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AvTNTTIKOG Xyetikoi Mnyavicuol yio v

[Teprypapn kot Avakinon g Ontikng ITAnpoopiog

EevopmV ZOoUTOUANG

Adaxtopikn Atotpin

Tunuo Emotmung Yroloyiotdv
[Mavemotuo Kpnng

Iepiinyn

O peydiog 0yKoG Kol TOIKIAOHOPPIO TOV YNOLIKAOV EKOVOV TOL YPTCLLOTOLOVVTOL GE
diapopa mediaw ePapUOYOV €xovv ovadeifel v amaitnon ywo teXViKEG avalTnong
EWOVOV LE PACT TO TEPLEYOUEVO TOVG. ZVYKEKPLUEVA, VITAPYEL L0 QLEAVOUEVT] avayKn
Y TNV avATTUEN AVTOUATOV TEXVIKAOV OVAALGNG KO TEPLYPOUPT|G TOV TEPIEXOUEVOL TMV
EWKOVOV LE GKOTO TNV OMOJOTIKY OVAKANGCT TOVG omd peydhes cvAhoyés, pe Pdon 1o
TEPLEYOUEVO TOVG. X1 dtpPny vt mapovstalovion kot e&gtdlovion punyoavicpol yo
TNV TEPLYPOON KOl OVAKANGT ONMTIKNG TANpoeopiag pe Paon wdmreg g avtiinyng,
gxovrag o¢ kivmtpo 1 Pektimon ¢ avriotoiyiong HETOED TOV  OTOTEAEGUATOV
avlkinong ewkovov pe Pacn 1o mePEYOUEVO TOVG KOl TOV TPOGOOKIDV TMV TEAIK®OV
YPNOTOV.



Ot mpotevdpevol Unyovicpol o@opodv TNV TEPLYPAPN] TOV TPOTOYEVAV ONTIKOV
YVOPIOUATOV KOODC KOl TOV YOPIK®OV TOLG OlTaéemv Kot divouv £ueoacmn oTnv
AVOTOPACTACT OVTHG TNG TANPOPOPiaG oe GuVAPTNON He TV KAMpoaka mopatipnong. H
OVOTOPACTACT] OUTH] YPNOUOTOIEITOL GTN GLVEXEW Yo TNV &E0y®YN] TMEPLOYDY TNG
EIKOVAG 01 0TTO1EC TOPOVGLALOVV YOPAKTNPIOTIKEG YWPIKES OAUTAEELS YVOPIoUATOV KOOMG
KOl YloL TNV avayvOpLon TopayOUEVEOY amd TV KMo NG €KOVag Kuplapymv SOHK®V
otoyeiov. Toco vy Ta yvopicpato 060 kKol Yoo To GTOVXEl avLTE €ivol YVOGTH 1
e€éyovoa TEPLYPAPIKY] TOVG CNUOGIO (OC CLVICTOOMOV TOL ONTIKOV TePLEyonévov. H
opYaveon TV Kuplopy®v SOMK®OV CTOWEI®V C€ aVIIANTTIKG GUVOAO omodidel ol
emmpdcletn  ovviot®oa TOov  OomTIKOL mepteyouévov. Ta  yvopiocpoata  TtETOlWV
AVTUNATIKOV GUVOA®MV  EVOTOLOVVTOL GTY] GUVEXELD LE TANPOPOPIES TEPL TOV YOPIKAOV
SwTdéemV TOV TPOTOYEVOV ONTIKOV YVOPICUATOV KOl YPNOCLUOTO00VTAL OV
TEPLYPOPT] KOl AVAKANOT| TG OTTIKNG TANPOPOPLOG.

Apyikd mapovotdletor po pEB0d0G avamapdoTaong TPOTOYEVAV OTTIKMOV YVOPIoUATOV
Baciopévn ot chvoyn KAMUAK®Y TOV OTTIKOV TEPLEYOUEVOV, 1) OTtolnl EIvVOL EUTVELGEVN
amd T Quolodoyia g Opaong. H mpotewvdpevn avamopdotacn ypNnoLonolel v
KOVOVIKOTOINGT, OGOV 0popd TNV KAIHOKA, TG mOKPIoNG TOV GUVOPTNGE®V AVIYVELONG
YVOPICUAT®OV Y10, T GUVOYN TOV TANPOPOPLOV TEPT OMTIKAOV YVOPIGUATOV ond Eva
e0pog KMpakwv o€ o eikéva. H avorapdotacn g chvoyns KMUAK®V SIEVKOADVEL TNV
el00ymYN (o LeBddov Yoo TNV TEPLYPOAPT] TPOTOYEVAV OTTIKMV YVOPIGUATOV GTO £DPOG
KMUAk®v 010 omoio Aapfdavovv yopa, v e£oymynq Gveo Tov evOog onuaivovtog eHpovg
KMUAKOV oo pio eikovo Kabmg Kot TNV TaSVOUN o TOV OTTIKOV YVOPIGUATOV LE Bdon
TO €0pog KAWAK®OV oT0 omoio Aapfdavovv yopa. H emmpdobetn mAnpopopio mov
TOPAYETOL EMOEIKVOETOL MG XPNOUN OTNV TEPLYPOPN TOV TEPLEYOUEVOL TOV EKOVOV,
omw¢ emiong kol oe éva mAnbog depyaciov emeepyosiog ewovov. EmmpdcOeta, 1
aVaTOPACTACT GUVOYNG KMUAK®OV Umopel vor vmoAoylsOel mapdAinia kot emdeikviet
VTOAOYLIOTIKEG KOl TEPLYPOPIKES WOLOTNTEG Ol OTTOIEG EMEKTEIVOLY TOV TPOTLTO OPICUO TNG
OMTIKNG TANpogopiag pe Paon v KAipoka mapatipnons. H pekét tov apotoyevadv
OTTIKAOV YVOPIOUATOV OAOKANPAOVETAL LE TNV €EETOGT TOL POLOL TOVG GTNV OVAKANGT|
EWOVOV e Pdomn To TEPLEXOLEVO .

211 ovvéyela, 1 OlEPEBVIOT YLl TNV GXETIKY UE TNV avTIANYN TEPLYpaPr Kot avakinon
TMEPLEYOUEVOD EIKOVOV EGTIALETOL GTN SLVATOTNTA EEAYWYNG Kl GVYKPLONG, OGOV 0pOpdL
OTNV OMTIKY TOLG OMOLOTNTO, TMEPLOYDV EIKOVOV Ol OMOIEG EMOEKVOOLV OVOAAOIMTN
dataln 610 YOPo OGOV APOPA HE TPMTOYEVY] OMTIKA YVOPIGHOTA. XPNCLUOTOIOVTOG
TOMIKOVG ePLypaPeis pe petafintd yopikd gvpog derypotoinyiog, &dyetol o Tolv-
KMUOTIKY]  OVOTOPACTACT) TOV  YOPWKOV OTIEEDY TOV  TPOTOYEVAV — OTTIK®OV
yvopwopdtov. H enéktaon g avomapdotacons e cOVoyng KMUAK®OV Yo TOTKOVS
TEPLYPOPELS KaoTA EPIKTN TNV, OGOV OPOPA GTNV KAILOKO, KAVOVIKOTOINGN TOvg. AvTi
N Kavovikomoinon umopel otn cvvéyxewn va ypnoiponombel vy v avorioimtn, 6cov
aeopd TV KAIHOKO, TEPLYPOUPT] UETOPANTOV YOPIKAOV OUTAEEDV TOV TPMOTOYEVAV
OMTIK®OV yvopwopdtov. H opadonoinon tov, kKavovikomompévev, 6Gov apopd otnv
KMUOKO, TOTIK®V TEPLYPOUPEMY SIELKOAVVEL TNV €E0y®YN TEPLOYDV OMO EIKOVEG TOL
EMAEKVOOVV OVOAAOI®TN SIATOEN TPOTOYEVMV OTTIKAOV YVOPIoUAT®V 6To Y®dpo. Emiong,
N ¥PNOM NG OVOTAPAGTACNG TNG CLUVOYNG KAMUAK®OV Yo TNV AVATOPACTOCT] YOPIKOV



STAEEDV TOV TPOTOYEVAOV ONTIKOV YVOPICUATOV KOTOAYEL GE UEIWUEVES OTOLTHOEL
660V agopd otn yopntikdétnTa ™S uvnung. Emmpocbeta, opiopéva yvopiopato tov
TOTIK®V TEPLYPOPEDV TPOTEIVOVTAL Yot TNV EKAETTUVGON NG TEPLYPUPNS TOV YDPIKAOV
SwTdéemv TOV TPOTOYEVAOV ORNTIKOV YVOPIOUAT®OV KOl  YPNOLOTOI0VVTOL MG
KOTNYOPNUOTA OTN OWTVTMOY  ONTIKOV enepoTocwv. Tétoov &idovg yvopiopato
avTiototyiovtol PE OTTIKEG 1O10TNTEG TOV EIKOVOV TPOKEUEVOL VO TPOSPEPHOVV OTTIKES
EMEPMTNOELS Ol Omoieg elval KOTOVONTEG Omd TOVG TeAMKOVUS ypnotes. TeAkd, 1
amoktnOeica  OavOmTaPACTAOT TOV YOPIKOV OlTAEEOV TOV TPOTOYEVOV ONTIKOV
YVOPICUAT®OV YPNOLOTOIEITOL Ylo. TNV avadienon Kol OVAKANGN ToPOUOOV OTTIKA
EWKOVOV.

[Tpoxeévov va epumiovtiotel mepautépm 1 mopoybeico TEPYpPOPr] TOL TEPIEXOUEVOL
EIOVOV e yvopiopato mov oyetilovtal pe v avTiAnyn, e£etdletol 1 GVVIGTOCH TOV
amoppPEEL amd TN SOIKAGIO TNG AVIIANTTIKNG OpYAvmong Tov mepieyouévov. o 1o
okomd avtd mapovstalovior emiong 600 mpPoceYYicel Yo TV EAYmYN KOl TEPLYPAON
00 KAACEWV AVTIANTTIKOV GLVOA®V. AVTEG GUVIGTAVTIOL GTNV KAAGT TOV AVTIANTTIKOV
OLUVOA®V OTO YPOUUES TPOOTTIKNG OMEIKOVIONG KOl OTNV KAGGN TOV TEPTYPOUUATOV.
YHeTIKE pe TNV TPOTN KAAGCT, OVTIANTTIKA GUVOAQ, TOL GuvTifeviol amd GLyKAivovta
evBVvYpappa Tufpata eEdyovion amd ikdves, faoel vrobéoemv mepi g cHyKAoNG TOVG
pog €va onpeio dapuyne. Térolov eidovg vmobicelc dwutvmmvovtal, apykd, pe Poon
™MV eoTEWV avtiBeon kot to péyebog TV eVBVYPUUU®Y TUNUATOV HI0G EIKOVOS KOl OTN
ovvéyewn e€etdlovtal MG TPOS TNV EYKLPOTNTA TOVG, YPNOILOTOLDOVTOS VITOGTNPIKTIKES 1|
avtikpovopeveg amodeilels and v ewova. Ta evBOypappe TuqHoTe Yoo To. omoio ot
vroféoelg emoinbedovion opadomolovvIol 6To 1010 GUVOAD pE YVOPIoHOTe TO. ool
a@opovV TV OY™n T0L GLVOAOL. O 810G AAYOPIBLOG YEVIKEDETAL Y10 VONTA LOVYPOLLLOL
TUNUOTO, OVTA ONAadT To omoiot cuvvtibevtal amd TV ovyypoukny Vmapén TomK®V
YVOPIOUATOV NG €KOVaS, Ommg yovieg kot otiypés. Ta avivevBévia aviiAnmrikd
OUVOAO, KOl TOL YVOPIGUATO TOVLG EMOEIKVOOVIOL G YPNOLUO OTNV OVAKANGT Kot
tagwvounon ewovov pe Pdon 1o mEPEYOUEVO TOVLC. ZYeTKE pe TN O0g0TEPN KAAOM
AVTIAMNTITIKOV GLVOAW®V, TOPOVGLALETOL 0L TPOGEYYIOT] Y10, TV TEPLYPAPT] KO AVAKAN G
TEPLYPAUUATOV, N omoia ypnopomotel pa péBodo Paciopévn oty kopmvidmra. H
pnéEB0O0G VTN aVIXVEDEL OVTIANTTIKMOG GYETIKA KOl VTOAOYIOTIKOG oTofepd omueio
avaPOpPAG TAVD OTO TEPLYPOLUOTE. ZVYKEKPEVA, TO OKPOTATA TNG KOUTLAOTNTOG
aKOAOVOOVLVTOL GTO YOPO KMUAK®OV TOV TEPYPAULATOS KOL 1] KOVOVIKOTOUUEVT], OGOV
aQopd otV KAMpoKka, T ™S KOUTLAGTNTAG TOVG YPNCLULOTO0UVTAL GTN ST
evog HETPOL Yoo TNV dmicTon ™G onuaciog Tovg. XPNCULOTOUDVTING TO T
onpoivovio onueElo TOL TEPTYPAUNOTOS, EMTVYXAVETAL 1] AmOcHVOEST GE TUNUOTA TMOV
TEPLYPOUUATOV, 1| omoia ypnowonoteital otnv gvbuypapon tovg. H dvvatdtmra yo
eLOVYPAUIOT  TTEPIYPAUUATOV  YPNOCIUOTTOLEITOL  TEMKE otV €0pecn  mapOLOLOV
TEPLYPOUUATOV, PACGEL EVOC LETPOV OUOLOTNTOS TO OTOI0 GLAAEYEL TANPOPOpPiES TEPT T™NG
OYETIKNG UETATOMIONG EVOVYPAUIGUEVEOV (AVTIOTOLY®V) TUNUATOV TOV TEPTYPOUUUATOV.

H oloxkAnpopévn ypnon minpogopiog mepi TV YOPIKOV S1EVOETHCE®V TOV TPOTOYEVAOV
OTMTIKAOV YVOPIGUATOV KOl TOV OVIIANTTIKOV GUVOA®V OTNV  OVAKANGYT OTTIKNG
nAnpoeopiag pe Pdon 1o mepieyduevo, Kabiotator SvVOT HE TNV EICAYMOYY L0G
SlEmMPAvVELNS ¥pNoNS vyning capnveloc. H diemedvelo avt S1€uK0ADVEL TNV ETIAOYN



1060 GUYKEKPUEVAOV GUVICTOCMV TOV OTTIKOV TEPIEXOUEVOL OGO KOl TOV YVOPIGUAT®V
TOVG Ko KaBoTd duvatn Tn XPNoN TOVG MG KATNYOPNUAT®V GE OMTIKEG EMEPWTNOELS.
Emumpdobeta, n kat’smavdAnyrn moapdbeon kpumpiov tasvopmong mpoteivetol g
HEBOOOG Yo TNV EVOTOINGT TANPOPOPLDY CYETIKMOV LLE TO TEPLEYOUEVO HLOG EIKOVAG OAANL
Kot yuoL TNV StedpacTiKy Ta&vOUnoT GUALOYMV Ol EIKOVEG,.
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Abstract

The large volume and variety of digital images, currently acquired and used in different
application domains, has given rise to the requirement for content-based image
management and retrieval techniques. In particular, there is an increasing need for the
development of automated image content analysis and description techniques in order to
retrieve images efficiently from large collections, based on their visual content. In this
dissertation, mechanisms for the perceptually relevant description and retrieval of visual
information are presented and discussed, motivated by the need to provide a better match
between content-based image retrieval results and end user expectations.

The proposed mechanisms concern the description of primitive visual features and spatial
arrangements of such features, and emphasize the representation of this information with
respect to scale of observation. This scale dependent representation is subsequently used
to extract image regions that exhibit a characteristic spatial arrangement of primitive
features and identify gradient-derived dominant structural elements, which are both



known to be significant descriptive components of visual content. The organization of
gradient-derived dominant structural elements into perceptual groups yields an additional
component of visual content. Attributes of such perceptual groups are then integrated
with information about the spatial arrangement of primitive visual features and used in
the description and content-based retrieval of images.

Initially, the role of primitive visual features in the formation of image content is
considered and a physiology-inspired method is presented for their representation, based
on the scale-summarization of visual content. The proposed representation utilizes the
scale-normalization of feature detection response functions to summarize visual feature
information from a range of scales into a single image. This scale-summarized
representation facilitates the introduction of a method for the description of primitive
features at the range of image scales at which they occur, the extraction of more than one
meaningful ranges of scales from an image, and the classification of primitive visual
features with respect to the range of scales at which they occur. The additional
information thus generated is demonstrated to be useful in the description of image
content, as well as in a number of image processing tasks. Furthermore, the scale-
summarized representation can be computed in parallel and exhibits computational and
descriptive properties that extend the standard representation of visual information with
respect to scale. The study of primitive visual features is concluded with a discussion
about their role in content-based image retrieval.

Subsequently, the investigation for the perceptually relevant description and retrieval of
image content is focused on the ability to extract and compare, with respect to their visual
similarity, image regions that exhibit a constant spatial arrangement of primitive visual
features. Using local descriptors with varying image sampling aperture, a multiscale
representation of the spatial arrangements of primitive features is derived. The extension
of the scale-summarized representation for local descriptors makes their scale-
normalization possible. This scale-normalization can then be utilized for the constant
description of scale-varying spatial arrangements of primitive features. The clustering of
scale-normalized local descriptors facilitates the extraction of image regions that exhibit a
constant spatial arrangement of primitive features, even when these features vary at scale.
In addition, the scale-summarized representation of spatial arrangements of primitive
features results in reduced memory capacity requirements. Furthermore, attributes of
local descriptors are proposed for the refinement of the description of spatial
arrangements of primitive features and are used as predicates in the formulation of visual
queries. Such attributes are mapped onto visual properties of images to provide visual
queries which are comprehensible by end users. Finally, the acquired representation of
spatial arrangements of primitive features is utilized for the browsing and retrieval of
visually similar images.

In order to further enrich the derived description of image content with perceptually
relevant attributes, the component of visual content resulting from the process of
perceptual organization is considered and two approaches are presented for the extraction
and description of two classes of perceptual groups. These are the class of linearly
perspective perceptual groups and the class of silhouette boundaries. Regarding the first



class, perceptual groups that consist of converging line segments are extracted from
images, based on hypotheses about their convergence to a vanishing point. Such
hypotheses are initially formulated, based on the contrast and the size of line segments in
an image and subsequently tested, as to their validity, utilizing supporting or
contradicting image evidence. Line segments for which the hypothesis is verified are
assigned to the same group along with appearance-related attributes of that group. The
same algorithm is generalized for subjective line segments, that is line segments that are
composed of collinear local image features, such as corners or dots. The detected
perceptual groups as well as their attributes are demonstrated to be of use in the content-
based retrieval and classification of images. With respect to the second class of
perceptual groups, an approach is presented for the description and retrieval of silhouette
boundaries, which utilizes a curvature-based method to detect perceptually significant
and computationally stable anchor points. In particular, curvature extrema are tracked
along the scale-space of the contour and their scale-normalized curvature across scale is
utilized to formulate a salience metric. Using the most salient contour points, a piecewise
decomposition of contours is achieved and further utilized in their alignment. The ability
to align contours is finally utilized in matching similar contours, based on a similarity
metric which captures information about the relative displacement of aligned
(corresponding) contour segments (pieces).

The integrated use of information about spatial arrangements of primitive visual features
and perceptual groups in content-based visual information retrieval is made possible by
the introduction of a high specificity user interface, which facilitates the selection of
individual visual content components and their attributes and their use as predicates in
visual queries. In addition, the iterative introduction of image classification criteria is
proposed as a method for integrating information about image content and interactively
classifying image collections.
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1 Introduction

The large volume and variety of digital images currently acquired and used in
different application domains has given rise to the requirement for content-
based image management and retrieval techniques. In particular, there is
an increasing need for the development of automated image content analysis
and description techniques in order to retrieve images efficiently from large
collections, based on their visual content. Large collections of images can be
found in many application domains such as journalism, advertising, entertain-
ment, weather forecasting, map production, remote sensing, computer-aided
design, architecture, vision-based robot navigation, medicine, etc. Thus, an
important functionality of next generation image database and multimedia
information systems will undoubtedly be the search and retrieval of images
based on visual content.

In the first section of this chapter, representative application domains in
which visual information is important are considered and characteristic com-
ponents of the visual information retrieval task, such as image type, query
goal, and context are identified and discussed. In the second section, ex-
isting image search engines are described as representative of the current
state-of-the-art. The motivation for taking into account the physiology and
psychology of biological vision in the task of content-based visual informa-
tion browsing and retrieval is elaborated in the third section of this chapter.
However, the task of visual information browsing and retrieval, based solely
on pictorial information, has certain characteristics that impose limitations
on the straightforward application of known perceptual mechanisms. These
characteristics and corresponding limitations are presented and discussed in
the fourth section of this chapter. In the fifth section, the visual information
retrieval task is defined and put in the context of this dissertation, along with
other terminology that is subsequently used. The last section of this chapter
highlights the research contributions of this work.

1.1 Application domains

The work presented in this dissertation has been motivated by the existence
of many application domains in which content-based access to visual infor-
mation is often desirable and provides added value. In this section, some
representative application domains that make use of visual information are
presented and briefly discussed in order to demonstrate that the comprehen-



sion and management of visual information highly depends on observation
task, image context, and the type of images used. More specifically, it is
argued that some prior knowledge is required for the understanding of im-
age content. This knowledge cannot be extracted from the image’s visual
features and it is usually referred to as image or application context. In
the discussion that follows, terms such as “visual information” and “visual
content description” are loosely used without being formally defined. The
meaning of these terms is further clarified in the fifth section of this chapter.

Remote sensing has been an application domain in which digital images
have been acquired and analyzed to achieve a variety of different goals. For
example, remotely sensed images are used to construct maps in a variety of
fields such as geography, meteorology, route planning and others. In most
cases, the images used are acquired in a different way and represent different
information, while in the same image different features may be of interest
depending on the observation task. Thus, in meteorology, the occlusion of
the ground by clouds may be of interest and, by analyzing a sequence of such
images, one may obtain information on wind speed, while in geography the
shape and location of ground features are of greater interest. The analysis
and understanding of these images requires knowledge of the image type and
the visual appearance of earth, sea, and sky elements. Thus, the diversity
of image observation tasks, corresponding to a variety of features of inter-
est, results in different contextual knowledge requirements and, most often,
different image content analysis and description methods.

Surveillance is another application domain in which visual information
is used not only to extract properties of the environment, but also to study
patterns of behavior. The required functionalities of such systems include
visual feature selection, extraction of interesting information, and recognition
of prototypes or learned patterns. In each case, context-related knowledge is
required for the identification of interesting patterns and behaviors.

In art and design, features such as color and form are intrinsically related
to the visual impression generated and semantics perceived when looking
at some composition. Depending on the image type and application, the
required information may be contained in different visual features. For ex-
ample, certain image features may contain the information needed to classify
pieces of art with respect to the technique used in their composition. Both
detailed and abstract image features may characterize the piece of art with
respect to style, time period of creation, and artist. The visual information
used in such applications is most often fused with other types of non-visual
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context knowledge.

Medical imaging is an application domain in which understanding the
method of image acquisition is crucial for content comprehension. As in the
previous case of art, depending on the image type, different visual features
are encountered or take on a particular significance, and different context
knowledge is required in order to interpret the visual stimuli. Again, a dif-
ferent type of analysis is needed not only with respect to the image type, but
also with respect to other types of non-visual information.

By considering different application domains, in which visual information
is important, one quickly comes to the realization that the types of images
resulting from the use of different sensors and acquisition methods may vary
considerably. Furthermore, it is clear that the type of visual information
targeted for extraction by workers in each application domain depends on
the specific application requirements and the observation task. The com-
prehension of such visual information and the corresponding visual content,
associated with each image or image type, are further determined by prior
contextual knowledge. In each case, prior knowledge of the task and its con-
text is required in order to trigger appropriate mechanisms (agents) of image
content, analysis and description.

In summary, the comprehension of visual content is dependent on im-
age type, context, and image observation task. In addition, it is often the
case that specific image features ought to be considered together with non-
visual information or non-visual knowledge. Furthermore, visual cues that
may be important in one application domain are not necessarily important
in another. However, certain visual cues exist that are common to different
application domains. For example, the description of color and form in an
image are significant visual cues that find application in various domains such
as art and design, remote sensing, and others. For these reasons, an approach
is proposed in this dissertation, which is based on a collection of perceptually
relevant visual content description and matching competences. Such compe-
tences can then be selectively activated and integrated with domain specific
knowledge in order to satisfy specific application requirements.

1.2 Image search engines

In recent years, the rapid growth of the World Wide Web (WWW) has
created a need for facilitating on-line access to visual information and user
interaction with image repositories. Thus, a number of image databases are



available on the WWW and provide the capability of browsing image col-
lections, based on pictorial content. Currently, most image search engines
support the functionality of query by example, in order to allow the search
for images that are similar to a given query image. The search is based
solely on some similarity function of image features such as color, texture, or
shape. The query response consists of images that provide a good match to
the query image, based on an appropriate similarity metric. In most cases,
the returned images exhibit a weak relationship or similarity to the query
image. In other words, while users often aim at retrieving images containing
particular objects or semantics, state-of-the-art generic image retrieval sys-
tems analyze image content based solely on low-level features. Some of the
better known image search engines, currently available on the WWW/ are
considered below.

The CANDID system [50] was originally motivated by modern methods
for searching databases containing free-text documents. The image compar-
ison method uses signatures to represent the visual content of an image. In
this system, a signature is typically represented by a histogram of the number
of times that each “sub-string” of length N occurs in the document, where
N is a predetermined value. Signatures represent features such as local tex-
tures, shapes, and colors. The general idea is that several features (local
color, texture, and / or shape) are first computed at every pixel in the im-
age, and then a probability density function that describes the distribution of
these features, is estimated. This probability density function is the content
signature for the given image. Given a query image, all database images are
ranked with respect to their similarity to the query image.

Photobook [80] employs primitive content (e.g. color and texture) and
model based retrieval (e.g. facial features). Retrieval is based on and may be
assisted by interactive image segmentation and annotation with the help of
a user interface agent. In addition, Photobook contains a set of interactive
tools for browsing and searching images and image sequences. The novelty
in this approach is that a direct search on image content is possible by use
of “semantics-preserving” image compression. Such semantics are, however,
manually defined. The system uses three descriptors, which support search-
ing based on appearance, 2-D shape, and textual properties. The resulting
descriptions may be combined to provide browsing and searching capabili-
ties. Users can browse over large image databases quickly and efficiently by
using both text annotation associated with the images and the descriptions
of image content.



Pic2seek [32] is an image retrieval system, which is implemented using
photometric color and geometric invariant indices. The basic idea is to ex-
tract invariant features (independent of the imaging conditions) from each
of the images in the database, which are subsequently matched with the in-
variant feature set derived from the query image. In this system, queries are
primarily based on color, however some querying strategies based on edges,
corners, and edge shapes are also supported.

The Query By Image Content (QBIC) System [73], supports browsing of
an image collection based on different features of image content, such as color,
texture, shape, location and their spatial layout. The adopted approach for
assessing similarity is based on the computation of feature vectors and their
comparison. The queries also include standard SQL and text / keyword
predicates. In addition, QBIC has a rich user interface, which provides an
end user with the ability to query for specific colored objects by selecting that
color from a palette, to query for a particular texture from a set of selected
texture patterns, to query for objects with a specific shape by drawing shapes
on a “blackboard” etc. The graphical user interface provides the ability to
the user to construct the queries, to view results, and to modify and resubmit
queries.

In the Virage [39] image retrieval engine, the “internal properties” (prim-
itives) of the image are computed from a predefined feature set, which con-
tains the features of color, texture, and shape. The system also computes
distance metrics between objects in feature space from their feature set. The
similarity of images may be recomputed based on property weights assigned
by the user, for properties supported by the system. The functions of image
analysis, comparison and management are handled by the core module of the
system.

The Blobworld [20] image retrieval system uses a unique image repre-
sentation, based on image segmentation. To segment an image, the joint
distribution of the color, texture, and location of each pixel in the image is
modeled. After the image is segmented into regions, a description of each
region’s color, texture, and spatial characteristics is produced. While Blob-
world is not oriented at object recognition, it considers the nature of images
as combinations of objects. By finding image regions, which roughly corre-
spond to objects, querying at object level is made possible.

More recently, an increased research effort in the areas of image databases
and computer vision has resulted in the development of novel tools that sup-
port the content-based retrieval of images with additional functionalities,
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such as learning, interaction, query space display, refinement of query speci-
fication and others. A recent state-of-the-art review of content-based image
retrieval, including systems aspects such as database indexing, system archi-
tecture, and performance evaluation can be found in [102].

It should be pointed out that this dissertation does not attempt to intro-
duce just another image retrieval engine. The emphasis is on developing per-
ceptually relevant content-based image retrieval mechanisms, which can be
used in image retrieval systems. Such mechanisms are expected to contribute
toward an improved performance of similarity matching and content-based
retrieval in image database systems, as well as over the WWW, by yielding
query responses that are more compatible with human perception and better
correspond to user expectations.

1.3 Interdisciplinary approach

Visual information retrieval concerns not only the objective structure of vi-
sual information, but also the subjective visual impression that is generated
when observing an image. Image search engines dealing with image collec-
tions of great variety, such as those found on the WWW, often return images
which are related to the query in a way that is not easily comprehended by
humans. Besides the lack of knowledge concerning the intention of the query,
such cases of failure partially stem from the fact that what constitutes image
content is generally not well defined. Since vision is a natural process en-
countered in biological organisms, it is argued that advances in the fields of
optics, ophthalmology, neurosciences, psychophysics and cognitive sciences
could contribute to the field of content-based visual information retrieval. In
particular, understanding visual perception mechanisms is expected to con-
tribute towards the formulation of visual content description and matching
methods that are more compatible with the way humans comprehend im-
ages than existing ones. Possible contributions of Computer Science in such
an interdisciplinary approach are mainly related to the tasks of modeling
and simulating the processes of visual perception, efficient management of
visual information, extraction of meaningful information from sensory data,
the testing of hypotheses using computer simulation, and performing exper-
iments under controlled conditions.

The most fundamental argument for adopting an interdisciplinary ap-
proach to visual information management is based on the fact that, beyond
image acquisition (studied by optics, ophthalmology, and neurosciences), the



analysis and comprehension of visual data takes place in the brain. Thus,
visual perception is intrinsically determined by the way that the sensory
stimulus is represented, transformed, and analyzed in the brain. This pro-
cess employs mechanisms that, if understood, would afford insight to how
visual impression is generated. Thus, a description of image content consists
not only of the raw color or intensity data, but also of information derived
from it.

Another reason that makes a biologically relevant approach of managing
visual information interesting is that machine vision applications are inspired
by tasks typically carried out by humans (and in some cases by other biologi-
cal organisms, e.g. homing behavior), giving rise to the class of “biologically-
inspired algorithms”. The design and implementation of such algorithms
however, requires knowledge of elements of biological vision. Due also to
the fact that, in most cases, biological visual systems exhibit superior perfor-
mance compared to artificial ones, mechanisms of visual information analysis
encountered in nature cannot be overlooked. Furthermore, evidence for the
existence of specialized brain modules, which perform specific tasks of visual
information processing, supports the claim that understanding their struc-
ture and function can provide additional insight into possible functionalities
of perceptual processes. At a higher perceptual level, not yet fully explored
by the neurosciences, the contribution of Psychology is fundamental to the
provision of a behavioral description of visual perception.

The concept that some visual tasks could be performed in a modular
fashion influences the adopted approach to the problem of visual information
retrieval. The ability to break down complex behaviors into simple, but per-
ceptually relevant, mechanisms will facilitate the evaluation of such behaviors
with respect to their usefulness and perceptual compatibility. A long term
goal of this work is to integrate perceptually relevant visual content descrip-
tion and matching mechanisms on a single experimental platform that may
be used to evaluate their comparative effectiveness and to conduct relevant
psychophysical experiments. Such experiments could exploit the ability of a
computer-based system to control the conditions of an experiment, in order
to acquire information about the percepts derived from stimuli presented to
observers. Besides the evaluation of visual content description and matching
mechanisms, an additional goal of such experiments could be the testing of
hypotheses concerning the function of perceptual processes that are related
to vision. The visual content description and matching processes described
in the following chapters have been hosted in a single system that facilitates



their selective activation. In addition, the system provides an environment
and software tools for the storage and browsing of image collections, the for-
mulation of visual queries using user-selected predicates, and the organized
presentation of content-based retrieval results. This environment also facili-
tates the addition of new mechanisms that would extend such functionalities
and support further research as described above.

In conclusion, it is apparent that there exists a need to define a new re-
search direction in content-based image retrieval, which emphasizes visual
content, description and matching mechanisms that are compatible with hu-
man perception and may result in a qualitative enhancement of image re-
trieval methods. This new research direction ought to take into account the
following observations:

e Depending on the application domain and retrieval task, as well as the
type of images used, different visual properties of an image may be
considered relevant.

e Depending on the application context and the requirements of an indi-
vidual observer, the same visual stimuli may have different interpreta-
tions.

e Depending on the application, the criteria used in image browsing and
the required accuracy of visual queries may vary. In the literature [102],
the cases of image-targeted (the query for a specific image) and category
search (the query for a class of images), as well as associative image
browsing (interactive, multiple stage querying by examples, which are
selected from previous query stages), indicate the diversity of required
retrieval strategies.

Given the above observations, it is clear that a generic, with respect to ap-
plication domain, approach to the content-based management of visual in-
formation requires the capability of adapting to the diverse description and
matching requirements of each domain. This capability can be provided by
visual content description mechanisms, specialized with respect to applica-
tion requirements and context-related knowledge. The approach presented
in this dissertation emphasizes the use of perceptually relevant image de-
scriptors, obtained from an analysis of different visual cues encountered in
images.
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1.4 Limitations

In this section, certain limitations on the straightforward application of
known visual perception mechanisms to the task of “image browsing and
retrieval by content” are presented and discussed. This discussion is moti-
vated by the need to show that, in applying knowledge about the perception
of the environment, one is often limited by the nature of two-dimensional im-
ages and by the lack of information about the functionality of top-down per-
ceptual mechanisms for image understanding. Such limitations confine the
scope of content-based image retrieval to the visual information extracted
from two-dimensional static images. Some of the most compelling factors
imposing limitations on the automated and perceptually relevant description
of images are:

e Image segmentation. Segmenting an image into regions that are mean-
ingful with respect to a particular application is critical in image under-
standing. However, segmenting an image into regions that correspond
to distinct physical objects, using solely two-dimensional visual infor-
mation, is difficult or even impossible to achieve. This is due primarily
to the projectively metameric nature of image content and to the lack
of three-dimensional models for every possible identifiable physical ob-
ject. In addition, absence of motion, stereo, and information about the
illumination of a scene (also mentioned below) restrict the ability to
detect solid surfaces in images.

e Motion and binocular vision are sources of rich visual information. Vi-
sual cues provided by motion and stereo facilitate the extraction of
object boundaries, as well as the estimation of scene structure. On a
semantic level, certain types of motion may constitute intense atten-
tional attractors, dominating an observer’s attention. Similarly, stere-
optic images can be directly used to estimate scene structure, thus
contributing to the identification of distinct physical objects and scene
understanding. In static images, such visual cues are absent.

o [llumination. Knowledge of scene illumination plays an important role
in the correct estimation of an object’s reflectance spectrum. Human
visual perception approximately normalizes perceived spectra with re-
spect to global scene illumination, a phenomenon known as “color con-
stancy”. However, in the general case of image acquisition, the illumi-
nation of a scene is not homogeneous and it is typically unknown.
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e Object recognition. The ability to identify specific objects in images
would support the retrieval of semantically similar images. Images
containing the same or “similar” objects, or even a contextually rele-
vant object, may be considered as semantically related. In addition to
models of identifiable objects, thesauri associating contextually relevant
objects would be required for such a task. Even in this hypothetical
case, object semantics may vary depending on the image observation
task and context, as well as on the expectation of finding a particular
object in a certain visual scene. For example, a tree trunk, which has
been cut and is lying on the ground, may be characterized as a “place
to sit” when taking a walk in the forest, while it could not be matched
with any chair, stool or sofa model, used for the same purpose [34].

e (Context. As already discussed, the context of a query by image content
and the type of images used have a strong effect on how the content
of these images is perceived, described, and matched, with respect to
visual similarity. Contextual information and knowledge of the world
are essential in deriving an appropriate image representation and may
influence the role and significance of specific objects in such interpre-
tations. Furthermore, the type of images in a content-based search
and retrieval task may play an important role in determining which
preprocessing methods are to be used for feature extraction.

e Time. Biological visual systems employ several physiological adap-
tation behaviors over time, such as intensity or chromatic adaptation
[69], as well as motion adaptation [35]. Perceptual adaptation phenom-
ena are also observed in the interpretation of static visual stimuli and
mostly refer to changes in perception that reduce sensory discrepancies
that have been caused by stimulus transformations [109]. Furthermore,
given enough observation time, certain image features or details may be
emphasized in the viewer’s perception, depending on his / her cognitive
background and observation task. In this dissertation, a contextually
uncommitted analysis of visual content is attempted, taking only into
account the early stages of visual perception.

e Feedback. Image feature extraction in biological vision systems may be
adjusted depending on viewpoint, illumination, query target, learning,
adaptation and other factors. Feedback connections exist in the visual
cortex, however their functionality has not yet been clearly understood.
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Certain image preprocessing methodologies may use feedback to im-
prove feature extraction, but a generic framework for this is yet to be
formulated.

The above limitations correspond to cases in which the information that is
available to the observer of the physical world is different than that encoded
in a single static image. Such limitations force us to focus the scope of visual
queries; for example, given the lack of knowledge about the illumination of
some scene, one can expect that a color-based visual query will yield color-
metameric ' results.

1.5 The visual information retrieval task

“Information retrieval deals with the representation, storage, organization of,
and access to information items. The representation and organization of the
information items should provide the user with easy access to the information
in which he is interested.” [112].

In the domain of visual information retrieval, characterization of a user’s
information requirements is not a simple problem. The notion of similarity
is rather broad, even for textual queries, and a generic method for precisely
retrieving the requested documents is yet to be formulated. Often, the un-
derlying reason is the imprecise specification of information requirements.
A typical example is the one of Internet search engines, when one searches
solely on the basis of certain key words. For example, a search for the word
“tree” targets a very different content for a biologist and a computer scientist.
Furthermore, similarity may be defined not only at the lexical and syntacti-
cal level, but also at more abstract levels. Since words have synonyms and
point to notions, similarity may also be defined on a semantic level. Finally,
words may be used to form innuendos and may be overloaded with more
than one meaning. Similarity assessment in these cases cannot be elaborated
solely on the basis of lexical and syntactical knowledge. In order for one to
be able to reason at that level, contextual knowledge is required. On the
other hand, the field of textual information retrieval has introduced several
heuristics concerning the capture of a document’s context (or essence). Such
are the detection of frequently repeated words in a document, the extraction

L Color metamers: A set of reflectance spectra which differ, but yield the same or similar
tristimulus values under at least one set of viewing conditions.
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of characteristic keywords, the dominance of words being contained in titles,
and others.

As in the case of textual information, visual information may consist of
primitive as well as composite components. Usually, spatial distributions of
motion, color, light, and image structural elements (e.g. edgels, corners, etc.)
are characterized as primitive components (or features) of visual information.
This intuitive characterization correlates with neurophysiological findings re-
garding the existence of separate specialized brain modules. However, as in
the textual example, primitive or composite visual information components
may be related to semantic information. Typical examples of how context
contributes to visual information understanding are the perception of surface
shape from shading, color perception, physical surface discrimination, ego-
motion estimation, and others. Taking into account syntactical similarity,
but neglecting context, can lead to counter intuitive results, such as those
sometimes yielded by search engines. For example, an orange can be confused
with the sun, due to shape and color similarity.

Depending on the application domain and the corresponding type of im-
ages, primitive token queries can sometimes yield satisfactory results. How-
ever, if the query is targeted at higher level aspects of visual information
such as visual impression, object recognition, visual similarity etc., more in-
formation is required. Furthermore, depending on the visual task, different
primitive tokens may be of interest. For example, in the task of driving, the
driver and the passengers may receive identical visual stimuli, but they typi-
cally tend to observe different aspects of them. Thus, the topics of conscious-
ness, context, observation task, subjectivity of the observer, and attentional
selectivity are considered as important factors in the visual comprehension
process.

In the remaining of this section, some definitions of the terminology used
throughout this dissertation are given:

Visual information will henceforth refer to “the bits of knowledge” [16]
that contribute to the interpretation of the image with respect to the obser-
vation task. Part of the set of these bits of knowledge may not reside in the
image.

Visual content will henceforth refer to the visual information that resides
in the image, while visual content component will refer to a part or subset of
this information.

Visual information management will henceforth refer to the processes of
representing, describing, and retrieving visual information.
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Representation will henceforth refer to data structures that reside in com-
puter memory and are used to symbolize some entity. This entity will mainly
correspond to visual content or a visual content component.

Description will henceforth refer to information extracted from a repre-
sentation, with respect to some purpose.

Finally, the term perceptually relevant will henceforth be used to charac-
terize computational processes that correspond (are equivalent or compati-
ble) to a known perceptual process. The term will be mainly used to dis-
criminate visual content description computational processes that are based
on or inspired from the functionality of the human perceptual system from
others that are based on the raw data of the two-dimensional image matrix.

1.6 Research contributions

In the remaining chapters of this dissertation, a taxonomy of visual content
components is used for their study and the presentation of the proposed meth-
ods for content-based image retrieval. This taxonomy provides the ability to
refine and, thus, increase the specificity of visual queries. In the proposed
taxonomy, the class of primitive visual features is first considered and two
broad classes of visual content components, derived from them, are examined.
Primitive visual features are considered as a basic component of visual con-
tent, since the spatial organization of such features gives rise to other, more
complex, visual content components. The two components of visual content
that can be “composed” from primitive visual features and that are exam-
ined in this work are: (a) image regions that are determined by a spatially
constant arrangement of primitive features, and (b) perceptually organized
spatial arrangements of edge or boundary-related primitive features.

More analytically, the content of the remaining chapters is the following:

Second chapter In the second chapter of this dissertation, the need to
describe and represent primitive visual features is addressed. Based on the
observation that primitive features occur at different scales, it is required
that: (a) the image “scale-space” is taken into account and (b) primitive
features are differentiated with respect to the scale or range of scales at which
they occur, in order to enhance their descriptive power and to facilitate the
refinement of associated visual queries.

The standard Scale-Space image representation is utilized for the extrac-
tion of features at multiple scales. Single scale-selection is subsequently used
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to estimate the scale at which a particular primitive feature occurs. Two
drawbacks of this method are that: (@) it exhibits several computational
difficulties, (b) more than one scale may be meaningful.

In order to overcome these difficulties, the Scale-Summarized Represen-
tation (SSR) is introduced as a method to represent and classify primitive
features with respect to scale. This representation can be applied to a broad
range of features and exhibits reduced memory capacity requirements and
algorithmic simplicity. Furthermore, the detection of more than one mean-
ingful image scales, at a single image point, is possible. In addition, the
SSR of visual features is useful in image processing tasks, which are based
on estimates of the size of local structure.

At the end of the chapter, a discussion on the utilization of knowledge
about the observed environment in the refinement of visual queries is pre-
sented.

Third chapter In the third chapter, a solution to the problem of extracting
image regions that are characterized by an approximately constant arrange-
ment of primitive features is presented. A review of the relevant literature
indicates that such regions constitute an important component of image con-
tent. Furthermore, it is desirable that the description of arrangements of
primitive features is comprehensible in perceptual terms, so that it can be
better appreciated by end users.

The proposed representation of spatial arrangements of primitive features
is based on local descriptors. The scale dependence of feature arrangements
is also considered and a multiscale description is formulated for their repre-
sentation. The representation is based on local descriptors and is instantiated
utilizing local histograms. This representation is memory consuming and the
SSR is utilized for the reduction of memory requirements.

The SSR is also used for the scale-normalization of local descriptors, so
that spatial arrangements of primitive features that exhibit variation with
respect to scale are uniformly represented. This scale-normalization can be
used to obtain clusters of similar local descriptors, corresponding to image
regions extracted from the constant or scale-varying expression of feature
arrangements in the image.

Finally, attributes of the local descriptors are used to describe feature
arrangements in a human comprehensible way by mapping these attributes
onto image properties. The resulting description is utilized in the task of
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visual query formulation and content-based visual information retrieval.

Fourth chapter In the fourth chapter, the component of visual content
that is derived from the perceptual organization of edge or boundary-related
features is considered and its role in content-based visual information re-
trieval is investigated.

In this context, laws of perceptual organization are reviewed and existing
methods for the perceptual organization of linear segments are found to suffer
from lack of consideration for the perspective nature of visual content. Thus,
a grouping method is formulated, which perceptually organizes parallel linear
segments by taking into account the perspective nature of visual content.

In addition, image contours, which are typically derived from the percep-
tual organization of edge features, are identified as a characteristic component
of visual content. A method for the perceptually relevant selection of anchor
points in contour representations is proposed and is utilized in the formula-
tion of a technique for the description and similarity matching of contours.

Fifth chapter In the fifth chapter, problems originating from missing in-
formation that is essential to performing content-based image retrieval in a
generic way are discussed. Furthermore, methods are proposed that overcome
certain difficulties associated with missing information about the target of vi-
sual information retrieval and provide for the interactive refinement of visual
queries. Descriptions associated with the various visual content components
are used to obtain an integrated description of visual content.

In addition, a user interface is introduced that captures the user pref-
erence for specific visual content components, in order to reduce the ambi-
guity caused by missing information about the target of visual information
retrieval.

Finally, the classification of image collections using successive application
of classifiers is proposed as a method to interactively refine visual queries.

Sixth chapter In the sixth and last chapter, conclusions are drawn and
possible objectives of future work are presented and discussed.

In summary, the remainder of this dissertation is organized as follows:
Chapter 2 deals with the visual content of primitive image features and Chap-
ter 3 presents methods for the extraction of visual information contained in
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spatial arrangements of primitive image features. In Chapter 4, the percep-
tual organization of features, which in turn yields visual entities of higher
information order, is considered. Chapter 5 addresses issues concerning the
content-based browsing and retrieval of images. Finally, in Chapter 6 an
overview of contributions made by this dissertation is presented, followed by
a discussion of open issues and the objectives of future work.
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2 Primitive Visual Features

In this chapter, primitive visual features are considered as basic elements of
visual content. Initially, the perception of primitive visual content is studied
and several of its properties are reviewed. The motivation for this review
is the identification of perceived primitive visual features, based on an un-
derstanding of the physiological mechanisms of visual perception. In this
context, the scale at which individual features are observed is considered as
a significant component of visual content, since it is an attribute of several
primitive features.

In the second section of this chapter, components of primitive visual con-
tent are identified and a framework is introduced for the perceptually relevant
representation of this information. In this context, elements of feature ex-
traction and multiscale representation are reviewed and applied to primitive
content description tasks. Inspired from the physiology of early stimulus rep-
resentation in primates, the Scale Summarized Representation (SSR), which
is introduced in the second section can be utilized for the classification and
processing of visual content with respect to scale. In addition, the SSR
framework supports the integration of visual content from different scales in
a description optimized with respect to memory requirements. The ability to
execute this feature extraction process in parallel, combined with its reduced
memory requirements results in a computationally plausible platform for the
real-time and compact content representation of visual content.

In the last section of this chapter, the use of primitive feature elements
in the description and management of visual content is demonstrated and
discussed.

2.1 Review of the physiology of early vision

The review of the physiology of early vision in this section, serves the goal of
understanding the type of information extracted at early visual stages. The
discussion targets the objective identification of perceived primitive visual
features, based on an understanding of the physiological mechanisms of visual
perception. Thus, the physiological mechanisms of light transduction, as well
as early stimulus representation and processing, are reviewed.
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2.1.1 Light acquisition

Images are acquired by visual systems from the transduction of light by pho-
toreceptors, which are spatially distributed on a light-sensitive area. Their
physiology deeply impacts the type of the acquired visual content. In ar-
tificial light acquisition systems, such as digital photography, the receptors
are CCD elements, while in conventional photography molecules chemically
react after their exposure to light. In natural visual systems, photorecep-
tors perform the first step in the formation of visual content, which is the
conversion of light into an electrical signal.

Despite similarities between light acquisition methods, differences also
exist and are significant in understanding the types of visual content acquired
in each case. In addition, in biological systems, some processing of the visual
signal occurs even in the first layers of receptor cells. This processing is
observed to influence the representation and perception of the visual stimulus.
In the remainder of this subsection, such perceptual processes are reviewed.

Photoreceptors adapt to perceived illumination by altering the gain of
transduction, thus varying the range of light intensities over which they can
respond. In particular, biological visual systems deal with the problem of
operating over an enormous intensity range by adapting to light intensity.
The whole range is typically not covered at one time, since the full range
of intensities is not encountered often at a given illumination. However,
adaptation as well as aftereffects are not considered here in any detail, as
this study is only concerned with acquired, static visual information.

Furthermore, the properties of the image acquisition process do not re-
main constant across the retina, in the human visual system. The infor-
mation content of ganglion cells consists of the responses of three types of
cones, whose output is mainly determined by their absorption spectra. These
spectra are commonly referred to as short (S), medium (M), and long (L),
taking the maximum absorption value at a wavelength of 440nm, 530nm,
and 560nm respectively. However, the number of each type and their spatial
distribution over the retina are not uniform. The ratio of L. to M to S cones
is approximately 10 : 5 : 1 [26]. Moreover, the receptors in the center of
the fovea are almost exclusively M and L cones, whereas the proportion of S
cones increases farther from the center. This image acquisition property of
the human visual system is also not considered in this work, since elements of
digital images are typically acquired through the same type of photoreceptors
(CCD elements).
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The set of stimuli acquired by retinal photoreceptors converges to optic
nerve fibers that project the output from ganglion cells to later visual stages.
Approximately 10 receptors converge to 10° nerve fibers, demonstrating the
severe compression of receptor output [25]. Speculations exist regarding the
development of the visual system and how it may be related to the way in
which visual information is compressed.

2.1.2 Light receptor organization and interaction

The spatial organization of photoreceptors on the retina plays an important
role in the formation of visual content. The location of a single cell in the re-
ceptor grid implicitly attributes the receptor response with its coordinates in
that grid (or retinal image). This order, or spatial arrangement, is preserved
during the signal projection onto cortical areas performing further stimulus
analysis. In this subsection, the topics of resolution and retinal receptor
arrangement are reviewed, along with their impact on the perceived visual
content.

The spatial density of light receptors is directly related to the spatial
frequency content. The sampling theorem [74] gives the maximal frequency,
which can be represented, as f = 1/2d, where d is the sampling interval of the
receptor grid. In addition, it is known that the retinal receptor density is not
constant throughout the receptor grid. Retinal receptors exhibit a log-polar
distribution [95], resulting in an increased resolution in the central area of the
visual field and reduced resolution at its periphery. Thus, the central region
of a retinal image is characterized by superior detail?>. However, the spatial
arrangement of photoreceptors are not considered further in this dissertation,
since digital images are typically of constant resolution.

Another property of the perceived visual content originates from the va-
riety of ganglion cell types. Their spatial organization and their projection
to the Lateral Geniculate Nucleus (LGN) is the topic of the remainder of this
subsection. The visual signals, acquired by retinal photoreceptors, simulta-
neously and independently lead to “ON” and “OFF” ganglion cells of varying
receptive field area. With respect to receptive field area and spatial distribu-
tion density, two types of ganglion cells, M and P, project selectively to the
magno and parvo cells in the LGN [61]. This selective projection induces a
discrimination of the visual stimuli with respect to the size of the ganglion

2That is also why observers adjust their eyes or gaze towards the target of attention.
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Figure 1: Projection of retinal stimulus to the LGN and Primary Visual
Cortex. (Adapted from [61].)

receptive field, from which they originate, which is represented in six layers
in the LGN. This independent transmission of primitive visual content is
maintained, after non-linear projection, in the Primary Visual Cortex. The
described circuitry is illustrated in Figure 1. The neural encoding of the light
stimulus, projecting from the retina to the LGN, exhibits a feature-selective
behavior based on the receptive field size [100]. In particular, samples pro-
vided by M ganglion cells, with large(r) receptive fields, project to magno
cells in LGN, which are mainly color-blind and selective to transient stimuli.
In addition, they exhibit high-contrast sensitivity and a fast neural response.
In contrast, samples projected from P cells, with small(er) receptive fields, to
parvo cells in LGN are mainly color sensitive, exhibit low contrast sensitivity,
and yield a slower neural response.

The representation of image structure in different layers defines a repre-
sentation, which can be modeled as a series of responses of cells with increas-
ing receptive field centered at each grid point. The center-surround receptive
field type of such cells implies the relatively strong response of cells exhibit-
ing a receptive field size that matches with the size of local image structure,
as illustrated in Figure 2. In the left figure, the small receptive field of the
center-surround cell implies a weak response. In contrast, the large receptive
field shall elicit a stronger response: the excitatory center and the inhibitory
surround are both stimulated by stimuli of opposite polarity, thus yielding an
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Figure 2: Origins of the scale adaptation mechanism of receptor cells (see
text).

increased response. The right figure illustrates the opposite case. This scale-
dependent encoding is referred to as a size-adaptation of visual perception
[10].

It has to be specified that this spatial frequency selectivity should not be
expected to be discrete, due to the analog nature of neural circuitry. Thus,
one should expect some intermixing of data between different spatial frequen-
cies, or a continuum of scales. In Computer Vision and Signal Processing,
the analysis of signals at multiple scales has been studied by Scale-Space
Theory [111, 58] and constitutes an important tool for feature extraction.
The representation of visual content that is delivered to later visual stages is
discussed in the next subsection.

2.1.3 Visual content representation

Visual data projected from both retinae to the LGN are there represented
in a layered architecture and then forwarded to the V1 cortical area. It is
there that a number of visual processes are initiated, including the detection
of color and local form, as well as the extraction of three-dimensional depth
information from binocular vision. The remainder of this subsection discusses
the visual information generated by these processes.

The spectral information acquired by three cone systems has been re-
ported to be represented in the LGN of primates, in a color-space that is
roughly approximated by Hering’s “opponent processes” theory [42]. Three
types of color cells were observed to exist: the yellow-blue (YB), green-red
(GR), and black-white (BW), all of them appearing in two versions, Y B~
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B*Y~, G'R~, R*G~, B*W~, WtB~, with T and ~ referring to the ex-
citatory and inhibitory surround respectively. The underlying physiologi-
cal mechanism is speculated to be based on a re-parameterization process
[27, 26]. The trichromatic representation efficiently extracts spectral infor-
mation; the opponent process color space contributes to the determination
of which lightness changes originate from changes in the level of illumination
and which from changes in spectral surface properties. Additionally, color
is psychologically perceived in a slightly different colorspace, that of hue,
saturation, and value.

The visual data residing in the LGN are further processed after their pro-
jection to the striate cortex, through the optic radiation. The signal features
extracted in the striate cortex neural circuitry can be classified under two
categories: (a) temporal, and (b) spatial. Simple, complex, and hypercom-
plex cells provide spatial and temporal signal change detection at multiple
scales [46]. Specifically, simple cells are correlated with the perception of
edges, while the activity of complex cells is more related to motion detec-
tion. The function of hypercomplex cells is mostly related to the detection
of line endings, which is further correlated with the existence of illusory
contours. Computationally, the change detection in both the spatial and
temporal domain is analogous with the computation of the spatial and tem-
poral derivatives of image sequences. In Computer Vision, these features
are commonly represented by two well-known structures, namely the image
gradient and optic flow field. Based on spatial changes, simple and complex
cortical cells perform the function of orientation selectivity and represent
orientation information in different channels located at hypercolumns in the
striate cortex.

An additional fact is that the spatial signal change (or gradient) of a
color image is often computed on the gray-scale version of the original im-
age. Although this roughly approximates the notion of perceived edges, color
information can contribute to the formulation of a more perceptually com-
patible approach for two reasons. First, as previously mentioned, color can be
used to extract information concerning the physical qualities (e.g. the change
of reflectance spectrum) of surfaces in the visual environment. Second, the
existence of gray-scale metamers (colors that have the same appearance af-
ter their conversion to gray-scale) restricts the detection of edges occurring
where metameric surfaces meet. In the example below (see Figure 3), an
image and its gray-scale version are used to illustrate this point. The colors
of the shirt and trousers of the athlete are perceived as significantly different
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Figure 3: A color image and its gray-scale version.

in the color image. In contrast, this color change information is reduced in
the gray-scale version of the image. Finally, depending on the color space
that is used, the computed gradient magnitude will vary. Color gradients are
revisited later on in this chapter (see Section 2.2.3), where the estimation of
primitive features is discussed.

Specific arrangements of primitive visual features give rise to the percep-
tual formation of more global features that may not be physically present in
the image (the well known Kanizsa triangle is an indicative element of this
class). The formation of illusory edges occurs in the visual cortex [83] and is
observed to emerge from specific arrangements of certain primitive features,
such as line endings, points, and corners. The patterns that induce illu-
sory contour perception are often invariant to the type of primitive elements
participating in contour formation.

Signals facilitating depth perception are encountered in the first visual
cortical areas, namely V1 and V2. The estimation of disparities between
corresponding visual features is thought to be the basis of stereoptical depth
perception. However, other cues contribute as well to the complete percep-
tion of three-dimensional structure that can be encountered in single images.
Such cues include shading, texture gradients, occlusion, perspective cues, and
others. In this dissertation, the topic of stereo vision is not discussed fur-
ther, due to the primary focus of this work on single images that are typically
available in image databases.
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2.1.4 Conclusions

In this section, a review of the primitive visual features generated in early
visual stages was presented, highlighting components of the perceived visual
content. The initial steps of formation of principal visual content compo-
nents, such as color, local form, and optical flow field have also been out-
lined. These are the primitive visual features as considered in this work. In
the next section, the significance of the scale component of primitive features
and its application in the content-based retrieval of visual information are
investigated in more depth.

2.2 Scale-Summarized Representation

In the previous section, an overview was presented of elements of the physiol-
ogy of early vision related to the type of image acquired by photoreceptors, as
well as the early processing of the visual stimulus. In this section, emphasis
is placed upon the types of primitive features detected and their occurrence
at different scales. In addition, the fact that visual features, which occur at
different ranges of scales are handled separately by the human visual system
is taken into account. This gives rise to the requirement of representing and
describing primitive features with respect to scale. For this purpose, com-
putational methods are borrowed from Scale-Space theory (see [58] for an
overview of Scale-Space theory in Computer Vision).

The multiscale analysis of image features is also required because visual
queries may be selectively targeted at image properties that occur at differ-
ent scales. Given the observation that primitive image content® varies with
respect to scale, the ability to represent and attribute primitive features with
respect to scale is required in order to be able to refine queries with respect
to the scale at which different primitive features occur.

Inspired from the LGN architecture, which consists of separate layers, in-
terest is focused on the summarization of primitive image content over ranges
of scales. Below, a representation is proposed that summarizes features over
some range of scales, favoring scales at which features are actually observed.
The proposed representation exhibits useful computational properties and
provides the ability to focus interest on more than one ranges of scales.

3Henceforth, the phrase “primitive image content” will be used as an abbreviation for
image content that consists solely of primitive visual features.
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In the examples used to demonstrate the classification of primitive fea-
tures with respect to scale, two broad ranges of scales are employed and are
referred to as “fine scales” and “coarse scales”. The selection of this par-
titioning of the scale-space is based on the need to provide end users with
a comprehensible and also addressable characteristic of visual features. In
fact, in Computer Vision terminology the terms “fine” and “coarse” in ref-
erence to scale are often encountered. In spoken language, expressions such
as “image detail” or “abstract characteristics” are often utilized to refer to
the same features. Thus, the coarse / fine feature classification contributes
to the formulation of visual queries comprehensible by humans.

2.2.1 Scale-selection

Inspired from the scale-adaptation of the visual system, as briefly described in
the previous section, the scale-classification of visual information is discussed
and demonstrated in this subsection. Given the analog nature of a feature
response, a continuous feature response function of scale is used to model
feature presence at each scale. In a computer implementation, this function
is discretely represented.

Given some primitive feature detector which is convolved with the image
over some spatial neighborhood, the corresponding feature may be detected
at the center of this neighborhood. Repeating the operation for all image
points, feature presence at each pixel can be estimated. Thus, image features
occurring at different scales can be detected by applying the detector at each
image scale. The feature detector response F' may be scale-normalized as in
Equation (1), where 7 = logt is the logarithmic scale parameter, and Z the
pixel coordinates. The function Fg, will be referred to as the scale-normalized
feature detector response (function):

Fs(Z,7) =tF(Z,T1) (1)

In [59], the maximum of the scale-normalized feature detector response
function (Fs) is utilized to “indicate the scale at which feature presence is
most intense and to reveal the spatial extent of the detected feature”. This
process will be referred as explicit scale-selection. For each image point, the
maximum of the scale-normalized feature detector response may be repre-
sented in scale-space, indicating the scales at which feature presence is dom-
inant. For example, Figure 4 shows an image and the representation of the
maxima of a blob detector scale-normalized response function in scale-space,
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Figure 4: An image (left) and a plot (right) of the maxima of the blob
response over scale, for each image point. In the plot, the oblique axes map
image coordinates and the vertical the logarithmic scale parameter. FEach
point in the plot shows the scale at which the maximum of the blob detector
occurs, for the corresponding image point.

for each image point. The equation of the blob detector is formulated using
the absolute value of the Laplacian:

) = aa—;L(f, T) + — L(Z, 1), (2)

F(Z,
where L is the image linear scale-space, given by L(Z,7) = G(Z,t) *x I(Z). In
the latter formula, GG is a Gaussian centered at &, with a standard deviation
of . In the figure, the order of scale enumeration is from fine to coarse and
the vertical axis corresponds to the logarithmic scale parameter, indicating
the scale at which the maximum appears. Below, two specific issues are
addressed: (a) the interest in more than one scales of the scale-normalized
feature detector response function Fg, and (b) certain computational difficul-
ties in estimating the local maxima of the scale-normalized feature detector
response function.

Selection of more than one scales To demonstrate the fact that more
than one scales may be of interest, we consider the synthetic image shown
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Figure 5: An image (left) and the plot of the scale-normalized blob detec-
tor response (right). In the plot, the horizontal axis maps the logarithmic
scale parameter. The vertical maps the values of the blob detector for pixel
(121, 128), at each image scale.

in Figure 5. The graph on its right illustrates the scale-normalized response
Fg of the blob detector F, in Equation (2), for pixel ¢ with coordinates
(121,128), which correspond to the center of the central black dot in the
image (approximately the image center). In the plot of Figure 5, the values
of logarithmic scale parameter 7 are shown on the horizontal axis and it is
observed that Fs has three local maxima, approzrimately at 7 = 15, 32, 54.

Using the maximum of Fg at 7 = 15, the leftmost image of Figure 6 is
generated by selecting the image scale associated with 7 = 15. The other two
images of Figure 6 are acquired, following the same procedure for 7 = 32,
7 = H4. These images represent two cases where image structure matches
the structure of the feature (blob) of interest, at a scale other than the one
that the scale-normalized detector response in maximized. Thus, several
significant scales may be present at a single image point.

Local maxima estimation The discretization of the logarithmic scale
parameter 7 determines the accuracy with which the local maxima of the
scale-normalized feature response function are localized. Thus, local maxima
can be intractable or inaccurately estimated if the number of scales used
is inadequate. In addition, the presence of noise may inhibit the accurate
estimation of such maxima. Finally, explicit scale-selection [8, 58| requires
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Figure 6: Three scales of the image in Figure 5, corresponding to 7 =
15,32, 54 (from left to right).

tracking of feature detector responses over scale, which can be algorithmically
complex. Thus, if an insufficient number of scales is used, this tracking could
be practically impossible.

In the next subsection, a representation that facilitates the focusing of
interest on multiple scales and avoids computational difficulties associated
with the estimation of local maxima is proposed. In addition, the represen-
tation may be computed in parallel and exhibits reduced memory capacity
requirements, when compared to the memory capacity that is required for
the representation of the whole image scale-space. Furthermore, the proposed
representation can be applied to a broad variety of features.

2.2.2 Scale summarization of visual content

The Scale-Summarized Representation (SSR) is introduced as a method to
average the scale-normalized feature detector response over a range of scales.
The representation may be derived from a variety of scale space images such
as the linear scale-space consisting of Gaussian smoothed images, the family
of corner detector response images [87] at various scales, the family of blob
detector response images at various scales etc. The scale-summarized image
is defined as a weighted sum over scale:

J(Z) = 3, wp (@, 7) Ay [L(Z, 7)), (3)
L(Z, 1) = G(Z,t) x [(Z) (4)
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erf(f77) =1, (5)

where 7 = logt is the logarithmic scale parameter, I the original image, A is
a detector for feature f, and wy is the probability of feature f being present.
wy will be henceforth be referred to as the scale-selector. Finally, L is the
image linear scale-space derived using G(Z,t), a 2D Gaussian centered at 7,
with ¢ = 62/2 and given by G(Z,t) = (2m0?) ! exp(—|7|?/(20?)).

In order to focus interest on specific ranges of scales, Scale Focusing (SF)
is introduced as the multiplication of the scale-selector function with the
Gaussian function:

wh, (@& 7) = \/LT_S exp @%) ©)

where m is the scale of interest and s the width of the scale neighborhood.
Typically, m is selected as the approximation of the scale at which some local
maximum of the scale normalized feature detector response is encountered.
The implementation of the above representation can be carried out in
a two-step parallelizable fashion. First, the feature response may be in-
dependently computed for each point of the image scale-space. Second, the
accumulation and normalization of the feature response, for each point of the
two-dimensional representation acquired, may be independently performed.
Before presenting scale-summarization results and demonstrating the ef-
fect of scale focusing, two scale-selectors that will be used are formulated.

Two cases of scale-selectors A simple scale-selector for image gradient
related features, such as edges, orientation, or corners originates from the
scale-normalized square gradient norm (denoted as Grad?®), which is given

by Grad*(#,7) = t(L2(Z,7) + L(&,7)), where L,(-) = Z[G(-) * I(-)] and

L,(-) = (%[G(-) « I(-)], as in [58]. Normalizing with the sum introduces the

following new scale-selector:

Wedge (#,7) = %)h (tGrad?(7, 7)) (7)

edge (&

where the function

Fedge(T) = /0  h(tGrad?(#, 7)) dr
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Figure 7: Three scale-selectors obtained by scale focusing on scales 7 =
15,32, 54 (from left to right), of the blob detector scale-normalized response
shown in Figure 5.

is the normalizing function at each spatial point and h is any strictly in-
creasing function chosen according to the nature of the feature detector. For
simplicity, the identity function h(z) = x is used throughout this work.

A new scale selector for intensity blob-related features originates from
(Equation 2):

1

Wh(twm(fa T) + Ly (7, 7)) (8)

Whlob(Z, T) =

where the normalization function is
Fp1op (F) = /0 h(t|Loa(,7) + Lyy(Z,7)|) dr.

In the above equations, function A could also be used to possibly rectify
the scale-selector, given information about the physiology of feature extrac-
tion in the visual system of interest.

Focusing at ranges of scales In this paragraph, the process of summariz-
ing the scale-normalized feature detector response at ranges of scales, around
local maxima, is illustrated.

Given the image and scale-normalized feature detector response of Fig-
ure 5, three local maxima have been estimated at 7 = 15, 32, 54. The three
scale-selectors produced by scale-focusing at the estimated maxima, using
Equation (6) with s = 2, are illustrated in Figure 7. Figure 8 illustrates
the three scale-summarizations of the set of scale-space images produced
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Figure 8: Three scale-summarized images of the set of the scale-normalized
blob detector response images, using the scale-selectors of Figure 7.

using the scale-normalized blob detector of Equation (8) and the three scale-
selectors of Figure 7. Using the identity function as the feature operator
Ay, but retaining the same scale-selectors, three scale-summarizations are
produced using the scale-selectors of Figure 7, which are illustrated in Fig-
ure 9. The three scale-summarized images obtained are approximately equal
to those of Figure 6. The results indicate two applications of the SSR. First,
by using local maxima instead of the (single) global maximum of the scale
selector, more than one meaningful scales may be obtained from the image-
scale space. Second, the explicit localization of local maxima over scale, as
in the case of explicit scale-selection, may be avoided if the feature is known
to occur at some range of scales R. Instead of explicitly selecting the scale
where a local maximum occurs and then performing feature detection at that
scale, the result of this process may be approximated by scale-summarizing
the scale-normalized feature detector response over R. The latter applica-
tion is demonstrated below. The first, is demonstrated in Section 2.2.3 for a
variety of primitive visual features.

Let m be a local maximum of the scale-normalized feature detector re-
sponse for some image point p, whose exact location over scale is not known.
Let R be the known range of scales at which this maximum occurs. Instead
of computing the scale at which this maximum occurs and then perform-
ing feature detection at that scale for image point p, the SSR may be used
to approximate the result, by scale-summarizing the scale-normalized fea-
ture detector response over R. Our interest will be focused on the detection
and classification of features over broad ranges of scales and, in particular,

33



I AR
g @ e
L % |99

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250

Figure 9: Three scale-summarized images of the image scale-space using the

scale-selectors of Figure 7 and the identity function as the feature operator
A.

at the classification of features into “coarse” and “fine”. Thus, by scale-
summarizing the scale-normalized feature detector response over two scale
ranges Rioqrse and Ry the coarse / fine classification can be achieved in
an algorithmically simple way. It is also noted that R.yrse and Ry, are
selected to be partially overlapping, in order to capture features occurring
approximately at the border of R.o4se and Ryi,.. In the example illustrated
in Figure 10, only eight image scales have been used with Ry, consisting of
scales 1,...,4 and R..qse Of scales 4, ..., 8. In the next section of this chapter,
more such examples are presented.

Using scale-summarization over ranges of scale, features are classified with
respect to scale. The granularity of scale-classification is proportional to the
number of ranges in which the image scale-space is partitioned. Inspired by
the magno / parvo LGN stimulus discrimination and motivated from reasons
related to the comprehensiveness of this classification, examples of feature
detection in Section 2.2.3 are classified into “coarse” and “fine”.

In addition, due to the averaging nature of SSR, the effects of noise and
scale-space discretization in the scale-classification process are reduced. This
reduction is prominent in cases where a small number of image scales are
used, such as in the example of Figure 10 (eight image scales were used).
In such cases, errors in the localization of the local maxima over scale re-
sult in noticeable spatial discontinuities. Using the same image-scale space
representation as above, the bottom-right image of Figure 10 was created
by explicitly selecting the maximum of the scale-normalized blob detector
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Figure 10: An image (top-left) and the scale-summarizations of its blob
scale response for scale ranges Ry, (top-right) and Reoerse (bottom-left).
The bottom-right image illustrates explicit scale-selection for the R, scale
range.
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Figure 11: An image (left) and the SSR scale-normalized feature detector
response for edges (middle) and blobs (right).

response in the Ry, scale range, for each image point . Then, the scale
sc(Z) at which this maximum occurs is derived and the presented image is
computed as: Iy, = Lyop(Z, sc(T)), where Ly, is the scale-space produced
from the application of the blob detector at each, computed, image scale.
Due to the small number of image scales used, several spatial discontinuities
can be observed.

Scale-summarization over all image scales Finally, scale-summarization
over all image scales is demonstrated. In order to acquire “all” image scales,
the image is smoothed using Gaussian kernels whose size gradually increases
varies from pixel level up to image size level*. This type of scale-summarization
yields a single image that summarizes the features occurring at all scales. Fig-
ure 11 illustrates the SSR of the scale-normalized feature detector response,
for edges and blobs, using the scale selectors of Equations (7) and (8). Notice
that, in the images shown, there exist image regions in which both coarse
and fine scale features can be observed. For example, this occurs in the SSR
blob image region representing the eyes of the baboon, where both fine and
coarse scale blobs can be observed.

The motivation underlying the process of scale-summarization over all
image scales originates from the fact that different spatial frequency responses
residing in the LGN are combined towards the perception of a single image.
The scale-summarization of the scale-normalized feature detector response

“Henceforth, the expression all image scales will refer to this smoothing procedure.
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function over all scales provides a method to represent features occurring at
different scales in a single image.

2.2.3 Feature detection

In this section, multiple image scales are used in order to enhance the de-
scriptive power of visual content description methods operating at a fixed
scale. In this context, scale-summarization, over ranges of scale of the scale-
normalized feature detector response function is utilized for the classification
of features with respect to scale. In addition, the SSR is utilized to over-
come computational difficulties related to the task of explicit scale-selection,
discussed in the previous section of this chapter.

The framework of SSR is applied to two categories of feature detection
tasks: (a) features derived from the image gradient, such as the detection
of edges, linear feature orientation, and corners, and (b) intensity or color
blobs.

Gradient-derived features By scale-summarizing the magnitude of im-
age gradients, a “scale-less” edge detection result is obtained, representing
edges at all scales. Using the scale normalized square gradient as the feature
operator A and the scale-selector in Equation (7) as the weight function in
Equation (3), for h(z) = z, yields:

Jo =3 wedge(f’ 7)(tGrad*(7, 7)) &

o = Y0 (1/kedge(#)) (tGrad® (&, 7)) (tGrad*(#, 7)) <
2

o = (1/keqge(®)) T, (tCrad®(7, 7))

Given that:

kedge (f) ET (wedge (i:: T))2 = kedge (f) ET ((tGradZ (fa T))/kedge (f))2 =
= (1/kedge(@) X, (tGrad*(#, 7)),

J, may be written as : J, = kedge (7) %, (wedge(fa 7.))2

This representation results in an image that scale-summarizes edge infor-
mation from all scales, as shown in Figure 11 (middle image). To illustrate
the discrimination between edges at different scales, Figure 12 presents the
results of scale focusing on fine (top-right) and coarse (bottom-left) scale
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Figure 12: An image (top-left) and the scale-focusing of its gradient norm

on a fine and coarse scale (top-right and bottom-left). The last image shows

In the top-right and

(bottom-right).

bottom-left images, color represents local orientation.

the scale-summarized gradient norms

38



ranges. The bottom-right image presents the result of SSR for all image
scales.

Orientation, as previously discussed, is recognized to be an intrinsic com-
ponent of visual perception and quite a useful feature in many applications
of image analysis. Local direction is derived from local changes of intensity
or, synonymously, image gradients. The scale normalized gradient response
function for a point located on the stripes of the original image in Figure 12,
reveals two local maxima, one in the range of fine scales and another in that
of coarse ones. Focusing on these two ranges of scale yields a representation
for fine scales, in which the diagonal orientation dominates, and another at
coarse scales, in which the vertical orientation dominates. In the two scale-
focused images, local orientation is linearly mapped to the color hues, with
green indicating the diagonal and blue the vertical orientation. When viewed
in gray-scale, local orientation is represented by image intensity (luminance).
In the above example, local orientation is estimated using the gradient di-
rection.

Another primitive feature derived from image gradients is an image cor-
ner. In the Computer Vision literature, several methods exist for detecting
corners in images. An overview of many of them may be found in [86]. Be-
low, a corner detector is derived based on the work in [105]. The smallest
eigenvalue of the structure tensor:

Ll‘(fa 7_)2 Lfﬂ(f7 T)Ly( T) (9)
L,(Z,7)Ly(Z,7) L,(Z,7)?
is used to formulate a feature response function, namely the “corner detector”
C(Z,1).
With respect to the SSR framework, the scale-summarization formula for
corners yields (for h(z) = x):
Jw = kcorner(f) Z (wcorner(f, T))2 )

where
weorner (%, 7) = (kcorner (Z)) ~"h (tC(Z, 71, 7))
and oo
keorner(?) = [ h(tO(@, 7, 7)) dr

Figure 13 illustrates the detection of corners at a fine and a coarse scale,
along with the SSR of the scale-normalized corner detector response.
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Figure 13: An image (top left) and the detection of its corners at fine (top
right) and coarse scale (bottom left). Corner responses in the fine scale image
correspond to structure determined by doors and wall-attached objects in the
scene. The corner responses in the coarse scale image correspond to the large-
scale corners formed by the corridor structure. The last image (bottom right)
illustrates the scale-summarized corner information.
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As mentioned in the review of early vision physiology, earlier in this chap-
ter (see Section 2.1.3), edge detection in color images is different from edge
detection in the corresponding gray-scale images. Specifically, the spatial
structure of spectral images can be obtained by either converting the image
into its gray-scale version, followed by standard spatial analysis, or by pro-
cessing each channel independently and accumulating the results. These two
approaches lead to quite different results. For a color image, the two gradient
magnitudes are given as:

Egray = |V(R+ G + B)| (10)
Ecolor = |VR|+|VG|+|VB|7 (11)
where | v+ = /(&)2 + (%)2. The color information can be used to extract

changes in surface reflectance, thus contributing to the physical description
of the environment. In the examples below, the application of SSR to the
scale-summarization of color edge detection information is demonstrated.
Independently of the color system used, color edge detection is carried out at
multiple scales, and the SSR is extracted in order to summarize information
from all of these scales. The increase in dimensionality introduced by color
is seamlessly handled by SSR. The linear diffusion scale-space L, shown in
Equation (3), is extended from the one-dimensional case:

L(zZ, 1) = { LuminocityChannel } (12)
to the three-dimensional case
L'(Z,7) = {ColorChannell, ColorChannel2, ColorChannel3}, (13)

with dim(L(x,y,z)) =1 and dim(L'(z,y, 2)) = 3.

To generate the scale-space, each RGB color band is treated as a gray-
scale image and linear diffusion is applied for each image, as in Equation (4).
Each image scale consists of three of those images. The gradient magnitude is
given by the color space distance for adjacent pixels. A “gradient magnitude”
image is then computed for each scale. This set of scale-space images is then
summarized by the SSR.

In the images of Figure 14 the SSR magnitude of the gradient vector, used
for edge detection, is illustrated for a variety of color spaces. The experiments
are carried out for the RGB, HSV, and Lab color spaces, using 8 image
scales as in the previous edge detection examples. Furthermore, an invariant
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to shading and surface orientation color transform for matte surfaces [31] was
used to transform the original image and SSR edge detection was carried out
in this color space, as well. The color transform used is given by: ¢; =
arctan(m),@ = arctan(m),@ = arctan(m) where ¢;,i €
{1,2,3} are the bands of the transformed image. The first row of the figure
illustrates the original image and the gradient magnitude E,,,. The other
two rows illustrate E.,,, for different colorspaces. In particular, the second
row demonstrates the use of the RGB (left) and HSV (right) color spaces,
while the last row displays results given the Lab (left) and the color-invariant
color space (right). As observed in the examples of Figure 14, the E
results are quite different from the E,,, one. Attention is drawn to the last
image of the shading invariant color transform, where the gradient magnitude
indicates physical edges and can be used as an image segmentation cue. Also,
the Lab gradient exhibits a discrimination of color blobs, based on visual
impression.

The dimensionality of gradient vector components, for each scale, is triple.
Thus, vector gradient information can be used to encode the “direction”
in color space of the color change and can be taken into account for the
discrimination of different types of region borders.

Intensity and color blobs When summarizing blob information over

scales, a “scale-less” blob detection result is obtained, detecting blob-like in-

tensity regions at all scales. Similar to image gradient derived features, using

Equation (8) as the weight function in Equation (3) yields (with h(z) = x):
Jw = ET wblob(fa T) (t|Lxx(f7 T) + Lyy(fa T)D =

e ((1/Aplob(@)) (tLaa(E,7) + Ly (7)) (tLas (,7) + Ly (7,7)]) &

Juw = (1/kp1ob(#) Tr (HLuw (%, 7) + Ly (#,7))°

Given that:

2

Fhlob (%) X (whloh (& 7))
2
kblob(f) - ((ﬂwa(fﬁ T) + Lyy(f, T)D /kedge(f ) =
(1/kb10b(f)) 57 (tLaa(T, 7) + Ly (Z,7)1))°,
2
Juw may be written as : J, = kp)1(7) 2, (wblob(f’ 7'))

This results in a representation that summarizes blob information over
all scales, as shown in Figure 11 (right image). The SSR, based on the blob
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Figure 14: Demonstration of gray-scale and color gradient magnitude com-
putation using the SSR (see text).
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detector, favors scales that match local image structure size. As a result,
the contribution of these scales dominates over others. In this category of
applications the scale-selector is given by Equation (8). An example of blob
classification with respect to scale was presented in Figure 10.

As with in case of color edges studied above, the blob feature detector
can be extended to describe color blobs as well. In this case the Laplacian
of the color image is three-dimensional and given by L., + Ly, + Lzz. Then,
the color blob detector is expressed as

A=Y L3 7), (14)

where ¢ refers to the color band and L to the original image at some scale.
Similar to the color edge example, the color blob detector is applied to the
same image and color space. Figure 15 illustrates the SSR for the blob
detector, derived for the same set of color spaces as in the color edge example.
Images are arranged in the same order as in Figure 14. In the experiment,
8 image scales were used and the order of images, with respect to the color
space used, is identical to that of Figure 14.

Color is a powerful visual cue for image description. Its multiscale anal-
ysis contributes to the refinement of this description. Using the SSR, this
procedure may be performed in a way that overcomes the computational
difficulties of explicit scale-selection. The SSR may also be used to produce
a result that accumulates both coarse and fine scale information, while the
same framework can be used for the scale classification of color blobs by
focusing the summarization on ranges of scale.

The summarization of visual content using the SSR framework, provides
a simple and parallelizable computational method for the accomplishment of
such tasks.

2.2.4 Image processing applications of the SSR

In this subsection, some indicative image processing applications of the SSR
are presented. Emphasis is placed on applications of region-based processing
in order to demonstrate the ability to adapt image filtering to local struc-
ture. In this context, gray-scale and color image smoothing, using the SSR,
is initially considered. Then, iterative smoothing of images, based on the
SSR, is used to define a structure retaining image scale-space. Finally, the
enhancement of a known color constancy algorithm is demonstrated.
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Figure 15: Demonstration of gray-scale and color blob detection (see text).
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Knowledge of the scale of image structure has direct consequences for
to image smoothing. If the purpose of smoothing is noise suppression, it is
argued that the results are improved by adapting the spatial extent of the
smoothing kernel to local image structure, rather than explicitly smoothing at
one scale (an idea originally formulated in the Perona and Malik anisotropic
diffusion approach [82]). If the blob detector is used as the scale-selector
in the SSR of image content, then the resulting image retains its dominant
structural features because SSR favors the contribution of scales that match
local image structure. By favoring such scales, smoothing is restricted within
intensity blobs, preserving edge structure without mixing the content of dis-
tinct image blobs.

Figure 16 presents an image (top-left) and the result of smoothing with
a Gaussian kernel of constant size, o = 3 (top-middle). Next (top-right),
the smoothing result obtained with SSR, using the blob scale-selector given
by Equation (8) and 8 image scales, is shown. It is observed that the im-
age structure is retained, since SSR favors the contribution of those scales
corresponding to local image structure. A comparison with the smoothing
produced by the anisotropic diffusion approach proposed in [82]) (bottom-
right) indicates that SSR yields a smoother result, as can be concluded by
observing the background in the two images. Typically, anisotropic diffusion
persistently retains the structure of fine-scale texture. In contrast, using the
SSR the uniformity of the background at coarse scales is favored, due to
the greater response of the blob detector at these scales. This effect is fur-
ther emphasized by focusing on the range of scales around the maximum of
the scale selector, at each pixel, using the same number of image scales and
s = 1 in Equation (6) (bottom-middle). In this image the dominating-blobs’
morphological features are intensely emphasized, while the variance of image
intensities within their area rapidly decreases.

The instability of explicit scale selection is illustrated in the bottom-left
image of Figure 16. In this case, the image scale space, using the same
number of scales as before, is computed along with the scale-normalized
blob detector response over scale at each image point. Then, the maximum
mazxye () over scale of this response is obtained for each image point &
and the scale sc(#) at which it occurs is derived. The image shown was
computed as: I (%) = L(Z, sc(Z)). It is interesting that an instability is
mainly observed within image regions exhibiting fine-scale structure. The
quality of the result at image regions containing fine scale structures is more
sensitive to this instability than at those containing coarse scale structures.
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Figure 16: From top left and clockwise: Original image, Constant Scale
Smoothing, SSR Smoothing, Anisotropic Diffusion, Dominant SF Smoothing,
Explicit Scale-Selection Smoothing
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The iterative application of SSR smoothing may be used to generate a
scale-space biased in preserving image structure. This bias refers to the de-
crease of the variance of intensity values within blobs. Figure 17 illustrates
such a scale-space by iteratively smoothing an image using the SSR. In the
experiment, the scale-summarized image scale-space used consisted of 8 im-
age scales.

In the next example, the expansion of the SSR smoothing for color im-
ages is demonstrated. In this case, the scale-normalized response of the color
blob detector was utilized as the scale-selector. For the experiments, each
RGB color band is independently scale-summarized. The resulting scale-
summarized color bands are used to form the “SSR-smoothed” color image.
In the following examples, eight image scales were again used (8) to gener-
ate each color scale-space image. In Figure 18, a color image is iteratively
smoothed using the procedure described above (left column) and the results
are compared to Gaussian smoothing (right column) .

As a final example of the ability to localize image processing to neigh-
borhoods determined by image structure, the Retinex algorithm [54] is con-
sidered within the framework of SSR. The Retinex algorithm attempts the
normalization of color images with respect to the illuminant. The restora-
tion of the reflectance spectrum of a surface, based on samples taken over
a constant sized neighborhood in an image, will eventually mix samples of
different surfaces. This weakness of the Retinex algorithm has been previ-
ously reported [49] as a failure of the method near reflectance edges. On
the other hand, using the SSR, the weighted average of all images scales is
used, for the computation of the Retinex result. For simplicity and since the
Retinex operates independently on each color band, the examples that are
presented demonstrate results for the monochrome version of the algorithm.
In particular, the Retinex formula is applied to gray-scale images, which are
successively scale-summarized using the blob-scale selector. As demonstrated
in the examples of Figure 19, the blob scale-selector prevents the sampling of
surfaces with a different reflectance spectrum by responding with a low scale
near edges. The middle column shows the results of Retinex image process-
ing at a constant scale. The right column illustrates the results with the use
of SSR. The Retinex algorithm is applied at all scales and then the results
are merged with respect to the response of the blob detector. In the next

5Since a direct comparison of the two methods is difficult, the scales corresponding to
o =7 and 0 = 21 were empirically selected.
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Figure 17: Image evolution in scale space created by SSR smoothing (top to
bottom and left to right).



Figure 18: An image iteratively smoothed using the SSR (left column) with
the color blob scale-selector, and using Gaussian smoothing (right column)



Figure 19: Square and locally orderless square (left column). Single scale
Retinex results (middle column). SSR Retinex results (right column)
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example (see Figure 20), the Retinex algorithm is applied to a real world im-
age (top-left). The results from constant scale processing (top-right) and the
SSR version of the algorithm (bottom-right) are shown to exhibit differences
near physical edges as predicted. To indicate that differences between the
two images occur mainly at physical edges a “difference” image is computed
and presented at bottom-left.

2.2.5 Conclusions

In this section, a framework for scale-summarization of visual content was
introduced. The purpose of applying the SSR for primitive visual feature de-
tection and representation is twofold: (a) facilitates the focusing of attention
to more than one scales of interest and (b) make possible the detection and
classification of primitive visual features with respect to scale. In both cases
(a) and (b), the computation is performed using the scale-summarization
of image content in order to overcome computational difficulties, followed
by the explicit selection of a single scale. Furthermore, a broad variety of
primitive features can be represented and scale-classified by using the SSR.
The ability to classify primitive features with respect to scale contributes to
the refinement of content queries by attributing features with the scale at
which they occur. In addition, the SSR provides a single framework for the
described computation, for a variety of feature types.

Another application of the SSR in image content description is that it can
be used to reduce the memory requirements of multiscale analysis of image
content. Instead of using the whole image scale-space, a few characteristic
“snapshots” (e.g. using scale-summarization over fine and coarse scales) of
the image scale-space can be used to describe primitive feature image content.

Restricting the summarization of content within a range of scales yields a
scale-normalized summary of visual content. Depending on the visual task,
interest may be focused on coarse scales or image detail. Using the SSR,
content extraction may be tuned for a coarse or a fine range of scales. The
scale focused representation over a range of scales captures a larger portion
of image content than that obtained from the analysis of one image scale in
a given neighborhood.

The scale-adaptive description of visual content is also useful in visual
information representation, since it facilitates the uncommitted processing of
primitive image content, as well as the scale normalization of visual features
occurring at different scales. The focusing of summarization on ranges of
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Figure 20: Clockwise, starting with top left image: Original image, constant
scale Retinex result, SSR Retinex result, absolute difference of constant scale
and SSR Retinex images.
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scales, where local maxima of the scale-normalized feature detector response
function occur, facilitates the classification and estimation of features with
respect to scale.

The classification of features with respect to scale facilitates use of this
scale of classification as a query predicate. In turn, the ability to use the
scale attribute to form a query predicate facilitates the formulation of scale-
specific or scale-independent visual content queries. The benefit of classifying
visual features with respect to scale is that the query space of scale-specific
visual queries can be restricted, targeting the search at only image scales of
interest. Furthermore, as formerly demonstrated in Section 2.2.4, the ability
to adapt image analysis tasks to the size of local structure with the use of a
blob detector, can be useful in several image processing applications.

Finally, it is argued that the parallelizable nature of the computation
proposed by the SSR framework, provides a method for capturing image
content in real-time applications.

2.3 Utilization of primitive visual information

In this section, properties of the environment, derived from primitive visual
features, are investigated and the role of primitive visual features in the
general context of the description of visual content is discussed.

2.3.1 Properties of the environment

In this subsection, the relation between primitive visual features and proper-
ties of the environment, which can be extracted from them, is discussed. In
this discussion, primitive features are classified in two broad categories: (a)
those related to apparent surface reflectance properties and (b) those related
to the geometry of surfaces represented in images, mainly observed through
spatial changes of luminance or color in the image.

Visual features that reveal surface qualities are commonly used by the
human visual system to extract information concerning the three-dimensional
structure of the environment. In addition, the same information constitutes
a strong visual cue for the perception of surfaces as concrete objects. Artists,
have for long used color information to add the sense of depth and structure
in paintings. The use of shading, reflections, and color change as three-
dimensional cues in paintings, where much of the non-critical information is
often abstracted, indicates their strong perceptual significance.
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As discussed in the review of early vision physiology, perceptually com-
patible reparameterization of colorspace can yield a grouping criterion for
image elements that belong to the same surface. Theoretically, given full in-
formation about the illuminant and the receptoral response, an observer can
understand the absorption spectrum of an observed surface. Color constancy
can simulated using a spatial filtering mechanism [54], in combination with
the speculation that the human brain learns known patterns of illumination
in order to yield a more efficient light interpretation [65, 14, 15]. This con-
stancy assists observers in the recognition of an object from its color, despite
changes in scene illumination. Thus, color information contributes not only
to the segmentation of images into regions corresponding to different physical
surfaces, but also to the recognition and retrieval of visual information. In
Chapter 5, the significance of color as a cue for visual information retrieval
is revisited.

Surface reflectance information provides structural cues concerning the
three-dimensional structure of the observed surface. In Computer Vision,
the topic of Shape from Shading refers to methods for extracting local surface
geometry information from the change of apparent luminance of a surface (see
[9] for an overview). Another well known approach that takes surface shading
information into account is edge labeling, where such information is integrated
with edge detection results. The visual tokens are accepted by a grammar
whose predicates allow the deduction of realistic combinations, thus denoting
which feature combinations correspond to physical objects. However, since
the total understanding of such visual components requires information on
spatial arrangements, of features, this topic is further discussed in the next
chapter.

Another cue about the structure of observed scenes comes from the ob-
servation of color across a scene. In particular, apparent color yields a depth
cue for large distances. For example, the observer is assisted in the coarse
estimation of the distance of the mountains illustrated in the left image of
Figure 21, if the change in color saturation is correctly interpreted. Aerial
or atmospheric perspective refers to certain systematic differences in the con-
trast and color of objects that occur when they are viewed from great dis-
tances. Distant surfaces typically exhibit reduced contrast in images, due
to additional atmosphere through which they are viewed (also evaporated
water, dust, or pollutants participate in this phenomenon). Differences in
the chromaticity of the atmosphere are related to the absorption spectrum
of air and non-uniform scattering of light with respect to its wave-length.
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Figure 21: In the original image (left), the reduced contrast and increased
presence of blue color components, at image regions depicting distant sur-
faces, add to the impression of depth in this picture. The middle image
illustrates color saturation and the last image shows the Blue channel.

The two rightmost images of Figure 21 show the color saturation (middle)
and the “blue” (RGB) channel. As expected, the farther the surface the less
saturated and more bluish it appears. Thus, the saturation and blue channel
in combination can provide an empirical cue towards depth perception.

Visual features derived from local structure rarely capture visual content
alone. However, features of higher dimensionality may be derived from their
grouping. The grouping of edgels into edges is one of the most common
structure descriptors used in the morphologic description of images. An
indication of its high relevance to the formation of visual perception is its
derivation from an early visual stage by simple, complex, and hypercomplex
cells in the striate cortex. The analysis of structural information gives rise
to the detection of lines, curves, and corners in images, which are primitive
features widely used in image processing and understanding. A framework
for the computation of some of these tokens can be found in [66].

Furthermore, the grouping of edgels that form the boundary of an object
yields a contour which represents the silhouette of a visual entity. The bound-
ary of this silhouette is often used as a powerful cue in image retrieval by
content. In addition, the spatial arrangement of image structure and orienta-
tion characterizes image terture, which can yield cues for surface recognition
and three-dimensional information extraction. Feature grouping is explored
further in Chapter 4, while the spatial arrangement of primitive features is
considered in the next chapter.
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2.3.2 Visual information description and management

In this subsection, the conclusions drawn from Section 2.3.1 are taken into
account in a discussion of visual content description. Descriptions of image
content are at the core of content-based image retrieval systems and the in-
formation represented such descriptions is crucial, as it forms the basis for an
accurate response to similarity queries. In this subsection, primitive features
or tokens of content description are discussed and scale, as an attribute of
such tokens is considered.

Description tokens The visual tokens derived from the class of primitive
features fall under two main categories. The first is derived from the orga-
nized perception of picture elements with similar color properties and the
second from the grouping of points contributing to the definition of form. It
should be noted that the use of the term “token” does imply or not require
that there exists a physiological symbolic representation of this information.
The adopted perspective is utilized in the context of machine assisted vi-
sual information browsing and retrieval, for which an analytic formulation of
related visual components is often preferred as discussed in Section 5.2.2.

The description of image regions with respect to their apparent reflectance
properties, or color, is related to image segmentation. A large number of
color image segmentation methods exist in the literature (see [75] for an
overview). The assumption underlying this approach to image description is
that a region of picture elements exhibiting similar color properties belongs
to the same physical surface, and thus to the same visual entity. Taken a
step further, this assumption is commonly adopted by content-based image
retrieval techniques, in the pursuit of images containing regions of similar
color and preferably in a similar layout. An investigation of the conditions
under which these assumptions hold, as well as the limitations of the derived
methods, yields results that are useful in the refinement of query formulation
based on color features.

Color features may be classified using one of two approaches:

e the first is based on surface reflectance information and, therefore, color
features are classified in terms of their surface absorption spectrum.

e the second is based on a phenomenological description of perceived
color.
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In this subsection, only the local properties of color are examined. The visual
information related to spatial arrangements of color features are discussed in
the next chapter.

The distinction of physical surfaces in terms of their spectral properties
requires that image pixels corresponding to a given surface are classified in
the same set and that this set does not contain other members. Theoretically,
if the extraction of this information from a 3-color band image is possible,
then surfaces of the same type can recognized in images acquired under
different conditions of illumination. However, if the scene illumination is
unknown, then color information alone is not enough for the computation of
the surface’s absorption spectrum.

The study of color invariants shows that the effect of shadows, reflections,
or non-uniform illumination can be eliminated from an image description
by transforming the colorspace into a one that exhibits color constancy, or
otherwise is invariant to such phenomena. An example of such a case was
illustrated in Section 2.2.3, for the detection of color edges and blobs. Never-
theless, the problem of retrieving surfaces of similar spectra from a database
cannot be solved without the definition of scene illumination for each image
in the data set. The perceptual mechanism that enables the approximately
constant perception of surfaces under different illumination conditions, re-
ferred to color constancy, supports the recognition of objects under varying
illumination patterns. Although methods that perform color normalization
exist, they do not work for all possible illuminations. Approximations of
color constancy can be devised if a set of familiar illumination or reflectance
spectra is assumed [65].

A phenomenological approach to the same problem would represent the
color information as encountered in the image. Image pixels are represented
by their nominal colorspace values and color is compared given a color dis-
tance metric. However, if color characterization aims at a representation
that is relevant to human perception, some color contrast phenomena should
also be taken into account. As discussed earlier, color perception cannot be
defined on the basis of image elements, but also requires a number of other
surrounding cues. In an accurate simulation of color perception, such factors
should be taken into account.

Primitive features related to the geometry of surfaces represented in im-
ages (or gradient-derived primitive visual features) are derived from spatio-
temporal changes in apparent color or intensity. Although features such
as edges, corners, line endings etc. cannot capture structure on their own,

58



higher level features, emerge from specific arrangements of primitive fea-
tures. Examples of higher level features are contours and perceptual groups
(see Chapter 4).

Scale attribution of visual tokens Primitive features of image structure
constitute a fundamental component of visual content. If the scale of these
is known, the problem of estimating properties of observed structures, and
thus obtaining a more expressive content representation, is simpler to solve.

Since primitive visual features can be observed at different scales, it is
expected that classifying them, with respect to scale will improve the expres-
siveness of their representation and facilitate the refinement of visual queries.
The study of the stimulus representation in the LGN, implies the rapid per-
ception of motion and coarse scale image structure and the relatively slower
perception of color and detailed image structure. The SSR framework in-
troduced in this chapter contributes to the extraction of scale information
about primitive features. Furthermore, using the SSR information extracted
from coarse and fine ranges of scale can be individually processed, stored,
and retrieved in a simple way and at a low computational cost.
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3 Spatial Arrangements of Primitive Visual
Features

The central theme of this chapter is the spatial arrangement of primitive vi-
sual features. Specifically, the information contained in spatial arrangements
of primitive visual features is discussed and its role in the perceptually rele-
vant description of visual content is considered. The derived descriptions are
applied to the task of content-based image retrieval.

In the first section, properties of spatial arrangements of primitive features
are presented. In addition, it is shown that image regions that exhibit a
constant spatial arrangement of primitive features have descriptive value.

In the second section, perceptually relevant representation of spatial ar-
rangements of primitive features is considered. First, the required properties
of such a representation are discussed. Second, a framework for the represen-
tation of spatial arrangements of primitive features is proposed and modeled
from a computational point of view, with emphasis on its storage capacity re-
quirements. Finally, the scale-summarization of the discussed representation
is proposed as a method for the reduction of memory capacity requirements,
which also facilitates the classification and normalization of spatial arrange-
ments of primitive features with respect to scale. The perceptual relevance
of the proposed framework is based on the scale-normalization and uniform
representation of scale-varying spatial arrangements of primitive features.

The third section deals with the generic description and similarity com-
parison of spatial arrangements of primitive features. Conclusions are drawn
that are used to formulate methods for the extraction of image regions that
exhibit a constant spatial arrangement of primitive features, by grouping
local descriptors of such arrangements. The perceptual relevance of the ex-
tracted regions is based on the scale-summarized representation introduced
in the previous section.

In the fourth section, higher level descriptors of spatial arrangements of
primitive features are proposed and their descriptive power is demonstrated.
Emphasis is placed on the mapping of attributes of such descriptors onto im-
age properties that correspond to a description, of the spatial arrangement of
primitive features in the image, that is comprehensible to a human observer.

Finally, the application of the derived methods to the task of visual in-
formation browsing is described and demonstrated in a content-based image
retrieval experiment.
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Figure 22: Some visual interpretations of the term stripes.

3.1 Introduction

In this section, the contextual dependence of the information contained in
spatial arrangements of primitive visual features is shown and the role of
non-visual cues in the acquisition of such information is discussed. Next,
a phenomenological approach towards the description of image content is
considered. In this context, it is argued that the extraction of image regions
that exhibit a constant spatial arrangement of some feature is of significance,
in a perceptually relevant description of image content.

Context-related description The descriptional value of spatial arrange-
ments of primitive features is supported by the existence of specific linguistic
terms. Explicit terms exist for the description of structural feature arrange-
ments. Examples are: (a) repeated, sharp, with stripes, with dots, etc.
for the description of patterns, (b) warm, cold, etc. for the description of
color, (¢) smooth, rough etc. for the description of gradients, (d) horizontal,
vertical, diagonal etc. for the description of orientations, and many others.
Often these terms are generic and several visual samples, consisting of dif-
ferent primitive features, could fit the description. For example, Figure 22
illustrates some examples fitting the description “stripes”. Thus, the charac-
terization of spatial arrangements of primitive features should not be generic.
It is possible that specific and contextually-related known patterns are re-
quired in the goal-driven description and retrieval of spatial arrangements
of primitive features, instead of generic formulations that cover the whole
spectrum of possible arrangements (see also Chapter 5). Furthermore, an
exhaustive representation of the elements of spatial arrangements of primi-
tive features would support the extraction of any type of characterization,
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but would be rather unrealistic given finite computational resources.

Phenomenological description A context-free or, otherwise, phenomeno-
logical description of visual content is of interest, since a generic approach
towards visual information modeling would theoretically be applicable to all
types of images. Although such an approach is quite applicable in the study
of sensory information, its adoption for the purpose of studying perceptual
features raises a number of issues. These are:

e The perception of spatial arrangements of primitive features is pro-
duced by perceptual means, which are context-related. Furthermore,
the perception of such arrangements is not defined solely with respect
to appearance and often depends on image type and observation goal.

e Context-free phenomenological description of visual content can be
more abstract than often required. A typical example of this is the
description of images with respect to the layout of some feature (e.g.
color). Many images that are intuitively dissimilar may match a certain
description.

e Most often, context is required in visual information related applica-
tions, in order for visual information to be combined with other types
of information. In this case, the significance of each component is task-
dependent.

Thus, it is not a trivial task to discriminate spatial arrangements of prim-
itive features based on purely visual characteristic properties. Another rea-
son for this is that the intuitive notion of phenomenological, or context-free,
description of visual content still inherits perceptual cues. For example, a
characterization of image content with respect to color or texture typically
focuses on image regions of coherent feature expression in the image (re-
gions of approximately constant color or texture). This characterization is
strongly related to surfaces or objects encountered in the three-dimensional
environment. A discussion about an information-theoretic approach to the
description of visual content that makes possible the extraction of coherent
image regions, with respect to some feature, is presented below.

Information theoretic description In the previous paragraph it was
argued that the pure phenomenological description of spatial arrangements
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of primitive features is subject to several constraints. However, such a phe-
nomenological description is of interest for the following reasons:

e Regardless of the approach adopted for the description of image con-
tent, issues of representation economy arise from the need to efficiently
manage (visual) information. Even in the absence of perceptual insight,
the storage, compression, and coding of images typically benefit from
an information-theoretic study of their content.

e Given that little is known about several physiological and conceptual
aspects of visual information representation information theory pro-
vides an objective approach to the description of visual content.

e Although a pure phenomenological description does not capture context-
dependent image content, it can be intelligently used in content-based
image retrieval applications. In many cases, the comprehension of vi-
sual information involved is not a requirement for the retrieval of similar
visual content®.

The notion of order or constancy is understood to be intrinsically related
to the formal definition of information (see [99]). Intuitively, order is in-
versely proportional to description length. Thus, given a data set, the most
expressive description is the minimum in length. Consequently, constancies
in a data set can be exploited towards an expressive or length-efficient de-
scription. From this perspective, measures of order, such as entropy, can be
used to reveal ordered information “entities” in images. To illustrate this
point, a classification of image regions, with respect to information order,
was carried out and is described below.

In the following example, an image was “described” by a machine learn-
ing method that attempts to hierarchically describe a data set, making use of
classifiers. The image was hierarchically partitioned in such a way that each
cut would be optimal in decreasing the global information entropy of the
description. Qualitatively, the partitioning process attempts to minimize the
distance between two points in the same cluster and maximize the distances
between points in different classes. This process yields a partition or cat-
egorization tree corresponding to the selected partitioning classifier at each

6In the same manner that a text retrieval system does not necessarily comprehend
keywords.
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Figure 23: Segmentation of an image into coherent intensity regions (see
text).

node. The partition tree constitutes a hierarchical image description. Sim-
ilar approaches are encountered in unsupervised machine-learning methods
and conceptual clustering. In this example, the information entropy-based
partitioning criterion or category utility was selected, as in [28].

The segmentation was achieved through the following procedure: (a) the
image was represented as a graph (one node per pixel), in order to capture the
spatial relationships between picture elements, () close neighbors were linked
to each node and the minimum spanning tree of that graph was computed,
(c) the tree-structured graph was recursively partitioned using a branch and
bound procedure, which selected each time the cut that would generate the
most ordered partitioning. When the order stops increasing, the process
is terminated for that recursion node. Figure 23 illustrates the acquired
partitioning result, corresponding to a hierarchical classification of visual
information with respect to information order. The leftmost (original) image
of the Figure 23 consists of three “clouds” of points, the members of each
one illustrated using a different grayscale value.

Analogous segmentation results can be achieved with other types of fea-
tures, yielding a quantitatively coherent spatial arrangement. Figure 24 illus-

64



Figure 24: Segmentation of an image into coherent local scale regions.

trates the segmentation of image regions with respect to local scale, defined
by local structure and quantified using the blob detector of the previous
chapter, as formulated in Equation (8). The image is segmented into regions
of coherent nominal node values, representing the elements of the lowest
informational order.

The adoption of this approach, as a generic methodology of spatial clus-
tering in image segmentation problems, is prohibited by its computational
(O(N?%log N), where N is the number of pixels). Later on in this chapter,
more efficient computational methods for spatial clustering of visual infor-
mation are discussed.

The lack of disorder can also be characterized by the constancy, with
respect to its nominal expression, of some feature in the image. As there
is no nominal difference between elements of a coherent region, they cannot
be discriminated. Thus, another segmentation, resulting in more ordered
segments does not exist. The experiment indicates the descriptional value
of coherent structures, which are typically encountered at coarse scales in
images. This indication complies also with the segmentation results based on
minimum length descriptions [60] and color [55]. These results indicate that
the most informational description classifies features into nominally coherent
subsets of curvature.

Discussion The relation of the constancy of spatial arrangement of
some feature to a perceptually relevant description of visual content provides
insight into the visual system’s “strategy” of obtaining a raw visual percept.
The rapid estimation of content at coarse scale and its subsequent refinement
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based on fine structure is currently a speculation in physiology and psychol-
ogy. Its application has boosted the computational efficiency and increased
the effectiveness of related artificial visual competences. Some characteristic
examples are found in the computation of optical flow [106] and the tracking
of points in image sequences [105], where coarse scales are utilized in the
extraction and anchoring of features.

The description of visual content using informationally coherent regions of
interest, or visual entities, is also interpretable from an evolutionary perspec-
tive. Patterns met in natural environments exhibit order in various forms,
such as symmetry, fractals, and constancies [1]. The speculation that visual
systems evolve towards the optimal perception of the environment justifies
attempts to describe visual content in terms of visually constant regions, since
such regions are correlated with elements in the environment. In this con-
text, the description of visual entities can be seen as a process of constancy
estimation. From the Gestalt perspective, gathering of visual features with
respect to their appearance (or apparent movement) and location constitutes
a form of perceptual grouping that leads to the perception of visual entities.

Emphasis is given to the fact that although an information-theoretic de-
scription of visual content seems to be compliant with the intuitive tendency
to describe visual information in terms of nominally constant elements, both
quantitative and qualitative knowledge, concerning the characterization of
visual elements, is missing. Specifically, not all of the features involved in
such constancies are known. Also, the metric properties of feature representa-
tion and similarity remain mostly not estimated. In addition, context-based
knowledge might be involved in this task.

3.2 Representation

In this section, the representation of spatial arrangements of primitive fea-
tures is considered. A representation framework for such information is for-
mulated and computationally optimized with respect to memory capacity.
In addition, the suitability of the proposed framework for the representa-
tion of spatial arrangements of primitive features with respect to scale is
demonstrated.
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3.2.1 Requirements

In this subsection, the requirements for the representation of spatial arrange-
ments of primitive features are discussed. Initially, qualitative requirements
are discussed dealing with the type of represented information. Next, quan-
titative requirements are considered. The qualitative requirements that are
presented concern the type of the representation. Quantitative requirements
concern the memory capacity that is required for the proposed representa-
tion.

Representation type From the discussion in the first section of this chap-
ter and the review of primitive features in the previous chapter, the follow-
ing qualitative requirements for the representation of spatial arrangements
of primitive visual features, are derived:

Multiple channels Independent information, such as color and direc-
tional spatio-temporal change, originate at the retina and is propagated to
the primary visual cortex, where different “information channels” are in-
dependently represented. The components of visual content, derived from
such information, can be perceived in isolation by observers. Thus, two im-
age regions may be similar with respect to a visual component (e.g. color),
but dissimilar with respect to another (e.g. orientation). For example, in
Figure 25, two pairs of spatial arrangements of primitive features are illus-
trated. Both of them differ with respect to one visual component, but are
similar with respect to another. More specifically, the left pair differs in the
arrangement of local orientations, but is quite similar in the arrangement of
intensity values. The right pair differs in the intensity values, but is similar
with respect to their arrangement.

Given the task of content-based image retrieval, it is required that a per-
ceptually relevant representation be capable of capturing differences and sim-
ilarities, such as the ones described above. Therefore, such a representation
should support the separation of different visual components corresponding
to spatial arrangements of primitive features. In order to achieve this goal,
a multi-channel representation is proposed, where each channel corresponds
to the description of a certain arrangement of a particular primitive feature.

Multiple scales The visual information extracted from the observation
of spatial arrangements of primitive features is dependent on scale in two
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Figure 25: Two pairs of spatial arrangements of primitive visual features.
The members of each pair exhibit differences and similarities (see text).

ways. First, the primitive elements of an arrangement are dependent on the
range of scales within which they may be observed. As discussed in the
previous chapter, an informative description of primitive features requires
the consideration of multiple image scales. Second, the spatial arrangement
of primitive features is intrinsically dependent on scale. In content-based
image retrieval, regions of interest ought to be characterized as similar when
they differ solely with respect to scale (e.g. texture gradients [33]). Thus,
one may conclude that spatial arrangements of primitive features should be
represented at multiple scales.

Locality The computation of certain primitive features requires the
local (over a small spatial neighborhood) consideration of feature expression
in the image. For example, the perception of edges, corners, and orientation
is intrinsically defined within the extent of some spatial neighborhood. In
addition, color perception is also determined within some spatial extent.

Thus, local descriptors of primitive feature arrangements are required in
order to represent the arrangement of primitive features at each image point.

Conclusion For the reasons stated above, a representation for spatial
arrangements of primitive features is proposed that is based, on local de-
scriptors. Each image point is associated with a local descriptor, which is
characterized by its sampling aperture. By varying the size of the aperture
a “scale-space” of local descriptors is defined.

Representation requirements In this paragraph, a rough estimation of
the memory capacity required to store a multiscale local descriptor represen-
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tation in memory is presented.

Let some visual field occupying an area A be expressed in some area
measurement unit u. Let D be the density of photoreceptors in some visual
system, for visual field A. D is defined as the number of photoreceptors per
unit area u. An acquired image then consists of A - D picture elements. If
the signal is simultaneously represented at S scales then the number of data
elements required for the multiscale representation of the signal is S'- A - D.

If a non-uniform spatial arrangement of photoreceptors is considered (e.g.
as a function of eccentricity), then the previous estimation can be reformu-
lated as: S [ A - D(Z)dZ, where Z is the location of an image point. If
a non-uniform density of photoreceptors over scale is also considered, then
the number of the multiscale representation elements can be estimated as:
fOS J® A D(Z,s)dids. Each point (Z,7) in this “scale-space” X, will be de-
noted by X (Z, 7), where 7 is the logarithmic scale parameter, defined in the
previous chapter.

The information complexity of each channel depends on the type of fea-
ture represented. The dimensionality of color is 3, while change (motion and
gradient) is described in two dimensions (intensity and direction). As an
example, if the features represented are color and luminosity gradient, which
require three and two data elements for their representation respectively, the
memory capacity of SS§ would be:

(3dcolor + (dorientation + dgrad_values)) [) / A- D({f, S)dfdsa (15)

where d..or 1S a representation element capable of acquiring as many different
states as the color-band tones, and d,;;entation the number of orientation se-
lectivity channels. dgrqa_paiues 15 @ data element capable of acquiring as many
different states as the granularity of gradient-magnitude value representation.

If instead of the raw primitive feature information, at each image point
(%) and for all scales (5), the local arrangement of primitive features were
to be represented, then for each point (Z,7) of X, a data structure DS
would be required. This data structure would store the representation of the
description provided by the local descriptor, for each image point ¥ and at
some scale S. The description would provide information about the feature
arrangement, within the local descriptor’s spatial neighborhood or sampling
aperture.

As in the case the (standard) linear Scale-Space, where each scale is as-
sociated with some value of 7, the area covered by the sampling aperture of
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a local descriptor at some scale s is defined as a function of 7, and, thus, this
area can be denoted as a(7). The memory capacity of this data structure for
one element, over a spatial neighborhood of area «(7) would be DS(a(7)).
This yields:

/TSO /fDS(a(T)) - A D(%,s)didr (16)

for the total memory capacity of X.

Given image sizes typically encountered in image databases (e.g. 512 X
512), the total memory capacity of X grows considerably. In the case of
database images of great variety, most often the image resolution is constant.
In the (standard) linear Scale-Space all scales exhibit the same resolution.
Thus, function D(Z, 7) will be considered as constant.

Conclusion The required memory capacity for the proposed representa-
tion is substantial and, therefore, unsuitable for typical computational re-
sources. The ability of biological organisms to cope with such computational
and memory requirements, resulting in a remarkable speed of comprehending
visual information, is due to several factors:

e The neural circuitry in LGN facilitates the parallel acquisition of the
elements of X.

e The acuity of representation and processing of visual features is not
constant with respect to location Z and scale / LGN layer S. Thus, a
different computational effort is required for the analysis of elements of
X at each scale.

e The scale-selectivity and individual processing of separate LGN layers
indicates that, for each feature type, feature extraction is restricted to
a subset of layers.

The representation of spatial arrangements of primitive features with re-
spect to scale raises several issues besides that of memory optimization. In
the next subsection, such issues are discussed and the SSR is utilized for the
optimization of memory requirements.

3.2.2 Scale-summarization

In this subsection, scale-related representational requirements of spatial ar-
rangements of primitive features are considered and a framework for repre-
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senting this information is proposed, based on local descriptors. The frame-
work is then optimized with respect to memory capacity requirements. The
suitability of the representation with respect to the requirements stated in
the previous subsection, is also demonstrated.

Problem Statement - Goals In this paragraph, the representation re-
quirements concerning the generation of a perceptually relevant description
of spatial arrangements of primitive features are discussed. These are classi-
fied as descriptional and computational requirements:

Descriptional requirements This class of requirements concerns the
expressiveness of the acquired description. Requirements related to feature
scale are: (a) scale-invariance and (b) classification of visual content with
respect to scale. The interest in a scale-invariant representation of visual
content is twofold. First, scale varying patterns could be described in a
scale-invariant fashion and, thus, more easily grouped. Second, comparison
and matching of similar patterns observed at different scales in images could
be achieved. The classification of visual content with respect to scale achieves
to the following: (i) the attribution of visual features with the property of
scale can facilitate scale-specific queries that focus on abstract or detailed
visual content. (i) individual processing and description methods can be
applied to different scale ranges, if required by some application.

Computational requirements The computational requirements con-
cern mostly the optimization of the representation space, computational
time, and reduction of complexity. In specific, the large representation space
coarsely estimated in Section 3.2.1 strictly prohibits the simple generation
of such an exhaustive representation. Finally, the ability of parallely imple-
menting the representation process, would reduce execution time.

Framework Formulation In this paragraph, a framework for representing
spatial arrangements of primitive features at multiple scales is introduced as
an extension of the SSR, introduced in Section 2.2.

Let hs(Z) be some local descriptor over a sampling aperture of s. The
data structure DS, which represents the spatial arrangement for each image
point, consists of an “image” with dimensionality equal to 2 - dim(hs). By
varying the sampling area size, a scale-space of such images is defined as
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SS(#, 1), where 7 = logt is the logarithmic scale parameter, and & the
spatial coordinates. If w(Z, 7) is the sampled feature response function over
scale for an image point, or in the context of the SSR the scale-selector, then
by summarizing content contribution of neighboring scales, given

Xssr(Z,7) = / w(#, 7)DS(i, 7)dr, (17)
a dimension reducing, representation of content over a neighborhood of scales
is obtained. The proposed accumulation is an extension of the SSR for the
scale-space X. Variations, such as Scale Focusing, are transparently applied
by transforming the scale normalized response w as in Equation (6). There
are several points to clarify in the above framework formulation. These are:
(a) the definition of the nature of the local descriptor h, (b) the sampling of
features by local descriptors, and (¢) the summation of local descriptors.

Local descriptor The selection of the local descriptor hy is closely re-
lated to the feature represented. In a generic approach to the representation
of spatial arrangements of primitive features, a statistically unbiased descrip-
tor is required. In this discussion, local histograms of features are used. In
[53], the expressiveness of color and local intensity histograms is demon-
strated, along with the ability of this representation to implicitly encode
structure. Naturally, the histogram does not capture the spatial arrange-
ment of elements inside the spatial neighborhood. Although it certainly can
be extended to do so, e.g. in [40], it is observed that the local description
of intensity and orientation can capture significant descriptional aspects of
local image structure. Furthermore, the independent representation of prim-
itive feature matches the “multiple-channel” representational requirement,
discussed in the previous subsection.

The proposed formulation facilitates the transparent application of the
representation to features of arbitrary dimension. The spatial arrangement of
elements can also be captured by other types of histograms, such as the ones
of filter responses, and spatial frequency coefficients. Since these descriptions
are also based on local samplings, the extension of SSR that is presented
forward, will still be compatible with such alternative local representations
if: the function of description summation is defined, as it is discussed below.

Feature sampling Sampling of features for the generation of local de-
scriptions is Gaussianly weighted, with respect to distance from the central
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pixel. Furthermore, the arrangement of neighboring local descriptions is
overlapping and dense (a local descriptor per image point). An observation
concerning the “images” of such a scale-space is that they exhibit smooth
spatial variation, since neighboring histograms overlap.

Descriptor summation Finally, in order to complete the formula-
tion of the proposed scale summarizing framework, the summation of two
descriptors has to be defined, in order for the integral in Equation (17)
to be computable. If local descriptors can be expressed in vector format
then their linear accumulation is used for the application of the SSR frame-
work. For the case of local histograms, this accumulation is defined as:
wy + hy + wsy - hy where h; is a local histogram, and w; a weighting that will
be used in a similar fashion as the “scale-selector” in the SSR. Depending
on the dimensionality of the sampled feature (e.g. 3 for color, 1 for intensity
and orientation), each histogram bin will consist of dim(hs) vector compo-
nents. The accumulation is defined as for weighted vector accumulation.
For example, if hcolor = {(UOO; Vo1, ng), (Ulg, V11, 1712); . (UnO; Uni, Ung))} and
color = 1 (V00s Uo15 V02)s (V105 Vi1, V12), oo (Vpgs Vit Una)) } tWo color histograms,
then their accumulation is: {(w-voo+w' - v{y, w-ve1+w' - vj, W' -Vjy+w-vg2), ...},
where w and w’ values of the scale selector.

By using an appropriate scale-selector, the scale-summarization of local
descriptors shall yield a result for each image point, in which the contribution
of each scale is proportional to the existence of the sampled feature at this
scale. The scale-summarized representation favors feature samplings which

correspond to scales of salient feature existence.

Framework Instantiation In this paragraph, the instantiation of the pro-
posed framework for the primitive features of intensity, color, and orientation
is presented. The descriptional properties of this representation scheme are
also discussed.

A significant, difference between the variation of image scale and the his-
togram sampling aperture is primarily noted. When an image is Gaussianly
smoothed, in order to create the linear Scale-Space of the image, the pix-
els values are changed. In contrast, when varying the histogram sampling
aperture, pixel values are retained. Thus, primitive features are sampled as
encountered in the original image.

Representing orientation arrangements over scale would require a his-
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togram for each scale-space element. Thus, for an image of N pixels, and
an analysis of S scales, the total representation cost would be N - S - Opipns
floating point memory elements, where Oy;,s the number of histogram bins.
The orientation histogram represents a discretization of orientation angle in
the interval 0 and 7, with the number of bins typically varying from to 8 to
16. A corresponding representation for color would require three-dimensional
histograms for each data element. An upper bound, with respect to typical
imaging capabilities of modern computers, for the discretization of each his-
togram axis is 256, resulting in a number Cj;,, = 2%* floating point elements
of for each scale-space element, and thus N % S s Chps’ .

Figure 26 presents an image in which a horizontal scan line is marked
and portions of the multiscale histograms representation X for the intensity
feature are shown. In particular, Gaussian weighted histograms were com-
puted for each image point residing on the marked horizontal scan line, for
all scales. Histograms of a small sampling aperture (a fine scale of X) are
illustrated perceptively tiled, in the left graph. In this graph, the horizontal
axis indicates spatial coordinates along the marker line and the oblique axis
maps intensity histogram bins. As observed, the small sampling aperture
accurately captures the intensity value change in the image. The procedure
is repeated for histograms of broader (a coarse scale of X') sampling aperture
capturing a coarser and more constant result, but with a decrease of preci-
sion®. Here the term “more constant” refers to the fact that the histograms
corresponding to zebra points have more similar structure, than the previ-
ous case. The same holds for the background points as well. In the above
example, 8 sampling apertures, or image scales, were used. Their radius was
determined by the value of the, exponentially increasing, logarithmic scale
parameter.

Although the coarse sampling of the image abstractly discriminates be-
tween the two image intensity patterns (the zebra vs. the background), it is
neither scale invariant nor accurate. Furthermore, if a pattern exhibits scale
varying behavior, two equal-area spatial samplings can be fundamentally dif-
ferent. The intensity of this dissimilarity is maximized when the sampling
aperture of the histogram is narrower than the local spatial scale, e.g. smaller
than the local texton size. A straightforward method for the achievement of

"Typically, this size can be reduced using a representation that takes advantage of
empty bins [71].

8Note that in the graphs the maximum histogram value is not 1 for reasons related to
the graphical presentation of this data set and not conceptual ones.

74



(e

st

il
Ll

i

Figure 26: Fine and coarse local histograms of intensity computed along a
scan line in an image (see text).
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scale-invariance would be to vary the histogram sampling aperture, propor-
tionally to local spatial scale. In other words, to explicitly select a histogram
sampling aperture size. However, this approach inherits the computational
problems discussed in the previous chapter.

In the following experiment, the SSR is utilized in the adaptation of the
histogram representation to local pattern scale. Figure 27 illustrates the his-
togram representation of the same image line (the marked horizontal line of
the image in Figure 26) for scale-summarized histograms In the experiment.
eight image scales were used for the summarization. In this case, summariza-
tion was executed using the ranges of coarse scales, in particular scales 4 to 8,
out of the total of eight scales. It is empirically observed that histogram sam-
pling areas adapt to the coarse structure pattern (the zebra). As observed
in the second graph of Figure 27, the representation: (a) represents intensity
patterns in a spatially constant fashion, (b) normalizes the representation of
local descriptors with respect to scale, (¢) is more accurate compared to the
coarse representation of Figure 27, with respect to the discrimination of the
foreground and background arrangement. In the next subsection, this result
is further evaluated through the clustering of similar histograms.

In order to demonstrate the generic framework formulation, the summa-
rized histogram description is computed for the orientation feature. The next
example illustrates scale-summarization over all scales. Despite changes in
the scale of gradient observation, the derived representation remains smooth.
In the graphs illustrated in Figure 28, each vertically tiled histogram was
weighted with respect to the magnitude of scale-summarized gradient, in or-
der to highlight structure-defining arrangements. In the graphs, the highest
histogram value (1) corresponds to the darkest gray level (black) and the
lowest (0) to the brightest (white). Other gray levels are linearly distributed
in this interval. For the experiments eight orientation histogram bins were
used. Furthermore, it is noted that the graph illustrated should be conceived
as cylindrical, rather than a flat surface, since orientation histograms are
cyclic. In the graphs, the vertical axis maps eight orientation values from 0
to 7 (from top to bottom).

Finally, the scale-summarization of color histograms can be also per-
formed using the proposed framework if colorspace and color mixture func-
tion are determined. In general, any type of vector encoded feature may be
represented, and scale-summarized using the same method, if the summation
of two descriptors is defined.
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Figure 27: Scale-summarized and scale-focused local histograms of intensity

computed along the marked scan line of the image presented in Figure 26
(see text).
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Figure 28: Scale-summarized histograms of orientation, computed along the
scan lines shown in images on the left (see text).

Conclusions From the discussion in this subsection it can be concluded
that the scale-summarization of local descriptors contributes to the:

e dimensionality reduction of the multiscale arrangement representation
space, which preserves informationally and perceptually significant as-
pects of visual content, while reducing memory capacity requirements,

e classification of spatial arrangements of primitive features with respect
to scale, as discussed in the previous chapter, and

e normalization of feature of spatial arrangements of primitive features
it with respect to scale.

Regarding the dimensionality reducing property of scale-summarization,
the SSR can be used in the computation of a few characteristic “snapshots”
of this representation space, by summarizing local descriptors over certain
scale ranges, as in the previous chapter. In addition, the method is com-
putationally simpler than explicitly selecting an optimal histogram sampling
aperture, and can also be implemented in parallel, as discussed in the previ-
ous chapter.
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3.3 Description

In this section, the scale-summarized representation formulated in Section 3.2
is utilized in the extraction of image regions that exhibit constant primitive
feature arrangement. This extraction is found useful in the description of
image content.

In order to extract image regions of constant spatial arrangement of prim-
itive features using local descriptors, similar ones are clustered. However, in
order to estimate the similarity of local descriptors a metric is required and,
thus, formulated. This clustering mechanism is utilized in the demonstration
of the ability of the SSR, to scale-normalize local descriptors.

The remainder of this section is organized as follows: in Section 3.3.1,
descriptional requirements are discussed. Next, in Section 3.3.2 the similarity
of local descriptors is discussed and a dissimilarity metric is formulated. In
Section 3.3.3 region extraction, through clustering of local descriptors, is
demonstrated.

3.3.1 Requirements

In order to automatically identify image regions of constant spatial arrange-
ment of primitive features, a method for their extraction has to be formu-
lated. Thus, a formalization of this constancy is required that is based on
the available representation for spatial arrangements of primitive features.
Given a representation which is based on local descriptors, a similarity
metric is required, in order to estimate the visual resemblance of two spatial
arrangements. Two issues to consider in this effort are: (a) the use of a
representative, with respect to the type and dimensionality of information,
similarity metric and (b) the perceptual relevance of the adopted metric.

Representativeness It is required that the dissimilarity estimation method
should be compatible with the type and dimensionality of the represented in-
formation. A generic and commonly encountered approach to the problem of
the dissimilarity estimation of two distributions is to compute the distance
of the descriptions in vector state space. For example, by representing his-
tograms as vectors of dimensionality equal to bins, their Euclidean distance
would be d = \/Zfi”s(hl(i) — ho(i))?, with ¢ € [1,...,bins]. Other distance
measures may be used for this task, that may incorporate information about
human perception or domain knowledge. For example, if the grouping of
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color features is required a more perceptually relevant choice would be the
utilization of distance in the Lab color space. See also [21], for the case of
angular histograms.

Perceptual relevance Using the Euclidean distance for the estimation of
arrangement dissimilarity, for all types of local descriptors, consists a generic
approach. However, indications from vision [88] and other senses, such as
hearing [114], or even temporal perception [98], point to other non-linear
dissimilarity metrics. Besides the metric properties of a similarity assessment
method, qualitative issues are probably even more significant. For example
in Figure 27 the scale summarized local representations of intensity can be
intuitively discriminated into those corresponding to the foreground entity
and background, simply from the structure of the histogram.

In [90] several types of distances are reviewed with respect to their per-
ceptual relevance, however the issue is currently open. Some reasons are:

e The perceived similarity of local distributions can be influenced by
contextual factors, which are not represented in the local distribution
(e.g. surrounding or global image content).

e Similarity estimation can temporally vary.
e Similarity estimation can be observer and task specific.

It is thus understood that (a) a similarity estimation that overlooks such
factors would result in rather coarse, or even counter-intuitive dissimilarity
estimations and () that the identification of visual entities solely based on
local descriptor information is incomplete and approximate.

Conclusion From the discussion above it is concluded that the formula-
tion of some perceptually relevant metric, for the dissimilarity estimation of
local arrangements, is inhibited due to missing information. Thus, in order
to demonstrate the enhancement of the description of spatial arrangements
of primitive features, due to the SSR and independently of the dissimilar-
ity metric, the following procedure is performed: the Euclidean distance is
used for the dissimilarity estimation, although inapproximate. The benefi-
cial effect of scale-normalization is demonstrated using this distance together
with another, statistically unbiased, method. Thus, if knowledge is provided
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that casts the refinement of the dissimilarity metric possible, then the results
could be updated using the new metric.

In the next subsection, the Euclidean vector distance is used as a local
descriptor dissimilarity metric. In addition, the gradient magnitude, based on
this metric, is formulated in order to visualize the estimated spatial change of
primitive feature arrangement. Subsequently, in Section 3.3.3 the estimated
dissimilarity is used in the clustering of local descriptors.

3.3.2 Similarity estimation

In this subsection, the spatial change of spatial arrangements of primitive
features is estimated, based on the Euclidean distance of local descriptors. In
addition, the effect of the scale-normalization of local descriptors is presented.

Local descriptor gradient Consider the task of weakly segmenting an
image with respect to pixel intensities, typically resulting in image regions of
approximately constant brightness. In this case, the image gradient magni-
tude is a visualization of the local dissimilarity of image brightness and, also,
an indication of which picture elements should be grouped together. Seg-
mentation algorithms exploit local dissimilarity information in various ways,
in order to extract the pursued regions. The underlying principle, is that
neighboring and dissimilar descriptions signify a segment of the separating
border in-between two adjacent segments.

Let H be a representation of the spatial arrangements of primitive fea-
tures of an image, for which one local descriptor is associated with each
image point. Such a representation can be an “image” for which a local
histogram of some image feature is computed for each point, as well as the
scale-summarized data structure Xssg, defined in Equation (17). An anal-
ogous to image gradient magnitude indication of local dissimilarity, but for
the case of the local descriptors of spatial arrangements of primitive features,
is the magnitude of the local description gradient magnitude, defined as:

- (3) -+ (3)

which extends the notion of image gradient magnitude, for local descriptors
that are represented in vector format.
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Due to the scale-dependence of spatial arrangements of primitive features,
arrangement disparities may occur at different scales. Thus, using histograms
of constant aperture may not be adequate for capturing such disparities. In
the following, some examples illustrate the local description gradient mag-
nitude for feature histograms of various aperture sizes. Subsequently, the
local description gradient magnitude for the scale-summarized local descrip-
tor representation (Xssg) is defined and utilized in the visualization of the
effect of scale-normalization.

In the following experiment, the multiscale local descriptor representation
X is computed for local histograms of intensity and orientation using seven
aperture sizes, or scales. Each scale is derived from the exponential increase
of the sampling aperture of local histograms. For each scale, the local de-
scription gradient magnitude is computed. Finally, the scale-normalization
of local descriptors is demonstrated by visualizing the local description gra-
dient magnitude for Xssr. The first goal of the experiment is to exhibit
that, due to the scale variation of spatial arrangements of primitive features,
image regions of constant primitive feature arrangement cannot be captured
using histograms of constant aperture. The second goal of the experiment is
to indicate that the scale-normalization of local histograms is a useful tool
for this capture.

In Figure 29, the local histogram gradient magnitudes for the seven scales
of X and for the feature of image intensity are illustrated. In the images gray
values are linearly mapped to values of |A|. The order of images is from
left to right and top to bottom. For the intensity histograms, 64 bins were
used. In Figure 30 the local descriptor gradient magnitudes for orientation
histograms are illustrated. The same scales and the same image were used
as in the previous example, but for orientation histograms of 8 bins. The
images are presented increasing in scale from left to right and top to bottom.
In the images, gray values are linearly mapped to values of |AH].

In Figure 31, the local descriptor gradient magnitude of intensity and
orientation histograms and for scale-summarized local descriptors is illus-
trated. The intensity and orientation histograms were composed of 64 and
8 bins, respectively, and seven scales were used for X'. The weighting of
scale-summarization was performed using the scale-selectors in Equations (8)
and (7) for intensity and orientation histograms, respectively. In the images,
gray values are linearly mapped to values of the local descriptor gradient mag-
nitude. Through this example, the effect of scale-summarization is demon-
strated to scale-normalize local descriptors. This effect is visualized by the
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Figure 29: From left to right and top to bottom: Original image and local
descriptor gradient magnitudes for image intensity histograms. Results are

presented in increasing scale order and gray values are linearly mapped to
values of |AH].

low values of the local descriptor gradient magnitude for image regions that a
exhibit a feature arrangement that varies solely at scale. The quantitatively
constant description of such, scale-varying, patters simplifies their detection
and extraction.

Finally, Figure 32 illustrates the local descriptor gradient magnitude for
color histograms. In this figure, original images and the local descriptor gradi-
ent magnitude are illustrated, for color histograms using 64 bins. Eight image
scales were used for the computation and gray values are linearly mapped to
values of the local descriptor gradient magnitude. The results demonstrate
the scale-normalization of local descriptors through the low values of the lo-
cal descriptor gradient magnitude, for scale-varying spatial arrangements of
color features.

Conclusion In this subsection, the scale-summarization of local de-
scriptors of spatial arrangements of primitive features was demonstrated to
scale-normalize such descriptors. The local descriptor gradient magnitude
was utilized for the visualization of spatial arrangement dissimilarities. The
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Figure 30: From left to right and top to bottom: Original image and local
descriptor gradient magnitudes for orientation histograms. Results are pre-

sented in increasing scale order and gray values are linearly mapped to values
of |AH]|.

Figure 31: Original image (left) and scale-summarized local descriptor gra-
dient magnitudes for orientation (middle) and intensity (right). Gray values
are linearly mapped to values of the local descriptor gradient magnitude.
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Figure 32: Original images (left column) and the local descriptor gradient
magnitudes (right column), for scale-summarized color histograms. Gray val-
ues are linearly mapped to values of the local descriptor gradient magnitude.
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benefit from this process is that a simple descriptor of the change of spa-
tial arrangement of primitive features is obtained, which can be used in the
identification of scale-varying feature arrangements, as shown in the next
subsection. The advantage of this approach is that the result is obtained in
a algorithmically simple and computationally inexpensive fashion, which can
be parallely implemented.

3.3.3 Spatial grouping

In this subsection, the extraction of image regions that exhibit a constant
spatial arrangement of primitive features, based on the clustering of local
descriptors, is demonstrated. In order to cope with the scale-dependent na-
ture of the arrangements and, thus, extract image regions corresponding even
to scale-varying arrangements the scale-normalization of local descriptors is
utilized.

Introduction The ability to identify image regions that exhibit constant
spatial arrangement of primitive features yields a descriptive and perceptually
relevant competence for the description of visual content. In content-based
image description and retrieval, the image is often segmented by grouping
pixels in object silhouettes, clusters of points, or point-sets. The surface-
or object-based, otherwise strong, segmentation of the image in a perceptu-
ally relevant fashion additionally requires non-visual information and is also
dependent on varying factors such as duration of observation, scene illumi-
nation, observer knowledge, and other. The difficulty of achieving a strong
segmentation may be compromised by weak segmentation, where grouping
is based on data-driven properties, which partitions the image in regions
that are internally homogeneous according to some criterion [102]. In this
subsection, the weak image segmentation, based on the extraction of image
regions that exhibit constant spatial arrangements of primitive features, is
demonstrated. The extracted regions are significant for the description of
image content, not only in terms of raw visual entity identification, but also
in terms of formation of higher level features. Such can be the boundary of
a visual entity, the formation of regions of interest in an image, and others.
In this subsection, it is argued that the scale-normalization of local de-
scriptors of spatial arrangements of primitive features is a useful pre-segmentation
procedure, that contributes to the extraction of scale-varying patterns. The
purpose of the presented experiments is to demonstrate that the performance
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Figure 33: Clustering of scale summarized local histograms for orientation
(left) and intensity (right) spatial arrangements.

of segmentation algorithms that operate based on the dissimilarity of local
descriptors, can be enhanced through scale-normalization. Thus, in order
to demonstrate the benefit of scale normalization, with respect to the task
of image region extraction, a generic and statistically unbiased clustering
algorithm is used, namely the k-means algorithm.

Experiments Image segmentation based on local descriptor clustering can
be generalized for a variety of feature types, if some local descriptor dis-
similarity metric is known. For example in Figure 33, the original images
have been clustered with respect to the spatial arrangements of intensity
and orientation, after computing the SSR histograms for all image scales. As
observed in the images, the scale of feature observation varies. The result
provides a weak segmentation of the image, composed of regions of quali-
tatively constant feature arrangement. Clustering was carried out using the
k-means clustering algorithm without taking spatial layout into account. For
the summarization, eight image scales were used. The same number of scales
was also used for the rest of the experiments presented, in this subsection.

The benefit of scale-summarizing local histograms is demonstrated by the
performance of the same operation for the case of intensity histograms. In
Figure 34 the right original image of Figure 33 is clustered at several scales,
without achieving the same accuracy of result, which is yielded by the SSR
version of the process.

Figures 35 and 36 illustrate examples of image segmentation through local
descriptor clustering for a variety of images. In all of the examples, intensity
histograms of 32 bins were used. In the figures below, the results are arranged
into columns. From left to right, the first column displays the original image.
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Figure 34: Clustering of local intensity histograms at several scales.

The second column shows the clustering result using histograms of a small
sampling aperture of radius equal to 1 pixel. The third column illustrates
the clustering result using histograms of a medium size, of radius equal to
6 pixels. The rightmost column, illustrates the clustering result for scale-
summarized local descriptors, over all scales of X'. The radii of the sampling
apertures of X obtained values that were logarithmically increasing over the
interval of [1,...,64] (measured in pixels).

Conclusion It is possible that the weak segmentation results presented
above may be upgraded using other, more sophisticated, algorithmic schemes
that take spatial relationships into account, if a formulation of local descrip-
tor dissimilarity, such as the local descriptor gradient, is available. Using a
grouping method such as region growing [2], graph partitioning [101, 30] or
level-set segmentation [97, 96] based on histogram vector values, will result
in the grouping of spatially-neighboring and similar descriptors into image
regions of coherent feature arrangement. Such algorithms typically require
an estimation of the dissimilarity between two neighboring local descrip-
tors. This estimation can be provided from several dissimilarity metrics,
such as the local descriptor gradient magnitude. The contribution that was
highlighted in this subsection is the effect of scale-normalization of local de-
scriptors. In order to support the claim that the scale-normalization of local
descriptors can be utilized within a broad context of segmentation algorithms
a generic and statistically unbiased clustering algorithm was used.
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Figure 35: Clustering of local descriptors. Column order from left to right:
(a) Original image and clusterings of (b) fine scale descriptors, (¢) coarse
scale descriptors, (d) scale-summarized descriptors.
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Figure 36: Clustering of local descriptors. Column order from left to right:
(a) Original image and clusterings of (b) fine scale descriptors, (¢) coarse
scale descriptors, (d) scale-summarized descriptors.
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3.4 Higher order descriptors

The description of spatial arrangements of primitive features can be enhanced
using descriptors that capture significant visual aspects of the arrangements.
Due to the fact that the proposed descriptors operate on the already com-
puted description of the spatial arrangements of primitive features they are
referred to as higher order descriptors. Using appropriate descriptors charac-
teristic and perceptually significant visual properties of spatial arrangements
of primitive features, which are not always representationally evident, can be
extracted.

In this section, two classes of higher order descriptors are proposed. The
first deals with the elementary statistical analysis of local histograms and the
second with the identification of qualitative components of them. Emphasis
is placed on the mapping of descriptor attributes onto image properties yield-
ing, thus, a human comprehensible description of the spatial arrangement of
primitive features in the image. The image features that are extracted using
the methods described in this subsection, are utilized in Section 3.5 for the
formulation of visual queries and for the extraction of perceptual groups in
Chapter 4.

3.4.1 Statistical descriptors

Some commonly used statistical characteristics of histogram distributions
include the expected value, mean, median, variance, and information entropy.
By replacing the local description with such a representative, the description
is condensed, retaining only a portion (1/bins) of the original information.
Typical applications of the mean and median descriptors are encoun-
tered in image filtering. Replacing the histogram description with its mean
or median results in a noise-suppressed result. The replacement of a local
histogram by its expected value is equivalent to filtering the image with a
constant smoothing kernel of equal shape and size with that of the sampling,
for both color and intensity images. Furthermore, if histogram samples are
Gaussianly weighted with respect to their distance from the center of the
sampling area then Gaussian smoothing is implemented. By varying the
sampling aperture of the histogram with respect to local structure scale the
filtering may adapt to image structure. The SSR may be used for this pur-
pose in order to overcome computational difficulties of explicit scale selection.
Examples of this process appear in the previous chapter (see Section 2.2.4),
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for both color and grayscale images. However, the expected value of the dis-
tribution is not compatible with human perception in all types of features,
as discussed at the end of this subsection.

Descriptors such as the variance or information entropy (given by —P log P,
where P is the probability of a particular value) of the histogram encode cer-
tain aspects of the histogram which can be used to describe spatial arrange-
ments of primitive features. Histograms centered around a single value ex-
hibit small variance. Similarly, the entropy of a histogram increases with the
“spread” of the histogram. The example shown in Figure 37 demonstrates the
detection of highly ordered scale-summarized orientation histograms, which
are characterized by low information entropy. The middle image shows the
scale-summarization of gradient magnitude for all image scales. The right
image shows the entropy of scale-summarized orientation histograms. As
opposed to the scale-summarized gradient magnitude image, in the entropy
image, regions exhibiting prominent orientational order stand out. The ef-
fect is characteristically observed in the image region that corresponds to the
building, due to the presence of parallelism in the local image structure. In
the scale-summarized gradient magnitude image parallel line segments that
correspond to the building are not clearly observed due to the low gradient
magnitude value. In the brightness-inverted entropy image the same region
is highlighted, due to the decreased entropy of local orientation histograms.
To generate the results eight image scales were summarized both for the gra-
dient and entropy case. For the scale-summarization the scale selector of
Equation 7 was used. The orientation histograms were composed of 8 bins.
In addition, the expected value of the orientation histogram was computed
for each scale-summarized histogram and encoded with a color hue in the
figures. The reason that the expected value of the orientation histogram
is perceptually relevant, in this case, is that it is illustrated for histograms
centered around one specific value (low information entropy descriptions).

The low information entropy indicates the concentration of orientation
values around some histogram value. Mapped onto image properties the lack
of entropy can be interpreted as parallelism, since all orientation components
of the arrangement shall share the same direction. This notion of parallelism
can be extended to non-straight line segments as well, as illustrated in Fig-
ure 38. In this example the same histogram and scale-summarization param-
eters were used an in Figure 37 (right image). Regions may be extracted by
thresholding of the result and grouping the resulting image components. A
demonstration of this process appears in Section 3.4.2.
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Figure 37: Left to right: Original image, scale-summarized gradient, and
brightness-inverted entropy of scale-summarized orientation histograms.

Figure 38: Original images and brightness-inverted entropy of scale-
summarized orientation histograms.
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It should be noted that if the goal is to encode the “parallelism” of the
arrangement the information entropy of a histogram should be preferred over
its variance. Since the variance is computed with respect to the expected
value of the histogram, the extracted description would be of poor descriptive
power, if the expected value is not a representative descriptor, such as in the
case of orientation.

3.4.2 Qualitative descriptors

In this subsection, attributes of local descriptors are utilized in the identifi-
cation of characteristic image properties. Such attributes are related to the
“structure” of the histogram. In particular, local maxima of the histogram
are used to identify the principle components of the histogram distribution
and, thus, of the feature arrangement in the image.

A qualitative description of a feature arrangement can be obtained based
on the structure of its local histogram. The next example (Figure 39) il-
lustrates the descriptional significance of the principal components of a his-
togram. Corners, crosses and junctions can be identified in images from the
number of principal components, of the local orientation histograms. The
formed angles can be estimated as the relative angle of these components,
given by min(|pci —pca|, m—|pei —pes|), where pe;—; o is the angle correspond-
ing to the principal component. In the images local orientation histograms
with 8 bins were used. Multiple histograms (8) of varying sampling aper-
ture were centered at each point and scale-summarized, using Equation (7)
for the scale-selector. In addition, the scale-summarization was focused on
fine scales in order to capture texture-like arrangements (instead of coarse-
scale structures). In the images, pixels are color coded with respect to the
cardinality of principal orientation components at each point. The internal
image legend illustrates the correlation of color with the cardinality of prin-
cipal components. The background color is associated with the zero value.
The other colors are associated with values 1,2, ... in order of appearance in
the internal legend (from “cold” to “warm” color, or from dark to bright if
viewed in gray scale).

Solely the dominant principle components can be used to describe cer-
tain spatial arrangements of primitive features. Figure 40, illustrates the
dominant orientation in color code. To generate the image, the same his-
togram and scale-summarization parameters were used as in the example of
Figure 39. Especially in the case of orientation the use of the expected value
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Figure 39: Original images and cardinality of principal orientation compo-
nents at each point. Internal legend: correlation of color with the cardinality
of principal components (background = 0).

Figure 40: An image and its dominant orientation at each point, color coded.

of the histogram would be a rather inappropriate choice. Computing this
value for histograms that exhibit two principal orientation components does
not correlate with the perception of local orientation.

Figure 41 illustrates local scale-summarized descriptors that exhibit one
principal orientation component. The same histogram and scale-summarization
parameters were used as in the example of Figure 39. In order to group
spatially neighboring description elements, the connected-components algo-
rithm was used. Local descriptors with elements were grouped with respect
to distance and expectation value of the orientation histogram. The group-
ing parameters of the grouping criterion were arranged so that immediately
neighboring descriptors (considering 8 neighbors for each image point) were
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Figure 41: Extraction of image curves that parallely evolve.

grouped, if the histogram expectation value was not greater than two his-
togram bins. In the presented images, a different color is used to indicate
each group, while non-grouped elements are colored white. The result of the
computation yields a description of curves that parallely evolve in the image.

3.5 Image retrieval based on descriptions of spatial ar-
rangements of primitive features

In this section, the application of the derived methods for the description
of spatial arrangements of primitive features is demonstrated in the task of
content-based image retrieval. The representation and matching of spatial
arrangements of primitive features in images is carried out using arrange-
ment descriptors. The mapping of arrangement descriptor attributes onto
image properties, as described in the previous section, contributes to the
comprehensibility of visual queries by end users.

The spatial arrangement of visual features constitutes a fundamental and
intrinsic component of visual information. From a phenomenological point
of view, regions of constant spatial arrangement of primitive features define
and attribute characteristic image regions. Thus, the adoption of perceptu-
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ally descriptive attributes is critical, regarding query formulation and result
appreciation. The descriptional value of scale-inspecific querying is demon-
strated in the following example of visual information retrieval, based on
some of the distribution descriptors mentioned in the previous section of this
chapter:

The spatial arrangement of primitive features defined by the white cluster
of pixels of the rightmost image of Figure 33 was used as a query sample for
the feature-based retrieval of image regions. Using scale summarization, the
following description was scale-invariantly extracted from the local distribu-
tion descriptions of the sample: (a) exactly one principle orientation distribu-
tion component, (b) exactly two principle intensity distribution components,
their approximate values defined by the sample, (¢) intensity histogram of
the arrangement. For all image pixels of the query set, a metric was formu-
lated, that expresses the similarity of the feature arrangement at each pixel,
with the sample. The similarity metric uses the description criteria (a) and
(b) as logical operators and criterion (c) as a metric operator, its value given
by the Euclidean distance of intensity histograms. The metric was given by
the multiplication of the three operators. Figure 42, illustrates the results.
In the presented images, gray values are linearly mapped to the values of the
similarity metric for all images.

The presented images are not in any particular order. Instead image
intensity in the “similarity response” images is used to represent feature
arrangement similarity. It is observed that retrieval results match the given
description and, in some cases, contextually similar objects (zebras) are high-
lighted. Most insightful though are counter-intuitive results, that are also
presented. The image located in the fifth row at the third column matches
the given description, but the property of orientational order has been over-
looked. The retrieved pattern exhibits almost no variance of orientation
distribution, otherwise interpreted as highly organized structure, just as in
the previous example (Figure 37). The consideration of orientational orga-
nization is required for the understanding of the counter-intuitiveness of the
result. Similarly, in the tiger image (third row, first column), color infor-
mation that would trivially distinguish a black-white pattern from a black-
orange one was not taken into account. In the example illustrating a human
(third row, third column), the retrieved pattern appears to be visually simi-
lar to the sample, however contextual reasons (object recognition, semantics)
discriminate that image from the zebra one. From such examples, it is under-
stood that the set of features that constitute visual impression is often not
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Figure 42: Intensity mapped similarity response for a given pattern.
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clearly understood. In many cases, the identity of features that are relevant
to the visual entities that are intended to be retrieved from images may not
be prominently noticed, such as in the present case regarding the directional
components of the retrieved patterns. Analogous query formulations may be
devised for the distribution descriptors described in this chapter, as well as
for others found in literature. It is of considerable importance though which
of them appeal to perception and most important which are relevant towards
the goal of retrieving intended visual content.
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4 Perceptual Organization

This chapter is related to the topic of perceptual organization, referring to
the grouping of pieces of visual information into larger units of perceived
objects and their interrelations. Such perceptual groups, which are typically
composed of structural visual features, constitute dominating components of
perceived visual content. Thus, their detection, description, and utilization in
the task of content-based visual information browsing and retrieval is crucial.

The first section of this chapter briefly reviews known laws of perceptual
organization. In this section, emphasis is placed at the review of certain
properties of the perceptual groups that are related to the methods that are
presented in the second and third sections of this chapter. Furthermore,
certain other aspects of perceptual organization that are considered relevant
to the description of visual content are presented.

In the next section, the issue of grouping visual elements into perceptu-
ally relevant entities is considered and an approach towards the perceptual
grouping of line segments is presented. The approach concerns the grouping
of line segments that are parallel in the three-dimensional world and occur as
converging in the two-dimensional image matrix. The resulting perceptual
groups are subsequently utilized in the content-based retrieval and classifi-
cation of images.

In the third section, the discussion is focused on the study of contours,
motivated by their characteristic relevance to object recognition and informa-
tionally rich nature. In particular, a perceptually relevant approach towards
the description of object boundaries is proposed, based on the hierarchi-
cal and piecewise parsing of shapes into primitives (pieces). The approach
exploits the salience of high curvature boundary points towards their seg-
mentation. This segmentation is subsequently demonstrated to be of use in
the description and matching of silhouette boundaries.

4.1 Introduction

The visual perception of a scene is populated with large-scale objects instead
of a confetti of primitive features such as the ones discussed in Chapter 2.
The LGN-encoded retinal stimulus, forwarded to the V1 area, follows differ-
ent visual pathways [61] that process this encoding, leading to the perception
of stereo-vision, color, form, and motion. The individual processing of these
components seems counter-intuitive, since visual perception of objects ap-
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Figure 43: Some typical examples of perceptual grouping (see text).

pears to be completely integrated. However, observers are able to distinctly
refer to color, form, and motion as orthogonal visual properties.

The concept of perceptual organization originated from Gestalt psycholo-
gists early in the 20" century [110], indicating multiple perceptual grouping
criteria that are based on feature appearance and spatial arrangement. Ac-
cording to these criteria, the spatial arrangement of motion, texture, and
color, determines the perception of distinct visual entities. In addition, con-
text related factors such as familiarity of arrangement, figure / foreground
discrimination, and prior knowledge are also observed to affect perceptual
grouping. Traditional laws of perceptional grouping that describe such or-
ganizing behaviors originate from Gestalt psychology, while novel ones have
been more recently formulated by vision scientists [76, 78]. In Figure 43,
some examples of perceptual grouping of static visual content are presented.
In the left part of the figure and from top to bottom, the first four rows
of structures exhibit the perceptual laws of proximity, color similarity, size
stmilarity, and similarity of orientation. The last two rows exhibit the rules
of common region and element connectedness. In the right part of the figure,
perceptual groupings originating from parallelism and symmetry (top row left
and right, respectively) as well as continuity and closure (bottom row left and
right, respectively) are demonstrated.

In the next paragraph, certain properties of perceptual groups originating
from the grouping of structural, or gradient derived, image elements are
reviewed.
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Boundary-related perceptual grouping The grouping of structural,
otherwise gradient-derived, elements contributes to the formation of figures,
contours, and three-dimensional volumes. Primitive, boundary-related struc-
ture physiologically originates from spatio-temporal change detection. How-
ever, in the context of this dissertation only spatial changes are considered
and discussed. In addition, illusory edges are observed to be characteristic
elements of contour perception. Large-scale structure can emerge from the
proximal, collinear, and / or parallel spatial arrangement of these boundary-
related features.

Another important aspect of perceptual organization in the segmenta-
tion of single structural image elements into parts is referred to as parsing
[77]. Parsing appears to be an influential process of perceptual organization
because it determines what subregions of a perceptual group are perceived
together. The examination of regions at which the division seems natural are
contour regions of deep concavities: points at which the contour undergoes
a sharp bend towards the interior of the region [43].

Approaches towards the perceptual grouping of structural elements can
be classified into local and global, as in the case of region based grouping.
Local or bottom-up approaches target at the grouping of adjacent or loosely
neighboring structure elements that exhibit specific arrangement properties,
such as collinearity, good continuation etc. [62, 48, 63]. Top-down approaches
target at the confirmation of some model or distribution through supporting
evidence in the image [94, 13]. For a detailed overview of perceptual grouping
in Computer Vision see [93].

Chapter outline In the remainder of this chapter, two methods for the
description of structural elements are proposed. The first concerns the per-
ceptual organization of line segments. The novel element in the proposed
approach is that the perspective convergence of line segments is taken into
account. The resulting linearly perspective groups are subsequently utilized
in the content-based retrieval and classification of images. In addition, the
method is extended for illusory line segments, formed by the collinear ar-
rangement of boundary-related visual features. The second method is related
to the description and retrieval of elements of a class of, already organized,
perceptual groups. In particular, the class of silhouette boundaries is consid-
ered. In Section 4.3 of this chapter, a method for the perceptually relevant
description and matching of such boundaries are proposed, based on the
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detection of their salient points.

4.2 Perceptual grouping of line segments

In this subsection, a method of detecting perceptual groups originating from
the parallel, in the 3D world, spatial arrangement of line segments, is pro-
posed. Henceforth, this convergence of line segments to a vanishing point,
will be referred to as perspective convergence. Utilizing the perspectively
converging appearance of such line segments, the detected perceptual groups
may be utilized as depth cues. With respect to the task of content-base im-
age retrieval, the component of visual content that arises from the perceptual
organization of line segments is utilized as an image similarity cue.

Taking account of perspective convergence yields a more complex prob-
lem than several treatments of it that can be found in the literature [62,
48, 63, 94, 13, 93]. In the description of the perceptual grouping method
below, the standard issues of grouping suitability, digital image noise, and
computational requirements are raised.

The proposed approach adopts a hypotheses formulation and justification
model-matching strategy. Evaluation of grouping hypotheses is based on
deviations of the image data from the hypothesis. The issue of computational
cost which arises from the exhaustive search for an optimal grouping (O(2V))
is tackled with the adoption of a commonly encountered perceptual bias. This
bias indicates the increased perceptual significance of coarse-scale, contrast-
salient structure elements (see Section 2.1.2).

4.2.1 Grouping Method

The algorithm presented in this paragraph consists of three steps, which are
sequentially described in the next paragraphs. First, structural tokens (line
segments) are selected from the image. Second, a set of hypotheses is formed,
based on the selected tokens. Finally, the members of the set of hypotheses
are validated or rejected, with respect to supporting or contradicting evidence
found in the image. The result of the process is the extraction of perceptual
groups that are composed of line segments.

Token Selection Initially, points of salient gradient magnitude (edgels)
are selected from the image, using the Canny edge detector [19] (including
hysterisis thresholding), and successively line segments are extracted utilizing
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the Hough transform [45]. The set of these line segments will be henceforth
denoted as LS. In order to avoid detecting edgels originating from image
noise the image is initially smoothed. In the effort to retain structure during
this process, the SSR smoothing that was introduced in the second chapter
is utilized for this purpose. In particular, image smoothings originating from
the range of fine scales are considered. In all of the examples below, a linear
Scale-Space of 8 image scales was taken into account. The range of fine scales,
which were summarized to provide the smoothing, consisted of the three first
scales. For the determination of scales, the logarithmic scale parameter 7
was exponentially increased as described in Chapter 2. Next, a subset of
LS, containing the ones of dominant size is formed. (e.g. a subset with a
cardinality of 10% of the original groups, containing the longest elements).
The resulting subset of line segments consists of contrast-salient line segments
that exist in the image, since weak segments were filtered-out at the edge
detection stage.

In summary, the parameters that are used in this step of the algorithm
are: (a)the range of scales used for the SSR smoothing (described above), (b)
the higher and lower intensity thresholds utilized by the edge tracking process
of Canny edge detector (values 0 and 255 were used for this purpose), (¢) the
resolution of the p,# Hough transformation matrix (a 360 x 360 matrix was
used), and (d) the percentage of the line segments which are characterized
as size dominant (the value of 10% was used, in the examples below).

Hypotheses formulation From the resulting set of line segments, a num-
ber of hypotheses are formulated through the selection of line segment triplets
that approximately converge to a single point, or infinity. The process results
in a subset of all possible triplets (the hypotheses) whose convergence could
be the result of the perspective observation of parallel, in the 3D environ-
ment, line segments.

In order to form the set of triplets from which the hypotheses will be
formed, the set of candidate triplets is reduced by rejecting triplets that
include: (a) intersecting line segment couples, (b) line segment couples in
which: the extension of either one of the two line segments, results in an
intersection extension with the other segment (without extending the latter
segment), and (¢) triplets in which the same line was taken more than one
times into account (e.g. (l1,l3,01)). The members of the set of remaining
triplets, let R, are evaluated as to their convergence through the following
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procedure:
Let (l1,1s,13) a line segment triplet, member of the set R. Each possible
line-segment couple ({l1,l5},{l2,13},{l3,11}) of the triplet is considered as a
“weak-hypothesis”. The mismatch error of the third segment with respect
to this weak-hypothesis is quantified (see below for definition of mismatch
error). An arrangement that exhibit a small mismatch error (with respect to
a certain threshold, see below) is considered as “non-accidental” and assumed
as to be composed of parallel, in the 3D world, line segments. Subsequently,
a hypothesis is formed, based on the (approximate) convergence of the three
line segments. If more than one hypothesis exhibit a small error then the
one with the least is selected. The definition of the mismatch error and
description of the process performed for its computation are presented below.
The mismatch error of the third line segment of a triplet, with respect to
the weak hypothesis that is formed by the other two members of the same
triplet, is defined as: the deviation (error) from the ideal case, where the
three line segments are parallel in the 3D world and due to their perspective
observation are apparently converging at a single point (the vanishing point).
Let {l1,ls} be a non-intersecting (even if one is extended) pair of line
segments which form a weak-hypothesis of perspective convergence. The ex-
tensions of these segments meet at vanishing point A, as illustrated in Fig-
ure 44A (see below, for the case that the two segments are parallel). The
mismatch error of /3 to this weak-hypothesis is quantified as the angle of the
rotation of /3 around its midpoint, so that its extension will pass through
A (in the figure, when A and A’ coincide). The estimation of the angle
formed between two line segments is computed from the formation of an an-
gle by three points (p1,pe, p2) and by use of the vector dot product as (see
Figure 44B):
P1-T * P2.T + P1.Y - P2.Y
||p1pc|| ) ||p2pc||

In the equation above, p;.x, ps.x, p..x denote the horizontal coordinates (in
the image) of points py, pe, pe, respectively. Similarly, p1.y, ps.y, p..y denote
the vertical coordinates of points pi, ps, p., respectively. As shown in Fig-
ure 44B, the computation of the described angle is always performed using
the line segment endings, that reside farthest from the vanishing point, in
order to minimize pixel discretization error. In the special case that [; and
[y are parallel the vanishing point is considered to lie at infinity and the mis-
match error is defined as: the relative angle of [3 with [; or l5. In order to

arccos( (19)
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Figure 44: (A) Hypothesis formulation and computation of the mismatch
error for l3, as angle e. (B) Angle computation (see text).

compute the mismatch error for this case, I3 is translated so that the mid-
point of /3 coincides with the midpoint of /;. Then the mismatch error is
given by the least angle formed by the intersection of the two line segments.

Finally, the set of hypotheses exhibiting a small error, let £E, with re-
spect to some threshold, are passed to the next step of the algorithm. The
threshold, let et, that was used in the experiments presented below was 6
degrees, as previously described.

Group Extraction Here, each member of L& is regarded as a grouping
hypothesis, which is either accepted or rejected, based on supporting or con-
tradicting evidence that is found in the image.

For each hypothesis ¢ € L&, members of the set LS are correlated to
g- This correlation is performed by computing the mismatch error of each
ls € LS with respect to ¢. In this case, the mismatch error is computed
for [s and the two line segments that formed the weak hypothesis, based
on which ¢ was formed. The ones that exhibit a mismatch error smaller
than et, are grouped together. Thus, for each line segment that is finally
grouped a mismatch error is computed. The mean value of these errors for
all segments is also computed and henceforth denoted as Er. It is observed
that the resulting groups of line segments may have common members.

In order to discriminate and finally obtain dominant perceptual groups
of an image, an optimal grouping is selected with respect to a suitability
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Figure 45: Tterative extraction of perceptual groups from an image.

function (see below for its definition). Once the group G that maximizes the
suitability function has been detected, groups that have common members
with G are removed from L£E. Then, the next group that maximizes the
suitability function is extracted. The process is repeated until all independent
groupings are extracted. Figure 45 illustrates the iterative extraction of two
perceptual groups from an image. The first image illustrates the original
image, with line detected segments superimposed. The next two present the
two perceptual groups extracted, in the same order and from left to right.

The grouping suitability quantification is given by Equation (20), which
encodes independent grouping criteria as a product and emphasizes the exis-
tence of dominant segments. In (20) Er is the mean group angle error, D the
set, of dominant segments participating in the grouping, F the set of their
edgels, T' the set of segments participating in the groups, and Tol an an-
gle error tolerance. Maximization of the suitability function will ultimately
group all segments complying with the, finally dominating, hypothesis, fa-
voring large groups that include salient segments. In order to find the group
that maximizes S, each group is addressed and the value of S for that group
is computed. The group that yields the maximum value is then selected.

S = (Tol — Er) - (1 + card(D))* - card(E) - card(T) (20)

Results and discussion Some indicative results of the grouping proce-
dure are presented in Figure 46. The left two images illustrate typical results
from perceptual groups originating from surfaces oriented in depth. The third
from the left illustrates the case, where the vanishing point lies at infinity.
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Figure 46: Grouping of projectively converging line segments.

The rightmost image illustrates a false positive result’, in the sense that the
horizontal line does not appear to belong to the group. The crucialness of
cue integration is noted, since stereo, depth, or knowledge about the envi-
ronment could have canceled out the false positive result, if exploited. Such
false positive results originate from the fact that the attempt to retrieve 3D
information from converging lines is ill-posed, due to perspective metamers.

The next example proposes an extension of the discussed grouping method
for subjective lines. Salient patterns of collinearly arranged gradient-related
features in images are perceived as illusory lines, which perspectively con-
verge. In the examples shown in Figure 47 the same grouping method was
applied but instead of edgel detection, corner detection was performed. The
corner detection process was carried out by scale-summarizing the response
of the Harris corner detector [41]. The Hough transform which was earlier
used for line detection was applied directly on the scale-summarized corner
response image. Similarly the response of other point-like feature detectors
may be used for the detection of linearly perspective feature arrangements in
images. In combination with scale-summarization, such arrangements can be
detected even if they are composed of features that occur at multiple scales.

9Notice that, in this case, extending any of the line segments of the group will not
intersect the horizontal line.
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Figure 47: Grouping of projectively converging, subjective line segments that
consist of the collinear spatial arrangement of corners. From left to right: The
first and third image show original images and groups of line segments which
were extracted. The second and fourth images present the scale-summarized
corner detector response.

4.2.2 Information content and management

The information content of linearly perspective perceptual groups about the
observed scene is related to the perception of distinct visual entities, sur-
face geometry [62], and scene perspective. The perspective cues yielded by
perceptual groups are observed to also participate in the perception of size,
distance, and shape, as suggested from the phenomena of size and shape
constancy. In addition, perspective cues play a role in the characterization
of the visual impression determined by the observation of some scene. De-
scription of such groups may refer to low level features, e.g. cardinality and
orientation of a set of parallel lines. Other, context-related interpretations
of such perceptual groups may also describe the grouping as a surface in 3D
space, deduced from perspective cues (e.g. linear perspective). However, in
order to obtain such knowledge, information that is not included in the image
is required (e.g. viewpoint).

Next, the utilization of perceptual groups in a content-based image re-
trieval query is demonstrated, through a retrieval experiment.

Retrieval Experiment Figures 48 and 49 illustrate the retrieval, classifi-
cation, and sorting of perceptual groups in images.
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In the experiment, images containing a set of converging line segments in
an approximately horizontal direction were extracted from a pool of images.
The pool of images that was used was composed from two image categories:
scenes containing man made structures (urban scenes) and wildlife scenes.
Each category consisted of 500 images. Finally, the images containing man-
made structures were further classified, with respect to the properties of the
detected perceptual groups.

Initially images containing man-made structures were detected using the
occurrence of a perceptual group of line segments as a characteristic feature.
This method has been formerly used in [64, 48], but without taking the
perspective component into account. The classification of images and results
from the process of the detection of images containing man made objects are
discussed in the fifth chapter.

The retrieval of the set of images containing linearly perspective per-
ceptual groups, was followed from their classification into subclasses. Two
classes of images were selected from the images that contain man-made ob-
jects. The selection of these two classes was related to the orientation of
the perceptual groups contained in the images (thus if an image contained
more than one perceptual groups it could appear in both classes). In par-
ticular, the two subclasses were selected to contain perceptual groups of line
segments that converged from right to left and vise versa. The images were
classified into two subclasses utilizing an approximate orientation descriptor.
The orientation descriptor that was used was defined by the line segment
dividing in half the angle formed by the pair of outmost line segments (inter-
secting at the vanishing point). Finally, groupings were sorted within each
class with respect to the orientation value of the same descriptor. Figures 48
and 49 illustrate these two classes and the sorting of images with respect to
the response of the orientation descriptor. The images that are shown in the
figures correspond to the top matches of the image detection process, which
targeted images containing man made objects.

With respect to the retrieval goal, other attributes of a perceptual group
of parallel lines may be employed in the formulation of visual queries such
as the cardinality of elements, their salience, the angle formed by the line
segment pencil etc. Often queries may target at subsets of the perceptual
group or integrate other cues such as color, texture etc. Such queries are
demonstrated in the fifth chapter.
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Figure 48: Groupings of projectively converging line segments classified with
respect to orientation
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Figure 49: Groupings of projectively converging line segments. classified
with respect to orientation
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4.3 Piecewise description and matching of silhouette
boundaries

In this section the information content of two-dimensional closed curves, oth-
erwise silhouette boundaries!'?, is discussed and a method for their piecewise
description and matching is proposed.

Motivation The apparent boundary of solid entities has been used in
content-based image retrieval systems as a powerful content-based similarity
criterion. Its descriptive information content stems from its contextual rel-
evance as a visual cue. The boundary of a solid object is often used as an
outline or abstract description of its structural properties. For example, the
fact that specific objects can often be recognized solely from their boundary
indicates the significance of such information. This latter observation is typ-
ically exploited by visual queries to retrieve similar images based on global
“shape” of objects. However, the comprehension of the role of boundaries
in object recognition and shape matching is related to other factors such
as familiarity, observation goal, and salience. In addition, the notion of a
“silhouette” can be not only related to the structural properties of environ-
ment entities, but also with the identification of “object parts” and their
recognition.

Apparent figures are observed to originate from the perceptual grouping
of gradient and edge derived tokens, illusory contours, motion, texture seg-
regation and other. In this study, emphasis is placed at the description and
matching of boundaries after their extraction from the image.

Constraints Most often the pursuit of similar shapes, in image databases,
encounters the following constraints:

e Noise / Sampling Image acquisition introduces noise concerning pixel
values and affects subsequent feature localization. Although the shape
extraction mechanism may smooth out noise, minor differences have to
be expected even between “identical” shapes.

e QOcclusion Physical objects may reside in a variety of arrangements in
the environment. In many cases, only a portion of an object’s boundary

10The term silhouette boundary refers to a closed contour without holes. In this section,
the term contour will also refer to the same type of visual structure.
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may be depicted.

e Pose Depending on viewpoint the same object may form quite different
two-dimensional shapes on the image plane. The issue of recognizing
objects from their boundaries regardless of pose requires some knowl-
edge about the three-dimensional structure of the prototype. In this
work, a phenomenological approach towards the similarity assessment
of boundaries is adopted, thus requiring the identification of similar
shapes under rigid transforms such as the similarity, Euclidean, affine,
and projective transforms'!.

Key points of approach In the remainder of this section, related work
on shape representation is reviewed and a perceptually relevant, piecewise
boundary description is proposed that is later on applied to the similarity-
matching of boundaries. Prior to the presentation of related work, some
keypoints of the theoretical approach which is adopted are outlined:

Salient boundary regions Information-theoretic approaches [56, 17,
107] towards boundary description fail to encode the perceptual significance
of certain shape attributes, such as parts. In addition, the perception of
contours in parts evidences the increased perceptual significance of specific
boundary regions. A psychological evaluation of the salience of contour seg-
ments [6] indicates the strong appeal of intensely curved boundary regions
to human perception. The intense form-descriptive property (for perception)
of such regions is taken into account in the effort of deriving a perceptually
relevant description for the similarity-matching of boundaries.

Scale of observation In the boundary description method, which is
formulated in Section 4.3.2), the salience of boundary regions, is observed
to be dependent on observation scale. More generally, shapes are considered
as two dimensional functions permitting the analysis of boundaries in scale
space, which has known descriptional benefits concerning the importance of
some feature with respect to its apparent size [111].

" Usually the latter is computationally unstable and difficult to solve, and is approxi-
mated by the affine.
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Boundary as a cue The content of boundary information is considered
as a structural cue, since there is no one-to-one relation between objects and
boundary representations, even if the later are devised to be invariant to
projective transformations. Often, the interpretation of the boundary cue
is related to context. A compelling example is that of multistability figures
(e.g. the Necker cube, the rabbit-duck illusion, vase / face figures etc.) in
which the represented figures can be comprehended as two different objects,
depending on context.

4.3.1 Related work

A considerable number of methods can be found in the literature for the
analysis of shapes by their boundary. A review that emphasizes topics re-
lated to the proposed contributions is presented below. In this review, the
presented methods are classified into three categories: Voting methods, cur-
vature descriptors, and scale-space related methods.

Voting methods Voting methods statistically try to merge the influence
of more than one feature or shape descriptor. The joint statistics of global
attributes such as area, perimeter, and compactness, may be used to compare
shapes [24, 18]. Similarly, the Hough transform has been used to detect both
primitive shapes (lines, ellipses) and arbitrary ones [7]. Joint Histograms
have been used for a similar purpose in [5]. Finally, plain measures of point
distances have been used in a similar manner such as the Procrustes [12] and
the Hausdorff distance [44].

Curvature descriptors (e.g. [70, 79, 52]) are related to theoretical ap-
proaches that target the formulation of semi- or total- invariant signature
functions under groups of transformations with focus on Euclidean and affine
transformations. Typical signature functions use length or area ratios be-
tween contour points.

Signatures In curvature descriptor methods, shape is typically asso-
ciated with a set of invariant (or semi-invariant) functions that define the
specific notion of shape over arclength, otherwise signatures. Dissimilarity
is then encoded as a difference of signature functions. Although such an in-
variant or semi-invariant function is a useful framework for the comparison
of shapes, three issues are raised:
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Figure 50: Two curves and their corresponding idealized curvature functions.

1. When comparing invariant functions, the shape must be assigned an
origin for point to point comparison. A straightforward choice would
be to assign the origin in an intrinsic manner, e.g. as the highest value
of the invariant function. Thus, the selected representative should be
some not trivial and stable candidate. However, selecting however the
maximum value for this purpose is not adequate, due to the presence
of noise.

2. Silhouette boundaries do not typically exhibit the same circumference.
Therefore the invariant function of one is typically stretched to make
point to point comparison with another. In Figure 50, the two shapes
are almost identical except that one shape has an additional dent-like
structure. The dent causes its circumference to be longer. A linear
stretching of the shorter boundary to match the length of the longer
shall cause the high values of the invariant functions to be dislocated
with respect to each other.

3. Difference of curvature functions does not coincide with the intuitive
notion of shape difference. In Figure 51 two curve pieces are consid-
ered. The curvature function is in essence a second order derivative and,
thus, taking the difference between two curvature functions is equiva-
lent to the computation of a third order derivative, which implies noise
sensitivity.
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Figure 51: Two similar curve pieces. Curve A is straight and curve B is bent
in a single point.

Finally, features may be computed that capture essential characteristics
of a boundary. Such features could be Fourier coefficients [113, 36], singular
value decomposition coefficients of the stiffness matrix [81], extreme curva-
ture points [84], the method of Curvature Primal Sketch [4], shock [51], and
the medial axis [11].

The Procrustes distance is further described here, due to its forward
invocation in 4.3.3. Let the points (z,y) in the plane be given as a complex
number p = x + iy, where i = /=1, and ¥;p; =1 and X ; p;p; = 1, with ~
as the conjugate operator. Two such point sets p; and ¢; have the squared
Procrustes distance [12]:

2
D*=1- (ijqj) :
j

This is equivalent to the minimal pointwise sum of squared Euclidean dis-
tances under rotation about the origin. The optimal rotation of ¢; into p;

is given by ¢; = (Ej pj(jj) g;. Euclidean or affine action can be removed by
normalizing the point set before calculating Procrustes distance.

Scale-Space Representations A multiscale representation for 1D func-
tions was first proposed by Iijima [47], and later developed by a number of
authors, see [111, 108] for an overview. Mokhtarian et al. have developed
algorithms that use the so-called fingerprints of Mean Curvature scale-spaces
and Affine Curvature scale-spaces to identify objects [68, 91, 67]: A scale-
space of curves is used to generate successively coarser representations of a
shape boundary. At each scale the zero-crossings of the curvature function
(the inflection points) are detected and the curve in between two successive
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inflection points is stored in a database. Variants of the method use an area
preserving scale-space [92, 29] .

4.3.2 Boundary representation

In this subsection, a method of selecting salient boundary points is presented.
Next (in Section 4.3.3), a piecewise alignment of boundaries based on the se-
lected points is introduced. This piecewise alignment is subsequently used in
the content-based retrieval of boundaries. In the remainder of this subsec-
tion, a scale-summarizing scheme for the curvature feature is proposed. The
integral of scale-normalized curvature over scale is introduced as a quantifi-
cation of the salience of a contour point. It is also argued that the description
of contour points responding with a high value to this summation is more
stable to noise and, thus, they can be utilized for form description and con-
tour matching [104]. These issues are further discussed below, starting with
an analysis of the stability of boundary segment description with respect to
scale.

Scale-space representation A curve evolution is a scale-space if it ful-
fills a number of properties [3], indicating that the key property of scale-
spaces is structure reduction. The scale-space representation of boundaries
has been thoroughly studied in literature, also along with the required in-
variance of description. For example, the Mean Curvature scale-space [68] is
invariant under Euclidean transformation and is non-increasing in the num-
ber of extrema and inflection points of the curvature function. Likewise, the
Affine Curvature scale-space [91] is invariant under affine transformation and
non-increasing in the number of extrema and inflection points of the affine
curvature function.

In Figure 52, a random shape is shown together with snapshots of the
Mean Curvature and the Affine Curvature scale-spaces. The Euclidean and
Affine Curvature extrema are shown on the respective snapshots. It is ob-
served that the Mean Curvature scale-space tends to a circle, while the affine
Curvature scale-space tends to an ellipse. In both cases, the resulting curve
shall continue to exhibit exactly four zero-crossings, even if further smooth-
ing is applied. Another way of representing the evolution of the extreme
curvature points is by the fingerprint images shown in Figure 53. As it can
be observed, certain extrema “survive” up to coarser scales. These are typi-
cally defined as the stable extrema and are correlated with boundary regions

118



Mean Curvature Motion Affine Invariant
A Random Shape o "

30 30 i
30
25 25
0 320 320
920 £ 2
e *15 S5
10 10 10|
5 5 z
0 10 20 30 0 10 20 30 0 10 20 30
Pixels Pixels Pixels

Figure 52: The scale-space evolution of a shape (left) in different scale-spaces.
Snapshots from the Mean Curvature (middle) and Affine Curvature (right)
evolution. Triangles denote location of Euclidean and affine curvature ex-
trema.
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Figure 53: The fingerprint images of the evolutions in Figure 52 MIDDLE
and RIGHT respectively.
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Figure 54: The accuracy of a trace depends on the curvature and the neigh-
boring structure

that retain significance at coarse scales.

In both scale-spaces, the stable extrema can be backwardly tracked to zero
scale. The sensitivity of this process is observed to depend on the type of
structure. Normally distributed noise was added to the coordinate functions
of the shape shown in the left of Figure 52, with a standard deviation of 0.05.
Successively, the four most stable extrema of the Mean Curvature scale-space
were backwardly traced to the original scale. The process was repeated
three times and results are presented in Figure 54. From the statistics of
this experiment, it is observed that the locations of the two approximately
90 degree angles are the most certain, followed by the rightmost location.
The most uncertain point is the extremum on the longest straight piece of
the curve, which in the fingerprint image yields the varying structure from
arclength approximately 150-250. Next, a more formal study of the stability
of curvature extrema tracking is elaborated.

A study of stable curvature extrema of ellipses Let the ellipse given

by:
1

Te(s) | _ 10 gcps(s) |

Ye(s) esin(s)
where the free parameter e is referred to as the eccentricity of the ellipse.
The major and minor axes of the ellipse are given by 10e and 1_307 their
area is 1007 (independently of e) and their circumference increases with the
absolute value of e. The ellipse has 4 curvature extrema s* = {0, 7,7, %ﬂ'},

and the curvature values in these points are given by K(s*) € {1, %}
Thus, K(s*) — 15 for e — 1 and K (s*) € {0, 00} for e — oo.
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Figure 55: Noise makes curvature-extrema localization more uncertain,
whereas their sharpness reduces uncertainty. Left: standard deviation of
the noise (log-scale) vs. standard deviation of extremum localization. Right:
curvature (log-scale) vs. standard deviation of extremum localization .

In practice, a boundary representation is subject to noise. A simple model
of additive noise normally distributed perpendicular to the curve was utilized:

20N [20 ) wnn| 20]

Je(s) Ye(s) e(s)

where prime denotes differentiation with respect to arclength and A(0, o)
is an independent normally distributed stochastic noise source of standard
deviation o.

Curves given by [Z.(s), 7.(s)]' have been studied in the Mean Curvature
scale-space as follows: for a given curve the four most stable corners were
tracked to zero scale and their locations in arclength were recorded. This
experiment was repeated for a range of eccentricities and noise levels. In
Figure 55, the standard deviation of the arclength location outputted by the
algorithm is plotted, versus noise level and curvature. Circles represent, low-
curvature extrema (located on the “flat” part of the ellipse) while crosses
mark the high- curvature ones. Each data point in the figure is based on
1000 experiments.

In the left graph of Figure 55, the vertical axis maps representation cer-
tainty, in terms of the variance of extremum of localization. The horizontal

]T
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axis maps the logarithmic standard deviation of noise. In the graph, the
uncertainty monotonically increases with respect to noise and low-curvature
points are observed to be more sensitive to noise than high-curvature ones.
In the right graph of Figure 55, the same mapping for the vertical axis is re-
tained, and curvature is mapped on the horizontal using a logarithmic scale.
There, uncertainty tends to zero as curvature tends to infinity. In both
extrema-type cases, the uncertainty is larger for the low-curvature extrema,
as also observed in the previous graph.

The conclusion of this empirical analysis points to the speculation earlier
formulated by the example of Figure 54. High curvature points tend to
provide of a more robust to noise description of contour points in the given
representation.

Salient boundary points Similarly to most local features, local curva-
ture, given by

- y// + . y/

3

((=)? + (y)?)
is defined with respect to scale (in this case the arc length over which the
derivation is performed). The application of this observation gave rise to
the scale-space methodologies of boundary description previously discussed.
Since the curvature function scales inversely proportional with contour (or
arc) length, curvature may be scale- normalized as follows:

k*(s) = " (s)r(s) (21)

in order to be able to compare curvature at different scales, where parameter
s denotes a parameterization of the fingerprint line. Qualitatively, s can be
correlated with scale, since the larger the value of s the sparser the sampling
of the contour. The parameterized points are subsequently interpolated (us-
ing cubic splines) in order to result in a smooth function and be able to
compute curvature. Thus, increasing the value of s yields a scale-space of
the contour. Equation 21 resembles the scale-normalized feature response
function, discussed in Chapter 2. The value

K= mgxsign(/ﬁ(()))/i*(s) (22)

relates to the spatial extent of the contour point of high curvature [58], cor-
relating the notion of optimal scale of observation with the maximal mode
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of the feature detector. The sign(x(0)) operator in this function (as well as
in the one that is next presented) is used to provide with a positive value of
K and Kgsgr, since curvature may exhibit a negative value. In such a case,
the sign of the series of values k(i) (with ¢ € the range of s’s values) will be
constant and, thus, multiplying with sign(x(0)) will always yield a positive
result.

The scale-summarization of scale-normalized curvature:

Kssn = sign(£(0)) [ *(s)ds (23)
S

provides a description of the curvature contribution of a boundary point over

all scales. As discussed in the following example (see Figure 56), the magni-

tude of Kssr may be used to detect significant components of a boundary,

independently of their spatial scale.

The following example offers insight of the proposed method and indicates
the significance of observation scale in the characterization of the salience of
a boundary segment. Figure 56 (right) plots the scale-normalized curvature
response over scale for three boundary points of the shape on the left: one of
very high spatial frequency (observed as noise rather than structure and at
coordinates 220, 140), one of a medium scale (which is a sharp peak at 330, 70)
and one of a large-scale (the mild curve at 250,270). In the right figure, the
horizontal axis maps the logarithmic scale parameter and the vertical the
scale-normalized curvature response. The noise dent corresponds to weakest
response, while the sharp curve to the one that takes the maximum value
among the three. The large scale curve corresponds to the longest surviving
in scale response. Qualitatively, Equation (23) favors boundary points that
are either intensely persisting for a first scales or more subtly existing but
for the majority of resolutions.

The empirical study conducted in the previous paragraph, indicates that
high curvature boundary points exhibit greater certainty when tracked in
scale space and, thus, are more qualified candidates for contour description.
Given the relation of curvature to scale, a salience metric for contour points
(in Equation 23) was proposed. The performance of the metric is demon-
strated in Figure 57. In the figure, several shapes are presented. For these
shapes, curvature extrema are tracked and those that survive for the largest
amount of scales are selected. The salience descriptor given in Equation (23),
is applied to the selected extrema. In order to illustrate the response of the
descriptor the following procedure was performed: a circle with radius pro-
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Figure 56: A shape and the scale normalized curvature response over scale
for three of its points.

A
J

Figure 57: Demonstration of the behavior of the salience metric (see text). In
the figures, the estimated salience of boundary points is illustrated by plot-
ting circles centered at such points. The radii of those circles are proportional
to the estimated salience.

portional to the response of the descriptor is plotted, centered at the coordi-
nates of each extremum. As observed in the figure, points of high curvature
and coarse scale are correlated with a high response of the descriptor.

4.3.3 Description and matching of boundaries

In this subsection, the discussion is focused on the description and matching
of silhouette boundaries. In this effort, the dissimilarities between boundaries
are quantified in order to provide with a similarity measure for contours.
Matching results from experimentation with a small database (Coil-100) [72].

Description of shape boundaries It is argued that the number of points
chosen to represent the boundary is proportional to the quality of represen-
tation. As implied by the previous study, if some salient points of the bound-
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ary are chosen, then a perceptually relevant description is obtained. In this
paragraph, a classification of boundary points with respect to their salience is
proposed. This classification is used in the next subsection, for the indexing
of shape boundaries, suited for their content-base retrieval.

Description length In principle, the description of a boundary using a
few significant points given by Equation 23 casts possible for a whole family
of “structural metamers”'? to fit the description. The description of a shape’s
boundary using representative points is of interest for a number of reasons:

e The family of boundaries that matches a, perceptually relevant, de-
scription may be similar.

e Boundaries may be indexed with respect to a set of representatives.

e The identification of perceptually relevant representative points finds
application in the piecewise decomposition, description, and matching
of shapes.

e Representation space may be possibly optimized using a characteristic
selection of significant boundary points.

However, if too few contour points are selected then the utilization of the
resulting boundary description can be problematic. For example, data points
sampled from a circle are considered. Using three points, the circle can not
be discriminated from a triangle and in general with n points the points
might as well come from an n'-ordered polygon. Naturally, the polygon
shall increasingly resemble a circle as n is increased and for some large n
it would be more expressive to describe the points as a circle rather than a
polygon. Expressiveness is understood by means of lossless compression: in
the example, the choice of describing the points as a circle depends on if this
yields a shorter description of the data set.

Comparing data in terms of minimal compression requires the comparison
of the coding cost of the model against the deviation of the model from the
data [85]:

L(D,M)=L(M)+ L(D|M),

2Given a set of points, this term is refers to all the shapes that have these points in
common.
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where D is the data set and M the model parameters. The optimal model
is one that minimizes L(D, M).

In the retrieval task from a database of boundaries, it can be assumed
that a given shape is to be described using a prototype from the database.
Therefore, the codelength of the model consists of identifying which shape
from the database is being used and how many salient points are used in the
description:

L(M) = —log(card({db elements})) + log*(card{description points}).

The code can be designed so that all shapes in the database are equally
probable, and that the number of confident points is coded by the Universal
Distribution of Integers, log*(i) = ¢ + log(i) + log(log(¢)) + ... [85]. The
summation is performed over all positive terms.

In order to estimate the deviation from the model, a segmentation of the
boundary defined by the description points is assumed. The two boundaries
are point to point aligned (see next paragraph) and individual polygons, or
“pieces”, are sampled equidistantly. Differences from the prototype model
are represented as deviations, with respect to the prototype, of corresponding
sampled points:

L(D|M) = Zlog ;) + log*(100) Zlog( Mi,Di,O')>,

where IV; is the number of sample points for piece 2. The deviations are coded
as a two dimensional Gaussian distribution,

1 X, — ;) + (V; —y;)?
G(Mj,Dj,O’) = 5 26Xp<( J J) ( J y]) )

o 202

The point (x;,y;) is coded as the displacement from the corresponding point
(X;,Y;) from the shape in the database.

It is emphasized that in contrast to [79, 52] the difference between two
curves is not coded by the difference in their corresponding curvature func-
tions, but by the difference of spatial coordinates of “pieces”. There are
two reasons that the difference between two curvature functions does not
coincide with the notion of shape dissimilarity as earlier discussed in Sec-
tion 4.3.1, problem 2. In contrast, the point to point displacement vectors
((X; — z;), (Y; — y;)), that define the displacement between corresponding
points of aligned contours, notably penalize the global difference between
these curves.
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Matching of shape boundaries Using reference points, boundary re-
gions may be corresponded, in order to compare curve segments. To do so,
contours must be piecewise aligned, prior to comparison. In this paragraph,
a method for the similarity matching of boundaries is proposed, based on
the description of salient boundary points proposed earlier. The method is
initially implemented for matching invariance under the Euclidean transform
and retrieval results are presented for a small contour database. In addition,
a normalization of the description for affine contour matching is formulated
and its compatibility with known invariants is discussed. Finally, the suit-
ability of the proposed piecewise shape description is discussed with respect
to other real-image content-based retrieval requirements.

Matching algorithm outline Qualitatively, the piecewise matching
algorithm operates as follows: Initially, the two compared shapes are cen-
tered, size-normalized, and rotationally aligned, which results to invariance
to the Euclidean transform. Then a correspondence between “pieces” of the
two shapes is defined and a one-to-one correspondence between the points
of each pair of corresponding pieces is determined. The sum of the total
distances between sampled points from the corresponding pieces is regarded
as the dissimilarity of the two shapes.

Let two boundaries b; and by, denoted as b; = {p1,pa, ..., N}, Where p;
is a boundary point and N is their population. In order to align two shapes
all N — 1 cyclic permutations of the indexes of by are considered. The one
that yields the least dissimilarity in terms of a geometric distance metric is
selected. In order to retain the piecewise property of alignment and to speed-
up the computation, the dissimilarity with respect to only the reference points
is compared. The Procrustes distance [12] is used as a distance measure
between reference points since it uses an intrinsic size-normalized description
of points.

The same number of reference points is chosen for both silhouette bound-
aries. A variety of cardinalities of the reference point set are considered
by the algorithm and the one that yields the minimum distance is selected.
Typical cardinality values of this set would be 3, 4, 5, ... etc. as required.

Matching algorithm formulation The algorithm is formulated as
following:
Given is a shape as a list of points on its boundary and a database:
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1. Compute the scale-space until only 4 curvature extrema are present.

The number of curvature extrema (4) that defines the termination crite-
rion is chosen due to the following fact: regardless of the amount of smoothing
that is applied to a boundary, the minimum number of extrema is 4 (see also
Section 4.3.2).

2. Track the extrema along scale.

3. Choose the most stable extrema, defined as the ones that exhibit the
maximum value of the integral of scale-normalized curvature.

4. Find the maximum scale-normalized curvature values for extrema tracked
along scale.

5. Sort the extrema at zero (original) scale by their maximum scale-
normalized curvature values.

6. For each of the n = 2,3, ... points with highest maximum scale-normalized

curvature, sort them according to location on the s(0)-parameterized
curve.

The subsets of points are considered different segmentations of the bound-
ary. Two shapes are then compared by aligning their segmentations. For this,
the Procrustes (scale and translational invariant) distance is used.

7. Generate all cyclic shifts of one subset and calculate the Procrustes
distance to the other. Select the shift minimizing this distance.

At this point the boundary is encoded, relatively to a shape from the
database. Once an alignment of two segmentations is obtained, a piecewise,
linear point to point correspondence between the boundaries can be defined.

8. Generate the piecewise, linear point to point correspondence between
the segments of the boundaries.

9. Calculate the code length using the correspondence and minimize this
code length with respect to translation, rotation, and scaling.

The minimal code length is taken as the distance between the curves.
The distance between two curves is symmetric, when the curves have the
same segmentation and number of points.
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Figure 58: Some boundaries from the database (from left to right): A gum
package, a reusable food container, a tube with a screw-lid, a glass, and a

p1g.

Given n points of a shape, t scale levels and m stable extrema, the compu-
tational complexity of the above algorithm is O(nt log(nt) +m?logm?). The
first term is typically the largest and refers to the scale-space computation
while the later refers to Step 6 in the algorithm.

Comparing real shapes under Euclidean invariance An imple-
mentation of the algorithm has been tested on a small database of 100
boundaries. The shapes have been selected from automatic segmentations'?
of images from the Columbia University Image Library (Coil-100) [72]. In
Figure 58 some of the shapes are shown. The distance of each of these has
been calculated to the other 99 shapes and in Figure 59 the 3 closest matches
are presented. These results were selected as a representative of the shape
similarity ordering produced by the algorithm. The shapes in the left column
refer to the best match in the database. From top to bottom, the codelength
of the best match increases downwards (codelength is shown on top of graphs,
denoted as “its per arc length”) and as observed correlates with the quality
of the match. The same observation is made for each row individually.

Affine Invariance The requirement for affine-invariant matching of
boundaries indicates two possible implementations of the task, based on the
algorithm that was proposed above. The first option is to use an affine
invariant parameterization of the shape and then Affine Invariant scale-space.
However, as indicated in Section 4.3.2 tracking of extrema in this scale-space
is computationally complex and inrobust. Another option is to estimate the
affine transform (R) connecting the compared shapes, find its inverse (R™!)

13Gince the objects in this database are displayed over a black background, segmentation
was simple to perform using image thresholding.
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Figure 59: Three best matches for each of the shapes in Figure 58. Best
match is shown in left column and worst (out of 3) in right column.
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and transform one shape using R~!. Registering is performed as already
described; a robust implementation of the R™! estimation process can be
found in [105].

It is emphasized that in the latter case the estimation of B! would
robustly transform one shape to some that perfectly matches the prototype
only if the two shapes are indeed similar. Consequently, matching using the
described method would be found probably useful by a shape recognition
process rather than a similarity assessment one.

4.3.4 Conclusion

In Section 4.3.3 a hierarchic description of shape boundaries based on salient
summarized-curvature points was presented. The proposed description is hi-
erarchic in the sense that the value of the salience measure defines a hierarchy.
The description was exploited in the content-based retrieval of boundary in-
formation. The detection of salient boundary points finds application in
the definition of reference points on boundaries as well as in their piecewise
description.

From the discussion in Section 4.3.1 and the development of an algo-
rithm for rotationally invariant boundary comparison in Section 4.3.3, it is
understood that alignment of arbitrary arclength-parameterized descriptions
requires the exhaustive cyclic permutation of contour points in O(N?). In-
stead, if permutations are restricted to M < N possible alignment points,
then computation time is reduced. In order for the operation to be success-
ful, the reference-point selection process is required always select the same
type of points chosen. Signature singular points have been used in literature
(such as the maximum of Euclidean or affine curvature [52]). However, this
choice can be affected by noise. The selection of salient contour points, ex-
tracted by curvature scale-summarization, constitutes a better candidate for
this choice.

4.4 Summary

This chapter was related to component of visual content that is related to
the perceptual organization of visual features. In this context, two methods
of content-based description and matching of perceptual groups were pre-
sented. The first one is related to the detection and description of linearly
perspective perceptual groups. The second one is related to the description

131



of, already grouped, silhouette boundaries. Both of the resulting descriptions
were utilized in content-based retrieval of visual information.

The first method that was introduced targets the grouping of parallel
line segments in the three-dimensional world, based on their parallelism or
perspective convergence in the image. The algorithm was initially formu-
lated for linearly perspective line segments and then generalized for subjec-
tive ones. These subjective line segments could be composed of collinearly
arranged point-like features, such as corners. The novel aspect of the intro-
duced method, as compared to other perceptual grouping methods of line
segments that can be found in the literature, is the ability to take into ac-
count the perspectively transformed occurrence of parallel line segments in
images.

The second method that was introduced in this chapter was related to
the description of silhouette boundaries, due to their significance in various
aspects of visual information retrieval. In particular, a method for select-
ing corresponding (anchor) reference points when comparing shapes was in-
troduced, founded on the analysis of curvature with respect to scale. The
method utilized the accumulation of scale-normalized curvature to attribute
such points with a salience metric, resulting in the selection of high curva-
ture points of dominating spatial extent. The resulting selection of points
was argued to be perceptually relevant and descriptionally significant, based
on psychophysical observations and computational experiments respectively.
The selected salient boundary points were further utilized in the decomposi-
tion of boundaries into pieces, by segmenting the contours at the location of
each point. Using this decomposition the alignment of boundaries was made
possible, which was the basis for a similarity matching algorithm.
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5 Visual information browsing and retrieval

This chapter is focused on the provision of the general ability to browse and
retrieve images, based on their content. In the previous chapters, cases of
similarity matching of visual information have been demonstrated based on
a single type of visual feature. In this chapter, emphasis is placed upon the
integration of features in the content-based browsing and retrieval of images.
In the introductory section, the motivation underlying the chosen approach
is discussed. In the second section, methods for the content-based visual
information browsing and retrieval are presented.

5.1 Introduction

In this section, the motivation underlying the proposal of methods that are
presented in the next two sections is discussed and the key points of the
adopted approach towards the content-based retrieval of visual information
are outlined.

Visual query evaluation A major difficulty associated with the design
of efficient methods for content-based image retrieval is the evaluation of the
performance of a tested content-based retrieval criterion. In other words, it is
not obvious which content-based retrieval criteria to adopt when designing a
content-based image retrieval system, since there exists no formal description
of the efficiency of each. The reason for this is that currently there is not
any generic, with respect to observation goal and image context, objective
method to estimate the apparent similarity of images.

In particular, the application of the traditional measures of precision
and recall*® [23], which originated from in field of textual information re-
trieval, to the case of image databases is considered as problematic. While
the mentioned measures are found to be quite useful in the evaluation of tex-
tual information retrieval queries, their effectiveness cannot be appreciated in
the case of image databases mainly for two reasons. First, the determination
of which of the retrieved images are relevant to the query is quite subjective.

14

14The number of retrieved images that are relevant over the number of the images that
were retrieved.

15The number of retrieved images that are relevant over the number of the relevant
images in the database.
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The observation goal, individual observer, and image context, can intro-
duce different judgments about the similarity of two images. Second, visual
queries often target the similarity rather than the identity of visual subjects
and, thus, an ordering with respect to similarity value is required in the
presentation of results. Consequently, the query result A = {ay,as,...,a,}
consists of an ordered set, which contains all the elements of the database.
The choice of the element k£ through which A can be divided into “relevant”
({a1, a9, ...,a}) and “irrelevant” ({agi1, Gki2, ..., ay}) subsets is critical and
may lead to ambiguous results.

Domain knowledge Literal visual similarity, such as the existence of iden-
tical or similar colors in images, is not found to be sufficient given the re-
quirements of visual information browsing and retrieval applications. The
comprehension of the visual information residing in an image is intuitively
linked with domain knowledge that does not reside within the image itself.
Thus, although that the comparison of images based on the literal similarity
of their features is a useful tool for the content-based retrieval of images, it
is found not to be sufficient for the total fulfillment of the requirements of
this task. Consequently, applications of content-based image retrieval often
implicitly include requirements related to (a) physical laws, e.g. which can
detect whether physical surfaces exhibit same or different properties describe
the equal and different properties of physical surfaces (e.g. [32]), (b) geomet-
ric and topological rules (e.g. [103]), as well as (¢) category-based rules, which
encode context-related class characteristics. In the approach described below,
the general inability to derive purely visual and generic criteria that fulfill
the mentioned factors is compensated by the modular description of visual
content components. In this way, physical, geometrical, and context-related
information can in each case be integrated with visual content descriptors,
given the application requirements.

Description of approach As outlined in the introduction chapter, the
adopted approach to, visual information browsing and retrieval, relies on
a collection of generic description and matching mechanisms. The reasons
motivating this choice of approach are:

e The activation of individual mechanisms for the description of specific
components of visual content may be tuned to formulate explicit and
specific queries that match specific application requirements.
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e The description of visual content may be fused with domain knowledge
that reflects application requirements.

e The psychophysical evaluation or tuning of description and matching
behaviors can be performed through controlled experiments, by regard-
ing a single similarity factor (rather than complex composition of sev-
eral of those).

e Interaction with the queried collection of images can be enabled though
experimentation with the activated mechanisms, which may be tagged
with weighted significance. Given some machine learning or relevance
feedback method, computational models of the targeted information
may be learned from experience.

e From a software engineering perspective, the existence of a modular
collection of generic content description mechanisms contributes to
the simple assembly of goal-oriented description and matching com-
petences. By restricting this collection to the required components,
with respect to the specific application requirements, the assembly of
goal-oriented image retrieval system becomes simpler than designing a
new system each time.

In the sections below, the visual content description mechanisms pre-
sented in the previous chapters will consist the modules of the described
collection. The description yielded from each module consists of a “visual
cue” providing a basis on which browsing, classification, and retrieval of im-
ages is based upon. Methods for the integration of visual cues with browsing
and querying mechanisms are proposed and indicative experimental results
are demonstrated.

5.2 Visual Content Querying and Browsing

In this section, content-based management of visual information is discussed
from the perspective of browsing images with respect to their visual similar-
ity. Towards this objective, two methods are contributed to the two corre-
sponding subsections below. The first one aims to provide high specificity in
visual queries, by prompting the user to explicitly identify the visual content
components that are intended to be taken into account in the formulation
of the query. The second one, is related to the support of the content-based
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browsing task, by using the hierarchical classification of images for the task
of interactively specifying the targeted visual content.

5.2.1 Visual query formulation

Often, in visual search engines, a whole image is given as input to a query
which will somehow retrieve similar images, while the user’s interest is fo-
cused on specific objects or features of the image. In the best case, the
comparison mechanism will be efficient enough to select these features or ob-
jects, among others present in the image, and will then evaluate the query,
taking into account the similarity of all features. Clearly, query precision
shall decrease as irrelevant features are included in the query, since the re-
trieval result will contain matches for the non-interesting features as well. In
the worst case, the comparison mechanism will not select all or even any of
visual information components in which the user is interested in. In the same
context, the spatial arrangement of features in the image may be of interest
to the end user. If the retrieval mechanism does take spatial layout into
account, then the previous ambiguity is re-encountered in the arrangement
domain (e.g. non-interesting layouts will be queried for).

Explicit feature selection The ambiguity of user interest concerning the
components of visual content, which is encountered in typical queries by ex-
ample, can be partially compensated by an explicit specification of the visual
content components that are of interest in an image. The determination of
visual features and spatial relationships, based on a visual interface, facili-
tates the explicit specification of user interest about visual features and their
spatial arrangement. For this reason, detected features in the query image
and their attributes are proposed to be specified in a query formulation pro-
cess. In order to match this requirement, extracted features such as image
blobs, contours, or perceptual groups are proposed to be available for on-
line selection and specification. However, even this representation may be
ambiguous, since these visual entities may include more than one visible fea-
ture. For example, image blobs can be attributed by texture, color, shape,
structural entropy, orientation principal components etc.

In the proposed approach, blob-like image regions of potential interest,
originating from some weak or complete segmentation, are presented as se-
lectable regions superimposed on the image. In such a case, the image region
is defined by the boundary of the image segment. In other cases, the bound-
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Figure 60: A user interface which facilitates the selection of visual entities.

ary of the region is not primitively available, such as in the case of perceptual
groups. In those cases, the image region occupied by the perceptual group is
approximated by its convex hull. Given this presentation, the query formula-
tion mechanism illustrated in Figure 60, uses a feature representation space
(attached below the graphical image display interface component) to select
among available features. For the displayed visual entities, the attributes of
interest may be specified in a two-step procedure: (a) entity selection and (b)
presentation and user-selection of interesting feature(s) from those associated
with the entity.

Similarly, spatial relationships can be represented, if of interest, within
the context of some query. Relative location, intersection, or containment
are automatically defined from the selection of two or more visual elements
and the evaluation of their spatial relationship. The result of this evaluation
yields a spatial relation predicate, which can be encoded by various repre-
sentations, such as the 2D string [22], R-trees [37], or topological graphs.
Figure 61 illustrates such a procedure. The described formulation, facilitates
the representation of absolute positions within an image, or spatial relation-
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ships.

The result of the described visual query formulation process is a set of
features and spatial relationships that can be directly compiled into some
formal database query language, such as Image-SQL, to name one. Feature
similarity may be encoded by logical predicates such as (A =; B), (A = B),
(A #; B), where f refers to the compared feature, and A, B refer to the
prototype and candidate features. The meaning of the mentioned above
mathematical operators refers to strict equality, approximate equality, and
inequality, respectively. Similarly, spatial relationships can be encoded as
(A x B) or (NOT(A % B)), where x refers to the spatial relationship. An
example of such a query follows:

select *

from images

where (A~; B) AND (A #;C) AND (NOT(A northwest_to C))
and (B in_center_of_image);

In addition, symmetry may be taken into account, if spatial relationship
operators are inverted (e.g. operator “northwest” would be substituted by
“southeast”) and new predicates are added to the query using the logical OR
operation as: Ax B — ((A x B)OR(B x A)).

Finally, an important aspect of the proposed method for query formula-
tion is that users often engage the task of image retrieval without explicitly
knowing what visual properties of the query image they are interested in. Us-
ing a query formulation method that presents visual features as tokens, which
can subsequently be used in the formulation of query predicates, contributes
to the resolution of such ambiguities. The resolution of the ambiguity is
performed by the presentation of the image features and properties that are
available to be used in queries. Furthermore, the existence of features that
are often not compellingly perceived but play an important role in visual
impression, such as perceptual groups, can be indicated to the user in order
to be included in the query. For example, the organized structure of a per-
ceptual group, often not regarded as an individual feature, can be pointed
out e.g. as in Figure 60.

Discussion Current trends [102] in visual information retrieval explore
ways of bridging the gap between formulated queries and the intended con-
tent to be retrieved, by activating or not the description of individual content
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Figure 61: A user interface which facilitates the definition of spatial relation-
ships (NE = northeast, E = east, etc.)
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features and providing feedback through the user interface [89]. In this con-
text, an approach supporting the ability to explicitly reference and attribute
visual content components within a query, was presented in this subsection.
The proposed approach aims at the specification and indication of visual fea-
tures and spatial relationships that can be utilized in the formulation of a

query.

5.2.2 Hierarchical classification of image collections

There exists a discrepancy in the attempt to retrieve visual content in a
perceptually relevant way by discretely specifying image features and per-
forming image similarity matching based on the similarity of each feature.
In particular, it can be argued that the visual system utilizes some more
complicated strategy towards the similarity matching of images, that simul-
taneously takes more than one matching criteria into account. On the other
hand, when people are engaged in the task of organizing data, concepts, in-
formation etc., often this results in the use of a discrete hierarchical mental
organizations in order to easily manipulate concepts, or mental tokens. For
example, books are composed of chapters, sections, subsections, paragraphs
etc., words, names, and digital documents are listed in directories, subdirec-
tories etc., just to name two. Clearly, hierarchical organization is a useful
conceptual tool for organizing knowledge or information. This subsection
is oriented towards the computer-aided support of image browsing through
hierarchical classification.

The proposed method aims at the interactive refinement of targeted con-
tent through the interactive classification of features. Initially, motivation
and the theoretical basis of visual content classification are discussed and an
example of visual query refinement using classification of visual features is
demonstrated. In the second paragraph of this subsection, indicative exper-
imental results of image collection classification are presented.

Visual content classification In queries targeting the phenomenological
information of visual collections, image features and their interrelations are
of primary interest. Which features are significant, how they are mentally
conceived, integrated, and matched is not known for all cases. In this para-
graph, the application of hierarchical classification of image collections, in the
support of content description as well as query formulation and refinement,
is discussed.
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In Section 3.5, a content-based image retrieval strategy was presented
based on the combined feature similarity of some prototype distribution.
The conclusion was that subsequent categorization of the matched results
with respect to additional criteria was required (color, orientation distribu-
tion entropy), in order to discriminate matching but counter-intuitive cases.
Although such criteria could have been initially incorporated in the query, it
is often the case that query refinement is more plausible than the re-execution
of the initial query.

Classification procedure In the simplest case of some visual query, a
description capturing image content in terms of features can be adequate for
the discrimination of a piece of visual information from others. Typically,
only part of these features is known or beforehand understood, such as in
the example of Section 3.5. In that example, the extraction of a visual entity
was made possible, based on weak image segmentation, . Subsequently, a
description was extracted for that entity through the selection of features,
which were all used in the formation of query predicates. The execution of
the query yielded results that contained cases in which matching with respect
to the description was correct, but were not fully compatible with intuition.
It was speculated that with the use of a finer classification of results, these
cases would have been rejected. The case described above can be formulated
as: S = {c(D)}, denoting that a binary classifier'® c is applied on the data
set. D, yielding an ordered set S, with two elements; the sets of similar and
dissimilar elements of the original data set. The case discussed in Section 3.5,
where part of the initial features were unknown or not well understood, can
be formalized as follows:

Let a similarity matching strategy which consists of a set of criteria S =
{c10c30...0¢,(D)} and ¢,41 be a new criterion that is intended to be
evaluated as more discriminative (the symbol o refers to function synthesis,
as f(g()) = (fog)()). It is assumed that the strategy has been already applied
to some query space yielding the ordered set S. A straightforward solution
would be the re-execution of the retrieval process including the new criterion
(as 8" ={c10c30....,¢, 0 ¢py1(D)}). However, this is not always possible or
at least computationally expensive. A simple method in order to empirically
reason if ¢, refines query results, is the classification of S with respect to
S" = {cu11(5)}. Figure 62 illustrates the discussed classification of images

16 A classification criterion that sorts elements into two classes.
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Figure 62: The results of the retrieval experiment of Section 3.5 classified
with respect to orientation distribution entropy.

with respect to the added feature (c,,1) of orientation distribution entropy
(as discussed in Section 3.4.1). In the figure, the bottom row illustrates
images for which the entropy of the distribution exhibited a low overall value.
In the two rows above, the opposite case is shown. It is observed that after
the introduction of ¢,1, the image collection was classified into two classes:
one that exhibits low variance in orientation values of the targeted pattern
(the black and white stripes) and another which exhibits higher variance,
with respect to the same feature. In this case, the first class corresponds
to straight / parallel stripes and the second to locally parallel stripes which
change directions over space.

Experiments The heterogeneity of retrieval goals in combination with the
lack of knowledge about how visual similarity is determined cast difficult the
development of a generic, with respect to goal and image type, visual content
similarity matching method. As a compromise, the development of utilities
and competences for the partial management of visual content was proposed
(see discussion at the introduction of this chapter and Section 1.5). In this
paragraph, the hierarchical classification of images is discussed in the context
of the development of utilities for the browsing and classification of image
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Figure 64: A random subset of images from the classified subset M M.

collections.

The ability to hierarchically browse and classify images with respect to
similarity of visual features is proposed as an interactive method for multi-
feature query formulation. To illustrate this, a demonstration of hierarchical
classification of visual content is presented that facilitates (a) the discrimi-
nation of visually similar image content (b) the evaluation of the suitability
of visual classifiers with respect to the goal of classification.

In the following example, a random image set of 800 images was used,
taken from a larger collection!'?, of which a random subset is illustrated
in Figure 63. Initially, the existence of perceptual groups of perspectively
converging long line segments was used as a visual attribute of man-made
structures (class MM). A first classification into two image classes (man-
made structures and other) was quite successful, as already reported in the
literature [64]. Some elements of class M M are presented in Figure 64. Sub-
sequently, the convex hull of perceptual groups in MM was computed and
color features were detected within these regions. For each one of these image
regions, the HSV color histogram was computed for the pixels within them.
Elements in M M were sorted with respect to color distribution similarity for
some selected samples. The top matches with respect to the quadratic color
histogram distance [38] for two such cases, are shown in Figures 65 and 66

"The IMSI Master Photos commercial collection was used. See
http://www.imsisoft.com for more details.
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Figure 66: Image classification based on color features of perceptual groups.

presenting the color distribution prototype image first, on the left.

A second classification of elements of class M M was iteratively performed,
using a heuristic feature which was computed with the help of the method,
discussed in [57]. Repeated elements were detected within the bounds of
the convex hull of the perceptual groups in M M. The feature devised was
F = C- A, where C was the mean compactness of elements'® and A the ratio
of element area over the spatial extent of the perceptual group (determined
by the convex hull of the points composing the line segments). The result
of the classification of images in Figure 65 is illustrated in Figure 67. In
the top row of the figure, the elements shown are the ones that exhibit a
strong response to the heuristic criterion, while the second row illustrates
the opposite case. As observed, the criterion selects images that exhibit
compact repeated elements.

Similarly to the classification demonstrated in Section 4.2, Figure 68 illus-
trates another possible classification of elements of class M M. In the figure,
the browsed images exhibit a vertical orientation of the linear perspective
perceptual group. Further classification may be performed based on color
features or repeated elements as previously demonstrated.

Another example of visual content classification is demonstrated in Fig-
ure 69. In this example, size and compactness of repeated elements was
taken into account. The images illustrated all contain repeated elements of

I8 Estimated as the ratio of the squared perimeter and the area of the element’s boundary.
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Figure 67: Image classification based on the relative size of repeated elements
in comparison with the area occupied by perceptual group earlier detected.

Figure 68: Image classification based on the vertical orientation of the linear
perspective perceptual group.
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Figure 69: Browsing of images that contain repeated elements of large com-
pactness that are scattered over the whole image area. Further classification
was carried out with respect to the size of the elements. Images containing
relatively small elements are shown in the top row.

high compactness'® scattered over the image. Further classification was per-
formed with respect to the actual size of the repeated elements. Repeated
elements of minor size reside on the top row of the figure, while the bot-
tom row presents some elements occupying a larger area in the image. As
in the previous cases, further classification of images may be performed for
other features such as color, which in this case could also have a semantic
interpretation (e.g type of vegetable etc.).

The classification of content with respect to scale, which was discussed in
Chapter 2, is illustrated in Figure 70. In this example, content was initially
classified with respect to scale and images that exhibited a low entropy of ori-
entation distribution are presented. As already discussed, lack of orientation
entropy corresponds to increased directional order in the observed image, as
observed in the browsing result.

In some cases, database queries may be formulated so that they would
initially restrict search for similar distributions at coarse scales, where the
image is more abstract and dominant spatial features prevail. Images that do
not have a similar visual content at coarser scales may be excluded from the
query space, while the search could be continued for the rest of the images at
a finer scale. This would result in a reduced computational cost for queries,
for which coarser scales exhibit a dominant significance. Inversely, and de-
pending on the field of application (e.g. texture similarity), detail may be

9High compactness is exhibited by shapes that are approximately identical to the per-
fect circle.
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Figure 70: Browsing of images exhibiting coarse scale structure and orienta-
tional order.

primarily investigated by focusing on fine scale structure. The classification
of visual content may be used in this procedure. In general, the use of color,
shape, texture etc. can be arbitrary combined in such browsing sessions,
however the open issue that remains is the lack of knowledge concerning the
psychophysical significance of each similarity component.

Conclusions In the examples presented, images were classified utilizing
an interactive procedure of feature selection, which facilitates the empirical
evaluation of the suitability of visual classifiers with respect to the goal of
classification. The demonstrated procedure may be used for the development
of browsing and classification utilities for image collections. Using such a
procedure, characteristic image classes that contain similar visual content can
be distinguished. From a certain perspective, the successive restriction of the
data set using classifiers may be regarded as a method for interactive query
formulation, which yields a result by iteratively restricting the query search
space. In addition, it was demonstrated that the classification may focus
not only on “traditional” visual features, but can be also performed with
respect to feature scale of observation (as also discussed in Section 2.2.5),
thus contributing to the refinement of queries.

The development of goal oriented classification strategies is claimed to
contribute to the formulation of a palette of content matching behaviors.
The selective activation of the latter is argued to be capable of founding the
basis of a content-based visual information system.

5.3 Summary

This chapter was focused on the ability to browse and retrieve images based
on their content, by integrating features and description methods. In partic-
ular, two methods for the content-based image browsing and retrieval were
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proposed that integrate more that one content descriptor.

The first method introduced consists of a proposal for visual query for-
mulation. The key points of the approach are that it makes use of individual
visual content components, facilitates the integration of features, and can
be compiled into a structured database query language. An implementation
demonstrated in this chapter consists of a user interface of high specificity,
which enables the presentation of image descriptors and visual entities that
are available to be used in queries and provides the end user with the abil-
ity to analytically specify the predicates of a visual query. Such predicates
may concern the visual entities that were detected in an image as well as
the spatial relationships between them. This selection of predicates is the
key point of this method and contributes to the increase of specificity of the
visual queries.

The second method utilizes the sequential introduction of image classifi-
cation criteria, in order to interactively yield a hierarchical classification of
an image collection. This type of classification corresponds to an interactive
query formulation, which permits the end user to sequentially narrow the
image search space, until it contains only the targeted images. The iterative
introduction of criteria facilitates their integration, as well as their interac-
tive selection. The ability to introduce one criterion at a time make possible
the evaluation of each individually and, thus, the ability to interactively se-
lect such criteria. The method was demonstrated by presenting experimental
results, based on the description methods and similarity criteria introduced
in the previous chapters.
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6 Discussion

In this chapter, conclusions and research contributions presented in this dis-
sertation are summarized, followed by the proposals for future work.

6.1 Summary

In this subsection, the conclusions and research contributions that were pre-
sented in this work are summarized, by order of appearance.

Description of approach In the introductory section of this disserta-
tion, the approach towards the content-based retrieval of images which was
adopted in this work was described. The key points of the approach were the
modular design of a system that would integrate several specialized content-
based image description and retrieval mechanisms, which could be integrated
at a later stage. Another significant point that was discussed was the inde-
pendence of such mechanisms from context-related knowledge, which was
motivated by the ability to selectively activate and tailor the derived mech-
anisms to match specific application requirements. Most important though,
this independence stems from the goal to derive content-based description
and matching mechanisms that are relevant to human visual perception and
appropriate for its further study.

Primitive visual features In the second chapter, issues related to the per-
ceptually relevant description of the simplest components of visual content,
namely primitive visual features, were addressed. Interest in this domain of
image properties originates from the typical appearance of this feature fam-
ily in almost all visual comprehension tasks. In content-based browsing and
retrieval of images, meaningful features are composed from the perception of
primitive content elements. A common factor, recognized from the review of
related work on the topic, is the image scale at which primitive features oc-
cur. Special emphasis was given to the consideration of this factor, motivated
by its perceptual relevance.

More specifically, a study of the image scale-space demonstrated that
visual features occur in different scales. Based on this observation and in-
spired from the physiology of early vision, the Scale Summarized Represen-
tation (SSR) framework was introduced in the second chapter. The proposed
representation utilizes the scale-normalization of feature detection response
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functions to accumulate visual feature information from multiple scales. This
accumulation weights the contribution of each scale proportionally to the
value of the scale-normalized feature detection response function, indepen-
dently for each image point. The resulting representation summarizes the
contents of a scale-space over some range of scales into a single image, for a
variety of feature types.

The SSR was demonstrated to be applicable in the following problems:
(a) the consideration of more than one scale in the description of image
content, (b) the classification of image content with respect to the scale of
observation and, thus, the refinement of image description, (¢) the enhance-
ment of the quality of scale-selection results, (d) the reduction of memory
capacity requirements for the multiscale analysis of images, and (e) other
image processing applications. An added-value contribution is that the SSR
provides a generic, with respect to type of primitive feature, framework for
the representation of primitive visual features with respect to scale. Several
types of primitive features were used to demonstrate the above cases, such
as edges, corners, grayscale blobs, color blobs, etc. Finally the SSR can be
computed in parallel and is, thus, a qualified candidate for use in real-time
applications. A more detailed summary of the contributions on these issues
is presented below.

The consideration of multiple scales (a) in image description was based
on the observations that (i) the visual content of an image may vary with
respect to the scale of observation and that (ii) given some image, more than
one scale may be of interest to describe for each point of that image. Thus,
in order to be able to acquire a description that captures all meaningful
cases, the whole image scale-space has to be taken into account. By focusing
the scale-summarization on specific ranges of scales, the content of those
was independently acquired. In addition, by sorting such representations
with respect to the range of scales, from which they were obtained, the
classification of image content with respect to scale was possible (b). This
classification can be used for the refinement of image description by attaching
the attribute of scale of observation to the image features detected. Thus,
visual queries can potentially focus on specific ranges of image scales, e.g.
targeting image detail or coarse scale features.

Another issue that was discussed in the second chapter was the fact that
the process of explicitly selecting a single scale is subject to the effect of
noise. Typically, this effect is inversely proportional to the number of scales
utilized for the scale-space image description. Using the SSR it was possible
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to acquire smooth results, using a just few scales (c), due to the averaging
nature of the method. Also, the fact that the result of scale-summarization
collapses a whole range of scales into a single image contributes to the re-
duction of memory capacity requirements of multiscale image description al-
gorithms (d). Finally, the SSR was demonstrated to be applicable in several
image processing algorithms, where processing the image data with respect
to scale, or size, of local structure was of interest (e).

Finally, in the last part of the second chapter, environmental properties
that can be derived from primitive image features were investigated and
their role in the general context of the description of visual information was
discussed.

Spatial arrangements of primitive visual features In the third chap-
ter of this dissertation, the study focused on the description of the spatial
arrangement of primitive visual features.

Initially, the descriptive importance of image regions of coherent spatial
feature distribution was highlighted, showing that the ability to describe
and extract such regions is informative concerning the description of image
content. In addition, the requirements of a representation of the spatial
arrangements of primitive features were estimated, emphasizing its storage
capacity requirements. Next, the SSR framework for primitive visual con-
tent representation with respect to scale, as proposed in the second chapter,
was extended for spatial arrangements of primitive features. This exten-
sion inherits the computational and descriptional properties of the SSR that
are related to the execution time and memory optimization, as well as scale
selection.

In the third section of this chapter, the proposed representation was uti-
lized in the region extraction and similarity matching of arrangement de-
scriptors. In particular, the ability to describe the spatial arrangement of
primitive features with respect to scale led to the formulation of a scale-
normalization method for local descriptors of such arrangements, based on
the SSR framework. Using this scale-normalization method, descriptors that
were associated with visually similar spatial arrangements, but which oc-
curred at different scales, yielded similar descriptions. This similarity of de-
scription was utilized in the clustering of scale-normalized local descriptors,
which resulted in the extraction of image regions that exhibit scale-varying,
but otherwise constant arrangement of primitive features.
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The description of spatial arrangements of feature distributions was fur-
thermore enhanced, by extracting attributes of the local descriptors of the
spatial arrangement of primitive features. In the experiments, the local de-
scriptors that were used were local histograms of intensity and orientation.
Using attributes such as the principal components and the information en-
tropy of the feature distribution within a local description, the extraction
of characteristic and perceptually significant visual properties of spatial ar-
rangements of primitive features was demonstrated. In addition, the at-
tributes of the local descriptors that were extracted were directly mapped to
visual image properties. For this reason, the enhanced description of spatial
arrangements of primitive features that was derived by attributes of local
descriptors was also comprehensible by humans and, thus, characterized as
perceptually relevant. In addition, attributes of local descriptors were uti-
lized in the formulation of analytic content-based visual queries and relevant
results were presented.

Perceptual Organization In the fourth chapter of this dissertation, the
discussion was focused on the topic of perceptual organization, referring to
the grouping of low-level pieces of visual information into larger units of
perceived objects and their interrelations. In particular, two methods were
presented, the first dealing with the detection of perspectively converging,
gradient-derived image features and the second with the description of, al-
ready grouped, silhouette boundaries . The resulting descriptions from both
methods were utilized in content-based retrieval of visual information.
More specifically, the method that was introduced for the grouping of
perspectively converging gradient-derived image features was initially formu-
lated for linearly perspective line segments. Furthermore, it was generalized
for subjective line segments formed by collinearly arranged point-like fea-
tures, such as corners. The method utilized the detection of the approximate
convergence to a single point of three dominant, with respect to length and
contrast, line segments in order to form a hypothesis. Subsequently, the set
of line segments that was extracted from the image was investigated for sup-
porting or contradicting evidence to the formed hypothesis. The hypotheses
that were supported from such evidence were used to cluster perspectively
converging line segments, which were characterized as perceptual groups and
assigned with appearance-related attributes. Such perceptual groups were
utilized in the content-based retrieval of images and the assigned attributes
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in the further classification of the retrieval results. The contribution of this
grouping method, in comparison to others found in the literature, is the
detection of parallel segments under the projective transform.

The second method that was introduced in this chapter is concerned with
silhouette boundaries, since they are a class perceptual groups of significant
descriptive power, in visual content description, object recognition, and vi-
sual impression. The problem of selecting corresponding (anchor) reference
points when comparing shapes was addressed and a salience metric was pro-
posed for such a selection. Such points were selected among the curvature
extrema of silhouette boundaries, since they are reported to be perceptually
significant and were shown to be computationally more reliable. The analysis
of curvature with respect to scale was used to locate such boundary points,
which were then used for the perceptually relevant, piecewise decomposi-
tion of silhouette boundaries. This decomposition was further utilized in the
piecewise alignment of such boundaries, which provided a tool for their sim-
ilarity matching. In particular, a dissimilarity metric was formulated that
accumulates the displacement of aligned (corresponding) boundary pieces.
This metric was utilized in the introduction of a silhouette boundary match-
ing algorithm, which was tested on a small database.

Visual information browsing In the fifth chapter, the discussion was
focused on the ability to browse and retrieve images based on their content.
In this chapter, emphasis was placed on the integration of features and de-
scription methods. In particular, two methods for the content-based image
browsing and retrieval were proposed that integrate more than one content
descriptor.

The first method consists of a proposal for visual query formulation that
makes use of individual visual content components, facilitates the integration
of features, and can be compiled into a structured database query language.
A user interface of high specificity was proposed that (i) enables the presen-
tation of the image descriptors and visual entities that are available to be
used in queries and (%) provides the end user with the ability to analytically
specify the predicates of a visual query. Such predicates may concern the
visual entities that were detected in an image as well as the spatial relation-
ships between them. The benefit from such an approach is that the end user
explicitly defines the features of an image that are of interest, and based on
this, controls which images should be retrieved.
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The second method utilizes the iterative introduction of image classifi-
cation criteria in order to interactively yield a hierarchical classification of
an image collection. This type of classification corresponds to an interactive
query formulation, which permits the end user to sequentially narrow down
the image search space until it contains only the targeted images. In this
method, the integration of features was achieved by iteratively introducing
the classification criteria. The method was demonstrated by presenting ex-
perimental results based on the description methods and similarity criteria
introduced in the previous chapters.

6.2 Future work

In this section, intentions for future work are discussed. Initially, exten-
sions to the methods presented in the previous chapters are proposed and,
subsequently, future research directions are outlined.

6.2.1 Extensions

In this subsection, work that would extend the methods that were introduced
in the previous chapters is proposed.

Concerning the scale-summarization of primitive features the study of
novel feature detectors is proposed. In particular, gradient-derived feature
detectors could be devised for the detection of visual features related to prop-
erties of the environment, such as e.g. image gradient due to cast shadows.
In addition, it would be interesting to test the applicability of the method
and experiment with other types of “feature detectors” or filter banks that
are encountered in the visual systems of primates, such as Gabor functions
or spectral response functions in cones. The work proposed would in these
cases deal with the description of such features with respect to scale.

Furthermore, the study of novel feature detectors could be applicable to
the scale-summarization and description of spatial arrangements of primi-
tive features. In particular, the study of filter banks exhibiting a derivative
like structure is proposed for experimentation in order to be able to detect
complex structures, instead of deriving such descriptions from the integrated
use of intensity and orientation descriptors. Thus local descriptors could be
devised which are able to yield similar descriptions for complex texture pat-
terns, which vary at scale. In addition, the clustering of scale-normalized
local descriptors of feature arrangement is proposed to be tested and demon-
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strated with more efficient algorithms than the K-means image segmentation
algorithm, which are based on graph-partitioning.

Regarding the perceptual grouping of features it is argued that future
work should be generally focused on the integration of several perceptual
grouping rules. With respect to the presented algorithm, which deals with
the grouping of linearly perspective image features, future work could involve
the extraction of depth cues concerning the structure of the environment. In
addition, the study of such cues in the perception of shape could be also of
interest. More specifically, rules of shape constancy could be explored in order
to derive a perceptually relevant description of shape given the context within
it appears. Thus shapes or contours could be compared after normalization
with respect to pose, instead of trying to estimate a transform that could
possible correlate two shapes that are candidates for matching.

Finally, ample room exists for future work concerning the integration
of visual content descriptors. In addition, ways of utilizing context-related
knowledge, as well as similarity metrics that represent human perception
would be quite useful to explore. Such issues, are further discussed in the
next subsection.

6.2.2 Research directions

In this subsection, future research directions that would extend the work
presented in this dissertation are proposed. Our interest for future research is
focused on the ability to propose more effective methods of integrating visual
cues and similarity criteria, integrating knowledge about the functionality of
the visual system acquired from psychophysical experiments, and integrating
top-down information into content-based image retrieval methods.

Voting A voting approach is proposed as an experimental tool for the
problem of image similarity estimation. The interaction and merging of dif-
ferent similarity modules can be studied through autonomous agent modeling
of different similarity matching behaviors, casting their votes regarding the
similarity of images. Fach agent’s vote is based on its specialized knowl-
edge of image content and some similarity assessment method. Depending
on both image content and the comparison task, different behaviors should
be activated. An experimental platform featuring voting procedures using a
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variety of voting systems was implemented?® for the study of such behaviors.
Ways of integrating information sources include:

e dominance, where one agent dominates over all others and which is
implemented with various versions of majority voting,

e compromise, where the solution may not be necessarily consistent with
the majority of votes, but attempts to accommodate the preferences
of all voters at the highest possible degree (this type of integration
was implemented based on certain variations of preferential voting, in
which each voter casts a prioritized list of votes with the possibility of
weighting their importance as well).

e interaction, where the result is reached after the convergence of infor-
mation sources (this type of voting was implemented using consecutive
voting rounds).

The voting infrastructure may be used in the evaluation of different content
similarity evaluation strategies, exploiting the dynamic formulation of the
set of voters and thus yielding a system where a variety of experiments may
take place, with minor technical effort. Most importantly, it is intended to
be used as a tool in order to approximate human similarity perception by
selecting a voting method that would select the same similarity correlated
images as subjects would do in psychophysical experiments.

Psychophysical experimentation Controlled psychophysical experiments
are proposed as a method to objectively evaluate the effectiveness of similar-
ity matching methods. More specifically, the ability to measure the opinion
of human subjects about the similarity of images or specific image features
under controlled experiments is proposed as a way derive “laws” of visual
similarity. In such experiments, the role of context should be de-emphasized
or optimally isolated, probably with the use of unidentifiable visual stimuli
(meaning that they are not recognized as familiar objects). Furthermore,
in order to be able to measure the impact that specific image properties
have on perceived visual similarity, the stimuli that are to be presented to
subjects should always isolate the visual property of interest. However, this

20Georgios Ch. Chalkiadakis: ”An Agent-Based Architecture for the Conduction of
Voting” , Master of Science Thesis, Department of Computer Science, University of Crete,
October 1999.
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would not be adequate for investigating the similarity judgment derived by
taking more than one similarity criteria into account and, thus, further ex-
periments should then be conducted in order to investigate the integrated
effect of such criteria. In addition, the groups subject to such experiments
should be appropriately selected so that the biased or misleading conclusions
are avoided.
The conduction of psychophysical experiments is also proposed as a method

to: (a) design or approximate perceptually relevant similarity measures, (b)
supervise the training of machine learning methods and in this way learn a
similarity matching strategy instead of trying to design one, and (¢) explore
the visual components that are relevant with respect to context or semantics
as well as about their significance.

Grammars Research concerning the integration of visual content descrip-
tors could be conducted in terms of pursuing a “visual grammar” that would
provide information about how perception combines visual cues into mean-
ingful percepts. If such a grammar becomes available then more meaningful
and descriptive visual entities could be extracted from an image.

Context Since context-related knowledge and observation goal are key fac-
tors to the appreciation of content-based image retrieval results, further re-
search that would lead to the derivation of methods for integrating such
knowledge into visual queries is proposed. As a first step towards this direc-
tion, the design of software agents which are specialized in the performance
of specific tasks and also exhibit the capability of adapting their behavior to
the preferences of specific end users or user groups is proposed.
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