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Abstract

In recent years, data has an exponential growth in both the number of instances and
the number of features, which brings their scale to the level of terabytes. These amounts
of data can be found in many machine learning applications like information retrieval,
text categorization and image retrieval. Although such amounts of data are frequent
nowadays, classical machine learning algorithms have di�culties to process them.

An important task in machine learning is feature selection and its task is to select
the most informative features in a dataset. Feature selection is e�ective in reducing
dimensionality, removing irrelevant features, increasing performance of a learner, and
improving our understanding of the model. With the increase of the volume of the data
the usability of classical feature selection algorithms deteriorates.

To solve scalability problems, the Map-Reduce model has been proposed. With this
model the data can be processed in parallel, and so machine learning algorithms can now
be adapted in order to process terabytes of data.

In this thesis we were concerned with the implementation of a feature selection algo-
rithm for big data. More particularly, we used the Map-Reduce model to parallelize the
Max-Min Parent and Children (MMPC) algorithm in order to be able to handle big data.
MMPC tries, heuristically, with the use of independent tests, to �lter out variables. For
this thesis we show how two independence tests that can handle categorical and contin-
uous features, can be used with the Map-Reduce model. Finally, we also use a method
so that MMPC can be used with any independence test using the Map-Reduce model.

To evaluate our algorithm, we experimented with datasets that contained di�erent
number of instances and features. The experimental evaluation showed that our algorithm
scales well with these datasets when varying the number of instances and the number of
nodes in the cluster. Moreover, the performance of the algorithm is comparable to other
feature selection algorithms.





Περίληψη

Στις μέρες μας, τα δεδομενα αυξάνονται εκθετικά τόσο στον αριθμό των δειγματων οσο

και στον αριθμό των μεταβλητών, με το μέγεθος τους να φτάνει την κλίμακα των Terabyte.
Αυτός ο όγκος δεδομένων μπορεί να βρεθεί σε πολλές εφαρμογές της μηχανικής μάθησης

όπως στην ανάκτηση πληροφοριών, κατηγοριοποίηση κειμένου και ανάκτηση εικόνων. Παρόλο

που τέτοιου είδους δεδομένα είναι συχνά σήμερα, κλασσικοί αλγόριθμοι μηχανικής μάθησης

δεν μπορούν να τα διαχειριστούν.

Μια πολύ σημαντική μέθοδος στην μηχανική μάθηση ειναι η επιλογή μεταβλητών που

προσπαθεί να επιλέξει τις μεταβλητές που είναι πιο προβλεπτικές σε ένα σετ δεδομένων. Η

επιλογή μεταβλητών είναι σημαντική καθώς μειώνει τις διαστάσεις των δεδομένων, αφαιρεί

άσχετες μεταβλητές, αυξάνει την επίδοση ενός ταξινομητή και βοηθάει στην καλύτερη

κατανόηση των δεδομένων. Με την αύξηση του όγκου των δεδομένων η απόδοση των

κλασσικών αλγόριθμων επιλογής μεταβλητών μειώνεται αισθητά.

Για να λυθούν προβλήματα απόδοσης, το μοντέλο Map-Reduce έχει προταθεί. Πλέον
μπορεί να γίνει η επεξεργασία των δεδομένων παράλληλα σε ενα σύμπλεγμα υπολογιστών

και οι αλγόριθμοι μηχανικής μάθησης μπορούν να τροποποιηθούν έτσι ώστε να είναι σε θέση

να επεξεργαστούν μεγάλο όγκο δεδομένων.

Σε αυτή την εργασία ασχοληθήκαμε με την υλοποίηση αλγορίθμων επιλογής μεταβλητών.

Πιο συγκεκριένα, χρισιμοποιήσαμε τοMap-Reduce μοντέλο για να παραλληλοποιήσουμε τον
αλγόριθμο Max Min Parent and Children (MMPC) έτσι ώστε να μπορεί να διαχειριστεί
μεγάλο όγκο δεδομένων. Ο αλγόριθμος αυτός προσπαθεί ευριστικά, με τη χρήση τεστ

ανεξαρτησίας, να βρει εξαρτήσεις μεταξύ μεταβλητών. Σε αυτή την εργασία δείχνουμε πως

παραλληλοποιήσαμε δύο τεστ ανεξαρτησίας που μπορούν να διαχειριστούν κατηγορικές και

συνεχείς μεταβλητές, χρησιμοποιώντας το μοντέλο Map-Reduce. Τέλος, χρησιμοποιήσαμε
μία μέθοδο με την οποία ο MMPC μπορεί να χρησιμοποιηθεί με οποιοδήποτε τεστ.
Για να αξιολογήσουμε τον αλγόριθμο χρησιμοποιήσαμε δεδομένα που περιέχουν διαφορε-

τικό αριθμό δειγμάτων και μεταβλητών. Η αξιολόγηση έδειξε ότι ο αλγόριθμος μας κλι-

μακώνεται καλα οταν αλλάζει ο αριθμός των δειγμάτων και ο αριθμός των κόμβων του

δικτύου. Τέλος, η απόδοση του αλγορίθμου είναι συγκρίσιμη με την απόδοση άλλων αλ-

γορίθμων επιλογής μεταβλητών.
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Chapter 1

Introduction

1.1 Problem Description

In this thesis we are concerned with implementing feature selection algorithms for big
data. Most regular feature selection algorithms are not able to cope with big data as their
performance decreases signi�cantly. However, it is important to have e�cient algorithms
that can extract features from such data as this will result in better models and better
understanding of the data.

The feature selection algorithm we deal with is called Max Min Parent and Children
(MMPC) [43]. Our goal was to expand its usability so it can handle big data e�ciently.
We chose to expand MMPC for the following reasons:

• MMPC has been proven to be a robust feature selection algorithm for regular
datasets. By expanding its usability, we can have a robust algorithm for big data.

• MMPC can be used with any kind of data, if the appropriate statistical test is used.

• MMPC can be easily expanded to extract multiple sets of features with same pre-
dictive power. As far as we are concerned, there is no such algorithm for big data
and so it would be the �rst of its kind.

• MMPC has also been used for the creation of the skeleton of Bayesian Networks.
This has been accomplished by using MMPC on all the features of the data. So by
applying MMPC for big data a Bayesian Skeleton can be created.

To process big data we use the Map-Reduce framework. This framework processes the
data in parallel and then combines some intermediate results to get the �nal output. We
chose to use this framework as it is the most well known and most used for performing
big data analytics. The most popular platform that implements this framework is called
Hadoop, and we use this platform for our purposes.

Using this framework, we expanded the usability of MMPC to handle big data. Due
to the fact that MMPC uses independent tests to extract features, di�erent tests need
di�erent implementation. In this thesis, we implemented two independent tests. These
are the Fisher Z test and the G2 test. The �rst is used when the data contain continuous
features and the later when the data contain discrete features. Morevover, it is possible
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for someone to use MMPC without implementing a statistical test with the Map-Reduce
framework. This can be achieved with the Fisher's combined probability test. We describe
this method and how we use it in later chapters.

To evaluate our algorithm we used various datasets and a cluster of 7 nodes. The
experiments we performed are the following:

• Instances vs Time: In these experiments we varied the number of instances in the
dataset and used all the nodes in the cluster.

• Nodes vs Time: In these experiments we varied the number of nodes in the cluster
and used all the instances in the datasets.

• Classi�cation Accuracy: Here we evaluated our algorithm using the logistic re-
gression classi�er and compare the results with another feature selection algorithm
for big data. Moreover, we compare the time taken for both algorithms to select
features.

• Using Fisher's method: We use the Fisher's method with the G2 test and compare
the results with the ones produced by the actual G2 test. More particularly, we
compare: the number of features selected, the time taken to �nish and the accuracy
when the logistic regression classi�er is used.

To conclude, our algorithm scales well when varying the number of instances and the
number of nodes in a cluster. More particularly, the more instances in a dataset the more
time takes for the algorithm to �nish when keeping the number of nodes �x in a cluster.
In addition, increasing the number of nodes in a cluster and keeping the size of the data
�x, the execution time decreases.

1.2 Thesis Structure

The structure of this thesis is the following:

• In chapter 2, we present an introduction to big data. We present the common
platforms to perform big data analytics and we describe in more detail the platform
Hadoop, which is used for this thesis.

• In chapter 3, we present the background needed for the thesis. We discuss about
feature selection algorithms and their categories, and we describe the MMPC algo-
rithm. Finally, we present the related work that has been done until now.

• In chapter 4, we discuss how we used the Map-Reduce model with MMPC and
we show how two independent tests can be used. Moreover, we present Fisher's
method that can be used with MMPC in order to handle any type of data.

• In chapter 5, we show the results from our experiments. We explain in detail how
these results occurred and how they can be interpreted. Moreover, we compare our
algorithm with a well known algorithm for big data analytics.

10



• In chapter 6, we provide our conclusions and the future work. It is a short sum-
mary of the most important features of this work and it also presents some more
possibilities of this algorithm.

11



Chapter 2

Big Data

2.1 Introduction

We are living in the big data era, where huge amounts of data are being generated and
stored daily. Facebook has over 300 petabytes worth of material from its users and
Youtube has to analyze more than 500 petabytes of data. Thompson Reuters News
Analytics performed a research and estimated that 35 zettabytes (1 zettabyte = 103

exabytes = 106 pettabytes) of data will be generated in 20201.
However, big data is not only about the size of the data. There are other important

characteristics of big data such as data variety, data veracity and data velocity. The
following four Vs constitute a comprehensive de�nition of big data and are described in
more detail below:

• Volume: This is the primary characteristic of big data and refers to the large size
of the data that can be terabytes or petabytes, as described earlier.

• Variety: Nowadays data are collected from a great variety of sources and can be
structured or unstructured and can be of di�erent type/format. That is, it may not
always be numbers but may be emails, website links or even pictures.

• Velocity: Refers to the fast rate at which data is being generated, communicated,
and stored. Sometimes it is vital to process the data in real-time. Some examples
can be found in tracking the visitors of a website in real-time or real-time consumer
reaction to events or advertisements via Twitter.

• Veracity: Refers to the uncertainty of the data. Not all data are credible or up to
date. Some of the data may be biased or contain noise.

Big data poses a data processing problem and more particularly it can be referred as
a data intensive problem. In these kinds of problems the calculations are few and the
data cannot be loaded in the main memory. In order to solve scalability and performance
problems industries build data centers, which may contain hundreds or thousands of
interconnected computers, in order to analyze their data in parallel.

1Source: "Thomson Reuters Blog"
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The problem of storing and analyzing vast amounts of data was �rst dealt by Google.
Google proposed the Map-Reduce[1] programming model for processing the data and the
Google File System[2] for storing the data. Both the Map-Reduce model and the �le
system support automatic parallelization for processing and storing data e�ciently.

The Map-Reduce model consists of two tasks: the map and the reduce. The user
need only de�ne these two tasks in order to process the data. The map task processes
key-value pairs and emits intermediate key-value pairs. The values of these pairs are
then grouped by the same key and are input to the reduce task. Finally, the reduce task
processes these key-value pairs and emits another key-value pair, which is the output of
the model.

The Google File System (GFS) was developed by Google in order to solve the storage
needs of the company. The goals of this �le system was performance, scalability, reli-
ability, and availability. The �le system was successfully used by Google's cluster that
consisted of thousands machines.

2.2 Platforms for Analyzing Big Data

Nowadays, many other companies and organizations followed Google's example and cre-
ated their own platforms and software in order to perform big data analytics. Some of
the most popular are the following:

• Dato: Formerly known as GraphLab, the Dato framework provides parallel compu-
tation targeted for machine learning algorithms. The advantage of this framework
is that it allows a rapid deployment of distributed algorithms. The disadvantage of
this platform is that it is not free.

• DryadLINQ is a system that was created by Microsoft to process data in parallel
e�ciently. Its goal is to make distributed computing for every programmer easy. It
generalizes previous execution environments such as SQL, MapReduce, and Dryad
in two ways: by adopting an expressive data model of strongly typed .NET ob-
jects; and by supporting general-purpose imperative and declarative operations on
datasets within a traditional high-level programming language.

• Flink: An open source platform for scalable batch and stream data processing. This
platform distributively and e�ciently processes data using powerful programming
abstractions in Java and Scala, and automatic program optimization. It has native
support for iterations, and incremental iterations. Finally, it supports higher-level
tools including a graph processing tool (Gelly) and a Machine Learning Library.

• Hadoop: Hadoop is the most popular platform for analyzing big data and it is used
by many big companies such as Google, IBM and Yahoo. For this thesis, we used
Hadoop to perform our experiments and due to this fact we describe it in the next
section in more detail.

• Spark: This is a fast and general engine for large-scale data processing which pro-
vides high-level APIs in Scala, Java, and Python, and an optimized engine that
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supports general computation graphs for data analysis. It also supports higher-
level tools including Spark SQL for SQL and structured data processing, MLlib
which is a scalable machine learning library, GraphX for graphs and graph-parallel
computation, and Spark Streaming for streaming applications.

2.3 The Hadoop Platform

The most well-known platform for big data analytics is the open-source distributed data
processing platform Apache Hadoop. Hadoop provides a cost-e�ective way to store and
process big data and it is being used worldwide by big companies such as Yahoo and
Facebook. The main components of this platform is the Map-Reduce paradigm, which is
used to process the data, and Hadoop Distributed File System (HDFS) which is used to
store the data in a cluster.

2.3.1 Hadoop Distributed File System (HDFS)

The Hadoop Distributed File System (HDFS) is the core component of Hadoop for storing
distributively large amounts of data on a cluster. The main di�erences from existing
distributed �le systems is that it is highly fault tolerant and it can be used on low-cost
hardware. HDFS is optimized for high throughput and works best when reading and
writing large �les. One key characteristic of this �le system is that the data are stored in
blocks. That is, every �le is broken into blocks of a �xed size that are stored randomly
on the nodes in the cluster. The main goals of the �le system are the following:

• E�ciently storing large amounts of data (TB or PB) in a cluster.

• Deal with hardware failures. A �le system should store data reliably. In order to
deal with failures HDFS uses replication. That is, it stores same blocks in multiple
nodes in the cluster.

• Applications that use HDFS are assumed to write a �le once and read it many
times.

HDFS is based on a master/slave architecture. The master node attaches the Na-
meNode and the Secondary NameNode. The NameNode stores all the metadata for the
�lesystem across the cluster and there can be only one in a cluster. Moreover, it man-
ages the �le system namespace and regulates access to �les by clients. The Secondary
NameNode serves as a checkpoint mechanism for the NameNode. That is, it stores the
state of the NameNode. In case of a failure of the NameNode then in a restart its former
state is reconstructed by using the Secondary NameNode.

The slave nodes attach the DataNodes, usually one per node. DataNodes manage the
storage of the data in the nodes they are attached on and they perform read and write
requests. Also, they perform block creation, deletion, and replication upon instruction
from the NameNode. Figure 2.1 shows the architecture of the HDFS.
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Figure 2.1: HDFS Architecture. NameNode and Secondary NameNode run in master
node and DataNode deamons run on slaves. NameNode can perform block operations
via DataNodes and clients can make read/write requests. Finally, blocks are replicated
in the slaves for fault tolerant issues.

2.3.2 Map-Reduce Model

The Map-Reduce model is used by Hadoop to process the data in parallel and consists
of two tasks: the map and the reduce. The key concept on which this model is based on
is divide and conquer, where a single task is divided into many independent sub-tasks
which are executed in parallel by map tasks and these results are merged in the reduce
task for the �nal outcome.

The mappers and reducers - classes that extend Hadoop-provided base classes to solve
a speci�c problem - are speci�ed by the user. The mapper is necessary to be speci�ed
but the reducer need not be. In case the reducer is not speci�ed in a job, the output
would be the output of the mapper. The �rst step of this model is to input the data to
the mappers. The output data of the map phase are then sorted and fed to the reduce
phase.

The input and output of the map and reduce tasks consist of a list of key-value pairs:
(k, v). The output key-value pairs of the map tasks are input to the reduce tasks. Before
the pairs are input to the reduce task the system automatically performs a group-by
operation on the intermediate key. That is, all the values with the same key are grouped
together to form (k, [v1, v2 . . . vn]). More particularly, in this phase the following three
processes take place:

• Partitioner: As mentioned earlier, map tasks emit key-value pairs which are input
to the reduce tasks. The pairs with the same key are input to the same reducer,
regardless of which mapper they originated from. The partitioner determines in
which reducer a key-value pair will go to.

• Shu�e: This process moves the output of the mappers to the reducers. It is not
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necessary for all the mappers to �nish in order for this process to start. When one
mapper is completed this process starts.

• Sort: This process is responsible for sorting the key-value pairs that are emitted by
the mappers.

After the group-by operation, the reduce task is executed with input a list of values
associated with each key. The output of the reduce task is also a key-value pair. Figure
2.2 shows the input and output of the map, group-by and reduce phases.

Figure 2.2: Map, Group-by, Reduce Operations. Input and output of Map functions are
in the form of key-value pairs. The output values with the same key of each mapper
are grouped to the same key and inserted to the Reduce phase which outputs another
key-value pair.

The key-value pairs have the following properties:

• Keys are unique but values need not be.

• Values must be associated with one key but keys may not have values.

The main responsibility of the Map-Reduce model is to coordinate the execution. This
includes the following:

• Choose appropriate nodes to run map tasks.

• Starting and monitoring the mappers.

• Grouping the key-value pairs emitted by the map tasks.

• Choose appropriate nodes to run reduce tasks.

• Call reduce tasks.

• Starting and monitoring the reducers.
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Figure 2.3: Map-Reduce Architecture[4]. JobTracker runs on the master node and a
TaskTracker deamon runs on each slave node. The clients submit a job to the JobTracker
and it commands the TaskTrackers to start executing the job. Finally, the TaskTrackers
send heartbeats to the JobTracker and also the status of the job.

As mentioned earlier, the user need only de�ne just the map and the reduce tasks.
The system is responsible for everything else. The size of the data or the size of the
cluster does not matter. If the size of the data is 1 gigabyte or 1 petabyte and the
number of nodes available in the cluster are 10 or 1000 thousand, Hadoop will determine
the best way to utilize all the nodes to perform the work most e�ciently. This is one of
the strongest advantages of Hadoop.

In the master/slave architecture, the master node runs the JobTracker (which is the
coordinator) and a slave node runs the TaskTracker, which is the �worker�. The Job-
Tracker communicates with the NameNode in order to specify where the data are stored
in the cluster. Afterwards, it determines the number of the map tasks that are needed
and the number of TaskTrackers that are available in order to submit a job. Then, the
JobTracker commands the TaskTracker to start executing a job. The TaskTracker runs
the map task over the data and at the same time it sends �heartbeats� to the JobTracker,
that helps the JobTracker to check the job status and the usage of the resources. Figure
2.3 shows the architecture of the model.

2.3.3 Word Count Example

A very common example in Hadoop is the word count problem. In this problem, the task
is to count the number of instances of words that appear in some documents, which are
the input. As described earlier, the input to the Map-Reduce model should be in the
form of key-value pair. For this example, the key is considered the number of line and the
value is considered the line of the document. This pair is the input to the mappers. The
output is a key-value pair of the form (word, 1). Then, the group-by operation groups
the values that have the same key and associates them to that key. So, the output of the
process is the pair (word, [1 1...1]). This is the input to the reduce task which sums the
1s for each word and outputs the results in the key-value form: (word, sum).

Figure 2.4 shows an example with two documents. For each document, each line is
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the input to the map function. The map function splits each line and outputs as key
the word and as value the number one. Hadoop then sorts and groups each key with the
value and inputs it to the reduce function. For example, for the word �Apple� the input
to the reduce function is (Apple, [1 1 1 1]). Finally, the reduce function counts the ones
and outputs (Apple, 4).

Figure 2.4: Map-Reduce Example [3]. The documents are the input and each line of the
document is the input to the Map functions. The mappers split each line to words and
extract the key-value pair: (word, 1). Then the Group-By operation groups the values 1s
to the same key and this is input to the Reduce phase. This phase just sums the 1s for
each key and outputs the key-value pair: (word, count), where count is the total count
of occurances of the word in the documents.

Combiners

Combiners help to optimize Map-Reduce jobs and they are optional. A combiner performs
reduce type operations on the output of the mappers before the reducer is executed. Due
to the fact that the output of the map tasks is already in memory it makes sense to run
the functionality of the reducer on this output. This is performed by combiners and can
run on each node and for the same key. However, combiners cannot be used in every job.
In order to use combiners the reducer needs to have the following two characteristics:

• Commutative: The order in which the operation processes the values of a key has
no e�ect on the �nal result.

• Associative: The operation that is applied to the intermediate key value pairs can
be applied to any subgroup independently.

In the previous example, the reducer has these two characteristic and so combiners
can be used. In this case the input to the reduce function for the word Apple, for example,
would be the key-value pair: (Apple, [2 2]). This is because of the �rst and third output
of the map function.
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2.3.4 Applications of Map-Reduce

More and more people are turning to Hadoop to analyze big data in many di�erent areas.
One such area is medicine. In [5] they discuss about the challenges and opportunities
of big data in the pharmaceutical industry. In this work they propose a platform that
integrates and processes clinical data that are collected from various sources. Another
example related to medicine can be found in [8], where they describe a new method for
creating fetal growth curves and the need for big data techniques in order to scale up the
problem.

Much work has also been done in machine learning and more particularly on learning
decision trees for big data. A very interesting work was performed by Yin et al. [6],
where he describes an algorithm to build regression trees e�ciently called �OpenPlanet�.
A similar work was performed in [7], where they propose two di�erent approaches to
parallelize stochastic gradient boosted decision trees. For their �rst approach they use
the Map-Reduce model and for the second they use MPI with Hadoop streaming. An-
other work related to decision trees is [9], where they describe a process for transforming
traditional machine learning algorithms into algorithms for learning distributed data and
they apply it to devise algorithms for decision trees. Furthermore, in [10] they propose a
new method called MReC4.5 which can be used for classi�cation. This method uses C4.5
decision trees and ensemble methods to achieve ensemble classi�cation.

Several other works have been published in di�erent areas such as computer vision.
In [11] they developed a parallel feature extraction algorithm and a parallel averaging
stochastic gradient descent to train SVM classi�ers. A Map-Reduce algorithm has also
been proposed in [12], where they propose a uni�ed framework for predicting attributes
and links in social networks, with the use of a two-layer arti�cial neural network. In
addition, an interesting work can be found in [13]. In this work, the authors propose
a parallel meta-learning algorithm, to avoid modifying existing machine learning algo-
rithms. Finally, the Map-Reduce model has also been used to implement a variational
bayesian probabilistic matrix factorization algorithm [14].

2.3.5 Tools on Top of Hadoop

Hadoop is used massively in the industry and so it is logical to have been expanded in
di�erent ways. In [15] the authors developed an open-source data warehousing, called
Hive. Hive was created in Facebook in order to make the process of the data easily with
Hadoop. It supports queries that are similar to SQL query language. Queries in Hive
are compiled using Map-Reduce jobs and the query language is called HiveQL. A similar
platform was created in Yahoo! called Pig[16]. This platform also support SQL-like
queries that are executed over Hadoop.

One major disadvantage of Hadoop is that it does not support iterations (i.e. passing
the data several times), e�ciently. The need of e�ciently using Hadoop with iterations is
imperative. In [17] they proposed Twister, a programming model that supports iterative
Map-Reduce computations e�ciently. A similar work, that was described in section 2.2,
is Spark[18]. Spark is a framework that supports iterations in Map-Reduce. Spark can
be up to 100x times faster than Hadoop in memory and 10x faster on disk. A large-scale
data warehousing system was build for Spark, called Shark [19]. Shark is compatible is
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Apache Hive and supports HiveQL. Moreover, it can be up to 100x times faster than
Hive.

A very famous suite that was build on top of Hadoop is Mahout[20]. This suite builds
several machine learning algorithms. These include matrix factorization algorithms, clus-
tering techniques like k-means and classi�cation methods like naive Bayes.

Tools that have GUIs have also been build or extended to support Hadoop. One of
them is Weka[21]. Weka is a data mining software build on Java and one can run various
machine learning algorithms. Weka has been expanded to support Hadoop[22] that can
be used easily for various tasks. Another GUI enviroment for Hadoop is Radoop[23].
Radoop is an extension of RapidMiner that can run distributively processes on Hadoop.
In addition, it uses data analytics functions from Hive and Mahout. These tools can
be easily used by a user to perform big data analytics. The key advantage is that they
eliminate the need for learning Hadoop.

2.3.6 Writing Hadoop Applications with R

The main programming language of Hadoop is Java. However, the user can write in any
other programming or scripting language, such as Python, Ruby, Perl or C++, with the
use of Hadoop streaming. To use this, the language needs to support reading data from
standard input and writing to standard output. Independently of the language the main
concept is the same. Map and reduce tasks take as input and output key-value pairs.

The language that was used for this thesis is R. R is a widely used programming
language for statistical computing and graphics. There are more than 4,400 packages
and it is easy to use. R can be integrated with Hadoop with the following ways:

• RHIPE: It stands for R and Hadoop Integrated Programming Environment and
was developed by Saptarshi Guha, a former PhD student of Purdue University. The
RHIPE package uses the divide and recombine technique to perform data analytics
over big data. In this technique, the data is divided into subsets, computation is
performed over those subsets by speci�c R analytics operations and, �nally, the
output is combined.

• Hadoop streaming: As mentioned earlier, Hadoop streaming is a Hadoop utility
for running Hadoop Map-Reduce jobs with executable scripts such as mappers and
reducers. The user need to de�ne map and reduce functions to input and output
key-value pairs.

• RHadoop: It was developed by Revolution Analytics and it provides large data
operations with the R environment. It consists of the following 5 packages:

� rmr2: This package supports translation of the R language into Hadoop-
compliant Map-Reduce jobs.

� rhdfs: This package provides HDFS usability from R.

� rhbase: This package supports the database management for HBase stores.

� plyrmr: This package provides common data manipulation operations.

� ravro: This package allows R to read and write in avro format.

20



Not all packages are needed for a Map-Reduce job. The main packages are rmr2
and rhdfs.

• ORCH: This is an Oracle R connector for Hadoop. ORCH can be used on the
Oracle big data Appliance or on non-Oracle Hadoop clusters.

2.3.7 Hadoop 2.X

Hadoop 2.X, also known as Hadoop YARN(�Yet Another Resource Negotiator�), is the
newest version of Hadoop and it di�ers from Hadoop 1.X in the Map-Reduce model
only. The HDFS �le system remains unchanged. A short description of this version's
Map-Reduce model is presented below.

Hadoop 1.X has two daemons, the Jobtracker and the Tasktracker. On the other
hand, Hadoop YARN has three daemons: the ResourceManager, the ApplicationMaster,
and the NodeManager. The Jobtracker's responsibilities, which are the resource man-
agement and job scheduling, are split into the ResourceManager and the per-application
ApplicationMaster. The NodeManager is a per-node slave, like the Tasktracker. These
are the three main components of all of YARN's functionality and are described in more
detail below:

• ResourceManager: Each cluster has a single ResourceManager which manages all
the available cluster resources and helps distributing the applications that run on the
system. It has two parts: a scheduler, which is responsible for allocating resources
to the various running applications, and an ApplicationManager that manages user
jobs on the cluster. The resource requirements of an application determines how the
scheduling is performed. This is based on the containers which incorporate many
elements such as memory, cpu or disk.

• NodeManager: This is per-machine slave, which tracks the available data processing
resources and manages users' jobs. Moreover, it monitors the resource usages, such
as memory, disk, and network and sends reports to the ResourceManager.

• ApplicationMaster: This is the �master� of a users' job. It works with the Resource-
Manager to handle the resources and with the NodeManager to execute and monitor
the component tasks. Among others, one responsibility of the ApplicationMaster
is to dynamically increase or decrease the resources consumption.

Figure 2.5 shows the YARN architecture. For this thesis, the Hadoop 1.2.1 was used
due to the fact that Hadoop 2.X did not exist when the thesis started. The code written
in Hadoop 1.2.1 can be used with Hadoop 2.X.
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Figure 2.5: YARN Architecture[4]. The master node runs the ResourceManager (RM)
where the clients can submit a job and the slave nodes run the NodeManager, which sends
the status of the node to the RM and the ApplicationMaster, which requests resources
for the job.
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Chapter 3

Background

In this chapter we present the background knowledge that is needed for this thesis. First,
we describe the notions of feature selection with its main categories. Then, we present
the Max-Min Parent and Children (MMPC) algorithm and we describe two independence
tests which are used by MMPC. Moreover, we describe two methods that can be used
with MMPC. Finally, we present the related work.

3.1 Feature Selection

One major category in machine learning is predictive modeling or supervised learning.
In this type of learning, there is a number of training examples (or observations or data
points) associated with desired outcomes and the task is to �nd the relationship be-
tween the data points and the outcomes. So, given an input X = {x1, x2, ..., xM} we
want to predict the target of interest Y . However, it may be the case that the output
Y is not determined by all the features in {x1, x2, ..., xM} but from a subset of them
{x(1), x(2), ..., x(m)}, where m < M , which are the more relevant with the task.

In this section we give a brief review about supervised feature (or variable) selection.
For more details, a very good review can be found in [24]. However, before de�ning what
feature selection is, it is important to de�ne some conventions. To begin with, datasets
are stored in tables, where each row represents an instance, that is a sample, and each
column a feature, i.e. a property of the sample. For example, a dataset may contain the
height and weight of students. In this case, a sample is a student with speci�c values in
its features height and weight. In our previous example, the target may be whether the
student is obesse or not.

The task of feature selection is very important in machine learning. The main reason
is that it can decrease computational cost. Imagine a dataset with 4 millions features but
only 4 hundred are important for the task we want to accomplish. By applying feature
selection the unnecessary features are discarded and the computational cost is reduced.
Another advantage of feature selection is that it can improve the predictive performance
of classi�ers by selecting only the features that are more predictive. This way the training
times can be reduced signi�cantly. Furthermore, applying feature selection in a problem
can reduce the storage requirements. It is not necessary to store information that is not
important to the task. Finally, feature selection can improve our understanding about
the data and also we can visualize them better. That is, it is di�cult to understand the
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structure of the predictive of the model in a thousand feature dataset but it is a lot easier
if the number of features are a few hundreds.

The task of feature selection to reduce the number of features in a dataset by eliminat-
ing features with no additional predictive information given the selected features. More
formally, according to [25] feature selection can be de�ned as follows:

De�nition 3.1.1. [25] A feature selection problem is a tuple 〈X,Φ, T,M〉 where X is
a sample of input patterns de�ned over a feature set Φ, T ∈ Φ a target variable and
M a performance metric of a classi�er's model and the selected features. A solution
to the problem is a feature subset φ ⊆ Φ and a learning algorithm A that maximizes
M(φ,A(T,X ↓ φ)), where X ↓ φ is the projection of the data X on only the features in
φ.

In the aforementioned de�nition, the metric M is not speci�cally de�ned as it is
problem-depended. Di�erent problem requires di�erent metric An example of metric is
correlation when the data take continuous values. So, in a given problem we try to �nd
the features φ that will maximize a speci�c metric M given the classi�er A.

One major distinction needs to be made between dimensionality reduction and feature
selection. The task of feature selection di�ers from dimensionality reduction techniques,
in that dimensionality reduction models build a new set of features from the original
feature set, which is usually smaller. However, feature selection reduces the dimensions
of the dataset by selecting a subset of the original features.

There are three main methods of feature selection: the �lters, the wrappers and the
embedded methods. The �lters select features by evaluating each feature with respect
to an outcome(also called target). The evaluation is performed with some metric like
correlation. The wrappers evaluate a classi�er with the use of a metric like accuracy and
they select the subset of features that achieve the highest performance of the classi�er
using that speci�ed metric. The last category is the embedded methods. These methods
perform feature selection in the training stage of a classi�er.

3.1.1 Filter Methods

Filter algorithms use a metric M to select features without evaluating that metric on the
output of a classi�er A. Examples of metrics are entropy and mutual information, which
measure the quality of a feature with respect to the target. The main advantages of these
methods are their �exibility, their speed and their robustness to over�tting. However,
the downside is that they cannot e�ciently �nd all possible combinations of features that
produce the best results. That is, a feature may be useless by itself but combined with
others can be very useful.

This is how most �lter algorithms behave. However, the algorithm we are con-
cerned(MMPC) tries heuristically to �nd conditional dependencies between the features
and the target using statistical tests.

One representative approach for �lter methods is called variable ranking. In this
approach the features are evaluated with a metric and then they are sorted according to
their evaluation in decreasing order. Then, the �rst k(user de�ned) features are selected.
For example, assume a dataset with m instances {xk,i, yk} that consists of i = 1 . . . n
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input features and a scoring function S(i). We evaluate the features xk,i and yk using
S(i) and �nally the features are sorted in decreasing order based on that evaluation.

Metrics that can be used with this method are the correlation and the information
gain. In the following subsections, we describe these metrics and how they can be used.

Correlation

Correlation can �nd any dependence between two random variables. The most famous
among other types of correlation is the Pearson correlation. The Pearson correlation
coe�cient, ρ, between two random variables X, Y is de�ned as follows:

ρX,Y = corr(X, Y ) =
cov(X, Y )
√
σXσY

where cov is the covariance and σ the variance, and are de�ned as follows:

cov(X, Y ) =
m∑
k=1

(xk − x)(yk − y)

σX =

√√√√ m∑
k=1

(xk − x)2

The values of the correlation varies between [−1, 1], where −1 indicates perfect de-
creasing dependency, that is inverse linear relationship, and 1 indicates perfect increasing
dependency, that is linear relationship. When there is small relationship between the
variables, the correlation value is near zero.

Mutual Information

Another popular metric for feature selection that comes from the information theory is
the mutual information. Given two continuous variables X and Y it is de�ned as follows:

I(X;Y ) =

∫
X

∫
Y

p(x, y) log
p(x, y)

p(x)p(y)
dxdy

where p(x) is the probability density of X, p(y) is the probability density of Y and
p(x, y) is the joint probability density of X and Y . In the case of discrete features the
mutual information is de�ned as follows:

I(X;Y ) =
∑
x∈X

∑
y∈Y

P (X = x, Y = y) log
P (X = x, Y = y)

P (X = x)P (Y = y)

where the probabilities in this case are estimated from frequency counts.

3.1.2 Wrapper Methods

Wrapper methods use predictive models such as classi�ers or regressors, which are con-
sidered as a black box, in order to perform feature selection. The prediction performance
of the model is used to evaluate a subset of features. Each subset of features is used to
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Figure 3.1: Forward Selection Example[28]. In the �rst step, an algorithm will evaluate
the empty set and then will enter every feature and evaluate separately. The feature with
the best evaluation is selected (A in this case). Then, the features B and C will enter
separately and evaluated. The best evaluation comes when B is entered. Finally, the C
enters and has the same score and so the features {A,B} are selected.

train the model and then the model's predictive performance is used to score the subsets.
In general, there are 3 things to de�ne for wrappers:

• The model to use.

• A performance estimation technique to evaluate the model.

• A method to �nd the subset of features.

An exhaustive search is infeasible to �nd the best subset of features when the number
of features is large and it has been shown to be an NP-Hard problem[30]. Greedy search
algorithms have been proposed to speed up the procedure. These are the forward selection
and the backward selection. In forward selection algorithms, the features are selected and
are added in a set of selected features recursively. In each step the feature with the highest
score is selected. Figure 3.1 shows an example of the forward selection method. The �gure
shows all the possible paths but the algorithm takes the path with the highest score in
each step. In the �rst step, the empty set is evaluated and gives a score of 70. In the
second step, each feature is added in the empty set and evaluated independently. In this
example, the best score is given by feature A. In the next step, the remaining features (B
and C) are added one at a time and evaluated. This procedure continuous until either
no other feature is left to add in the set or the subset that is evaluated performs worse
than the previous evaluated subset.

In the backward elimination method, the algorithm starts with a set that contains all
the features and recursively eliminates them one by one. Figure 3.2 shows an example
of the backward elimination method. As previously, the �gure shows all possible paths.
In the �rst step, the set includes all the features. These are evaluated with the use of a
classi�er or regressor. In the second step, each feature is eliminated and each subset is
evaluated. This procedure continues until either no other feature is left in the set or the
subset that is evaluated performs worse than the previous evaluated subset.
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Figure 3.2: Backward Elimination Example[28]. In the �rst step, an algorithm will
evaluate all the features and then will remove every feature and evaluate separately each
set. The set with the features {A,B} is selected. Finally, it removes each feature from
the set and concluded that the highest score is when features {A,B} are selected.

The advantages of these methods is that they can take into account the dependencies
between features and that they interact with the model to produce better results. How-
ever, they have high risk of over�tting because of their interaction with the model and
also they have high computational cost.

A discrimination needs to be made between wrappers and �lters[25]. Considering the
de�nition 3.1.1, a wrapper algorithm will search the space of all possible subsets given
an evaluation metric M and all learners A. On the other hand, a �lter algorithm selects
features without evaluating a metric M on the output of A. However, it is important to
notice that it is possible for �lter methods to use a learner A′ and a metric M ′ to select
features. In this case, the di�erence with wrappers is that A 6= A′ and M 6= M ′. If there
was the case that A = A′ and M = M ′, then the �lter algorithm acts as wrapper.

To make it clear, consider the example where Support Vector Machine (SVM) is used
to select features. The steps of the feature selection algorithm are the following:

1. Build SVM classi�er and �nd weights for all features

2. Choose half the features with highest weights

3. Repeat steps 1,2 until 1 feature is left

This algorithm acts as wrapper if SVM is used also for classi�cation, and it acts as a
�lter if other algorithm than SVM is used.

3.1.3 Embedded Methods

In embedded methods the feature selection is a part of the learning procedure of a given
model. These methods are computationally more e�cient than wrapper methods but
they are speci�c to the model. One successful example of these methods is LASSO[42]
(Least Absolute Shrinkage and Selection Operator). This is a regression algorithm which
tries to �nd the coe�cients β by minimizing the following:
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Figure 3.3: An Example of a Bayesian Network[43]. The nodes represent features and
the edges conditional dependencies. The nodes with grey color belong to the parents and
children of T and along with node O they form the Markov Blanket of T.

β = argmin︸ ︷︷ ︸
β

(
N∑
i=1

yi − xTi β)2 + λ

p∑
j=1

|βj|

where N is the number of instances, yi are the labels, xi are the instances, p is the
number of features and λ is a regularization parameter. The penalty on the regression
coe�cients shrinks many of them to zero. The features with non-zero coe�cient are
selected by this algorithm.

3.2 Max-Min Parent and Children (MMPC) Algorithm

The Max-Min Parents and Children (MMPC)[43] algorithm belongs to the �lter methods
and its main di�erent from most �lter algorithms is that it tries to �nd conditional
dependencies between the features and the target. Its theory stems from the theory of
the Bayesian Networks. Before describing the algorithm we will present the appropriate
background.

To begin with, a Bayesian Network (BN) is a directed acyclic graph which represents a
probability distribution P over a set of random variables Φ (known as nodes). The edges
represent conditional dependencies. So, if there is no edge between two variables (nodes)
then these variables are conditionally independent. Two nodes X and T are conditionally
independent given the set of variables Z, if and only if P (T |X,Z) = P (T |Z). In a BN
the Markov condition holds:

De�nition 3.2.1. Markov condition.[26] Any node is conditionally independent of its
non-descendants given its parents.

Figure 3.3 shows an example of a BN. In this example, the parents of nodes T are U ,
V , and O and so it holds that P (T |U, V,R) = P (T |U, V ) and P (T |O, S) = P (T |O).

De�nition 3.2.2. Faithfulness Condition.[26] A BN G and a distribution P are faith-
ful to one another if and only if all independence relations in P are entailed by the Markov
condition applied to G.
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In order to compute the independencies in a BN from the Markov Condition, the
d-separation criterion is used. Before de�ning d-separation it is important to de�ne what
a collider and a blocked path are.

A collider node in a path is considered the node with two incoming edges. In �gure
3.3, W is considered a collider because it has two incoming edges from O and T . The
blocked path can be de�ned as follows:

De�nition 3.2.3. Blocked Path. A path p from node X to node Y is blocked by a set
of nodes Z, if [26] there is a non-collider node on p that belongs in Z and if no collider
nodes of p and none of their descendants belong in Z.

Considering the aforementioned de�nition, d-separation is de�ned as follows:

De�nition 3.2.4. d-separation. Two nodes X and Y are d-separated by Z (denoted
as Dsep(X;Y |Z)) if and only if every path from X to Y is blocked by Z.

The independence between two nodes in a BN can be de�nes as follows:

Theorem 1. If a BN is faithful to a distribution P , then Dsep(X;T |Z)⇔ Ind(X;T |Z).

A fundamental theorem for MMPC is the following [27]:

Theorem 2. If a BN N is faithful to a distribution P , then:
1. There is an edge between the pair of nodes X and Y in N i� X and Y are conditionally
dependent given any other set of nodes.
2. If for the triplet of nodes X, Y , and Z in N , X is adjacent to Y , Y is adjacent to X,
and Z is not adjacent to X, X → Y ← Z is a subgraph of N i� X and Z are dependent
conditioned on every other set of nodes that contains Y .

The parents and children of T is denoted by PC(T ) and it holds that:

Theorem 3. Given two BN C and N that are both faithful to the same distribution
then, PCC(T ) = PCN(T ) (proof in []).

The Markov Blanket of a node in a BN can be de�ned as follows:

De�nition 3.2.5. Markov Blanket. In a BN, the Markov Blanket of a node T (noted
as MB(T )) is the minimal set of nodes on which every other node conditioned on this
set is independent of T . i.e. ∀X ∈ Φ\(MB(T ) ∪ {T}, Ind(X;T |MB(T )).

In �gure 3.3, the MB(T ) consists of the nodes U , V , X, W , Z and O. So in a BN
the following theorem holds:

Theorem 4. In a faithful BN N the MB(T ) is unique and it is the set of parents,
children and the parents of children (proof in []).

MMPC tries to �nd the parents and children of a node of interest T in a BN N which
is faithful to a given probability distribution P . This is accomplished with two phases:
the forward and the backward. In the forward phase (phase I), the algorithm �nds the
candidate parents and children (CPC) of T with a heuristic function. In this phase
all parents and children of T and some non-members will enter CPC. The algorithm is
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Algorithm 1 Forward Phase[43]
Input: target T , dataset D
Output: selected variables CPC

1: CPC = ∅
2: do

3: for ∀ variable X �nd do
4: minassocset(X) = subset s of CPC that minimizes assoc(X;T |s)
5: F = variable Φ\({T ∪ CPC}) that maximizes assoc(F ;T |minassocset(F ))
6: if Dep(X;T |minassocset(F ) then
7: CPC = CPC ∪ F
8: while CPC has not changed

shown in Algorithm 1. In the backward phase (phase II) the algorithm tries to remove
the variables that falsely entered CPC from the �rst phase. The algorithm is shown in
Algorithm 2.

The �rst phase of the algorithm �nds a candidate set of parent and children called
CPC for the target variable T. The �rst variable that is inserted in the CPC set is
the one that achieves the highest univariate association with T. Next, the variable that
achieves the maximum association with T conditioned on every subset of CPC that has
the minimum association. The interpretation[44] of this is to select the variable that
despite our best e�orts to make it independent of T has the highest minimum association
with T among all other candidate variables. Association of X with T given Z in the
pseudo-code is denoted with assoc(X;T |Z). Finally, the complexity of the algorithm in
this phase is O(|F | ·(|CPC|−1)maxk), where |F | is the number of features in the dataset,
|CPC| is the number of features selected by MMPC and maxk is the maximum number
of features to be conditioned on each association.

Algorithm 2 Backward Phase[43]
Input: target T , dataset D
Output: selected Variables CPC

1: for ∀X ∈ CPC do

2: if ∃s ⊆ CPC, s.t.Ind(X;T |s) then

3: CPC = CPC\{X}

The backward phase tries to remove the false positives variables that have entered the
CPC set by testing the independence of variable X with target T to all possible subsets
in the CPC. That is, it examines if every selected feature can be d-separated from T
conditioned on all possibles subsets of CPC. However, it may happen that variables are
selected that do not belong to the parents or children (even after the backward phase). Fi-
nally, the complexity of the algorithm in this phase is O(|CPC|·(|CPC|−1)maxk), where
|CPC| is the number of features selected by MMPC and maxk is the maximum number
of features to be conditioned on each association. Totally, the algorithm's complexity is
O(|F | · (|CPC| − 1)maxk)
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MMPC can be used for di�erent types of variables, as long as the appropriate test is
used. For example, it can be used for mixed categorical and continuous variables, and
the target can be either categorical, continuous or even censored (survival analysis). For
example, in [44] they use the χ2 test of independence. In the next section, we describe
the tests of independence that were used for this thesis.

3.3 Testing Single Hypothesis of Independence

In order to test whether the association in MMPC between a feature and a target, inde-
pendence tests are used. In this section, we describe the G2 and the Fisher Z test. The
�rst one is used when variables take discrete values and the latter is used when variables
take continuous values. Given a prede�ned threshold the tests reject the null hypotheses
if the pvalue is smaller than the threshold.

3.3.1 G2 Test

This test is used to �nd statistical independence between two variables that take discrete
values. The null hypotheses H0 assumes that the relative proportions of one variable are
independent of the second variable. On the other hand, the alternative hypotheses H1

assumes that the relative proportions are dependent.
The �rst step of the test calculates the contingency table between two variables. Then

it calculates the following quantity

G2 = 2
∑
ij

Oij log
Oij

Eij
(3.1)

where Oij is the number of the observations when the values of the variables is i and
j, respectively, and Eij is the expected number for the i, j values of the variables. This
value is calculated as follows

Eij =
Oi+O+j

n
(3.2)

where Oi+ is the number of observations when the value of the �rst variable is i, O+j

is the number of observations when the value of the �rst variable is j and n is the total
number of observations.

Under the Null hypothesis, the G2 statistic follows the χ2 distribution with degrees of
freedom: df = (|D(X)| − 1)(|D(Y )| − 1), where D(K) is the domain of the variable K.

So far, we described the unconditional G2 test. For this thesis, we also need to
calculate conditional associations. For the conditional case, given a conditional set of
variables, the equation 3.1 is used to calculate G for every combination of the values of
the conditional variables. Then, the di�erent values of the statistic G are summed to get
the �nal statistic.

More formally, consider the independent test Ind(Xi;Xj|Xk). Then let Oijk be the
number of times where Xi = a,Xj = b and Xk = c. De�ning in similar way the Oik, Ojk

and Xk, the G2 statistic can be de�ned as follows [46]:
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G2 = 2
∑
a,b,c

Oijkln
OijkOk

OikOjk

The degrees of freedom in this case will be:

df = (|D(Xi)| − 1)(|D(Xj)| − 1)
∏

Xi∈Xk

|D(Xl)|

where D(X) is the domain of the variable X.
Lets consider the following dataset and try to �nd the univariate association between

the target T and each feature F1.

Id T F1 F2

1 0 1 0
2 0 1 0
3 1 0 1
4 0 1 1
5 1 1 0
6 1 0 1
7 1 0 1
8 1 1 0
9 0 0 0
10 0 1 0
11 1 1 1
12 0 1 1
13 0 1 1
14 0 0 0
15 0 0 1

In order to compute the statistic from equation 3.1 we �rst need to �nd the contingency
tables. The table is shown below.

F1/T 0 1

0 4 5
1 2 4

From these tables we need to �nd the expected values. This is accomplished with the
use of the equation 3.2. For example, the expectation value when F1 = 0 and T = 0 is:

E11 =
9 · 6
15

So the expected values for the table is shown below.

F1/T 0 1

0 3.6 5.4
1 2.4 3.6

32



Considering the aforementioned tables the statistic for the F1 feature and the target
is computed as follows:

G2 = 2(
1∑

i=0,j=0

Oij log
Oij

Eij
) = 0.08

After computing the statistic we need to �nd the pvalue which follows a chi-square
distribution with degrees of freedom for our case (2− 1) · (2− 1) = 1. The pvalue for the
statistic is 0.22.

3.3.2 Fisher Z Test

This test is used to check the partial correlation between two variables X and Y by
eliminating the e�ect of set of variables Z = {Z1, Z2, . . . , Zn}. For this test, the null
hypotheses H0 assumes that the partial correlation is equal to zero and the alternative
hypotheses H1 that it is not, i.e. H0 : ρXY = 0, H1 : ρXY 6= 0.

The partial correlation can be found with many di�erent ways. For this thesis, we cal-
culate the covariance matrix Ω. The covariance value for two variables X, Y is computed
as follows:

ωXY =
1

n− 1

n∑
i=1

(xi − x)(yi − y)T

Computing all the two-pair covariance values for all the variables X, Y, and Z the
covariance matrix can be formed.

If we de�ne P = Ω−1, the partial correlation is de�ned as follows

ρXY Z = − pij√
piipjj

The last step is to calculate the Fisher's Z-transform, which it is de�ned as follows:

z(ρXY Z) =
1

2
ln(

1 + ρXY Z
1− ρXY Z

)

The null hypotheses is rejected with signi�cant level α if:√
N − |Z| − 3 ∗ z(ρXY Z) > Φ−1(1− a/2)

where Φ(·) is the cumulative distribution function of a Gaussian distribution with
zero mean and unit standard deviation, and N is the sample size.

3.4 Testing Multiple Hypotheses of Independence

MMPC tests multiple hypotheses in the �rst step where the univariate associations are
computed between the target and each feature in the dataset. The features may be a
few hundreds or thousands. The disadvantage of using a prede�ned threshold is that
it does not take into account the number of features that are tested. So it may be the
case that many features may falsely be selected that follow the null hypothesis. To solve
this problem the Storey's method can be used. This method suggests to use a qvalue
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threshold to measure each feature's signi�cance instead of pvalues. This threshold is a
measure in terms of the false discovery rate (FDR), which is the expected proportion of
false positive �ndings among all the rejected hypotheses.

Consider the case where m features are tested with pvalues P = {p1, p2, ..., pm}.
Storey's method tries to �nd, the number of k rejected hypotheses such that:

k = max{p(i) ∈ P, s.t.p(i) ≤
i

m · π0

A}

where A is a prede�ned threshold and

π0 =
#{pi > λ; i = 1, ...,m}

m(1− λ)

where λ ∈ [0, 1]. The features with pvalue higher than λ are considered to follow the
null hypotheses (distributed uniformly, i.e. U ∈ [0, 1]). So, the quantity π0 measures the
number of features that are distributed uniformly, i.e. follow the null hypotheses.

3.5 Fisher's Combined Probability Test

Using MMPC with Map-Reduce model, the Fisher's combined probability test can be
very useful. This method combines pvalues produced by independent tests in order to
�nd one statistic. This is accomplished with the following formula:

X2
2n = −2

n∑
i=1

ln(pi)

where pi is the pvalue for the ith hypotheses and n is the number of pvalues to be combined.
This method assumes that the pvalues are independent and if all the null hypotheses are
true then the statistic follows the chi-square distribution with degrees of freedom 2n.

As mentioned earlier in the Map-Reduce model the mappers run a task in parallel
and reducers combine the results. So using Fisher's method, the mappers could run any
independent test, compute the pvalues and the reducers would combine the pvalues using
this method to compute the total statistic.

3.6 Related Work on Feature Selection for Big Data

There are few works on feature selection and big data. And there are even fewer works
on feature selection that use the Map-Reduce model.

To begin with, in [31] the author proposes a simple idea for feature selection based on
Map-Reduce. More particularly, he proposes to perform feature selection, using mutual
information, in each sub-dataset and then select the feature that was selected most times.
In case more than one features have been selected the same number of times then the
feature with the highest mutual information is selected. This idea is very simple and
not so robust as it may be that a feature may have a low mutual information in the
sub-datasets but if it was tested in the whole dataset the same feature may have a high
mutual information.
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Another feature selection algorithm for big data can be found in [32]. The authors
propose an algorithm that is able to e�ciently cope with ultrahigh-dimensional datasets
and select a small subset of interesting features from them. Their method can tackle two
challenging tasks: group-based feature selection, and nonlinear feature selection. The
algorithm iteratively activates a group of features, and solves a sequence of multiple
kernel learning subproblems. The main disadvantage is that the number of selected
features is several orders of magnitude lower than the total of features. Moreover, the
algorithm runs on a single machine.

In [33] the authors propose a novel large-scale feature selection algorithm that can read
data in distributed form and perform parallel feature selection in symmetric multipro-
cessing mode via massively parallel processing. The algorithm supports both supervised
and unsupervised feature selection and selects features by evaluating their abilities to
explain data variance. In both cases, to preserve the variance and select features, they
formulate a minimization problem.

In [34] they propose an algorithm which tightens a sparsity constraint by gradually
removing variables based on a criterion and a schedule. They formulate the feature
selection problem as a constrained optimization problem. More particularly, given a loss
function L(β) de�ned on the samples, the problem is the following: β = argmin︸ ︷︷ ︸

|{j:βj 6=0}|≤k

L(β),

where β is the parameter vector, k is the number of relevant features and L(·) the loss
function, which is di�erentiable with respect to β. Their algorithm has two steps. In
the �rst step, the parameters are being updated so as to minimize the loss L(β). In the
second step, the algorithm keeps only the Mε (user de�ned) features with the highest
coe�cient magnitudes |βj|. This algorithm can be used with regression, classi�cation or
ranking problems. The main disadvantage of this method is that it requires to pass the
data multiple times to select one feature.

Another algorithm for online feature selection is SAOLA[35] (Scalable and Accurate
OnLine Approach). This algorithm processes each feature sequentially, that is one di-
mension at a time. Taking one feature Fi at time ti the algorithm tries to maintain the
minimum feature subset that maximizes the predictive performance for classi�cation. So
they formulate the problem as follows: S∗ti = argminS′{|S

′| : S ′ = argmaxζ⊆S∪FiP (C|ζ)},
where S is the feature subset and C is the class feature. A feature Fi is not inserted in the
feature subset if P (C|Fi) = P (C) and if P (C|S∗ti−1

, Fi) = P (C|S∗ti−1
). These equations

show that Fi does not carry additional predictive information to C independently and
given the selected feature set Sti−1

. If the feature Fi is inserted to the set then the S∗ti
needs to be pruned so as to satisfy: S∗ti = argmaxζ⊆StiP (C|ζ). The pruning is performed
by checking all subsets of size less than or equal to a prede�ned number k(1 ≤ k ≤ |S∗ti|).

The �rst feature selection algorithm that used the Map-Reduce framework was intro-
duced by Singh et al [38] and it uses logistic regression to evaluate the features because it
has been shown[40] to be a top performing algorithm in high-dimensional data. Kubica
et al.[36] describes this algorithm along with other two to evaluate new features that are
based on the forward selection wrapper framework. These techniques are: full forward
feature selection[37], single feature optimization[38] and grafting[39]. Due to the fact that
we compare our algorithm with the work of Singh[38] we describe it in more detail in
the following section along with the grafting algorithm which is based on the same idea.
We describe in the next section why the full forward feature selection algorithm is not
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appropriate for real world applications.

3.6.1 Single Feature Optimization

In a full forward feature selection algorithm the features are added sequentially in a set of
selected features. The procedure is the following: evaluate every feature, independently,
using a metric and insert the feature that performs the �best� to the set of selected
features. The evaluation of the feature has the following steps: add the feature to the
feature set, learn a model with the current feature set and evaluate the model on some
metric. When the evaluation is completed and a feature is added to the selected features
set, an iteration is said to be completed. If we assume that we have D features, then on
the dth iteration, D − (d − 1) models are build. It is clear that the complexity of this
algorithm is very high and cannot be used when the number of features is large.

Single Feature Optimization (SFO) algorithm belongs to the forward selection meth-
ods and uses the logistic regression classi�er to select features. This classi�er tries to
model the conditional probability P (Y |X) between the variable Y and X. More for-
mally, given N data points {xi,yi}, 1 ≤ i ≤ N , where xi is the input vector and y the
binary target the model is the following:

log
p(x)

1− p(x)
= β0 + xβ

where p is the predicted probability P (Y = 1) and β are the coe�cients of the model.
Solving with respect to p we get

p = fβ(xi) =
eβxi

1 + eβxi

So, the logistic regression model is de�ned by its coe�cients β. The function f maps
the output to the range [0, 1]. To �nd the coe�cients, the maximum likelihood estimation
can be used. Therefore, maximizing the log-likelihood we get

βlearned = argmax︸ ︷︷ ︸
β

N∑
i=1

(yilnfβ(xi) + (1− yi)ln(1− fβ(xi))

Ideally, SFO would select features by evaluating a fully learned logistic regression
model containing both a candidate feature and the current set of features. However, as
described previously the complexity is high.

In order to speed up the evaluation of the features, the method retains the coe�cients
from the current best model and optimizes only the coe�cients β of the candidate fea-
tures. That is, it does not require to �nd all the coe�cients of the model (for the features
already selected and the candidate features) to evaluate a single feature, but rather it
only �nds the coe�cient for the new candidate feature by keeping the current coe�cients
of the best model �x. To do this, the optimization is limited only to the coe�cient of the
candidate feature. To �nd the coe�cients of the features to be evaluated, the method
maximizes the log-likelihood L of the logistic regression with respect to the candidate
feature:
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argmax︸ ︷︷ ︸
β
′
d

N∑
i=1

(yilnfβ(d)(xi
(d)) + (1− yi)ln(1− fβ(d)(xi

(d))))

Newton's method is used to maximize the log-likelihood. So, the update rule for the
coe�cient β would be:

β
′

d = β
′

d −
∂L

∂β
′
d

∂2L

∂β
′2
d

where:
∂L

∂β
′
d

=
N∑
i=1

xid(yi − fβ(d)(xi
(d)))

∂2L

∂β
′2
d

= −
N∑
i=1

x2
idfβ(d)(xi

(d))(1− fβ(d)(xi
(d)))

After �nding the coe�cient of a feature, the model can be evaluated by measuring
a metric like the AUC or the prediction error. Finally, after �nding the feature that
performs the best, the method learns the full model with the new selected feature.

This method can handle categorical features. To do this, the features need to be
binarized. That is, every value of a categorical feature is represented as binary and takes
value one if the value exists in the instance or zero if it does not. So every value of the
feature would be a new feature. For example, if a feature takes values {a, b} and in an
instance the feature takes the value {a} then this would be presented as two features with
values {1, 0}. For this type of features, SFO algorithm would work independently for each
of the resulting binary feature and then the di�erent coe�cients can be combined.

The method can also handle multiple class prediction problems. The authors propose
to create a separate training dataset for each classi�cation label and run feature evaluation
for each of these datasets. Then at prediction time each model can be queried and the
class label with the highest predicted value is chosen.

Parallel Single Feature Optimization

The authors parallelized the algorithm using the Map-Reduce model. Their algorithm
consists of three steps:

1. Map phase: In this phase the algorithm iterates over the training records and
computes the predicted probability of the current model. Then, outputs for each
candidate feature (x

′
i) an intermediate dataset that contains the predicted proba-

bility, the true outcome and the vector of the feature. Algorithm 3 shows the map
phase.

2. Reduce phase: This phase takes as input the output of the map phase and com-
putes the coe�cient βd for each feature using the Newton's method. Algorithm 4
shows the reduce phase.

3. Post-Processing: In case of categorical features, sum the coe�cients that belong
to the same feature.
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Algorithm 3 Map Phase[36]

1: for each {xi, yi,x
′

i} in {X,y} do
2: pi = f(xi,β)
3: for each x

′

id ∈ x
′

i : do
4: Output (xid

′
, yi, pi)

Algorithm 4 Reduce Phase[36]

1: β‘
d = 0

2: Until convergence of β‘
d:

3: ∂L

∂β
′
d

= ∂2L

∂β
′2
d

4: for each (xi, yi, pi) ∈ Td do
5: ai = log( pi

1−pi )

6: p
′
i = eαi+β

′
d

1+e
αi+β

′
d

7: ∂L

∂β
′
d

= ∂L

∂β
′
d

+ (yi − p
′
i)x
′

id

8: ∂2L

∂β
′2
d

= ∂2L

∂β
′2
d

− p′i(1− p
′
i)x
′2
id

9: β
′

d = β
′

d − ∂L

∂β
′
d

/ ∂
2L

∂β
′2
d

To sum up, this algorithm performs single feature optimization using the logistic
regression formula and �nds the coe�cients and the log-likelihood of the model for each
feature. Then, the feature that is selected is the feature with the maximum log-likelihood.
Finally, it runs the logistic regression model with all the features that have been selected
so far in order to �nd the coe�cients of the full model. This step requires multiple passes
of the data.

3.6.2 Grafting

This algorithm also uses the logistic regression and adds to the set of features, the feature
with the largest magnitude gradient. The interpretation for this is that the new feature
that is added to the feature set would help the model the most. Like SFO, grafting uses
the coe�cients of the current model in order to �nd the next feature to select. When a
feature is selected the model is fully relearned.

The gradient is computed independently for each feature and it can be computed as
follows:

| ∂L
∂β
′
d

| = |
∑
i

x‘
id(yi − pi)|

So the feature that is added to the feature set is the one with the largest gradient.
That is,

argmax︸ ︷︷ ︸
β
′
d

| ∂L
∂β
′
d

|
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Parallel Grafting

The authors propose a three step algorithm:

1. Map phase: For each training record and for each new feature, compute the
gradient of the model. Algorithm 5 shows the map phase.

Algorithm 5 Map Phase[36]

1: for each record {xi, yi,x
′

i} in the data{X,y} do
2: Compute the gradient for that record: gi = yi − fβ(xi)

3: for each active candidate feature x
′

id ∈ x
′
i do

4: Output gi : Td ∪ {gi}

2. Reduce phase: Compute the sum of the gradients for each feature. Algorithm 6
shows the reduce phase.

Algorithm 6 Reduce Phase[36]
1: Gd = 0
2: for each record record gi ∈ Td do
3: Gd = Gd + gi

3. Post-Processing: In case of categorical features, sum the gradients that belong
to the same feature.

To sum up, this algorithm �nds the gradients for each feature using the logistic re-
gression formula . Then, the feature that is selected is the feature with the maximum
gradient. Finally, it runs the logistic regression model with all the features that have
been selected so far in order to �nd the coe�cients of the full model. This step requires
multiple passes of the data.
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Chapter 4

MMPC for Big Data

In this chapter, we describe how MMPC algorithm (described in section 3.2) can be
altered to handle big data with the Map-Reduce model. First, we describe the Map-
Reduce jobs that are needed for this task and �nally we describe how the G2, the Fisher
Z tests and the Fisher's method can be used with MMPC for big data.

4.1 Using Map-Reduce Model

MMPC is consisting of two phases, where each one is comprised of multiple for loops.
So, it is important to have the minimum number of Map-Reduce jobs that is required in
order to have accurate results.

The algorithm iteratively computes multivariate (or univariate) associations between
a target T , the remaining features R given a subset of the selected features CPC of length
maxk. First, for every variable and for every di�erent conditioning subset a Map-Reduce
can be performed to compute the appropriate association. However, this is ine�cient
as several Map-Reduce jobs would be required. So, time will be lost for initializing and
completing the job, and for the group-by operation within the job. A more e�cient way,
is to perform a Map-Reduce jobs to compute all the associations for one feature and for
all di�erent conditioning subsets. This will result in more computational intensive Map-
Reduce jobs as more associations are needed to be computed. Although this approach is
better than the previous, it is not the optimal. The best way in order to exploit fully the
Map-Reduce model is to compute all the necessary associations that are needed to �nd
the next variable to be inserted in the set of selected features. That is, the information
needed for one iteration of the algorithm.

The information to be extracted from Map-Reduce jobs is dependent on the indepen-
dence test and so di�erent tests will require di�erent de�nition of the mapper and the
reducer. Moreover, the information to be extracted to compute the associations, needs to
have the last selected variable of the algorithm in the conditioning set. This is because in
every iteration of the algorithm the tests needed to be performed require the target and
each remaining variable given the di�erent sets of the selected variables that contain the
last selected variable. All other associations have been computed in previous iterations.

Finally, because of the fact that we are dealing with big data which may have millions
of features or instances, small associations in features may be detected and the features
will be inserted in the set of selected features. So, it is important to have a numberMSF
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(user de�ned) of maximum selected features so that the algorithm will stop when this
number is reached. This number bounds the CPC set to have at mostMSF features and
it is input to the forward phase only. After this phase, the algorithm have selected CPC
features and also there are some features that have not yet been �ltered out R(remaining
features), which would also be in the output of the algorithm because we are concerned
with the prediction accuracy of a classi�er. Finally, in the CPC set the backward phase
would run and output the �nal set. MMPC pseudocode is shown algorithm 7.

Algorithm 7 MMPC Algorithm
Input: target T , dataset D,maxk,MSF
Output: selected variables CPC, remaining variables R

1: [CPC,R] = ForwardPhase(T ,D,maxk,MSF )
2: [CPC] = BackwardPhase(T ,D,maxk,CPC)

The forward phase of the algorithm with the use of Map-Reduce model is shown in
algorithm 8. Map reduce jobs run in line 5. The computeAssoc function extracts the
necessary information needed for one iteration of the algorithm. This function input is
the dataset (D), the target variable (T ), the remaining variables (R) to be tested by the
algorithm and the last selected feature F . In this thesis, we use the G2 and Fisher Z test
and so this function can be de�ned as in algorithm 9. If the data are continuous then
the Fisher Z test is used and if the data are discrete G2 is used. In the �rst iteration
of the algorithm this function will compute the univariate association between T and
all variables in D, F is not needed that is why it is initialized to zero. Finally, the
conditionally dependence between two variables T and X given a set of variables Z is
denoted by Dep(X;T |Z).

Besides using the Map-Reduce model, parallelization can be performed with the use
of multiple CPUs. More particularly, we can �nd the next selected variable to enter the
CPC set in parallel (line 6). This parallelization can be performed in the master node.

Finally, for the backward phase one Map-Reduce is needed in every iteration. This is
because in every iteration the CPC set may change. Algorithm 10 shows the pseudocode
with the Map-Reduce job that is needed (line 2). Now, the remaining variables that is
input to the function computeAssoc is just the variable that is tested in every iteration.
The conditionally independence between two variables T and X given a set of variables
Z is denoted by Ind(X;T |Z)

The rest of the chapter describes the parallelization of the G2 and Fisher Z tests.
We describe how to extract the necessary information for one iteration of the MMPC
algorithm i.e. for the last selected variable and the remaining ones. However, this can
be easily expanded to extract the necessary information for not just one iteration. Al-
though, it is not possible to know which variable will be selected in later iterations by the
algorithm, the Map-Reduce model can be used to extract information for the top k (user
de�ned) variables. To rank the variables the statistic can be used. So if one of them is
to be selected we would not have to perform another Map-Reduce job. The downside of
this approach is that it would take more time for the job to �nish and also more memory
requirements would be needed.
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Algorithm 8 Forward Phase[43]
Input: target T , dataset D,maxk, maximum selected features MSF
Output: selected features CPC, remaining features R

1: CPC = ∅
2: F = 0
3: R = all variables in D
4: do

5: info = computeAssoc(D,T,R, F )
6: parfor ∀ X ∈ R do

7: minassocset(X) = subset s of CPC that minimizes assoc(X;T |s)
8:

9: F = variable Φ\({T ∪ CPC}) that maximizes assoc(F ;T |minassocset(F ))
10: if Dep(X;T |minassocset(F )) then
11: CPC = CPC ∪ F
12: R = R\F
13: if |CPC| = MSF then

14: return CPC,R
15: while CPC has not changed

Algorithm 9 computeAssoc Function
Input: dataset D, target T , features R, last selected feature F
Output: information needed info

1: if data continuous then
2: info = Fisher Z Function
3: else

4: info = G2 Function

Algorithm 10 Backward Phase[43]
Input: target T , dataset D, last selected variable F , maxk, CPC
Output: selected Variables CPC

1: for ∀X ∈ CPC do

2: info = computeAssoc(D,T,X, F )
3: if ∃s ⊆ CPC, s.t.Ind(X;T |s) then

4: CPC = CPC\{X}
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4.2 Parallel G2 Test

The general parallelization algorithm for the G2 (described in section 3.3.1)f test is shown
in algorithm 11. In order to compute the statistic, we �rst need to compute the appro-
priate contingency tables. This is performed in the MR_Job (line 1). After computing
the tables we need to �nd the statistics and the pvalues which is performed in lines 2-
4. We preferred to compute these values after the Map-Reduce job because that way
the reduce function becomes associative and commutative. This means, as described in
2.3.3, that we can use combiners for the job so as to increase performance and reduce the
communication cost.

Algorithm 11 G2 Function
Input: dataset D, remainingVars R, selectedVar s, maxk
Output: pvalues,statistics,tables

1: contingencyTables = MR_Job
2: for ∀cvar ∈ R do

3: statistics[cvar] = compute statistic from contingency tables
4: pvalues[cvar] = �nd pvalue from statistic[cvar]

5: return pvalues, statistics

The G2 test for the MMPC algorithm can be used to �nd either univariate or multi-
variate association. To �nd the univariate association between the target and the other
variables the Map-Reduce pseudocode is shown in algorithm 12. The map phase com-
putes all the required contingency tables. That is, between the target and each feature
in the dataset. The input to the function is a subset of dataset D, the index of the
target feature in the dataset, the number of distinct values each feature takes(stated as
vals) and the features in the dataset. Line 3 initializes a set tables that contain all the
contingency tables which are initialized to zero values. For example, tables{1} indicates
the contingency table for the �rst feature. It is also worth mentioning that the tables in
the set may be of di�erent dimensions as this depends on the di�erent values the feature
takes. In addition, from lines 4 - 8 the algorithm passes the data and "�lls" the tables.
Finally, it outputs for every feature the contingency table for that feature, i.e. the key-
value pair (feature, contingencyTable). For instance, a key-value pair is (1, tables{1}),
where the key is equal to one and the value is equal to the contingency table for the �rst
feature. Finally, the reduce function takes a list of all the contingency tables associated
with a speci�c feature and just sums the contingency tables (line 5) for the feature and
outputs the complete contingency table for each feature.

In case we need to compute a multivariate association, algorithm 13 is used. For this
case the information that is needed to be extracted from the data are the contingency
tables between the remaining variables and the target given the set of selected variable
of length k that contain the last selected variable. The input to the function is a subset
of the dataset(D), the last selected variable (s), the remaining variables (R), the already
selected variables (CPC), the maxk, the number of distinct variables each feature takes
(V ), and the index of the target in the dataset (T ). Same notations for the contingency
tables have been used as in the univariate association. The only di�erence is that tables
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Algorithm 12 Univariate association for G2 test
Input: dataset D, vals V , target T , features R
Output: contingency tables contTables

1: Map Phase (key = 1, value = D)
2:

3: tables{Y |Y ∈ R} = 0V [T ]×V [Y ]

4: for ∀ instance I ∈ D do

5: t = value of target
6: for ∀ features j ∈ I do
7: m = value of variable j
8: tables{j}[t,m] = tables{j}[t,m] + 1

9: keyV al = {< K, V > |K ∈ R, V = tables{K}}
10: Output keyV al
11:

1: Reduce Phase (key = feature, value = contTables)
2:

3: contTable = value{1}
4: for ∀ table tab ∈ value do
5: contTable = contTable+ tab

6: Output (feature, contTable)

contains besides the feature, also the subset in which the contingency table belongs to. For
example, tables{1, {2}} indicates the contingency table between T , feature 1 conditioned
on feature 2. In algorithm 13, initialization of the 3d contingency tables with zeros is
performed (line 4). The 3rd dimension of the tables is the multiplication of the distinct
values of the variables that are in the conditioning set, which varies from 1 tomaxk. From
lines 5-12 the algorithm passes the data and "�lls" the tables. Finally, it outputs key-value
pairs with key a vector that contain the feature and the subset of the conditioning set
and values the contingency table associated with that key (line 13). The reduce function
just sums all the contingency tables that are associated with the key.

4.2.1 Time Complexity and Communication Cost

Ideally, parallelizing the computation over K machines reduces the runtime by a factor of
K. For the computation of the univariate association, the running time of the mapping
phase is approximately O(N ·F

K
), where N is the number of records and F is the number

of features in the dataset. Finally, the running time of the reduce phase is approximately
O(V ·F ·L

K
), where L is the number of elements in the largest table among all tables and V

the number of tables in the list of values.
The time complexity is di�erent when computing the multivariate association. For

the mapping phase the algorithm calculates for all the remaining variables R and for all
the di�erent combinations of the selected variables from k = 1 . . .maxk a contingency
table. The di�erent combinations of the selected variables are

∑maxk
k=1

n!
k!((n−k)!

= nmaxk ,
where n is the number of selected variables minus one, i.e. n = |CPC| − 1. So the
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Algorithm 13 Multivariate Association for G2 Test
Input: dataset D, selectedVar s, remainingVars R, selectedVars CPC, maxk, vals V ,
target T
Output: contingency tables contTables

1: Map Phase (key = 1, value = D)
2:

3: subsets = {subs|subs ⊆ S ∧ 1 ≤ |subs| ≤ maxk ∧ s ∈ S}
4: tables{< Y, subs > |Y ∈ R, subs ∈ subsets} = 0V [T ]×V [Y ]×Πki=1V [subsi]

5: for ∀ instance I ∈ D do

6: t = value of target
7: for ∀j ∈ I ∩R do

8: h = value of feature j
9: for k = 1 · · ·maxk do
10: for ∀sub ∈ subsets & |sub| = k do
11: o = index of the product of values of sub
12: tables{j, sub}[t, h, o] = tables{j, sub}[t, h, o] + 1.

13: keyV al = {< K, V > |K ∈< R, subsets >, V = tables{K}}
14: Output keyV al
15:

1: Reduce Phase (key =< feature, subset >, value = contTables)
2:

3: contTable = value{1}
4: for ∀ table tab ∈ value do
5: contTable = contTable+ tab

6: Output (key, contTable)

complexity would be O(n
maxk ·N ·|R|

K
). The time complexity for the reduce phase di�ers.

The worst case is the summation of the largest table, which depends on the maxk value.
The larger the maxk the larger the table. Moreover, the larger the maxk the more tables
are created for every remaining feature. So the time complexity is O(V ·L·|R|·n

maxk

K
), where

L is the number of elements in the largest table (this depends on the value of k) and V
the number of tables in the list of values.

As mentioned above, for the map phase the algorithm calculates for all the remaining
variables R and for all the di�erent combinations of the selected variables from k =
1 . . .maxk a contingency table. The di�erent combinations of the selected variables are
as previously

∑maxk
k=1

n!
k!((n−k)!

= nmaxk . Lastly, the contingency table is a 3d table with
size L = |W | ∗ |T | ∗ |Z|, where |W | and |T | is number of values the features take and
|Z| = |Z1| ∗ |Z2| ∗ · · · ∗ |Zk| is the multiplication of the number of values each feature in
set Z takes. In our case |W | is a variable from the remaining set, |T | is target variable
and |Z| is the conditioning set, which depends on the number k. Taking all these into
account, the communication cost is O(|R| · L · nmaxk).

45



4.2.2 Example

To make the process of calculating the contingency tables clear we describe a simple
example. Consider the following data matrix:

Id T F1 F2

1 0 1 0
2 0 1 0
3 1 0 1
4 0 1 1
5 1 1 0
6 1 0 1
7 1 0 1
8 1 1 0
9 0 0 0
10 0 1 0
11 1 1 1
12 0 1 1
13 0 1 1
14 0 0 0
15 0 0 1

The target variable is T and the features of the data are the F1 and F2. Using the
G2 function we want to calculate the contingency tables. This process is shown in �gure
4.1.
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To begin with, the data are split in two blocks and each block is processed by a map
task. The map phase computes the contingency tables between the target and each of
the two features for each block. Then, the group-by operation takes place and for each
feature the contingency tables are grouped and input to the reducers. In the reduce phase
the tables are summed and output to get the �nal outcome.

4.3 Parallel Fisher Z Test

In this section, we describe how we parallelized the Fisher Z test (described in section
3.3.2). For the Fisher Z test we only need to �nd the covariance matrix. For that
reason we only need the covariance values between two-pair variables. Because we are
programming in R it is vital to vectorize the computations so as to reduce time. The
covariance between two features can be written with the following form:

ωXY =
1

n− 1

n∑
i=1

(xi − x)(yi − y)T =
1

n− 1
(
n∑
i=1

(xiyi)− n(xy))

So in order to �nd the covariances only the product (xiyi) is required. However,
before computing the covariances, we need to know the mean for every variable, in case
the data are not centered. The mean values of the features can be found before running
MMPC, so as to compute them only once and not in every iteration of the algorithm. So
the mean values would be input when computing those values. Algorithm 14 shows the
pseudocode for computing the covariance values. In this algorithm, the �rst step is to
compute the products between the selected variable and the remaining variables. This is
performed in line 1 with the use of Map-Reduce. The next step is to subtract from the
products the product of the number of instances and the mean values of the selected and
the remaining variables (lines 4 - 5).

Algorithm 14 Fisher Z Function
Input: dataset D, #instances N , selectedVar s, remainingVars R, meanValues M
Output: covariances

1: products = findProducts(D, s,R)
2:

3: covV alues = 01×R

4: for ∀var ∈ R do

5: covV alues[var] = products[s] · products[var]−N(M [s] ·M [var])

6: return covV alues

The pseudocode for computing the mean values of the features is shown in algorithm
15. The map function sums all the rows of the dataset (lines 4 - 6) and the reduce function
sums all the vectors the map phase outputs. Finally, the total summation of the variables
is divided by the number of instances in the dataset. For this job we used combiners.

After computing the mean values we need to compute the products between the
target and the required features. We can �nd these values with 1 Map-Reduce job which
is independent of the association (univariate or multivariate). Algorithm 16 shows the
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Algorithm 15 Computing Mean values
Input: dataset D, #instances N
Output: meanValues

1: Map Phase (key = 1, value = D)
2:

3: sumV alues = 01×features

4: for ∀ instances I ∈ D do

5: for ∀ feature c ∈ I do
6: sumV alues[c] = sumV alues[c] + I[c]

7: Output (1, sumV alues)
8:

1: Reduce Phase (key = 1, value = vector of sums)
2:

3: totalSum = 01×features

4: for ∀ vector vec ∈ value do
5: totalSum = totalSum+ vec

6: Output (1, totalSum)
7:

1: After MR job

2:

3: meanV alues = totalSum/N
4: return meanV alues
5:
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map and reduce functions. The map function calculates the products for the target and
the remaining variables (lines 4 - 6) and outputs a vector with all these values. The
reduce function just sums all the vectors. For this Map-Reduce job we used combiners.
Moreover, due to the fact that we only need to calculate a vector we set the output key
of the map function equal to one.

It is important to mention here that after the algorithm selected the next feature,
the covariances related to this feature are stored in memory in order to be used in next
iterations and also in the backward phase. This is very important not so much for the
forward phase but for the backward phase as it will not be needed to pass the data again.

Algorithm 16 Function �ndProducts
Input: dataset D, remainingVars R, selectedVar s
Output: covariances

1: Map Phase (key = 1, value = D)
2:

3: sums = 01×R

4: for ∀ instances I ∈ D do

5: for ∀ features c ∈ I ∩R do

6: sums[c] = sums[c] + I[s] · I[c]

7: Output (1, sums)
8:

1: Reduce Phase (key = 1, value = sum of products)
2:

3: products = 01×|R|

4: for ∀ vector vec ∈ value do
5: products = products+ vec

6: Output (1, products)
7:

4.3.1 Time Complexity and Communication Cost

Like in G2, parallelizing this computation over K machines reduces the runtime by a
factor of K. The time complexity of the map phase for computing the mean values is
O(N ·F

K
), where N is the number of instances and F is the number of features in the

dataset. The time complexity for the reduce phase is O(F · V ), where V is the number
of vectors in the list of values.

As mentioned earlier the mean values will need to be calculated only once. The
product of the target and the remaining features, however, is needed to be computed
in every iteration. For this computation, the running time of the mapping phase is
approximately O(N ·|R|

K
), where N is the number of records and |R| is the number of

remaining features to test. Similarly, the running time of the reduce phase is O(|R| · V ),
where V is the number of vectors in the list of values. When computing the univariate
association the remaining variables are considered all the features in the dataset.
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Finally, the communication cost is O(|R|), due to the fact that only a vector of length
equal to the number of the remaining features is input in the reduce task.

4.3.2 Example

To make the process of calculating the covariances clear we describe a simple example.
Consider the following data matrix:

Id T F1 F2

1 0 0.28 0.81
2 0 0.3 0.9
3 1 0.13 0.13
4 0 0.22 0.43
5 1 0.02 0.32
6 1 0.52 0.19
7 1 0.2 0.32
8 1 0.12 0.63
9 0 0.17 0.58
10 0 0.32 0.2
11 1 0.41 0.9
12 0 0.48 0.12
13 0 0.21 0.8
14 0 0.32 0.26
15 0 0.18 0.73

Figure 4.2 shows how the product between the target and each feature is computed.
To begin with, the data are split in two blocks and each mapper is processing them in
parallel. Then each mapper computes the inner product between the target and each
feature and the results are stored in a vector. Then, the vector for each map task is
grouped by and processed by one reducer. The reducer just sums the two vectors and
outputs the �nal result. Finally, the result is subtracted by the product of the means of
the target and each feature in order to compute the covariances. This last step is not
shown in the �gure.
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4.4 Using Fisher's Combined Probability Test

In the previous two sections, we described how the Fisher Z and G2 test can be integrated
with MMPC algorithm using the Map-Reduce model. In this section, we use the Fisher's
combined test with MMPC. This method combines pvalues that were produced with the
same independence test in order to �nd the total statistic. This method can be very
useful for with MMPC because the user can use any test of interest without worrying
how to use Map-Reduce model. As a result, MMPC can run with any type of data if the
appropriate test is used.

In order to use this method, the map function needs to �nd the pvalues required using
a particular test and the reduce function will then sum the logarithm of the pvalues.
Finally, the statistic can be found after the Map-Reduce process by multiplying with −2.
The procedure is shown in algorithm 17. Line 1 computes all the necessary logarithmic
sums and in lines 3 and 4 the statistic and the pvalue for a particular feature are found.

Algorithm 17 Combining p-values
Input: dataset D, remainingVars R, selectedVar s
Output: pvalues, statistics

1: vals = MR_Job
2: for ∀ values i ∈ vals do
3: statistics[i] = −2 ∗ vals[i]
4: pvalues[i] = compute pvalue from statistic

5: return pvalues, statistics

For the univariate association the remaining variables are all the features in the
dataset. In order to �nd univariate association, the Map-Reduce job is shown in al-
gorithm 18. In this algorithm, all the pvalues between the target feature and all the
features in the dataset are computed (lines 4 - 5). These values are stored in a vector
which is the output of the map function (line 6). The reduce function takes the vectors of
pvalues and computes the product between the vectors element wise (lines 3 - 6). Finally,
it outputs the product vector (line 7). The key is set to one because the output is just
one vector.

When the multivariate association needs to be computed, algorithm 19 is used. First,
an initialization of the vector that will store the pvalues, is performed (line 4). Then, the
algorithm computes all the pvalues between the target T and every feature in remaining
variables given all the possible subsets (of length 1 to maxk) of the selected variables that
contain the last selected variable (lines 5 - 10). Again, in this case the key is set to one
for the same reason as previously.

4.4.1 Time Complexity and Communication Cost

Like in the previous tests, parallelizing this computation over K machines reduces the
runtime by a factor of K. For the univariate association, the time complexity is O(P ·|R|

K
),

where P is the additional time complexity of the test used and |R| the number of remaining
features. If the G2 is used for example the time complexity would be O(N ·|R|

K
), where N is
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Algorithm 18 MR for Univariate Association
Input: dataset D, remainingVars R, target T
Output: statistics stats

1: Map Phase

2:

3: pvalues = 01×|R|

4: for ∀ features X ∈ R do

5: pvalues[X] = pvalue(X;T )

6: Output (1, pvalues)
7:

1: Reduce Phase (key = 1, value = pvalues)
2:

3: pvalues = 01×|R|

4: for ∀ vectors v ∈ value do
5: for ∀ pvalues p ∈ v do
6: i = index p in v
7: pvalues[i] = pvalues[i] + ln(p)

8: keyval(1, pvalues)

Algorithm 19 MR for Multivariate Association
Input: dataset D, remainingVars R, target T , selectedVar s, selectedVars CPC, maxk
Output: statistics stats

1: Map Phase

2:

3: subsets = {subs|subs ⊆ S ∧ 1 ≤ |subs| ≤ maxk ∧ s ∈ sub}
4: pvalues = 01×|subsets|

5: for ∀ features X ∈ R do

6: for ck = 1 · · ·maxk do
7: condSet = {sub|sub ⊆ S ∧ |sub| = ck ∧ s ∈ S}
8: for ∀ conditioning set sub ∈ condSet do
9: i = index of X given sub
10: pvalues[i] = pvalue(X;T |sub)
11: Output (1, pvalues)
12:

1: Reduce Phase (key = 1, value = pvalues)
2:

3: for ∀ vectors v ∈ value do
4: for ∀ pvalues p ∈ v do
5: i = index p in v
6: stats[i] = stats[i] + ln(p)

7: Output (1, stats)
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the number of records. For the multivariate association the di�erent combinations of the
selected variables are as mentioned also in subsection 4.2.1

∑maxk
k=1

n!
k!((n−k)!

. So the time

complexity will be O(
∑maxk

k=1
n!

k!((n−k)!
R·P
K

), where again P is the additional time complexity

of the test used. In case G2 is used the time complexity would be O(
∑maxk

k=1
n!

k!((n−k)!
·N ·|R|

K
),

where N is the number of records in the dataset. The time complexity of the reduce
function for both univariate and multivariate association is O(|R| · |V |), where |V | is the
number of vectors in the list of values.

The communication cost for the univariate association is O(|R|), due to the fact that
only a vector of length equal to the number of features is input in the reduce task.
Moreover, for the multivariate association the communication cost is O(|R| · |subsets|),
where |subsets| is the number of di�erent conditioning subsets.

4.4.2 Example

To make the process of calculating the statistic clear we describe a simple example.
Consider the following data matrix:

Id T F1 F2

1 0 0.28 0.81
2 0 0.3 0.9
3 1 0.13 0.13
4 0 0.22 0.43
5 1 0.02 0.32
6 1 0.52 0.19
7 1 0.2 0.32
8 1 0.12 0.63
9 0 0.17 0.58
10 0 0.32 0.2
11 1 0.41 0.9
12 0 0.48 0.12
13 0 0.21 0.8
14 0 0.32 0.26
15 0 0.18 0.73

Figure 4.3 shows how to compute the sum of the logarithms of the association between
the target and each feature. To begin with, the data are split in two blocks and each map
task is processing them in parallel and computes the association between the target and
each feature. Then the results are stored in a vector. The association is de�ned by the
user. In this case, we used the logistic regression. Then, the vector for each map task is
grouped by and processed by one reducer. The reducer just logarithm the values in the
vectors and then sums the two vectors and outputs the �nal result. Finally, the result is
multiplied by −2 to get the statistic for each association. This last step is not shown in
the �gure.
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Chapter 5

Experiments

In this chapter, we present the experimental evaluation of our feature selection algorithm.
First, we describe the datasets we used and the architecture of the cluster. Then, we show
the results for three kind of experiments: changing the number of nodes, the number of
instances and using a classi�er to evaluate the feature selection. Finally, we present
experiments using the Fisher's method.

5.1 Datasets

The datasets that were used for the thesis are shown in table 5.1. We tried to evaluate
our algorithm with datasets of di�erent number of features and size.

Dataset #Instances #Features #Classes Type Size(Gb)
HIGGS 11,000,0000 28 2 Real 8
SUSY 5,000,0000 18 2 Real 2.4
RCV1 534,135 47,236 2 Real 0.8
Epsilon 500,000 2,000 2 Real 9
Zeta 500,000 2,000 2 Real 7.6
Mnist8 8,100,000 784 10 Real 19
URL 2,396,130 3,231,961 2 Real/Binary 2.1

Table 5.1: Datasets used for experimentation with information about the number of
instances/features/classes,type and the size of each one.

The HIGGS[47] and SUSY[48] datasets are related to Physics & Astronomy and have
been built from o�cial ATLAS full detector simulation. They contain features that are
kinematic properties measured by the particle detectors in the accelerator and high-level
features derived by physicists. The labels indicate if the instance is signal or background.
The RCV1[49] dataset is a text dataset and each instance is a document. The features are
the within document weights, assigned to each term in the document. The Epsilon[49]
and Zeta[50] datasets are arti�cial datasets that were created for the Pascal large scale
learning challenge in 2008. The features of these datasets are scaled to N(0,1) and each
instance is normalized to a unit vector. Furthermore, Mnist8[49] consists of images of size
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28x28 scaled to [0, 1], where each pixel is a feature. The labels indicate a number from 0
to 9. Finally, the URL[49] dataset consists of approximately 2 millions URLs (instances).
The label of the dataset is whether the url is malicious(phishing, spam etc) or not. The
features contain di�erent kind of information like DNS, and geographic information.

Due to the fact that all datasets contain real values and the G2 test is used with
discrete features, we discretized the datasets. That is, we convert the real values to
discrete values and in our case to four values. This was accomplished with equal bins
method. This method takes a vector that contains real values and �rst �nds the minimum
and maximum values of the vector. Then, it divides it to k equal width intervals, and
in our case to three. The values that are in the �rst interval take value zero, those in
the next interval take value one and so forth. We did not run the G2 test for the URL
dataset, because G2 test cannot handle millions of features, at the time. By discretizing
the datasets their size is decreased. Table 5.2 shows their size after discritization.

Dataset Size(Mb)
HIGGS 608
SUSY 185
RCV1 140
Epsilon 1,860
Zeta 1,950
Mnist8 5,680

Table 5.2: Size of datasets after discretization.

5.2 Cluster Architecture

Our cluster contains 7 nodes and on each node a virtual machine(VM) runs. The char-
acteristics of the VMs are the following: 6 cores, 6 Gb RAM, and 100 Gb of disk space.
Each VM runs Ubuntu server 12.04 and the nodes were connected with 1Gbps Ethernet.
Finally, the Hadoop 1.2.1 version was used. The con�gurations we used for Hadoop are
described in Appendix A.3.

5.3 Evaluation

The experiments we performed to evaluate our algorithm were the following:

• Instances vs Time: Using the whole cluster (i.e. 7 nodes), we varied the percentage
of instances used for each dataset to take the following values: 25%, 50%, 75% and
100%. For these experiments it is important to notice that for di�erent percentages
of the datasets di�erent features may be selected. This is because the features to be
selected are dependent on their distribution in the dataset. In addition, for these
experiments it is important to take into account the number of map tasks that are
initialized for each of the percentages of the datasets because this directly a�ects
the time. Tables 5.3 and 5.4 shows the map tasks that are initialized for both the
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Fisher Z test and the G2 test, respectively. From table 5.4 we can see that the
SUSY and RCV1 datasets are very small, and so there is no point of running this
experiment. Moreover, from table 5.3 the dataset RCV1 is also small and so also
for this dataset we did not run this kind of experiment.

Dataset 25% 50% 75% 100%
HIGGS 30 60 90 120
SUSY 9 18 27 36
RCV1 3 7 10 13
Epsilon 37 73 102 146
Zeta 30 59 88 117
Mnist8 73 145 218 291

Table 5.3: Number of map tasks need to be initialized for the di�erent percentages of the
datasets when using the Fisher Z test.

Dataset 25% 50% 75% 100%
HIGGS 3 5 8 10
SUSY 2 2 3 3
RCV1 2 2 2 3
Epsilon 8 16 24 30
Zeta 8 15 23 30
Mnist8 23 46 69 91

Table 5.4: Number of map tasks need to be initialized for the di�erent percentages of the
datasets when using the G2 test.

• Nodes vs Time: For these experiments we varied the number of nodes in the cluster
and we use all the instances for each dataset. The nodes we used were 1,3,5 and
7. As noted earlier, on each node 6 mappers could run in parallel. Table 5.5 shows
the number of map tasks that could run in parallel when changing the number of
nodes.

Nodes #Maps
1 6
3 18
5 30
7 42

Table 5.5: Map tasks that can run in parallel when changing the number of nodes in the
cluster

• Classi�cation Accuracy: For these tests we split the datasets to two sets: 75%
training and 25% test. We run the logistic regression classi�er and measured its
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accuracy before and after the feature selection using MMPC and SFO. For both
algorithms we had an upper limit of 100 features to select so as for the algorithms to
�nish in 4 days period. This was the case for the RCV1, Mnist8 and Zeta datasets.
For these datasets and for the MMPC algorithm we found the classi�cation accu-
racy by performing two tests. For the �rst test we used only the 100 features the
algorithm selects and for the second we used these 100 features and the remaining
features, i.e. the ones not �ltered out by MMPC when stopped at 100th iteration.
The classi�er could not run on the URL dataset for the millions of features and we
do not present any results. Finally, for the Mnist8 dataset we run the algorithm
with the G2 test because it has multiple classes and Fisher Z test can run only with
binary class. For the other datasets the Fisher Z test was used.

• Using Fisher's Combined Probability Test: For this test we run the G2 test and
compare it with the Fisher's combined probability method. We did three compar-
isons. First, we show the number of features that are selected by both methods
and the number of those that are same between them. Moreover, we show the
classi�cation accuracy using the logistic regression classi�er, in order to evaluate
the method. Finally, we present the time taken for both methods to �nish.

Finally, MMPC runs with the following settings: for the Fisher Z test maxk = 2,
threshold = 0.01 and for the G2 test maxk = 1, threshold = 0.01. We chose to change
the value of maxk for the G2 test because it requires substantial amount of memory that
is not available when one reduce task is available. Moreover, we also run MMPC with
the threshold that was set with the use of Storey's method (described in Chapter 3). We
present the results in the appendix. For this experiment, we set fdr = 0.05 and λ = 0.05.
The results using the Storey's method are shows in appendix B.

It is important to notice that the parameters we use with MMPC a�ects the number
of features that are to be selected. The fewer the threshold the less features are to be
selected and also the lower the maxk the higher the number of selected features. This is
an important factor for MMPC because the user can control the number of features he
or she wants to select.

5.3.1 Instances vs Time

For these experiments, the time that the algorithm takes to �nish, for di�erent datasets,
varies signi�cantly. Because of this for each dataset we divided the time of each experi-
ment with the time taken with 25% of the instances for each dataset. That is,

relative running time =
time with X% instances
time with 25% instances

where X = 25%, 50%, 75%, 100%. Figures 5.1 and 5.2 shows the results for the Fisher Z
test and the G2, respectively.

From �gure 5.1 we can see that the fewer instances a dataset has, the less time takes for
the algorithm to �nish. This is due to the decrease of the size of the datasets. Moreover,
the relative time increases when the percentage of datasets is also increased. In addition,
the larger the size of the dataset the higher the increase of the relative time. For example,
for the Mnist8, Epsilon and Zeta datasets the increase is higher than the other 2 datasets.
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Figure 5.1: Relative running time using Fisher Z test

These were expected as the larger the dataset the more mappers are initialized for the
job. Furthermore, for the HIGGS dataset we can see that when 100% of the instances
are used the increase is not as high as when going from 50% to 75%. This is because
fewer features are selected and so fewer iterations are performed. Finally, for the SUSY
dataset the relative time increases when 75% of the dataset is used. This is because of
the small size of the dataset.

From �gure 5.2 the same conclusions as in Fisher Z Test can extracted. That is,
the less the instances of the datasets the smaller their size and less time takes for the
algorithm to �nish. This is the case for the Mnist8 and Epsilon datasets. Because of the
fact that Mnist8 has larger size than the Epsilon dataset the increase in time is higher
when more instances are used. For the HIGGS dataset we see something peculiar. When
50% of the instances are used the less time it takes for the algorithm to �nish. This
happens because of two factors. First, the algorithm for this percentage of instances
needs one iteration less than when 25% of the instances are used. Second, because the
size of the dataset is small, the di�erence of map tasks initialized between 25% and 50%
is also small and one iteration less a�ects the graph. Finally, in contrast to the results in
Fisher Z test, the increase in relative time does not approach the optimal case. This is
because the size of the datasets is much smaller in this case.

5.3.2 Nodes vs Time

For these experiments, the time that the algorithm takes to �nish, for di�erent datasets,
varies signi�cantly. Because of this for each dataset we divided the time when 1 node is
used with the time when di�erent nodes are used. This is called the speed up and it is
de�ned as follows:

Speed Up =
time with 1 Node
time with K Nodes

61



Figure 5.2: Relative running time using G2 test

where K = 1, 3, 5, 7. Figure 5.3 and 5.4 shows the results for the Fisher Z test and the
G2 test, respectively. The ideal speed up is the diagoanl in the �gures.

From �gure 5.3 we can conclude that the more nodes we use the less time it takes for
the algorithm to �nish. This is because more map tasks can run in parallel. However,
this is not the case for the RCV1 dataset where the relative time decreases when 3 nodes
are used and then remains unchanged when more nodes are used. This is due to the
fact that the dataset is small and only 13 mappers are needed. When 1 node is used
6 mappers can run in parallel and when 3 nodes are used 18 can run in parallel which
are more than enough for this dataset. Moreover, for the other datasets we can see that
the larger the size of the dataset the higher the decrease of the relative time when more
nodes are used. For example, for the Mnist8 dataset, which is the largest dataset, the
relative time approaches the optimal time when 3 and 5 nodes are used, but it seems to
move away from the optimal when 7 nodes are used. This is also the case for the Zeta
and Epsilon datasets. Finally, the smaller the dataset the higher the distance from the
optimal(e.g. SUSY).

As in the Fisher Z test, from �gure 5.4 we can conclude that the more nodes we use
the less time it takes for the algorithm to �nish. More particularly, for the HIGGS and
SUSY datasets we can see that after 3 nodes the speed up remains the same. This is due
to the small size of the datasets. In addition, the larger the size of the dataset the higher
the decrease in the speed up. This is the case for the Epsilon and Mnist8 datasets, where
the time reaches the optimal. Finally, as the number of nodes are increased the relative
time for the datasets moves away from the optimal time. This can be seen clearly if we
compare the speed up of the Mnist8 dataset when the Fisher Z test and the G2 test is
used. In the Fisher Z test the speed up is closer to the optimal than when the G2 test is
used.
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Figure 5.3: Speed up when using Fisher Z test. The diagonal shows the optimal case.
The larger the size of the dataset the greater the decrease in time which approximates
the optimal case.

Figure 5.4: Speed up when using G2 test. Increasing the number of nodes decreases the
total time needed for the algorithm to �nish. Also, the greater the size of the dataset the
greater the decrease of time (approaches optimal case - diagonal).

5.3.3 Classi�cation Accuracy

The classi�er we used to evaluate the feature selection for both MMPC and SFO is the
logistic regression. This classi�er �nds the probability P (Y |X), where Y is the feature we
want to predict and can take discrete values and X is any vector containing continuous or
discrete values. The number of features selected by MMPC and SFO are shown in table
5.6. The number in the parentheses for the MMPC algorithm is the number of remaining
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features.

Dataset #Features #MMPC #SFO
HIGGS 28 12(0) 17
SUSY 18 11(0) 3
RCV1 47,236 100(6712) -
Epsilon 2,000 82(0) 100
Zeta 2,000 100(88) 100
Mnist8 784 100(643) -
URL 3,231,961 100(2242) -

Table 5.6: Number of features of each dataset and the selected features for MMPC and
SFO. In parenthesis for MMPC is the number of remaining features.

From table 5.6 we can see that MMPC algorithm selects less than half the features for
the HIGGS and SUSY datasets. The SFO algorithm selects more features for the HIGGS
dataset (17) and only 3 features are selected for the SUSY. In addition, the selected
features using the MMPC algorithm for the Epsilon dataset are less than 5% of the total
features. For the SFO algorithm we use the �rst 100 selected features. In addition, for
the Zeta dataset we use the �rst 100 features that are selected by both MMPC and SFO.
For the other datasets the SFO cannot run in a reasonable time.

For the Mnist8 dataset MMPC selects 100 features and the remaining ones are 643.
The large number of features that are selected can be explained if we consider the fact
that this dataset consists of 10 classes. In general, the more classes a dataset has the more
features are needed to discriminate between them. So in order to discriminate between
the classes many features are needed. Finally, for the URL dataset the algorithm selected
2242 features. The number of selected features are small. This may be the case because
this dataset has only two classes.

Figure 5.5 shows the classi�cation accuracy when the logistic regression classi�er is
used for the selected features of both the MMPC and SFO algorithms but also when
all the features are used. Moreover, for MMPC the �gure shows the results when the
remaining variables are used along with the selected ones.

From the results, we can see that the classi�er for the datasets HIGGS and SUSY
perform almost the same and it is independent of the feature selection algorithm. This
is not a surprise due to the fact that these datasets consists of few features. For the
Epsilon dataset the accuracy decreases (only) slightly, which is important fact because
few features are selected from both MMPC and SFO algorithms. The accuracy of the
classi�er for this dataset is higher when the SFO features are used. However, this is
expected because 100 features are selected by SFO in contrast to the 82 features that
MMPC selects. Finally, for the Zeta dataset the features selected by both MMPC and
SFO increase the performance of the classi�er signi�cantly.

For the RCV1 and the Mnist8 dataset the SFO could not �nish in reasonable time
and so we run only MMPC. RCV1 dataset has a high decrease in its accuracy when only
the 100 selected variables are used for classi�cation. However, if the remaining variables
are added the classi�cation accuracy decreases slightly. Finally, the Mnist8 dataset has
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Figure 5.5: Classi�cation accuracy of logistic regression using the features selected by
MMPC, the features selected and the remaining of MMPC (indicated as MMPC+), the
selected features of SFO. Finally, for the binary datasets the distribution of the most
frequent class is displayed.

a slight decrease in its accuracy when the �rst 100 features are selected. This is an
important fact because the dataset consists of 10 classes and only 100 features are used.

Due to the fact that 5 datasets contain binary target it is important to show the class
distribution for the test set of these dataset so as to conclude that the feature selection
bene�ts the classi�cation. Figure 5.5 shows the distribution of the most likely class. From
the results we can see that the distribution of the two classes for all the datasets is nearly
50%. As a result, the feature selection bene�ts the classi�cation.

The last comparison we make is the time taken for the MMPC and for SFO to �nish.
Figure 5.6 shows the logarithmic time taken by both algorithms. From the results we can
see than MMPC takes less time in all datasets to �nish. This was expected as SFO needs
to pass the data more times than MMPC. More particularly, it is worth mentioning that
although for the SUSY dataset MMPC selects more features than SFO the time taken
is lower than SFO. Moreover, for the Epsilon dataset the di�erence is the highest. This
was expected as MMPC selects fewer features than SFO. In Zeta dataset the di�erence
is smaller than in Epsilon dataset because the features selected by MMPC are the same
as for the SFO.

5.3.4 Using Fisher's Combined Probability Method

As described in section 4.4, Fisher's combined probability method can be used with any
statistical test. We compare this method with the G2 test because we expect to take less
time the computation of the Fisher's combined probability method. When computing the
contingency tables in G2 test di�erent key is used for di�erent contingency table and so
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Figure 5.6: Comparing relative time between MMPC and SFO. For the large datasets
MMPC is at least 7 times faster.

the group-by operation in Hadoop takes a substantial amount of time. Using combining
pvalues the key is equal to one and only a vector needs to be output from the map phase.
That is why we expect this method to take less time.

Before presenting the results it is vital to show the number of features each method
selects. This information is shown in table 5.7 along with the number of features that
are the same in these two methods. From the results we can see that for the HIGGS
and SUSY datasets the number of features selected by G2 test is larger than when the
combined pvalues method are used. However, it is important to notice that for both
datasets all the features selected by combined pvalues method are in the selected features
by G2. For the other two datasets we stop the process when 100 features were selected.
Most of the selected features are the same for the two methods. More particularly, for
the Epsilon dataset are 67 and for the Zeta 83.

Dataset #Features #G2 #Combined #Same
HIGGS 28 16 11 11
SUSY 18 11 10 10
Epsilon 2,000 100 100 67
Zeta 2,000 100 100 83

Table 5.7: Total number of features for each dataset and the number of features selected
by MMPC when G2 test and the Fisher's combined probability method are used.

Figure 5.7 shows the logarithmic time that takes for the algorithm to �nish when the
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Figure 5.7: Relative time taken when G2 test and Fisher's combined probability method
are used. In most dataset Fisher's combined probability method is faster than the G2

test.

actual G2 test is used and for the combined pvalues method. From the results we can
see that combining pvalues method takes less time in three out of four datasets. Only in
Epsilon dataset the time is more.

In order to evaluate the method we run the logistic regression classi�er using the
selected features of the G2 test and the combining pvalues method. The results are
shown in �gure 5.8. From the results we can conclude that when the features selected
by combining pvalues method are used, the classi�er performs slightly worse than the
features selected by G2 test. The worse performance is for the HIGGS dataset. However,
this was expected because the number of features selected are 6 less than the number of
features selected whenG2 test is used. Although the performance of the Fisher's combined
probability method is slightly worse, it can be used with any complicated statistical test
beyond the simple ones we use in this thesis.
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Figure 5.8: Accuracy using logistic regression classi�er when running MMPC with G2 test
and Fisher's combined probability method. Accuracy of Fisher's combined probability
method reduces slightly than the actual G2 method.
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Chapter 6

Conclusions and Future Work

This thesis was concerned with feature selection algorithms for big data. Its main contri-
bution is the parallelization of the Max-Min Parent and Children algorithm for big data
and more particularly with the use of the Map-Reduce model and Hadoop. We chose to
use Hadoop because it is the most well-known platform and most frequently used for big
data analytics.

We showed how the parallelization can be performed e�ciently for the MMPC algo-
rithm using two independent tests: the G2 and the Fisher Z test. Moreover, the user can
extent the functionality of the algorithm to support any other test of interest, the same
way we used the aforementioned tests.

The experimental evaluation demonstrated that our algorithm is robust and can scale
well when di�erent size of datasets and nodes are used. More particularly, with a �xed
size dataset the more nodes in the cluster the less time takes for our algorithm to �nish
execution. In addition, with a �xed number of nodes in a cluster, the higher the size of
the dataset the higher the execution time of the algorithm.

MMPC outperforms SFO in di�erent aspects which are illustrated below:

• MMPC needs to perform only one Map-Reduce job in order to select a feature, in
contrast to the SFO algorithm that needs several jobs and so more time is required.
This is because SFO runs a logistic regression model in each iteration, which requires
multiple passes of the data.

• Our algorithm keeps a set of features that have the maximum minimum association
with the target other than the set of selected features that SFO also keeps.

• For continuous/binary data our algorithm can be used with millions of features
(using Fisher Z test), in contrast to SFO which can be used with only thousands of
features.

• MMPC can handle any type of data if the appropriate statistical independence test
is used but SFO can handle data that have continuous or categorical features.

• The user can control the number of features that will be selected from MMPC. This
can be accomplished by �xing the parameters threshold and maxk. The higher the
threshold the more features are selected and the higher the maxk the smaller the
size of selected features.

69



One major limitation of our algorithm is when multiple statistics are required for a test
and the su�cient statistic extracted from a Map-Reduce job needs substantial amount
of memory. In this case if the nodes does not have the needed memory the algorithm
will not be able to run. This is the case for the G2 test where if millions of contingency
tables are needed and the nodes does not have the required memory to store all tables,
the algorithm will crash.

Another limitation is the implementation in R. R is an excellent language to perform
statistical analysis, but it is very slow. Moreover, using RHadoop some functionalities of
Hadoop are hidden within the package. So, the solution is to implement MMPC using
Java in order to accelerate its performance.

For future work, the MMPC algorithm for big data can be extended to output mul-
tiple set of features that have same predictive power. In [51], the authors present SES,
a statistical algorithm that attempts to identify a set of equivalent, highly predictive
features for a given target outcome. The algorithm is very similar to MMPC and it is
easy to extend the usability of MMPC to output multiple features.

Moreover, MMPC could be used to �nd a Bayesian network for big data. It has
been used for small datasets in [52]. The algorithm �rst �nds the skeleton of a Bayesian
Network with the use of MMPC and then they use a Bayesian-scoring greedy hill-climbing
search to �nd the orientation of the edges. It would be interesting to show how this
algorithm performs and scales for big data as well.

Finally, because of the fact that G2 test is slow and requires signi�cant amount of
memory it is imperative the need to try and speed up this test. This can be accomplished
with the use of data structures and more particularly with the AD-trees. Building this
structure the algorithm would not need to pass the data to �nd the p-value of the test.
We tested these trees using R but we did not had any improvement in time. Implementing
this structure in another language like Java for example may have better results.
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Appendix A

Installing Hadoop and RHadoop

For this thesis the Hadoop 1.2.1 and the RHadoop were used. This appendix describes
how Hadoop was installed and tuned. Moreover, it presents the installation of RHadoop
and the packages that were used for the implementation of the MMPC algorithm.

A.1 Installing Hadoop

Hadoop can run in a single node or in a cluster of nodes. First, we describe how it can
be install in a single node and then in a cluster of nodes.

A.1.1 Single node installation

The node need to have Java and ssh installed. Firstly, the user need to con�gure ssh, so
as to create a sshless connection. In order to do that the user have to generate a SSH key.
This can be done with the command: ssh-keygen -t rsa -P "". This will create a RSA
key pair with empty password. After creating the key the user have to enable SSH access
to the local machine with this newly created key. This can be done with the command:
cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys.

After con�guring the SSH, it is time to install Hadoop. The user can �nd the version of
his choice in the http://hadoop.apache.org/releases.html. Later the user have to extract
the downloaded �le. This will create a folfer "hadoop-X.Y". The �nal step is to con�gure
Hadoop. To do that the user needs to modify some of the �les in the folder hadoop/conf.
The �les are: hadoop-env.sh, mapred-site.xml, hdfs-site.xml and core-site.xml.

The hadoop-env.sh �le contains some environment variable settings used by Hadoop,
such as the JAVA_HOME which speci�es the path to java installation. The �le is shown
below.

<!−− F i l e hadoop−env . sh −−>
export JAVA_HOME=/usr / l i b /jvm/ java−6−sun

The mapred-site.xml �le contains con�guration options for MapReduce, such as the
host and port the jobtracker runs. The �les is presented below.

<!−− F i l e mapred−s i t e .xml −−>

<property>
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<name>mapred . job . t r a cke r</name>
<value>master :54311</ value>
<de s c r i p t i o n>The host and port that the MapReduce job t r a cke r runs

at . I f " l o c a l " , then jobs are run in−proce s s as a s i n g l e map
and reduce task .

</ d e s c r i p t i o n>
</property>

<property>
<name>mapred . t a sk t r a ck e r . reduce . t a sk s .maximum</name>
<value>1</value>
</property>

<property>
<name>mapred . t a sk t r a ck e r .map . ta sk s .maximum</name>
<value>6</value>
</property>

<property>
<name>mapred . compress .map . output</name>
<value>true</ value>
</property>

<property>
<name>mapred .map . output . compress ion . codec</name>
<value>org . apache . hadoop . i o . compress . BZip2Codec</ value>
</property>

The hdfs-site.xml �le contains con�guration options for the HDFS, such as the block
size or the number of replication. The �le is shown below.

<!−− F i l e hdfs−s i t e .xml −−>

<property>
<name>df s . r e p l i c a t i o n</name>
<value>2</value>
<de s c r i p t i o n>Defau l t b lock r e p l i c a t i o n .
The ac tua l number o f r e p l i c a t i o n s can be s p e c i f i e d when the f i l e

i s c r ea ted .
The d e f au l t i s used i f r e p l i c a t i o n i s not s p e c i f i e d in c r e a t e time

.
</ d e s c r i p t i o n>
</property>

Finally, the core-site.xml �le contains con�guration that override the default values
for core Hadoop properties. The �le is presented below.

<!−− F i l e core−s i t e .xml −−>
<property>
<name>hadoop . tmp . d i r</name>
<value>/app/hadoop/tmp</value>
<de s c r i p t i o n>A base f o r other temporary d i r e c t o r i e s .</ d e s c r i p t i o n>
</property>

<property>
<name>f s . d e f au l t . name</name>
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<value>hd f s : //master :54310</ value>
<de s c r i p t i o n>The name o f the d e f au l t f i l e system . A URI whose
scheme and author i ty determine the Fi leSystem implementation . The
u r i ' s scheme determines the c on f i g property ( f s .SCHEME. impl )

naming
the Fi leSystem implementation c l a s s . The u r i ' s author i ty i s used

to
determine the host , port , e t c . f o r a f i l e s y s t em .</ d e s c r i p t i o n>
</property>

After con�guring Hadoop, the user needs to format Namenode. This is done only the
�rst time and it can be done with the command: hadoop namenode -format.

Finally, hadoop can now start on a signle node with the command: bin/start-all.sh.

A.1.2 Multi-node installation

In order to make a multi-node installation the master node needs to de�ne the IP of the
nodes in the cluster, including itself. This can be done by modifying the �le /etc/hosts.
An example of the �le is shown below.

192 . 1 6 8 . 0 . 1 master
1 9 2 . 1 6 8 . 0 . 2 s l ave1
192 . 1 6 8 . 0 . 3 s l ave2

Moreover, the master node needs to have the ability to log without a password to
the slave nodes. This can be done by adding the master's key to the authorized keys
of the slave nodes. The command to accomplish this is the following: ssh-copy-id -i
$HOME/.ssh/id_rsa.pub user@slave1.

The �nal step is to con�gure the Hadoop of the master so as to know which is the
master and which are the slave nodes. To do that the user need to de�ne the conf/masters
to be:

master

and to con�gure the slaves the user needs to update the conf/slaves to be:

master
s l ave1
s l ave2

Finally, the user needs to format the namenode and start the hadoop cluster. The
commands are the same as previously for the single-node installation.

A.2 Installing RHadoop

As mentioned in the Introduction, RHadoop is consisting of 5 packages. For this thesis
we used the two main packages: rmr2 and rhdfs. The packages can be downloaded from
the link: https://github.com /RevolutionAnalytics/RHadoop/wiki/Downloads.

All the following installations need to be performed in each node in the cluster. To
install the two packages, the R language needs to be installed. Moreover, these packages
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are dependent on other packages, which should be installed. The user can install these
packages with the command:

in s ta l l . packages (c ( " rJava" , "Rcpp" , "RJSONIO" , " b i tops " , " d i g e s t " ,
" f un c t i o n a l " , " s t r i n g r " , " p ly r " , " reshape2 " , " dplyr " , "R. methodsS3
" , " caTools " , "Hmisc" ) )

After installing these packages the user can install rmr2 and rhdfs with the commands:

in s ta l l . packages ( " rhd f s_1 . 0 . 8 . ta r . gz" , repos=NULL, type=" source " )
in s ta l l . packages ( "rmr2_2 . 2 . 2 . ta r . gz" , repos=NULL, type=" source " )

Before running a Map-Reduce job the user needs to de�ne the following parameters
to the *.R �le:

Sys . se tenv ( "HADOOP_PREFIX"="/User/hadoop−1.1 .2 " )
Sys . se tenv ( "HADOOP_CMD"="/User/hadoop−1.1 .2/bin/hadoop" )
Sys . se tenv ( "HADOOP_STREAMING"="/User/hadoop−1.1 .2/ con t r ib/

streaming/hadoop−streaming −1 . 1 . 2 . j a r " )

A.2.1 Word count example

Below it is shown the word count example which was presented in the introduction using
RHadoop1.

Sys . se tenv ( "HADOOP_PREFIX"="/User/hadoop−1.1 .2 " )
Sys . se tenv ( "HADOOP_CMD"="/User/hadoop−1.1 .2/bin/hadoop" )
Sys . se tenv ( "HADOOP_STREAMING"="/User/hadoop−1.1 .2/ con t r ib/

streaming/hadoop−streaming −1 . 1 . 2 . j a r " )

l ibrary ( rmr2 )

## map func t i on
map <− function (k , l ines ) {
wordsList <− s t r sp l i t ( l ines , ' \\ s ' )
words <− unlist ( wordsList )
keyval ( words , 1)
}

## reduce func t i on
reduce <− function (word , counts ) {
keyval (word , sum( counts ) )
}

wordcount <− function ( input , output=NULL) {
mapreduce ( input=input , output=output , input . format=" text " ,
map=map, reduce=reduce )
}

## Submit job
hdfsRoot <− ' wordcount '
hdfsData <− f i l e .path ( hdfsRoot , ' data ' )

1Source: "Building an R Hadoop System"
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hdfsOut <− f i l e .path ( hdfsRoot , ' out ' )
out <− wordcount ( hdfsData , hdfsOut )

## Fetch r e s u l t s from HDFS
r e s u l t s <− from . d f s ( out )

A.3 Con�guring Apache Hadoop

There are more than 160 parameters in Hadoop which can a�ect the performance of
cluster. We run some test experiments for two important parameters of Hadoop. These
are the number of cores to use and the size of the block size. The Map-Reduce job �nds
the mean of features in the dataset, which is used for the Fisher Z test. The dataset we
used was the SUSY.

Figure A.1 shows the di�erence in seconds of the mapreduce job when changing the
number of map tasks to run in parallel (2,4,6,8,10,12,16) and keeping the block size
constant to 64MB. With this block size the number of maps that are needed to run to
complete the job are 36.

Figure A.1: Changing the number of map tasks to run in parallel for 1- and 2-Node.
When the number of map tasks that run in parallel is equal to the number of cores in
the nodes we have maximum performance.

From the �gure A.1 we can see that using 1-Node the time reduces until 6 map tasks
run in parallel and with 2-Nodes the time reduces until 12 map tasks run in parallel. This
was expected as 1-Node has 6 cores and 2-Node has 12 cores available for the task.

Figure A.2 shows the di�erence in seconds of the mapreduce job when changing the
block size to [64 128 256 512] and keeping the number of map tasks to run in parallel
equal to the number of cores available.
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Figure A.2: Relative time when changing the block size and using 1 and 2 nodes. With
2 nodes and block size 256Mb the time is decreased the most.

From the �gure A.2 we can conclude that using 1-Node the time reduces until the
block size is 128MB and with 2-Nodes until the block size is 256MB. The result for the
1-Node show that 128MB is the best choice. However, with 2-Nodes the time is reduced
with block size greater than 256MB. This is due to the fact that with block size 512MB
only 10 maps are needed to complete the job and 12 map tasks can run in parallel. That
is, the resources of the 2-Node cluster are not fully exploited.

Performing these tests and changing just two con�gurations of Hadoop, we saw that
the performance was signi�cantly changed. For this thesis we consider the following
con�gurations:

• mapred.tasktracker.map.tasks.maximum : The default number of map tasks per
job is two. For our cluster we changed it to six.

• mapred.child.java.opts: Java opts for the task tracker child processes. For our case
we initialized it to 1 Gb.

• dfs.replication: The block replication in the cluster. We set it to two.

• dfs.block.size: The default block size is 64MB. We did not change this value as
some datasets that we use are small.

All other con�guration had the default values.
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Appendix B

Using Storey's method

The experiments in chapter 5 were performed with threshold 0.01. However, it would be
interesting to use the Storey's method to adjust the threshold and see the performance
of the selected variables. Table B.1 shows the number of selected features along with
the new threshold that was used. The FDR threshold is higher than 0.01 in all of the
datasets but SUSY which is exactly 0.

Datasets #Features Adjusted Threshold #MMPC
HIGGS 28 3.9 · 10−2 14(0)
SUSY 18 0 5(0)
RCV1 47,236 3.6 · 10−2 100(7512)
Epsilon 2,000 1.1 · 10−2 83(0)
Zeta 2,000 1.1 · 10−2 100(88)
Mnist8 784 1 100(684)
URL 3,231,961 1.7 · 10−3 100(2242)

Table B.1: Total number of features for each dataset, the adjusted threshold when
Storey's method is used and the number of features selected by MMPC. In parenthe-
sis for MMPC is the number of remaining features.

Figure B.1 shows the performance of the logistic regression for the selected features
by adjusting the threshold with Storey's method.

From the results we can see that the performance of the classi�er is almost the same
as when the threshold was set to 0.01 for all datasets but SUSY which dips signi�cantly.
This was expected as fewer features are selected than the previous experiment.
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Figure B.1: Evaluating feature selection using Storey's method, using logistic regression
classi�er's accuracy on the features selected by MMPC and when no feature selection is
performed.
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