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Abstract

Flash-based solid state drives (SSDs) exhibit potential for solving I/O bottle-
necks by offering superior performance over hard disks for several workloads.
For this reason, there is recently significant work towards integrating SSD
caching in the I/O stack of modern storage systems. However, the proposed
solutions are usually application specific.

In this work we design Azor , an SSD-based I/O cache that operates at
the block-level and is transparent to existing applications, such as databases.
Our design provides various choices for associativity, write policies and cache
line size, while targeting on maintaining a high degree of I/O concurrency.
Our main contribution is that we explore how Azor can differentiate HDD
blocks according to their expected importance on system performance. We
design and analyze a two-level block selection scheme which dynamically
differentiates HDD blocks, and selectively places them in the limited space
of the SSD cache.

We implement Azor in the Linux kernel and evaluate its effectiveness
experimentally using realistic workloads and large problem sizes. We use a
server-type platform and four I/O intensive workloads: TPC-H, SPECsfs2008,
PostMark, and Hammerora. Our results show that as the cache size in-
creases, our SSD-cache can enhance I/O performance by up to 14.02×,
1.63×, 1.72× and 55% for each workload respectively. In addition, our two-
level block selection scheme can further enhance I/O performance compared
to a typical SSD cache by up to 95%, 16%, 28%, and 34% for each work-
load, respectively. Not both levels of our two-level block selection scheme
benefit all workloads. However, they never degrade performance, when used
together or in isolation.
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Chapter 1

Introduction

There is an increasing need for high-performance storage I/O in modern

server systems. This is a result of mainly three reasons. First, there has

lately been a significant increase in the working set sizes for most applica-

tions, causing lower DRAM hit ratios, even with the best prefetching algo-

rithms applied. In addition, the performance of the storage subsystems has

historically increased in considerably lower rates compared to those achieved

by CPUs and DRAM. As a result, the percentage of time an application

spends on I/O has also increaced, possibly canceling the benefits acquired

by increased computational speeds [11]. Finally, new workloads and mar-

keting approaches, such as server virtualization, have significantly increased

the demands on storage, usually making the hard disk drives (HDDs) the

performance bottleneck of server environments [38].

The performance characteristics of current generation NAND-Flash solid-

state drives (SSDs), shown in Table 1.1, make these devices attractive for

accelerating demanding server workloads, such as file and mail servers, busi-

ness and scientific data analysis, as well as OLTP databases. SSDs have po-

tential to mitigate I/O penalties, by offering superior performance to com-

1



2 CHAPTER 1. INTRODUCTION

mon HDDs, albeit at a higher cost per GB [29]. In addition, SSDs bear

complexity caveats, related to their internal organization and operational

properties. For these reasons, a promising mixed-device system architecture

is to deploy SSDs as a caching layer on top of HDDs, where the cost of the

SSDs is expected to be amortized over increased I/O performance, both in

terms of throughput (MB/sec) and access rate (IOPS).

SSD HDD

Price/capacity ($/GB) $3 $0.3

Response time (ms) 0.17 12.6

Throughput (R/W) (MB/s) 277/202 100/90

IOPS (R/W) 30,000/3,500 150/150

Table 1.1: HDD and SSD performance metrics.

To this point, there has been recently work on how to improve I/O per-

formance using SSD caches. FlashCache [20] proposes the use of flash mem-

ory as a secondary file cache for web servers. [24] examines whether SSDs

can improve the performance of transaction processing. Furthermore, [33]

examines how SSDs can be used to improve check-pointing performance,

while [23] examines how to use SSD as a large cache on top of RAID to

conserve energy. In all cases SSDs demonstrate potential for improved per-

formance.

In this work we design Azor , a system that uses SSDs as caches in the I/O

path. Where all the aforementioned approaches are application-specific and

require application knowledge, intervention, and tuning, Azor transparently

and dynamically places data blocks in the SSD cache as they flow in the

I/O path between main memory and HDDs. Although an SSD cache bear

similarities to the corresponding DRAM-based design, there are significant

differences as well. While exploring these differences, we also investigate the
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following problems:

Metadata footprint, for representing the state of the SSD cache blocks

in DRAM. This footprint must be taken into account, since SSD caches

are significantly larger than DRAM caches, and considering the increasing

size of SSDs. However, the metadata requirements grow proportionally to

the SSD capacity available, rather than the much larger HDD space; still,

compacting this metadata to fit in DRAM is an important concern. There

are two aspects of the cache design that determine the DRAM required for

metadata: cache-associativity and cache line size.

First, we explore two alternatives for cache associativity: a) a direct-

mapped organization, which minimizes the required amount of DRAM for

metadata, and b) a fully-set-associative organization that allows more in-

formed block replacement decisions at the cost of consuming more DRAM

space for its metadata. The impact of the block mapping policy is not as

clear as in smaller DRAM caches. Traditionally, DRAM caches use a fully-

set-associative policy since the small cache size requires reducing capacity

conflicts. However, SSD-based caches may be able to use a simpler mapping

policy, thus reducing access overhead without increasing capacity conflicts.

We quantify the performance benefits and potential caveats from employ-

ing the simpler-to-implement and more space-efficient cache design, under

I/O-intensive workloads.

Second, we quantify the performance impact from increasing the cache

line size; although larger cache lines decrease the required metadata space

in DRAM, doing so causes performance degradation in most cases.

We consider this experimental study important, since the metadata foot-

print in DRAM will keep increasing with SSD device capacities, thereby

making high-associativity organizations less cost-effective.
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Write-handling policies, for which we explore the following dimensions:

a) write-through vs. write-back; this dimension affects not only perfor-

mance, but also system reliability, b) write-invalidation vs. write-update in

the event of cache hit for write requests, and, finally, c) write-allocation, in

the event of cache misses for write requests. We experimentally find that

the choice of the write policy can make up to a 50% difference in perfor-

mance. Our results show that the best policy is as follows: write-through,

write-update on write hits, and write-no-allocate on write misses.

Maintaining a high degree of concurrent I/O accesses. Any cache

design needs to allow multiple pending I/O requests to be in progress at any

time. In addition, Azor properly handles hit-under-miss and out-of-order

completions, by tracking the dependencies between in-flight I/O requests.

Our design minimizes the overhead of accessing the additional state required

for this purpose, as this is required for all I/O operations that pass through

the cache. For this reason, we compact this data structure enough so that

it fits in the limited DRAM space.

Differentiation of blocks, based on their expected importance to sys-

tem performance. Azor uses a two-level block selection scheme and dynam-

ically differentiates HDD blocks before admitting them in the SSD cache.

First, we distinguish blocks that contain filesystem metadata from blocks

that merely contain application data. This is important, since filesystem

studies have shown that metadata handling is critical to application perfor-

mance. In addition, recent trends show a significant increase in the number

of files and in particular, small-size files [2]; therefore, the impact of filesys-

tem metadata accesses is expected to become even more pronounced. To

differentiate metadata from data blocks we mark metadata accesses in the

filesystem code (XFS ), within the Linux kernel. Second, for all HDD blocks
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we maintain a running estimate of the number of accesses over a sliding

time window. We then use this information to prevent infrequently accessed

blocks from evicting more frequently accessed ones. Our scheme does not

require application instrumentation or static a-priori workload analysis, and

adds negligible CPU and I/O overhead.

We implement Azor as a virtual block device in the Linux kernel and

evaluate our design with three realistic workloads: TPC-H, SPECsfs2008,

and PostMark. We focus our evaluation on I/O-intensive operating condi-

tions were the I/O system has to sustain high request rates. Our results

show that Azor ’s cache design leads to significant performance improve-

ments. More specifically, as the available cache size increases, SSD-caching

can enhance I/O performance from 2.91× to 14.02×, from 1.11× to 1.63×,

and from 1.12× to 1.72× for each workload, respectively. Furthermore, we

show that when there is a significant number of conflict misses, our two-

level scheme is able to enhance performance by up to 95%, 16%, and 23%

for each workload, respectively. Our block admission mechanism does not

achieve performance improvement when the entire workload fits in the SSD

cache, since the hit ratio is already maximized. We conclude our evaluation

by examining the effectiveness of our design on Hammerora, a TPC-C type

workload, and treating the application as a black box. For this workload,

the base design of Azor improves performance up to 55%, compared to the

HDD-only configuration, while with the use of the block selection scheme,

Azor can improve performance up to 89%.

The rest of this thesis is organized as follows. Section 2 presents our

design for resolving the aforementioned challenges without affecting access

latency and I/O concurrency. Section 3 presents our experimental platform,

representative of a current generation server for I/O intensive workloads.
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Section 4 presents a detailed evaluation, based on long-running experiments

with the aforementioned workloads. Section 5 discusses some further con-

siderations and future work for Azor while section 6 provides a comparison

with related work. Finally, Section 7 concludes the work, summarizing our

main findings.



Chapter 2

System Design

The use of SSDs as I/O caches in our architecture is shown in Figure 2.1(a).

Azor provides a virtual block device abstraction, by intercepting requests

in the I/O path and transparently caching HDD blocks to dedicated SSD

partitions. The address space of SSDs is not visible to higher system layers,

such as filesystems and databases. Azor is placed in the I/O path below the

system buffer cache, effectively providing a second level of caching for HDD

blocks. Although our approach can be extended to use the capacity of SSDs

as storage rather than cache, more in the spirit of tiering, we do not explore

this direction further in this work.

(a) System architecture (b) Read and write paths

Figure 2.1: Azor system architecture and I/O paths.

7



8 CHAPTER 2. SYSTEM DESIGN

Figure 2.1(b) shows how Azor handles I/O requests. Each HDD block

is first mapped to an SSD cache block, according to cache associativity. For

reads, Azor checks if the cached block is valid and if so, it forwards the

initial request to the SSD (read hit). Otherwise, data are fetched from the

HDD (read miss) and an asynchronous SSD write operation (cache fill) is

scheduled.

For writes (hits or misses), Azor implements a write-through mecha-

nism. We opted against using a write-back cache; a write-back cache would

result in the HDD not always having the most up-to-date blocks, therefore

requiring synchronous metadata updates with significant implications for

latency-sensitive workloads. Furthermore, a write-back cache reduces sys-

tem resilience to failures, because a failing SSD drive would result in data

loss. Our write-through design avoids this issue as well. Our system pro-

vides write policies for forwarding the write request either to both the HDD

and the SSD (write-hdd-ssd), or only to the HDD. In the second policy,

during a write hit, Azor can either update (write-hdd-upd) or invalidate

(write-hdd-inv) the corresponding cache block. The choice of write policy

has significant implications for workloads that have a fair amount of write

operations, as we show in our evaluation.

2.1 Cache Associativity

The choice of associativity is mainly a tradeoff between performance and

metadata footprint. Traditionally, DRAM caches use a fully-set-associative

policy since their small size requires reducing capacity conflicts. SSD caches,

however, are significantly larger and, thus, they may use a simpler mapping

policy, without significantly increasing capacity conflicts. In this work we

consider two alternatives for cache associativity: a direct-mapped and a
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fully-set-associative cache design.

On the one hand, a direct-mapped cache requires less metadata, hence

a lower memory footprint, compared to a fully-set-associative cache. This is

very important, since metadata are required for representing the state of the

SSD blocks in DRAM, and DRAM space is limited. Specifically, our direct-

mapped cache requires 1.28 MB of metadata per GB of SSD, needed for the

address tag along with the valid and dirty bits, for each cache block. Fur-

thermore, this cache design does not impose significant mapping overheads

on the critical path and is fairly simple to implement. All these advantages

are particularly important when considering offloading caching to storage

controllers. However, modern filesystems employ elaborate space allocation

techniques for various purposes. For instance, XFS tends to spread out space

allocation over the entire free space in order to “enable utilization of all the

disks backing the filesystem” [6]. Such techniques result in unnecessary

conflict misses due to data placement, as we show in our evaluation.

On the other hand, a fully-set-associative cache requires a significantly

larger metadata footprint to allow a more elaborate block replacement de-

cision through the LRU replacement policy. Furthermore, such a cache

organization fully resolves the data placement issue, thus reducing conflict

misses.Our fully-set-associative cache requires 6.04 MB of cache metadata

per GB of SSD, 4.7× more than the direct-mapped counterpart. Meta-

data requirements for this cache design include, apart from the tag and the

valid/dirty bits, pointers to the next and previous elements of the LRU list,

as well as additional pointers for another data structure, explained shortly.

Designing a fully-set-associative software cache for SSDs appears to be de-

ceptively simple. Our experience shows that implementing such a cache is

far from trivial and it requires dealing with the following challenges.
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First, it requires an efficient mechanism that quickly determines the state

of a cache block, without increasing latency in the I/O path. This is neces-

sary since it is impossible to check all cache blocks in parallel for a specific

tag, as would be the case in a hardware implementation. This mechanism

must also be scalable enough, in order to always avoid the CPU becoming

the bottleneck. Azor arranges cache blocks into a hash table-like data struc-

ture. For each HDD block processed, a bucket is selected by hashing the

HDD block number using Robert Jenkins’ 32-bit integer hash function [17].

The list of cache blocks is then traversed, looking for a match. This arrange-

ment minimizes the number of possible cache blocks that must be examined

for each incoming I/O request. We have experimentally found that setting

the number of buckets to 1

4
of the number of SSD blocks provides optimal

performance. Our design scales with the size of the SSD cache, and only

requires the number of buckets to be increased in case more cache space

becomes available.

Second, there is a large variety of replacement algorithms typically used

in CPU and DRAM caches, as well as in some SSD buffer management

schemes [16], all of them prohibitively expensive for SSD caches in terms of

metadata size. Moreover, some of these algorithms assume knowledge of the

I/O patterns the workload exhibits, whereas Azor aims to be transparent.

We have experimentally found that simpler replacement algorithms, such as

random replacement, result in unpredictable performance. We have opted

for the LRU policy, since it provides a reasonable reference point for other

more sophisticated policies. Since our SSD-cache operates below the buffer-

cache, we believe this was a reasonable choice for beginning the evaluation

of SSD-cache mechanisms. We postpone for future work a study of the

interaction between the buffer-cache and the SSD-cache, for a variety of
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replacement policies.

Finally, we have tried to minimize the metadata footprint required by

our data structure. This is important, since a large number of elements like

64-bit pointers may result in significant memory overheads. In our solution,

we embed all collision lists, along with the LRU list, in a single table. By

doing so, all pointers can be replaced with indexes in the table, thus reducing

metadata footprint. With this scheme, the buckets that point to elements

of the collisions lists table, are using indexes as well.

2.2 Cache Line Size

Metadata requirement for both the direct-mapped and the fully-set-associative

cache designs can be reduced with the use of larger cache lines. By doing

so, metadata footprint can be reduced by up to 1.90× and 6.87×, for the

two cache organizations, respectively.

This is a result of reducing the need of per-block tag, as many blocks

can be now represented with the same tag. In addition, larger cache lines

can benefit workloads that exhibit good spatial locality while smaller cache

lines benefit more random workloads. A less obvious implication is that

larger cache lines also benefit the flash translation layers (FTL) of SSDs. A

large number of small data requests can quickly overwhelm most FTLs since

finding a relatively empty page to write to is becoming increasingly difficult.

By using larger cache lines, we simplify this task as well. Finally, the use of

larger cache lines has latency implications, as discussed in the next section.

2.3 I/O Concurrency

Modern storage systems exhibit a high degree of I/O concurrency, having

multiple outstanding I/O requests. This offers opportunities for overlapping

I/O with computation, effectively hiding the I/O latency. To allow for a
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high degree of asynchrony, Azor uses callback handlers instead of blocking,

waiting for I/O completion. In addition, Azor allows concurrent accesses on

the same cache line to proceed in parallel by using a form of reader-writer

locks, similar to the buffer-cache mechanism. Since using a lock for each

cache line prohibitively increases metadata memory footprint, Azor only

tracks pending I/O requests.

Caching HDD blocks to SSDs has another implication for I/O response

time: Read misses in the SSD cache incur an additional write I/O to the SSD

when performing a cache fill operation. Once the missing cache line is read

from the HDD into DRAM, the buffers of the initial requests are filled and

Azor can perform the cache fill by either (a) re-using the initial application

I/O buffers for the write I/O request to the SSD, or (b) by creating a new

request and copying the filled buffers from the initial request.

Although the first approach is simpler to implement, it increases the

effective I/O latency because the issuer must wait for the SSD write to

complete. On the other hand, the second approach completely removes the

overhead of the additional cache fill I/O, as the initial request is completed

after the buffer copy and then the (cache fill) write request is asynchronously

issued to the SSD. However, this introduces a memory copy in the I/O path,

and requires maintaining state for each pending cache write. In our design,

we adopt the second approach, as the memory throughput in our experimen-

tal setup is an order of magnitude higher than the sustained I/O throughput.

However, other SSD caching implementations, such as in storage controllers,

may decide differently, based on their available hardware resources.

Handling write misses is complicated in the case of larger cache lines

when only part of the cache line is modified: the missing part of the cache

line must first be read from the HDD in memory, merged with the new
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part, and then written to the SSD. We have experimentally found that this

approach disproportionally increases the write miss latency without provid-

ing significant hit ratio benefits. Therefore, we support partially valid cache

lines by maintaining valid and dirty bits for each block inside the cache line.

For write requests forwarded to both HDDs and SSDs, the issuer is

notified of completion when the HDDs finish with the I/O. Although this

increases latency, it is unavoidable since Azor starts with a cold cache in

case of failures. Therefore, the up-to-date blocks must always be located on

the HDDs, to protect against data corruption.

Finally, one last important observation concerns the number of threads

Azor employs for cache fill operations. We have experimentally found out

that one such thread suffices for the degree of concurrency exhibited by

current server systems and, thus, we have used only one thread in our eval-

uation. However, we point that, in case future systems exhibit significantly

larger degrees of concurrency, Azor could easily be adjusted to support it,

by setting a larger number of cache fill threads.

2.4 Admission Control Mechanism

Azor differentiates HDD blocks based on their expected importance to sys-

tem performance. To do so, Azor uses a two-level block selection scheme

which controls whether or not a specific HDD block should be admitted to

the SSD cache, according to its importance. We design our two-level selec-

tion scheme as a complement to the LRU replacement decision, in the spirit

of more sophisticated replacement. Our design distinguishes two classes of

HDD blocks: filesystem metadata and filesystem data blocks. However, we

believe that an arbitrary number of other classes can be supported, if needed.

The priorities between the two classes are explained in detail below.
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To begin with, filesystem metadata I/Os should be given priority over

plain data I/Os because it becomes increasingly difficult for file-systems to

rely solely on DRAM for metadata caching. This is a result of a significant

increase in filesystem capacities in recent years, with the average file size

remaining small [2]. This problem is further amplified by the introduction

of new metadata types by the file-systems, mainly to achieve higher data

protection. This, for example, requires checksum integration in the filesys-

tem [36], an approach already adopted by state-of-the art filesystems, such

as ZFS and BTRFS. Thus, it makes sense to dedicate faster devices for

storing filesystem metadata [10, 35], since there will be performance ben-

efits from the decrease in latency in future metadata reads. Finally, most

filesystems perform synchronous metadata writes to maintain integrity in

the event of system failures. These synchronous operations can have such

a marked performance penalty that several common filesystem implementa-

tions offer the option of ignoring certain update dependencies [15]. To this

point, modern file-systems, such as XFS, provide journaling for file system

metadata, where file system updates are first written to a serial journal in

DRAM before the actual disk blocks are updated. The required performance

characteristics makes logging a suitable candidate for the use of an SSD de-

vice. Our metadata marking scheme also handles this issue, since the log is

marked as metadata as well.

In our design, differentiation between filesystem metadata and filesys-

tem data is a straight-forward task. We modify the XFS filesystem to tag

metadata requests by setting a dedicated bit in the flags field of the I/O

request descriptor (struct bio in the Linux kernel). Then, Azor uses this

information at the block level to categorize each HDD block. Our modifica-

tion does not affect filesystem performance and can easily be implemented
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in other filesystems as well. However, the SSD cache now needs to maintain

an additional class bit for each SSD cache block.

Next, at a second level of the admission scheme, not all data blocks are

treated as equal. For instance, in database environments indices improve

query performance, by allowing fast access to specific records according to

search criteria. Index requests produce frequent, small-size, and random

HDD accesses, a pattern that stresses HDD performance. Moreover, given

a set of queries to a database, the data tables are not usually accessed

with the same intensity. In web-server environments, web pages usually

exhibit temporal locality [43]. Thus, we expect less benefit from caching

web pages that have recently been accessed only sporadically. Finally, the

same principle applies to mail-servers: more recent emails are more likely to

be accessed again soon than older ones. Based on the above observations,

we differentiate data blocks for SSD caching purposes, based on a running

estimate of their access frequency.

At our second level of selection, we keep in-memory a running estimate

of the accesses to each HDD block that is referenced at least once. Be-

tween any two HDD blocks, the one with the higher access count is more

likely to remain in the SSD cache. This differentiation of HDD blocks over-

rides the selection of the “victim block” for eviction as determined by the

LRU replacement policy in the fully-set-associative cache. Whereas work-

loads like TPC-C tend to have repetitive references, a good match for LRU,

other workloads, such as TPC-H, rely on extensive one-time sequential scans

which fill-up the cache with blocks that are not expected to be re-used any

time soon. Such blocks evict others that may be accessed again soon. If we

allow LRU replacement to evict blocks indiscriminately, the cache will not

be effective until it is re-populated with the more commonly used blocks.
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This insight is also the motivation behind the ARC replacement policy [27],

which keeps track of both frequently used and recently used pages and con-

tinuously adapts to the prevailing pattern in the reference stream. In our

design, these per-block reference counters form an array indexed by the HDD

block number. The DRAM required for maintaining the reference counters

increases along with the file-set size, not with the underlying HDD space.

Our evaluation shows that this memory space is worth it, since differentia-

tion improves performance overall, with the exception of a TPC-H workload

that is sensitive to the available DRAM size.

Figure 2.2: Azor admission control path.

Figure 2.2 shows how this decision is made. The control path of read

hits and writes to HDD remains unaffected. On the other hand, cache fills

and write hits to the SSD cache now pass through the scheme, which decides

whether the write operation should actually be performed or not. First, Azor

checks if the block in question is already occupied by any HDD block. If not,

the cache block is empty, so the write to SSD operation can proceed as usual.

Then, if an incoming request is a metadata request, it is immediately written

to the cache, since we prioritize filesystem metadata I/Os over plain data

I/Os. Otherwise, the incoming request contains filesystem data and Azor

checks whether the corresponding cache block already contains filesystem

metadata. If so, the cache fill is aborted, else both the incoming request

and the corresponding cache block contains data. In this case Azor checks
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which one is accessed more times, and the cache fill is performed (or aborted)

accordingly.
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Experimental Platform

We perform our evaluation on a server-type x86-based Linux system. Our

system is equipped with a Tyan S5397 motherboard, two quad-core Intel

Xeon 5400 64-bit processors running at 2 GHz, 32 GB of DDR-II DRAM,

twelve 500-GB Western Digital WD5001AALS-00L3B2 SATA-II disks con-

nected on an Areca ARC-1680D-IX-12 SAS/SATA storage controller, and

four 32-GB enterprise-grade Intel X25-E (SLC NAND Flash) SSDs con-

nected on the motherboard’s SATA-II controller. The OS installed is Cen-

tOS 5.3, with the 64-bit 2.6.18-128.1.6.el5 kernel version. The storage con-

troller’s cache is set to write-through mode. We use the XFS filesystem with

a block-size of 4 KB, mounted using the inode64, nobarrier options. We do

not use flash-specific filesystems like jffs2 since they assume direct access to

the flash memory, and our SSDs export a SATA-II interface. Moreover, the

device controller in our SSDs implements in firmware a significant portion of

the functionality provided by most available flash filesystems. In our setup,

both HDDs and SSDs are arranged in a RAID-0 configurations, the first

using the hardware RAID provided by the Areca controller, and the latter

using the MD Linux driver with a chunk-size of 64 KB. In some cases, we

18
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limit the available DRAM memory, in order to put more pressure on the

I/O subsystem. We do so via the kernel boot option mem=.

We focus our evaluation on I/O-bound operating conditions, where the

I/O system has to sustain high request rates. We evaluate the benefit from

the SSD caching layer, as well as the trade-offs of our design. As a result,

we have not used write-only workloads, as the benefit of our SSD cache is

only visible when the read I/O volume comprises a fair portion of the total

traffic. For our evaluation, we use four I/O-intensive benchmarks: TPC-H,

SPECsfs2008, PostMark, and Hammerora. Since our experimental results

are reproducible with negligible differences among subsequent runs, we have

omitted standard deviation markings in all graphs. Next we briefly discuss

each workload and the parameters we use.

TPC-H [45] is a data-warehousing benchmark that issues business ana-

lytics queries to a database with sales information. We execute queries Q1

to Q12, Q14 to Q16, Q19, and Q22 back to back and in this order. We use a

28 GB database, of which 13 GB are data files, and vary the size of the SSD

cache to hold 100% (28 GB), 50% (14 GB), and 25% (7 GB) of the database,

respectively. The database server used in our experiments is MySQL 5.0.77.

TPC-H does a negligible amount of writes, mostly consisting of updates to

file-access timestamps and other control operations. Thus, the choice of the

write policy is not important for TPC-H, considering we start execution of

the queries with a cold cache. For this workload, we set the DRAM size to

4 GB, and we examine how the SSD cache size affects performance.

SPECsfs2008 [40] emulates the operation of an NFSv3/CIFS file server;

our experiments use the CIFS protocol. In SPECsfs2008, a set of increas-

ing performance targets is set, each one expressed in CIFS operations-per-

second. For each performance target, read/writes operations, both of data
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blocks and metadata-related accesses to the filesystem, are executed over a

file set of a size proportional to the performance target (≈120 MB per oper-

ation/sec). SPECsfs2008 reports the number of CIFS operations-per-second

actually achieved, as well as average response time per operation. For our

experiments, we set the first performance target at 500 CIFS ops/sec, and

then increase the load up to 15,000 CIFS ops/sec. The DRAM size is set

to 32 GB. Contrary to TPC-H, SPECsfs2008 produces a significant amount

of write requests, so we examine, along with associativity, the impact of the

write policy on performance. For this workload we use two SSD cache sizes,

of 64 and 32 GB, both built using 4 SSD devices.

TPC-C [44] is an OLTP benchmark, simulating order processing for a

wholesale parts supplier and its customers. This workload issues a mix of

several concurrent short transactions, both read-only and update-intensive.

The main performance number reported by this benchmark is New Order

Transaction Per Minute (NOTPM). We use the Hammerora [39] load gen-

erator on top of a 155-GB MySQL database that corresponds to a TPC-C

configuration with 3,000 warehouses. We run experiments with 512 virtual

users, each one executing 100,000 transactions. As with PostMark, we limit

system memory to 4 GB.

PostMark [19] is a synthetic, filesystem benchmark that simulates a mail

server by creating a pool of continually changing files over the file-system,

and measures transaction rates and throughput. These transactions consist

of (i) a create or delete file operation and (ii) a read or append file operation.

Each transaction type and its affected files are chosen randomly. When

all transactions complete, the remaining files are deleted. We use version

1.51 of the benchmark and we employ a write dominated configuration with

the default 35-65% read-write ratio. Since PostMark is originally single-
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threaded, to acquire higher I/O rates we use eight concurrent instances of

the workload. For each instance we use 10,000 mailboxes between 4 KB and

1 MB in size, resulting in a initial file set of 54 GB, and execute 100,000

transactions with 16 KB read/write accesses. We use three cache sizes,

holding 100% (54 GB), 50% (37 GB), and 25% (13.5 GB) of the file-set,

respectively. For these experiments, we limit system memory to 4 GB.
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Experimental Evaluation

In this section we first analyze how four specific design parameters: 1. cache

associativity, 2. cache size 3. the choice of write policy, and 4. the cache line

size affect the performance of our system. Then, we examine how the use

of our two-level Block Selection Mechanism (2LBS) improves performance

of our SSD cache.

4.1 System Design Parameters

For the analysis of the parameters of design space, we perform all exper-

iments with the 2LBS scheme turned off, so that the impact of the other

parameters becomes more evident.

4.1.1 TPC-H

Figure 4.1 shows the performance impact of Azor when compared to the na-

tive HDD. In all TPC-H experiments, Azor starts with a cold cache and uses

4 GB of DRAM. Overall, as shown in Figure 4.1(a), performance improves

along with larger cache sizes, both for the direct-mapped and the fully-set-

associative cache designs. The maximum performance benefit gained by SSD

caching is 14.02×, when all the workload fits in the SSD cache, compared to

22



4.1. SYSTEM DESIGN PARAMETERS 23

the HDDs. Cache associativity greatly affects performance, especially when

the workload does not fit entirely in the SSD cache: a medium size (14

GB) fully-set-associative cache provides better performance than all of the

direct-mapped counterparts (7, 14, and 28 GB), by giving a 2.71×, 2.16×

and 1.33× higher performance, respectively. For the smallest cache size (7

GB) the two associativities perform roughly equally.
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Figure 4.1: Impact of different associativities and cache sizes on TPC-H.

Generally, the fully-set-associative cache achieves higher performance

due to higher hit ratio, shown in Figure 4.1(b). Specifically, the medium size

(14 GB) fully-set-associative cache achieves a 14.41% and 3.08% better hit

ratio than the medium and large (28 GB) direct-mapped caches, respectively.

This is due to the fact that the fully-set-associative cache has significantly

less conflict misses than the direct mapped. However, this benefit diminishes

as the cache size decreases, a fact most evident in the two small (7 GB)

caches. In this case, the 3.54% difference at hit ratio results in 3% better

performance. This is because the significantly increased number of conflict

misses has absorbed a large percentage of potential benefits from using an

SSD cache.

Furthermore, Figure 4.1(c) shows that even the slightest decrease in



24 CHAPTER 4. EXPERIMENTAL EVALUATION

HDD utilization results in significant performance benefits. More signifi-

cantly, for the medium cache (14 GB), the fully-set-associative cache reduces

HDD utilization by 11.89%, resulting in a 4.23× better speedup. Generally,

HDD utilization is reduced, as the percentage of workload that fits in the

SSD cache increases. SSD utilization, shown in Figure 4.1(d), remains un-

der 7% in all configurations. Finally, we must mention that in case that the

whole workload was in the SSDs, then the achieved speedup is 38.81×.

Finally, TPC-H is very sensitive to the DRAM size. Performance is ex-

ponentially improved, as the percentage of the workload that fits in DRAM

is increased. For instance, in case the whole workload fits in DRAM, the

achieved speedup is 168.8×. By combining all the above observations, we

conclude that the choice of a proper DRAM size along with enough SSD

space can lead to optimal performance gains for archival database bench-

marks, such as TPC-H.

4.1.2 SPECsfs2008

Figures 4.2 and 4.3 shows our results for SPECsfs2008, compared to the

native HDD run, when using 128 GB as SSD cache and 32 GB of DRAM.

As with TPC-H, all SPECsfs2008 experiments are performed with a cold

cache. However, contrary to TPC-H, we expect the choice of write policy

to have a significant impact on performance for SPECsfs2008, since this

workload produces a fair amount of write requests. Furthermore, we expect

the effect of the spread-out mapping the direct-mapped cache exhibits to

be more evident in this workload, since SPECsfs2008 produces a very large

number of small files during its execution.

As shown in Figure 4.2, depending on the write policy, the speedup

gained by Azor varies from 11% to 33% and from 10% to 63%, for the direct-

mapped and fully-set-associative cache designs, respectively. The write-
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Figure 4.2: Impact of associativity and write policy on the maximum
sustained target load in SPECsfs2008 with 128 GB cache size.

hdd-ssd write policy achieves the lowest hit ratio, shown in Figure 4.3(a),

hence the lowest performance improvement. This is due to the fact that

SPECsfs2008 produces a huge file-set but only access 30% of it and, thus,

useful data blocks are evicted, overwritten by blocks that are never be read.

Furthermore, because SPECsfs2008 exhibits a modify-read access pattern,

the write-hdd-upd write policy exhibits better hit ratio than write-hdd-inv,

since the first will update the corresponding blocks present in the SSD cache,

while the latter will essentially evict them. Cache associativity also af-

fects performance: the best write policy (write-hdd-upd) for the fully-set-

associative version performs 25% better than its direct-mapped counterpart,

as a result of increased hit ratio.

Figure 4.3(b) shows that the response time per operation also improves

with higher hit ratios: the better the hit ratio, the longer it takes for the

storage system to get overwhelmed and, thus, it can satisfy greater target

loads. In the same figure, we see that issuing writes to both devices (write-

hdd-ssd policy), results in a latency behavior very similar to the native

HDD run. Furthermore, CPU utilization (not shown) always remains below

25%, showing that the small random writes that SPECsfs2008 exhibits make
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Figure 4.3: Impact of associativity and write policy on hit ratio and la-
tency in SPECsfs2008 with 128 GB cache size.

HDDs the main performance bottleneck. HDD utilization (not shown) is

always 100%, while cache utilization (not shown) remains below 25% for all

configurations. Based to all above observations, we conclude that even for

benchmarks, such as SPECsfs2008, that produce huge file sets and produce

a fair amount of write requests, the addition of SSDs as disk caches have

great potential for improving performance.
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Figure 4.4: Impact of associativity and write policy on maximum sustained
target load for SPECsfs2008 with 64 GB cache size.

Finally, we examine how reducing cache size affects performance. We

execute again the same experiments, but this time we use a 64 GB SSD

cache. Figure 4.4 shows that, although the behavior of the write-policies
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remains the same as before, there are less performance benefits from the SSD

cache. The write-hdd-upd write policy remains the best choice, resulting

in a 22% and 38% better performance than the native HDD run for the

direct-mapped and the fully-set-associative caches, respectively. As shown

in Figure 4.5(b), Azor becomes saturated earlier in the execution of the

workload than the previous case, resulting in the hit ratio (Figure 4.5(a))

starting to drop at earlier target loads than before.
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Figure 4.5: Impact of associativity and write policy on hit ratio and la-
tency for SPECsfs2008 with 64 GB cache size.

4.1.3 PostMark

Figure 4.6 shows our results for PostMark using eight concurrent instances

of the workload, 4 GB of RAM and starting with a cold cache. Figure 4.6(a)

shows that Azor improves performance by up to 72% compared to the native

12 HDDs configuration. Using SSD caches improve performance even when

a small percentage of the workload fits in the cache, up to 20% for this cache

size (13.5 GB). Furthermore, the fully-set associative version of Azor per-

forms better than the direct-mapped counterpart, a result of the improved

hit ratio, shown in Figure 4.6(b). Increasing the available cache size bene-

fits the fully-set-associative cache significantly more than the direct-mapped

cache. We believe this is, as with TPC-H, due to the spread-out mapping
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the direct-mapped cache exhibits, which results in a significant increase in

conflict misses. However, as the available cache size is decreased, both as-

sociativities perform equally. The same observation applies to the write

policies as well.
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Figure 4.6: PostMark using eight concurrent instances.

Finally, HDD utilization (not shown) remains constantly to 100%, while

cache utilization (not shown) is always under 12% even when writes are

propagated to both devices (write-hdd-ssd policy). As with SPECsfs2008,

this fact shows that the addition of SSDs as HDD caches have great potential

for improving performance.

4.1.4 Impact of Cache Line Size on Performance

Our I/O workloads generally exhibit poor spatial locality, hence cache lines

larger than one block (4 KB) result in lower hit ratio. Thus, the benefits de-

scribed in 2.2 are not enough to amortize the impact on performance of this

lost hit ratio, hence performance always degrades. However, we believe that

larger cache lines may eventually compensate the lost performance in the

long term due to better interaction with the SSD’s metadata management

techniques in their flash translation layers (FTL).
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4.2 Block Selection Filter

In this section, we examine how the use of our two-level Block Selection

Mechanism (2LBS) improves performance of our SSD cache. For this case

study we have selected cases where there are a fair amount of conflict misses,

since that is when we expect our two-level block selection scheme to benefit

performance. Thus, we do not explore trivial cases, such as having the whole

workload fitting in the SSD cache, for which no additional performance

benefit can be acquired. We analyze how each level of our proposed scheme

separately improves performance, as well as how much further performance

can be improved by combining them. We compare the performance of an

SSD cache that uses the block selection scheme with: i) the native HDDs

runs, and with ii) a base cache, which does not use the 2LBS scheme, employs

the write-hdd-upd write policy (the best choice as we show in Section 4.1),

while it may have its size fixed. For the two designs (2LBS and base), we

analyze the performance of both the direct-mapped and LRU-based fully-

set-associative caches.

4.2.1 TPC-H

TPC-H does a negligible amount of writes. As a result, both the file-set

size and the number of files don’t grow during workload execution. Thus,

Azor receives a minimal amount of I/Os containing filesystem metadata.

Consequently, the mechanism concerning filesystem metadata pinning on

the SSD cache provides no performance benefit for workloads, such as TPC-

H.

Figure 4.7 shows our results when using Azor ’s 2LBS scheme for TPC-H.

In all these experiments, Azor starts with a cold cache, using 4 GB of

DRAM. Since TPC-H is very sensitive to DRAM, for our two-level mecha-
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Figure 4.7: Impact of block selection scheme on TPC-H, for both the
direct-mapped (DM) and fully-set-associative (FA) caches. Bars with a star
on top of them are the 2LBS versions of Azor .

nism we allocate extra DRAM, as much as required. We use the medium

size (14 GB) direct-mapped (DM) and fully-set-associative (FA) caches as

a test case.

As shown in Figure 4.7(a) the use of the block selection mechanism

improves the performance of the direct-mapped and the fully-set-associative

caches by 1.95× and 1.53×, respectively. More interesting is the fact that

the medium size (14 GB) direct-mapped 2LBS cache performs better than

the large size (28 GB) base cache counterpart. This is due to the fact that,

although the adaptive version does not produce a better hit ratio (shown in

Figure 4.7(b)), it still manages to cache more important data than the large

size base cache version. This results in 1.9% less disk utilization, shown in

Figure 4.7(c). However, the same behavior is not reproduced to the fully-

set-associative cache. This is due to the LRU replacement policy this cache

design employs, and which also provides better performance for the larger

cache.
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4.2.2 SPECsfs2008

Contrary to TPC-H, the file-set produced by SPECsfs2008 continuously in-

creases during the workload execution. As a result, we expect the filesystem

metadata footprint to continuously increase as well, and the performance of

the workload to be consequently affected by the filesystem metadata DRAM

hit ratio. Furthermore, SPECsfs2008 equally accesses filesystem data blocks

and thus, the use of the running estimate of blocks accesses does not further

improve performance. To validate our assumption about the significance of

metadata DRAM hit ratio on performance, we run SPECsfs2008 on the na-

tive 12 HDDs setup, while varying the available DRAM size. Our results are

shown in Figure 4.8. As the DRAM size increases, the number of metadata

I/Os that reach Azor significantly decreases, resulting in substantial per-

formance gains. This becomes more evident when moving from 4 GB to 8

GB of DRAM; a 186% reduction in the number of metadata requests results

in 71% better performance. With these observations, we expect significant

performance improvement in SPECsfs2008 when employing our filesystem

metadata pinning mechanism.
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Figure 4.8: Impact of filesystem metadata DRAM misses on performance
for SPECsfs2008.

For our experiments with Azor , we choose the worst-case scenario with 4
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GB of DRAM, using the best write policy (write-hdd-upd), and we examine

how performance is improved, comparing the base version with the 2LBS

version of our SSD cache, and with the native 12 HDDs run. As with

all the previous tests, Azor runs starting with a cold cache. Furthermore,

SPECsfs2008 is less sensitive to DRAM for filesystem data caching, so we

do not allocate further memory for our 2LBS scheme.

Figure 4.9(a) shows that even the base version of Azor significantly im-

proves performance, achieving a speedup of 1.71× and 1.85× for the direct-

mapped and fully-set-associative caches, respectively. The same figure shows

that employing the filesystem metadata pinning mechanism further improves

performance by 16% and 7% for the two cache associativities, respectively.

Figure 4.9(b) shows that the improved performance is accompanied by a sig-
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Figure 4.9: Impact of the two-level block selection scheme for SPECsfs2008
with 4 GB DRAM. The write policy used is the write-hdd-upd.

nificant decrease in latency: Azor supports roughly 3,000 more operations

per second for the same latency when compared to the native 12 HDDs run.

Furthermore, when comparing the base with the 2LBS versions of Azor at

the last sustainable target load (7000 ops/sec), we see that there is a 21%

and 26% decrease in latency for the direct-mapped and fully-set-associative
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cache designs, respectively. This is not, however, a result of the increased

hit ratio (not shown), equal for the base and the 2LBS cache designs, but a

result of only the type of blocks cached (filesystem metadata).

4.2.3 PostMark

For PostMark we expect Azor to receive a small number of filesystem meta-

data I/Os. This is because the workload creates the file-set at the beginning,

and only appends data to files during the transaction phase. Consequently,

as with TPC-H, the filesystem metadata pinning mechanism provides neg-

ligible performance benefits.

In these experiments, we present our results of the base and 2LBS cache

designs for the eight instance PostMark. We run our experiments starting

with a cold cache, using the small (13.5 GB) and medium (27 GB) SSD

cache, and we examine how our adaptive mechanism improves performance.

As with SPECsfs2008, we do not use any extra DRAM for our mechanism,

since PostMark is not sensitive to DRAM size. We have also chosen the best

write policy (write-hdd-upd).

As shown in Figure 4.10(a), the 2LBS scheme provides further perfor-

mance improvement by 16% for the small cache (13.5 GB) for both associa-

tivities, and by 21% and 28% for the medium cache (27 GB) both for the

direct-mapped cache and fully-set-associative caches, respectively. The hit

ratio (not shown) is the same for both versions, hence the performance im-

provement of the 2LBS version only comes from the type of blocks cached.

4.2.4 Hammerora

Finally, we examine how our 2LBS scheme performs when faced with an

“unknown” workload, Hammerora, using 4 GB of DRAM. Azor starts with
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Figure 4.10: Impact of the 2LBS scheme on eight instance PostMark
((a)+(b)) and Hammerora workloads ((c)+(d)).

a cold cache, and large enough to hold half the database (77.5 GB). Since

Hammerora is an OLTP workload, we expect Azor to receive a significant

amount of write requests, hence we choose our best write policy (write-hdd-

upd).

Our results for both the base and 2LBS versions of Azor is shown in Fig-

ure 4.10(b). We see that the base version of Azor improves performance by

20% and 55%, for the direct-mapped and fully-set-associative cache designs,

respectively. In addition, using the 2LBS scheme, performance further im-

proves by 31% and 34%, for the two cache associativities, respectively. Not

both levels of the two-level block selection scheme equally benefit Ham-

merora: two test runs for the fully-set-associative cache revealed that the

two levels executed individually gave 9% and 24% performance improvement

respectively, compared to the base version. Furthermore, like SPECsfs2008

and PostMark, although the hit ratio (not shown) between the base and

the 2LBS versions for both associativities does not change, the performance

benefits are again a result of which HDD blocks are cached. For this work-

load, disk utilization (not shown) is at least 97%, while cache utilization

(not shown) remains under 7% for all configurations. As with TPC-H, these

observations reveal that SSDs hold great performance potential for OLTP
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workloads, such as Hammerora, especially when a large percentage of the

database fits in the cache. Next, we explore how other system parameters

affect performance of our SSD-cache design.



Chapter 5

Discussion & Future Work

In this chapter we examine issues that appear to be interesting as a future

study as well as some remaining design considerations.

Metadata memory footprint: The DRAM space required by Azor in

each case is shown in Table 5.1. We see that, at the cost of needing a signifi-

cant amount of DRAM in some cases, Azor provides significant performance

improvement. Furthermore, the DRAM space required scales with the size

of the SSD cache size, not with the capacity of the underlying HDDs. Thus,

we expect the DRAM space requirements for metadata to remain moder-

Base Cache 2LBS total Maximum
Metadata Footprint additional Performance gain

DM FA metadata Base Cache 2LBS

TPC-H
1.28MB
/ SSD
GB

6.03MB
/ SSD
GB

28 MByte 14.02× 95% (DM)
SPECsfs No overhead 63% 16% (DM)
PostMark 1.5GByte 72% 28% (FA)
Hammerora 56 MByte 55% 34% (FA)

Table 5.1: Trading off DRAM space for performance in Azor . The per-
formance improvements reported by the 2LBS cache are additional to the
base version of Azor . For the base cache, the maximum performance gain is
achieved by using the LRU-based fully-set-associative cache. For the 2LBS
scheme, the best associativity is reported in parenthesis.

36
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ate. However, if DRAM requirements are an issue for some systems, Azor

can trade DRAM space with performance, by using larger cache lines as we

mentioned in Section 4.1.4.

Finally, concerning the cost/benefit trade-off between DRAM size and

SSD capacity, we argue that this tradeoff only affects workloads sensitive

to DRAM, such as TPC-H. On the contrary, for workloads like TPC-C,

additional DRAM has less impact as we observed in experiments not re-

ported in this thesis. These experiments show that DRAM hit ratio re-

mains below 4.7%, even if DRAM size is quadrupled to 16 GB. Similarly,

for SPECsfs2008, additional DRAM serves only to improve the hit ratio for

filesystem metadata, as shown in Figure 4.9(a).

Applicability of Azor behind disk controllers and standard stor-

age protocols: Azor ’s 2LBS scheme is feasible behind disk controllers by

embedding Azor’s metadata flag within the (network) storage protocol (e.g.

SCSI) command packets transmitted from storage initiators to storage tar-

gets. Storage protocols have unused fields/commands that can carry this

information. Then, our SSD cache management mechanism will be imple-

mented in the storage controller (target in a networked environment) by

using per-block access counters. The main issue is a standardization one,

whether it makes sense to push hints from higher layers to lower: In our view,

and as our work shows, there is merit to such an approach (cf. [8],[22]).

Using Azor 2LBS scheme with other file-systems: An important

implication of our work is that it requires modifications at the file-system

level. So far we presented results with our modification in the XFS file-

system. We argue that such modifications can easily be applied to other

filesystems as well, since each filesystem must have a way to differentiate

metadata from data blocks, in order to carry out specific operations (e.g.
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repair). However, as future work, we plan to explore possible mechanisms

for automatically detecting filesystem metadata without any modifications

to the filesystem itself. We already have an approach to this direction using

the filesystem metadata magic numbers for this purpose.

SSD cache persistence: Azor makes extensive use of metadata to keep

track of block placement. Our system, like most traditional block-level sys-

tems, does not update metadata in the common I/O path, thus avoiding

the necessary additional synchronous I/O. Azor does not guarantee meta-

data consistency after a failure: in this case Azor assumes that a failure

occurred and starts with a cold cache. This is possible because our write-

through policy ensures that all data have their latest copy in the HDD. If

the SSD cache has to survive failures, this would require trading-off higher

performance with consistency to execute the required synchronous I/O in

the common path. However, we choose to optimize the common path at

the expense of starting with a cold cache after a failure, thus exploiting the

non-volatile properties of SSDs.

FTL and wear-leveling: Given that SSD controllers currently do not

expose any block state information, we rely on the flash translation layer

(FTL) implementation within the SSD for wear-leveling. Furthermore, we

cannot directly influence the FTL’s block allocation and re-mapping policies.

Designing block-level drivers and file-systems in a manner cooperative to

SSD FTLs which improves wear-leveling and reduces FTL overhead is an

important direction, especially while raw access to SSDs is not provided

by vendors to system software. Finally, the choice of write policy may

significantly affect SSD performance and wear-leveling related issues, but

we chose to leave such analysis for future work.
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Figure 5.1: Compressed Caching System Architecture

Increasing the effective cache size Given the current high cost per

gigabyte for SSDs [29], it is important to examine techniques that can in-

crease their cost-efficiency. One such technique is to use transparent online

data compression in the I/O path. Data compression [25] reduces the space

required to store a piece of data, e.g., a file, block, or other data segment, by

storing it in compressed form. The original data can then be reconstructed

by decompressing the transformed piece of data. We employ compression

along with SSD-based I/O caches in a larger system, called Flaz , that uses

SSDs as compressed cached in the I/O path. Flaz internally consists of two

layers, one that achieves transparent compression (Azor) and one that uses

SSDs as an I/O cache.

We find that even modest increases in the amount of available SSD capac-

ity improve I/O performance, for a variety of server workloads. Transparent

block-level compression allows such improvements by increasing the effective

SSD capacity, at the cost of increased CPU utilization. Overall, although

compression at the block-level introduces significant complexity, our work
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shows that online data compression is a promising technique for improving

the performance of I/O subsystems.

Flash-Specific File System: During the evaluation of Azor , a specific

file-system had to be chosen for the experiments. As mentioned in Section 3,

we have opted not to use flash-specific filesystems like jffs2 since they assume

direct access to the flash memory, and they implement a significant portion

of the functionality provided by the firmware of our SSD devices. Further-

more, their current implementations seem to have issues with the large SSD

device size, as these file-systems usually target small-sized flash devices, such

as USB sticks. To this point, there is currently no flash-specific file system

for large-scale SSD devices. Developing such a file-system raises some in-

teresting questions about: 1. Whether such a targeted design can perform

better than the current generic-purpose file-systems when used on top of

flash memory, 2. The interactions of the file-system with the flash transla-

tion layers in SSDs, 3. Whether or not these interactions affect performance,

but most importantly 4. The possibility of moving the functionality imple-

mented in firmware to the file-system level, thus canceling the ”black box

nature” of solid state disks.

SSD caching power analysis: There has been the case of using SSD

based I/O caches as a mean to achieve power reduction in large scale clusters.

However, in our work we have observed, that even when using the larger

cache size available in Azor , the HDD utilization is not decreased and always

remains equal to 100%. Thus, we believe a quantitive power analysis is

necessary to anwser the question whether or not the perfromance benefits

acquired are actually traded with increased power consumption in the long

term.
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Related Work

The authors in [29] examine whether SSDs can fully replace traditional disks

in data-center environments. They conclude that SSDs are not a cost-

effective technology for this purpose, yet. Given current tradeoffs, mixed

SSD and HDD environments are more attractive. A similar recommenda-

tion is given in [25], starting from a more performance-oriented point of view.

Although studies of SSD internals and their performance properties [9, 3]

show promise for improvements in upcoming SSDs, we still expect mixed-

device storage environments to become increasingly common.

A recent development in the Linux kernel is the bcache block-caching

subsystem [41], which is still under development. Similar to our work,

bcache is transparent to applications, operating below the filesystem. The

cache space is organized as a collection of buckets, indexed via a B-Tree data

structure. Buckets are intended to match the physical device’s erase-blocks,

to avoid small random writes on the SSDs. Currently bcache enforces no

admission control, which is the main focus of this thesis. Similar goals to

bcache are addressed by a number of commercial products: HotZone [13],

and MaxIQ [1] are two recent examples. The ReadyBoost feature [28] aims

41
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to optimize performance by caching all HDD writes. In combination with

prefetching (Superfetch feature) and static file pre-loading tools, it im-

proves the application-perceived performance. In contrast, Azor dynami-

cally adapts to the workload, by tracking the block access frequency, rather

than relying on prefetching and static pre-loading.

In addition, there are several flash-specific filesystem implementations

available for the Linux kernel [46, 4, 12], that are mostly oriented to embed-

ded systems. Server workloads require much larger device sizes and therefore

a mixed-device (SSDs and HDDs) storage environment is more appropriate.

In addition, it is important to address resource consumption issues, such

as in-memory metadata footprint, and to sustain much higher degrees of

I/O concurrency. These issues point towards tuning filesystem design to the

properties of high-performance SSDs, such as PCI-Express devices [14], with

a careful division of labor between systems and SSDs, an approach discussed

in [37]. Several related implementation challenges, are shown in [18].

FlaZ [26] transparently compresses cached blocks in a direct-mapped

SSD-cache, presenting techniques for hiding the CPU overhead from com-

pression, for workloads with multiple in-flight I/O operations. In this work,

we take the view that mixed-device storage environments will become com-

mon. However, we argue that, beyond any benefits from increasing the

effective cache size, the admission and replacement policies will have a crit-

ical impact on application performance. Furthermore, we believe that such

policies will become even more prominent when dealing with mixed work-

loads running on the same server. A promising approach to this problem

appears to be a dynamic scheme for partitioning the available SSD-cache

space among the competing workload classes [5].

Flash-based caching has started to appear in enterprise-grade storage ar-
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rays. EMC’s FAST-Cache [7] offers the capability to utilize SSD devices as

a transparent caching layer. Similarly to our design, FAST-Cache is a LRU

cache that serves both reads and writes, in 64KB extent units. However,

contrary to Azor , writes are not directly written to the cache, while policies

are system-defined and cannot be changed by the user. Next, the differen-

tiation between filesystem data and metadata blocks is present in NetApp’s

Performance Acceleration Module (PAM) [42]. As with Azor , PAM aims to

accelerate reads, and can be configured to accept only filesystem metadata

(as marked by NetApp’s proprietary WAFL filesystem). However, PAM

requires specialized hardware, while Azor is a software layer.

There has also been extensive work on cache replacement policies for

storage systems [16], more recently focusing on SSD-specific complications.

BPLRU [21] attempts to establish a desirable write pattern for SSDs, via

RAM buffering. The LRU list is dynamically adjusted for this purpose,

taking into consideration the erase-block size. CFLRU [34] keeps a certain

amount of dirty pages deliberately in the page cache to reduce the number of

flash write operations. BPLRU and CFLRU show the benefit from adjusting

LRU-based eviction decisions based on run-time conditions. However, they

do not explicitly track properties of the reference stream. LRU-k [32] dis-

criminates between frequently referenced and infrequently referenced pages,

by keeping page access history even after page eviction. This is a key in-

sight, allowing adaptation to the prevailing patterns in the reference stream,

but comes at the cost of potentially unbound memory space consumption.

LRU-K also introduces the concept of aging, by considering the last K ref-

erences to a page. ARC [27] maintains more state information than LRU

(4 lists instead of one), which can become a concern with ever increasing

storage system capacities. In this work, we consider how to augment the
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LRU replacement policy with a two-level selection scheme which can be

seen as rewarding or penalizing blocks based on the expected benefit from

their continued residence in the SSD-cache. This is a notion similar to the

marginal gain notion introduced for database buffer allocation in [30, 31].

In our work, we apply selection criteria at the time of block eviction from

the SSD cache.

Finally, L2ARC [25] is a SSD-based cache for the ZFS filesystem, op-

erating below the DRAM-based cache. L2ARC speculatively pushes out

blocks from the DRAM-cache, to amortize the cost of SSD write over large

write I/Os. L2ARC takes into account the requirement for in-memory book-

keeping metadata, a concern which has been a major motivation for our

work.
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Conclusions

In this work we examine how SSDs can be used in the I/O path to increase

storage performance. We present the design and implementation of Azor , a

system that transparently caches data in dedicated SSD partitions, as they

flow between DRAM and HDDs. We evaluate our approach using four I/O

intensive benchmarks: TPC-H, SPECsfs2008, PostMark and Hammerora.

Our base design provides various choices for associativity, write and

cache line policies, while targeting on maintaining a high degree of I/O

concurrency. We show that at the cost of additional metadata footprint,

performance of SSD caching improves when moving to higher way associa-

tivities, while the proper choice of the write policy can make up to 50%

difference in performance.

Our main contribution concerns exploring differentiation of HDD blocks

according to their expected importance on system performance. For that

purpose, we design and analyze a two-level block selection scheme which

dynamically differentiates HDD blocks before placing them in the SSD cache.

We find that when there is a significant number of conflict misses, our scheme

can significantly improve performance workload, up to 95%. Our proposed

45
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mechanism may consume more DRAM in some cases, however it trades this

cost with significant performance benefits. Not both levels of this scheme

benefit all workloads, however, they never degrade performance. Overall,

our work shows that differentiation of blocks is a promising technique for

improving SSD-based I/O caches.



Bibliography

[1] Adaptec Inc. MaxIQ SSD cache performance

kit. http://www.adaptec.com/en-US/products/Cloud-

Computing/MaxIQ/SSD-Cache-Performance, 2009.

[2] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A five-year

study of file-system metadata. In FAST ’07, pages 3–3, Berkeley, CA,

USA, 2007. USENIX Association.

[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,

and R. Panigrahy. Design tradeoffs for SSD performance. In ATC’08:

USENIX 2008 Annual Technical Conference, pages 57–70, 2008.

[4] Aleph One. Ltd, Embedded Debian: Yaffs: A NAND-Flash Filesystem.

www.yaffs.net, 2002.

[5] K. P. Brown, M. Mehta, M. J. Carey, and M. Livny. Towards automated

performance tuning for complex workloads. In VLDB ’94, pages 72–84,

San Francisco, CA, USA, 1994. Morgan Kaufmann Inc.

[6] D. Chinner. Details of space allocation in the XFS filesystem (private

communication) , June 2010.

1



2 BIBLIOGRAPHY

[7] E. corp. EMC CLARiiON and Celerra Unified FAST Cache.

http://www.emc.com/collateral/software/white-papers/h8046-

clariion-celerra-unified-fast-cache-wp.pdf, November 2010.

[8] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Bridg-

ing the information gap in storage protocol stacks. In USENIX An-

nual Technical Conference, pages 177–190, Berkeley, CA, USA, 2002.

USENIX Association.

[9] C. Dirik and B. Jacob. The performance of PC solid-state disks (SSDs)

as a function of bandwidth, concurrency, device architecture, and sys-

tem organization. In ISCA ’09, pages 279–289. ACM, 2009.

[10] I. H. Doh, H. J. Lee, Y. J. Moon, E. Kim, J. Choi, D. Lee, and S. H.

Noh. Impact of NVRAM write cache for file system metadata on I/O

performance in embedded systems. In SAC ’09, pages 1658–1663, New

York, NY, USA, 2009. ACM.

[11] E. Jassaud, W. Szoecs. High performance storage for the engineer-

ing workflow. http://www.dynamore.de/dokumente/papers-1/2010-

deutsches-forum/papers/N-I-03.pdf, 2010.

[12] J. Engel and R. Mertens. LogFS - finally a scalable flash file system.

http://logfs.org/git/, 2010.

[13] FalconStor. FalconStor HotZone - Maximize the performance

of your SAN (North American Systems International, Inc.).

http://www.nasi.com/hotZone.php.

[14] Fusion-io. : Solid State Storage – A New Standard for

Enterprise-Class Reliability. http://www.dpie.com/manuals/ stor-

age/fusionio/Whitepaper Solidstatestorage2.pdf.



BIBLIOGRAPHY 3

[15] G. R. Ganger and Y. N. Patt. Metadata update performance in file

systems. In OSDI ’94: Proceedings of the 1st USENIX conference on

Operating Systems Design and Implementation, page 5, Berkeley, CA,

USA, 1994.

[16] R. Gramacy, M. Warmuth, S. A. Brandt, and I. Ari. Adaptive caching

by refetching. In Advances in Neural Information Processing Systems

15, pages 1465–1472, Dec. 2003.

[17] R. Jenkins. 32 bit integer hash function.

http://www.concentric.net/ Ttwang/tech/inthash.htm, 2007.

[18] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li. DFS: A File

System for Virtualized Flash Storage. In Proc. USENIX FAST, pages

85–100, 2010.

[19] J. Katcher. PostMark: A New File System Benchmark. NetAPP

TR3022, 1997. http://www.netapp.com/ tech library/3022.html.

[20] T. Kgil and M. Trevor. FlashCache: A NAND Flash Memory File

Cache for Low Power Web Servers. In CASES ’06, pages 103–112.

ACM, 2006.

[21] H. Kim and S. Ahn. BPLRU: a buffer management scheme for improv-

ing random writes in flash storage. In FAST’08, pages 1–14. USENIX

Association, 2008.

[22] N. Kirsch. Isilon’s onefs operating system white paper.

http://www.isilon.com/onefs-operating-system, August 2010.

[23] H. J. Lee, K. H. Lee, and S. H. Noh. Augmenting raid with an ssd for

energy relief. In HotPower’08, pages 12–12, Berkeley, CA, USA, 2008.

USENIX Association.



4 BIBLIOGRAPHY

[24] S. Lee, B. Moon, C. Park, J. Kim, and S. Kim. A Case for Flash Memory

SSD in Enterprise Database Applications. In Proc. of SIGMOD ’08,

pages 1075–1086. ACM, 2008.

[25] A. Leventhal. Flash storage memory. Commun. ACM, 51(7):47–51,

2008.

[26] T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris, and A. Bilas.

Using Transparent Compression to Improve SSD-based I/O Caches. In

Proc. EuroSys, pages 1–14, 2010.

[27] N. Megiddo and D. S. Modha. ARC: A self-tuning, lowoverhead replace-

ment cache. In Proc. of FAST’03, pages 115–130. USENIX Association,

2003.

[28] Microsoft. Corporation, Explore the features: Win-

dows ReadyBoost. www.microsoft.com/windows/windows-

vista/features/readyboost.aspx, 2006.

[29] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron.

Migrating server storage to SSDs: analysis of tradeoffs. In EuroSys ’09,

pages 145–158. ACM, 2009.

[30] R. Ng, C. Faloutsos, and T. Sellis. Flexible buffer allocation based on

marginal gains. SIGMOD Rec., 20(2):387–396, 1991.

[31] R. Ng, C. Faloutsos, and T. Sellis. Flexible and adaptable buffer man-

agement techniques for database management systems. IEEE Transac-

tions on Computers, 44:546–560, 1995.

[32] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page replace-

ment algorithm for database disk buffering. SIGMOD Rec., 22(2):297–

306, 1993.



BIBLIOGRAPHY 5

[33] X. Ouyang, S. Marcarelli, and D. K. Panda. Enhancing Checkpoint

Performance with Staging I/O and SSD. SNAPI ’10, 0:13–20, 2010.

[34] S.-y. Park, D. Jung, J.-u. Kang, J.-s. Kim, and J. Lee. CFLRU: a

replacement algorithm for flash memory. In CASES ’06, pages 234–

241, New York, NY, USA, 2006. ACM.

[35] J. Piernas, T. Cortes, and J. M. Garćıa. DualFS: a new journaling file
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