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Abstract

Deep radiotranscriptomic survival analysis for non-small cell lung cancer patients by utilizing
machine learning methods

According to the World Health Organization, lung cancer is estimated to have the highest mortality
rate worldwide. Lung cancer can be divided into two main categories: non-small cell lung carcinoma
(NSCLC) and small cell lung carcinoma (SCLC), with the former being the most prevalent type of lung
cancer, accounting for approximately 85% of cases. The majority of lung cancer cases are diagnosed
after a symptom appears related to primary or metastatic disease. The progression of the disease is
typically described using five stages, from 0 to IV. The accurate staging of lung cancer is essential to
establishing a prognosis and selecting the optimal treatment. However, staging information is not
necessarily predictive of the disease progression or the response to treatment. Several studies have
investigated the relationship between image features and lung cancer. Radiomics refers to the
extraction of a large number of features from medical images with the intent of creating mineable
databases from radiological images. Image features can be used to reveal diagnostic, predictive, and
prognostic associations in cancer patients via correlations with other response criteria like survival or
response to treatment. The increase in deep learning methods has also paved the way for the
extraction of high-dimensional deep features that could capture deeper the cancer information.
Furthermore, advances in transcriptomics have provided genome-wide information on gene structure
and gene function in order to reveal the mechanisms behind the biological processes of cancer.

In many cancer studies, the main outcome under assessment is the time to an event of interest. The
event might be the death of the patient, or the recurrence of the disease after successful treatment.
The modelling of time to event data is called survival analysis and it has been used in many areas,
including the biomedical, social, and engineering sciences. Outcome modelling can be used for the
identification of the prognostic signature of patients and the stratification according to their survival
time into groups with different risks of experiencing the event. Several studies have been conducted
that use single source data to investigate the survival of cancer patients, such as histologic, imaging,
or molecular data.

This master thesis aims to investigate the synergetic properties of multi-view data sources such as
radiomics, transcriptomics, and deep features, in developing machine learning models for survival
analysis. The dataset used comprised of 211 Computer Tomography (CT) examinations, 130 RNA-seq
vectors (P;) and clinical data with histology, genomic, semantic, survival and disease recurrence
information. The intersection of the transcriptomic and imaging data was a subset of 115 patients and
the patient cohort of survival included 40 subjects. Two commonly used machine learning methods
have been examined for the classification of patients into low- and high-risk, random forest and
support vector machine. The feature-fusion strategy included combining all features to perform
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survival analysis and also combining only radiomics and deep features. The proposed deep
radiotranscriptomic analysis resulted in a C-index 0.77 + 0.10 using support vector machine with C-
index in the range of 0.65 to 0.83. The C-index using random forest classifier was 0.74 + 0.11, in the
range of 0.63 to 0.81. Deep radiotranscriptomic analysis outperformed analyses comprised only of
radiomics and deep features. In that case, random forest reached a C-index of 0.68 + 0.03 and
support vector machine a C-index of 0.73 + 0.07. The deep features that resulted in the best
predictions were mostly extracted from MobileNet, ResNet, DenseNet, and NasNet models.
Combining imaging information in the form of radiomics and deep features and histologic in the form
of transcriptomics improved classification metrics, such as C-index and better ranked the patients
according to their risk of experiencing the event.

Parts of this work are included in the publication that is under review,
entitled "Deep Radiotranscriptomics of Non-Small Cell Lung Carcinoma for Assessing High-Level
Clinical Outcomes using Multi-View Analysis" conduced by Trivizakis Eleftherios, Koutroumpa
Nikoletta-Maria, Souglakos John, Karantanas Apostolos, Zervakis Michalis E., Marias Kostas. Details
regarding the selected parameters and the complete source code of the analysis are provided online
at https://github.com/NikiKou/deep_radiotranscriptomics_survival_analysis.

Keywords

non-small cell lung cancer; deep features; radiotranscriptomics; radiomics; transcriptomics; survival
analysis; machine learning; feature fusion
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MeplAndn

Bafwa petaypadwpatikl avaAluon smipiwong ooOsvwv HE MN-UIKPOKUTTOPLKO KOPKIVO TOU
nvelLOVAL XPNOLLOTIOLWVTAG LEBOSOUG HNXAVIKAG LaBnong

JUpdwva pe tov Maykooulo Opyaviopo Yyelag, o kapkivog Tou mvelpova amoteAsl tn Hopdn
KapKivou pe To uPnAdTEPO TOCOOTO BVNOLUOTNTAC TTAYKOOHIWG. O KapKivog Tou velpova xwplletat
og 600 KATNYOPIEG, UN-HLKPOKUTTAPLKO KOl UIKPOKUTTOPLKO KOPKIVO TOu Tvelpova, PE TNV TPWTN
Katnyopla va KupLapxel Le TTOGOOTO 85% TwV SlayvVWoEwWY KOPKivou Tou velova. Itnv mAsoPndia
Twv aoBevwy, n Sldyvwon ylvetal PeTd TNV EUPAVION CUMMTWHUATWY TIOU OXETI{OVTOL LE TIPWTOPXLKN
N petaotatikn acBévela. H e€€AEn tng mabnong xapaktnpiletal and névie otadla, anod 0 £wg IV. H
aueon dlayvwon kal avaluon tg acBevelag eival amapaitntn yla tv €mAoyn TG KOTAAANANG
Bepaneiag. ApKETEC LEAETEG CUOKETI{OUV XAPOKTNPLOTIKA TIOU TIPOKUTITOUV ATIO LOTPLKEG ELKOVEG HE
TOV Kapkivo tou mvevpova. H padwwuikr (radiomics) adopd otnv efaywyr peyaiou aplBuou
XOPOKTNPLOTIKWY OO LOTPLKEG ELKOVEC e oKomtd Tt Snuioupyia Bacswv dedopévwy and dsdopéva
OTELKOVLOTIKWV PEBOSWY. Ta XOPAKTNPLOTIKA TNG £LKOVACG UMOpoUV va xpnotpomotnBoulv yla thv
gUpeon SLAYVWOTLKWY KoL TIPOYVWOTLKWY CUCXETIOUWY O aoBevel¢ Ue Kapkivo tou mvelpova. H
SloBeoipdtnTo Sedopévwy LATPLKAG ELKOVAC 0 cUVEUAOUO e TNV avénon pebodwv Pablag pabnong
(deep learning) avolée to Spopo yla tnv e€aywyr XOPOKTNPLOTIKWYV UPNARG moldtntag mou Ba
urmopoloav va oupPdMouv otnv  PaBltepn katavonon NG acBévelag. EmutAéov, n
MEeTaypadwUaTIKN (transcriptomics) mapéxel onuavtikég mAnpodopleg yia to yovidiwpa, Bonbwvtag
OTNV KOTAVONGON TWV KNXOVLIOUWV Ttlow armo Tic BloAoyikég Slepyaaoieg Tou Kapkivou.

APKETEC PeNETEC TOu oxeTi{ovtal Ye Tov Kopkivo otoxelouv oTnv gUPech TOU XPOVOU HEXPL Vol
geudaviotel To oupPav tou evbladpépovtog. To cupPav pnopel va eival o Bavatog Tou acBevolg A n
enaveudavion g vooou Lotepa amd pia emtuyr Bepamneia. H poviehomnoinon twv Sedopévwy
XPOVOU WEXPL TNV gUdavion Tou cupPavtog ovopdletal avaluon emPBiwong (survival analysis) kat
Bplokel edpapuoyn otnv Blolatplky, Tn PLOCTATIOTIKA, KABWC KAl 08 AANEC EMLOTAUEG, OMWG OTNH
MNXAVLKN. APKETEG LEAETEG XPNOLUOTIOLOUV SES0UEVA ATIO Uia LOVO TNy, OTIWG LOTOAOYLKA SeSouéva,
OUTTELKOVLOTLKA 1] LOPLAK @, YLO TNV avaAuoh emiBiwong acBevwv He Kapkivo.

IKOTIOG TNG METAMTUXLOKAG gpyaciag ival n availuon smPlwong pe xpnon HeBOSwv HNXOVIKAG
HAaBnong Kat xpnoLomolwvtag SLadopeTIKEG TINYEC SES0UEVWY, pOSLWULKAG, LETAYPAPWLOTIKAG KAl
Sebopévwy Ttou mpogkuPav amno tnv epappoyr LoOVIEAWV BabLldg pabnong oe LATPLKEC elKOVEG (deep
features). To oUvolo Ttwv Oebopévwv TOU xpnolpomolibnke Tmeplelxe 211 ekdveg afOVIKAC
topoypadiag, 130 popeic RNA-seq kat KAWVIKA dedopéva e TAnpodopieg LoToAoyiag, yovidLwuaTtog,
eMPBLWONG KoL UTIOTPOTING TNG vOoou. Amd autd ta dedopéva, €va umoocUvohlo pe 40 acBeveig
Xpnolomolntnke yla tThv avaAuon smiBiwonc.
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AVO péBodoL PUNxXavikng Hadnong €xouv xpnollomolnBel eupéwg yla TNV taflvopnon acbevwv oe
TMEPUTTWOELG UPNAOU Kot xapnAoU Kivduvou, o akyoplBuog tuxaiwv Sacwv (random forest) kat ot
pnxoavég Stavuopdtwv umoothplenc (support vector machines). Ao cuvduaopol SsSopévwv
peAetnOnkav, o cuvbuaopuog OAwv Twv dedopévwy (deep radiotranscriptomics) kal o cuvSuaopog
povo dedopévwy radiomics kal deep features. H mpotelvopevn avaAuon LE GUVSUOOUO OAWV TwV
Sebopévwy, deep ratiotranscriptomics, odriynoe oe C-index 0.77 + 0.10 pe punxovég SLaVUOUATWY
urnootnpEng kat 0.74 + 0.11, pe tuxaia dacn. Me cuvduoouo povo twv dedopévwy radiomics Kal
deep features, oL punxaveg Stavuopdtwy untootrnpeng katéAnéav oe C-index 0.73 + 0.07 kot ta tuxaia
6aon oe C-index 0.68 + 0.03. O cuvbuaouOg OAWV TWV XOPAKTNPLOTIKWY 08HYNOE OE LOVIEAQ UE
KoAUTePN tkavotnTa poPAedng. Ta povtéAa Bablag uabnong mou mapeixav XapakTtneLoTIKA UPnAnNg
noldtntog Atav ta MobileNet, ResNet, DenseNet kat NasNet. H pelétn auth odnynoes oto
CUUTEPOOUA OTL N xprion Sedopévwy amd SladopeTikeég mNyEC obnyel o PovieAa pe KoAUTEPN
POPAsdn TNG eMIKLVOLUVOTNTACG TNG VOOOU TwV acBevwV Kal o KAAUTEPN KATNYOPLOTOLNGH TOUg o€
aoBeveig xapnAou kat uPnAol kwvdivou.

Tuquota  autig TG  gpyaciag  mepllapBavovtal  otn dnuoaieuon HE  TiTAO
“Deep Radiotranscriptomics of Non-Small Cell Lung Carcinoma for Assessing High-Level Clinical
Outcomes using Multi-View Analysis” amo toug TpBuldakng EAsuB£plog, Koutpouuma NikoAétta
Mapia, ZouykAdakog lwavvng, Kapavtavag Amoctolog, ZepBdakng MixaAng E., Maplag Kwotag, n
omoia PBpioketal oe otddlo afloAdynong yla amocTOAN OF ETUOTNMOVIKO TIEPLOSLKO. AEMTOUEPELEG
OXETIKA WE TIAPAUETPOUG TIOU ETUAEXONKAV Kal 0 KWOLKAG yla Thv avaAuon eival Stabéoipa
Sladlktuaka oto: https://github.com/NikiKou/deep_radiotranscriptomics_survival_analysis.

NEELg KAEWOLA

Mn-UKPOKUTTAPLKOG KAPKIVOG TOU TIVEUHOVO, POSIWHLK, HETOYPAadWHOTIKY, avaAluon emiBiwong,
BaBia pabnon, pnxavikn padnaon
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Chapter 1: Introduction

Lung cancer: principles, diagnosis, and treatment

Cancer is a major public health problem with about 19.3 million new cancer cases occurred in 2020.
Female breast cancer has surpassed lung cancer as the most common diagnosed cancer, followed by
lung cancer [1]. In men, lung cancer and prostate cancer are the first and the second more frequently
diagnosed cancer, respectively. According to the International Agency for Research on Cancer of the
World Health Organization (WHO), lung cancer is the leading cause of cancer death worldwide [2]. The
total number of new cases and new deaths for most cancers in 2020 in a global range [1] are depicted
in Figure 1 and Figure 2. Smoking is the most common cause of lung cancers with 80% to 90% arising
in cigarette smokers. A lifetime smoker has a 20-fold increased risk of developing lung cancer
compared to a non-smoker. The pathogenesis of lung cancer involves the exposure of environmental
carcinogens and intrinsic factors. Genetic variations and family health history may also be the cause
of the disease. Mutations that have frequently been identified in tumors of lung cancer are in the
epidermal growth factor receptor (EGFR) gene, which is present in adenocarcinomas [3].

The majority of lung cancer cases are diagnosed after a symptom appears related to primary or
metastatic disease. The patient is evaluated when obtaining tissue for histologic diagnosis,
determining the stage of the disease based on International TNM staging system, imaging such as
computed tomography (CT) etc. To facilitate the prognostic decision and treatment, lung cancer is
classified based on the histologic appearance into small cell lung cancer (SCLC) and non-small cell lung
cancer (NSCLC). NSCLC are further classified into four major histologic classes, adenocarcinoma,
squamous cell carcinoma, small cell carcinoma and large cell carcinoma. Also, adenosquamous
carcinoma, carcinoid, and bronchial gland carcinoma are histologic classes of lung cancer with
prevalence less than 5%. Adenocarcinomas have prevalence of 40% in the lung tumors and are
histologically heterogeneous peripheral masses that metastasize early in the disease course.
Squamous cell carcinomas are the second more common with 25% prevalence and are endobronchial
masses that are centrally located. Small cell carcinomas are also centrally located and are associated
with early extrathoracic metastases, including paraneoplastic syndrome. Lastly, large cell carcinomas
are large peripheral masses with early metastases [3], [4].
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Number of new cases of cancer in 2020

m Female breast ® Lung = Prostate = Nonmelanoma of skin Colon

Figure 1: Number of new cases for different cancers in 2020

Number of new Deaths in 2020

SN

m Female breast ® Lung = Prostate = Nonmelanoma of skin Colon

Figure 2: Number of new deaths for different cancers in 2020

As already stated, the diagnosis includes tissue diagnosis, staging, and functional evaluation. There is
a variety of techniques for tissue diagnosis. In patients with non-small cell carcinomas, thoracotomy
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is a convenient and least invasive technique. In general, a least invasive method possible should be
used. If obtaining the tissue fails, a more invasive method is needed. Flexible bronchoscopy is another
choice for patients with central tumors. Transthoracic needle aspiration appears to be more sensitive
than bronchoscopy, especially in patients with peripheral lung tumors. After tissue diagnosis, the next
step of cancer evaluation is the clinical staging, which is based on findings obtained before treatment
using medical imaging modalities, such as computed tomography (CT) and positron emission
tomography (PET). Integrated these modalities, CT/PET scanners sometimes appear to have better
characteristics than CT or PET alone. After evaluation of the information obtained, the staging
classification can be determined based on the type of tumor identified and the presence or absence
of metastatic disease. The last step of diagnosis contains the functional evaluation of the patient. The
performance and pulmonary status will determine the treatment options, the therapy option or the
probability of surgery [5].

NSCLC accounts for 85% of all cases of lung cancer. The primary curative modality for patients with
early-stage NSCLC is surgical resection, with either lobectomy or pneumonectomy, depending on the
extent of the disease. For some patients which are not candidates for surgical resection, the treatment
may include conventional radiotherapy or adjuvant chemotherapy. Stage Ill patents will be treated
with combined therapy, with concurrent radiotherapy and chemotherapy. Another treatment which
might benefit selected patients with advanced NSCLC that have specific mutations is molecular
targeted therapy. Patients with limited stage SCLC will be treated with chemoradiotherapy with an
intent to be cured, however, chemotherapy can prolong survival also in patients with extensive-stage
SCLC [6].

Artificial Intelligence in Medicine

Artificial Intelligence (Al) refers to a set of technologies that allow machines and computers to simulate
human intelligence. Al is broadly used in both the technical and popular lexicon to encompass a
spectrum of learning, including machine learning and deep learning. Al has gained wide success in a
range of applications, such as speed recognition, computer vision, and natural language processing
(NLP). In medicine, the increasing amount of available data in combination with the evolution in
automation technology and the rapid development of computer hardware and software has created
the ideal conditions for the development of Al systems. Al methods have been developed to analyze
health related data, genetic data, as well as clinical and data encompassed in the biomedical literature.
Regardless of the technique applied, the scope of Al technologies in medicine is to use advanced
algorithms to understand health data, uncover hidden patterns, and assist in clinical decision-making

[7].

Both machine learning and deep learning are subsets of Al. Machine learning enables machines to
learn from data using statistical methods and to make predictions. Deep learning is a subdivision of
machine learning which makes the computation of multilayer neural networks feasible. Advances in
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these fields have the potential to revolutionize medicine by performing complex tasks that are
currently assigned to specialists. Machine learning algorithms can increase diagnostic accuracy,
improve treatment costs, reduce the probability of errors in diagnosis. However, effective use of Al-
based technologies in medicine requires synergistic transdisciplinary competencies. For example,
personalized care of oncology necessitates the collaboration of many disciplines, such as oncology,
radiology, nuclear medicine. A combination of different disciplines can accelerate the effectiveness of
Al-based applications [8]. Some of the potential applications of Al-based technologies in healthcare
are shown in Figure 3, and involve diagnostics, medical image analysis, therapeutics, population health
management, administration and regulation of big data in hospitals [9].

Population health management

Al in Diagnostics \ « Patient-centered information ( Administration and regulation
systems for health lifestyle
promotion, early disease
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Figure 3: Applications of Al in healthcare

In addition to developing Al algorithms for medicine, their practical implementation is extremely
difficult. The productization process requires managing and using big amount of data, integration into
complex clinical workflows, transparency of the process, and compliance with regulatory frameworks.
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Medicine in evolving to a more proactive practice, consisting of four main components, referred to as
4Ps: Predictive, Personalized, Preventive, and Participatory. The main driver of this change is the
digitization of medical data, together with the development of new technologies, like machine
learning tools, which enable people to interact, analyze, and extract information from these massive
volumes of data like never before. Forecasts for the next decade set the bar in the range of billions of
data points for each individual patient. As the complexity and dimensionality of these datasets keep
growing, it becomes paramount to integrate big data analytics into medical practice and research. It
is important to note that collection and analysis of data is not a novel concept in clinical research and
medical practice. However, the real value of big data comes from analyzing very large volumes of them
and it is the digitization factor in conjunction with the development of these cutting-edge technologies
that provide us with new opportunities and demands both in terms of sophistication and depth. Data,
collected from electronic health records (EHRs) and precision medicine platforms, such as image,
genetic, omics, clinical, and wearable devices data, create large volumes that could be analyzed. For
data to be characterized as “big data”, several characteristics are required, including the so-called 5
“Vs”: volume, velocity, variety, veracity, and value. The volume of data that must be processed by
algorithms to be substantially large, in the order of petabytes, data to appear in some context at high
velocities, to have a great variety (structured, unstructured data, and different formats), veracity or
validity of data (are the data correct, do they have good quality) and finally to have value, meaning
that the extracted information to be useful [10]. The use of big data requires planning and careful
execution. The security and privacy of data, especially in the field of health care, are of high
importance. The privacy of those patients whose data are being managed is critical, and relevant
norms and regulations should be applied, such as anonymization and deidentification. With the scale
of dissemination, confidentiality and privacy may need to be reimagined entirely. Cyber security
measures are increasingly important for addressing the risks of wrong use of data, or inaccurate and
inappropriate disclosures. In the data analysis phase, data might be distributed among several nodes.
Thus, privacy preservation should be a requirement for the development of the algorithms [9], [10].

Different types of data have been used in Al for health. Most common data types include multi-omics
data, clinical data and medical image data. Multi-omics refers to data that belong to the family of “-
omics” data, such as genomics, proteomics, transcriptomics and epigenomics. Multi-omics approach
joints these data and offer a comprehensive understanding of biological systems. The integration of
data provides to machine learning models a multi-view approach, where in conventional single omics
approach there is a separate view of machine learning model. The integration of data from single-
nucleotide polymorphisms and mRNA gene expression has been used for the prediction of a
guantitative phenotype using a Bayesian model. Also, different omics data such as mRNA, gene
expression, and methylation have been integrated for identifying associations with clinical outcomes
such as ovarian cancer survival. These are some examples that shows the promising results that have
been achieved so far. However, there are many challenges regarding Al methods for multi-omics data
analysis [11].

Another most common used type of data is medical images. Medical imaging is an important
diagnostic tool for various diseases. There are many modalities that have been invented and are used,
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including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) and
positron emission tomography (PET) among the most common used. These modalities play a vital role
in the detection of anatomical or functional information about body organs. Information gained from
medical images plays an important role in the patient care process, its characterization, monitoring of
the disease, treatment response etc. Medical image analysis aims to help radiologists and clinicians to
make diagnosis more efficient. The computer aided diagnosis (CAD) started to develop in the 1980s
and the goal was to offer a second opinion to assist radiologists in image interpretation. The first CAD
commercial system ready to use was approved by the Food and Drug Administration (FDA) in 1998.
CAD systems have been investigated for various applications, including lesion detection, patient’s
characterization, prognosis prediction. A CAD system is developed with machine learning methods.
Conventional machine learning methods have been developed for image analysis to recognize
patterns, detect abnormalities, and classify structures on images as normal or abnormal. Image
processing and feature extraction techniques have been developed to characterize images. The
features extracted can be used as input to a classifier and create a predictive model that can estimate
the probability of an image to belong to a normal or abnormal state. Although the research in CAD
systems has been increasing, only a few are used in the clinic. CAD systems developed with
conventional machine learning techniques may not reach the best performance that is needed by
clinicians. The growth of deep learning methods in many scientific areas has pave the way to CAD
systems with higher performances that will meet the expectations for implementing CAD in clinical
use [12], [13].

Deep learning uses complex multi-layer architectures to learn representations of data and model high
level abstractions present in the data. There is a wide variety of deep learning architectures that are
used in different applications, including convolutional neural networks (CNNs), recurrent neural
networks (RNNs), autoencoders and stacked autoencoders. CNNs are biologically inspired variants of
multilayer perceptrons. They have been successfully used for pattern recognition tasks. CNNs look
each time at small patches of the input image and use shared weights in each convolutional layer.
They learn to extract relevant features from the input image and adjust the weights each time using a
backpropagation algorithm. When they perform the convolution operation in each region of the entire
image, they eventually create a feature map which provides insight into the internal representations
for the specific input. CNNs learn features from underlying data. Their strength in their usage relies on
the fact that the loss function provides an error signal that is backpropagated to the networks to
improve the feature extraction and as a result, CNNs provide better representation of the input image.
CAD systems have been advantages by the use of deep learning. The most common applications of
deep learning in CAD systems are the classification of benign and malignant lesions in medical images,
the classification of normal or disease patterns, the prediction of high risk and low risks patterns for
prognosis of a disease, and the stratification of patients into high risk or low risk patients. CAD systems
developed with deep learning algorithms also include image segmentation and classification of tumors
or organs, feature extraction of tumor size or texture to characterize the patient or compare features
of normal and abnormal cases to assess the treatment response or predict the recurrence of the
disease. The large datasets that are available for chest CT, chest radiographs, and mammograms has
led research to conduct several studies regarding lung cancer and breast cancer with the use of these
datasets [12], [13].
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NSCLC radiotranscriptomics

Lung cancer is responsible for a large percentage of cancer-related deaths worldwide. The early
diagnosis of the disease can improve the prognosis and increase the survival rate. Common imaging
interpretation, for instance CT, MRI, or PET relies on the visual analysis in terms of shape, size, contrast
enhancement of various regions of interest within the image. Radiomics involves the high-throughput
extraction and analysis of large amounts of quantitative imaging features with the intent to create
mineable databases from radiological images. Radiomics, with reference to genomics, was first
introduced by Lambin et al. in 2012 [14]. Like other high-throughput techniques, labeled “-omics”,
radiomics targets on developing new imaging biomarkers to better understand the microbiology of
cancer. The use of radiomics could provide further information about the biological constitution of a
tissue or offer prognostic markers. Radiomics can be applied to any cancer-related imaging because it
contains many potential information from medical images. Cancer imaging can be explored using
radiomics and can be converted into high dimensional quantitative tumor intensity, shape, and text
features. In oncological studies, extracted from tumor features that are obtained from radiological
data (CT, PET scans) can be used to reveal diagnostic or prognostic associations in patients with
correlation to other criteria like response to treatment or survival [15].

The process of radiomics involves the conversion of medical images into quantitative features and
occurs through five steps, i) image acquisition and reconstruction, ii) segmentation of region of
interest and rendering, iii) Feature extraction and feature qualification, iv) data sharing and building
databases and lastly v) building predictive and prognostic models. The extracted features utilized in
radiomic analysis refer to algorithms that can be used to describe regions within a radiologic image.
Intensity-based, structural, texture-based and wavelet as the basic classes of algorithms that have
been commonly used for this purpose. After feature extraction, several statistical models can be used
to select the top features that correlate with the outcome of the study. The optimal features can then
be used to build a classifier. Using a set of labeled instances, the classifier is trained to predict the
outcome of instances in the unseen dataset with unknown labels. These labels may represent
malignant or benign characterization of tumor, in case of diagnosis, or low-risk and high-risk patients
in case of survival analysis. A range of classifiers can be used for prediction, including random forest,
support vector machines, neural networks etc. [15].

The effectiveness of radiomics is based on the hypothesis that medical image analysis can quantify the
underlying diseases. Despite the development of multi-modal imaging technologies and computer-
aided diagnostic tools, imaging information at the tissue level may not be correlated with the
underlying molecular and genetic disease biomarkers. For this reason, the joint effect of multi-scale
pathophysiological disease biomarkers may help get closer to the vision of precision medicine.
Radiogenomics/radiotranscriptomics analysis involves the combination of radiomic and genomic or
transcriptomic information and aims to merge the imaging phenotype with the underlying molecular
characteristics of a disease. “-Omics” data, including genomics and transcriptomics have been
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increased with the advances in next-generation sequencing. Genomics study the structure, function,
and inheritance of the genome, with a major part of it being the determination of the sequence of
molecules that make up the genomic DNA content of an organism. Transcriptomics technologies are
used to study an organism’s transcriptome, the sum of all its RNA transcripts. Transcriptomics focuses
on the gene expression at the RNA level and offers the genome-wide information of gene structure
and gene function in order to reveal the mechanisms behind specific biological processes. The
combination of radiomics and transcriptomic features aims to correlate the imaging and gene
expression information and increase the predictive power of predictive models. Several studies have
tried to associate image-derived features with molecular information, where both imaging (CT, MRI,
PET/CT) and molecular or genetic information (miRNA, RNA-seq, DNA) are available [16], [17].

NSCLC radiogenomics and radiotranscriptomics analysis in literature mostly focuses to find the
association between radiomic features and genomic signatures. Morgado et al. [18] investigated the
relation between image phenotypes and the mutation status of Epidermal Growth Factor Receptor
(EGFR) using radiomic features extracted from CT scans. Using linear Support Vector Machine, Elastic
Net and Logistic Regression, authors showed that a comprehensive approach using a region of interest
that include the lung with nodule could successfully predict the EGFR mutation status. Similarly, EGFR
co-mutated with TP53 status was identified using a CT-derived radiomics approach. Zhu et al. [19]
developed and validated a multiclass classification strategy to predict primary overlapping mutations
involving TP53 and EGFR in advanced lung adenocarcinomas. The model could potentially be used as
an important alternative marker for selecting the best responders to target therapy, since EGFR co-
mutated with TP53 NSCLC patients could reduce responsiveness to treatment with tyrosine kinase
inhibitors. However, these studies used radiomic features and correlated the genomic signatures.
There are only few studies that combined radiomic and transcriptomic features [20], [21].

Objectives of the study

In this study, a multi-view survival analysis will be developed to investigate the combination of
radiomics, transcriptomics and deep features extracted from CT scans of NSCLC patients. Two
classifiers will be examined for their ability to classify NSCLC to low- and high-risk patients, Random
Forest, and Support Vector Machine. In Chapter 2, a review of studies about survival analysis of NSCLC
patients is presenting. Survival analysis for lung cancer has been extensively studied over the years,
using solely one type of features. Only a handful of studies have combined different features, such as
radiomics and transcriptomics. This study aims to combine into one feature space, radiomics,
transcriptomics and deep features and assess the predictive power of the developed models.

The analysis code was developed in Python programming language and packages from the scikit-
survival library were used. The code is freely available on GitHub:
https://github.com/NikiKou/deep_radiotranscriptomics_survival_analysis and in the Appendix. A part
of this Thesis will be included in the survival section of the publication entitled:
"Deep Radiotranscriptomics of Non-Small Cell Lung Carcinoma for Assessing High-Level Clinical
Outcomes using Multi-View Analysis" conduced by Trivizakis Eleftherios, Koutroumpa Nikoletta-
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Maria, Souglakos John, Karantanas Apostolos, Zervakis Michalis E., Marias Kostas. The publication is
under peer-review for publishing in a journal. This Thesis differs from the publication in feature
selection and feature integration parts. This study integreates radiomics, transcriptomics and deep
features whereas publication takes into consideration also clinical data. Furthermore, more classifiers
than random forest and support vector machine are examined in the publication.
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Chapter 2: State-of-the-art review

Cancer mortality remains significant despite advances in medicine, including personalized treatment
strategies, combining surgery, chemotherapy, immunotherapy, and radiotherapy. Most patients with
NSCLC are characterized with poor median overall survival. It is of high importance to discover and
validate biomarkers that can predict outcomes and be sensitive to different treatment effects.
Outcome modeling can enable the identification of prognostic signature and a risk stratification of
patients with different cancer therapies. Accurate prediction of survival usually depends on multiple
information including histologic, genetic, imaging and molecular information [22].

NSCLC Survival Analysis using radiomics

Many studies found in the literature are focused on predicting the survival rate or survival time of a
group of patients with NSCLC. Radiomics studies have shown promising results to decode the intra-
tumoral heterogeneity and predict the progression of a disease and the therapy response of the
patients. The radiomic features extracted from computed tomography (CT) and positron emission
tomography (PET), as will be described below, were used to predict prognosis. However, different
modalities reflect different aspect of tumor heterogeneity. By integrating the information of imaging
modalities some studies ended up in improved prognostic values. Chaddad et al. [23] investigated the
prediction of NSCLC patient survival outcomes based on radiomic texture and shape features. CT scans
of 315 patients were retrieved and features automatically extracted from tumor image were
computed. The gross tumor volume was computed for each scan and assigned to different NSCLC
subtypes (i.e. large cell carcinoma, adenocarcinoma, squamous cell carcinoma or not otherwise
specified). A total of 24 features were computed and used in combination with other information of
patients to analyse their survival. The correlation between the survival time and the features was
measured with Spearman’s rank correlation, whereas Kaplan-Meier estimator and log-rank tests were
developed to select features that were more related to patient survival outcomes. After feature
selection, random forest algorithm was used to predict the patient’s survival group. More specifically,
a multivariate analysis using 24 radiomic features and 5 staging/demographic variables such as age, T,
N, M and overall stage, were used as input to a random forest classifier, to classify the patients in two
subgroups, one group with long survival time (above the median survival time) and one with low
survival time (below the median survival time). The importance of each feature was also assessed.
Correlations between radiomic features and survival led to the conclusion that CT imaging features,
especially for patients with large cell carcinoma, primary tumor size and no lymph node metastasis,
could be used as indicators of survival with accuracy at the range of 72%.
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Another study conducted by Shen et al. [24] compared the 2D and 3D radiomic features prognostic
performance differences of NSCLC. A collection of 588 NSCLC patients’ pre-treatment CT images were
used in this study. All patients’ survival data were dichotomized by the cut-off of 2 years, where 1
indicated patients with larger than 2 years survival time and 0, patients with less than 2 years. Tumors’
contours were segmented semi-automatically. Semi-automatically segmentation referred to
radiologists identifying a proper point inside the lesion and after Toboggan based growing algorithm
automatically segmenting lung lesion. A total of 1014 radiomics features were assessed, 507 2D
features and 507 3D features. Both feature groups involved certain categories, first-order histogram
statistics, Gray-Level Co-occurrence Matrix, Gray-Level Run-length Matrix and Fractal Dimension.
Authors employed the univariate Cox regression model to achieve each feature’s Harrell’s
concordance index (C-index) and those with higher C-index were considered with potential prognostic
power. The stable and potential prognostic features were selected to construct the 2D group’s and 3D
group’s indicators of classification. The prediction performance of the logistic classifier showed that
3D group’s AUC was larger than the 2D’s in the training cohort, but the 2D’s was better in the validation
cohort. Classified binary indicators were associated with censored continuous survival data for the
survival analysis. Both 2D and 3D indicators achieved good results in the Kaplan-Meier analysis and C-
index of the 2D model was higher than the 3D model. In conclusion, considering the cost of radiomic
feature calculation and the better performance of 2D features, Shen et al. resulted in recommending
2D features for use in practical research.

The combination of the radiomics signatures extracted from 2D and 3D CT images was also studied
[25]. The main purpose of the study was to develop a radiomics nomogram for the prediction of the
survival of patients with NSCLC. A total of 975 features were extracted from 371 CT images. Using the
LASSO regression model, the candidate features from 2D were reduced to ten variables and the 3D
features were reduced to nine variables. To build the optimal radiomics signature, authors compared
the prognosis performance of 2D and 3D feature groups. As discussed in the previous study, univariate
Cox proportional hazards model was used and C-index and hazard ratio were calculated to evaluate
the predictive accuracy of 2D, 3D or 2D plus 3D radiomics signature. The C-index of 3D was greater
than of 2D, however both had a favorable predictive power for survival. The Kaplan-Meier analysis
demonstrated that the combined 2D and 3D features could more effectively distinguish the patients
into low-risk and high-risk groups. The new radiomics signature was built using the combined feature
vector containing different feature groups. Finally, they evaluated the prognosis ability of the clinical
TNM staging and radiomics nomogram. When the radiomics signature was combined with the TNM
staging system and clinical information, the predictive power was significantly improved, showing that
radiomics can improve the predictive accuracy of patients’ survival. The conclusion of the study that
with combined 2D and 3D features the predictive power was improved and that could be verified on
the reason that 2D image under segmenting mainly contains the central region of the tumor. However,
the tumor heterogeneity, is the outer structure of the tumor tissue and 3D image carries information
on the peripheral surface of the tumor.

Another study focused on the quantitative assessment of heterogeneity by histogram analysis of
tumor images. Bluthgen et al. [26] aimed to determine the potential of imaging analysis as an
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independent predictor of survival and the potential of associating tumor heterogeneity with gene
alterations. CT scans from 2009 till 2015 from 692 patients were reviewed, together with clinical and
molecular data (KRAS, EGFR and ALK status) and 421 of them were used for histogram analysis. The
prognostic value of sex, age of inclusion, smoker status, size tumor and CT histogram analysis
parameters were measured in a univariate analysis. Multivariate analysis was performed by Cox
regression models and Wilcoxon test was used to correlate the CT histogram analysis parameters with
mutational status. In the training dataset of 313 patients, primary mass entropy was strongly
associated with overall survival in the univariate analysis and remained an independent prognostic
factor in a multivariate analysis. However, this result wasn’t reproducible in the validation patient
cohort.

De Jong et al. [27] investigated the prognostic value of the signature in two cohorts of stage IV NSCLC
patients, EGFR and ALK wildtype, from 195 patients with their CT scans. Radiomic features were
calculated for the primary tumor and the C-index of Cox regression model was calculated and
compared to the signature performance of overall survival. The same group some years before
published a prognostic radiomic signature for overall survival, consisting of 4 radiomic features: “first
order statistics: Energy”, which described the overall density of the tumor volume, “Shape:
Compactness”, a feature for quantifying the compactness of the tumor volume relative to the
compactness of a sphere, “Gray level run length: Gray level non-uniformity” to measure intra-tumor
heterogeneity and lastly “Wavelet Gray level run length: gray level non-uniformity” to describe the
intra-tumor heterogeneity after wavelet decomposition of CT scan. The signature was trained on stage
I-11l NSCLC and in a second phase was used in stage IV patients. This study showed that stage IV
patients with prognostic index, which was calculated for the radiomic signature, lower than the
signature median had better overall survival compared to patients with higher prognostic index.

Another study by Zhang et al. [28] presented different strategies for improving predictive performance
of radiomics-based prognosis for NSCLC. Also, these strategies were used to overcome some
challenges such as unbalanced data, small sample sized and feature redundancy, which lead to low
predictive accuracy. CT images of 112 patients with NSCLC were used to predict recurrence, death,
and recurrence-free survival using a radiomics analysis. Initially, a large number of quantitative
features were extracted from medical images, and 5 unsupervised feature reduction methods were
investigated, including Principal Component Analysis, Independent Component Analysis, Zero
Variance and Near Zero Variance. Eight classification algorithms were used to predict the endpoint
event. Some of the algorithms examined were Random Forest, K-nearest Neighbour, Generalized
linear model, Support Vector Machine, Neural networks. PCA showed the best performance in
reducing the number of features, highlighting that unsupervised feature reduction methods maintain
the interaction among features, benefiting the predictive model training process. Comparing the
classifiers, random forest resulted in the highest predictive value. Down-sampling, up-sample and
Synthetic Minority Over-sampling techniques were also applied to tackle the unbalanced data. Finally,
an analysis of variance suggested that feature selection methods, data endpoints and classification
models significantly affected the predictive accuracy, indicating that these factors should be
investigated when building a cancer prognosis model.
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The CT-based radiomic signature was used by Li et al. [29] for predicting progression-free survival in
stage IV ALK-positive NSCLC patients. A total of 63 stage IV ALK-positive NSCLC patients who had
received TKI crizotinib therapy and 105 stage IV EGFR-positive NSCLC patients were used for model
construction and validation, respectively. The progression-free survival was counted from the start of
treatment with TKI to the confirmation of disease progression or death. Other clinical characteristics,
such as sex, age and smoking status were also recorded. Authors initially extracted 481 quantitative
3D features from CT scans of the patients from manually segmented tumor volumes of interest. Next
step for Li et al. was to perform Pearson correlation analysis and the least absolute shrinkage and
selection operator (LASSO) penalized Cox proportional hazards regression to reduce the number of
radiomic features and select the critical ones. They assessed the potential association between the
radiomic signature and progressive-free survival by Kaplan-Meier survival curves as well as log-rank
tests. Results showed that the CT-based radiomic features could capture important information
regarding the tumor phenotype. The prognostic performance for ALK-positive NSCLC patients in both
training and validation cohort reached C-index to 0.74 and 0.72 respectively. The radiomic signature
managed to stratify the patients into slow progression and rapid progression disease. Adding the
clinical characteristics (sex, age and smoking status) did not benefit the model, indicating that radiomic
signature alone could predict efficiently the prognosis in ALK-positive NSCLC patients treated with TKI
crizotinib.

The early prediction of the tumor response of SCLC patients to chemotherapy with the use of CT-based
radiomics signature was examined by Wei et al [30]. A total of 92 patients who received the standard
first-line regimen of etoposide and cisplatin, were divided into two groups: response and no response
patients. These patients also underwent CT examination and a total of 21 radiomics features were
extracted from CT scans that conducted prior to and after two cycles of chemotherapy. Researchers
established a predictive model using a binary logistic regression model. The results of the study
showed that the performance of the radiomics signature to predict the chemotherapy efficacy were
higher than the conventional model that used clinicopathological parameters. The outcome of this
study was that radiomics models could effectively predict the therapy response.

Radiomics analysis of tumors of NSCLC patients has been widely used on single images modalities, and
especially in CT scans, as it was presented previously. Integrating information from different imaging
modalities may provide different characteristics on tumor heterogeneity. Amini et al. [31] compared
the prognostic value of multi-modality multi-level fusion radiomics models. CT images and ®F-FDG
PET images of 182 patients were collected from The Cancer Imaging Archive (TCIA) and were used for
this study. Single-modality models were constructed initially, and then PET and CT information were
integrated using image-and feature-level fusions to construct the multi-modality models. Cox
proportional hazard regression was used for survival analysis. Image-level fusion was performed with
feature extraction from fused PET and CT scans using to wavelet-based technique. The wavelet fusion
outperformed other models resulting to C-index=0.71. In feature-level fusion, features were extracted
from separate PET and CT scans and then two different strategies were developed, feature
concatenation (ConFea) and feature averaging (AvgFea). Both approaches resulted in lower C-indices
(0.58 and 0.64, respectively). Amini et al. concluded that multi-modality models showed increased
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prognostic value compared to single-modality models. Also, when combining information obtained
from CT and PET scans, image-level fusion showed superiority in predicting compared to feature-level
fusion. One year later, the same group of researchers showed that image-level fusion multi-modality
radiomics models outperformed clinical models as well [32].

The combination of different imaging modalities was also examined by Forouzannezhad et al [33]. In
this study, they collected the survival outcomes for 45 patients with unresectable NSCLC enrolled on
the FLARE-RT phase Il trial of risk-adaptive chemoradiation. CT scans, FDG-PET and perfusion SPECT
imaging before treatment and after treatment were performed. Shape, intensity, and texture-based
features were extracted from the metabolic tumor volume resulting in 110 total features. Authors
applied a multitask learning approach for prediction of overall survival, that was consisted of a fused
Laplacian sparse group LASSO with component-wise gradient boosting survival regression. The study
demonstrated that FDG-PET radiomics had the higher prognostic value with C-index equal to 0.71
compared to CT radiomics and SPECT radiomics with C-index 0.64 and 0.6, respectively. Multitask
learning of FDG-PET radiomics outperformed also clinical imaging and conventional FDG-PET delta
radiomics. The studies presented in this chapter highlighted the potential of radiomics models,
especially multi-modality models to improve prognosis for NSCLC patients.

NSCLC Survival Analysis using transcriptomics

Advances in genomics and the advent of next-generation sequencing has established massive genomic
approaches. RNA sequencing for gene expression has created paradigm shifts in a variety of research
fields. Gene and network expression signatures have been successfully used to predict cancer patients’
survival. Different studies have shown that microarray measurements of gene expression whether
alone or combined with clinical information could predict overall survival in lung adenocarcinoma [34],
[35]. Gene expression signatures were also used to predict response to therapy. Zhu et al. [36]
presented the first NSCLC prognostic gene expression signature generated from microarray studies
using samples collected prospectively in a randomized phase Il adjuvant cisplatin/vinorelbine trial. A
15-gene signature separated patients into high-risk and low-risk groups with significantly different
survival. The interaction between risk groups and adjuvant cisplatin/vinorelbine was verified by
guantitative polymerase chain reaction. They found that patients whose tumors were predicted to
have a poor prognosis but who received chemotherapy, exhibited significantly better survival than the
observed patients whose tumors had a poor prognosis signature and did not receive chemotherapy.
In contrast, when the patient’s tumor had a good prognosis signature and chemotherapy was
administered, the patient did worse than patients with a good signature with no chemotherapy. The
study showed that this gene expression signature could be a prognostic marker of NSCLC in early stage.
For patients with poor prognoses, the tumor biomarker information suggested that they needed
additional therapy, and that were likely to gain survival benefit from adjuvant cisplatin/vinorelbine.
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Another study by Watza et al. [37] hypothesized that NSCLC-specific mechanisms of immune
modulation could be detected by leveraging tumor transcriptomic profiling paired with patient
outcome data and could identify the immune-centric gene networks that impact patients prognosis.
Tumor transcriptomes and clinical characteristics were obtained from two distinct NSCLC cohorts. To
test the immune-centric gene and pathway expression for association with patient survival, they
constructed a parsimonious base survival model. Prognosis-guided gene and pathway analysis showed
significant survival enrichments and the interleukin signaling pathway, was found to be enriched with
prognostic signal and have the greatest impact on overall survival. From 430 genes in interleukin
signaling pathway, subsequent leading-edge analysis identified 23 genes that were in both cohorts.
These gene-pathway candidates were proposed as future targets for therapeutic and mechanistic
studies to advance immunotherapy. Another prognostic model based on immune-related genes of
lung squamous cell carcinoma was developed by Rui et al [38]. They performed univariate and
multivariate Cox regression analysis to construct the differentially expressed immune-related genes
(DEIRGS) to predict survival. The p-value between low- and high-risk subgroups was zero, indicating
that the prediction model could accurately estimate lung squamous cell carcinoma prognosis. The
relationship between prognostic model and immunocytes was further explored through immunocyte
correlation analysis. They also performed immunocyte infiltration analysis, showing that dendritic
cells and neutrophils were positively correlated with immune-related genes and played an important
role within the immune microenvironment. The relationship of the transcriptional tumor immune
microenvironment with prognosis of patients with lung adenocarcinoma was also examined by Chen
et al [39]. They used gene set variation analysis to identify gene sets related to prognosis starting from
85 locally advanced lung adenocarcinoma samples. To quantify infiltrated immune cells, researchers
employed the microenvironment cell-population counter method. Survival analysis with the log rank
test demonstrated that antigen processing pathway enrichment was associated with better prognosis.
Also, Cox proportional hazards models were used to identify risk factors and greater infiltration of
neutrophils was identified as an independent risk factor for poor diagnosis.

NSCLC Survival Analysis using deep features

Identifying predictive features from medical images of patients is the key concern for tumor
classification and prognosis analysis. Traditional quantitative features, such as radiomics, have been
successfully used for this purpose [23], [24], [27], [28]. However, recent studies use features extracted
from a deep neural network to characterize cancers, which showed good classification performance.
Advances in artificial neural networks (ANNs) and especially in convolutional neural networks (CNNs)
have created a new way for extracting features of medical images and which could be used in different
tasks. A study that explored deep learning applications in medical imaging for patient stratification
was conducted by Hosny et al. [40]. Seven independent datasets across five institutions containing
1194 patients with NSCLC images with CT and treated with either radiotherapy or surgery was
collected for analysis. For the patients treated with radiotherapy, a 3D CNN was trained end-to-end.
The same network was used for the surgery dataset, using a transfer learning approach between
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radiotherapy and surgery datasets. The deep learning networks were used for extracting imaging
features and creating prognostic signatures for patients. These prognostic signatures were assessed
on their ability to stratify patients into low and high mortality risk subgroups. Also, Kaplan-Meier curve
analysis was used to evaluate the performance of network to stratify low and high-risk patients. CNN
showed a significant prognostic power in predicting 2-year survival and outperformed models based
on predefined tumor features. Hosny et al. finally identified regions withing and beyond the tumor,
which had the largest contribution to the prognostic signature and the most contribution towards
predictions, highlighting the importance of tumor-surrounding tissue in patient stratification.

A multimodal deep learning framework for NSCLC survival analysis, named DeepMMSA was proposed
by Wu et al. [41]. DeepMMSA consisted of three modules, multimodal feature extraction (features
from CT images and clinical records), multimodal feature fusion, and survival analysis. A group of 422
NSCLC patients from The Cancer Imaging Archive were considered to assess the framework. For these
patients, pretreatment CT scans and clinical outcome data were available for analysis. Using a 3D-
ResNet as network structure and CT images as inputs, image features were extracted. Authors also
used clinical information, such as clinical TNM stage, histology, gender, age of patient. These features
were then fused and used for survival analysis module. Results shown that there was a relationship
between prognostic information and radiomic images. The majority of existing models could be
employed for survival analysis, such as Kaplan-Meier model, Cox regression model, machine learning
methods and deep-learning based methods. All of these methods could be used to analyze the input
from multimodal features in the fusion layer.

The efficacy immune checkpoint inhibitor monotherapy was evaluated by He et al. [42] with the aid
of CT images combined with deep learning. A group of patients who received anti-PD-1/PD-L1
monotherapy for advanced NSCLC and had undergone CT scans was included in this study.
Progression-free survival (PFS) was calculated as the time from the start of immunotherapy till tumor
progression or death, and the overall survival as the time from diagnosis till last follow-up or death. A
survival network was developed during this study to obtain a risk vector of PFS risk and OS for patients
through 3D tumor imaging. Then, the risk vectors were combined to explore more in depth the patient
prognosis. At the same time, they constructed dual-task network to obtain the progressive disease
score and partial response score of patients. The vectors obtained from the networks were fitted using
the Cox regression model, in order to calculate the OS risk score and PFS risk score.

NSCLC Survival Analysis with feature fusion

Many genomic biomarkers, such as DNA polymorphisms and RNA expression levels, have emerged in
recent years of genomics. These biomarkers have been used for the diagnosis and the prognosis of
different cancers, including NSCLC. Furthermore, with the advancement of image-processing
technologies, such as MRI, CT, PET, PET-CT etc., and the extraction of quantitative imaging features
from medical images, radiomics has emerged. “Radiogenomics”, a combination of radiomics and
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genomics have been applied for both radiotherapy response and prognostic implications in patients
with NSCLC [15]. Radiomics has already shown promise for predicting diagnosis, prognosis and
response to therapy in lung cancer, with radiogenomics bridging the gap between computer-aided
prognosis and personalized medicine. “Radiotranscriptomics” is a branch of radiogenomics, which
combines radiomics with transcriptomics. However, it has not yet been fully explored the combination
between mMRNA, miRNA, expression levels and medical image features in NSCLC. A
radiotranscriptomics study for prediction of radiotherapy response was conducted by Fan et al. [21].
They established radioresistant NSCLC cell lines to extract cell miRNA and performed microarray
analysis. At the same time, 174 NSCLC patients were CT scanned. The radiomics texture features were
extracted from their images and their miRNA serum was also obtained. After obtaining the optimal CT
texture features, the LASSO model was used for feature selection and the features were combined to
generate the radiotranscriptomic signatures. These signatures were used to predict the objective
response rate, OS and PFS using logistic and Cox regression. The conclusion of this study was that the
radiotranscriptomic signature could be an independent biomarker that could predict the radiotherapy
response of NSCLC patients.

The combination of deep features with radiomics was explored by Paul et al. [43]. In this study, they
used a transfer learning concept to predict the survival of patients with non-small cell adenocarcinoma
lung cancer. They collected 40 lung cancer cases with the CT images and applied pretrained CNNs on
ImageNet to extract deep features. Three different pretrained CNN models described in Chatfield et
al.’s work were used (VGG-F architecture, VGG-M architecture, and VGG-S architecture) [44]. Relief-f,
a simple selection algorithm for finding features with strong class dependencies and symmetric
uncertainty feature selector, an algorithm that ranks the features by calculating the fitness between
the features and the classes, were experimented in this study for selecting features. Also, for
classification of patients to short-term and long-term survivors, four classifiers (Naive Bayes, Nearest
Neighbors, Decision Trees and Random Forests) were implemented. When they used traditional
features for patients’ classification, the best accuracy of a decision tree classifier was 77.5%. With the
use of deep features and a decision tree classifier, the accuracy was the same. However, with the
combination of traditional quantitative features and the extracted deep neural network features, Paul
et al. reached an accuracy of 90%. With single-slice approach, meaning by merging deep and
traditional quantitative features extracted from single-tumor slice, the 90% accuracy was obtained
using the VGG-F CNN architecture with the random forest classifier in a leave-one-out-cross validation
with 10 features. With multiple-slice approach, the best accuracy was achieved using the random
forest classifier, the symmetric uncertainty feature ranking algorithm and combining the best five
features extracted from the VGG-F architecture and the five best traditional features.
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Chapter 3: Research methodology

In this study, three different classes of data, radiomics, transcriptomics and deep features will be
examined in their ability to predict the survival of NSCLC patients. The fusion strategy includes
combining all features to perform survival analysis and also combine only radiomics and deep features.

The collected data will be pre-processed and after feature selection, the data will be used for the
analysis. Two classifiers will be examined, Random Survival Forest and Survival Support Vector

Machine. The workflow of this study is presented in Figure 4.
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Figure 4: Flow diagram of the proposed survival analysis
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Dataset

The data used in this study was obtained from the NSCLC Radiogenomics dataset [45]. The dataset
was created using clinical and imaging data of 211 subjects which were collected between 2008 and
2012. Subjects received preoperative CT and PET/CT scans at Stanford University Medical Centre and
Palo Alto Veterans Affairs Healthcare System prior to survival treatment. The dataset comprises 211
Computer Tomography (CT) examinations, with 142 available ePad pixel-based lesion annotations [46]
and 211 image markup standards [47]. There are additionally Fasting Fluorodeoxyglucose F-FDG
PET/CT data available for 162 subjects, 130 RNA-seq vectors (P;) and clinical data with histology,
genomic, semantic, survival and disease recurrence information. The dataset is available at Cancer
Imaging Archive [48].

From the total examinations, a subset of 142 CT has annotations on a pixel basis for the region of
interest (Pgo;)- The intersection of the transcriptomic and imaging data, dented by Py N Pgy;, gives
the subset Py, of 115 patients. The clinical data includes patients with characterization such as
“Survival Status”, either being alive or dead and “Time to Death” counted in days. The patient’s labels
were 0 when the time of survival was more than the median time of survival, indicating low risk
patients and 1, when time of survival was less than the median time of survival, indicating high risk
patients.

LSURVIVAL = PROI n PTIME TO DEATH

Eq 1
0 if PrimeTo pearn > median(Priye 1o pears)

Lsyrvivar = { . .
1if Prime o pearn < median(Priyg to peath)

The median days of survival were computed to be 704. The patient cohort of survival Psyryivar =
Lsyrvivar N Pre) includes 40 subjects and was considered for the proposed analyses. A subset of 23
patients were characterized as high-risk patients and labeled with label 1 and the remaining 17 as low
risk patients, with label 0.
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Feature extraction
Radiomics

The radiomics analysis of the original CT examination retrieved from Trivizakis et al., 2021 [20] and
resulted in 2996 imaging features. Texture features were calculated by the PyRadiomics framework
version 2.2.0 [49], including Gray-Level Covariance (GLCM), Gray-Level Dependence Matrix (GLDM),
Gray-Level Size Zone Matrix (GLSZM), Neighbouring Gray Tone Difference Matrix (NGTDM) etc. These
kinds of matrices are methods for describing spatial pixel differences by studying the spatial
correlation properties of gray scales and thus are the most capable of expressing the inhibition
between different parts of tumor [49]. Shape features and first order features were also calculated,
including elongation, flatness, 2D and 3D diameter, minimum, maximum, mean, range, kurtosis,
skewness of gray level intensity and other statistical features. Exponential, gradient, Laplacian of
Gaussian, square and wavelet filtering were applied to the original image in order to enrich the
radiomic analysis. The general process of PyRadiomics platform is shown in Figure 5.
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Figure 5: Overview figure of the process of PyRadiomics [49]
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Transcriptomics

The RNA-seq data for this study were downloaded from the NCBI GEO hosting database [50]. The RNA
was extracted from the tissue and analysed with RNA sequencing technology. A total of 130 RNA-seq
vectors were available for transcriptomic analysis. The transcriptomics comprised of 22126 values but
after the removal of incomplete features, a transcriptomic signature of 5268 molecules per patient
was examined.

Deep features

Advances in Deep Learning have contributed in identifying, classifying and quantifying patterns in
medical images [51]. The success of Convolutional Neural Networks is attributed to their ability to
extract highly representative features among the network layers of filtering, and use these features in
the last fully connected layers for pattern classification [52]. The deep features were retrieved from
Trivizakis et al., 2021 [20]. The proposed “off-the-shelf” Transfer Learning (TL) strategy developed in
that study, uses pretrained ImageNet [53] models to extract raw deep features from the last
convolutional layer of the source model. Transfer Learning is a machine learning technique whereby
a model is trained and developed for one task and is then re-used on a second related task. Usually,
these tasks are called source and target tasks, respectively. It is usually applied where there is a new
dataset smaller than the original dataset used to train the pre-trained model. The “off-the-shelf”
strategy uses features from the source task without re-training the network and use them to train a
third-party classify. In another Transfer Learning strategy, called fine-tunning, the internal
representation has to be adapted with a new training process, but a part of the whole of the source
model is transferred to the new model [54], [55].

Eighteen models were used for the extraction of deep features. Some of the most popular ones were
ResNet [56], NasNet [57], DenseNet [58], Xception [59], VGG [60] and MobileNet [61]. All pretrained
convolutional layers were transferred to the new model and the fully connected layers were removed
in order to extract the deep features from the low-level filters. Different number of features were
extracted per slice, depending on the architecture used. After the removal of features with zero
variance, the raw features extracted of each model varied from 502 to 7952.

Multi-learning with combined features

Three different categories of data were considered in this study: (a) radiomics, (b) transcriptomics and
(c) deep features. The data sets were combined in order to understand the contribution of each
category in the final outcome. Radiomics, transcriptomics and deep features were concatenated into
a common feature space prior to classification indicating the first data view which all available data
contributed to classification. The second data view was created with the concatenation of radiomics
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and deep features into a common feature space. The acquisition of these data categories as shown in
Figure 6 The results obtained using these data views are shown in Research findings / results.
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Figure 6: Features retrieved from CT, PET/CT and RNA-seq data [62]-[65]

Data pre-processing

Data cleaning

Data cleaning is usually the first task in data pre-processing. It is the process of detecting and then
removing or correcting corrupt data and refers to identifying incorrect, inaccurate, orincomplete parts
of the data [66]. When building a machine learning model, not all the features in the input data are
useful to build a model. Some may give no value to the model and should be removed. Removing
features whose variance does not meet a specific threshold, is a common approach to feature
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selection. The features in this study have been selected with the Variance Threshold approach, and
the features with low variance have been removed.

Normalization

Normalizing data is of high importance in accelerating the machine learning process and improving
predictions. Most tools normalize the data in the range of [0,1] or [-1,1], depending on the application.
Generally, data normalization refers to the process of mapping the data variables from one range of
values to another for each feature to contribute equally to the model training. There are some
challenges appear affecting the normalization process when some data values are out of range
(outliers), which are usually removed from the set. When the data are transformed in the range [0,1],
the method is called normalization [67]. Another approach which generates features with zero mean
and unit variance is called standardization and the standardized value xy,, of a sample x with u
statistical mean and o standard deviation is calculates as shown in Eq. 2. The features in this study
have been standardized as described above.

Eq 2

Feature Selection

Machine Learning methods have difficulty in dealing with high-dimensional data, so pre-processing of
the data and reduction of features is essential. Feature selection is one of the most important
techniques in the data pre-processing, it helps in understanding data, reducing computation
requirement, improving the predictor performance and reducing the effect of curse of dimensionality
[68], [69]. The focus of feature selection is selecting a subset of variables from the feature space which
can efficiently describe the input data while reducing effects from noise or irrelevant variables and
still provide good predictions [70]. Filter methods are independent of the learning algorithms, and
they rely only on the characteristics of data to assess feature importance. The feature importance
evaluation process can be either univariate or multivariate. In the univariate approach, each feature
is ranked individually regardless of other features. The multivariate approach ranks multiple features
in a batch way [71].

To reduce the number of features, a feature selection method based on the Analysis of Variance
(ANOVA) method was used in this study. ANOVA is a statistical procedure that compares means of
several samples [72]. The purpose of this is to determine whether the means from two or more
samples of data come from the same distribution or not. Specifically, it tests the null hypothesis H, of
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Eg. 3 against the alternative hypothesis H; where there are at least two group means that are
statistically significantly different from each other (Eq. 4).

Hy = =pp = pus =...= Eq. 3

Hi:31<il<k:y +u Eq. 4

Where p is the group mean, i, [ are two groups and k is the number of groups.

The formula for the one-way ANOVA F-test statistic is shown in Eq. 5, where Y; denotes the sample
mean in the i-th group, n; is the number of observations in the i-th group, Y denotes the overall mean
of the data, Y;; is the j-th observation in the i-th out of k groups and N is the overall sample size.

_ between — group variablity Y n(Y; = V)?/ (k- 1)
- . . _ . ays - —\2
within — group variability {'c:1 27:1(Yij _ Yi) /(N = k)

A combined analysis of the p values with respect to their corresponding F-scores for radiomics,
transcriptomics and deep features led to the selection of a subset of the most significant features.
After feature selection with a univariate method, LASSO method was used for further feature
selection.

Shrinkage methods minimize the residual sum of squares of the model using Ordinary Least Squares
(OLS) [73]. The least absolute shrinkage and selection operator (LASSO) can be used for parameter
estimation and variable selection and minimizes the absolute sum of the regression coefficients.
LASSO is a particular case of the penalized least squares regression with L1-penalty function. It
improves both prediction accuracy and model interpretability by combining the good qualities of
subset selection and ridge regression. The LASSO estimate can be defined by:
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p 2

N
plasso = argmﬁmZ(yi —Bo — injﬁj)
=1 '

j=1
Eq. 6

14
Subject to Z|Bj| <t
j=1

Survival Analysis

The statistical analysis of what are usually referred to as survival time, lifetime, or failure time is an
important topic in many areas, including the biomedical, social, and engineering sciences. Survival
analysis has been a very active research field for several decades and refers to a set of statistical
methods for analyzing the time until an event occurs, such as death in biological organisms or failure
in mechanical systems. In survival analysis, the outcome variable has both an event and a time value
associated with it. When it is used in medical studies, the event of interest is usually death. However,
in cancer studies, the event could be the time between response to a treatment till disease-free
survival time or response to treatment till recurrence. It is crucial to specify what is the event of
interest and the starting and finishing point of observation period [74].

Usually, only some individuals have experienced the event and, subsequently, survival times will be
unknown for a subset of the group of study. This phenomenon is called censoring and is one aspect
that creates specific difficulties relating to survival analysis. Survival analysis generally deals with
censored data, that is, when the time to the event is not observed. There are three main reasons why
this happens. First, the individual withdraws from the study and there is no information about him
after a specific time, second, the individual does not experience the event till the study is over, or
third, the individual is lost to follow-up during the study period. Also, censoring can be categorized in
three different types, right, left and interval censoring. Right censoring, the most common type of
censoring, occurs when the survival time is incomplete at the right side of the follow-up period. That
can be occurred when the subject does not experience the event because the study ends earlier, or
the subject leaves the study before the event. An example of right censoring is depicted in Figure 7. In
contrast to right censoring, if the event of interest has already occurred, meaning that the survival
time of the individual is less than or equal to the observed survival time, the censoring is called left
censoring. The last type of censoring is the interval-censoring, in which we do not know the exact
timing of the exposure, but the event occurs between two timepoints. As an example, when dealing
with lifetime problems and knowing both the birth and death of the subjects, right censoring occurs
for those subjects whose birth is known and there are still alive when the study ends. Left censoring,
on the other hand, is when the lifetime of the subject is known to be less than a certain duration.
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When the lifetime is less than a specific threshold may not be observed at all. This is called truncation
and is deliberate and due to design study. When the entire study population experience the event of
interest, the phenomenon is called right truncation. When the subjects have been at risk before
entering the study, they are left truncated [75].

A X |

B E‘Siud}' end
RIGHT )

C —— Withdrawn &7 CENSORED |
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Figure 7: Right censored individuals, true survival time is equal to or greater than the observed
survival time [75]

Two quantitative terms considered in any survival analysis are the survival function, denoted by S(t),
and the hazard function, denoted by h(t). The survival function gives the probability that a person
survives longer than some specified time t, that is, S(t) gives the probability that the random variable
T, exceeds the specified time t (Eq. 7).

S =P(T=2t)=1-F(t) = ff(x)dx

dF(t)  dS(t) kg 7

dt dt

f@) =

where T is a non-negative random variable of a person’s survival time, F(t) is the cumulative
distribution function of T with corresponding probability density function f(t).
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The survival function is essential in survival analysis, because knowing the probabilities for different
values of t, provides crucial information on survival data. Time t ranges from zero to infinity, where at
time t = 0, is the start of the study and the probability of survival gets its higher value of one, and at
time t = oo, the survival probability decreases till eventually fall to zero. Usually, the survival function
is represented as a step function, as is shown in Figure 8(ii).

S(0)=1 Q;(I) in practice:

14 |
j—L
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0 t oo —Pp

0 I Study end

Figure 8: Graphs representing survival function in a (i) smooth curve and (ii) step function.

The hazard function, h(t), is the instantaneous rate at which events occur, given no previous events.
The hazard function is also referred to as mortality rate or risk in the health care field [76]. The hazard
function h(t) and the cumulative hazard function H(t) are given by the Eq. 8. The hazard function
gives the instantaneous potential per unit time for the event to occur, given that the individual has
not experienced the event up to time t. The hazard function focuses on failing, on the occurrence of
the event, whereas survival function focuses on not failing.

PE<T<t+A4tIT =t
h(t)=£}%m0 ( ot | )

=f®)/5()

Eq 8

t
H(t) = f h(w)du = —log (S(t))
0

The survival probability can be estimated nonparametrically from observed times, using the Kaplan-
Meier estimator [77]. The Kaplan-Meier method is a popular method to analyse “time-to-event” data.
The outcome in Kaplan-Meier analysis often includes all-cause mortality. For k patients, the events
occur in distinct times t; < t; < -+ < t;. The probabilities of surviving from one interval of time to
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the other may be multiplied together to give the cumulative survival probability. The probability S(tj)
of not experiencing the event at time ¢; is calculated from S(tj_l), which is the probability of being
alive at time t;_;, the number n; of patients alive just before time t; and the number of events d; at
time ¢;.

d;
S(4) = SEG-DA =) Eq. 9
]

The value of survival probability is constant between times of events, so the probability is a step
function that changes value after each event. The Kaplan-Meier survival curve, the plot of survival
probability against time, provides an overview of the data that can be used in survival analysis. The
log rank test is a popular method to test the null hypothesis of no survival between two or more
independent groups. It is a large-sample chi-square test that uses as its criterion a statistic that
provides a comparison of all compared Kaplan-Meier survival curves. For each time point the observed
number of events and the number of expected in each group are calculated. The number of expected
events is calculated as the proportion of subjects who are at risk at a given time point multiplied by
the total number of events at that point. The test is more likely to detect a difference between groups
when the risk of an event is consistently greater for one group than another.

The Cox proportional Hazards model [78] is one of the most widely used methods for modelling
survival data. For one explanatory variable in data of analysis, non-parametric methods like Kaplan-
Meier, can be adequate if the groups that are in comparison are reasonably similar. However, the
groups may differ in many aspects (age distributions, proportion of men and women etc). The analysis
of different groups must be adjusted accordingly, otherwise the analysis may be confounded. The
purpose of the Cox proportional hazards model is to evaluate simultaneously the effect of several
factors on survival in a multivariate way. It allows analysts to examine factors that may influence the
rate of an event occurrence at a specific point in time. The predictor variables, or factors, are also
called covariates. The basic Cox model is described as:

h(t|Z) = ho(t)exp (B'Z) Eq. 10

where hy(t) is the baseline hazard which may vary arbitrarily over time, Z is the covariate vector, and
B = (B1, B2, -, Bp) is a vector of covariate coefficients that are assumed to be constant. For two
individuals with covariate vectors Z and Z*, the ratio of their hazard functions can be simplified to:
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h(tl

h(t|1ZY) eXp(z Be(Z — Z})) Eq. 11

As it shown in Eq. 11, the ratio of the hazard rates of two covariate values is constant or proportional
to the other and does not depend on time t. The Cox model can be described as a multiple linear
regression of the logarithm of the hazard on the covariates Z with the baseline hazard being the
intercept. The covariates act multiplicatively on a baseline hazard which may vary freely over time.

Combining survival analysis with machine learning

At each time point that an event occurs, the process can actually be viewed as a classification problem,
whether or not a certain subject will experience the event at the specific time. Cox proportional
hazards model is the standard for analysing time-to-event data. However, there are several limitations
in the method. Firstly, it assumes that hazard functions for any two individuals are proportional, it fails
if features are highly correlated, its decision function is linear in the covariates and lastly, it is not
applicable to data with more features than samples. Several machine learning models for survival
analysis have been trained. After training the model, it can be used to predict the survival time of
patients based on a given set of features. For a set of n patients, we know the survival time y; of
patient i, that is the exact time ¢; = 0 of censoring (if the patient has not experienced the event §; =
0) and the time t; when the patient experienced the event (§; = 1). In this study, a random forest and
a support vector machine will be evaluated as classifiers for survival analysis.

Support vector machines are classical machine learning techniques that can be used for classification
and regression. The main goal in classification tasks is to find a hyperplane in an N-dimensional space
(where N is the number of features) that distinctly classifiers the data points. Hyperplanes are decision
boundaries that help classify the data points. Data points that fall on different side of the hyperplane
can be attributed to different classes. Support vector machines are widely used because are effective
in high dimensional spaces and they use a subset of training points in the decision function (called
support vectors), so they are also memory efficient. There are two types, linear and non-linear. Linear
support vector machines are used for linearly separable data and non-linear for non-linearly separated
data, meaning that the dataset cannot be classified by using a straight line. In ranking-based linear
support vector machines, the main objective is to recover the correct order of samples according to
their relevance. In survival analysis, relevance indicates the survival time. The pairs of comparable
samples that can be used for training can be defined as the set P in Eq. 12 and p = |P| defines the
cardinality of this set, which is bounded by 0(n?) space, where n is the number of samples [79].
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P = {(i'j)b’i >yj N6 = 1}i,j:1,...,n Eq 12

The objective function of ranking-based linear survival support vector machine is shown in Eq. 13.

1
fw) = EWTW +% Z max (0,1 — (wai — waj))Z Eq 13

i,JEP

where w € R are the coefficients and Y > 0is a regularization parameter. A new set of data points
Xnew €an be ranked with respect to their predicted survival time.

Another machine learning method used in survival analysis is random forests. Random forest is a
commonly used algorithm, which combines the output of multiple decision trees to reach a single
result. It is used both for classification and regression problems. The random forest is an extension of
the bagging method, it utilizes bagging and feature randomness and creates uncorrelated forest of
decision trees. While decision trees consider all possible feature splits, random forest selects only a
subset of those features using feature randomness. The random forest is made up of a collection of
decision trees, and each tree is comprised of a data sample drawn from the training set. The algorithm
has three main hyperparameters, the node size, the number of trees, and the number of features
sampled. There are many advantages in its uses, as it provides flexibility, makes easy to determine
feature importance and has reduced risk of overfitting. However, it is time-consuming process, since
it computes data for each individual decision tree, and is a more complex method compared to single
decision tree method.

Random survival forests methodology extends random forest method. In classical random forest,
randomization is introduced in two forms. A randomly drawn bootstrap sample is firstly used to grow
a tree. Then, at each node of the tree, a randomly selected subset of covariates is used as candidate
features for splitting. Averaging over trees enables random forest to approximate rich classes of
functions and to maintain low generalization error. Extending random forest to right censored survival
data is of high importance. Survival data are usually analysed with methods that rely on assumptions
as proportional hazards. The methods used are parametric, so nonlinear effects of variables must be
modelled by transformations. Difficulties as these are automatically handled with the used of random
forests. In right censored survival data, the outcome is the survival time and the censoring status.
Thus, the splitting criterion of growing a tree must involve the survival time and the censoring status.
The predictive value for the terminal node in a tree and the predicted value from the forest must also
properly incorporate the survival information [80].

The random survival forest algorithm starts with drawing B bootstrap samples from the original data,
which excludes on average 37% of the data, the so-called out-of-bag data. Then, it grows a survival
tree for each bootstrap sample. At each node of the tree, it randomly selects p candidate covariates.
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The node is split using the candidate covariate that maximizes the survival difference between the
daughter nodes. The trees are grown to full size under the constraint that a terminal node should have
no less than a positive number d, of unique deaths. Next step is to calculate the cumulative hazard
function for each tree, obtain the ensemble cumulative hazard function and use it to calculate the
prediction error. In more detail, survival trees are binary trees grown by splitting tree nodes. A starting
point of the tree is the root node, which is split into two daughter nodes using the survival criterion.
Each node tree becomes homogeneous and is populated by cases with similar survival information.
Each daughter node is also split into other two nodes, repeating the process until the termination
node. The termination node is when no new daughter nodes can be formed. The survival times in
terminal node h is denoted as (Tl,h: 61,,1), . (Tn(h),h, 6n(h),h). An individual i is characterized as right
censored if at time T; ;, the event indicator §; ;, is zero. The cumulative hazard function estimate for h
and for each case i with d-dimensional covariate x; is defined below in Eq. 14 and Eq. 15, respectively:

h L, Eq. 14
Lhst
H(tlx) = Hy(t), ifx €h Eq. 15

Metrics

When dealing with binary dependent variables or continuous dependent variables that may be
censored when the patients have not suffered the event, the usual mean squared error do not apply
as a metric for the model. A concordance index (C-index) is widely used to measure the predictive
discrimination and is applicable to ordinal outcomes and censored time until event response variables.
The C-index is related to a rank correlation between observed and predicted outcomes. It was firstly
introduced by Harrell et al. [81]. The C-index is related to the area under the ROC curve (AUC). Like
for the AUC, C-index equal to 1 indicates perfect prediction accuracy and C-index equal to 0.5 indicates
random prediction.

C-index is defined as the proportion of all usable patient pairs in which the predictions and the
outcomes are concordant. The index measures the predictive power derived from a set of predictor
covariates in a model. If the C-index is used to evaluate the prediction of time till the event, C-index is
calculated by considering all possible pairs of individuals, when at least one of them has experienced
the event. If the predicted survival time is larger than the actual survival time, for the patient who
lived, the predictions for that pair are concordant with the outcome values. In other words, a pair is
concordant, if the one with the higher estimated risk score has a shorter actual survival time. When
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predicted risks are identical for a pair, 0.5 rather than 1 is added to the count of concordant pairs. A
patient pair is unusable if both patients experienced the event at the same time or if one is still event-
free but has not been followed long enough to determine the survival time, and the other experienced
the event. The C-index is interpretable for the use as a misclassification probability, and for that reason
is used as a metric for survival performance. Another reason for its use is the fact that it does not
depend on a single fixed time for evaluation.

Since the evaluation of the predictive accuracy of a survival model is in terms of the C-index, it is
natural to formulate the learning problem to directly maximize the C-index. As the C-index is invariant
to any monotone transformation of the survival times, the model that learns by maximizing the C-
index is considered as a ranking problem. The main goal of problems like that is to predict whether
the survival time of one individual is larger than the survival time of the other individual. In ranking
problems in machine learning, this is a N — partite ranking problem where each data point is a
different class. When we formulate the ranking problem, we can incorporate the censored data and
use several ranking algorithms for survival analysis.

The C-index is calculated using the following steps:

i Firstly, it forms all possible pairs over the dataset.

ii. It skips all the pairs whose shorter survival time is censored. Also, it skips pairs if the survival
time is equal, meaning, for i and j individuals, if T; = T;.

iii. For the included pairs with different survival times T; # T;, it counts 1 if the shorter survival
time has worse predicted outcome, and 0.5 if predicted outcomes are tied. For permissible
pairs, when T; = T; and indicate both deaths for individuals, it counts 1 if the predicted
outcomes are tied, otherwise 0.5. When the same survival time does not indicate death, it
counts 1 if the death has worse predicted outcome.

iv. Concordance denotes the sum over all permissible pairs. Permissible denotes the total
number of permissible pairs.

v.  The C-index is finally defined by C = Concordance/Permissible.

Survival Analysis Library

Today, many successful ideas from machine learning have been adapted for time-to-event analysis,
such as random forests, gradient boosting, and support vector machines. It is important to note that
censored data does not only affect the training of the model, but also the evaluation of it, because
held-out data will be subject to censoring too. For this study, scikit-survival library was used
[82]. scikit-survival is an open-source Python package for time-to-event analysis fully
compatible with scikit-learn, suchthatpre-processingand feature selection techniques within
scikit-learn to be combined with the survival model. It provides implementations of many
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machine learning techniques, such as penalized Cox model, Survival Support Vector Machine, and
Random Survival Forest. Evaluation metrics range from simple rank correlation metrics, as C-index of
Harrell et al., to time-dependent versions of well-known mean squared error and receiver operating
characteristic curve. The documentation of the library contains installation instructions and a full
description of the API. The library is distributed under the GPL-3 license with the source code available
at https://github.com/sebp/scikit-survival. The biggest difference between time-
to-event analysis and traditional machine learning techniques are the semantic predictions. In time-
to-event analysis, predictions are usually arbitrary risk scores of experiencing or not the event, and
not the actual time of experiencing the event, which is the input for training the model. For that
reason, the evaluation of predictions is made by a measure of rank correlation between predicted risk
scores and observed time points. The widely used Harrell’s concordance index computes the ratio of
correctly ordered-concordant pairs and is the default metric when using the model’s score ()
function. For this study, RandomSurvivalForest () method and FastSurvivalSVM () were
examined. For models that provide time dependent predictions, there are available two methods:
predict survival function(), and predict cumulative hazard function().
These methods return the survival plot and the cumulative hazard plot for examined dataset.
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Chapter 4: Research findings / results

In this study, the fusion of deep features, radiomics and transcriptomics is evaluated. Two data views
are considered: (A) deep features with radiomics and (B) deep features, radiomics and
transcriptomics. The fusion includes the concatenation of features into one common feature space.
For the classification of low- and high-risk patients, two classifiers were employed, namely: (1)
Random Survival Forest and (2) Survival Support Vector Machine. Fourfold cross-validation on a
patient basis was applied to the original dataset for splitting the data into training and testing sets.
For a total of 40 patients, each test fold contained 10 patients at a time.

Al. Deep features and radiomics - Random Forest

A total of 2996 radiomics features and deep features varying from 502 to 7952 for 18 deep models
were assessed for their prognosis performance. After univariate and multivariate feature selection, a
total of 25 features were kept. From these, 23 of them were deep features and two radiomics. The
best performance was obtained using deep model MobileNet. In the test cohort, random forest
classifier achieved a C-index of 0.68 + 0.03 (0.65 to 0.72) . The survival function and the cumulative
hazard function were plotted for the fold with the best C-index and are presented in Figure 9 and
Figure 10 respectively. The survival function can be interpreted as the probability of a patient to
survive beyond a certain time t. At time 0, no patient has experienced the event, so all have a
probability of 100% that they survive. The drop of curves reflects patients experiencing the event. The
survival plot ends at median time of survival since all the events have taken place until this time.
Survival plot can also show the probability of survival for each patient in a specific time point. Seven
out of ten patients have been predicted with less than 50% survival probability until the median
survival time. Patients that have less than 50% survival probability can be characterized as high-risk
patients.
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Figure 9: Survival function using deep features and radiomics with random forest classifier

The actual status and the predicted survival probability till the observed median survival time are
shown in Table 1. The classifier predicted correctly as high-risk 5 patients and as low-risk 2 patients.
The classifier failed to predict 3 patients, one high-risk that was classified as low-risk with probability
higher than 50% (patient R01-015) and 2 low-risk classified as high-risk (patients R01-097 and R01-
099).

Table 1: Survival probability using random forest classifier with data view of deep features and
radiomics. The classifier correctly predicted 7 patients. The classifier failed to predict 3 patients, one
high-risk patient that was classified as low-risk and 2 low-risk classified as high-risk.

Patient Actual status Survival probability
RO01 — 037 High — risk < 50%
R0O1 — 042 High — risk < 50%
RO1 - 051 High — risk <50%
RO1 — 146 High —risk < 50%
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RO1 — 024 High —risk < 50%
R0O1 - 015 High — risk > 50%
RO1 — 099 Low —risk < 50%
RO1 —117 Low —risk > 50%
RO1 — 097 Low —risk < 50%
RO1 — 040 Low — risk > 50%

For each tree in the ensemble, the cumulative hazard function for a patient with feature vector x is
calculated from all samples of the bootstrap sample that are in the same terminal node as x. Similarly,
for cumulative hazard function, at time 0 all patients have cumulative hazard rate equal to 0. The
hazard rate for each patient increases by increasing the time. The survival was predicted to be better
for patients with cumulative hazard lower than 1, compared to patients with cumulative hazard
greater than 1.

Biomedical Engineering MSc Program -https.//www.bme-crete.edu.gr/

Page 46 of 87



Application Grade Thesis

1.75
—— RO01-024 |
1.50 + —— R01-037
— RO01-051
1.25 4 —— R01-015
o) .
= —— R01-040
N
2 1.00_ [r— R01‘042 ] |
o R01-097
g RO1-117
S 0504 — R01-146
0.25 A
0.00 4

0 100 200 300 400 500 600
Time in days

Figure 10: Cumulative Hazard Function using deep features and radiomics with random forest classifier

The best results in the testing folds achieved with MobileNet model, resulting in a mean C-index of
0.68 + 0.03 (0.65 — 0.72). However, ResNet and DenseNet also achieved a good discrimination
ability, compared to other deep models, as are shown in Table 2. ResNet achieved a mean C-index of
0.61, and DenseNet achieved a lower mean C-index of 0.59.

Table 2: Best deep learning models for patient classification using random forest. MobileNet achieved
the best C-index of 0.68. C-index are predicted for test set.

Model name Mean + std Min C — Index Max C — Index
ResNet 0.61 + 0.07 0.57 0.66
MobileNet 0.68 +0.03 0.65 0.72
DenseNet 0.59 £+ 0.10 0.52 0.62

For prediction, an individual is dropped down each tree in the forest until it reaches a terminal node.
Data in each terminal is used to estimate the survival and cumulative hazard function. A risk score can
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be computed using random survival forest, which represents the expected number of events for one
particular terminal node. The ensemble prediction is the average across all trees in the forest. The
higher predicted risk scores indicate shorter survival whereas a lower risk score indicate longer survival
of the patient. Table 3 presents the risk score for each individual predicted using random survival
forest. As it was already stated, the classifier predicted incorrectly higher risk score for patients RO1-
097 and R01-099 and a lower risk score for patient R01-015.

Table 3: Survival time and predicted risk scores for testing set with deep features and radiomics using
random forest classifier.

Patient Survival time (days) Risk score
RO1 — 037 28 9.05
R0O1 — 042 42 8.57
RO1 — 051 261 8.54
R01 — 146 276 12.16
RO1 — 024 366 7.90
RO1 — 015 430 3.19
RO1 — 099 952 12.07
RO1 — 117 1083 4.00
RO1 — 097 1352 6.98
R01 - 040 2041 4.09

A2. Deep features and radiomics - Support Vector Machine

After univariate and multivariate feature selection, 27 deep features and 4 radiomics were selected
to predict the survival outcome of the patients. The best performance was obtained using deep model
DenseNet. In the test cohort, support vector machine reached a C-index of 0.73 +
0.07 (0.68 to 0.75). ResNet and NasNet models achieved good results, as shown in Table 4.
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Table 4: Best deep learning models for patient classification using support vector machine. DenseNet
achieved the best C-index of 0.73. C-index are predicted for test set.

Model name Mean + std Min C — Index Max C — Index
ResNet 0.72 + 0.09 0.59 0.75
DenseNet 0.73 £ 0.07 0.68 0.75
NasNet 0.67 £ 0.11 0.56 0.77

A risk score can be computed using survival support vector machine, which represents the ranking of
samples according to survival times. Table 5 presents the risk score for each individual predicted using
survival support vector machine. The higher predicted risk scores indicate shorter survival whereas a
lower risk score indicate longer survival of the patient. For example, patient R01-031 had the highest
survival time and the lowest risk score was predicted. Similarly, patients R01-093 and R01-119 had the
lowest survival time and for those, a high value risk score was predicted but not in the right order.

Table 5: Survival time and predicted risk scores for testing set with deep features and radiomics using
support vector machine.

Patient Survival time (days) Risk score
R0O1 — 093 47 1.73
RO1 — 119 159 2.25
RO1 — 066 201 0.38
RO1 - 106 225 0.72
R0O1 — 072 299 091
RO1 — 017 474 0.61
RO1 — 055 1165 0.90
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RO1 - 077 1322 0.06
R01 -101 1491 0.27
R01 - 031 1890 -2.79

B1. Deep radiotranscriptomics - Random Forest

A total of 2996 radiomics, 5268 transcriptomics and deep features varying from 502 to 7952 for 18
deep models were assessed for their prognosis performance. After univariate and multivariate feature
selection, a total of 49 features were kept. From these, 21 of them were deep features, 2 radiomics
and 26 transcriptomics. The best performance was obtained using deep model ResNet. In the test
cohort, random forest classifier achieved a C-index of 0.74 + 0.11 (0.63 to 0.81) . The survival
function and the cumulative hazard function were plotted for the fold with the best C-index and are
presented in Figure 11 and Figure 12. The survival function can be interpreted as the probability of a
patient to survive beyond a certain time t. At time 0, no patient has experienced the event, so all have
a probability of 100% that they survive. The drop of curves reflects patients experiencing the event.
The survival plot ends at time the median time of survival since all the events have taken place until
this time. Survival plot can also show the probability of survival for each patient in a specific time point.
Seven out of ten patients have been predicted with less than 50% survival probability until the median
survival time. Patients that have less than 50% survival probability can be characterized as high-risk
patients.

Biomedical Engineering MSc Program -https.//www.bme-crete.edu.gr/

Page 50 of 87



Application Grade Thesis

1.0 A

0.9 1 E;L

i

- 0.8 - I
£ —— R01-033
E 0.7 4+ —— R01-005
S —— R01-072
%0.6— —— RO1-015
2 —— R01-018
€ 0517 — R0O1-065
N RO1-071
041 __ R01-097
R0O1-100
037 — Roi-113

0 100 200 300 400 500 600

Time in days

Figure 11: Survival function using deep features, radiomics and transcriptomics with random forest
classifier

The actual status and the predicted survival probability till the observed median survival time are
shown in Table 6. The classifier predicted correctly as high-risk 5 patients and as low-risk 2 patients.
The classifier failed to predict 3 patients as low-risk (R01-005, R01-071 and R01-100) and predicted
with lower survival probability.

Table 6: Survival probability using random forest classifier with data view of deep features, radiomics
and transcriptomics. The classifier correctly predicted 7 patients. The classifier failed to correctly
predict 3 patients.

Patient Actual status Survival probability
RO1 — 072 High — risk <50%
R01 — 065 High — risk < 50%
RO1 — 015 High —risk <50%
RO1 — 033 High —risk < 50%
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RO1 — 113 High —risk < 50%
R01 —-100 Low —risk < 50%
RO01 - 018 Low —risk > 50%
RO1 — 097 Low —risk > 50%
R0O1 - 071 Low —risk < 50%
RO1 - 005 Low — risk < 50%

For each tree in the ensemble, the cumulative hazard function for a patient with feature vector x is
calculated from all samples of the bootstrap sample that are in the same terminal node as x. Similarly,
for cumulative hazard function, at time 0 all patients have cumulative hazard rate equal to 0. The
hazard rate for each patient increases by increasing the time. The survival was predicted to be better
for patients with cumulative hazard lower than 1, compared to patients with cumulative hazard
greater than 1.

The best results in the testing folds achieved with ResNet model, resulting in a mean C-index of
0.74 + 0.11 (0.63 to 0.81). However, MobileNet and DenseNet also achieved a good discrimination
ability, compared to other deep models, as are shown in Table 7. MobileNet achieved a mean C-index
of 0.65, and DenseNet achieved a higher mean C-index of 0.71.
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Figure 12: Cumulative Hazard Function using deep features, radiomics and transcriptomics with
random forest classifier

Table 7: Best deep learning models for patient classification using random forest. ResNet achieved the
best C-index of 0.74. C-index are predicted for test set.

Model name Mean + std Min C — Index Max C — Index
ResNet 0.74+0.11 0.63 0.81
MobileNet 0.65 + 0.08 0.61 0.72
DenseNet 0.71 £ 0.09 0.64 0.79

A risk score can be computed using random survival forest, which represents the expected number of
events for one particular terminal node. The ensemble prediction is the average across all trees in the
forest. The higher predicted risk scores indicate shorter survival whereas a lower risk score indicate
longer survival of the patient. Table 8 presents the risk score for each individual predicted using
random survival forest. As it was already stated, the classifier predicted incorrectly higher risk score
for patients R01-100, R01-071 and R01-005. For these three patients, the predicted risk score should
be lower than predicted and decreasing as the survival time increases.
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Table 8: Survival time and predicted risk scores for testing set with deep features, radiomics and
transcriptomics using random forest classifier.

Patient Survival time (days) Risk score
R0O1 — 072 299 10.18
RO1 — 065 346 9.88
RO1 - 015 430 9.73
R0O1 - 033 514 11.11
RO1 — 113 667 8.34
RO1 —-100 867 10.17
R0O1 - 018 1176 7.07
RO1 — 097 1352 7.01
RO1 - 071 1425 8.17
RO1 — 005 1456 8.03

B2. Deep radiotranscriptomics - Support Vector Machine

After univariate and multivariate feature selection, 13 deep features, 2 radiomics and 21
transcriptomics features were selected to predict the survival outcome of the patients. The best
performance was obtained using deep model MobileNet. In the test cohort, support vector machine
reached a C-index of 0.77 £+ 0.10 (0.65 to 0.83). ResNet and NasNet models achieved good results,
as shown in Table 9.
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Table 9: Best deep learning models for patient classification using support vector machine. MobileNet
achieved the best C-index of 0.77. C-index are predicted for test set.

Model name Mean + std Min C — Index Max C — Index
ResNet 0.72 £ 0.15 0.53 0.79
MobileNet 0.77+0.10 0.65 0.83
NasNet 0.65 + 0.13 0.55 0.72

A risk score can be computed using survival support vector machine, which represents the ranking of
samples according to survival times. Table 10 presents the risk score for each individual predicted
using survival support vector machine. The higher predicted risk scores indicate shorter survival
whereas a lower risk score indicate longer survival of the patient. For example, patient R01-037 had
the lowest survival time and survival support vector machine ranked the patient with the highest risk
score. Similarly, patient R01-039 had the second lower survival time and a high risk score was
predicted. Generally, we can see a decrease in the risk score for patients with high survival time.
However, in some cases as for patients R01-097 and R01-026 the algorithm failed to rank the patients
in the correct order, since R01-026 had the highest survival time should get the lowest risk score.

Table 10: Survival time and predicted risk scores for testing set with deep features, radiomics and
transcriptomics using support vector machine.

Patient Survival time (days) Risk score
RO1 — 037 28 2.44
RO1 - 039 41 0.93
RO1 — 146 276 0.50
RO1 — 029 286 0.17
RO1 — 128 328 0.77
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RO1 — 065 346 —0.35
RO1 -100 867 —1.98
R01 - 078 1133 —0.75
RO1 — 097 1352 —5.18
RO1 - 026 2356 -3.25
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Chapter 5: Discussion and analysis of findings

NSCLC patients are usually characterized with median overall survival time. It is of high importance to
predict the survival of patients according to their radiomic or transcriptomic signatures. Outcome
modelling can enable us to identify the prognostic signature of patients and stratify them according
to their survival time. However, the survival depends on multiple information, and it is difficult to be
predicted, since histologic, genetic, imaging, and clinical information play an important role in the
overall survival of cancer patients. Several efforts have used single source data to investigate the
survival of NSCLC. The goal of this study is to examine the synergistic use of high dimensional and high
throughput data for identifying the survival of patients.

In this study, we compared the prognostic power of two data views, a combination of radiomics and
deep features and a combination of radiomics, transcriptomics and deep features. A set of 40 patients
with extracted radiomic and deep features and an obtained transcriptomic signature was examined.
For these patients, the exact date of death was known. The median survival time was calculated and
the patients that had time till death greater than the median survival time was considered as low-risk
patients. Individuals with time till death lower than the median survival time were characterized as
high-risk patients. As a result, a subset of 23 patients were labeled with 1 as high-risk patients and the
remaining 17 as low risk patients, with label 0. Two classifiers were trained for the stratification of
patients, random survival forest and survival support vector machine. The data were first pre-
processed using a variance threshold and features with low variance were removed. The remaining
features were standardized in values [-1,1] and were further decreased with univariate and
multivariate feature selection. Performing ANOVA analysis and LASSO, the most important features
for prediction were collected from each data type. The features were then concatenated into one
common feature space prior to classification.

The selected features’ prognostic power was compared using random forest and support vector
machine. In machine learning methods for survival analysis, the predictions are arbitrary risk scores of
experiencing or not the event. The evaluation of the predictions is made by a measure of rank
correlation between predicted risk scores and observed time points. For that reason, C-index was used
as a metric of the performance of the models. The results from both classifiers and data views are
shown in Table 11. The radiomics and deep features analyses using both classifiers achieved a
performance at the lower end of the spectrum of metrics. The mean C-index was 0.68 + 0.03 and
0.73 + 0.07 for random survival forest and survival support vector machine, respectively. Using a 4-
fold cross validation method, the C-index in each fold varied from 0.65 to 0.72 for random forest
classifier and from 0.68 to 0.75 for support vector machine. A slight increase of C-index was observed
when transcriptomics was also used for the stratification of patients. Using random forest classifier,
the prediction resulted in a C-index of 0.74 + 0.11 and for each fold the C-index varied from 0.63 till
0.81. Support vector machine obtained the best results of C-index 0.77 + 0.10 in a range of 0.65 to
0.83.
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Table 11: Results with different data views and classifiers

Experiment C —index

Deep features and radiomics - Random Forest 0.68 £+ 0.03 (0.65 to 0.72)

Deep features and radiomics - SupportVector Machine 0.73 £+ 0.07 (0.68 to 0.75)

Deep radiotranscriptomics - Random Forest 0.74 £ 0.11 (0.63 to 0.81)

Deep radiotranscriptomics - Support Vector Machine 0.77 £ 0.10 (0.65 to 0.83)

For each experiment, a risk score for patients in the unseen data was computed. The risk score should
increase for patients with high survival time and decrease for low-risk patients. Also, both machine
learning techniques that were used in this study could be described as a ranking problem, the model
learns to assign samples with shorter survival times a higher risk score. A clear decrease of risk score
with the increase of survival time could be observed with Deep radiotranscriptomics data and support
vector machine. The algorithm calculated the highest score to the patients with the lowest survival
and a low value of risk score for low-risk patients. However, the order of the patients’ survival was not
always correct. For example, for a patient with 1352 days of survival the predicted risk score was -5.18
whereas for patient with 2356, the predicted risk score was -3.25, indicating that the second patient
was more likely to experience the event earlier than the first.

Another interesting finding was regarding the deep models that provided deep features with the best
prognostic power. Eighteen deep models were used for the extraction of deep features. In most cases,
MobileNet, ResNet, DenseNet and NasNet were the four deep models from which using these deep
features, the C-index of survival models got the higher values. The C-index of 0.77 with support vector
machine and the C-index of 0.68 with random forest was achieved with deep features extracted from
MobileNet. Deep radiotranscriptomics survival analysis using random forest had the highest C-index
of 0.74 with deep features from ResNet, and survival analysis using radiomics and deep features
extracted from DenseNet, with support vector machine classifier got the highest C-index of 0.73.
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Chapter 6: Conclusion and recommendations

This master thesis was aimed to compare the performance of machine learning models for survival
analysis that have been developed using different data types. The deep radiotranscriptomics
framework outperform the performance of models based solely on imaging information. Both
classifiers had approximately the same performance. More machine learning models can be examined
for classification of patients in a future work. Also, further study may focus on specific subsets of
patients for specific markers.
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Appendices

Code A1

import os

import sys

import pandas as pd

import numpy as np

import pickle as pkl

import matplotlib.pyplot as plt

import statistics

from sklearn.feature_selection import SelectFromModel
from sklearn.feature_selection import VarianceThreshold
from sklearn.linear_model import Lasso

from sklearn.preprocessing import StandardScaler

from sklearn.feature_selection import f classif as fc
from sklearn.feature_selection import SelectKBest as kbest
from sksurv.metrics import concordance_index_censored
import scipy.stats as st

from sklearn.model_selection import StratifiedKFold
from sksurv.ensemble import RandomSurvivalForest

#load radiomics data
radiomics_pd =
pkl.load(open("features_for_overall survival median/radiomics_pandas.pkl", "rb"))

#load deep feature

deep_avg =

pkl.load(open("features_for_overall survival_median/deep_features_avg.pkl", "rb"))
deep_max =
pkl.load(open("features_for_overall survival median/deep_features_max.pkl", "rb"))

#tmerge deep features vectors (avg and max) to a single feature vector
deep={}
for net in list(deep_avg.keys()):
deep[net] = deep_avg[net].merge(deep_max[net], left_index = True, right_index
= True)

# import labels
with open('features_for_overall survival_median/days_0S_dictionary.pkl', 'rb') as
f:
0S_days = pkl.load(f)
0S_days_pd= pd.DataFrame([0S_days.keys(), OS_days.values()]).T
0S_days_pd.columns= ['Patient', 'Survival_in_days"']

with open('features_for_overall survival_median/binary 0S_dictionary.pkl', 'rb")
as f:

0S_binary = pkl.load(f)

0S_binary_pd= pd.DataFrame([0S_binary.keys(), OS_binary.values()]).T
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0S_binary_pd.columns= ['Patient', 'Status']

final_0S = pd.merge(0S_binary_pd, 0S_days_pd, on="Patient", how="left")
final_0SS = final_O0S.set_index('Patient")

print("Data cleaning with VarianceThreshold")
thresholder_rad = VarianceThreshold(threshold=0.0)
thresholder_deep = VarianceThreshold(threshold=0.0)

radiomics_selected = thresholder_rad.fit(radiomics_pd)
mask_rad = thresholder_rad.get_support()
radiomics_ = radiomics_pd.loc[:,mask_rad]

print("Z-normalization™)
radiomics_transformed = StandardScaler().fit_transform(radiomics )

# Transform radiomics data to DataFrame
radiomics = pd.DataFrame(data=radiomics_transformed, index=radiomics_.index,
columns=radiomics_.columns)

def apply feature_selection(df, labels, cutoff_pvalue=0.05):
X=[]
for key in list(df.index):

X.append(df.loc[key])

np.array(X)

np.hstack(labels)

X
y

selector = kbest(fc, k="all")

best_features = selector.fit_transform(X, y)

f _scores, p_values = fc(X, y)

critical_value = st.f.ppf(q=1-cutoff_pvalue, dfn=len(np.unique(y))-1,
dfd=len(y)-len(np.unique(y)))

best_indices=[]
for index, p_value in enumerate(p_values):
if f_scores[index]>critical_value and p_value<cutoff_pvalue:
best_indices.append(index)
print("Best ANOVA features:" + str(len(best_indices)))

if len(best_features)>0:
best_columns = np.array(list(df.columns))[best_indices]
best_features = np.array(list(df[best_columns].values))
else:
best_columns = np.array(list(df.columns))
best features = np.array(list(df.values))

try:
sel = SelectFromModel(Lasso(alpha=0.01))
sel .fit(best_features, y)
selected_features_bool = sel .get_support()
final_selected=[]
final_features=[]
for index, feat_id in enumerate(best_columns):
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if selected_features_bool[index]:
final_selected.append(feat_id)
final selected = np.array(final_selected)
except:
print("No features left after Lasso")
final selected = best_columns

print("Best Lasso features: "+str(len(final_selected)))
return final_selected

pids = np.array(list(0S_binary.keys()),dtype=str)

f labels = np.array(list(0S_binary.values()))

sss = StratifiedKFold(n_splits=4,shuffle=True)

kfolds = []

for train_index, test_index in sss.split(pids,f_labels):
kfolds.append([pids[train_index],pids[test_index]])

for index,split in enumerate(kfolds):
print(split[e])

results = {}
for model_name in deep.keys():
print(model_name)
deep_selected = thresholder_deep.fit(deep[model _name])
mask_deep = thresholder_deep.get_support()
deep_ = deep[model name].loc[:,mask_deep]

deep_ = StandardScaler().fit_transform(deep[model name])
deep_df = pd.DataFrame(data=deep_,index=deep[model name].index,
columns=deep[model_name].columns)

#Keep specific patients with known labels
patients_split = []
for patients in list(radiomics_pd.index):
if patients in list(deep_df.index):
patients_split.append(patients)

deep_final = deep_df.loc[patients_split]

Concordance_index = []
for index,split in enumerate(kfolds):
tr_split = []
tst_split = []
for key in list(radiomics.index):
if key in list(split[e]):
tr_split.append(key)
elif key in list(split[1]):
tst_split.append(key)

binary_labels = []
for pid in list(radiomics.loc[tr_split].index):
if pid in final_OS.values:
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binary labels.append(0S_binary[pid])

days_labels = []
for pid in list(radiomics.loc[tr_split].index):
if pid in final_OS.values:
days_labels.append(0S_days[pid])

try:
radiomics_feat = apply feature_selection(radiomics.loc[tr_split],
binary_ labels)
deep_feat = apply_feature_selection(deep_final.loc[tr_split],
binary labels)
except:
print('something went wrong')
continue

path="results/RF_rad_deep/"+model name+" RF_nsplit"+str(index)
os.mkdir(path)
pd.DataFrame(radiomics_feat).to_csv(path+"/selected_radiomics.csv")
pd.DataFrame(deep_feat).to_csv(path+"/selected_deep.csv")

selected_radiomics = {}
for key in list(radiomics.index):
selected_radiomics[key] =
radiomics[radiomics_feat].loc[key].to_numpy()

selected_deep = {}
for key in list(deep_final.index):
selected_deep[key] = deep final[deep_feat].loc[key].to_numpy()

combined_patterns_rad_deep = {}
for key in list(selected _deep.keys()):
try:
combined_patterns_rad_deep[key] =
np.concatenate((selected_radiomics[key], selected _deep[key]))
except:
print(key)
continue

x_pd=pd.DataFrame.from_dict(combined_patterns_rad_deep, orient="index')
X_train = x_pd.loc[tr_split]

X_test = x_pd.loc[tst_split]

y_train = final 0SS.loc[tr_split]

y_test = final_0SS.loc[tst_split]

# give structure to y

struct_arr_train =
y_train.astype({'Status':'?"','Survival_in_days':'<f8'}).dtypes

y_train_np = np.array([tuple(x) for x in y_train.values],
dtype=list(zip(struct_arr_train.index,struct_arr_train)))
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struct_arr_test =

y_test.astype({'Status':'?','Survival_in_days':'<f8'}).dtypes

y_test np = np.array([tuple(x) for x in y test.values],

dtype=1list(zip(struct_arr_test.index,struct_arr_test)))

rsf = RandomSurvivalForest(n_estimators=1000,
min_samples split=10,
min_samples_leaf=6,
n_jobs=-1)

rsf.fit(X_train,y_train_np)
score_ = rsf.score(X_ test,y test _np)

print(score_)
Concordance_index.append(score_)

pred = rsf.predict(X_test)

predictions = np.round(pred, 3)
pd.DataFrame(predictions).to_csv(path+"/predictions_RF_rad_deep.csv")
pd.DataFrame(y_test _np).to_csv(path+"/labels test RF_rad_deep.csv")

surv = rsf.predict_survival function(X_test, return_array=True)
hazard = rsf.predict_cumulative_hazard_function(X_test, return_array=True)

for i, s in enumerate(surv):
plt.step(rsf.event_times_, s, where="post", label=str(i))
plt.ylabel("Survival probability")
plt.xlabel("Time in days")
plt.legend(X_test.index)
plt.title("CI %.4f" % score_)
plt.grid(True)
plt.savefig(path+"/plot_performance_model for" + model_name + "and nsplit

+ str(index) + ".png",dpi=300)

nsplit”

try:

plt.clf()

for i, s in enumerate(hazard):
plt.step(rsf.event_times_, s, where="post", label=str(i))
plt.ylabel("Cumulative hazard")
plt.xlabel("Time in days")
plt.legend(X_test.index)
plt.title("CI %.4f" % score_)
plt.grid(True)
plt.savefig(path+"/plot_performance_hazard _model for" + model name +
+ str(index) + ".png",dpi=300)
plt.clf()

and

print('List of possible CI:', Concordance_index)
print('\nMaximum CI That can be obtained from this model

is:',max(Concordance_index))

print('\nMinimum CI:',min(Concordance_index))
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print('\nMean CI:',statistics.mean(Concordance_index))

print('\nStandard Deviation is:', statistics.stdev(Concordance_index))
except:

print('only one CI points')

continue

results["rad_deep for model "+model name] = pd.Series({"Maximum
CI":max(Concordance_index), "Minimum CI":min(Concordance_index),"Overall
CI":statistics.mean(Concordance_index),"Standard
Deviation":statistics.stdev(Concordance index)})

final_results = pd.DataFrame.from_dict(results, orient="index")
final results.to_csv("results/RF_rad_deep/results RF_rad_deep.csv")

Code A2

import os

import sys

import pandas as pd

import numpy as np

import pickle as pkl

import matplotlib.pyplot as plt

import statistics

from sklearn.feature_selection import SelectFromModel
from sklearn.feature_selection import VarianceThreshold
from sklearn.linear_model import Lasso

from sklearn.preprocessing import StandardScaler

from sklearn.feature_selection import f_classif as fc
from sklearn.feature_selection import SelectKBest as kbest
from sksurv.metrics import concordance_index_censored
from sksurv.svm import FastSurvivalSVM

import scipy.stats as st

from sklearn.model_selection import StratifiedKFold

#load radiomics data
radiomics_pd =
pkl.load(open("features_for_overall survival median/radiomics_pandas.pkl", "rb"))

#load deep feature

deep_avg =
pkl.load(open("features_for_overall survival median/deep_features_avg.pkl", "rb"))
deep_max =
pkl.load(open("features_for_overall survival median/deep_features_max.pkl", "rb"))

#merge deep features vectors (avg and max) to a single feature vector
deep={}
for net in list(deep_avg.keys()):
deep[net] = deep_avg[net].merge(deep_max[net], left_index = True, right_index
= True)

Biomedical Engineering MSc Program -https.//www.bme-crete.edu.gr/

Page 72 of 87



Application Grade Thesis

# import labels
with open("features for_overall survival median/days_OS_dictionary.pkl", 'rb') as
f:
0S_days = pkl.load(f)
0S_days_pd= pd.DataFrame([0S_days.keys(), 0S_days.values()]).T
0S_days_pd.columns= ['Patient', 'Survival in_days']

with open("features_for_overall_survival_median/binary_0S_dictionary.pkl"”, 'rb")
as f:
0S_binary = pkl.load(f)
0S_binary_pd= pd.DataFrame([0S_binary.keys(), 0S_binary.values()]).T
0S_binary_pd.columns= ['Patient', 'Status']

final 0S = pd.merge(0S_binary_pd, 0S_days_pd, on="Patient", how="left")
final 0SS = final 0S.set_index('Patient')

print("Data cleaning with VarianceThreshold")
thresholder_rad = VarianceThreshold(threshold=0.0)
thresholder_deep = VarianceThreshold(threshold=0.0)

radiomics_selected = thresholder_rad.fit(radiomics_pd)
mask_rad = thresholder_rad.get_support()
radiomics_ = radiomics_pd.loc[:,mask_rad]

print("Z-normalization")
radiomics_transformed = StandardScaler().fit_transform(radiomics_)

# Transform radiomics data to DataFrame
radiomics = pd.DataFrame(data=radiomics_transformed, index=radiomics_.index,
columns=radiomics_.columns)

def apply_feature_selection(df, labels, cutoff pvalue=0.05):
X=[1
for key in list(df.index):

X.append(df.loc[key])

np.array(X)

np.hstack(labels)

X
y

selector = kbest(fc, k="all")

best_features = selector.fit_transform(X, y)

f _scores, p_values = fc(X, y)

critical_value = st.f.ppf(q=1-cutoff_pvalue, dfn=len(np.unique(y))-1,
dfd=len(y)-len(np.unique(y)))

best_indices=[]
for index, p_value in enumerate(p_values):
if f_scores[index]>critical_value and p_value<cutoff_pvalue:
best_indices.append(index)
print("Best ANOVA features:" + str(len(best_indices)))

if len(best_features)>0:
best_columns = np.array(list(df.columns))[best_indices]
best_features = np.array(list(df[best_columns].values))
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else:
best_columns = np.array(list(df.columns))
best_features = np.array(list(df.values))

try:
sel = SelectFromModel(Lasso(alpha=0.01))
sel .fit(best_ features, y)
selected_features_bool = sel .get_support()
final_selected=[]
final features=[]
for index, feat_id in enumerate(best_columns):
if selected_features_bool[index]:
final_selected.append(feat_id)
final_selected = np.array(final_selected)
except:
print("No features left after Lasso")
final_selected = best_columns

print("Best Lasso features: "+str(len(final_selected)))
return final_selected

pids = np.array(list(0S_binary.keys()),dtype=str)

f labels = np.array(list(0S_binary.values()))

sss = StratifiedKFold(n_splits=4,shuffle=True)

kfolds = []

for train_index, test_index in sss.split(pids,f_labels):
kfolds.append([pids[train_index],pids[test_index]])

for index,split in enumerate(kfolds):
print(split[e])

results = {}
for model name in deep.keys():
print(model_name)
deep_selected = thresholder_deep.fit(deep[model_name])
mask_deep = thresholder_deep.get_support()
deep_ = deep[model name].loc[:,mask_deep]

deep_ = StandardScaler().fit_transform(deep[model_name])
deep_df = pd.DataFrame(data=deep_,index=deep[model name].index,
columns=deep[model name].columns)

#Keep specific patients with known labels
patients_split = []
for patients in list(radiomics_pd.index):
if patients in list(deep_df.index):
patients_split.append(patients)

deep_final = deep_df.loc[patients_split]

Concordance_index = []
for index,split in enumerate(kfolds):
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tr_split = []
tst_split = []
for key in list(radiomics.index):
if key in list(split[e@]):
tr_split.append(key)
elif key in list(split[1]):
tst_split.append(key)

binary_labels = []
for pid in list(radiomics.loc[tr_split].index):
if pid in final_OS.values:
binary_labels.append(0S_binary[pid])

days_labels = []
for pid in list(radiomics.loc[tr_split].index):
if pid in final_0S.values:
days_labels.append(0S_days[pid])

try:
radiomics_feat = apply_ feature_selection(radiomics.loc[tr_split],
binary_labels)
deep_feat = apply feature_selection(deep_final.loc[tr_split],
binary_labels)
except:
print('something went wrong')
continue

path="results/SVM rad_deep/"+model name+"_SVM nsplit"+str(index)
os.mkdir(path)
pd.DataFrame(radiomics_feat).to_csv(path+"/selected _radiomics.csv")
pd.DataFrame(deep_feat).to_csv(path+"/selected_deep.csv")

selected_radiomics = {}
for key in list(radiomics.index):
selected_radiomics[key] =
radiomics[radiomics_feat].loc[key].to_numpy()

selected _deep = {}
for key in list(deep_final.index):
selected_deep[key] = deep_final[deep_feat].loc[key].to_numpy()

combined_patterns_rad_deep = {}
for key in list(selected_deep.keys()):
try:
combined_patterns_rad_deep[key] =
np.concatenate((selected _radiomics[key], selected deep[key]))
except:
print(key)
continue

x_pd=pd.DataFrame.from_dict(combined_patterns_rad_deep, orient="'index')
X_train = x_pd.loc[tr_split]
X_test = x_pd.loc[tst_split]
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y_train = final 0SS.loc[tr_split]
y _test = final 0SS.loc[tst_split]

# give structure to y
struct_arr_train =
y_train.astype({'Status':'?', 'Survival_in_days':'<f8'}).dtypes
y_train_np = np.array([tuple(x) for x in y train.values],
dtype=1list(zip(struct_arr_train.index,struct_arr_train)))
struct_arr_test =
y_test.astype({'Status':'?', 'Survival_in_days':'<f8'}).dtypes
y_test_np = np.array([tuple(x) for x in y test.values],
dtype=1list(zip(struct_arr_test.index,struct_arr_test)))

estimator = FastSurvivalSVM(alpha=0.1, max_iter=1000, tol=le-5,
random_state=0)

estimator.fit(X_train,y_train_np)

score_ = estimator.score(X test,y_test_np)

print(score_)
Concordance_index.append(score_)

pred = estimator.predict(X test)

predictions = np.round(pred, 3)
pd.DataFrame(predictions).to_csv(path+"/predictions_SVM rad_deep.csv")
pd.DataFrame(y_test _np).to_csv(path+"/labels test SVM rad_deep.csv")

try:

print('List of possible CI:', Concordance_index)

print('\nMaximum CI That can be obtained from this model

is:',max(Concordance_index))

print('\nMinimum CI:',min(Concordance_index))

print('\nMean CI:',statistics.mean(Concordance_index))

print('\nStandard Deviation is:', statistics.stdev(Concordance_index))
except:

print('only one CI points')

continue

results["rad_deep for model "+model name] = pd.Series({"Maximum
CI":max(Concordance_index), "Minimum CI":min(Concordance_index),"Overall
CI":statistics.mean(Concordance_index),"Standard
Deviation":statistics.stdev(Concordance_index)})

final_results = pd.DataFrame.from_dict(results, orient="index")
final_results.to_csv("results/SVM_rad_deep/final_results_SVM_rad_deep.csv")

Code B1
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import os

import sys

import pandas as pd

import numpy as np

import pickle as pkl

import matplotlib.pyplot as plt

import statistics

from sklearn.feature_selection import SelectFromModel
from sklearn.feature_selection import VarianceThreshold
from sklearn.linear_model import Lasso

from sklearn.preprocessing import StandardScaler

from sklearn.feature_selection import f_classif as fc
from sklearn.feature_selection import SelectkKBest as kbest
from sksurv.metrics import concordance_index_censored
import scipy.stats as st

from sklearn.model_selection import StratifiedKFold
from sksurv.ensemble import RandomSurvivalForest

#load radiomics and transcriptomics data

radiomics_pd =
pkl.load(open("features_for overall survival median/radiomics_pandas.pkl"”, "rb"))
transcriptomics_pd =
pkl.load(open("features_for_overall survival median/transcriptomics_pandas.pkl","r

b"))

#load deep feature

deep_avg =
pkl.load(open("features_for_overall survival _median/deep_features_avg.pkl", "rb"))
deep_max =
pkl.load(open("features_for_overall survival median/deep_features_max.pkl", "rb"))

#tmerge deep features vectors (avg and max) to a single feature vector
deep={}
for net in list(deep_avg.keys()):
deep[net] = deep_avg[net].merge(deep_max[net], left_index = True, right_index
= True)

# import labels
with open('features_for_overall survival median/days _0S_dictionary.pkl', 'rb') as
f:
0S_days = pkl.load(f)
0S_days_pd= pd.DataFrame([0S_days.keys(), 0S_days.values()]).T
0S_days_pd.columns= ['Patient', 'Survival_in_days']

with open('features_for_overall_survival_median/binary_0S_dictionary.pkl', 'rb")
as f:
0S_binary = pkl.load(f)
0S_binary pd= pd.DataFrame([0S_binary.keys(), 0S_binary.values()]).T
0S_binary_pd.columns= [ 'Patient', 'Status']

final _0S = pd.merge(0S_binary_pd, 0S_days_pd, on="Patient", how="left")
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final 0SS = final O0S.set_index('Patient')

print("Data cleaning with VarianceThreshold")
thresholder_rad = VarianceThreshold(threshold=0.0)
thresholder_tran = VarianceThreshold(threshold=0.0)
thresholder_deep = VarianceThreshold(threshold=0.0)

radiomics_selected = thresholder_rad.fit(radiomics_pd)
transcriptomics_selected = thresholder_tran.fit(transcriptomics_pd)
mask_rad = thresholder_rad.get support()

mask_tran = thresholder_tran.get_support()

radiomics_ = radiomics_pd.loc[:,mask_rad]

transcriptomics_ = transcriptomics_pd.loc[:,mask_tran]

print("Z-normalization™)
radiomics_transformed = StandardScaler().fit_transform(radiomics_)
transcriptomics_transformed = StandardScaler().fit_transform(transcriptomics_)

# Transform radiomics, transcriptomics data to DataFrame

radiomics = pd.DataFrame(data=radiomics_transformed, index=radiomics_.index,
columns=radiomics_.columns)

transcriptomics =

pd.DataFrame(data=transcriptomics_transformed, index=transcriptomics_.index,
columns=transcriptomics_.columns)

def apply feature_selection(df, labels, cutoff_pvalue=0.05):
x=[1
for key in list(df.index):

X.append(df.loc[key])

np.array(X)

np.hstack(labels)

X
y

selector = kbest(fc, k="all")

best_features = selector.fit_transform(X, y)

f_scores, p_values = fc(X, y)

critical_value = st.f.ppf(gq=1-cutoff_pvalue, dfn=len(np.unique(y))-1,
dfd=len(y)-len(np.unique(y)))

best_indices=[]
for index, p_value in enumerate(p_values):
if f_scores[index]>critical_value and p_value<cutoff pvalue:
best_indices.append(index)
print("Best ANOVA features:" + str(len(best_indices)))

if len(best_features)>0:
best _columns = np.array(list(df.columns))[best_indices]
best_features = np.array(list(df[best_columns].values))
else:
best_columns = np.array(list(df.columns))
best_features = np.array(list(df.values))

try:
sel = SelectFromModel(Lasso(alpha=0.01))
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sel .fit(best_features, y)

selected_features_bool = sel .get support()

final selected=[]

final_features=[]

for index, feat_id in enumerate(best_columns):

if selected_features_bool[index]:

final_selected.append(feat_id)

final_selected = np.array(final_selected)

except:
print("No features left after Lasso")
final selected = best_columns

print("Best Lasso features: "+str(len(final_selected)))
return final_selected

pids = np.array(list(0S_binary.keys()),dtype=str)

f _labels = np.array(list(0S_binary.values()))

sss = StratifiedKFold(n_splits=4,shuffle=True)

kfolds = []

for train_index, test_index in sss.split(pids,f labels):
kfolds.append([pids[train_index],pids[test_index]])

for index,split in enumerate(kfolds):
print(split[e])

results = {}
for model name in deep.keys():
print(model_name)
deep_selected = thresholder_deep.fit(deep[model name])
mask_deep = thresholder_deep.get_support()
deep_ = deep[model _name].loc[:,mask_deep]

deep_ = StandardScaler().fit_transform(deep[model_name])
deep_df = pd.DataFrame(data=deep_, index=deep[model_name].index,
columns=deep[model_name].columns)

#Keep specific patients with known labels
patients_split = []
for patients in list(radiomics_pd.index):
if patients in list(deep_df.index):
patients_split.append(patients)

deep_final = deep_df.loc[patients_split]

Concordance_index = []
for index,split in enumerate(kfolds):
tr_split = []
tst_split = []
for key in list(radiomics.index):
if key in list(split[e@]):
tr_split.append(key)
elif key in list(split[1]):
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tst_split.append(key)

binary_labels = []
for pid in list(radiomics.loc[tr_split].index):
if pid in final_OS.values:
binary_labels.append(0S_binary[pid])

days_labels = []
for pid in list(radiomics.loc[tr_split].index):
if pid in final_OS.values:
days_labels.append(0S_days[pid])

try:
radiomics_feat = apply feature_selection(radiomics.loc[tr_split],
binary labels)
transcriptomics_feat =
apply feature_selection(transcriptomics.loc[tr_split], binary_ labels)
deep_feat = apply feature_selection(deep_final.loc[tr_split],
binary_labels)
except:
print('something went wrong')
continue

path="results/RF_rad_trans_deep/"+model name+" RF_nsplit"+str(index)
os.mkdir(path)
pd.DataFrame(radiomics_feat).to_csv(path+"/selected_radiomics.csv")

pd.DataFrame(transcriptomics_feat).to _csv(path+"/selected transcriptomics.

csv"
pd.DataFrame(deep_feat).to_csv(path+"/selected_deep.csv")

selected_radiomics = {}
for key in list(radiomics.index):
selected_radiomics[key] =
radiomics[radiomics_feat].loc[key].to_numpy()

selected_transcriptomics = {}
for key in list(transcriptomics.index):
selected_transcriptomics[key] =
transcriptomics[transcriptomics_feat].loc[key].to_numpy()

selected_deep = {}
for key in list(deep_final.index):
selected_deep[key] = deep_final[deep_feat].loc[key].to_numpy()

combined_patterns_rad_trans_deep = {}
for key in list(selected_deep.keys()):
try:
combined_patterns_rad_trans_deep[key] =
np.concatenate((selected _radiomics[key], selected_transcriptomics[key],
selected_deep[key]))
except:
print(key)
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orient="

y_train.

continue

X_pd=pd.DataFrame.from_dict(combined_patterns_rad_trans_deep,
index")

X_train = x_pd.loc[tr_split]

X_test = x_pd.loc[tst_split]

y_train = final 0SS.loc[tr_split]

y_test = final _0SS.loc[tst_split]

# give structure to y

struct_arr_train =

astype({'Status':"'?', 'Survival_in_days':'<f8'}).dtypes

y _train_np = np.array([tuple(x) for x in y_train.values],

dtype=list(zip(struct_arr_train.index,struct_arr_train)))

struct_arr_test =

y_test.astype({'Status':'?','Survival_in_days':'<f8'}).dtypes

y test np = np.array([tuple(x) for x in y test.values],

dtype=list(zip(struct_arr_test.index,struct_arr_test)))

rsf = RandomSurvivalForest(n_estimators=1000,
min_samples_split=10,
min_samples_leaf=6,
n_jobs=-1)

rsf.fit(X_train,y train_np)
score_ = rsf.score(X_test,y_test np)

print(score_ )
Concordance_index.append(score_)

pred = rsf.predict(X_test)
predictions = np.round(pred, 3)
pd.DataFrame(predictions).to_csv(path+"/predictions_RF_rad_trans_deep.csv"

pd.DataFrame(y_test_np).to_csv(path+"/labels_test RF_rad_trans_deep.csv")

surv = rsf.predict_survival function(X_test, return_array=True)
hazard = rsf.predict_cumulative_hazard_function(X_test, return_array=True)

for i, s in enumerate(surv):
plt.step(rsf.event_times_, s, where="post", label=str(i))
plt.ylabel("Survival probability")
plt.xlabel("Time in days")
plt.legend(X_test.index)
plt.title("CI %.4f" % score_)
plt.grid(True)
plt.savefig(path+"/plot_performance_model for" + model_name + "and nsplit”

+ str(index) + ".png",dpi=300)

plt.clf()

for i, s in enumerate(hazard):
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plt.step(rsf.event_times_, s, where="post", label=str(i))

plt.ylabel("Cumulative hazard")

plt.xlabel("Time in days")

plt.legend(X_test.index)

plt.title("CI %.4f" % score_ )

plt.grid(True)

plt.savefig(path+"/plot_performance_hazard_model for" + model_name +
nsplit" + str(index) + ".png",dpi=300)

plt.clf()

and

try:

print('List of possible CI:', Concordance_index)

print('\nMaximum CI That can be obtained from this model

is:',max(Concordance_index))

print('\nMinimum CI:',min(Concordance_index))

print('\nMean CI:',statistics.mean(Concordance_index))

print('\nStandard Deviation is:', statistics.stdev(Concordance_index))
except:

print('only one CI points')

continue

results["rad_trans_deep for model "+model name] = pd.Series({"Maximum
CI":max(Concordance_index), "Minimum CI":min(Concordance_index),"Overall
CI":statistics.mean(Concordance_index),"Standard
Deviation":statistics.stdev(Concordance_index)})

final_results = pd.DataFrame.from_dict(results, orient="index")
final _results.to_csv("results/RF_rad_trans_deep/results RF_rad_trans_deep.csv")

Code B2

import os

import sys

import pandas as pd

import numpy as np

import pickle as pkl

import matplotlib.pyplot as plt

import statistics

from sklearn.feature_selection import SelectFromModel
from sklearn.feature_selection import VarianceThreshold
from sklearn.linear_model import Lasso

from sklearn.preprocessing import StandardScaler

from sklearn.feature_selection import f_classif as fc
from sklearn.feature_selection import SelectKBest as kbest
from sksurv.metrics import concordance_index_censored
from sksurv.svm import FastSurvivalSVM

import scipy.stats as st
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from sklearn.model_selection import StratifiedKFold

#load radiomics and transcriptomics data

radiomics_pd =
pkl.load(open("features_for_overall survival median/radiomics_pandas.pkl", "rb"))
transcriptomics_pd =
pkl.load(open("features_for_ overall survival median/transcriptomics_pandas.pkl","r

b"))

#load deep feature

deep_avg =

pkl.load(open("features_for_overall survival_median/deep_features_avg.pkl", "rb"))
deep_max =
pkl.load(open("features_for_overall survival median/deep_features_max.pkl", "rb"))

#merge deep features vectors (avg and max) to a single feature vector
deep={}
for net in list(deep_avg.keys()):
deep[net] = deep_avg[net].merge(deep_max[net], left_index = True, right_index
= True)

# import labels
with open("features_for_overall survival_median/days_0S_dictionary.pkl", 'rb') as
f:
0S_days = pkl.load(f)
0S_days_pd= pd.DataFrame([0S_days.keys(), OS_days.values()]).T
0S_days_pd.columns= ['Patient', 'Survival_in_days"']

with open("features_for_overall survival_median/binary_ 0S_dictionary.pkl™, 'rb")
as f:
0S_binary = pkl.load(f)
0S_binary pd= pd.DataFrame([0S_binary.keys(), OS_binary.values()]).T
0S_binary_pd.columns= ['Patient', 'Status']

final_0S = pd.merge(0S_binary_pd, 0S_days_pd, on="Patient", how="left")
final_0SS = final_O0S.set_index('Patient')

print("Data cleaning with VarianceThreshold")
thresholder_rad = VarianceThreshold(threshold=0.0)
thresholder_tran = VarianceThreshold(threshold=0.0)
thresholder_deep = VarianceThreshold(threshold=0.0)

radiomics_selected = thresholder_rad.fit(radiomics_pd)
transcriptomics_selected = thresholder_tran.fit(transcriptomics_pd)
mask_rad = thresholder_rad.get_support()

mask_tran = thresholder_tran.get_support()

radiomics_ = radiomics_pd.loc[:,mask_rad]

transcriptomics_ = transcriptomics_pd.loc[:,mask_tran]

print("Z-normalization")
radiomics_transformed = StandardScaler().fit_transform(radiomics_)
transcriptomics_transformed = StandardScaler().fit_transform(transcriptomics_)
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# Transform radiomics, transcriptomics data to DataFrame

radiomics = pd.DataFrame(data=radiomics_transformed, index=radiomics_.index,
columns=radiomics_.columns)

transcriptomics =

pd.DataFrame(data=transcriptomics_transformed, index=transcriptomics_.index,
columns=transcriptomics_.columns)

def apply_feature_selection(df, labels, cutoff_pvalue=0.05):
X=[]
for key in list(df.index):

X.append(df.loc[key])

np.array(X)

np.hstack(labels)

X
y

selector = kbest(fc, k="all")

best_features = selector.fit_transform(X, y)

f scores, p_values = fc(X, y)

critical_value = st.f.ppf(gq=1-cutoff_pvalue, dfn=len(np.unique(y))-1,
dfd=len(y)-len(np.unique(y)))

best_indices=[]
for index, p_value in enumerate(p_values):
if f_scores[index]>critical value and p_value<cutoff pvalue:
best_indices.append(index)
print("Best ANOVA features:" + str(len(best_indices)))

if len(best_features)>0:
best_columns = np.array(list(df.columns))[best_indices]
best_features = np.array(list(df[best_columns].values))
else:
best_columns = np.array(list(df.columns))
best_features = np.array(list(df.values))

try:
sel = SelectFromModel(Lasso(alpha=0.01))
sel .fit(best_features, y)
selected_features_bool = sel .get_ support()
final_selected=[]
final_features=[]
for index, feat_id in enumerate(best_columns):
if selected_features_bool[index]:
final_selected.append(feat_id)
final_selected = np.array(final_selected)
except:
print("No features left after Lasso")
final selected = best_columns

print("Best Lasso features: "+str(len(final_selected)))
return final_selected

pids = np.array(list(0S_binary.keys()),dtype=str)
f _labels = np.array(list(0S_binary.values()))

Biomedical Engineering MSc Program -https.//www.bme-crete.edu.gr/

Page 84 of 87



Application Grade Thesis

sss = StratifiedKFold(n_splits=4,shuffle=True)

kfolds = []

for train_index, test_index in sss.split(pids,f labels):
kfolds.append([pids[train_index],pids[test_index]])

for index,split in enumerate(kfolds):
print(split[e])

results = {}
for model name in deep.keys():
print(model name)
deep_selected = thresholder_deep.fit(deep[model_name])
mask_deep = thresholder_deep.get support()
deep_ = deep[model name].loc[:,mask_deep]

deep_ = StandardScaler().fit_transform(deep[model_name])
deep_df = pd.DataFrame(data=deep_,index=deep[model name].index,
columns=deep[model name].columns)

#Keep specific patients with known labels
patients_split = []
for patients in list(radiomics_pd.index):
if patients in list(deep_df.index):
patients_split.append(patients)

deep_final = deep_df.loc[patients_split]

Concordance_index = []
for index,split in enumerate(kfolds):
tr_split = []
tst_split = []
for key in list(radiomics.index):
if key in list(split[e]):
tr_split.append(key)
elif key in list(split[1]):
tst_split.append(key)

binary_labels = []
for pid in list(radiomics.loc[tr_split].index):
if pid in final_0S.values:
binary_labels.append(0S_binary[pid])

days_labels = []
for pid in list(radiomics.loc[tr_split].index):
if pid in final_O0S.values:
days_labels.append(0S_days[pid])

try:
radiomics_feat = apply feature_selection(radiomics.loc[tr_split],
binary_labels)
transcriptomics_feat =
apply feature_selection(transcriptomics.loc[tr_split], binary_labels)
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deep_feat = apply_feature_selection(deep_final.loc[tr_split],
binary_labels)
except:
print('something went wrong')
continue

path="results/SVM rad_trans_deep/"+model name+" SVM nsplit"+str(index)

os.mkdir(path)
pd.DataFrame(radiomics_feat).to_csv(path+"/selected radiomics.csv")

pd.DataFrame(transcriptomics_feat).to_csv(path+"/selected_transcriptomics.

csv"
pd.DataFrame(deep_feat).to_csv(path+"/selected_deep.csv")

selected_radiomics = {}
for key in list(radiomics.index):
selected_radiomics[key] =
radiomics[radiomics_feat].loc[key].to_numpy()

selected_transcriptomics = {}
for key in list(transcriptomics.index):
selected_transcriptomics[key] =
transcriptomics[transcriptomics_feat].loc[key].to_numpy()

selected_deep = {}
for key in list(deep_final.index):
selected_deep[key] = deep_final[deep_feat].loc[key].to_numpy()

combined_patterns_rad_trans_deep = {}
for key in list(selected_deep.keys()):
try:
combined_patterns_rad_trans_deep[key] =
np.concatenate((selected_radiomics[key], selected_transcriptomics[key],
selected_deep[key]))
except:
print(key)
continue

Xx_pd=pd.DataFrame.from_dict(combined patterns_rad_trans_deep,
orient="index")

X_train = x_pd.loc[tr_split]

X_test = x_pd.loc[tst_split]

y_train = final 0SS.loc[tr_split]

y_test = final_0SS.loc[tst_split]

# give structure to y
struct_arr_train =
y_train.astype({'Status':'?",'Survival_in_days':'<f8'}).dtypes
y_train_np = np.array([tuple(x) for x in y train.values],
dtype=list(zip(struct_arr_train.index,struct_arr_train)))
struct_arr_test =
y_test.astype({'Status':'?"', 'Survival_in_days':'<f8'}).dtypes
y_test _np = np.array([tuple(x) for x in y test.values],
dtype=list(zip(struct_arr_test.index,struct_arr_test)))
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estimator = FastSurvivalSVM(alpha=0.1, max_iter=1000, tol=le-5,

random_state=0)

try:

estimator.fit(X_train,y_train_np)
score_ = estimator.score(X_test,y test_np)

print(score_ )
Concordance_index.append(score_)

pred = estimator.predict(X test)
predictions = np.round(pred, 3)
pd.DataFrame(predictions).to_csv(path+"/predictions_SVM rad_trans_deep.csv
pd.DataFrame(y_test_np).to_csv(path+"/labels_test SVM rad_trans_deep.csv")

print('List of possible CI:', Concordance_index)
print('\nMaximum CI That can be obtained from this model

is:',max(Concordance_index))

print('\nMinimum CI:',min(Concordance_index))
print('\nMean CI:',statistics.mean(Concordance_index))
print('\nStandard Deviation is:', statistics.stdev(Concordance_index))

except:

print('only one CI points')
continue

results["rad_trans_deep for model "+model name] = pd.Series({"Maximum
CI":max(Concordance_index), "Minimum CI":min(Concordance_index),"Overall
CI":statistics.mean(Concordance_index),"Standard
Deviation":statistics.stdev(Concordance index)})

final_results = pd.DataFrame.from_dict(results, orient="index")
final_results.to_csv("results/SVM rad_trans_deep/final_results_SVM rad_trans_deep.

csv"
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