost

Max
Navigation

Cost

Mean
Avg.
Rank

Max
Avg.
Rank

−20

−10

0

10

Im
p

ro
ve

m
en

t
(%

)

LevelsE LevelsG

Figure 4.3: Average performance of Rfreq in LevelsE and LevelsG, for hard con-
straints sessions

Avg.
Constraints

Max
Constraints

Avg.
Navigation

Cost

Max
Navigation

Cost

Mean
Avg.
Rank

Max
Avg.
Rank

−40

−20

0

20

Im
p

ro
ve

m
en

t
(%

)

LevelsE Levelssc

Figure 4.4: Average performance of Rfreq in LevelsE and Levelssc, for soft con-
straints sessions

4.2. SIMULATION-BASED EVALUATION FOR BREAKBLOCKS 29

Table 4.10: Average performance of ranking methods on hard constraints sessions
for various values of MB

MB Ranking
Method

Mean
Avg.
Rank
(%)

Max
Avg.
Rank
(%)

Avg.
Con-
str.
(%)

Max
Con-
str.
(%)

Avg.
Nav.
Cost
(%)

Max
Nav.
Cost
(%)

1 Rrare -5.03 -69.69 2.51 0.87 2.03 3.56
1 Rfreq -1.89 -2.55 9.74 21.80 9.21 17.65
3 Rrare -5.53 -68.53 1.26 4.73 1.25 6.71
3 Rfreq -1.01 -8.74 5.95 9.70 5.76 11.25
5 Rrare -5.17 -66.41 0.89 1.59 -0.25 3.12
5 Rfreq -0.59 -7.29 2.92 10.92 2.18 8.11

effects on the interaction. Specifically, and with respect to the objectives stated
in Section 4.1.1, Rfreq with policy LevelsE resulted in:

• Reduced hc (about 4.2% on average)

• Reduced sc (about 2.2% on average)

• Higher object rankings (about 2.8% and 1% on average, in hard and soft
constraints sessions respectively)

• Lower navigation cost (about 2.8% and 2% on average, in hard and soft
constraints sessions respectively)

In addition, we observe that Rfreq reduces the hc and the sc not only on aver-
age, but for the worst cases as well, as indicated by Max Constraints and Max
Navigation Cost metrics (see the last lines of Tables 4.8 and 4.9).

4.2.6 Testing Other M and MB values

In addition to SFind, BreakBlocks was further evaluated by executing the algorithm
for each ranking method Rrnd, Rrare, Rfreq, with three different termination con-
ditions M = 1, 2, 3 and testing for Rrare and Rfreq three different values of MB
(1, 3, 5). The ranking policy followed in these tests is LevelsE .
To compare the performance of Rrare and Rfreq with MB = 1, 3, 5, the average
value of each metric across all tests (M = 1, 2, 3 for all datasets) is considered. Ta-
bles 4.10 and 4.11 show these average values, for hard and soft constraints sessions
respectively. The raw measurements for all cases in each dataset, are available in
Tables B.3 - B.7 in the Appendix B.

In Table 4.10 we observe that for hard constraints sessions, the best performing
setting is Rfreq with MB = 1 on all metrics except Mean Avg. Rank, where Rfreq
with MB = 5 performs slightly better. It should be noted that for Mean Avg.
Rank and Max Avg. Rank the results are negative in all settings, but in the other
metrics the results are positive.

30 CHAPTER 4. EVALUATION

Table 4.11: Average performance of ranking methods on soft constraints sessions
for various values of MB

MB Ranking
Method

Mean
Avg.
Rank
(%)

Max
Avg.
Rank
(%)

Avg.
Con-
str.
(%)

Max
Con-
str.
(%)

Avg.
Nav.
Cost
(%)

Max
Nav.
Cost
(%)

1 Rrare 0.89 -53.16 2.09 -0.44 1.96 -0.44
1 Rfreq -5.53 -61.40 7.43 26.84 7.63 14.74
3 Rrare 0.82 -46.28 1.92 -1.79 2.44 0.64
3 Rfreq -5.36 -57.35 4.20 16.38 5.73 10.27
5 Rrare 0.83 -50.93 0.88 1.89 1.58 0.51
5 Rfreq -5.94 -67.83 2.60 10.14 3.27 6.93

In Table 4.11 we see that for soft constraints sessions, the best performing
setting is Rfreq with MB = 1, on Avg. Constraints, Max Constraints, Avg. Navi-
gation Cost and Max Navigation Cost. These results provide evidence that Rfreq
improves the interaction. Again with respect to the objectives stated in Section
4.1.1, we find that Rfreq with MB = 1 resulted in:

• Reduced hc (about 9.7% on average)

• Reduced sc (about 7.4% on average)

• Lower navigation cost (about 9% and 7.6% on average, in hard and soft
constraints sessions respectively)

These results are consistent with the findings mentioned in 4.2.5.

4.2.7 Explaining Results about Average Rank

As regards the requirement about higher object rankings, we observe that Rfreq
(with MB = 1, 3, or 5) did not improve this aspect. Specifically, Mean Avg. Rank is
increased about 1% in hard constraints sessions, and about 5.5% in soft constraints
sessions. The reason Mean Avg. Rank increases when enabling automatic ranking,
is correlated with the decrease of Avg. Constraints. In many cases, the session for
an object with automatic ranking requires less constraints, but at the same time
the Avg. Rank is increased. To make this clear, consider the following example.
Assume we set M = 1, and for an object o the session without automatic ranking
requires 3 constraints until rank(o) = 1. Further suppose that the rank of o after
the first constraint is 10, and after the second is 2. So in this session, avg.rank(o)
= (10 + 2 + 1) / 3 = 4.33. Now, suppose that in the session with Rfreq, only 2
constraints are required until rank(o) = 1. Also, after the first constraint the rank
of o is 9. So in this case avg.rank(o) = (9 + 1) / 2 = 5, which is 15% higher than
the session without automatic ranking.

4.3. SIMULATION-BASED EVALUATION FOR APPENDBLOCKS 31

4.3 Simulation-based Evaluation for AppendBlocks

Section 4.3.1 discusses the gain from AppendBlocks. Then Section 4.3.2 discusses
simulation-based evaluation.

4.3.1 Benefit from AppendBlocks

AppendBlocks solves the problem of too small answers (recall scenario SInform in
§4.1.3), by enriching the answer with objects that approximate the hc. As regards
the benefits from R (and AppendBlocks), it is not hard to see that whenever a
new approximate object is added, it reduces the number of constraints the user
would have to formulate (for getting that object). Without AppendBlocks, the
user would have to delete one filter and select another. Therefore the gain from
adding R − |A| objects is the number of distinct descriptions of these objects, so
the gain ranges [1, R− |A|].

4.3.2 Simulation-based Evaluation

One question is how to use simulation to evaluate the benefits of AppendBlocks
and thus of the scoring functions that were described in §3.3.1.

Method 1. Percentage of Distinct Descriptions. One way to evaluate the
benefit of AppendBlocks is to use a simplified version of Algorithm SimulatedUser

(Alg. 4), specifically Alg. 6, that counts how many times AppendBlocks was
called, and how many were the distinct descriptions of the approximate objects.
For example, we can compute what percentage of the R−|A| objects have distinct
descriptions. If the percentage is y then we can say that the user cost is reduced
by y ∗ (R− |A|) clicks.

Algorithm 6 Evaluating the Reduced Cost from R
Input: Obj, J (the number of extra approximate objects requested)
Output: Average number of less hc that the user has to formulate

1: for each o = (v1, . . . , vk) ∈ Obj or for a set of randomly selected hc do
2: Let L = 〈b1, . . . , bZ〉 . The produced bucket order
3: R = |objects(L)|+ J
4: Let L′ = 〈b1, . . . , bZ , bZ+1, . . . , bZ+V 〉 . The extended bucket order
5: X = Count how many new hc the user would have to use for getting the

objects of bZ+1 . . . bZ+V , so the number of distinct hc (excluding (v1, . . . , vk))
6: Benefit+ = X
7: end for
8: return the average benefit, i.e. Benefit/|Obj|

Method 1: Results. To carry out these experiments Alg. 6 is used for various
numbers of extra objects (i.e. for various values of J , e.g. J = 1...10). Specifically

32 CHAPTER 4. EVALUATION

Alg. 6 was run for J = 5, 10, 15, 20, 25, 30 on DCars, DRest and DHotels. For
DFish700 the algorithm was run for J = 10, 20, 30, 40, 50. In all cases the average
benefit was equal to J. That means that the simulation showed that the maximum
gain was achieved in all cases.

Method 2. Coverage by the Approximate Objects. Consider a user who
is interested in some ideal objects corresponding to a set of hard constraints hc.
However suppose that no such objects exist in the dataset, therefore the user
(through FS) would not even be able to express these hc. However, through the
approximate objects of the extended model the user will be able to express these
hc and see those objects that more closely satisfy the hc. This makes sense also in
FS systems through spoken dialogue (e.g. see [23]) where the user is not able to
see the zoom points, therefore quite often he/she expresses constraints with empty
answers. Based on the above scenario, we could try measuring to what extent the
approximate objects cover the hc.

Note that AppendBlocks does not have any explicit diversification objective. It
should also be noted that a “plain vanilla” diversification that aims at covering the
space (of hc) is not necessarily the best for the user. For example, suppose the hc
is stars=5 and price=50, then a hotel with stars=4 and price=51 is more desired
than the following pair of hotels that covers the entire hc: stars=5, price=100 and
stars=2, price=50. However it makes sense to investigate the following research
question: to what extent the approximate objects (as defined in this thesis) cover
the hc. The Coverage by the Approximate Objects can be measured by simulating
users that express their criteria through hard constraints corresponding to random
facet-value pairs. Every simulated session consists of a fixed number of constraints
where only one constraint is set on each facet. On such sessions we can then count
how frequently the user would get an empty answer, i.e. what percentage of the
simulated sessions resulted in an empty answer. For measuring the coverage of
AppendBlocks, we can consider these empty answer cases, and count in how many
of these cases the objects returned by AppendBlocks cover the user’s information
need, i.e how frequently the returned approximate objects covered (collectively)
all the facet values specified in the hard constraints. Obviously, this depends also
on the value of the R parameter, therefore it makes sense to test various values,
like R = 10, 20, 30.... Specifically, if Answers is the total number of simulated
sessions, we shall denote by EAavg (from Empty Answers) the average number of
sessions where an empty answer was returned (there was no object satisfying all
the hard constraints) i.e. EAavg = EA

Answers .

We can now define ApBlavg as
AnswersApBl

Answers , where AnswersApBl is the num-
ber of sessions where an empty answer was returned and the approximate results
covered the information need. Let ApBlCvrg,i be the number of hard constraints
covered by approximate results (returned by AppendBlocks) in session i, in which
an empty answer was returned. Now let ApBlCvrg,avg be the average number
of hard constraints covered by approximate results, on sessions where an empty

4.3. SIMULATION-BASED EVALUATION FOR APPENDBLOCKS 33

Table 4.12: Average results of AppendBlocks evaluation

R EAavg

(%)
ApBlavg
(%)

ApBlCvrg,avg

(%)
10 97.47 18.61 60.84
20 97.44 24.97 65.80

answer was returned, calculated as: ApBlCvrg,avg = 1
EA ∗

∑EA
i=1

ApBlCvrg,i

HCsize
.

Note that coverage is a metric that has been also used for evaluating diversi-
fication algorithms (e.g. see [8, 2]). However, since the approach of this thesis is
not intended for diversification, coverage is defined differently: as a percentage of
the user’s hc (and not w.r.t all the facets).

The algorithm that makes this simulation and computes the aforementioned
metrics is ApproximateResultsEvaluation (Alg. 7). It takes as parameter the
value of R and a parameter HCsize that specifies how many hard constraints will
be set in each simulated session (it should not exceed the number of facets). It
also takes as a parameter Sessions that determines how many sessions will be
simulated.
Method 2: Results. The scenario SInform was tested on each dataset, by
executing the simulation algorithm. The values tested for HCsize were 4, 5 and
6, while Sessions was set to 1000. The average results are shown in Table 4.12.
We can see that 97.4% of the simulated sessions resulted in an empty answer. In
these cases, 18.6% (for R = 10) and 25% (for R = 20) of the time AppendBlocks
returned approximate results that completely covered the information need (the
returned objects collectively satisfied all hard constraints). The average coverage
of the information need was 60.8% and 65.8% for R = 10 and R = 20 respectively.
To conclude we have seen that apart from saving user effort, AppendBlocks covers
quite satisfactorily the information space. The evaluation results for each dataset,
are available in Table B.8 in the Appendix B.

34 CHAPTER 4. EVALUATION

Algorithm 7 ApproximateResultsEvaluation

Input: Obj,R,HCsize, Sessions
Output: Avg. Empty Answers, Avg. AppendBlocks Answers, Avg. Append-
Blocks Coverage

1: EA← 0; AnswersApBl ← 0; ApBlCvrg ← 0;
2: Let F = {F1, . . . , Fk} be the set of facets
3: for s = 1, . . . , Sessions do
4: hc← ∅;
5: for p = 1, . . . ,HCsize do
6: Fi ← GetRandomElement(F); . Selects a random element from F
7: Let D = {t1, . . . , tm} be the domain of facet Fi
8: ti ← GetRandomElement(D);
9: hc← hc ∪ {Fi = ti};

10: F ← F \ {Fi};
11: end for
12: A← E(hc); . The objects satisfying the hc
13: if A = ∅ then . Empty answer i.e no object satisfies all the hc
14: EA++;
15: A← AppendBlocks(R); . Fills answer with R approx. objects
16: conjunctsCovered← 0; . Conjuncts satisfied by at least one object in

approx. results
17: for each conjunct {Fi = ti} ∈ hc do
18: if ∃oj ∈ A with oji = ti then
19: conjunctsCovered++; . It covers this constraint
20: end if
21: end for
22: ApBlCvrg ← ApBlCvrg + (conjunctsCovered / HCsize);
23: if conjunctsCovered = HCsize then . All constraints were covered
24: AnswersApBl++;
25: end if
26: end if
27: end for
28: ApBlCvrg,avg ← ApBlCvrg / EA;
29: EAavg ← EA / Sessions;
30: ApBlavg ← AnswersApBl / Sessions;
31: Return EAavg, ApBlavg, ApBlCvrg,avg;

Chapter 5

Implementation and
Comparison to Related Systems

Section 5.1 discusses the implementation, Section 5.2 discusses efficiency, Section
5.3 discusses the GUI extensions that were required, and finally Section 5.4 com-
pares the implementation of the extended model with respect to related tools/sys-
tems.

5.1 Implementation

The implementation of the proposed extended FS model is based on Hippalus [22],
which is a publicly accessible web system that implements the PFS interaction
model. The information base that feeds Hippalus is represented in RDF/S1 using
a schema adequate for representing objects described according to dimensions with
hierarchically organized values.

The server-side of the system is implemented in Java EE v7.0 and deployed
with Tomcat Server v9.0. The data management layer is based on Sesame RDF
database v2.7.12 which supports RDF/S inferencing and querying. The front-end
of the system is implemented using HTML/CSS/Javascript.

5.2 Efficiency

Although scalability is not the main focus, the time complexity of the algorithms
is described below and time measurements are reported. The time complexity of
the ranking methods is O(N ∗K) where N,K are the number of objects and facets.

The simulation algorithms (Alg. 4, 7) were implemented as JUnit tests (v4.12)
to assist modular execution. All simulations were executed using a machine with
specifications that are listed in Table 5.1.

1http://www.w3.org/TR/rdf-schema/

35

36CHAPTER 5. IMPLEMENTATION AND COMPARISON TORELATED SYSTEMS

As a basic time efficiency improvement, Java’s parallelStream(), introduced
in JDK 1.8, was utilized to iterate over the objects. This reduced the execution
time of Alg. 4 about 40% on average, because it enabled the parallel calculation
of each object’s discrimination value. This improvement however, depends on the
number of processor threads (cores) available.

Table 5.1: Specifications of the machine used for evaluation

Component Details
CPU Intel Core i7-3770, 3.40 GHz
Cache L3: 8 MB, L2: 256 KB (×4)
RAM 16 GB DDR3, 1600 MHz
OS Windows 10 Enterprise 64-bit

Table 5.2 reports the execution times of the simulations for SFind with hard
constraints, while Table 5.3 shows the execution times of the simulations for SFind
with soft constraints. The fourth column (Total Overhead) shows how much the
execution time of the simulation increases when enabling automatic ranking, in
comparison to the execution time of the baseline. For example in DCars, the sim-
ulation of the baseline method Rrnd with soft constraints took 3.14 seconds to
complete, while Rrare needed 4.9 seconds, which is a (4.9 - 3.14)/3.14 u 0.56 =
56% increase. The fifth column displays the average time per constraint in seconds,
which is computed as: (execution time of simulation) / (number of constraints in
the simulation). The last column (Overhead per constraints) shows the average
overhead per constraint, and is calculated in the same way as the fourth column
(Total Overhead), but on data from the 5th column (Avg. Constraint Time). The
measurements from all datasets and more specifically the overhead per constraint
measure (6th column), show that automatic ranking, as expected, slows the re-
sponse time of the system. However this increase is in the same order of magnitude
and ranges from 15.3% up to 141%.

In practice this delay is not noticeable in datasets DCars, DRest and DHotels,
for both hard and soft constraints, since the average time per constraint is under
50 ms. For DFish700, the time per constraint increases from 266 ms to 575 ms
(hard constraints) and from 350 ms to 609 ms (soft constraints) which is still very
difficult for a user to notice. Finally, in DFish10K , we observe an increase from 2.27
sec to 2.8 sec (hard constraints) and from 20.28 sec to 40.36 sec (soft constraints).
This is obviously noticeable, and therefore it is worth tackling in the future, e.g.
by investigating the applicability of top-K algorithms, an issue that goes beyond
the scope of this thesis. This concerns not only the proposed extended model but
also algorithms for PFS.

5.3. EXTENSIONS OF THE GRAPHICAL USER INTERFACE 37

Table 5.2: Execution times on SFind for hard constraints sessions with policy
LevelsG

Dataset Ranking
Method

Time in
seconds

Total
Over-
head
(%)

Avg. Time
per

constraint
(seconds)

Overhead
per

constraint
(%)

DCars Rrnd 4.06 0.007
DCars Rrare 7.11 75.37 0.012 79.75
DCars Rfreq 4.00 -1.45 0.006 -1.45
DRest Rrnd 23.90 0.016
DRest Rrare 33.07 38.35 0.022 38.69
DRest Rfreq 26.74 11.87 0.019 15.31
DHotels Rrnd 188.41 0.037
DHotels Rrare 237.24 25.92 0.046 24.42
DHotels Rfreq 217.48 15.43 0.044 18.65
DFish700 Rrnd 2,241.24 0.266
DFish700 Rrare 4,898.06 118.54 0.575 116.03
DFish700 Rfreq 4,281.82 91.05 0.528 98.47
DFish10K Rrnd 32,722.50 2.272
DFish10K Rrare 38,029.59 16.22 2.623 15.42
DFish10K Rfreq 38,011.87 16.16 2.816 23.91

5.3 Extensions of the Graphical User Interface

The rising question is how to extend the GUI of a system supporting FS or PFS,
to accommodate for R and MB parameters and to make clear the bucket ordering
that has been used. In addition, an explanation service is a nice to have feature
for reasons of transparency.

In general the following GUI-related questions were identified: (a) how to make
evident the automatic ranking, (b) how to enable the user to change the ranking
(e.g. frequent vs rare), (c) how to make clear the objects that do not satisfy the
hard constraints, (d) how to provide ranking explanation (both for hc and sc).

Below is described how the above questions were tackled, by showing screen-
shots from the implementation. The bucket order is presented by separating buck-
ets with a line label “Top-ranked”, “Second-ranked”, etc. so that the preference-
based ranking is made clear to the user. The objects within a preference-based
bucket are ordered based on the automatic method presented in this work (instead
of an arbitrary one). This is clear in figures 1.2 and 5.2. The settings provided are
the following:

38CHAPTER 5. IMPLEMENTATION AND COMPARISON TORELATED SYSTEMS

Table 5.3: Execution times on SFind for soft constraints sessions with policy
LevelsE

Dataset Ranking
Method

Time in
seconds

Total
Over-
head
(%)

Avg. Time
per

constraint
(seconds)

Overhead
per

constraint
(%)

DCars Rrnd 3.14 0.006
DCars Rrare 4.90 56.38 0.009 56.38
DCars Rfreq 3.08 -1.91 0.006 -1.18
DRest Rrnd 14.27 0.009
DRest Rrare 26.75 87.43 0.017 90.63
DRest Rfreq 17.93 25.60 0.012 38.01
DHotels Rrnd 132.49 0.024
DHotels Rrare 312.78 136.09 0.057 141.38
DHotels Rfreq 266.45 101.11 0.049 108.09
DFish700 Rrnd 2,661.13 0.350
DFish700 Rrare 4,646.21 74.60 0.609 74.11
DFish700 Rfreq 4,022.14 51.14 0.539 53.98
DFish10K Rrnd 231,855.69 20.285
DFish10K Rrare 464,159.81 100.19 40.362 98.97
DFish10K Rfreq 420,386.88 81.31 37.975 87.21

1. Enable / disable Rsat

2. Specify the value of R parameter

3. Enable / disable inner bucket or-
dering

4. Enable / disable MBsat

5. Specify the value of MB parameter

6. Select policy about discrimination
value: prefer rare values, common
values or no preference

Figure 5.1: The automatic rank-
ing settings as provided in the
GUI

Figure 5.1 shows the settings used in the running example (Fig. 1.2).

As regards rank explanation, for each object of the focus the extended GUI
shows its score as a percentage (consolidated scorehc, dvE , and dvG) as shown in
the right side of Fig. 1.2. Moreover, for each object the GUI provides a button
labeled “explain” that when pressed, it displays the scorehc per facet, as well
as the soft constraints and which of them are satisfied by the object. As an
example, Figure 5.3 shows the “explanation card” for one hotel that belongs to
the approximate results of our running example (Fig. 1.2), and this is why its

5.3. EXTENSIONS OF THE GRAPHICAL USER INTERFACE 39

background color is red.

• Hard-Constraints (Filters): (Location=‘Tokyo’) & (Meal=‘brunch)

• Soft-Constraints (preferences): none

Location

Tokyo (6)

Meal

brunch (6)

Facets Ranked objects Facets

Ranked objects after MB = 2, preferring

frequent values

FS with Preferences FS with Preferences and Object Ranking and Answer Size Constraints

Location

Tokyo (6)

Meal

brunch (6)

Figure 5.2: An example where a user searches for restaurants in Tokyo that offer
brunch. The left side shows a typical FS response with 2 filters, while the right
side shows the response of the extended FS which provides a more refined ranking.

Figure 5.3: Information about the scores of an object

The above GUI is indicative and is given only for showing how a user could get
the explanation if they wish too. A simple GUI that implicitly assumes MB = 1
and R equal to the number that determines the pagination of the results, is also a
means to exploit the results of the extended model without having to add anything
to the current GUIs.

40CHAPTER 5. IMPLEMENTATION AND COMPARISON TORELATED SYSTEMS

5.4 Comparison with Related Systems

The research prototype system derived by enriching Hippalus with the functional-
ity described in this thesis is called HippalusMB,R. By comparing HippalusMB,R

with other related tools we could say that this is the first system that supports hard
constraints (the typical functionality of FS), soft constraints (including preference
inheritance in the hierarchically organized values), object ranking that considers
the soft constraints as well as the frequency of the data values, and supports the
answer size and object granularity constraints. Since object ranking does not pre-
suppose the existence of log files or training data, it can be widely applied on any
dataset that describes objects according to a multi-dimensional space.

There is no other directly related system to compare with. The closer works
to this thesis, are [4], [36] and [20]. In comparison to [4], this work focuses on
object ranking while they focus on facet ranking. However, their evaluation is also
done by simulations, and one of the metrics used is the number of constraints, one
metric that is also used in the simulations of this thesis. In comparison to [36], that
work relies on machine learning techniques and user data; while this work focuses
on the query constraints and the statistical properties of the dataset. Finally, [20]
focuses on open domain FS over RDF data, it assumes that entities are a result
of a keyword search query, and the ranking of objects is based on text similarity
functions as well as the properties of the knowledge graph. Our work on the other
hand, does not require any keyword search query; instead the ranking is based on
the user actions.

To make clear the key differences between HippalusMB,R and the most related
systems (that were mentioned in §2.2), Table 5.4 provides a list of features and
marks those systems that provide them.

Table 5.4: Comparison with Related Systems

HippalusMB,R GRAFA
[20]

Basu et al.
[4]

van Belle
[36]

Data Representation
Facet Hierarchies Yes No Yes No
Multi-valued Facets Yes Yes No Yes

Availability of External/Log Data
Needs training data No No No Yes

Result set Characteristics
Approximate Matching Yes No No Yes
Blocks of desired size Yes No No No
Preferences Yes No No No

Chapter 6

Conclusion

Although Faceted Search systems are widely used, the issue of object ranking is
surprisingly not well elaborated. In this thesis, an extended model for FS is pro-
posed that aims at improving the exploration experience of the users. Specifically,
two parameters are proposed that specify the desired properties of the returned
answers (in terms of size and ranking granularity). Subsequently, and through
the algorithm SmartFSRank the problem was factorized to sub-tasks that can be
tackled more easily. It was shown that by using this algorithm, which takes into
account (a) hard-constraints, (b) soft-constraints (preferences), and (c) the sta-
tistical properties of the dataset, an object ranking can be produced. Then the
resulting ranking was evaluated through simulation, for testing whether it reduces
the user effort and improves the answers. Various cases were comparatively evalu-
ated. The results provide evidence that the proposed model reduces the user’s cost
for finding the desired object, and improves the interaction experience. Specifi-
cally we have seen that the intra-block ranking method Rfreq with MB = 1, is
beneficial in most cases regarding both the average cost (9.7% and 7.4%) and the
maximum cost (21.8% and 26.8%), for hard and soft constraints respectively.

As regards the approximate objects returned by AppendBlocks, they alleviate
the user from having to change the hard constraints (and note that each approx-
imate object saves at least one click effort from the user). Although the main
objective is to return objects that better approximate the hard constraints pro-
vided by the user, the simulation-based evaluation has shown that the approximate
objects returned provide a good coverage of all the constraints (60.8% of the user’s
hard constraints on average, when the faceted search system would not allow the
formulation of all the hard constraints since they would lead to empty results).

Apart from the above, this work described an implementation of the model and
the required GUI extensions, while paying attention also to issues of transparency
and explainability.

41

42 CHAPTER 6. CONCLUSION

6.1 Future Work

There are several directions and issues for further research. In the task of finding
the closest approximate objects, it is worth studying query relaxation methods to
reduce the number of candidate objects before applying the scoring formulas. In
this case however, the system might not return the objects that have the maximum
score. An interesting extension of the ranking algorithm would be to consider also
diversification requirements (e.g. see [2] for a survey).

Another direction is to investigate whether the proposed simulation framework
and metrics can be exploited for evaluating in a cost-effective method the effec-
tiveness of an information access interface (avg, max cost) allowing in this way the
designers to examine adding/changing facets and terms for improving the overall
findability of the objects. Another issue is to investigate indexes and algorithms
for scalability i.e. for enabling FS with automated ranking over very big datasets.

Bibliography

[1] Tim Soltvedt Aadland. Evaluating a faceted search approach for efficient news
event filtering, 2020.

[2] Adnan Abid, Naveed Hussain, Kamran Abid, Farooq Ahmad, Muham-
mad Shoaib Farooq, Uzma Farooq, Sher Afzal Khan, Yaser Daanial Khan,
Muhammad Azhar Naeem, and Nabeel Sabir. A survey on search results
diversification techniques. Neural Computing and Applications, 27(5):1207–
1229, Jul 2016.

[3] Sanjay Agrawal, Surajit Chaudhuri, Gautam Das, and Aristides Gionis. Au-
tomated ranking of database query results. In Conference on Innovative Data
Systems Research 2003, First Biennial Conference on Innovative Data Sys-
tems Research, Asilomar, CA, USA, January 5-8, 2003, Online Proceedings,
2003.

[4] Senjuti Basu Roy, Haidong Wang, Gautam Das, Ullas Nambiar, and Mukesh
Mohania. Minimum-effort driven dynamic faceted search in structured
databases. In Proceedings of the 17th ACM conference on Information and
Knowledge Management, pages 13–22. ACM, 2008.

[5] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard Weikum.
Probabilistic ranking of database query results. In Proceedings of the Thirtieth
international conference on Very large data bases-Volume 30, pages 888–899.
VLDB Endowment, 2004.

[6] William S. Cooper. Expected search length: A single measure of retrieval
effectiveness based on the weak ordering action of retrieval systems. American
Documentation, 19(1):30–41, 1968.

[7] Wisam Dakka, Panagiotis G. Ipeirotis, and Kenneth R. Wood. Automatic
construction of multifaceted browsing interfaces. In Proceedings of the 14th
ACM International Conference on Information and Knowledge Management,
CIKM ’05, pages 768–775, New York, NY, USA, 2005. ACM.

[8] Marina Drosou and Evaggelia Pitoura. Search result diversification. SIGMOD
record, 39(1):41–47, 2010.

43

44 BIBLIOGRAPHY

[9] Leila Feddoul, Sirko Schindler, and Frank Löffler. Automatic facet generation
and selection over knowledge graphs. In International Conference on Semantic
Systems, pages 310–325. Springer, 2019.

[10] Sébastien Ferré. Sparklis: a SPARQL Endpoint Explorer for Expressive Ques-
tion Answering. In ISWC Posters & Demonstrations Track, Riva del Garda,
Italy, October 2014.

[11] Rasmus Hahn, Christian Bizer, Christopher Sahnwaldt, Christian Herta,
Scott Robinson, Michaela Bürgle, Holger Düwiger, and Ulrich Scheel. Faceted
wikipedia search. In Witold Abramowicz and Robert Tolksdorf, editors, Busi-
ness Information Systems, pages 1–11, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[12] Andreas Harth. Visinav: Visual web data search and navigation. In Sourav S.
Bhowmick, Josef Küng, and Roland Wagner, editors, Database and Ex-
pert Systems Applications, pages 214–228, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[13] Frank Hopfgartner, Thierry Urruty, Pablo Bermejo Lopez, Robert Villa, and
Joemon M. Jose. Simulated evaluation of faceted browsing based on feature
selection. Multimedia Tools and Applications, 47(3):631–662, May 2010.

[14] Ioannis Kitsos, Kostas Magoutis, and Yannis Tzitzikas. Scalable entity-based
summarization of web search results using mapreduce. Distributed and Par-
allel Databases, 32(3):405–446, 2014.

[15] Yuta Kobayashi, Hiroyuki Shindo, and Yuji Matsumoto. Scientific article
search system based on discourse facet representation. Proceedings of the
AAAI Conference on Artificial Intelligence, 33:9859–9860, 07 2019.

[16] Jonathan Koren, Yi Zhang, and Xue Liu. Personalized interactive faceted
search. In Proceedings of the 17th International Conference on World Wide
Web, WWW ’08, pages 477–486, New York, NY, USA, 2008. ACM.

[17] Chengkai Li, Ning Yan, Senjuti B. Roy, Lekhendro Lisham, and Gautam Das.
Facetedpedia: Dynamic generation of query-dependent faceted interfaces for
wikipedia. In Proceedings of the 19th International Conference on World Wide
Web, WWW ’10, pages 651–660, New York, NY, USA, 2010. ACM.

[18] Panagiotis Lionakis and Yannis Tzitzikas. Pfsgeo: Preference-enriched faceted
search for geographical data. In OTM Confederated International Con-
ferences” On the Move to Meaningful Internet Systems”, pages 125–143.
Springer, 2017.

[19] Tie-Yan Liu. Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval, 3(3):225–331, 2009.

BIBLIOGRAPHY 45

[20] José Moreno-Vega and Aidan Hogan. Grafa: Scalable faceted browsing for
RDF graphs. In International Semantic Web Conference, pages 301–317.
Springer, 2018.

[21] Eyal Oren, Renaud Delbru, and Stefan Decker. Extending faceted navigation
for RDF data. In Isabel Cruz, Stefan Decker, Dean Allemang, Chris Preist,
Daniel Schwabe, Peter Mika, Mike Uschold, and Lora M. Aroyo, editors,
The Semantic Web - ISWC 2006, pages 559–572, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[22] Panagiotis Papadakos and Yannis Tzitzikas. Hippalus: Preference-enriched
faceted exploration. In EDBT/ICDT Workshops, volume 172, 2014.

[23] Alexandros Papangelis, Panagiotis Papadakos, , Yannis Stylianou, and Yannis
Tzitzikas. Spoken dialogue for information navigation. In Special Interest
Group on Discourse and Dialogue, 2018.

[24] Olivier Pivert, Olfa Slama, and Virginie Thion. SPARQL Extensions with
Preferences: a Survey. In ACM Symposium on Applied Computing, Pisa,
Italy, France, April 2016.

[25] J Rosati, T Di Noia, R De Leone, T Lukasiewicz, and VW Anelli. Combining
rdf and sparql with cp-theories to reason about preferences in a linked data
setting. Semantic Web, 2018.

[26] Giovanni Maria Sacco and Yannis Tzitzikas. Dynamic taxonomies and faceted
search: theory, practice, and experience, volume 25. Springer Science & Busi-
ness Media, 2009.

[27] Olfa Slama. Personalized queries under a generalized user profile model based
on fuzzy sparql preferences. In 2019 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), pages 1–6. IEEE, 2019.

[28] Kostas Stefanidis, Georgia Koutrika, and Evaggelia Pitoura. A survey on rep-
resentation, composition and application of preferences in database systems.
ACM Transactions on Database Systems (TODS), 36(3):19, 2011.

[29] Bogaard Tessel. Metadata categorization for identifying search patterns in a
digital library. 75(2):270–286, Jan 2019.

[30] Antonis Troumpoukis, Stasinos Konstantopoulos, and Angelos Charalam-
bidis. An Extension of SPARQL for Expressing Qualitative Preferences. In
The Semantic Web – ISWC 2017, pages 711–727, Cham, 2017. Springer In-
ternational Publishing.

[31] Daniel Tunkelang. Faceted search. Synthesis lectures on information concepts,
retrieval, and services, 1(1):1–80, 2009.

46 BIBLIOGRAPHY

[32] Yannis Tzitzikas, Nicolas Bailly, Panagiotis Papadakos, Nikos Minadakis,
and George Nikitakis. Using preference-enriched faceted search for species
identification. International Journal of Metadata, Semantics and Ontologies,
11(3):165–179, 2016.

[33] Yannis Tzitzikas and Eleftherios Dimitrakis. Preference-enriched faceted
search for voting aid applications. IEEE Transactions on Emerging Topics in
Computing, 7:218–229, 2019.

[34] Yannis Tzitzikas, Nikos Manolis, and Panagiotis Papadakos. Faceted Ex-
ploration of RDF/S Datasets: A Survey. Intelligent Information Systems,
48(2):329–364, April 2017.

[35] Yannis Tzitzikas and Panagiotis Papadakos. Interactive exploration of mul-
tidimensional and hierarchical information spaces with real-time preference
elicitation. Fundamenta Informaticae, 20:1–42, 2012.

[36] Agnes van Belle. Learning to rank for faceted search: Bridging the gap be-
tween theory and practice, 2017.

[37] Damir Vandic, Steven Aanen, Flavius Frasincar, and Uzay Kaymak. Dynamic
facet ordering for faceted product search engines. IEEE Transactions on
Knowledge and Data Engineering, 29(5):1004–1016, 2017.

[38] Damir Vandic, Flavious Frasincar, and Uzay Kaymak. Facet selection al-
gorithms for web product search. In Proceedings of the 22nd International
Conference on Information and Knowledge Management. ACM, 2013.

Appendix A

Notations

Table A.1: Summary of notations used in Sections 3.1 and 3.2

Notation /
Abbrevia-
tion

Definition / Explanation

F1, . . . , Fk The facets (also known as attributes)
ai A user action which is either a hard constraint (restriction/filter) or a soft

constraint (preference)
us The user session which is a series of user actions, i.e. us = 〈a1, . . . , an〉
hc The set of hard constraints (restrictions/filters) that the user has specified.
sc The set of soft constraints (preferences) that the user has specified.
Obj The set of objects in the dataset (a.k.a instances or tuples)
E(hc) The focus, i.e. the set of objects that satisfy the set of hard constraints hc.

It is a subset of Obj.
�sc The preference relation induced by sc.
�sc | E(hc) The restriction of the binary relation �sc over E(hc), that is �sc | E(hc)=

{(a, b) ∈ �sc | a ∈ E(hc), b ∈ E(hc)}
〈b1, . . . , bz〉 An ordered sequence of blocks (bucket order). Blocks are pairwise disjoint

(bi ∩ bj = ∅)
L The system’s answer which is a bucket order. It may contain more or less

objects than the focus.
objects(L) The set of objects in the system’s answer (those returned by the system)
MB This is a parameter of type positive integer, that specifies the maximum

block size of the system’s answer L = 〈b1, . . . , bz〉. Each block should not
contain more than MB in number objects, i.e. |bi| ≤ MB, for each i =
1, . . . , z

R This is a parameter of type positive integer, that specifies the exact number
of objects that the system’s answer should contain, i.e |objects(L)| = R

47

48 APPENDIX A. NOTATIONS

Appendix B

Evaluation measurements

Table B.1: Measurements on SFind for hard constraints sessions with policies
LevelsE and LevelsG

Dataset Ranking

Method

Mean Avg.
Rank

Max Avg.
Rank

Avg.
Constr.

Max
Constr.

Avg. Nav.
Cost

Max Nav.
Cost

LevelsE LevelsG

LevelsE LevelsG
LevelsE LevelsG LevelsE LevelsG

LevelsE LevelsG LevelsE LevelsG

DCars Rrnd 2.56 2.60 4.11 4.87 1.07 1.07 1.40 1.50 22.54 23.78 30.70 34.10
DCars Rrare 2.66 2.59 6.10 7.49 1.04 1.04 1.30 1.40 23.13 21.13 34.50 32.60
DCars Rfreq 2.56 2.60 5.15 4.55 1.04 1.04 1.30 1.20 22.88 23.11 30.90 33.50
DRest Rrnd 5.69 5.64 16.30 11.61 1.26 1.22 2.80 1.90 32.38 33.12 59.70 76.50
DRest Rrare 6.10 5.87 30.87 20.09 1.26 1.28 3.10 3.20 33.73 32.91 84.20 89.20
DRest Rfreq 5.35 5.37 10.42 13.20 1.18 1.18 2.30 1.80 31.08 29.99 72.30 66.30
DHotels Rrnd 10.29 10.07 29.47 40.27 1.33 1.33 2.70 2.40 73.63 76.52 187.60 202.70
DHotels Rrare 10.05 9.90 45.98 42.78 1.31 1.29 3.80 3.10 75.86 72.86 270.10 238.20
DHotels Rfreq 10.27 10.17 34.74 68.17 1.29 1.26 3.50 2.80 73.76 71.18 239.80 181.40
DFish700 Rrnd 20.06 20.56 54.72 68.52 1.20 1.21 3.00 2.40 247.57 246.12 705.60 601.10
DFish700 Rrare 21.00 21.16 115.99 111.34 1.22 1.22 3.00 3.40 251.80 249.90 643.80 702.60
DFish700 Rfreq 19.82 19.69 111.85 84.23 1.16 1.15 2.10 2.10 232.63 235.24 680.00 626.70
DFish10K Rrnd 271.70 272.48 1538.60 1537.70 1.43 1.44 4.00 4.00 1353.03 1369.01 3831.00 3831.00
DFish10K Rrare 295.82 283.07 3182.93 2924.73 1.47 1.45 4.00 4.00 1402.61 1362.46 4293.00 3831.00
DFish10K Rfreq 253.07 256.25 1592.95 1456.57 1.35 1.35 3.20 3.40 1278.39 1279.20 3809.00 3589.90

49

50 APPENDIX B. EVALUATION MEASUREMENTS

Table B.2: Measurements on SFind for soft constraints sessions with policies
LevelsE and Levelssc

Dataset Ranking

Method

Mean Avg.
Rank

Max Avg.
Rank

Avg.
Constr.

Max
Constr.

Avg. Nav.
Cost

Max Nav.
Cost

LevelsE Levelssc

LevelsE
Levelssc LevelsE Levelssc LevelsE Levelssc

LevelsE
Levelssc

LevelsE
Levelssc

DCars Rrnd 2.41 2.42 3.58 3.78 1.04 1.05 1.50 1.40 21.43 23.04 31.30 36.30
DCars Rrare 2.45 2.44 3.65 4.22 1.03 1.03 1.20 1.20 21.57 22.04 34.90 34.50
DCars Rfreq 2.37 2.40 3.85 4.15 1.03 1.04 1.20 1.20 21.22 22.20 29.30 33.20
DRest Rrnd 5.38 5.22 11.83 11.15 1.18 1.17 1.70 1.80 31.08 32.96 66.40 57.30
DRest Rrare 5.39 5.70 13.48 16.00 1.16 1.21 1.70 2.00 29.09 32.96 55.40 62.00
DRest Rfreq 5.12 5.17 12.11 9.65 1.14 1.11 1.70 1.50 30.11 28.64 61.80 55.40
DHotels Rrnd 9.42 9.44 14.76 15.64 1.23 1.23 1.80 1.70 69.00 71.09 200.70 176.10
DHotels Rrare 9.08 9.14 23.25 22.22 1.22 1.23 2.00 2.10 70.97 70.26 181.60 177.10
DHotels Rfreq 9.25 9.40 23.33 21.36 1.20 1.19 1.90 1.90 67.03 67.52 191.30 150.50
DFish700 Rrnd 16.59 16.75 25.07 25.28 1.09 1.08 1.70 1.50 219.81 213.97 465.10 459.00
DFish700 Rrare 16.42 16.87 45.02 47.30 1.09 1.09 1.70 1.60 218.07 220.31 465.40 487.10
DFish700 Rfreq 16.59 16.98 42.78 36.08 1.07 1.06 1.50 1.40 215.13 212.78 471.50 433.40
DFish10K Rrnd 190.07 190.38 336.00 337.98 1.14 1.15 4.00 4.00 1077.15 1106.33 3831.00 3831.00
DFish10K Rrare 181.92 184.99 498.93 486.58 1.15 1.15 4.00 4.00 1102.80 1109.67 3831.00 3831.00
DFish10K Rfreq 195.87 199.57 659.20 664.02 1.11 1.10 1.80 1.90 1067.49 1050.87 2476.50 2542.10

Table B.3: Measurements on DCars for both hard and soft constraints sessions

M MB Ranking

Method

Mean Avg.
Rank

Max Avg.
Rank

Avg.
Constr.

Max
Constr.

Avg. Nav.
Cost

Max Nav.
Cost

hc sc hc sc hc sc hc sc hc sc hc sc

1 - Rrnd 2.14 2.05 3.24 2.57 1.22 1.13 2.40 1.60 24.70 23.58 42.10 29.70
1 1 Rrare 2.19 2.08 4.83 3.95 1.11 1.09 1.80 1.40 23.57 22.42 38.20 39.50
1 1 Rfreq 2.34 2.12 4.45 3.45 1.13 1.11 1.50 1.70 23.74 22.48 34.30 35.00
1 3 Rrare 2.26 2.06 5.34 3.47 1.15 1.11 1.70 1.50 24.82 23.88 39.00 33.90
1 3 Rfreq 2.02 2.08 3.65 3.43 1.15 1.12 1.90 1.70 24.01 23.32 39.80 36.00
1 5 Rrare 2.07 2.06 3.41 4.12 1.18 1.15 1.80 1.70 26.41 23.92 43.90 37.30
1 5 Rfreq 2.18 2.06 4.92 4.50 1.12 1.13 1.40 1.60 25.76 23.91 37.20 35.00
2 - Rrnd 2.37 2.26 3.16 3.02 1.09 1.08 1.50 1.60 23.21 23.49 34.00 34.40
2 1 Rrare 2.29 2.28 5.44 4.43 1.07 1.05 1.50 1.30 22.27 22.85 36.60 30.30
2 1 Rfreq 2.33 2.23 5.00 3.80 1.11 1.06 1.50 1.40 24.05 23.36 33.90 37.40
2 3 Rrare 2.39 2.34 4.29 4.05 1.07 1.04 1.30 1.30 22.65 20.96 31.90 31.60
2 3 Rfreq 2.34 2.32 3.79 3.77 1.07 1.04 1.70 1.50 21.61 21.80 34.60 31.70
2 5 Rrare 2.43 2.22 4.92 4.15 1.09 1.09 1.40 1.40 23.46 23.28 35.50 34.80
2 5 Rfreq 2.34 2.35 4.18 4.01 1.11 1.06 1.60 1.50 22.70 21.47 34.20 30.90
3 - Rrnd 2.39 2.34 3.55 2.90 1.09 1.07 1.30 1.30 23.23 22.27 33.70 32.80
3 1 Rrare 2.35 2.34 5.65 4.70 1.06 1.03 1.30 1.20 23.36 22.46 34.10 29.80
3 1 Rfreq 2.39 2.31 4.40 3.78 1.07 1.06 1.30 1.40 23.55 21.93 33.90 31.80
3 3 Rrare 2.40 2.33 5.17 4.16 1.09 1.03 1.40 1.30 24.01 21.79 32.60 33.10
3 3 Rfreq 2.51 2.31 5.47 4.08 1.10 1.07 1.50 1.40 22.68 22.77 32.60 34.90
3 5 Rrare 2.47 2.42 3.95 4.28 1.06 1.04 1.40 1.20 22.31 20.78 31.30 29.20
3 5 Rfreq 2.58 2.36 7.28 3.62 1.08 1.04 1.50 1.40 22.76 21.39 33.70 31.80

51

Table B.4: Measurements on DRest for both hard and soft constraints sessions

M MB Ranking

Method

Mean Avg.
Rank

Max Avg.
Rank

Avg.
Constr.

Max
Constr.

Avg. Nav.
Cost

Max Nav.
Cost

hc sc hc sc hc sc hc sc hc sc hc sc

1 - Rrnd 3.18 2.86 16.72 4.43 2.13 1.68 12.00 12.00 55.74 42.93 282.00 282.00
1 1 Rrare 3.50 2.94 35.68 6.32 1.92 1.58 8.00 12.00 50.24 42.19 174.00 282.00
1 1 Rfreq 3.33 3.13 9.50 7.83 1.65 1.41 12.00 2.10 42.14 37.16 282.00 72.90
1 3 Rrare 3.36 2.76 29.88 6.23 2.18 1.63 12.00 12.00 56.66 43.01 282.00 282.00
1 3 Rfreq 2.98 2.72 8.07 6.85 2.16 1.68 12.00 12.00 55.99 41.79 282.00 282.00
1 5 Rrare 3.24 2.78 31.67 7.50 2.18 1.66 12.00 12.00 56.70 43.74 282.00 282.00
1 5 Rfreq 3.03 2.94 8.04 8.36 2.12 1.67 12.00 12.00 54.20 43.47 282.00 282.00
2 - Rrnd 3.79 3.39 14.57 5.38 1.59 1.40 5.40 2.10 42.50 38.89 119.60 73.30
2 1 Rrare 3.69 3.47 15.05 7.83 1.57 1.36 5.10 2.10 40.41 37.35 140.10 68.70
2 1 Rfreq 3.80 3.52 8.96 7.31 1.46 1.32 3.60 2.10 38.45 35.40 86.90 74.30
2 3 Rrare 4.23 3.62 19.69 9.78 1.50 1.32 3.60 2.00 36.51 34.85 82.90 59.50
2 3 Rfreq 4.08 3.86 10.43 7.38 1.33 1.25 2.50 1.80 35.65 31.51 83.50 61.10
2 5 Rrare 3.77 3.27 16.07 7.78 1.68 1.40 5.00 2.10 44.21 36.46 106.00 79.10
2 5 Rfreq 3.61 3.57 8.73 9.01 1.63 1.41 5.20 2.10 42.39 38.37 119.20 83.20
3 - Rrnd 4.07 3.71 18.75 5.77 1.48 1.34 6.50 1.80 38.05 36.39 153.50 68.90
3 1 Rrare 4.45 3.63 28.65 7.29 1.53 1.31 5.60 1.90 39.14 34.63 122.00 64.70
3 1 Rfreq 4.06 3.58 9.38 7.52 1.35 1.25 2.50 2.10 36.19 33.38 72.00 70.10
3 3 Rrare 4.10 3.59 22.65 8.02 1.56 1.33 5.00 2.10 39.76 33.46 105.90 69.40
3 3 Rfreq 4.14 3.95 9.91 7.68 1.39 1.25 4.40 2.10 37.68 32.77 131.20 66.00
3 5 Rrare 4.64 4.09 27.22 8.08 1.41 1.26 5.40 1.90 37.84 34.18 119.90 65.60
3 5 Rfreq 4.59 4.35 11.07 8.69 1.30 1.20 3.60 1.70 34.93 30.49 97.10 64.50

Table B.5: Measurements on DHotels for both hard and soft constraints sessions

M MB Ranking

Method

Mean Avg.
Rank

Max Avg.
Rank

Avg.
Constr.

Max
Constr.

Avg. Nav.
Cost

Max Nav.
Cost

hc sc hc sc hc sc hc sc hc sc hc sc

1 - Rrnd 6.00 5.41 31.55 10.28 2.17 1.69 16.00 16.00 123.09 97.30 917.00 917.00
1 1 Rrare 6.40 5.68 52.98 22.52 2.11 1.63 16.00 16.00 118.60 93.17 917.00 917.00
1 1 Rfreq 6.81 6.19 40.48 19.33 1.71 1.45 4.60 5.00 97.45 83.77 297.30 228.00
1 3 Rrare 6.11 5.34 59.38 20.09 2.23 1.71 16.00 16.00 128.27 98.92 917.00 917.00
1 3 Rfreq 5.93 5.61 34.21 22.57 2.22 1.69 16.00 16.00 128.66 95.63 917.00 917.00
1 5 Rrare 6.03 5.24 65.24 21.67 2.23 1.72 16.00 16.00 129.65 99.23 917.00 917.00
1 5 Rfreq 6.08 5.80 44.40 21.63 2.28 1.68 16.00 16.00 133.40 97.09 917.00 917.00
2 - Rrnd 6.86 6.72 26.46 13.36 1.70 1.41 5.00 5.00 94.71 79.12 292.20 228.00
2 1 Rrare 7.18 6.42 54.07 19.02 1.64 1.41 5.00 5.00 92.57 81.27 270.90 228.00
2 1 Rfreq 7.43 6.71 29.58 20.77 1.58 1.36 4.40 2.10 87.86 78.98 307.30 217.70
2 3 Rrare 7.56 7.14 60.67 21.65 1.55 1.34 5.00 5.00 87.66 76.78 271.50 228.00
2 3 Rfreq 8.26 7.46 36.17 20.00 1.46 1.31 3.70 2.20 81.30 73.98 229.00 197.50
2 5 Rrare 6.99 6.43 49.71 23.15 1.74 1.44 6.60 5.00 98.38 83.35 382.20 228.00
2 5 Rfreq 7.15 6.50 28.82 22.01 1.72 1.44 5.00 5.00 97.29 83.02 319.00 228.00
3 - Rrnd 7.69 7.18 35.93 13.39 1.57 1.38 5.50 5.00 90.81 77.50 365.50 228.00
3 1 Rrare 7.86 6.92 57.60 21.43 1.55 1.36 5.80 5.00 89.08 76.75 325.00 228.00
3 1 Rfreq 8.28 7.33 40.52 19.95 1.49 1.31 3.70 2.10 85.75 76.07 225.20 214.30
3 3 Rrare 7.58 6.80 47.24 15.35 1.55 1.36 5.00 5.00 87.51 78.51 310.30 228.00
3 3 Rfreq 8.33 7.38 37.05 19.75 1.49 1.31 3.30 2.10 87.26 75.30 213.20 179.40
3 5 Rrare 8.45 7.65 54.98 16.99 1.44 1.29 4.40 5.00 83.11 72.34 208.40 228.00
3 5 Rfreq 8.94 8.14 33.47 22.85 1.40 1.25 3.80 2.10 81.45 70.77 318.80 159.50

52 APPENDIX B. EVALUATION MEASUREMENTS

Table B.6: Measurements on DFish700 for both hard and soft constraints sessions

M MB Ranking

Method

Mean Avg.
Rank

Max Avg.
Rank

Avg.
Constr.

Max
Constr.

Avg. Nav.
Cost

Max Nav.
Cost

hc sc hc sc hc sc hc sc hc sc hc sc

1 - Rrnd 15.77 11.88 118.76 22.25 1.74 1.37 17.00 17.00 355.90 277.94 1391.00 1391.00
1 1 Rrare 17.23 12.13 162.98 35.73 1.65 1.33 17.00 17.00 333.52 263.68 1391.00 1391.00
1 1 Rfreq 15.67 13.57 69.35 40.90 1.43 1.20 5.00 7.00 291.58 241.17 1334.00 1355.00
1 3 Rrare 16.94 11.34 183.32 31.80 1.76 1.37 17.00 17.00 358.54 274.30 1391.00 1391.00
1 3 Rfreq 15.16 12.45 77.08 38.65 1.75 1.38 17.00 17.00 356.86 275.48 1391.00 1391.00
1 5 Rrare 16.45 11.22 203.34 33.30 1.75 1.38 17.00 17.00 353.52 276.01 1391.00 1391.00
1 5 Rfreq 14.28 12.74 55.75 39.63 1.74 1.37 17.00 17.00 357.94 275.81 1391.00 1391.00
2 - Rrnd 17.05 14.01 91.52 24.44 1.42 1.19 5.00 7.00 291.86 241.34 1107.00 1124.00
2 1 Rrare 18.71 13.44 175.12 41.87 1.48 1.20 7.00 7.00 304.67 237.76 1124.00 1124.00
2 1 Rfreq 17.30 14.46 77.30 38.67 1.31 1.14 5.00 5.00 271.82 227.44 839.00 839.00
2 3 Rrare 18.87 14.36 180.14 42.96 1.36 1.17 5.50 7.00 277.02 238.63 1107.00 1124.00
2 3 Rfreq 17.77 15.47 92.61 39.87 1.25 1.10 5.00 1.70 258.75 222.33 839.00 456.50
2 5 Rrare 17.92 13.38 164.83 39.44 1.42 1.20 5.00 7.00 290.31 241.82 1107.00 1124.00
2 5 Rfreq 17.02 14.24 70.43 35.80 1.44 1.19 5.00 7.00 293.60 237.93 1107.00 1124.00
3 - Rrnd 18.06 14.67 82.83 22.53 1.37 1.15 5.00 5.00 275.62 235.68 1107.00 1107.00
3 1 Rrare 18.58 14.42 171.55 44.50 1.35 1.17 5.00 7.00 284.12 234.95 1107.00 1124.00
3 1 Rfreq 18.05 15.24 77.65 42.13 1.26 1.11 5.00 1.70 255.51 222.36 839.00 442.70
3 3 Rrare 18.67 14.26 160.48 36.25 1.37 1.17 5.00 7.00 283.24 233.55 1107.00 1124.00
3 3 Rfreq 17.84 15.05 88.95 40.97 1.26 1.11 5.00 1.70 255.76 218.84 839.00 454.70
3 5 Rrare 20.14 15.18 196.24 38.99 1.30 1.13 5.00 5.00 268.75 229.08 1107.00 1107.00
3 5 Rfreq 18.93 16.06 90.42 38.56 1.20 1.08 3.00 1.50 240.78 218.27 533.00 454.40

Table B.7: Measurements on DFish10K for both hard and soft constraints sessions

M MB Ranking

Method

Mean Avg.
Rank

Max Avg.
Rank

Avg.
Constr.

Max
Constr.

Avg. Nav.
Cost

Max Nav.
Cost

hc sc hc sc hc sc hc sc hc sc hc sc

1 - Rrnd 423.61 273.56 1778.88 667.60 2.37 1.85 6.00 16.00 2230.75 1764.60 5514.00 5599.00
1 1 Rrare 470.35 267.50 3181.95 798.95 2.23 1.76 7.80 16.00 2115.65 1674.98 5514.00 5599.00
1 1 Rfreq 396.30 319.59 1989.80 1275.53 2.04 1.52 6.80 16.00 1897.59 1429.37 5514.00 5599.00
1 3 Rrare 467.46 253.91 3310.18 801.63 2.39 1.87 7.80 16.00 2261.96 1793.83 5514.00 5599.00
1 3 Rfreq 387.67 287.33 3085.08 998.60 2.40 1.87 6.80 16.00 2226.87 1781.77 5514.00 5599.00
1 5 Rrare 475.68 256.56 3114.75 801.90 2.43 1.87 7.60 16.00 2294.55 1769.26 5514.00 5599.00
1 5 Rfreq 379.76 288.83 2388.55 1229.27 2.40 1.87 6.00 16.00 2274.77 1765.03 5514.00 5599.00
2 - Rrnd 437.07 313.51 1661.10 668.03 1.98 1.51 5.00 5.00 1894.57 1427.92 5221.00 5221.00
2 1 Rrare 468.63 299.03 3048.55 771.13 1.96 1.51 5.00 5.00 1900.23 1437.85 5511.00 5511.00
2 1 Rfreq 409.23 344.90 2111.80 1275.53 1.79 1.36 5.00 5.00 1675.10 1310.94 5221.00 5221.00
2 3 Rrare 467.07 313.83 3106.10 819.20 1.87 1.43 5.00 5.00 1778.52 1388.19 5221.00 5221.00
2 3 Rfreq 425.37 357.66 2617.92 1327.50 1.65 1.33 4.80 5.00 1580.40 1268.55 4943.00 5221.00
2 5 Rrare 454.66 294.61 3113.30 828.88 1.98 1.51 5.00 5.00 1886.31 1434.79 5221.00 5221.00
2 5 Rfreq 399.17 331.62 2150.28 1327.03 2.00 1.51 5.00 5.00 1901.30 1480.39 5221.00 5221.00
3 - Rrnd 429.09 327.73 1780.65 667.68 1.84 1.44 5.60 5.00 1754.21 1397.66 5221.00 5221.00
3 1 Rrare 461.98 310.82 2934.95 896.87 1.85 1.44 5.00 5.00 1771.80 1420.93 5221.00 5221.00
3 1 Rfreq 422.66 353.24 2169.98 1229.70 1.68 1.33 4.40 5.00 1612.07 1268.91 4551.00 5221.00
3 3 Rrare 466.89 315.59 3207.95 839.70 1.87 1.43 5.00 5.00 1769.56 1366.93 5221.00 5221.00
3 3 Rfreq 422.29 353.14 2118.67 1019.13 1.66 1.33 5.00 5.00 1593.81 1242.03 5221.00 5221.00
3 5 Rrare 472.08 331.93 3217.00 837.80 1.74 1.38 4.80 4.00 1666.37 1325.32 5066.20 3834.00
3 5 Rfreq 424.67 365.11 2022.09 1025.93 1.60 1.28 4.20 4.00 1523.79 1232.47 4277.00 3831.00

53

Table B.8: Evaluation results in each dataset for R = 10 and R = 20

Dataset HCsize
Empty

Answers (%)
Append-
Blocks

successses
(%)

Avg. Ap-
pendBlocks
Coverage

(%)

R = 10 R = 20 R = 10 R = 20 R = 10 R = 20

DCars 4 87.8 88.6 71.4 85.7 95.13 99.15
DCars 5 96.3 96 71.2 88.8 94.37 98.5
DCars 6 99 99 62.1 89.8 93.11 98.45
DRest 4 98.5 99 0.1 0.2 15.94 21.92
DRest 5 99.9 99.9 0.1 0.1 19.06 24.9
DRest 6 100 100 0 0 17.93 24.27
DHotels 4 95.9 96.2 11.5 17.6 62.57 69.78
DHotels 5 99 99.4 5.7 8.6 62.32 67.61
DHotels 6 99.9 99.9 2.5 3.8 61.39 66.87
DFish700 4 94.4 92.5 22.5 27.6 71.69 75.92
DFish700 5 97.9 98.4 11.2 18.2 68.25 73.41
DFish700 6 99.5 99.4 6.5 12.3 67.34 72.69
DFish10K 4 94.9 94.7 7.2 12.4 62.04 67.24
DFish10K 5 99.1 98.7 5 6.8 61.63 64.11
DFish10K 6 100 99.9 2.1 2.6 59.77 62.2

