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Structural Feature Extraction and Engineering for
Sentiment Analysis

Abstract

The subject of this work is the sentiment analysis of Greek-speaking tweets.
We use natural language processing (NLP) methods and neural networks to create
three different classification models. The first model processes single, independent
tweets and decides if their sentiment is positive or not, or if it is negative or not.
The second model considers a tweet paired with its textual context, meaning the
tweet that it responds to. With the third neural model we attempt to do sentiment
analysis with the tweet, textual context and some additional, structural features,
as input. These structural features are extracted from the Twitter graph, and
give us information about the authors of the tweet and textual context. Our
experiments show that the additional text context improves our prediction by a
small percentage in some cases. However, we find no correlation between the
predicted tweet sentiment and the Twitter graph structural features.



Εξαγωγή και Αξιοποίηση Δομικών

Χαρακτηριστικών για Ανάλυση Συναισθήματος

Περίληψη

Το θέμα αυτής της εργασίας είναι η ανάλυση συναισθήματος (sentiment analysis) ελ-

ληνόφωνων tweets. Χρησιμοποιούμε τεχνικές ανάλυσης φυσικής γλώσσας (natural
language processing, NLP) και νευρωνικών δικτύων για να δημιουργήσουμε τρία δια-

φορετικά μοντέλα κατηγοριοποίησης. Το πρώτο μοντέλο επεξεργάζεται μεμονωμένα

tweets και καθορίζει αν έχουν ή όχι θετικό sentiment ή αντίστοιχα αρνητικό senti-
ment. Το δεύτερο μοντέλο λαμβάνει υπ΄ όψιν ένα tweet μαζί με τα συμφραζόμενά

του, δηλαδή το κείμενο στο οποίο απαντάει. Στο τρίτο μοντέλο δοκιμάζουμε να πραγ-

ματοποιήσουμε sentiment analysis έχοντας ως δεδομένα το tweet, τα συμφραζόμενα,

και ένα σύνολο από δομικά χαρακτηριστικά των συγγραφέων αυτών των tweets. Τα

δομικά αυτά χαρακτηριστικά τα συγκεντρώνουμε μελετώντας το γράφο του Twitter.
Τα πειράματά μας δείχνουν ότι τα επιπλέον συμφραζόμενα σε μορφή κειμένου βελτι-

ώνουν τις προβλέψεις μας κατά ένα μικρό ποσοστό σε κάποιες περιπτώσεις. Ωστόσο,

δε βρίσκουμε κάποια συσχέτιση ανάμεσα στην πρόβλεψη ενός tweet sentiment και τα

δομικά στοιχεία του γράφου του Twitter.



Ευχαριστίες



Στην οικογένειά μου



Contents

1 Introduction 1

2 Related work 3

3 Dataset 6
1 Data collection and features . . . . . . . . . . . . . . . . . . . . . . 6
2 Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Design 14
1 Base model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Conversations model . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Conversations and structural features model . . . . . . . . . . . . . 18

5 Experiments and Results 20
1 Base model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2 Conversations model . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Conversations and structural features model . . . . . . . . . . . . . 23

6 Conclusion and Discussion 24
1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Bibliography 28
1 APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

i



Chapter 1

Introduction

Online posts are a widespread way of communication. Classifying them as positive
or negative gives us a great outlook about the views of the author on a subject.
Many companies and applications use sentiment analysis to take a thorough look
at their users’ preferences and satisfaction. In this work, we determine if the
additional text context in the form of previous parts of the online conversation,
and structural context in the form of graph features of a twitter post affect the
accuracy of its sentiment prediction.

Twitter is a widely used online social network (OSN) where millions of users
interact every day by writing small text posts called ”tweets”. We choose Twitter
for this work, because its popularity (about 500 million tweets per day) combined
with its microblogging nature, leads to very large, continuously growing sets of
small, easy to handle, text data. Also, tweets tend to be more opinionated as they
comment on political and social issues, such as elections[7] and trending events.
We use a custom Twitter crawler, twAwler [19], and gather ≈6.7 GB of Greek-
speaking tweets in the period between January 1st 2021 and February 1st 2021.

In order to discover the sentiment of the Greek speaking part of Twitter, we
firstly build our base case. The base case of our study is the sentiment analysis
on a single tweet using a long short-term memory (LSTM) [10] neural network.
Given that a tweet might be the response to another tweet as a reply, we extend
our model to consider the latter as textual context for our analysis. To further
improve the sentiment predictions, we modify our model anew to also utilize the
graph properties between the involved users as structural context.

Our first attempt to improve our sentiment predictions for our analysis, is to
get additional context for the tweet we want to evaluate. We call base tweet a
crawled Twitter post that someone has replied to, and target tweet the reply to
the base tweet. We predict the sentiment of the target tweet, given our knowledge
of its textual context (the base tweet) and its content, and find a small increase in
accuracy.

In our second attempt to better improve our predictive model, we make the
hypothesis that information about the structure of the Twitter graph will help us
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CHAPTER 1. INTRODUCTION 2

better our predictions. Thus, we further augment our analysis by adding structural
features to complement our tweet conversations. These features are derived from
the Twitter graph, and illustrate the role of the base and target tweets’ authors.
Nodes in the Twitter graph represent users and posts, and edges represent different
interactions between them. There are three types of interactions: 1) between posts,
such as ”replies-to-tweet”, that connects a reply node with the tweet it replies to,
2) between users, such as ”follow”, which connects a user with another user they
follow, and 3) between a post and a user, such as ”favorite”, which connects a user
with a tweet they favorite.

We use the ”replies-to-tweet” relationship to find pairs of base tweets and
replies, called conversations. We also create a graph embedding, a vector that
summarizes the structural features of the conversing users. The embedding consists
of but is not limited to the mention, quote, favourite and reply in and out degrees,
the followers count, the friend/follow ratio etc. These features give us a new
perspective about a user’s role in the twitter graph; and increase the accuracy of
our prediction.

We build our models with the keras[6] API in Python. The first model processes
individual tweets, the second model processes conversations and the third and last
model processes conversations and graph features. We train our three models with
different sets of parameters, and keep our best performing model version for each
category. The best model that processes tweets has an accuracy of 72.2%. The
best model that takes tweet conversations as input has similar performance as its
predecessor, with 72.78% accuracy. All the models that take tweet conversations
and graph features as input, unfortunately have base line accuracy, with the best
performing model at 50.85% accuracy.

The first model’s performance is comparable with other sentiment analysis
models in the bibliography, like Wang et al. [21] . We interpet the second model’s
slightly better accuracy as the result of our labeling process; we do not take into
consideration the base tweet when we label the target tweets in our dataset. Like-
wise, the graph features do not contribute to our initial labeling of the dataset,
and the third model fails to discover any correlation between these features and
the tweet conversations.
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Related work

Sentiment analysis on social media posts is a very popular topic right now, as
different platforms take advantage of the users’ preferences to tune their recom-
mendation algorithms and target their advertisements. There are many different
tools for sentiment analysis using NLP, from libraries like python’s NLTK[2] and
Stanford CoreNLP[15], to pre-trained models like BERT[9]. In our work, we focus
on Greek language texts, which are not supported by many of the existing tools,
and we use neural networks for our analysis.

There are many works on neural networks and sentiment analysis on online
social media posts, some of which are presented below.

Huang et al. [11] implement a recurrent neural network that uses LSTM layers
in order to do a sentiment classification of short texts. They gather data from
Weibo, a Chinese microblogging platform similar to Twitter. Their work is the
main influence for our decision to create a base model and then ”build” upon it to
add the additional context. More specifically, at first they create an LSTM model
that takes single posts as input and then they extend it in order to process process
conversations by adding a second LSTM layer (Hierarchical LSTM model).

Wang et al. [21] use an LSTM model in combination with word embeddings
to perform sentiment analysis on short text from various online sources. They
train their model with two different datasets, an English movie reviews dataset
extracted from IMDB and a Chinese movie reviews dataset from Douban. They
test their model with a dataset of Chinese forum posts extracted from the PTT
bulletin board. They use the Word2Vec Skip-gram model[17] to create the word
embeddings for their input and then feed these representations in an LSTM model.
In their experiments they achieve over 80% accuracy with the LSTM model for
the IMBD reviews dataset, around 75% accuracy for the Douban reviews dataset
and around 70% accuracy for the PTT posts dataset.

Yin et al. [22] compare the performance of convolutional neural networks
(CNNs) with the performance of recurrent neural networks (RNNs) on six different
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NLP tasks; sentiment classification, relation classification, textual entailment, an-
swer selection, question relation match, path query answering and part-of-speech
tagging. Their experiments for the sentiment analysis task show that RNNs per-
form better than CNNs.

Ratkiewicz et al. [20] search for astroturfing, or orchestrated campaigns appear-
ing to be grass-roots movements in order to influence opinion. They use hashtags,
mentions, URLs and the entire text of every tweet as “memes” and look into prop-
agation patterns in diffusion networks. They use a set of features per meme to
classify memes, and assign six GPOMS sentiment dimensions [4]: calm, alert, sure,
vital, kind, happy.

Conover et al. [8] found that the retweet graph is better correlated to political
affiliation clustering than the mention graph. Mentions can be interactions between
disaggreeing parties but retweets are almost always endorsements. Retweet cliques
seem to be politicaly homophilic.

Narr et al. [18] develop a sentiment analysis that is agnostic to language and can
be trained to recognize sentiment-heavy n-grams starting from tweets containing
emoticons, before it is applied to tweets in each language. The authors use both
twitter API’s language recognition and Chrome’s language recognition system to
partition tweets of many languages per language, and train their analysis on each
language. The method’s precision depends on the language and local culture,
writing style, etc., and was able to perform with up to 80% accuracy for large
training sets in some languages.

Even though Greek is a language spoken for a tiny percentage of the world pop-
ulation, there are some teams that do sentiment analysis on Greek text extracted
from social networks.

Antonakaki et al. [1] present an analysis of the Greek 2015 referendum and
parliamentary elections. They use a stemmer for word matching, and a lexicon-
based sentiment analysis to assign sentiment to LDA topics. They produced an
accurate prediction of the ballot results by counting number of tweets and tweet
sentiment per topic, and assigning topics to outcomes. TwAwler uses the same
sentiment dictionary, kindly provided by the authors, to extract sentiment features
per user and per entity.

Markopoulos et al. [16] gather hotel reviews written in Greek from TripAdvisor
and perform sentiment analysis using a Support Vector Machine (SVM). In order
to represent the greek text as data that are readable by the SVM, they use two
different traditional NLP approaches; the TF-IDF Bag-of-Words approach, and
the Term Occurence approach. The model that follows the TF-IDF Bag-of-Words
approach achieves 95.78% accuracy, whereas the model that uses Term Occurence
in the data processing achieves 71.76% accuracy in predicting positive and negative
reviews.

Kydros et al. [13] analyze the Greek part of the Twitter graph during the first
wave of the COVID-19 pandemic. They focus on COVID-19 related keywords and
gather four datasets tweets that contain these words, each one for the duration of
a month, from March 2020 to June 2020. They visualize the connections between
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these keywords and also use a Greek seniment lexicon to find the sentiment during
these time periods. They find that negative moods such as fear and anger are
more prominent than positive moods during these months.

Kalamatianos et al. [12] use a Greek sentiment lexicon to evaluate Greek tweets
on six different sentiment values; anger, disgust, fear, happiness, sadness and sur-
prise. They also get the most used hashtags in a specific time period and use the
sentiment lexicon to produce their sentiment in the same six different values.



Chapter 3

Dataset

1 Data collection and features

We gather ∼ 7 million Greek conversations from Twitter, in the time period of
January 2021, using twAwler [19]. From the collected conversations, we create two
balanced datasets of 100.000 conversations each. An example datapoint is shown
in 3.1.

The ”base tweet” is the base tweet as described in chapter 1, it creates the
context of the coversation. The ”reply” is the ”target tweet” as described in
chapter 1. It is the tweet we want to do sentiment analysis on. The ”author id” and
”replier id” are the Twitter ID’s of the author of the base tweet and target tweet
respectively. We use these ID’s to match the participants of each conversation
to their structural features. The ”author features” and ”replier features” fields
represent the structural features of the authors of the base and target tweet. These
vectors contain numerous features extracted by the Twitter graph. The complete
list of the structural features we use is in 3.2 and 3.3. These structural features
are categorized in seven groups that are separated with horizontal lines in the
tables. The first group contains general metrics about the user, like the number of
tweets they have posted, how many friends and followers they have and how many
tweets they have deleted. The second group contains all the information related to
the ”mention” relationship regarding this user. For example, there is the number
of times that the user has been mentioned by other users, the number of times
he mentions other users etc. Likewise, the third group contains the information
about the ”quote” relationship, the fourth group consists of the ”retweet” features
and the fifth group of the ”reply” features. The sixth group has more information
about the user’s friends and followers, like the number of the user’s followers that
are Greek, the number of friends that are tracked by the twAwler API, and more.
Finally, in the last group there are some statistics about the tweets the user posts,
such as the average number of words in their tweet and the number of ”favorite”
tweets.

6
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”base tweet”: ¨Καλημέρα και καλό μήνα!”,
”reply”: ”Δεν μας παρατάς κι εσύ.”,
”author id”: 111111111,
”replier id”: 2222222222,
”author features”: [tweet count, favourites count, followers count,
friends count, friends count, fr fo ratio, seen total, total inferred, seen greek total,
deleted tweets, seen top tweets, top tweets pcnt, mention indegree, men-
tion outdegree, mention inweight, mention outweight, mention avg inweight,
mention avg outweight, mention out in ratio, mention pcnt, quote indegree,
quote outdegree, quote inweight, quote outweight, quote avg inweight,
quote avg outweight, quote out in ratio, quote pcnt, retweet indegree,
retweet outdegree, retweet inweight, retweet outweight, retweet avg inweight,
retweet avg outweight, retweet out in ratio, retweet pcnt, reply indegree,
reply outdegree, reply inweight, reply outweight, reply avg inweight, re-
ply avg outweight, reply out in ratio, reply pcnt, seen replied to, seen fr,
gr fr, gr fr pcnt, tr fr, tr fr pcnt, seen fo, gr fo, gr fo pcnt, tr fo, tr fo pcnt,
tr fo jaccard, fr and fo, fr or fo, gr fr fo, gr fr fo pcnt, total words, min wptw,
avg wptw, med wptw, std wptw, favoriters, favorited],
”replier features”: [tweet count, favourites count, followers count,
friends count, friends count, fr fo ratio, seen total, total inferred, seen greek total,
deleted tweets, seen top tweets, top tweets pcnt, mention indegree, men-
tion outdegree, mention inweight, mention outweight, mention avg inweight,
mention avg outweight, mention out in ratio, mention pcnt, quote indegree,
quote outdegree, quote inweight, quote outweight, quote avg inweight,
quote avg outweight, quote out in ratio, quote pcnt, retweet indegree,
retweet outdegree, retweet inweight, retweet outweight, retweet avg inweight,
retweet avg outweight, retweet out in ratio, retweet pcnt, reply indegree,
reply outdegree, reply inweight, reply outweight, reply avg inweight, re-
ply avg outweight, reply out in ratio, reply pcnt, seen replied to, seen fr,
gr fr, gr fr pcnt, tr fr, tr fr pcnt, seen fo, gr fo, gr fo pcnt, tr fo, tr fo pcnt,
tr fo jaccard, fr and fo, fr or fo, gr fr fo, gr fr fo pcnt, total words, min wptw,
avg wptw, med wptw, std wptw, favoriters, favorited],
”pos”: 0.5,
”neg”: 2

Figure 3.1: Example of a datapoint
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tweet count Total tweet count, as reported by twitter.
favourites count Number of tweets this user has favorited, as reported by twitter.
followers count Number of users that follow this user, as reported by twitter.
friends count Number of users this user follows, as reported by twitter.
fr fo ratio Ratio of friends to followers.
seen total Total number of this user’s tweets used in computing this vector.
total inferred Total number of this user’s tweets including encountered tweet

IDs that could not be crawled and are probably deleted.
seen greek total Total number of this user’s tweets marked as being in Greek by

the twitter API.
deleted tweets Total number of this user’s tweets that were seen and then were

deleted.
seen top tweets Seen tweets that were not retweets or replies.
top tweets pcnt Percentage of seen tweets that were not retweets or replies.

mention indegree Number of users that mention this user.
mention outdegree Number of users mentioned by this user.
mention inweight Number of tweets that mention this user.
mention outweight Number of mentions by this user.
mention avg inweight Average mentions of this user per mentioner.
mention avg outweight Average mentions per mentioned user.
mention out in ratio Out-degree/in-degree ratio (mention reciprocity).
mention pcnt Percentage of seen tweets that are mentions.

quote indegree Number of users that quote this user.
quote outdegree Number of users quoted by this user.
quote inweight Number of tweets that quote this user.
quote outweight Number of quotes by this user.
quote avg inweight Average mentions of this user per mentioner.
quote avg outweight Average mentions per quoted user.
quote out in ratio Out-degree/in-degree ratio (quote reciprocity).
quote pcnt Percentage of seen tweets that are mentions.

retweet indegree Number of users that have retweeted this user.
retweet outdegree Number of users this user retweeted.
retweet inweight Number of retweets of this user’s tweets.
retweet outweight Number of retweets by this user.
retweet avg inweight Average retweets per retweeter.
retweet avg outweight Average retweets per retweeted user.
retweet out in ratio Out-degree/in-degree ratio (retweet reciprocity).
retweet pcnt Percentage of retweets in tweets seen by this user.

Figure 3.2: Table of structural features (1/2)
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reply indegree Number of users that have replied to this user at least once.
reply outdegree Number of users to which this user replied at least once.
reply inweight Number of replies to this user.
reply outweight Number of replies tweeted by this user.
reply avg inweight In-Replies per in-degree.
reply avg outweight Out-Replies per out-degree.
reply out in ratio Out-degree/in-degree ratio (replies sent for each received).
replies pcnt Percentage of replies in tweets seen by this user.
seen replied to Number of tweets that received replies from other users.

seen fr Total number of twitter users seen to be followed by this user at
least once.

gr fr Number of friends marked Greek-speaking.
gr fr pcnt Number of friends marked Greek-speaking.
tr fr Number of friends tracked.
tr fr pcnt Percentage of friends tracked.
seen fo Total number of twitter users seen to follow this user at least once.
gr fo Number of followers marked Greek-speaking.
gr fo pcnt Percentage of followers marked Greek-speaking.
tr fo Number of followers currently tracked.
tr fo pcnt Percentage of followers currently tracked.
fr fo jaccard Jaccard similarity between friend and follower sets.
fr and fo Size of the intersection of the friend and follower sets, i.e., all

reciprocal follow edges.
fr or fo Size of the union of the friend and follower sets, i.e., all neighbors

in the follow graph.
gr fr fo Number of all friends and followers marked as Greek-speaking.
gr fr fo pcnt Percent of Greek-speaking neighbors (friends and followers).

total words Total number of words in all seen tweets.
min wptw Minimum number of words per seen tweet.
avg wptw Average number of words per seen tweet.
med wptw Median number of words per seen tweet.
std wptw Standard deviation of the number of words per tweet.
favoriters Number of users seen to have liked a tweet by this user.
favorited Number of users whose any tweet this user has liked.

Figure 3.3: Table of structural features (2/2)

2 Labeling

In order to use our crawled tweets for our analysis, we need to create a training
dataset, that consists of labeled datapoints. We use a sentiment analysis dictio-
nary [1] for the Greek language to label our collected tweets. A sentiment analysis
dictionary is a dictionary that maps a word or phrase to a sentiment. In our case,
the dictionary maps each Greek word to a tuple of numbers that represent the pos-
itive and negative sentiment of this word. For the positive sentiment, the number
is between 0 and 4, where 4 corresponds to ”very positive” and 0 to ”not positive
at all”. Likewise, for the negative sentiment, −4 implies a ”very negative” and 0
a ”not negative at all” sentiment.

In the gathered conversations we can see a clear tendency towards negativity.
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In figure 3.4 we show the summation of the absolute values for each class (positive
and negative).

Figure 3.4: Sum of positive and negative sentiment of Greek tweets

From this point on, we will refer to sentiment with an absolute value greater or
equal than 2 as strong (positive or negative) and to sentiment with an absolute
value less than 2 as weak.

In figures 3.5 and 3.6 we show that it is more common for negative sentiment
to be strong, than it is for positive sentiment. Figure 3.5 shows the number of
conversations with a specific positive and negative score in absolute value. The
chart in 3.6 shows the number of conversations that have a strong positive and/or
a strong negative sentiment score. It is obvious that in the Greek speaking commu-
nity on Twitter for the specific period, negativity is much more strongly expressed
than positivity.

Figure 3.5: Positive and negative sentiment of Greek tweets

In the scope of this worke, we treat this sentiment analysis problem as a binary
classification problem. Therefore, we need to convert the [-4, 0] and [0, 4] labels to
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Figure 3.6: Polarized positive and negative Greek tweets

binary ones for each score. We use a binary 0,1 label for each sentiment (positive
and negative), based on whether it is weak or strong. For example, a conversation
with labels (−3, 1) now has a negative label 1 and a positive label 0.

We make the decision to keep two separate labels for positive and negative,
instead of using a sole 0/1 label for positive/negative sentiment, because many
conversations have mixed sentiment.

As shown above, the original dataset is heavily skewed in favor of negative
conversations. To eliminate this type of negative bias in our model, we randomly
select 50, 000 conversations of each one of our labeled classes; weak positive, strong
positive, weak negative and strong negative. With these four sets we create two
datasets; a negative dataset, that contains the weak and strong negative conversa-
tions, and a positive one, that contains the weak and strong positive conversations.

3 Preprocessing

In order to pass our data through the training process, we first need to clean up
the text data from noise. We split the tweet and remove URLs, mentions, HTML
tags, punctuation, emojis, single letter words and white characters. In order to
feed our data to our neural models, we have to decide on a fixed length for all our
tweets. This is essential because the tensorflow neural networks we work with use
tensors. Tensors are multi-dimensional matrices that need to be rectangular, that
means along each axis every element has the same size.

Therefore, we need to decide on a fixed length for all our tweets. We decide
that all tweets must have length of 40 words. We choose this number because only
a small percentage of tweets has more than 40 words. More specifically, in figure
3.7 there is the ECDF graph of the lengths of 200,000 randomly selected tweets
and replies. More specifically, over 80% of tweets contain only 20 words or less.
So, we truncate longer tweets and keep the first 40 words, and we pad shorter
tweets with empty words until they reach length 40.
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Figure 3.7: Tweet length ECDF

Neural models cannot read text as input, they understand numerical values. A
common method to transform text data to numerical values are word embeddings.
These are vectors of numbers where each vector represents one word. There are
different pre-trained models that produce these types of representations, such as
Word2Vec [17] (used in Wang et al. [21]) and Fasttext [3]. In our work we use the
Fasttext pre-trained model, that creates the vector representations for our text
data. We replace each word in a tweet that exists in the Fasttext model with the
equivalent vector and each empty padding word with a zero vector.

In figure 3.8 there are the three stages of text preprocessing in detail. In
the first stage, we have the original tweet, ”@user123 θυμάσαι τι ωραία που είχαμε

περάσει σε αυτή τη συναυλία· https://www.youtube.com/watch?v=184LefO27ys”.
In the second stage we want to keep only the useful words for our analysis. To
do that, we remove the user mention, the punctuation and the video URL. Addi-
tionally, we split the tweet into word tokens, and truncate (or pad it at the front
with empty words) in order for it to be 40 words long. When padding is neces-
sary, we add it to the start of the tweet, rather than the end, because our models
propagate the information of each tweet to its last word. Thus, it is better to keep
the information of the datapoint near the end of the sequence. At the final stage,
we replace each word with its Fasttext embedding. The empty padding words are
replaced with a zero vector.

The structural data are represented as vectors of length 66, where each feature
is a numerical value extracted from the Twitter graph. These features are shown
in detail in tables 3.2 and 3.3. These features are already numerical by nature, so
we do not process them any further.
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Figure 3.8: Data preprocessing



Chapter 4

Design

Neural networks are used for a variety of tasks, such as image classification, speech
recognition and other predictive models. Recurrent neural networks are a sub-
class of neural networks that utilize internal memory to process sequences of data
points. Examples of these types of sequences are speech (sequence of sounds),
text (sequence of words), and video (sequence of images). We decide to use RNNs
instead of other types of neural network because they perform well in tasks that
use sequences, like our dataset that consists of sequences of words (tweets and
conversations).

Figure 4.1: Example of a recurrent neural network

Of various RNN architectures we choose long short-term memory or LSTM
networks. LSTMs are a type of recurrent model that tacke the problem of the
”vanishing” gradient. The vanishing gradient problem comes up when gradients
tend to zero after being multiplied multiple times with very small numbers during
back-propagation. LSTMs tackle this problem with the use of three components
called ”gates”. The input, output and forget gate of the LSTM decide what
information is to be remembered by the network, what information needs to go

14
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through as the output and what information has to be forgotten. This way, if a
gradient is zero will be forgetted by the forget gate and will not be propagated
furthermore. Figure 4.2 shows an LSTM cell. The three aformentioned gates are
the sigmoid functions at it (input gate), ot (output gate) and ft (forget gate).

Figure 4.2: Structure of the LSTM cell

In the following sections we present our models. We start with the ”base
model” which is the base for our next two. This first model takes as input a single
tweet. Next, we modify the base model and create the ”conversations model”,
which analyzes tweet conversations (text plus context). Finally, we extend the
conversations model and create the ”conversations and structural features model”,
which analyzes tweet conversations paired with structural features.

1 Base model

In order to test our hypothesis, that text and structural context improves the
accuracy of the sentiment analysis of tweets, we first have to create our base model
as a point of reference. The architecture of the model is showin in figure 4.3.

The base model consists of an input layer that takes a tweet as an input,
a lambda layer, an LSTM layer and a dense layer, that produces a number as
the output. This output is the positive (or negative, depending on the training
dataset) sentiment, that ranges from 0 to 1.

The input layer is responsible to feed the model with batches of input data.
The base model takes tweets (sequences of words) as input. The LSTM layer is
the recurrent neural layer that efficiently works with sequence data. This layer
essentially does the processing of the input; it remembers the gist of each word in
a tweet and passes it to the next word, up until the end of the sentence. Now, the
very end of the sentence has all the information that represents the whole tweet.
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Figure 4.3: The base model

In order to keep this piece of information, we use the lambda layer.
The lambda layer is a layer that implements a custom lambda function. We

use it to only keep the output of the last word of each sentence, instead of keeping
one output per word. This way we only get the return sequences that represent
the tweet, before we move to the next datapoint.

Finally, the fully connected (dense) layer uses the binary crossentropy loss
function to perform the final step of regression. This layer is the classifier, and
creates the model’s output. For the experiments we use the negative dataset, which
contains 50.000 weak negative and 50.000 strong negative tweets. The output
prediction is a number between 0 and 1; which translates to how weak (closer to
zero) or strong (closer to one) is the negative sentiment of the input.

Intuitively, we expect that information about the tweets of the same conver-
sation will give us a clearer view of the tweet of interest. We test this intuition
with the next model, that gets a tweet A as input paired with the tweet B that it
replies to. We still want to predict the sentiment of tweet A, which is the reply in
this scenario.
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2 Conversations model

In order to test the hypothesis that additional text context improves the sentiment
analysis we do on tweets, we utilize what we call conversational context. The
conversational context, as presented above, is the tweet that our tweet of interest
replies to. We call this extra tweet the ”trigger” tweet, because it triggers the
conversation. We integrate this conversational context in our analysis by feeding
the trigger (or base) tweet to our model alongside the tweet of interest. In order to
do that, we concatenate the trigger tweet and the reply tweet in a conversation
of length 80 (two padded tweets of maximum length 40).

The model’s architecture is very similar to the base model, as we can see in
figure 4.4. We choose to only make minimal alterations to the base model to
convert it to the conversations model. We think this way our comparison is fair,
and the performance of the conversation model will improve only if the additional
data help our objective, and not because we switched the model’s architecture.
The only adjustment here is the input’s dimensions and the custom function in the
lambda layer. Here we want to keep the returned sequences of each conversation
(trigger tweet and reply tweet), so we modify our lambda function in order to
return the last word of the whole conversation.

Figure 4.4: The conversations model

Now that we have a whole conversation as input, we go a step further and
think about the users that participate in this conversation. Who are these users
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and what can their role in the Twitter graph say about the intented sentiment
of their posts? To answer these questions, we integrate some structural features
that we extract from the Twitter graph to our data, and modify the conversations
model in order to take the conversations and these features as input.

3 Conversations and structural features model

We want to test our last hypothesis; that if we add some structural features along-
side the conversations, our model’s accuracy improves. The features that we use
are extracted from the Twitter graph using twAwler [19]. These features give us
information about the users that participate in each conversation of our dataset
and are presented in detail in tables 3.2, 3.3.

These 66 features of our choice constitute a numerical vector of length 66 for
each user. In contrast with the additional text context, in this case the structural
features are not of the same nature with the tweet we want to analyze. Therefore,
we cannot concatenate the structural features vectors and the conversations to
create the input data. For this reason, we decide to feed the structural features to
the model from a separate input layer.

We analyze the text data (conversations) in the same way as in section 2
up until the lambda layer. The text data pass through an LSTM and a lambda
layer as before, and continue to a combination of dense layers and a flatten layer.
The structural data go straight to a combination of dense layers and then a flatten
layer. The purpose of these dense layers for both branches of the model is to reduce
the dimensions of our data. We use these flatten layers to flatten the processed
text and structural data to one dimensional vectors. For the final step of the
classification, we concatenate these flattened intermediate results and pass them
through a dense layer that predicts the output.

The conversations and structural features model is shown in figure 4.5.
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Figure 4.5: The conversations and structural features model
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Experiments and Results

After we gather and process our data and build our models, we construct the
experiments that will either support or reject our hypothesis. The goal of these
experiments is to see whether our sentiment analysis model performs better when
we give additional context as input. More specifically,first we construct experi-
ments for our base model, which is our point of reference for the other, extended,
models.

In all experiments we use a balanced dataset of 100,000 tweets. This dataset
is balanced in regards to the negative score, and our models predict only the
negative score of the datapoints, with 0 annotating a weak negative score and
1 a strong negative score.. More specifically, the dataset contains 50.000 weak
negative tweets and 50,000 strong negative tweets. As it can be seen in figure 3.1,
a sample datapoint of our dataset already contains the target tweet (reply), the
trigger (base) tweet and the structural features. Depending on which model we use,
only some of these data are used. The base model only sees the target tweet, the
conversations model sees both the target and trigger tweets and the conversations
and structural features model sees all three of these types of data.

After we conclude the experiments for our base model, we run experiments with
the same parameters and dataset for the conversations model and the conversations
and structural features model.

In each of these experiments we split our data to 80% training and 20% vali-
dation sets. The validation set for each model uses data that are labeled by the
sentiment dictionary, and are not seen by the model in the training process.

In all these experiments we use log loss (binary cross entropy) as a loss function
and SGD as our optimizer. In figure 5.1 we can see the loss function. In this figure
the true class is 1, and the more we approach the true class with our classifier,
the loss tends to zero. Ideally the loss would be 0.0 if we could predict everything
correctly, so we generally look for smaller numbers. On the other hand, we want
our accuracy to be high, where accuracy equal to 1 means all predictions are
correct.

The parameters we tune in our experiments are three; the learning rate, which

20
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Figure 5.1: Log loss (binary cross entropy loss)

is the rate that our optimizer adjusts the weights of the model, the batch size,
which defines the number of samples that are processed before the model weights
are updated and the number of epochs, which defines how many times we will pass
through the whole dataset.

• We try 0.0001, 0.0005 and 0.001 as learning rates. We settle for these learning
rates because anything larger leads our loss to infinity, and anything smaller
is very slow.

• For the batch sizes we try 30, 60, 120 and for some experiments, 1. Generally
batch sizes 30, 60 and 120 work well, with the main difference between them
being the duration of the training process. The experiments with batch size
1 have poor results and take several hours to finish.

• For the number of epochs we choose 6 and 10. In the majority of the ex-
periments we train for 6 epochs because after the 6th epoch the accuracy
stops increasing. In the experiments where we use 10 epochs, the maximum
accuracy is still achieved on epoch 6 and at the best case scenario stays the
same for the following 4 epochs. In some experiments it actually decreases
after the 5th-7th epoch.
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1 Base model

In table 5.1 we show the training time, training loss, validation accuracy and
validation loss for each experiment of the base model. The parameters of the
experiments that we tune are on the left side of the table; the learning rate, the
batch size and the number of epochs.

The most accurate model has a validation accuracy of 72.3%, in the case of
0.001 as the learning rate, batches of size 60 and training for 10 epochs. However,
this model has a bit higher training and validation losses. The second best exper-
iment achieved 72.2% accuracy, was trained for 6 epochs with batch size equal to
120 and the learning rate set to 0.0005.

Learning rate Batch size Epochs Training time Training Accuracy Training Loss Validation Accuracy Validation loss
0.0001 60 6 0:31:51 0.6571 0.654 0.6628 0.6513
0.0001 60 10 0:54:07 0.6868 0.6111 0.6878 0.6105
0.0001 1 6 13:40:42 0.501 7.7 0.496 7.7738
0.0001 30 6 0:48:07 0.501 7.6969 0.496 7.7746
0.0001 120 6 0:20:49 0.501 7.6969 0.496 7.7746
0.0005 60 6 0:34:15 0.6965 0.6003 0.7018 0.5997
0.0005 60 10 0:58:27 0.501 7.6969 0.496 7.7746
0.0005 30 6 0:54:42 0.711 0.5929 0.7216 0.5916
0.0005 120 6 0:26:51 0.7192 0.5843 0.722 0.5851
0.001 60 6 0:35:09 0.591 6.2858 0.6055 6.069
0.001 60 10 0:54:02 0.7091 0.6022 0.723 0.5784

Table 5.1: Experiments using the base model

2 Conversations model

The conversations model has very similar performance. The best performing model
concerning both accuracy and loss achieves 72.78% accuracy, where the learning
rate is set at 0.001, and the model trained with batches of size 60 for 10 epochs.

The results of the different experiments are in table 5.2.

Learning rate Batch size Epochs Training time Training Accuracy Training Loss Validation Accuracy Validation loss
0.0001 60 6 1:22:25 0.6657 0.6524 0.6694 0.6505
0.0001 60 10 1:39:51 0.6719 0.6317 0.6747 0.6298
0.0001 1 6 25:10:32 0.6991 0.6232 0.7219 0.5894
0.0001 30 6 2:52:54 0.682 0.6164 0.6824 0.6154
0.0001 120 10 1:19:27 0.6851 0.6081 0.6849 0.6092
0.0005 60 6 1:27:11 0.698 0.5999 0.7093 0.5952
0.0005 60 10 2:26:38 0.7176 0.5832 0.7264 0.5778
0.0005 30 6 1:48:06 0.6767 0.9145 0.703 0.5957
0.0005 120 6 0:34:46 0.712 0.5882 0.7128 0.5973
0.0005 120 10 0:54:49 0.6871 1.6579 0.4997 7.7178
0.001 60 6 1:23:36 0.7115 0.5947 0.7133 0.5895
0.001 60 10 2:04:08 0.723 0.5832 0.7278 0.5989

Table 5.2: Experiments using the conversations model

We think these resaults are justified, because we do not take the additional
text context into account when we label our dataset. So, if the target tweet is
strongly negative and the trigger tweet is weakly neagtive, the label of this pair



CHAPTER 5. EXPERIMENTS AND RESULTS 23

will be strong negative. However, if the two tweets of the conversation agree
sentiment-wise, the label will be correctly associated with this datapoint.

3 Conversations and structural features model

The experiments for the conversations and structural features model result in base-
line accuracy and high losses, with the highest accuracy at 50.85%. Figure 5.3
presents the experiments in detail.

Learning rate Batch size Epochs Training time Training Accuracy Training Loss Validation Accuracy Validation loss
0.0001 60 6 1:21:57 0.5002 7.7085 0.4996 7.7205
0.0001 60 10 1:56:28 0.5108 7.5394 0.5085 7.5754
0.0001 30 6 1:30:24 0.4997 7.6298 0.5012 7.6069
0.0001 120 6 0:34:29 0.4997 7.6296 0.5012 7.607
0.0005 60 6 1:14:56 0.5003 7.7079 0.4988 7.7311
0.0005 60 10 1:50:27 0.4995 7.6323 0.5013 7.6059
0.0005 30 6 1:29:12 0.4985 7.6477 0.5015 7.6022
0.0005 120 6 0:42:19 0.4988 7.7309 0.5048 7.6392
0.001 60 6 1:34:08 0.5005 7.7049 0.4998 7.7153
0.001 60 10 1:50:43 0.496 7.6881 0.4973 7.6681

Table 5.3: Experiments using the conversation and structural features model

We can see that in all our experiments we get very high losses and base-
line accuracy. It seems that adding the structural features reduce our model’s
capabilities and make it equivalent to a coin toss.

In order to make sure that it is not our architecture that results into poor
performance, we tested the same architecture with the dense and flatten layers
with text data only. This resulted to comparable results to the experiments of
the original base and conversations model. Therefore, we think that the structural
features themselves are the problem. It seems that the conversations and structural
features model perceives these features as noise. This can be explained by two
main points. First, the limitation we have in the experiments of the conversations
model stands in this model as well. The structural features are not taken into
consideration in the labeling process. Second, the structural features themselves
do not describe the relationship between the two conversing users, but they give us
more general information about the participating users. This means that if user A
participates in the conversation of the 1st datapoint and the 101st, the structural
features of A will be the same in both of these datapoints.
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Conclusion and Discussion

In this chapter we discuss the conclusion of our results, the importance and lim-
itations of sentiment analysis on text, and especially short texts like tweets, and
we present some points for future work.

1 Conclusion

In this work, we aim to investigate whether additional contextual or structural
information increases the accuracy of our sentiment classification model. We design
three neural network models that predict the sentiment of Greek tweets. First, we
build the first (base) model, that does sentiment analysis on single tweets. This
model achieves an accuracy of 72.2%. Next, we test if additional context in the
form of text increases the base model’s accuracy. For this second model, we keep
the original design of our base model, in order to compare our results in a fair
manner. We call this the conversations model, and its difference from the base
model is that it takes pairs of conversing tweets as input. We observe only a slight
improvement (< 0.5%) compared to the base model’s accuracy, as it goes up to
72.78%. Finally, we extend the conversations model to take into consideration
the additional structural context. This context is derived from the Greek Twitter
graph, and it is fed into the model in the form of two structural features vectors,
one for each user that participates in a conversation. Unfortunately, this model
achieves only around base-line accuracy at best, in all experiments, with the best
performing model at 50.85% accuracy.

From this work we conclude that additional text features be of assistance in
the sentiment analysis of Greek tweets, especially in cases where they multiply the
sentiment of our target tweet. This means that when the two participating tweets
in a conversation agree sentiment-wise (both positive or both negative), we get a
better prediction. When the participating tweets disagree on their seniments, our
prediction does not improve because the labeling of the dataset does not consider
the additional context.

Furthermore, we deduce that the structural features we provide to our models

24
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work as noise. These additional data not only seem to not improve our model
but they hinder the training process and result to a base-line accuracy. We think
that the nature of these features is responsible for the poor performance and that
better constructed structural features may produce better results.

2 Limitations

Below are the most significant limitations of our work:

• Text data: The text data we work with are extracted from Twitter. Twitter
has a word limit for tweets, and it is also shown in figure 3.7 that tweets tend
to be short. In order to feed our tweets (and conversations) in our neural
models, we have to pad them to a fixed dimension. The padding with zero
vectors in combination with the short length of tweets by nature, lead to
datapoints with little information. For example, a tweet with three words:
¨Θέλουμε εκλογές αύριο!’, transforms into 40 vectors of length 300, but 297
of them are zero filled vectors used for padding.

• Structural data: The structural data we extract from the Twitter graph
are shown in tables 3.2 and 3.3. We can see in these tables that the features
we have for the author of a tweet are somewhat generic, they outline the role
of this user in relation to the whole Greek Twitter graph. We think that
structural features that highlight the author relationship with the other user
in the conversation carry more important information about the relationship
between the users, and therefore, the sentiment of their conversation. Unfor-
tunately, the feature extraction for each and every pair of users that interact
in our dataset, would be impractical for Twitter conversations.

• Labeling: In our work, we use a sentiment dictionary [1] to label our dat-
apoints. There are limitations to this type of labeling. First, words tend to
have different meaning and sentiment in different cases. Second, we do not
take into account negations, because we get the sentiment by word. For ex-
ample, a word with a strong negative sentiment, combined with the equally
strongly negative particle ¨δεν’, leads to a strongly negative sentence, instead
of a positive one which would be the sentiment us humans understand when
we combine a negation with a negative connotated word. Lastly, the dictio-
nary itself has some biases that carry on to our work, because it is made by
humans, which inevitably project their own beliefs and experiences to the
sentiment score they give to each word. A very interesting example is that
the Greek word for ”male” has a very positive sentiment in the dictionary,
but the word for ”female” has a negative sentiment, although both words
describe something neutral.

• Sentiment analysis: Sentiment analysis as a problem itself, also has limi-
tations. A main open problem is to detect sarcasm in text. Even as humans,
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when we read a text we cannot always decide if the author is sarcastic or not.
Of course, the context can give us more information to an extend, but it is
not always easily detectable. Another problem, in a more macroscopic view,
is that languages always evolve, and new slang words are created every day.
This means that sentiment analysis dictionaries need to be updated continu-
ously in order to stay up to date. Additionally, each space (or medium) uses
language differently. For example, a word can have a very different conno-
tation in a tweet and in a news article. Lastly, every person’s experiences,
upbringing and personality can affect the way they produce and understand
written and spoken language. The problem of accurately interpretion of such
texts is by nature hard, even if it is performed by humans.

3 Discussion

Our hypothesis for this work was that each time we add more context in the form
of additional text and structural features, our model’s predictions would be more
accurate. For the conversation model we believe that additional context, especially
the text to which our tweet of interest replies to, gives us the ”feeling” of the whole
conversation. However, the conversations model achieves similar accuracy as the
base model. This can be attributed to the method we follow for the labeling; we
do not take this context in account, when we create the dataset.

For the third model, we thought that underlying connections that exist in
the Twitter graph between the users that exchange tweets would reveal the true
sentiment of these exchanges. For example, two users that follow each other and
belong to the same communities would overall have more positive conversations
than people who are not ”friends” on Twitter, even if they write something that
seems negative out of context. As mentioned in the previous section, getting this
structural information about each pair of users that interact in our dataset would
be very slow. The structural features that we are able to extract and use give us a
more macroscopic view of a users place in the Greek-speaking Twitter graph, and
we cannot directly link this information with a specific relationship with another
user. Furthermore, the issue with the labeling process remains; we do not include
these structural features in the labeling process, and our model cannot identify the
relationship between the structural features vector and the conversation vectors.
For our model, the structural features are just noise, that’s why its accuracy is
around 50%, which is basically classifying our data based on a coin toss.

4 Future work

Even though our experiments could not support our hypothesis, we think there are
many steps we can take in the future in order to examine the sentiment analysis
problem from a different view.
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The pre-trained Fasttext embedding model is trained with Wikipedia data,
which are very different than Twitter data. We think that if we re-train the
Fasttext with Twitter data, the vector embeddings will be more accurate for our
tweets dataset. We can also try to use (and re-train) another embedding model,
like BERT [9] or Word2Vec [17].

In order to create a more defined objective for our models, we can gather a
dataset of Tweets that are on a specific topic or follow a specific hashtag. By
focusing on a topic and give more epmhasis to topic-relevant words we can limit
the vagueness in the usage of certain words, and have higher accuracy as a result.
In this approach it may also be useful to re-train the text embedding model with
topic-specific tweets.

Regarding the model design, we can also perform our analysis using the stacked
LSTM architecture [11] or a deeper model in general. We can also use Gated
Recursive Convolutional neural network (grConv) [5], that are more efficient than
LSTMs in sentiment analysis tasks, as seen in Yin et al. [22].

To create more representative structural features, we can focus on the most
significant ones and extract information that describes the relationship between
the two conversing users. This is not time efficient with the volume of structural
features we extract in this work, but if the number of features is limited the
extraction process will be faster.

Lastly, we can even try to feed the whole Greek Twitter graph to a graph
embedding model such as pytorch BigGraph [14] to create more representative
structural features for our users.
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1 APPENDIX

In this section we present some of our failed attempts at creating models. First,
we create the base model as shown in figure 1

Figure 1: Base model using LSTM and dropout

We tried using dropout to only keep a small piece of information that represents
the whole tweet (what we achieve with the usage of the lambda layer in our final
model). This architecture did not work and the model had very low accuracy, as
seen in figure 2

Next, we tried using the stacked LSTM architecture as presented in Huang et
al. [11]. We tried using this architecture for the conversations model, in figure 3.
In these attempts, we give the two tweets of the conversations in two separate
input layers. We figure that in the following three model versions, the input is
misunderstood as two different entities.

We also used this architecture for the structural features model, with two
versions, one with a dense layer and one without. See figures 4 and 5

These models, feel wrong semantically, because our data are disconnected.
Also, it seems that we keep irrelevant information that makes the training of these
models very time consuming. The HLSTM with the dense layer (figure 5) took
eighteen hours per epoch to train with this architecture and a heavier version of
our data (more samples and more data per sample, that we used at first).
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Figure 2: Training of base model with dropout layer
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Figure 3: HLSTM architecture for conversations model
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Figure 4: HLSTM architecture for structural modell

Figure 5: HLSTM architecture for structural model with an additional dense layer
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In our final and working models, we use the lambda layer which is absent in our
failed attempts. This layer allows us to keep a smaller representation of the tweet
(or conversation) and makes the number of parameters for the model smaller. Also,
we choose not to separate the conversation nor the structural features, because
intuitively it makes more sense to process them together. Finally, the second level
of LSTM layers is not needed anymore in our architecture because of the lambda
layer. Without the lambda layer we still get a sequence of representations, but
with the lambda layer we keep only one representation for each datapoint.


	Introduction
	Related work
	Dataset
	Data collection and features
	Labeling
	Preprocessing

	Design
	Base model
	Conversations model
	Conversations and structural features model

	Experiments and Results
	Base model
	Conversations model
	Conversations and structural features model

	Conclusion and Discussion
	Conclusion
	Limitations
	Discussion
	Future work
	Bibliography
	APPENDIX




