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Abstract  

 

Deep radiotranscriptomic survival analysis for non-small cell lung cancer patients by utilizing 

machine learning methods 

According to the World Health Organization, lung cancer is estimated to have the highest mortality 

rate worldwide. Lung cancer can be divided into two main categories: non-small cell lung carcinoma 

(NSCLC) and small cell lung carcinoma (SCLC), with the former being the most prevalent type of lung 

cancer, accounting for approximately 85% of cases. The majority of lung cancer cases are diagnosed 

after a symptom appears related to primary or metastatic disease. The progression of the disease is 

typically described using five stages, from 0 to IV. The accurate staging of lung cancer is essential to 

establishing a prognosis and selecting the optimal treatment. However, staging information is not 

necessarily predictive of the disease progression or the response to treatment. Several studies have 

investigated the relationship between image features and lung cancer. Radiomics refers to the 

extraction of a large number of features from medical images with the intent of creating mineable 

databases from radiological images. Image features can be used to reveal diagnostic, predictive, and 

prognostic associations in cancer patients via correlations with other response criteria like survival or 

response to treatment. The increase in deep learning methods has also paved the way for the 

extraction of high-dimensional deep features that could capture deeper the cancer information. 

Furthermore, advances in transcriptomics have provided genome-wide information on gene structure 

and gene function in order to reveal the mechanisms behind the biological processes of cancer.  

In many cancer studies, the main outcome under assessment is the time to an event of interest. The 

event might be the death of the patient, or the recurrence of the disease after successful treatment. 

The modelling of time to event data is called survival analysis and it has been used in many areas, 

including the biomedical, social, and engineering sciences. Outcome modelling can be used for the 

identification of the prognostic signature of patients and the stratification according to their survival 

time into groups with different risks of experiencing the event. Several studies have been conducted 

that use single source data to investigate the survival of cancer patients, such as histologic, imaging, 

or molecular data.  

This master thesis aims to investigate the synergetic properties of multi-view data sources such as 

radiomics, transcriptomics, and deep features, in developing machine learning models for survival 

analysis. The dataset used comprised of 211 Computer Tomography (CT) examinations, 130 RNA-seq 

vectors (𝑃𝐺) and clinical data with histology, genomic, semantic, survival and disease recurrence 

information. The intersection of the transcriptomic and imaging data was a subset of 115 patients and 

the patient cohort of survival included 40 subjects. Two commonly used machine learning methods 

have been examined for the classification of patients into low- and high-risk, random forest and 

support vector machine. The feature-fusion strategy included combining all features to perform 
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survival analysis and also combining only radiomics and deep features. The proposed deep 

radiotranscriptomic analysis resulted in a C-index 0.77 ± 0.10 using support vector machine with C-

index in the range of 0.65 to 0.83. The C-index using random forest classifier was 0.74 ± 0.11, in the 

range of 0.63 to 0.81. Deep radiotranscriptomic analysis outperformed analyses comprised only of 

radiomics and deep features. In that case, random forest reached a C-index of 0.68 ± 0.03 and 

support vector machine a C-index of 0.73 ± 0.07. The deep features that resulted in the best 

predictions were mostly extracted from MobileNet, ResNet, DenseNet, and NasNet models. 

Combining imaging information in the form of radiomics and deep features and histologic in the form 

of transcriptomics improved classification metrics, such as C-index and better ranked the patients 

according to their risk of experiencing the event.  

Parts of this work are included in the publication that is under review, 

entitled  "Deep Radiotranscriptomics of Non-Small Cell Lung Carcinoma for Assessing High-Level 

Clinical Outcomes using Multi-View Analysis" conduced by Trivizakis Eleftherios, Koutroumpa 

Nikoletta-Maria, Souglakos John, Karantanas Apostolos, Zervakis Michalis E., Marias Kostas. Details 

regarding the selected parameters and the complete source code of the analysis are provided online 

at https://github.com/NikiKou/deep_radiotranscriptomics_survival_analysis.  

Keywords 

non-small cell lung cancer; deep features; radiotranscriptomics; radiomics; transcriptomics; survival 

analysis; machine learning; feature fusion 

https://github.com/NikiKou/deep_radiotranscriptomics_survival_analysis
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Περίληψη  

 

Βαθιά μεταγραφωματική ανάλυση επιβίωσης ασθενών με μη-μικροκυτταρικό καρκίνο του 

πνεύμονα  χρησιμοποιώντας μεθόδους μηχανικής μάθησης 

Σύμφωνα με τον Παγκόσμιο Οργανισμό Υγείας, ο καρκίνος του πνεύμονα αποτελεί τη μορφή 

καρκίνου με το υψηλότερο ποσοστό θνησιμότητας παγκοσμίως. Ο καρκίνος του πνεύμονα χωρίζεται 

σε δύο κατηγορίες, μη-μικροκυτταρικό και μικροκυτταρικό καρκίνο του πνεύμονα, με την πρώτη 

κατηγορία να κυριαρχεί με ποσοστό 85% των διαγνώσεων καρκίνου του πνεύμονα. Στην πλειοψηφία 

των ασθενών, η διάγνωση γίνεται μετά την εμφάνιση συμπτωμάτων που σχετίζονται με πρωταρχική 

ή μεταστατική ασθένεια. Η εξέλιξη της πάθησης χαρακτηρίζεται από πέντε στάδια, από 0 έως IV. Η 

άμεση διάγνωση και ανάλυση της ασθένειας είναι απαραίτητη για την επιλογή της κατάλληλης 

θεραπείας. Αρκετές μελέτες συσχετίζουν χαρακτηριστικά που προκύπτουν από ιατρικές εικόνες με 

τον καρκίνο του πνεύμονα. Η ραδιωμική (radiomics) αφορά στην εξαγωγή μεγάλου αριθμού 

χαρακτηριστικών από ιατρικές εικόνες με σκοπό τη δημιουργία βάσεων δεδομένων από δεδομένα 

απεικονιστικών μεθόδων. Τα χαρακτηριστικά της εικόνας μπορούν να χρησιμοποιηθούν για την 

εύρεση διαγνωστικών και προγνωστικών συσχετισμών σε ασθενείς με καρκίνο του πνεύμονα. Η 

διαθεσιμότητα δεδομένων ιατρικής εικόνας σε συνδυασμό με την αύξηση μεθόδων βαθιάς μάθησης 

(deep learning) άνοιξε το δρόμο για την εξαγωγή χαρακτηριστικών υψηλής ποιότητας που θα 

μπορούσαν να συμβάλλουν στην βαθύτερη κατανόηση της ασθένειας. Επιπλέον, η 

μεταγραφωματική (transcriptomics) παρέχει σημαντικές πληροφορίες για το γονιδίωμα, βοηθώντας 

στην κατανόηση των μηχανισμών πίσω από τις βιολογικές διεργασίες του καρκίνου.  

Αρκετές μελέτες που σχετίζονται με τον καρκίνο στοχεύουν στην εύρεση του χρόνου μέχρι να 

εμφανιστεί το συμβάν του ενδιαφέροντος. Το συμβάν μπορεί να είναι ο θάνατος του ασθενούς ή η 

επανεμφάνιση της νόσου ύστερα από μία επιτυχή θεραπεία. Η μοντελοποίηση των δεδομένων 

χρόνου μέχρι την εμφάνιση του συμβάντος ονομάζεται ανάλυση επιβίωσης (survival analysis) και 

βρίσκει εφαρμογή στην βιοϊατρική, τη βιοστατιστική, καθώς και σε άλλες επιστήμες, όπως στη 

μηχανική. Αρκετές μελέτες χρησιμοποιούν δεδομένα από μία μόνο πηγή, όπως ιστολογικά δεδομένα, 

απεικονιστικά ή μοριακά, για την ανάλυση επιβίωσης ασθενών με καρκίνο. 

Σκοπός της μεταπτυχιακής εργασίας είναι η ανάλυση επιβίωσης με χρήση μεθόδων μηχανικής 

μάθησης και χρησιμοποιώντας διαφορετικές πηγές δεδομένων, ραδιωμικής, μεταγραφωματικής και 

δεδομένων που προέκυψαν από την εφαρμογή μοντέλων βαθιάς μάθησης σε ιατρικές εικόνες (deep 

features). Το σύνολο των δεδομένων που χρησιμοποιήθηκε περιείχε 211 εικόνες αξονικής 

τομογραφίας, 130 φορείς RNA-seq και κλινικά δεδομένα με πληροφορίες ιστολογίας, γονιδιώματος, 

επιβίωσης και υποτροπής της νόσου. Από αυτά τα δεδομένα, ένα υποσύνολο με 40 ασθενείς 

χρησιμοποιήθηκε για την ανάλυση επιβίωσης.  
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Δύο μέθοδοι μηχανικής μάθησης έχουν χρησιμοποιηθεί ευρέως για την ταξινόμηση ασθενών σε 

περιπτώσεις υψηλού και χαμηλού κινδύνου, ο αλγόριθμος τυχαίων δασών (random forest) και οι 

μηχανές διανυσμάτων υποστήριξης (support vector machines). Δύο συνδυασμοί δεδομένων 

μελετήθηκαν, ο συνδυασμός όλων των δεδομένων (deep radiotranscriptomics) και ο συνδυασμός 

μόνο δεδομένων radiomics και deep features. Η προτεινόμενη ανάλυση με συνδυασμό όλων των 

δεδομένων, deep ratiotranscriptomics, οδήγησε σε C-index 0.77 ± 0.10 με μηχανές διανυσμάτων 

υποστήριξης και 0.74 ± 0.11, με τυχαία δάση. Με συνδυασμό μόνο των δεδομένων radiomics και 

deep features, οι μηχανές διανυσμάτων υποστήριξης κατέληξαν σε C-index 0.73 ± 0.07 και τα τυχαία 

δάση σε C-index 0.68 ± 0.03. Ο συνδυασμός όλων των χαρακτηριστικών οδήγησε σε μοντέλα με 

καλύτερη ικανότητα πρόβλεψης. Τα μοντέλα βαθιάς μάθησης που παρείχαν  χαρακτηριστικά υψηλής 

ποιότητας ήταν τα MobileNet, ResNet, DenseNet και NasNet. Η μελέτη αυτή οδήγησε στο 

συμπέρασμα ότι η χρήση δεδομένων από διαφορετικές πηγές οδηγεί σε μοντέλα με καλύτερη 

πρόβλεψη της επικινδυνότητας της νόσου των ασθενών και σε καλύτερη κατηγοριοποίησή τους σε 

ασθενείς χαμηλού και υψηλού κινδύνου.  

Τμήματα αυτής της εργασίας περιλαμβάνονται στη δημοσίευση με τίτλο 

“Deep Radiotranscriptomics of Non-Small Cell Lung Carcinoma for Assessing High-Level Clinical 

Outcomes using Multi-View Analysis” από τους Τριβιζάκης Ελευθέριος, Κουτρούμπα Νικολέττα 

Μαρία, Σουγκλάκος Ιωάννης, Καραντάνας Απόστολος, Ζερβάκης Μιχάλης Ε., Μαριάς Κώστας, η 

οποία βρίσκεται σε στάδιο αξιολόγησης για αποστολή σε επιστημονικό περιοδικό. Λεπτομέρειες 

σχετικά με παραμέτρους που επιλέχθηκαν και ο κώδικας για την ανάλυση είναι διαθέσιμα 

διαδικτυακά στο: https://github.com/NikiKou/deep_radiotranscriptomics_survival_analysis.  

Λέξεις κλειδιά 

Μη-μικροκυτταρικός καρκίνος του πνεύμονα, ραδιωμική, μεταγραφωματική, ανάλυση επιβίωσης, 

βαθιά μάθηση, μηχανική μάθηση 

  

https://github.com/NikiKou/deep_radiotranscriptomics_survival_analysis
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Chapter 1: Introduction 

 

Lung cancer: principles, diagnosis, and treatment 

Cancer is a major public health problem with about 19.3 million new cancer cases occurred in 2020. 

Female breast cancer has surpassed lung cancer as the most common diagnosed cancer, followed by 

lung cancer [1]. In men, lung cancer and prostate cancer are the first and the second more frequently 

diagnosed cancer, respectively. According to the International Agency for Research on Cancer of the 

World Health Organization (WHO), lung cancer is the leading cause of cancer death worldwide [2]. The 

total number of new cases and new deaths for most cancers in 2020 in a global range [1] are depicted 

in Figure 1 and Figure 2. Smoking is the most common cause of lung cancers with 80% to 90% arising 

in cigarette smokers. A lifetime smoker has a 20-fold increased risk of developing lung cancer 

compared to a non-smoker. The pathogenesis of lung cancer involves the exposure of environmental 

carcinogens and intrinsic factors. Genetic variations and family health history may also be the cause 

of the disease. Mutations that have frequently been identified in tumors of lung cancer are in the 

epidermal growth factor receptor (EGFR) gene, which is present in adenocarcinomas [3].  

The majority of lung cancer cases are diagnosed after a symptom appears related to primary or 

metastatic disease. The patient is evaluated when obtaining tissue for histologic diagnosis, 

determining the stage of the disease based on International TNM staging system, imaging such as 

computed tomography (CT) etc. To facilitate the prognostic decision and treatment, lung cancer is 

classified based on the histologic appearance into small cell lung cancer (SCLC) and non-small cell lung 

cancer (NSCLC). NSCLC are further classified into four major histologic classes, adenocarcinoma, 

squamous cell carcinoma, small cell carcinoma and large cell carcinoma. Also, adenosquamous 

carcinoma, carcinoid, and bronchial gland carcinoma are histologic classes of lung cancer with 

prevalence less than 5%. Adenocarcinomas have prevalence of 40% in the lung tumors and are 

histologically heterogeneous peripheral masses that metastasize early in the disease course. 

Squamous cell carcinomas are the second more common with 25% prevalence and are endobronchial 

masses that are centrally located. Small cell carcinomas are also centrally located and are associated 

with early extrathoracic metastases, including paraneoplastic syndrome. Lastly, large cell carcinomas 

are large peripheral masses with early metastases [3], [4].  
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Figure 1: Number of new cases for different cancers in 2020 

 

 

Figure 2: Number of new deaths for different cancers in 2020 

 

As already stated, the diagnosis includes tissue diagnosis, staging, and functional evaluation. There is 

a variety of techniques for tissue diagnosis. In patients with non-small cell carcinomas, thoracotomy 

Number of new cases of cancer in 2020

Female breast Lung Prostate Nonmelanoma of skin Colon

Number of new Deaths in 2020 

Female breast Lung Prostate Nonmelanoma of skin Colon
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is a convenient and least invasive technique. In general, a least invasive method possible should be 

used. If obtaining the tissue fails, a more invasive method is needed. Flexible bronchoscopy is another 

choice for patients with central tumors. Transthoracic needle aspiration appears to be more sensitive 

than bronchoscopy, especially in patients with peripheral lung tumors. After tissue diagnosis, the next 

step of cancer evaluation is the clinical staging, which is based on findings obtained before treatment 

using medical imaging modalities, such as computed tomography (CT) and positron emission 

tomography (PET). Integrated these modalities, CT/PET scanners sometimes appear to have better 

characteristics than CT or PET alone. After evaluation of the information obtained, the staging 

classification can be determined based on the type of tumor identified and the presence or absence 

of metastatic disease. The last step of diagnosis contains the functional evaluation of the patient. The 

performance and pulmonary status will determine the treatment options, the therapy option or the 

probability of surgery [5]. 

NSCLC accounts for 85% of all cases of lung cancer. The primary curative modality for patients with 

early-stage NSCLC is surgical resection, with either lobectomy or pneumonectomy, depending on the 

extent of the disease. For some patients which are not candidates for surgical resection, the treatment 

may include conventional radiotherapy or adjuvant chemotherapy. Stage III patents will be treated 

with combined therapy, with concurrent radiotherapy and chemotherapy. Another treatment which 

might benefit selected patients with advanced NSCLC that have specific mutations is molecular 

targeted therapy. Patients with limited stage SCLC will be treated with chemoradiotherapy with an 

intent to be cured, however, chemotherapy can prolong survival also in patients with extensive-stage 

SCLC [6].  

 

Artificial Intelligence in Medicine 

Artificial Intelligence (AI) refers to a set of technologies that allow machines and computers to simulate 

human intelligence. AI is broadly used in both the technical and popular lexicon to encompass a 

spectrum of learning, including machine learning and deep learning. AI has gained wide success in a 

range of applications, such as speed recognition, computer vision, and natural language processing 

(NLP). In medicine, the increasing amount of available data in combination with the evolution in 

automation technology and the rapid development of computer hardware and software has created 

the ideal conditions for the development of AI systems. AI methods have been developed to analyze 

health related data, genetic data, as well as clinical and data encompassed in the biomedical literature. 

Regardless of the technique applied, the scope of AI technologies in medicine is to use advanced 

algorithms to understand health data, uncover hidden patterns, and assist in clinical decision-making 

[7].  

Both machine learning and deep learning are subsets of AI. Machine learning enables machines to 

learn from data using statistical methods and to make predictions. Deep learning is a subdivision of 

machine learning which makes the computation of multilayer neural networks feasible. Advances in 
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these fields have the potential to revolutionize medicine by performing complex tasks that are 

currently assigned to specialists. Machine learning algorithms can increase diagnostic accuracy, 

improve treatment costs, reduce the probability of errors in diagnosis. However, effective use of AI-

based technologies in medicine requires synergistic transdisciplinary competencies. For example, 

personalized care of oncology necessitates the collaboration of many disciplines, such as oncology, 

radiology, nuclear medicine. A combination of different disciplines can accelerate the effectiveness of 

AI-based applications [8]. Some of the potential applications of AI-based technologies in healthcare 

are shown in Figure 3, and involve diagnostics, medical image analysis, therapeutics, population health 

management, administration and regulation of big data in hospitals [9].  

 

 

Figure 3: Applications of AI in healthcare 

  

In addition to developing AI algorithms for medicine, their practical implementation is extremely 

difficult. The productization process requires managing and using big amount of data, integration into 

complex clinical workflows, transparency of the process, and compliance with regulatory frameworks. 
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Medicine in evolving to a more proactive practice, consisting of four main components, referred to as 

4Ps: Predictive, Personalized, Preventive, and Participatory. The main driver of this change is the 

digitization of medical data, together with the development of new technologies, like machine 

learning tools, which enable people to interact, analyze, and extract information from these massive 

volumes of data like never before. Forecasts for the next decade set the bar in the range of billions of 

data points for each individual patient. As the complexity and dimensionality of these datasets keep 

growing, it becomes paramount to integrate big data analytics into medical practice and research. It 

is important to note that collection and analysis of data is not a novel concept in clinical research and 

medical practice. However, the real value of big data comes from analyzing very large volumes of them 

and it is the digitization factor in conjunction with the development of these cutting-edge technologies 

that provide us with new opportunities and demands both in terms of sophistication and depth. Data, 

collected from electronic health records (EHRs) and precision medicine platforms, such as image, 

genetic, omics, clinical, and wearable devices data, create large volumes that could be analyzed. For 

data to be characterized as “big data”, several characteristics are required, including the so-called 5 

“Vs”: volume, velocity, variety, veracity, and value. The volume of data that must be processed by 

algorithms to be substantially large, in the order of petabytes, data to appear in some context at high 

velocities, to have a great variety (structured, unstructured data, and different formats), veracity or 

validity of data (are the data correct, do they have good quality) and finally to have value, meaning 

that the extracted information to be useful [10]. The use of big data requires planning and careful 

execution. The security and privacy of data, especially in the field of health care, are of high 

importance. The privacy of those patients whose data are being managed is critical, and relevant 

norms and regulations should be applied, such as anonymization and deidentification. With the scale 

of dissemination, confidentiality and privacy may need to be reimagined entirely. Cyber security 

measures are increasingly important for addressing the risks of wrong use of data, or inaccurate and 

inappropriate disclosures. In the data analysis phase, data might be distributed among several nodes. 

Thus, privacy preservation should be a requirement for the development of the algorithms [9], [10].  

Different types of data have been used in AI for health. Most common data types include multi-omics 

data, clinical data and medical image data. Multi-omics refers to data that belong to the family of “-

omics” data, such as genomics, proteomics, transcriptomics and epigenomics. Multi-omics approach 

joints these data and offer a comprehensive understanding of biological systems. The integration of 

data provides to machine learning models a multi-view approach, where in conventional single omics 

approach there is a separate view of machine learning model. The integration of data from single-

nucleotide polymorphisms and mRNA gene expression has been used for the prediction of a 

quantitative phenotype using a Bayesian model. Also, different omics data such as mRNA, gene 

expression, and methylation have been integrated for identifying associations with clinical outcomes 

such as ovarian cancer survival. These are some examples that shows the promising results that have 

been achieved so far. However, there are many challenges regarding AI methods for multi-omics data 

analysis [11].  

Another most common used type of data is medical images. Medical imaging is an important 

diagnostic tool for various diseases. There are many modalities that have been invented and are used, 
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including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) and 

positron emission tomography (PET) among the most common used. These modalities play a vital role 

in the detection of anatomical or functional information about body organs. Information gained from 

medical images plays an important role in the patient care process, its characterization, monitoring of 

the disease, treatment response etc. Medical image analysis aims to help radiologists and clinicians to 

make diagnosis more efficient. The computer aided diagnosis (CAD) started to develop in the 1980s 

and the goal was to offer a second opinion to assist radiologists in image interpretation. The first CAD 

commercial system ready to use was approved by the Food and Drug Administration (FDA) in 1998. 

CAD systems have been investigated for various applications, including lesion detection, patient’s 

characterization, prognosis prediction. A CAD system is developed with machine learning methods. 

Conventional machine learning methods have been developed for image analysis to recognize 

patterns, detect abnormalities, and classify structures on images as normal or abnormal. Image 

processing and feature extraction techniques have been developed to characterize images. The 

features extracted can be used as input to a classifier and create a predictive model that can estimate 

the probability of an image to belong to a normal or abnormal state. Although the research in CAD 

systems has been increasing, only a few are used in the clinic. CAD systems developed with 

conventional machine learning techniques may not reach the best performance that is needed by 

clinicians. The growth of deep learning methods in many scientific areas has pave the way to CAD 

systems with higher performances that will meet the expectations for implementing CAD in clinical 

use [12], [13].  

Deep learning uses complex multi-layer architectures to learn representations of data and model high 

level abstractions present in the data. There is a wide variety of deep learning architectures that are 

used in different applications, including convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), autoencoders and stacked autoencoders. CNNs are biologically inspired variants of 

multilayer perceptrons. They have been successfully used for pattern recognition tasks. CNNs look 

each time at small patches of the input image and use shared weights in each convolutional layer. 

They learn to extract relevant features from the input image and adjust the weights each time using a 

backpropagation algorithm. When they perform the convolution operation in each region of the entire 

image, they eventually create a feature map which provides insight into the internal representations 

for the specific input. CNNs learn features from underlying data. Their strength in their usage relies on 

the fact that the loss function provides an error signal that is backpropagated to the networks to 

improve the feature extraction and as a result, CNNs provide better representation of the input image. 

CAD systems have been advantages by the use of deep learning. The most common applications of 

deep learning in CAD systems are the classification of benign and malignant lesions in medical images, 

the classification of normal or disease patterns, the prediction of high risk and low risks patterns for 

prognosis of a disease, and the stratification of patients into high risk or low risk patients. CAD systems 

developed with deep learning algorithms also include image segmentation and classification of tumors 

or organs, feature extraction of tumor size or texture to characterize the patient or compare features 

of normal and abnormal cases to assess the treatment response or predict the recurrence of the 

disease. The large datasets that are available for chest CT, chest radiographs, and mammograms has 

led research to conduct several studies regarding lung cancer and breast cancer with the use of these 

datasets [12], [13].  
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NSCLC radiotranscriptomics 

Lung cancer is responsible for a large percentage of cancer-related deaths worldwide. The early 

diagnosis of the disease can improve the prognosis and increase the survival rate. Common imaging 

interpretation, for instance CT, MRI, or PET relies on the visual analysis in terms of shape, size, contrast 

enhancement of various regions of interest within the image. Radiomics involves the high-throughput 

extraction and analysis of large amounts of quantitative imaging features with the intent to create 

mineable databases from radiological images. Radiomics, with reference to genomics, was first 

introduced by Lambin et al. in 2012 [14]. Like other high-throughput techniques, labeled “-omics”, 

radiomics targets on developing new imaging biomarkers to better understand the microbiology of 

cancer. The use of radiomics could provide further information about the biological constitution of a 

tissue or offer prognostic markers. Radiomics can be applied to any cancer-related imaging because it 

contains many potential information from medical images. Cancer imaging can be explored using 

radiomics and can be converted into high dimensional quantitative tumor intensity, shape, and text 

features. In oncological studies, extracted from tumor features that are obtained from radiological 

data (CT, PET scans) can be used to reveal diagnostic or prognostic associations in patients with 

correlation to other criteria like response to treatment or survival [15].  

The process of radiomics involves the conversion of medical images into quantitative features and 

occurs through five steps, i) image acquisition and reconstruction, ii) segmentation of region of 

interest and rendering, iii) Feature extraction and feature qualification, iv) data sharing and building 

databases and lastly v) building predictive and prognostic models. The extracted features utilized in 

radiomic analysis refer to algorithms that can be used to describe regions within a radiologic image. 

Intensity-based, structural, texture-based and wavelet as the basic classes of algorithms that have 

been commonly used for this purpose. After feature extraction, several statistical models can be used 

to select the top features that correlate with the outcome of the study. The optimal features can then 

be used to build a classifier. Using a set of labeled instances, the classifier is trained to predict the 

outcome of instances in the unseen dataset with unknown labels. These labels may represent 

malignant or benign characterization of tumor, in case of diagnosis, or low-risk and high-risk patients 

in case of survival analysis. A range of classifiers can be used for prediction, including random forest, 

support vector machines, neural networks etc. [15].  

The effectiveness of radiomics is based on the hypothesis that medical image analysis can quantify the 

underlying diseases. Despite the development of multi-modal imaging technologies and computer-

aided diagnostic tools, imaging information at the tissue level may not be correlated with the 

underlying molecular and genetic disease biomarkers. For this reason, the joint effect of multi-scale 

pathophysiological disease biomarkers may help get closer to the vision of precision medicine. 

Radiogenomics/radiotranscriptomics analysis involves the combination of radiomic and genomic or 

transcriptomic information and aims to merge the imaging phenotype with the underlying molecular 

characteristics of a disease. “-Omics” data, including genomics and transcriptomics have been 
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increased with the advances in next-generation sequencing. Genomics study the structure, function, 

and inheritance of the genome, with a major part of it being the determination of the sequence of 

molecules that make up the genomic DNA content of an organism. Transcriptomics technologies are 

used to study an organism’s transcriptome, the sum of all its RNA transcripts. Transcriptomics focuses 

on the gene expression at the RNA level and offers the genome-wide information of gene structure 

and gene function in order to reveal the mechanisms behind specific biological processes. The 

combination of radiomics and transcriptomic features aims to correlate the imaging and gene 

expression information and increase the predictive power of predictive models. Several studies have 

tried to associate image-derived features with molecular information, where both imaging (CT, MRI, 

PET/CT) and molecular or genetic information (miRNA, RNA-seq, DNA) are available [16], [17].  

NSCLC radiogenomics and radiotranscriptomics analysis in literature mostly focuses to find the 

association between radiomic features and genomic signatures. Morgado et al. [18] investigated the 

relation between image phenotypes and the mutation status of Epidermal Growth Factor Receptor 

(EGFR) using radiomic features extracted from CT scans. Using linear Support Vector Machine, Elastic 

Net and Logistic Regression, authors showed that a comprehensive approach using a region of interest 

that include the lung with nodule could successfully predict the EGFR mutation status. Similarly, EGFR 

co-mutated with TP53 status was identified using a CT-derived radiomics approach. Zhu et al. [19] 

developed and validated a multiclass classification strategy to predict primary overlapping mutations 

involving TP53 and EGFR in advanced lung adenocarcinomas. The model could potentially be used as 

an important alternative marker for selecting the best responders to target therapy, since EGFR co-

mutated with TP53 NSCLC patients could reduce responsiveness to treatment with tyrosine kinase 

inhibitors. However, these studies used radiomic features and correlated the genomic signatures. 

There are only few studies that combined radiomic and transcriptomic features [20], [21].  

Objectives of the study 

In this study, a multi-view survival analysis will be developed to investigate the combination of 

radiomics, transcriptomics and deep features extracted from CT scans of NSCLC patients. Two 

classifiers will be examined for their ability to classify NSCLC to low- and high-risk patients, Random 

Forest, and Support Vector Machine. In Chapter 2, a review of studies about survival analysis of NSCLC 

patients is presenting. Survival analysis for lung cancer has been extensively studied over the years, 

using solely one type of features. Only a handful of studies have combined different features, such as 

radiomics and transcriptomics. This study aims to combine into one feature space, radiomics, 

transcriptomics and deep features and assess the predictive power of the developed models. 

The analysis code was developed in Python programming language and packages from the scikit-

survival library were used. The code is freely available on GitHub: 

https://github.com/NikiKou/deep_radiotranscriptomics_survival_analysis and in the Appendix. A part 

of this Thesis will be included in the survival section of the publication entitled: 

"Deep Radiotranscriptomics of Non-Small Cell Lung Carcinoma for Assessing High-Level Clinical 

Outcomes using Multi-View Analysis" conduced by Trivizakis Eleftherios, Koutroumpa Nikoletta-

https://github.com/NikiKou/deep_radiotranscriptomics_survival_analysis
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Maria, Souglakos John, Karantanas Apostolos, Zervakis Michalis E., Marias Kostas. The publication is 

under peer-review for publishing in a journal. This Thesis differs from the publication in feature 

selection and feature integration parts. This study integreates radiomics, transcriptomics and deep 

features whereas publication takes into consideration also clinical data. Furthermore, more classifiers 

than random forest and support vector machine are examined in the publication.  
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Chapter 2: State-of-the-art review 

 

Cancer mortality remains significant despite advances in medicine, including personalized treatment 

strategies, combining surgery, chemotherapy, immunotherapy, and radiotherapy. Most patients with 

NSCLC are characterized with poor median overall survival. It is of high importance to discover and 

validate biomarkers that can predict outcomes and be sensitive to different treatment effects. 

Outcome modeling can enable the identification of prognostic signature and a risk stratification of 

patients with different cancer therapies. Accurate prediction of survival usually depends on multiple 

information including histologic, genetic, imaging and molecular information [22].  

 

NSCLC Survival Analysis using radiomics  

Many studies found in the literature are focused on predicting the survival rate or survival time of a 

group of patients with NSCLC. Radiomics studies have shown promising results to decode the intra-

tumoral heterogeneity and predict the progression of a disease and the therapy response of the 

patients. The radiomic features extracted from computed tomography (CT) and positron emission 

tomography (PET), as will be described below, were used to predict prognosis. However, different 

modalities reflect different aspect of tumor heterogeneity. By integrating the information of imaging 

modalities some studies ended up in improved prognostic values. Chaddad et al. [23] investigated the 

prediction of NSCLC patient survival outcomes based on radiomic texture and shape features. CT scans 

of 315 patients were retrieved and features automatically extracted from tumor image were 

computed. The gross tumor volume was computed for each scan and assigned to different NSCLC 

subtypes (i.e. large cell carcinoma, adenocarcinoma, squamous cell carcinoma or not otherwise 

specified). A total of 24 features were computed and used in combination with other information of 

patients to analyse their survival. The correlation between the survival time and the features was 

measured with Spearman’s rank correlation, whereas Kaplan-Meier estimator and log-rank tests were 

developed to select features that were more related to patient survival outcomes. After feature 

selection, random forest algorithm was used to predict the patient’s survival group. More specifically, 

a multivariate analysis using 24 radiomic features and 5 staging/demographic variables such as age, T, 

N, M and overall stage, were used as input to a random forest classifier, to classify the patients in two 

subgroups, one group with long survival time (above the median survival time) and one with low 

survival time (below the median survival time). The importance of each feature was also assessed. 

Correlations between radiomic features and survival led to the conclusion that CT imaging features, 

especially for patients with large cell carcinoma, primary tumor size and no lymph node metastasis, 

could be used as indicators of survival with accuracy at the range of 72%.  
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Another study conducted by Shen et al. [24] compared the 2D and 3D radiomic features prognostic 

performance differences of NSCLC. A collection of 588 NSCLC patients’ pre-treatment CT images were 

used in this study. All patients’ survival data were dichotomized by the cut-off of 2 years, where 1 

indicated patients with larger than 2 years survival time and 0, patients with less than 2 years. Tumors’ 

contours were segmented semi-automatically. Semi-automatically segmentation referred to 

radiologists identifying a proper point inside the lesion and after Toboggan based growing algorithm 

automatically segmenting lung lesion. A total of 1014 radiomics features were assessed, 507 2D 

features and 507 3D features. Both feature groups involved certain categories, first-order histogram 

statistics, Gray-Level Co-occurrence Matrix, Gray-Level Run-length Matrix and Fractal Dimension. 

Authors employed the univariate Cox regression model to achieve each feature’s Harrell’s 

concordance index (C-index) and those with higher C-index were considered with potential prognostic 

power. The stable and potential prognostic features were selected to construct the 2D group’s and 3D 

group’s indicators of classification. The prediction performance of the logistic classifier showed that 

3D group’s AUC was larger than the 2D’s in the training cohort, but the 2D’s was better in the validation 

cohort. Classified binary indicators were associated with censored continuous survival data for the 

survival analysis. Both 2D and 3D indicators achieved good results in the Kaplan-Meier analysis and C-

index of the 2D model was higher than the 3D model. In conclusion, considering the cost of radiomic 

feature calculation and the better performance of 2D features, Shen et al. resulted in recommending 

2D features for use in practical research.   

The combination of the radiomics signatures extracted from 2D and 3D CT images was also studied 

[25]. The main purpose of the study was to develop a radiomics nomogram for the prediction of the 

survival of patients with NSCLC. A total of 975 features were extracted from 371 CT images. Using the 

LASSO regression model, the candidate features from 2D were reduced to ten variables and the 3D 

features were reduced to nine variables. To build the optimal radiomics signature, authors compared 

the prognosis performance of 2D and 3D feature groups. As discussed in the previous study, univariate 

Cox proportional hazards model was used and C-index and hazard ratio were calculated to evaluate 

the predictive accuracy of 2D, 3D or 2D plus 3D radiomics signature. The C-index of 3D was greater 

than of 2D, however both had a favorable predictive power for survival. The Kaplan-Meier analysis 

demonstrated that the combined 2D and 3D features could more effectively distinguish the patients 

into low-risk and high-risk groups. The new radiomics signature was built using the combined feature 

vector containing different feature groups. Finally, they evaluated the prognosis ability of the clinical 

TNM staging and radiomics nomogram. When the radiomics signature was combined with the TNM 

staging system and clinical information, the predictive power was significantly improved, showing that 

radiomics can improve the predictive accuracy of patients’ survival. The conclusion of the study that 

with combined 2D and 3D features the predictive power was improved and that could be verified on 

the reason that 2D image under segmenting mainly contains the central region of the tumor. However, 

the tumor heterogeneity, is the outer structure of the tumor tissue and 3D image carries information 

on the peripheral surface of the tumor.  

Another study focused on the quantitative assessment of heterogeneity by histogram analysis of 

tumor images. Bluthgen et al. [26] aimed to determine the potential of imaging analysis as an 
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independent predictor of survival and the potential of associating tumor heterogeneity with gene 

alterations. CT scans from 2009 till 2015 from 692 patients were reviewed, together with clinical and 

molecular data (KRAS, EGFR and ALK status) and 421 of them were used for histogram analysis. The 

prognostic value of sex, age of inclusion, smoker status, size tumor and CT histogram analysis 

parameters were measured in a univariate analysis. Multivariate analysis was performed by Cox 

regression models and Wilcoxon test was used to correlate the CT histogram analysis parameters with 

mutational status. In the training dataset of 313 patients, primary mass entropy was strongly 

associated with overall survival in the univariate analysis and remained an independent prognostic 

factor in a multivariate analysis. However, this result wasn’t reproducible in the validation patient 

cohort.  

De Jong et al. [27] investigated the prognostic value of the signature in two cohorts of stage IV NSCLC 

patients, EGFR and ALK wildtype, from 195 patients with their CT scans. Radiomic features were 

calculated for the primary tumor and the C-index of Cox regression model was calculated and 

compared to the signature performance of overall survival. The same group some years before 

published a prognostic radiomic signature for overall survival, consisting of 4 radiomic features: “first 

order statistics: Energy”, which described the overall density of the tumor volume, “Shape: 

Compactness”, a feature for quantifying the compactness of the tumor volume relative to the 

compactness of a sphere, “Gray level run length: Gray level non-uniformity” to measure intra-tumor 

heterogeneity and lastly “Wavelet Gray level run length: gray level non-uniformity” to describe the 

intra-tumor heterogeneity after wavelet decomposition of CT scan. The signature was trained on stage 

I-III NSCLC and in a second phase was used in stage IV patients. This study showed that stage IV 

patients with prognostic index, which was calculated for the radiomic signature, lower than the 

signature median had better overall survival compared to patients with higher prognostic index.  

Another study by Zhang et al. [28] presented different strategies for improving predictive performance 

of radiomics-based prognosis for NSCLC. Also, these strategies were used to overcome some 

challenges such as unbalanced data, small sample sized and feature redundancy, which lead to low 

predictive accuracy. CT images of 112 patients with NSCLC were used to predict recurrence, death, 

and recurrence-free survival using a radiomics analysis. Initially, a large number of quantitative 

features were extracted from medical images, and 5 unsupervised feature reduction methods were 

investigated, including Principal Component Analysis, Independent Component Analysis, Zero 

Variance and Near Zero Variance. Eight classification algorithms were used to predict the endpoint 

event. Some of the algorithms examined were Random Forest, K-nearest Neighbour, Generalized 

linear model, Support Vector Machine, Neural networks. PCA showed the best performance in 

reducing the number of features, highlighting that unsupervised feature reduction methods maintain 

the interaction among features, benefiting the predictive model training process. Comparing the 

classifiers, random forest resulted in the highest predictive value. Down-sampling, up-sample and 

Synthetic Minority Over-sampling techniques were also applied to tackle the unbalanced data. Finally, 

an analysis of variance suggested that feature selection methods, data endpoints and classification 

models significantly affected the predictive accuracy, indicating that these factors should be 

investigated when building a cancer prognosis model. 
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The CT-based radiomic signature was used by Li et al. [29] for predicting progression-free survival in 

stage IV ALK-positive NSCLC patients. A total of 63 stage IV ALK-positive NSCLC patients who had 

received TKI crizotinib therapy and 105 stage IV EGFR-positive NSCLC patients were used for model 

construction and validation, respectively. The progression-free survival was counted from the start of 

treatment with TKI to the confirmation of disease progression or death. Other clinical characteristics, 

such as sex, age and smoking status were also recorded. Authors initially extracted 481 quantitative 

3D features from CT scans of the patients from manually segmented tumor volumes of interest. Next 

step for Li et al. was to perform Pearson correlation analysis and the least absolute shrinkage and 

selection operator (LASSO) penalized Cox proportional hazards regression to reduce the number of 

radiomic features and select the critical ones. They assessed the potential association between the 

radiomic signature and progressive-free survival by Kaplan-Meier survival curves as well as log-rank 

tests. Results showed that the CT-based radiomic features could capture important information 

regarding the tumor phenotype. The prognostic performance for ALK-positive NSCLC patients in both 

training and validation cohort reached C-index to 0.74 and 0.72 respectively. The radiomic signature 

managed to stratify the patients into slow progression and rapid progression disease. Adding the 

clinical characteristics (sex, age and smoking status) did not benefit the model, indicating that radiomic 

signature alone could predict efficiently the prognosis in ALK-positive NSCLC patients treated with TKI 

crizotinib.  

The early prediction of the tumor response of SCLC patients to chemotherapy with the use of CT-based 

radiomics signature was examined by Wei et al [30]. A total of 92 patients who received the standard 

first-line regimen of etoposide and cisplatin, were divided into two groups: response and no response 

patients. These patients also underwent CT examination and a total of 21 radiomics features were 

extracted from CT scans that conducted prior to and after two cycles of chemotherapy. Researchers 

established a predictive model using a binary logistic regression model. The results of the study 

showed that the performance of the radiomics signature to predict the chemotherapy efficacy were 

higher than the conventional model that used clinicopathological parameters. The outcome of this 

study was that radiomics models could effectively predict the therapy response. 

Radiomics analysis of tumors of NSCLC patients has been widely used on single images modalities, and 

especially in CT scans, as it was presented previously. Integrating information from different imaging 

modalities may provide different characteristics on tumor heterogeneity. Amini et al. [31] compared 

the prognostic value of multi-modality multi-level fusion radiomics models. CT images and 18F-FDG 

PET images of 182 patients were collected from The Cancer Imaging Archive (TCIA) and were used for 

this study. Single-modality models were constructed initially, and then PET and CT information were 

integrated using image-and feature-level fusions to construct the multi-modality models. Cox 

proportional hazard regression was used for survival analysis. Image-level fusion was performed with 

feature extraction from fused PET and CT scans using to wavelet-based technique. The wavelet fusion 

outperformed other models resulting to C-index=0.71. In feature-level fusion, features were extracted 

from separate PET and CT scans and then two different strategies were developed, feature 

concatenation (ConFea) and feature averaging (AvgFea). Both approaches resulted in lower C-indices 

(0.58 and 0.64, respectively). Amini et al. concluded that multi-modality models showed increased 
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prognostic value compared to single-modality models. Also, when combining information obtained 

from CT and PET scans, image-level fusion showed superiority in predicting compared to feature-level 

fusion. One year later, the same group of researchers showed that image-level fusion multi-modality 

radiomics models outperformed clinical models as well [32]. 

The combination of different imaging modalities was also examined by Forouzannezhad et al [33]. In 

this study, they collected the survival outcomes for 45 patients with unresectable NSCLC enrolled on 

the FLARE-RT phase II trial of risk-adaptive chemoradiation. CT scans, FDG-PET and perfusion SPECT 

imaging before treatment and after treatment were performed. Shape, intensity, and texture-based 

features were extracted from the metabolic tumor volume resulting in 110 total features. Authors 

applied a multitask learning approach for prediction of overall survival, that was consisted of a fused 

Laplacian sparse group LASSO with component-wise gradient boosting survival regression. The study 

demonstrated that FDG-PET radiomics had the higher prognostic value with C-index equal to 0.71 

compared to CT radiomics and SPECT radiomics with C-index 0.64 and 0.6, respectively. Multitask 

learning of FDG-PET radiomics outperformed also clinical imaging and conventional FDG-PET delta 

radiomics. The studies presented in this chapter highlighted the potential of radiomics models, 

especially multi-modality models to improve prognosis for NSCLC patients.  

  

NSCLC Survival Analysis using transcriptomics 

Advances in genomics and the advent of next-generation sequencing has established massive genomic 

approaches. RNA sequencing for gene expression has created paradigm shifts in a variety of research 

fields. Gene and network expression signatures have been successfully used to predict cancer patients’ 

survival. Different studies have shown that microarray measurements of gene expression whether 

alone or combined with clinical information could predict overall survival in lung adenocarcinoma [34], 

[35]. Gene expression signatures were also used to predict response to therapy. Zhu et al. [36] 

presented the first NSCLC prognostic gene expression signature generated from microarray studies 

using samples collected prospectively in a randomized phase III adjuvant cisplatin/vinorelbine trial. A 

15-gene signature separated patients into high-risk and low-risk groups with significantly different 

survival. The interaction between risk groups and adjuvant cisplatin/vinorelbine was verified by 

quantitative polymerase chain reaction. They found that patients whose tumors were predicted to 

have a poor prognosis but who received chemotherapy, exhibited significantly better survival than the 

observed patients whose tumors had a poor prognosis signature and did not receive chemotherapy. 

In contrast, when the patient’s tumor had a good prognosis signature and chemotherapy was 

administered, the patient did worse than patients with a good signature with no chemotherapy. The 

study showed that this gene expression signature could be a prognostic marker of NSCLC in early stage.  

For patients with poor prognoses, the tumor biomarker information suggested that they needed 

additional therapy, and that were likely to gain survival benefit from adjuvant cisplatin/vinorelbine. 
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Another study by Watza et al. [37] hypothesized that NSCLC-specific mechanisms of immune 

modulation could be detected by leveraging tumor transcriptomic profiling paired with patient 

outcome data and could identify the immune-centric gene networks that impact patients prognosis. 

Tumor transcriptomes and clinical characteristics were obtained from two distinct NSCLC cohorts. To 

test the immune-centric gene and pathway expression for association with patient survival, they 

constructed a parsimonious base survival model. Prognosis-guided gene and pathway analysis showed 

significant survival enrichments and the interleukin signaling pathway, was found to be enriched with 

prognostic signal and have the greatest impact on overall survival. From 430 genes in interleukin 

signaling pathway, subsequent leading-edge analysis identified 23 genes that were in both cohorts. 

These gene-pathway candidates were proposed as future targets for therapeutic and mechanistic 

studies to advance immunotherapy. Another prognostic model based on immune-related genes of 

lung squamous cell carcinoma was developed by Rui et al [38]. They performed univariate and 

multivariate Cox regression analysis to construct the differentially expressed immune-related genes 

(DEIRGs) to predict survival. The p-value between low- and high-risk subgroups was zero, indicating 

that the prediction model could accurately estimate lung squamous cell carcinoma prognosis. The 

relationship between prognostic model and immunocytes was further explored through immunocyte 

correlation analysis. They also performed immunocyte infiltration analysis, showing that dendritic 

cells and neutrophils were positively correlated with immune-related genes and played an important 

role within the immune microenvironment. The relationship of the transcriptional tumor immune 

microenvironment with prognosis of patients with lung adenocarcinoma was also examined by Chen 

et al [39]. They used gene set variation analysis to identify gene sets related to prognosis starting from 

85 locally advanced lung adenocarcinoma samples. To quantify infiltrated immune cells, researchers 

employed the microenvironment cell-population counter method. Survival analysis with the log rank 

test demonstrated that antigen processing pathway enrichment was associated with better prognosis. 

Also, Cox proportional hazards models were used to identify risk factors and greater infiltration of 

neutrophils was identified as an independent risk factor for poor diagnosis. 

 

NSCLC Survival Analysis using deep features  

Identifying predictive features from medical images of patients is the key concern for tumor 

classification and prognosis analysis. Traditional quantitative features, such as radiomics, have been 

successfully used for this purpose [23], [24], [27], [28]. However, recent studies use features extracted 

from a deep neural network to characterize cancers, which showed good classification performance. 

Advances in artificial neural networks (ANNs) and especially in convolutional neural networks (CNNs) 

have created a new way for extracting features of medical images and which could be used in different 

tasks. A study that explored deep learning applications in medical imaging for patient stratification 

was conducted by Hosny et al. [40]. Seven independent datasets across five institutions containing 

1194 patients with NSCLC images with CT and treated with either radiotherapy or surgery was 

collected for analysis. For the patients treated with radiotherapy, a 3D CNN was trained end-to-end. 

The same network was used for the surgery dataset, using a transfer learning approach between 
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radiotherapy and surgery datasets. The deep learning networks were used for extracting imaging 

features and creating prognostic signatures for patients. These prognostic signatures were assessed 

on their ability to stratify patients into low and high mortality risk subgroups. Also, Kaplan-Meier curve 

analysis was used to evaluate the performance of network to stratify low and high-risk patients. CNN 

showed a significant prognostic power in predicting 2-year survival and outperformed models based 

on predefined tumor features. Hosny et al. finally identified regions withing and beyond the tumor, 

which had the largest contribution to the prognostic signature and the most contribution towards 

predictions, highlighting the importance of tumor-surrounding tissue in patient stratification.  

A multimodal deep learning framework for NSCLC survival analysis, named DeepMMSA was proposed 

by Wu et al. [41]. DeepMMSA consisted of three modules, multimodal feature extraction (features 

from CT images and clinical records), multimodal feature fusion, and survival analysis. A group of 422 

NSCLC patients from The Cancer Imaging Archive were considered to assess the framework. For these 

patients, pretreatment CT scans and clinical outcome data were available for analysis. Using a 3D-

ResNet as network structure and CT images as inputs, image features were extracted. Authors also 

used clinical information, such as clinical TNM stage, histology, gender, age of patient. These features 

were then fused and used for survival analysis module. Results shown that there was a relationship 

between prognostic information and radiomic images. The majority of existing models could be 

employed for survival analysis, such as Kaplan-Meier model, Cox regression model, machine learning 

methods and deep-learning based methods. All of these methods could be used to analyze the input 

from multimodal features in the fusion layer.  

The efficacy immune checkpoint inhibitor monotherapy was evaluated by He et al. [42] with the aid 

of CT images combined with deep learning. A group of patients who received anti-PD-1/PD-L1 

monotherapy for advanced NSCLC and had undergone CT scans was included in this study. 

Progression-free survival (PFS) was calculated as the time from the start of immunotherapy till tumor 

progression or death, and the overall survival as the time from diagnosis till last follow-up or death. A 

survival network was developed during this study to obtain a risk vector of PFS risk and OS for patients 

through 3D tumor imaging. Then, the risk vectors were combined to explore more in depth the patient 

prognosis. At the same time, they constructed dual-task network to obtain the progressive disease 

score and partial response score of patients. The vectors obtained from the networks were fitted using 

the Cox regression model, in order to calculate the OS risk score and PFS risk score.  

 

NSCLC Survival Analysis with feature fusion 

Many genomic biomarkers, such as DNA polymorphisms and RNA expression levels, have emerged in 

recent years of genomics. These biomarkers have been used for the diagnosis and the prognosis of 

different cancers, including NSCLC. Furthermore, with the advancement of image-processing 

technologies, such as MRI, CT, PET, PET-CT etc., and the extraction of quantitative imaging features 

from medical images, radiomics has emerged. “Radiogenomics”, a combination of radiomics and 
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genomics have been applied for both radiotherapy response and prognostic implications in patients 

with NSCLC [15]. Radiomics has already shown promise for predicting diagnosis, prognosis and 

response to therapy in lung cancer, with radiogenomics bridging the gap between computer-aided 

prognosis and personalized medicine. “Radiotranscriptomics” is a branch of radiogenomics, which 

combines radiomics with transcriptomics. However, it has not yet been fully explored the combination 

between mRNA, miRNA, expression levels and medical image features in NSCLC. A 

radiotranscriptomics study for prediction of radiotherapy response was conducted by Fan et al. [21]. 

They established radioresistant NSCLC cell lines to extract cell miRNA and performed microarray 

analysis. At the same time, 174 NSCLC patients were CT scanned. The radiomics texture features were 

extracted from their images and their miRNA serum was also obtained. After obtaining the optimal CT 

texture features, the LASSO model was used for feature selection and the features were combined to 

generate the radiotranscriptomic signatures. These signatures were used to predict the objective 

response rate, OS and PFS using logistic and Cox regression. The conclusion of this study was that the 

radiotranscriptomic signature could be an independent biomarker that could predict the radiotherapy 

response of NSCLC patients.  

The combination of deep features with radiomics was explored by Paul et al. [43]. In this study, they 

used a transfer learning concept to predict the survival of patients with non-small cell adenocarcinoma 

lung cancer. They collected 40 lung cancer cases with the CT images and applied pretrained CNNs on 

ImageNet to extract deep features. Three different pretrained CNN models described in Chatfield et 

al.’s work were used (VGG-F architecture, VGG-M architecture, and VGG-S architecture) [44]. Relief-f, 

a simple selection algorithm for finding features with strong class dependencies and symmetric 

uncertainty feature selector, an algorithm that ranks the features by calculating the fitness between 

the features and the classes, were experimented in this study for selecting features. Also, for 

classification of patients to short-term and long-term survivors, four classifiers (Naïve Bayes, Nearest 

Neighbors, Decision Trees and Random Forests) were implemented. When they used traditional 

features for patients’ classification, the best accuracy of a decision tree classifier was 77.5%. With the 

use of deep features and a decision tree classifier, the accuracy was the same. However, with the 

combination of traditional quantitative features and the extracted deep neural network features, Paul 

et al. reached an accuracy of 90%. With single-slice approach, meaning by merging deep and 

traditional quantitative features extracted from single-tumor slice, the 90% accuracy was obtained 

using the VGG-F CNN architecture with the random forest classifier in a leave-one-out-cross validation 

with 10 features. With multiple-slice approach, the best accuracy was achieved using the random 

forest classifier, the symmetric uncertainty feature ranking algorithm and combining the best five 

features extracted from the VGG-F architecture and the five best traditional features.  
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Chapter 3: Research methodology 

In this study, three different classes of data, radiomics, transcriptomics and deep features will be 

examined in their ability to predict the survival of NSCLC patients. The fusion strategy includes 

combining all features to perform survival analysis and also combine only radiomics and deep features. 

The collected data will be pre-processed and after feature selection, the data will be used for the 

analysis. Two classifiers will be examined, Random Survival Forest and Survival Support Vector 

Machine. The workflow of this study is presented in Figure 4. 

 

Figure 4: Flow diagram of the proposed survival analysis 
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Dataset 

The data used in this study was obtained from the NSCLC Radiogenomics dataset [45]. The dataset 

was created using clinical and imaging data of 211 subjects which were collected between 2008 and 

2012. Subjects received preoperative CT and PET/CT scans at Stanford University Medical Centre and 

Palo Alto Veterans Affairs Healthcare System prior to survival treatment. The dataset comprises 211 

Computer Tomography (CT) examinations, with 142 available ePad pixel-based lesion annotations [46] 

and 211 image markup standards [47]. There are additionally Fasting Fluorodeoxyglucose 18F-FDG 

PET/CT data available for 162 subjects, 130 RNA-seq vectors (𝑃𝐺) and clinical data with histology, 

genomic, semantic, survival and disease recurrence information. The dataset is available at Cancer 

Imaging Archive [48].  

From the total examinations, a subset of 142 CT has annotations on a pixel basis for the region of 

interest (𝑃𝑅𝑂𝐼). The intersection of the transcriptomic and imaging data, dented by 𝑃𝑇 ∩ 𝑃𝑅𝑂𝐼 , gives 

the subset 𝑃𝑅𝐺  of 115 patients. The clinical data includes patients with characterization such as 

“Survival Status”, either being alive or dead and “Time to Death” counted in days. The patient’s labels 

were 0 when the time of survival was more than the median time of survival, indicating low risk 

patients and 1, when time of survival was less than the median time of survival, indicating high risk 

patients. 

𝐿𝑆𝑈𝑅𝑉𝐼𝑉𝐴𝐿 = 𝑃𝑅𝑂𝐼 ∩ 𝑃𝑇𝐼𝑀𝐸 𝑇𝑂 𝐷𝐸𝐴𝑇𝐻 

𝐿𝑆𝑈𝑅𝑉𝐼𝑉𝐴𝐿 =  {
0 𝑖𝑓 𝑃𝑇𝐼𝑀𝐸 𝑇𝑂 𝐷𝐸𝐴𝑇𝐻 > 𝑚𝑒𝑑𝑖𝑎𝑛(𝑃𝑇𝐼𝑀𝐸 𝑇𝑂 𝐷𝐸𝐴𝑇𝐻)

1 𝑖𝑓 𝑃𝑇𝐼𝑀𝐸 𝑇𝑂 𝐷𝐸𝐴𝑇𝐻 < 𝑚𝑒𝑑𝑖𝑎𝑛(𝑃𝑇𝐼𝑀𝐸 𝑇𝑂 𝐷𝐸𝐴𝑇𝐻)
  

Eq.  1 

 

The median days of survival were computed to be 704. The patient cohort of survival 𝑃𝑆𝑈𝑅𝑉𝐼𝑉𝐴𝐿 =

𝐿𝑆𝑈𝑅𝑉𝐼𝑉𝐴𝐿 ∩ 𝑃𝑅𝐺) includes 40 subjects and was considered for the proposed analyses. A subset of 23 

patients were characterized as high-risk patients and labeled with label 1 and the remaining 17 as low 

risk patients, with label 0.  
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Feature extraction 

Radiomics 

The radiomics analysis of the original CT examination retrieved from Trivizakis et al., 2021 [20] and  

resulted in 2996 imaging features. Texture features were calculated by the PyRadiomics framework 

version 2.2.0 [49], including Gray-Level Covariance (GLCM), Gray-Level Dependence Matrix (GLDM), 

Gray-Level Size Zone Matrix (GLSZM), Neighbouring Gray Tone Difference Matrix (NGTDM) etc. These 

kinds of matrices are methods for describing spatial pixel differences by studying the spatial 

correlation properties of gray scales and thus are the most capable of expressing the inhibition 

between different parts of tumor [49]. Shape features and first order features were also calculated, 

including elongation, flatness, 2D and 3D diameter, minimum, maximum, mean, range, kurtosis, 

skewness of gray level intensity and other statistical features. Exponential, gradient, Laplacian of 

Gaussian, square and wavelet filtering were applied to the original image in order to enrich the 

radiomic analysis. The general process of PyRadiomics platform is shown in Figure 5. 

 

 

Figure 5: Overview figure of the process of PyRadiomics [49] 
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Transcriptomics 

The RNA-seq data for this study were downloaded from the NCBI GEO hosting database [50]. The RNA 

was extracted from the tissue and analysed with RNA sequencing technology. A total of 130 RNA-seq 

vectors were available for transcriptomic analysis. The transcriptomics comprised of 22126 values but 

after the removal of incomplete features, a transcriptomic signature of 5268 molecules per patient 

was examined. 

Deep features 

Advances in Deep Learning have contributed in identifying, classifying and quantifying patterns in 

medical images [51]. The success of Convolutional Neural Networks is attributed to their ability to 

extract highly representative features among the network layers of filtering, and use these features in 

the last fully connected layers for pattern classification [52]. The deep features were retrieved from 

Trivizakis et al., 2021 [20]. The proposed “off-the-shelf” Transfer Learning (TL) strategy developed in 

that study, uses pretrained ImageNet [53] models to extract raw deep features from the last 

convolutional layer of the source model. Transfer Learning is a machine learning technique whereby 

a model is trained and developed for one task and is then re-used on a second related task. Usually, 

these tasks are called source and target tasks, respectively. It is usually applied where there is a new 

dataset smaller than the original dataset used to train the pre-trained model. The “off-the-shelf” 

strategy uses features from the source task without re-training the network and use them to train a 

third-party classify. In another Transfer Learning strategy, called fine-tunning, the internal 

representation has to be adapted with a new training process, but a part of the whole of the source 

model is transferred to the new model [54], [55].  

Eighteen models were used for the extraction of deep features. Some of the most popular ones were 

ResNet [56], NasNet [57], DenseNet [58], Xception [59], VGG [60] and MobileNet [61]. All pretrained 

convolutional layers were transferred to the new model and the fully connected layers were removed 

in order to extract the deep features from the low-level filters. Different number of features were 

extracted per slice, depending on the architecture used. After the removal of features with zero 

variance, the raw features extracted of each model varied from 502 to 7952.  

 

Multi-learning with combined features 

Three different categories of data were considered in this study: (a) radiomics, (b) transcriptomics and 

(c) deep features. The data sets were combined in order to understand the contribution of each 

category in the final outcome. Radiomics, transcriptomics and deep features were concatenated into 

a common feature space prior to classification indicating the first data view which all available data 

contributed to classification. The second data view was created with the concatenation of radiomics 
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and deep features into a common feature space. The acquisition of these data categories as shown in 

Figure 6 The results obtained using these data views are shown in Research findings / results.  

 

Figure 6: Features retrieved from CT, PET/CT and RNA-seq data [62]–[65] 

 

Data pre-processing 

Data cleaning 

Data cleaning is usually the first task in data pre-processing. It is the process of detecting and then 

removing or correcting corrupt data and refers to identifying incorrect, inaccurate, or incomplete parts 

of the data [66]. When building a machine learning model, not all the features in the input data are 

useful to build a model. Some may give no value to the model and should be removed. Removing 

features whose variance does not meet a specific threshold, is a common approach to feature 
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selection. The features in this study have been selected with the Variance Threshold approach, and 

the features with low variance have been removed.  

Normalization 

Normalizing data is of high importance in accelerating the machine learning process and improving 

predictions. Most tools normalize the data in the range of [0,1] or [-1,1], depending on the application. 

Generally, data normalization refers to the process of mapping the data variables from one range of 

values to another for each feature to contribute equally to the model training. There are some 

challenges appear affecting the normalization process when some data values are out of range 

(outliers), which are usually removed from the set. When the data are transformed in the range [0,1], 

the method is called normalization [67]. Another approach which generates features with zero mean 

and unit variance is called standardization and the standardized value 𝑥𝑛𝑒𝑤 of a sample 𝑥 with 𝜇 

statistical mean and 𝜎 standard deviation is calculates as shown in Eq.  2. The features in this study 

have been standardized as described above. 

𝑥𝑛𝑒𝑤 =
𝑥 − 𝜇

𝜎
 Eq.  2 

 

Feature Selection 

Machine Learning methods have difficulty in dealing with high-dimensional data, so pre-processing of 

the data and reduction of features is essential. Feature selection is one of the most important 

techniques in the data pre-processing, it helps in understanding data, reducing computation 

requirement, improving the predictor performance and reducing the effect of curse of dimensionality 

[68], [69].  The focus of feature selection is selecting a subset of variables from the feature space which 

can efficiently describe the input data while reducing effects from noise or irrelevant variables and 

still provide good predictions [70]. Filter methods are independent of the learning algorithms, and 

they rely only on the characteristics of data to assess feature importance. The feature importance 

evaluation process can be either univariate or multivariate. In the univariate approach, each feature 

is ranked individually regardless of other features. The multivariate approach ranks multiple features 

in a batch way [71].  

To reduce the number of features, a feature selection method based on the Analysis of Variance 

(ANOVA) method was used in this study. ANOVA is a statistical procedure that compares means of 

several samples [72]. The purpose of this is to determine whether the means from two or more 

samples of data come from the same distribution or not. Specifically, it tests the null hypothesis 𝐻0 of 
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Eq.  3 against the alternative hypothesis  𝐻1 where there are at least two group means that are 

statistically significantly different from each other (Eq.  4).  

𝐻0 = 𝜇1 = 𝜇2 = 𝜇3 =. . . = 𝜇𝑘  Eq.  3 

 

𝐻1: ∃ 1 ≤ 𝑖, 𝑙 ≤ 𝑘: 𝜇𝑖 ≠ 𝜇𝑙  Eq.  4 

Where 𝜇 is the group mean, 𝑖, 𝑙 are two groups and 𝑘 is the number of groups.  

The formula for the one-way ANOVA F-test statistic is shown in Eq.  5, where �̅�𝑖 denotes the sample 

mean in the 𝑖-th group, 𝑛𝑖 is the number of observations in the 𝑖-th group, �̅� denotes the overall mean 

of the data, 𝑌𝑖𝑗  is the 𝑗-th observation in the 𝑖-th out of 𝑘 groups and 𝑁 is the overall sample size. 

𝐹 =
𝑏𝑒𝑡𝑤𝑒𝑒𝑛 − 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑖𝑡𝑦

𝑤𝑖𝑡ℎ𝑖𝑛 − 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
=

∑ 𝑛𝑖(�̅�𝑖 − �̅�)2/ (𝑘 − 1)𝑘
𝑖=1

∑ ∑ (𝑌𝑖𝑗 − �̅�𝑖)
2

/(𝑁 − 𝑘)𝑘
𝑗=1

𝑘
𝑖=1

 Eq.  5 

A combined analysis of the 𝑝 values with respect to their corresponding 𝐹-scores for radiomics, 

transcriptomics and deep features led to the selection of a subset of the most significant features. 

After feature selection with a univariate method, LASSO method was used for further feature 

selection.  

Shrinkage methods minimize the residual sum of squares of the model using Ordinary Least Squares 

(OLS) [73]. The least absolute shrinkage and selection operator (LASSO) can be used for parameter 

estimation and variable selection and minimizes the absolute sum of the regression coefficients. 

LASSO is a particular case of the penalized least squares regression with L1-penalty function. It 

improves both prediction accuracy and model interpretability by combining the good qualities of 

subset selection and ridge regression. The LASSO estimate can be defined by: 
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�̂�𝑙𝑎𝑠𝑠𝑜 = arg min
𝛽

∑(𝑦𝑖 − 𝛽0

𝑁

𝑖=1

− ∑ 𝑥𝑖𝑗 𝛽𝑗) 

𝑝

𝑗=1

2

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑|𝛽𝑗|

𝑝

𝑗=1

≤ 𝑡 

Eq.  6 

 

Survival Analysis 

The statistical analysis of what are usually referred to as survival time, lifetime, or failure time is an 

important topic in many areas, including the biomedical, social, and engineering sciences. Survival 

analysis has been a very active research field for several decades and refers to a set of statistical 

methods for analyzing the time until an event occurs, such as death in biological organisms or failure 

in mechanical systems. In survival analysis, the outcome variable has both an event and a time value 

associated with it. When it is used in medical studies, the event of interest is usually death. However, 

in cancer studies, the event could be the time between response to a treatment till disease-free 

survival time or response to treatment till recurrence. It is crucial to specify what is the event of 

interest and the starting and finishing point of observation period [74].  

Usually, only some individuals have experienced the event and, subsequently, survival times will be 

unknown for a subset of the group of study. This phenomenon is called censoring and is one aspect 

that creates specific difficulties relating to survival analysis. Survival analysis generally deals with 

censored data, that is, when the time to the event is not observed. There are three main reasons why 

this happens. First, the individual withdraws from the study and there is no information about him 

after a specific time, second, the individual does not experience the event till the study is over, or 

third, the individual is lost to follow-up during the study period. Also, censoring can be categorized in 

three different types, right, left and interval censoring. Right censoring, the most common type of 

censoring, occurs when the survival time is incomplete at the right side of the follow-up period. That 

can be occurred when the subject does not experience the event because the study ends earlier, or 

the subject leaves the study before the event. An example of right censoring is depicted in Figure 7. In 

contrast to right censoring, if the event of interest has already occurred, meaning that the survival 

time of the individual is less than or equal to the observed survival time, the censoring is called left 

censoring. The last type of censoring is the interval-censoring, in which we do not know the exact 

timing of the exposure, but the event occurs between two timepoints. As an example, when dealing 

with lifetime problems and knowing both the birth and death of the subjects, right censoring occurs 

for those subjects whose birth is known and there are still alive when the study ends. Left censoring, 

on the other hand, is when the lifetime of the subject is known to be less than a certain duration. 
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When the lifetime is less than a specific threshold may not be observed at all. This is called truncation 

and is deliberate and due to design study. When the entire study population experience the event of 

interest, the phenomenon is called right truncation. When the subjects have been at risk before 

entering the study, they are left truncated [75]. 

 

Figure 7: Right censored individuals, true survival time is equal to or greater than the observed 
survival time [75]  

 

Two quantitative terms considered in any survival analysis are the survival function, denoted by 𝑆(𝑡), 

and the hazard function, denoted by ℎ(𝑡). The survival function gives the probability that a person 

survives longer than some specified time 𝑡, that is, 𝑆(𝑡) gives the probability that the random variable 

𝑇, exceeds the specified time 𝑡 (Eq.  7). 

𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) = 1 − 𝐹(𝑡) = ∫ 𝑓(𝑥)𝑑𝑥 

Eq.  7 

𝑓(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
= −

𝑑𝑆(𝑡)

𝑑𝑡
 

 

where 𝑇 is a non-negative random variable of a person’s survival time, 𝐹(𝑡) is the cumulative 

distribution function of 𝑇 with corresponding probability density function 𝑓(𝑡). 
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The survival function is essential in survival analysis, because knowing the probabilities for different 

values of 𝑡, provides crucial information on survival data. Time 𝑡 ranges from zero to infinity, where at 

time 𝑡 = 0, is the start of the study and the probability of survival gets its higher value of one, and at 

time 𝑡 = ∞, the survival probability decreases till eventually fall to zero. Usually, the survival function 

is represented as a step function, as is shown in Figure 8(ii). 

 

Figure 8: Graphs representing survival function in a (i) smooth curve and (ii) step function. 

 

The hazard function, ℎ(𝑡), is the instantaneous rate at which events occur, given no previous events. 

The hazard function is also referred to as mortality rate or risk in the health care field [76]. The hazard 

function ℎ(𝑡) and the cumulative hazard function 𝐻(𝑡) are given by the Eq.  8. The hazard function 

gives the instantaneous potential per unit time for the event to occur, given that the individual has 

not experienced the event up to time 𝑡. The hazard function focuses on failing, on the occurrence of 

the event, whereas survival function focuses on not failing. 

ℎ(𝑡) = lim
𝛥𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝛥𝑡|𝑇 ≥ 𝑡)

𝛿𝑡
= 𝑓(𝑡)/𝑆(𝑡) 

 
Eq.  8 

𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢 = −log (𝑆(𝑡))
𝑡

0

 

The survival probability can be estimated nonparametrically from observed times, using the Kaplan-

Meier estimator [77]. The Kaplan-Meier method is a popular method to analyse “time-to-event” data. 

The outcome in Kaplan-Meier analysis often includes all-cause mortality. For 𝑘 patients, the events 

occur in distinct times 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑘. The probabilities of surviving from one interval of time to 
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the other may be multiplied together to give the cumulative survival probability. The probability 𝑆(𝑡𝑗) 

of not experiencing the event at time 𝑡𝑗 is calculated from 𝑆(𝑡𝑗−1), which is the probability of being 

alive at time 𝑡𝑗−1, the number 𝑛𝑗 of patients alive just before time 𝑡𝑗 and the number of events 𝑑𝑗 at 

time 𝑡𝑗.  

𝑆(𝑡𝑗) = 𝑆(𝑡𝑗−1)(1 −
𝑑𝑗

𝑛𝑗
) Eq.  9 

The value of survival probability is constant between times of events, so the probability is a step 

function that changes value after each event. The Kaplan-Meier survival curve, the plot of survival 

probability against time, provides an overview of the data that can be used in survival analysis. The 

log rank test is a popular method to test the null hypothesis of no survival between two or more 

independent groups. It is a large-sample chi-square test that uses as its criterion a statistic that 

provides a comparison of all compared Kaplan-Meier survival curves. For each time point the observed 

number of events and the number of expected in each group are calculated. The number of expected 

events is calculated as the proportion of subjects who are at risk at a given time point multiplied by 

the total number of events at that point. The test is more likely to detect a difference between groups 

when the risk of an event is consistently greater for one group than another.  

The Cox proportional Hazards model [78] is one of the most widely used methods for modelling 

survival data. For one explanatory variable in data of analysis, non-parametric methods like Kaplan-

Meier, can be adequate if the groups that are in comparison are reasonably similar. However, the 

groups may differ in many aspects (age distributions, proportion of men and women etc). The analysis 

of different groups must be adjusted accordingly, otherwise the analysis may be confounded. The 

purpose of the Cox proportional hazards model is to evaluate simultaneously the effect of several 

factors on survival in a multivariate way. It allows analysts to examine factors that may influence the 

rate of an event occurrence at a specific point in time. The predictor variables, or factors, are also 

called covariates. The basic Cox model is described as:  

ℎ(𝑡|𝒁) = ℎ0(𝑡)𝑒𝑥𝑝 (𝛽′𝒁) Eq.  10 

where ℎ0(𝑡) is the baseline hazard which may vary arbitrarily over time, 𝒁 is the covariate vector, and 

𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑝) is a vector of covariate coefficients that are assumed to be constant. For two 

individuals with covariate vectors 𝒁 and 𝒁∗, the ratio of their hazard functions can be simplified to: 
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ℎ(𝑡|𝒁)

ℎ(𝑡|𝒁∗)
= exp(∑ 𝛽𝑘(𝒁𝒌 − 𝒁𝒌

∗ )

𝑝

𝑘=1

) Eq.  11 

As it shown in Eq.  11, the ratio of the hazard rates of two covariate values is constant or proportional 

to the other and does not depend on time 𝑡. The Cox model can be described as a multiple linear 

regression of the logarithm of the hazard on the covariates 𝒁 with the baseline hazard being the 

intercept. The covariates act multiplicatively on a baseline hazard which may vary freely over time.  

 

Combining survival analysis with machine learning 

At each time point that an event occurs, the process can actually be viewed as a classification problem, 

whether or not a certain subject will experience the event at the specific time. Cox proportional 

hazards model is the standard for analysing time-to-event data. However, there are several limitations 

in the method. Firstly, it assumes that hazard functions for any two individuals are proportional, it fails 

if features are highly correlated, its decision function is linear in the covariates and lastly, it is not 

applicable to data with more features than samples. Several machine learning models for survival 

analysis have been trained. After training the model, it can be used to predict the survival time of 

patients based on a given set of features. For a set of 𝑛 patients, we know the survival time 𝑦𝑖  of 

patient 𝑖, that is the exact time 𝑐𝑖 ≥ 0 of censoring (if the patient has not experienced the event 𝛿i =

0) and the time 𝑡𝑖  when the patient experienced the event (𝛿i = 1). In this study, a random forest and 

a support vector machine will be evaluated as classifiers for survival analysis.  

Support vector machines are classical machine learning techniques that can be used for classification 

and regression. The main goal in classification tasks is to find a hyperplane in an N-dimensional space 

(where N is the number of features) that distinctly classifiers the data points. Hyperplanes are decision 

boundaries that help classify the data points. Data points that fall on different side of the hyperplane 

can be attributed to different classes. Support vector machines are widely used because are effective 

in high dimensional spaces and they use a subset of training points in the decision function (called 

support vectors), so they are also memory efficient. There are two types, linear and non-linear. Linear 

support vector machines are used for linearly separable data and non-linear for non-linearly separated 

data, meaning that the dataset cannot be classified by using a straight line. In ranking-based linear 

support vector machines, the main objective is to recover the correct order of samples according to 

their relevance. In survival analysis, relevance indicates the survival time. The pairs of comparable 

samples that can be used for training can be defined as the set 𝑃 in Eq.  12 and 𝑝 = |𝑃| defines the 

cardinality of this set, which is bounded by 𝑂(𝑛2) space, where 𝑛 is the number of samples [79].  
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𝑃 = {(𝑖, 𝑗)|𝑦𝑖 > 𝑦𝑗 ∧ 𝛿𝑗 = 1}
𝑖,𝑗=1,…,𝑛 

 Eq.  12 

The objective function of ranking-based linear survival support vector machine is shown in Eq.  13. 

𝑓(𝑤) =
1

2
𝑤𝑇𝑤 +

𝛾

2
∑ max (0,1 − (𝑤𝑇𝑥𝑖 − 𝑤𝑇𝑥𝑗))

2

𝑖,𝑗∈𝑃

 Eq.  13 

where 𝑤 ∈ R𝑑 are the coefficients and 𝛾 > 0 is a regularization parameter. A new set of data points 

𝑋𝑛𝑒𝑤 can be ranked with respect to their predicted survival time.  

Another machine learning method used in survival analysis is random forests. Random forest is a 

commonly used algorithm, which combines the output of multiple decision trees to reach a single 

result. It is used both for classification and regression problems. The random forest is an extension of 

the bagging method, it utilizes bagging and feature randomness and creates uncorrelated forest of 

decision trees. While decision trees consider all possible feature splits, random forest selects only a 

subset of those features using feature randomness. The random forest is made up of a collection of 

decision trees, and each tree is comprised of a data sample drawn from the training set. The algorithm 

has three main hyperparameters, the node size, the number of trees, and the number of features 

sampled. There are many advantages in its uses, as it provides flexibility, makes easy to determine 

feature importance and has reduced risk of overfitting. However, it is time-consuming process, since 

it computes data for each individual decision tree, and is a more complex method compared to single 

decision tree method.  

Random survival forests methodology extends random forest method. In classical random forest, 

randomization is introduced in two forms. A randomly drawn bootstrap sample is firstly used to grow 

a tree. Then, at each node of the tree, a randomly selected subset of covariates is used as candidate 

features for splitting. Averaging over trees enables random forest to approximate rich classes of 

functions and to maintain low generalization error. Extending random forest to right censored survival 

data is of high importance. Survival data are usually analysed with methods that rely on assumptions 

as proportional hazards. The methods used are parametric, so nonlinear effects of variables must be 

modelled by transformations. Difficulties as these are automatically handled with the used of random 

forests. In right censored survival data, the outcome is the survival time and the censoring status. 

Thus, the splitting criterion of growing a tree must involve the survival time and the censoring status. 

The predictive value for the terminal node in a tree and the predicted value from the forest must also 

properly incorporate the survival information [80].  

The random survival forest algorithm starts with drawing 𝐵 bootstrap samples from the original data, 

which excludes on average 37% of the data, the so-called out-of-bag data. Then, it grows a survival 

tree for each bootstrap sample. At each node of the tree, it randomly selects 𝑝 candidate covariates. 
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The node is split using the candidate covariate that maximizes the survival difference between the 

daughter nodes. The trees are grown to full size under the constraint that a terminal node should have 

no less than a positive number 𝑑0 of unique deaths. Next step is to calculate the cumulative hazard 

function for each tree, obtain the ensemble cumulative hazard function and use it to calculate the 

prediction error.  In more detail, survival trees are binary trees grown by splitting tree nodes. A starting 

point of the tree is the root node, which is split into two daughter nodes using the survival criterion. 

Each node tree becomes homogeneous and is populated by cases with similar survival information. 

Each daughter node is also split into other two nodes, repeating the process until the termination 

node. The termination node is when no new daughter nodes can be formed. The survival times in 

terminal node ℎ is denoted as (𝑇1,ℎ, 𝛿1,ℎ), … , (𝑇𝑛(ℎ),ℎ, 𝛿𝑛(ℎ),ℎ). An individual 𝑖 is characterized as right 

censored if at time 𝑇𝑖,ℎ  the event indicator 𝛿𝑖,ℎ  is zero. The cumulative hazard function estimate for ℎ 

and for each case 𝑖 with 𝑑-dimensional covariate 𝑥𝑖  is defined below in Eq.  14 and Eq.  15, respectively:  

 

�̂�ℎ(𝑡) = ∑
𝑑𝑙,ℎ

𝑌𝑙,ℎ
𝑡𝑙,ℎ≤𝑡

 Eq.  14 

𝐻(𝑡|𝑥𝑖) = �̂�ℎ(𝑡),          𝑖𝑓 𝑥𝑖 ∈ ℎ Eq.  15 

 

Metrics 

When dealing with binary dependent variables or continuous dependent variables that may be 

censored when the patients have not suffered the event, the usual mean squared error do not apply 

as a metric for the model. A concordance index (C-index) is widely used to measure the predictive 

discrimination and is applicable to ordinal outcomes and censored time until event response variables.  

The C-index is related to a rank correlation between observed and predicted outcomes. It was firstly 

introduced by Harrell et al. [81].  The C-index is related to the area under the ROC curve (AUC). Like 

for the AUC, C-index equal to 1 indicates perfect prediction accuracy and C-index equal to 0.5 indicates 

random prediction. 

C-index is defined as the proportion of all usable patient pairs in which the predictions and the 

outcomes are concordant. The index measures the predictive power derived from a set of predictor 

covariates in a model. If the C-index is used to evaluate the prediction of time till the event, C-index is 

calculated by considering all possible pairs of individuals, when at least one of them has experienced 

the event. If the predicted survival time is larger than the actual survival time, for the patient who 

lived, the predictions for that pair are concordant with the outcome values. In other words, a pair is 

concordant, if the one with the higher estimated risk score has a shorter actual survival time. When 
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predicted risks are identical for a pair, 0.5 rather than 1 is added to the count of concordant pairs. A 

patient pair is unusable if both patients experienced the event at the same time or if one is still event-

free but has not been followed long enough to determine the survival time, and the other experienced 

the event. The C-index is interpretable for the use as a misclassification probability, and for that reason 

is used as a metric for survival performance. Another reason for its use is the fact that it does not 

depend on a single fixed time for evaluation.  

Since the evaluation of the predictive accuracy of a survival model is in terms of the C-index, it is 

natural to formulate the learning problem to directly maximize the C-index. As the C-index is invariant 

to any monotone transformation of the survival times, the model that learns by maximizing the C-

index is considered as a ranking problem. The main goal of problems like that is to predict whether 

the survival time of one individual is larger than the survival time of the other individual. In ranking 

problems in machine learning, this is a 𝑁 − 𝑝𝑎𝑟𝑡𝑖𝑡𝑒 𝑟𝑎𝑛𝑘𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 where each data point is a 

different class. When we formulate the ranking problem, we can incorporate the censored data and 

use several ranking algorithms for survival analysis.  

The C-index is calculated using the following steps:  

i. Firstly, it forms all possible pairs over the dataset. 

ii. It skips all the pairs whose shorter survival time is censored. Also, it skips pairs if the survival 

time is equal, meaning, for 𝑖 and 𝑗 individuals, if 𝑇𝑖 = 𝑇𝑗 .  

iii. For the included pairs with different survival times 𝑇𝑖 ≠ 𝑇𝑗 , it counts 1 if the shorter survival 

time has worse predicted outcome, and 0.5 if predicted outcomes are tied. For permissible 

pairs, when 𝑇𝑖 = 𝑇𝑗  and indicate both deaths for individuals, it counts 1 if the predicted 

outcomes are tied, otherwise 0.5. When the same survival time does not indicate death, it 

counts 1 if the death has worse predicted outcome.  

iv. Concordance denotes the sum over all permissible pairs. Permissible denotes the total 

number of permissible pairs.  

v. The C-index is finally defined by 𝐶 = 𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒/𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒.  

 

Survival Analysis Library 

Today, many successful ideas from machine learning have been adapted for time-to-event analysis, 

such as random forests, gradient boosting, and support vector machines. It is important to note that 

censored data does not only affect the training of the model, but also the evaluation of it, because 

held-out data will be subject to censoring too. For this study, scikit-survival library was used 

[82]. scikit-survival is an open-source Python package for time-to-event analysis fully 

compatible with scikit-learn, such that pre-processing and feature selection techniques within 

scikit-learn to be combined with the survival model. It provides implementations of many 
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machine learning techniques, such as penalized Cox model, Survival Support Vector Machine, and 

Random Survival Forest. Evaluation metrics range from simple rank correlation metrics, as C-index of 

Harrell et al., to time-dependent versions of well-known mean squared error and receiver operating 

characteristic curve. The documentation of the library contains installation instructions and a full 

description of the API. The library is distributed under the GPL-3 license with the source code available 

at https://github.com/sebp/scikit-survival. The biggest difference between time-

to-event analysis and traditional machine learning techniques are the semantic predictions. In time-

to-event analysis, predictions are usually arbitrary risk scores of experiencing or not the event, and 

not the actual time of experiencing the event, which is the input for training the model. For that 

reason, the evaluation of predictions is made by a measure of rank correlation between predicted risk 

scores and observed time points. The widely used Harrell’s concordance index computes the ratio of 

correctly ordered-concordant pairs and is the default metric when using the model’s score() 

function. For this study, RandomSurvivalForest() method and FastSurvivalSVM() were 

examined. For models that provide time dependent predictions, there are available two methods: 

predict_survival_function(), and predict_cumulative_hazard_function(). 

These methods return the survival plot and the cumulative hazard plot for examined dataset.  

  

https://github.com/sebp/scikit-survival
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Chapter 4: Research findings / results 

 

In this study, the fusion of deep features, radiomics and transcriptomics is evaluated. Two data views 

are considered: (A) deep features with radiomics and (B) deep features, radiomics and 

transcriptomics. The fusion includes the concatenation of features into one common feature space. 

For the classification of low- and high-risk patients, two classifiers were employed, namely: (1) 

Random Survival Forest and (2) Survival Support Vector Machine. Fourfold cross-validation on a 

patient basis was applied to the original dataset for splitting the data into training and testing sets. 

For a total of 40 patients, each test fold contained 10 patients at a time.  

 

A1. Deep features and radiomics - Random Forest 

A total of 2996 radiomics features and deep features varying from 502 to 7952 for 18 deep models 

were assessed for their prognosis performance. After univariate and multivariate feature selection, a 

total of 25 features were kept. From these, 23 of them were deep features and two radiomics. The 

best performance was obtained using deep model 𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡. In the test cohort, random forest 

classifier achieved a C-index of 0.68 ± 0.03 (0.65 𝑡𝑜 0.72) . The survival function and the cumulative 

hazard function were plotted for the fold with the best C-index and are presented in Figure 9 and 

Figure 10 respectively. The survival function can be interpreted as the probability of a patient to 

survive beyond a certain time t. At time 0, no patient has experienced the event, so all have a 

probability of 100% that they survive. The drop of curves reflects patients experiencing the event. The 

survival plot ends at median time of survival since all the events have taken place until this time. 

Survival plot can also show the probability of survival for each patient in a specific time point. Seven 

out of ten patients have been predicted with less than 50% survival probability until the median 

survival time. Patients that have less than 50% survival probability can be characterized as high-risk 

patients.  
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Figure 9: Survival function using deep features and radiomics with random forest classifier 

The actual status and the predicted survival probability till the observed median survival time are 

shown in Table 1. The classifier predicted correctly as high-risk 5 patients and as low-risk 2 patients. 

The classifier failed to predict 3 patients, one high-risk that was classified as low-risk with probability 

higher than 50% (patient R01-015) and 2 low-risk classified as high-risk (patients R01-097 and R01-

099). 

Table 1: Survival probability using random forest classifier with data view of deep features and 
radiomics. The classifier correctly predicted 7 patients. The classifier failed to predict 3 patients, one 
high-risk patient that was classified as low-risk and 2 low-risk classified as high-risk. 

𝑷𝒂𝒕𝒊𝒆𝒏𝒕 𝑨𝒄𝒕𝒖𝒂𝒍 𝒔𝒕𝒂𝒕𝒖𝒔 𝑺𝒖𝒓𝒗𝒊𝒗𝒂𝒍 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 

𝑹𝟎𝟏 − 𝟎𝟑𝟕 𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘 < 50% 

𝑹𝟎𝟏 − 𝟎𝟒𝟐 𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘 < 50% 

𝑹𝟎𝟏 − 𝟎𝟓𝟏 𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘 < 50% 

𝑹𝟎𝟏 − 𝟏𝟒𝟔 𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘 < 50% 
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𝑹𝟎𝟏 − 𝟎𝟐𝟒 𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘 < 50% 

𝑹𝟎𝟏 − 𝟎𝟏𝟓 𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘 > 50% 

𝑹𝟎𝟏 − 𝟎𝟗𝟗 𝐿𝑜𝑤 − 𝑟𝑖𝑠𝑘 < 50% 

𝑹𝟎𝟏 − 𝟏𝟏𝟕 𝐿𝑜𝑤 − 𝑟𝑖𝑠𝑘 > 50% 

𝑹𝟎𝟏 − 𝟎𝟗𝟕 𝐿𝑜𝑤 − 𝑟𝑖𝑠𝑘 < 50% 

𝑹𝟎𝟏 − 𝟎𝟒𝟎 𝐿𝑜𝑤 − 𝑟𝑖𝑠𝑘 > 50% 

 

For each tree in the ensemble, the cumulative hazard function for a patient with feature vector 𝑥 is 

calculated from all samples of the bootstrap sample that are in the same terminal node as 𝑥. Similarly, 

for cumulative hazard function, at time 0 all patients have cumulative hazard rate equal to 0. The 

hazard rate for each patient increases by increasing the time. The survival was predicted to be better 

for patients with cumulative hazard lower than 1, compared to patients with cumulative hazard 

greater than 1.  
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Figure 10: Cumulative Hazard Function using deep features and radiomics with random forest classifier 

The best results in the testing folds achieved with 𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡 model, resulting in a mean C-index of 

0.68 ± 0.03 (0.65 − 0.72). However, 𝑅𝑒𝑠𝑁𝑒𝑡 and 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 also achieved a good discrimination 

ability, compared to other deep models, as are shown in Table 2. 𝑅𝑒𝑠𝑁𝑒𝑡 achieved a mean C-index of 

0.61, and 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 achieved a lower mean C-index of 0.59.   

Table 2: Best deep learning models for patient classification using random forest. MobileNet achieved 
the best C-index of 0.68. C-index are predicted for test set. 

𝑴𝒐𝒅𝒆𝒍 𝒏𝒂𝒎𝒆 𝑴𝒆𝒂𝒏 ± 𝒔𝒕𝒅 𝑴𝒊𝒏 𝑪 − 𝑰𝒏𝒅𝒆𝒙 𝑴𝒂𝒙 𝑪 − 𝑰𝒏𝒅𝒆𝒙 

𝑹𝒆𝒔𝑵𝒆𝒕 0.61 ± 0.07 0.57 0.66 

𝑴𝒐𝒃𝒊𝒍𝒆𝑵𝒆𝒕 𝟎. 𝟔𝟖 ± 𝟎. 𝟎𝟑 𝟎. 𝟔𝟓 𝟎. 𝟕𝟐 

𝑫𝒆𝒏𝒔𝒆𝑵𝒆𝒕 0.59 ± 0.10 0.52 0.62 

 

For prediction, an individual is dropped down each tree in the forest until it reaches a terminal node. 

Data in each terminal is used to estimate the survival and cumulative hazard function. A risk score can 



Application Grade Thesis 

 

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/  

 

Page 48 of 87 

be computed using random survival forest, which represents the expected number of events for one 

particular terminal node. The ensemble prediction is the average across all trees in the forest. The 

higher predicted risk scores indicate shorter survival whereas a lower risk score indicate longer survival 

of the patient. Table 3 presents the risk score for each individual predicted using random survival 

forest. As it was already stated, the classifier predicted incorrectly higher risk score for patients R01-

097 and R01-099 and a lower risk score for patient R01-015.  

Table 3: Survival time and predicted risk scores for testing set with deep features and radiomics using 
random forest classifier. 

𝑷𝒂𝒕𝒊𝒆𝒏𝒕 𝑺𝒖𝒓𝒗𝒊𝒗𝒂𝒍 𝒕𝒊𝒎𝒆 (𝒅𝒂𝒚𝒔) 𝑹𝒊𝒔𝒌 𝒔𝒄𝒐𝒓𝒆 

𝑹𝟎𝟏 − 𝟎𝟑𝟕 28 9.05 

𝑹𝟎𝟏 − 𝟎𝟒𝟐 42 8.57 

𝑹𝟎𝟏 − 𝟎𝟓𝟏 261 8.54 

𝑹𝟎𝟏 − 𝟏𝟒𝟔 276 12.16 

𝑹𝟎𝟏 − 𝟎𝟐𝟒 366 7.90 

𝑹𝟎𝟏 − 𝟎𝟏𝟓 430 3.19 

𝑹𝟎𝟏 − 𝟎𝟗𝟗 952 12.07 

𝑹𝟎𝟏 − 𝟏𝟏𝟕 1083 4.00 

𝑹𝟎𝟏 − 𝟎𝟗𝟕 1352 6.98 

𝑹𝟎𝟏 − 𝟎𝟒𝟎 2041 4.09 

 

A2. Deep features and radiomics - Support Vector Machine 

After univariate and multivariate feature selection, 27 deep features and 4 radiomics were selected 

to predict the survival outcome of the patients. The best performance was obtained using deep model 

𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡. In the test cohort, support vector machine reached a C-index of 0.73 ±

0.07 (0.68 𝑡𝑜 0.75). 𝑅𝑒𝑠𝑁𝑒𝑡 and 𝑁𝑎𝑠𝑁𝑒𝑡 models achieved good results, as shown in Table 4. 
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Table 4: Best deep learning models for patient classification using support vector machine. DenseNet 
achieved the best C-index of 0.73. C-index are predicted for test set. 

𝑴𝒐𝒅𝒆𝒍 𝒏𝒂𝒎𝒆 𝑴𝒆𝒂𝒏 ± 𝒔𝒕𝒅 𝑴𝒊𝒏 𝑪 − 𝑰𝒏𝒅𝒆𝒙 𝑴𝒂𝒙 𝑪 − 𝑰𝒏𝒅𝒆𝒙 

𝑹𝒆𝒔𝑵𝒆𝒕 0.72 ± 0.09 0.59 0.75 

𝑫𝒆𝒏𝒔𝒆𝑵𝒆𝒕 𝟎. 𝟕𝟑 ± 𝟎. 𝟎𝟕 𝟎. 𝟔𝟖 𝟎. 𝟕𝟓 

𝑵𝒂𝒔𝑵𝒆𝒕 0.67 ± 0.11 0.56 0.77 

 

A risk score can be computed using survival support vector machine, which represents the ranking of 

samples according to survival times. Table 5 presents the risk score for each individual predicted using 

survival support vector machine. The higher predicted risk scores indicate shorter survival whereas a 

lower risk score indicate longer survival of the patient. For example, patient R01-031 had the highest 

survival time and the lowest risk score was predicted. Similarly, patients R01-093 and R01-119 had the 

lowest survival time and for those, a high value risk score was predicted but not in the right order.  

Table 5: Survival time and predicted risk scores for testing set with deep features and radiomics using 
support vector machine. 

𝑷𝒂𝒕𝒊𝒆𝒏𝒕 𝑺𝒖𝒓𝒗𝒊𝒗𝒂𝒍 𝒕𝒊𝒎𝒆 (𝒅𝒂𝒚𝒔) 𝑹𝒊𝒔𝒌 𝒔𝒄𝒐𝒓𝒆 

𝑹𝟎𝟏 − 𝟎𝟗𝟑 47 1.73 

𝑹𝟎𝟏 − 𝟏𝟏𝟗 159 2.25 

𝑹𝟎𝟏 − 𝟎𝟔𝟔 201 0.38 

𝑹𝟎𝟏 − 𝟏𝟎𝟔 225 0.72 

𝑹𝟎𝟏 − 𝟎𝟕𝟐 299 0.91 

𝑹𝟎𝟏 − 𝟎𝟏𝟕 474 0.61 

𝑹𝟎𝟏 − 𝟎𝟓𝟓 1165 0.90 
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𝑹𝟎𝟏 − 𝟎𝟕𝟕 1322 0.06 

𝑹𝟎𝟏 − 𝟏𝟎𝟏 1491 0.27 

𝑹𝟎𝟏 − 𝟎𝟑𝟏 1890 −2.79 

 

B1. Deep radiotranscriptomics - Random Forest 

A total of 2996 radiomics, 5268 transcriptomics and deep features varying from 502 to 7952 for 18 

deep models were assessed for their prognosis performance. After univariate and multivariate feature 

selection, a total of 49 features were kept. From these, 21 of them were deep features, 2 radiomics 

and 26 transcriptomics. The best performance was obtained using deep model 𝑅𝑒𝑠𝑁𝑒𝑡. In the test 

cohort, random forest classifier achieved a C-index of 0.74 ± 0.11 (0.63 𝑡𝑜 0.81) . The survival 

function and the cumulative hazard function were plotted for the fold with the best C-index and are 

presented in Figure 11 and Figure 12. The survival function can be interpreted as the probability of a 

patient to survive beyond a certain time t. At time 0, no patient has experienced the event, so all have 

a probability of 100% that they survive. The drop of curves reflects patients experiencing the event. 

The survival plot ends at time the median time of survival since all the events have taken place until 

this time. Survival plot can also show the probability of survival for each patient in a specific time point. 

Seven out of ten patients have been predicted with less than 50% survival probability until the median 

survival time. Patients that have less than 50% survival probability can be characterized as high-risk 

patients.  
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Figure 11: Survival function using deep features, radiomics and transcriptomics with random forest 
classifier 

The actual status and the predicted survival probability till the observed median survival time are 

shown in Table 6. The classifier predicted correctly as high-risk 5 patients and as low-risk 2 patients. 

The classifier failed to predict 3 patients as low-risk (R01-005, R01-071 and R01-100) and predicted 

with lower survival probability. 

Table 6: Survival probability using random forest classifier with data view of deep features, radiomics 
and transcriptomics. The classifier correctly predicted 7 patients. The classifier failed to correctly 
predict 3 patients. 

𝑷𝒂𝒕𝒊𝒆𝒏𝒕 𝑨𝒄𝒕𝒖𝒂𝒍 𝒔𝒕𝒂𝒕𝒖𝒔 𝑺𝒖𝒓𝒗𝒊𝒗𝒂𝒍 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 

𝑹𝟎𝟏 − 𝟎𝟕𝟐 𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘 < 50% 

𝑹𝟎𝟏 − 𝟎𝟔𝟓 𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘 < 50% 

𝑹𝟎𝟏 − 𝟎𝟏𝟓 𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘 < 50% 

𝑹𝟎𝟏 − 𝟎𝟑𝟑 𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘 < 50% 
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𝑹𝟎𝟏 − 𝟏𝟏𝟑 𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘 < 50% 

𝑹𝟎𝟏 − 𝟏𝟎𝟎 𝐿𝑜𝑤 − 𝑟𝑖𝑠𝑘 < 50% 

𝑹𝟎𝟏 − 𝟎𝟏𝟖 𝐿𝑜𝑤 − 𝑟𝑖𝑠𝑘 > 50% 

𝑹𝟎𝟏 − 𝟎𝟗𝟕 𝐿𝑜𝑤 − 𝑟𝑖𝑠𝑘 > 50% 

𝑹𝟎𝟏 − 𝟎𝟕𝟏 𝐿𝑜𝑤 − 𝑟𝑖𝑠𝑘 < 50% 

𝑹𝟎𝟏 − 𝟎𝟎𝟓 𝐿𝑜𝑤 − 𝑟𝑖𝑠𝑘 < 50% 

 

For each tree in the ensemble, the cumulative hazard function for a patient with feature vector 𝑥 is 

calculated from all samples of the bootstrap sample that are in the same terminal node as 𝑥. Similarly, 

for cumulative hazard function, at time 0 all patients have cumulative hazard rate equal to 0. The 

hazard rate for each patient increases by increasing the time. The survival was predicted to be better 

for patients with cumulative hazard lower than 1, compared to patients with cumulative hazard 

greater than 1.  

The best results in the testing folds achieved with 𝑅𝑒𝑠𝑁𝑒𝑡 model, resulting in a mean C-index of  

0.74 ± 0.11 (0.63 𝑡𝑜 0.81). However, 𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡 and 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 also achieved a good discrimination 

ability, compared to other deep models, as are shown in Table 7. 𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡 achieved a mean C-index 

of 0.65, and 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 achieved a higher mean C-index of 0.71. 
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Figure 12: Cumulative Hazard Function using deep features, radiomics and transcriptomics with 
random forest classifier 

Table 7: Best deep learning models for patient classification using random forest. ResNet achieved the 
best C-index of 0.74. C-index are predicted for test set. 

𝑴𝒐𝒅𝒆𝒍 𝒏𝒂𝒎𝒆 𝑴𝒆𝒂𝒏 ± 𝒔𝒕𝒅 𝑴𝒊𝒏 𝑪 − 𝑰𝒏𝒅𝒆𝒙 𝑴𝒂𝒙 𝑪 − 𝑰𝒏𝒅𝒆𝒙 

𝑹𝒆𝒔𝑵𝒆𝒕 𝟎. 𝟕𝟒 ± 𝟎. 𝟏𝟏 𝟎. 𝟔𝟑 𝟎. 𝟖𝟏 

𝑴𝒐𝒃𝒊𝒍𝒆𝑵𝒆𝒕 0.65 ± 0.08 0.61 0.72 

𝑫𝒆𝒏𝒔𝒆𝑵𝒆𝒕 0.71 ± 0.09 0.64 0.79 

 

A risk score can be computed using random survival forest, which represents the expected number of 

events for one particular terminal node. The ensemble prediction is the average across all trees in the 

forest. The higher predicted risk scores indicate shorter survival whereas a lower risk score indicate 

longer survival of the patient. Table 8 presents the risk score for each individual predicted using 

random survival forest. As it was already stated, the classifier predicted incorrectly higher risk score 

for patients R01-100, R01-071 and R01-005. For these three patients, the predicted risk score should 

be lower than predicted and decreasing as the survival time increases. 
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Table 8: Survival time and predicted risk scores for testing set with deep features, radiomics and 
transcriptomics using random forest classifier. 

𝑷𝒂𝒕𝒊𝒆𝒏𝒕 𝑺𝒖𝒓𝒗𝒊𝒗𝒂𝒍 𝒕𝒊𝒎𝒆 (𝒅𝒂𝒚𝒔) 𝑹𝒊𝒔𝒌 𝒔𝒄𝒐𝒓𝒆 

𝑹𝟎𝟏 − 𝟎𝟕𝟐 299 10.18 

𝑹𝟎𝟏 − 𝟎𝟔𝟓 346 9.88 

𝑹𝟎𝟏 − 𝟎𝟏𝟓 430 9.73 

𝑹𝟎𝟏 − 𝟎𝟑𝟑 514 11.11 

𝑹𝟎𝟏 − 𝟏𝟏𝟑 667 8.34 

𝑹𝟎𝟏 − 𝟏𝟎𝟎 867 10.17 

𝑹𝟎𝟏 − 𝟎𝟏𝟖 1176 7.07 

𝑹𝟎𝟏 − 𝟎𝟗𝟕 1352 7.01 

𝑹𝟎𝟏 − 𝟎𝟕𝟏 1425 8.17 

𝑹𝟎𝟏 − 𝟎𝟎𝟓 1456 8.03 

 

B2. Deep radiotranscriptomics - Support Vector Machine  

After univariate and multivariate feature selection, 13 deep features, 2 radiomics and 21 

transcriptomics features were selected to predict the survival outcome of the patients. The best 

performance was obtained using deep model 𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡. In the test cohort, support vector machine 

reached a C-index of 0.77 ± 0.10 (0.65 𝑡𝑜 0.83). 𝑅𝑒𝑠𝑁𝑒𝑡 and 𝑁𝑎𝑠𝑁𝑒𝑡 models achieved good results, 

as shown in Table 9. 
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Table 9: Best deep learning models for patient classification using support vector machine. MobileNet 
achieved the best C-index of 0.77. C-index are predicted for test set. 

𝑴𝒐𝒅𝒆𝒍 𝒏𝒂𝒎𝒆 𝑴𝒆𝒂𝒏 ± 𝒔𝒕𝒅 𝑴𝒊𝒏 𝑪 − 𝑰𝒏𝒅𝒆𝒙 𝑴𝒂𝒙 𝑪 − 𝑰𝒏𝒅𝒆𝒙 

𝑹𝒆𝒔𝑵𝒆𝒕 0.72 ± 0.15 0.53 0.79 

𝑴𝒐𝒃𝒊𝒍𝒆𝑵𝒆𝒕 𝟎. 𝟕𝟕 ± 𝟎. 𝟏𝟎 𝟎. 𝟔𝟓 𝟎. 𝟖𝟑 

𝑵𝒂𝒔𝑵𝒆𝒕 0.65 ± 0.13 0.55 0.72 

 

A risk score can be computed using survival support vector machine, which represents the ranking of 

samples according to survival times. Table 10 presents the risk score for each individual predicted 

using survival support vector machine. The higher predicted risk scores indicate shorter survival 

whereas a lower risk score indicate longer survival of the patient. For example, patient R01-037 had 

the lowest survival time and survival support vector machine ranked the patient with the highest risk 

score. Similarly, patient R01-039 had the second lower survival time and a high risk score was 

predicted. Generally, we can see a decrease in the risk score for patients with high survival time. 

However, in some cases as for patients R01-097 and R01-026 the algorithm failed to rank the patients 

in the correct order, since R01-026 had the highest survival time should get the lowest risk score.  

Table 10: Survival time and predicted risk scores for testing set with deep features, radiomics and 
transcriptomics using support vector machine. 

𝑷𝒂𝒕𝒊𝒆𝒏𝒕 𝑺𝒖𝒓𝒗𝒊𝒗𝒂𝒍 𝒕𝒊𝒎𝒆 (𝒅𝒂𝒚𝒔) 𝑹𝒊𝒔𝒌 𝒔𝒄𝒐𝒓𝒆 

𝑹𝟎𝟏 − 𝟎𝟑𝟕 28 2.44 

𝑹𝟎𝟏 − 𝟎𝟑𝟗 41 0.93 

𝑹𝟎𝟏 − 𝟏𝟒𝟔 276 0.50 

𝑹𝟎𝟏 − 𝟎𝟐𝟗 286 0.17 

𝑹𝟎𝟏 − 𝟏𝟐𝟖 328 0.77 
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𝑹𝟎𝟏 − 𝟎𝟔𝟓 346 −0.35 

𝑹𝟎𝟏 − 𝟏𝟎𝟎 867 −1.98 

𝑹𝟎𝟏 − 𝟎𝟕𝟖 1133 −0.75 

𝑹𝟎𝟏 − 𝟎𝟗𝟕 1352 −5.18 

𝑹𝟎𝟏 − 𝟎𝟐𝟔 2356 −3.25 
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Chapter 5: Discussion and analysis of findings 

 

NSCLC patients are usually characterized with median overall survival time. It is of high importance to 

predict the survival of patients according to their radiomic or transcriptomic signatures. Outcome 

modelling can enable us to identify the prognostic signature of patients and stratify them according 

to their survival time. However, the survival depends on multiple information, and it is difficult to be 

predicted, since histologic, genetic, imaging, and clinical information play an important role in the 

overall survival of cancer patients. Several efforts have used single source data to investigate the 

survival of NSCLC. The goal of this study is to examine the synergistic use of high dimensional and high 

throughput data for identifying the survival of patients. 

In this study, we compared the prognostic power of two data views, a combination of radiomics and 

deep features and a combination of radiomics, transcriptomics and deep features. A set of 40 patients 

with extracted radiomic and deep features and an obtained transcriptomic signature was examined. 

For these patients, the exact date of death was known. The median survival time was calculated and 

the patients that had time till death greater than the median survival time was considered as low-risk 

patients. Individuals with time till death lower than the median survival time were characterized as 

high-risk patients. As a result, a subset of 23 patients were labeled with 1 as high-risk patients and the 

remaining 17 as low risk patients, with label 0. Two classifiers were trained for the stratification of 

patients, random survival forest and survival support vector machine. The data were first pre-

processed using a variance threshold and features with low variance were removed. The remaining 

features were standardized in values [-1,1] and were further decreased with univariate and 

multivariate feature selection. Performing ANOVA analysis and LASSO, the most important features 

for prediction were collected from each data type. The features were then concatenated into one 

common feature space prior to classification.  

The selected features’ prognostic power was compared using random forest and support vector 

machine. In machine learning methods for survival analysis, the predictions are arbitrary risk scores of 

experiencing or not the event. The evaluation of the predictions is made by a measure of rank 

correlation between predicted risk scores and observed time points. For that reason, C-index was used 

as a metric of the performance of the models. The results from both classifiers and data views are 

shown in Table 11. The radiomics and deep features analyses using both classifiers achieved a 

performance at the lower end of the spectrum of metrics. The mean C-index was 0.68 ± 0.03 and 

0.73 ± 0.07 for random survival forest and survival support vector machine, respectively. Using a 4-

fold cross validation method, the C-index in each fold varied from 0.65 to 0.72 for random forest 

classifier and from 0.68 to 0.75 for support vector machine. A slight increase of C-index was observed 

when transcriptomics was also used for the stratification of patients. Using random forest classifier, 

the prediction resulted in a C-index of 0.74 ± 0.11 and for each fold the C-index varied from 0.63 till 

0.81. Support vector machine obtained the best results of C-index 0.77 ± 0.10 in a range of 0.65 to 

0.83.  
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Table 11: Results with different data views and classifiers 

𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕 𝑪 − 𝒊𝒏𝒅𝒆𝒙 

𝑫𝒆𝒆𝒑 𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 𝒂𝒏𝒅 𝒓𝒂𝒅𝒊𝒐𝒎𝒊𝒄𝒔 –  𝑹𝒂𝒏𝒅𝒐𝒎 𝑭𝒐𝒓𝒆𝒔𝒕 0.68 ± 0.03 (0.65 𝑡𝑜 0.72) 

𝑫𝒆𝒆𝒑 𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 𝒂𝒏𝒅 𝒓𝒂𝒅𝒊𝒐𝒎𝒊𝒄𝒔 –  𝑺𝒖𝒑𝒑𝒐𝒓𝒕 𝑽𝒆𝒄𝒕𝒐𝒓 𝑴𝒂𝒄𝒉𝒊𝒏𝒆 0.73 ± 0.07 (0.68 𝑡𝑜 0.75) 

𝑫𝒆𝒆𝒑 𝒓𝒂𝒅𝒊𝒐𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝒐𝒎𝒊𝒄𝒔 –  𝑹𝒂𝒏𝒅𝒐𝒎 𝑭𝒐𝒓𝒆𝒔𝒕 0.74 ± 0.11 (0.63 𝑡𝑜 0.81) 

𝑫𝒆𝒆𝒑 𝒓𝒂𝒅𝒊𝒐𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝒐𝒎𝒊𝒄𝒔 –  𝑺𝒖𝒑𝒑𝒐𝒓𝒕 𝑽𝒆𝒄𝒕𝒐𝒓 𝑴𝒂𝒄𝒉𝒊𝒏𝒆 0.77 ± 0.10 (0.65 𝑡𝑜 0.83) 

 

For each experiment, a risk score for patients in the unseen data was computed. The risk score should 

increase for patients with high survival time and decrease for low-risk patients. Also, both machine 

learning techniques that were used in this study could be described as a ranking problem, the model 

learns to assign samples with shorter survival times a higher risk score. A clear decrease of risk score 

with the increase of survival time could be observed with Deep radiotranscriptomics data and support 

vector machine. The algorithm calculated the highest score to the patients with the lowest survival 

and a low value of risk score for low-risk patients. However, the order of the patients’ survival was not 

always correct. For example, for a patient with 1352 days of survival the predicted risk score was -5.18 

whereas for patient with 2356, the predicted risk score was -3.25, indicating that the second patient 

was more likely to experience the event earlier than the first.  

Another interesting finding was regarding the deep models that provided deep features with the best 

prognostic power. Eighteen deep models were used for the extraction of deep features. In most cases, 

MobileNet, ResNet, DenseNet and NasNet were the four deep models from which using these deep 

features, the C-index of survival models got the higher values. The C-index of 0.77 with support vector 

machine and the C-index of 0.68 with random forest was achieved with deep features extracted from 

MobileNet. Deep radiotranscriptomics survival analysis using random forest had the highest C-index 

of 0.74 with deep features from ResNet, and survival analysis using radiomics and deep features 

extracted from DenseNet, with support vector machine classifier got the highest C-index of 0.73.  
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Chapter 6: Conclusion and recommendations 

 

This master thesis was aimed to compare the performance of machine learning models for survival 

analysis that have been developed using different data types. The deep radiotranscriptomics 

framework outperform the performance of models based solely on imaging information. Both 

classifiers had approximately the same performance. More machine learning models can be examined 

for classification of patients in a future work. Also, further study may focus on specific subsets of 

patients for specific markers.  
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Appendices 

 

Code A1 
 
import os 
import sys 
import pandas as pd 
import numpy as np 
import pickle as pkl 
import matplotlib.pyplot as plt 
import statistics 
from sklearn.feature_selection import SelectFromModel 
from sklearn.feature_selection import VarianceThreshold 
from sklearn.linear_model import Lasso 
from sklearn.preprocessing import StandardScaler 
from sklearn.feature_selection import f_classif as fc 
from sklearn.feature_selection import SelectKBest as kbest 
from sksurv.metrics import concordance_index_censored 
import scipy.stats as st 
from sklearn.model_selection import StratifiedKFold 
from sksurv.ensemble import RandomSurvivalForest 
 
#load radiomics data 
radiomics_pd = 
pkl.load(open("features_for_overall_survival_median/radiomics_pandas.pkl", "rb")) 
 
#load deep feature 
deep_avg = 
pkl.load(open("features_for_overall_survival_median/deep_features_avg.pkl", "rb")) 
deep_max = 
pkl.load(open("features_for_overall_survival_median/deep_features_max.pkl", "rb")) 
 
#merge deep features vectors (avg and max) to a single feature vector 
deep={} 
for net in list(deep_avg.keys()): 
    deep[net] = deep_avg[net].merge(deep_max[net], left_index = True, right_index 
= True) 
 
# import labels 
with open('features_for_overall_survival_median/days_OS_dictionary.pkl', 'rb') as 
f: 
    OS_days = pkl.load(f) 
    OS_days_pd= pd.DataFrame([OS_days.keys(), OS_days.values()]).T 
    OS_days_pd.columns= ['Patient', 'Survival_in_days'] 
     
with open('features_for_overall_survival_median/binary_OS_dictionary.pkl', 'rb') 
as f: 
    OS_binary = pkl.load(f) 
    OS_binary_pd= pd.DataFrame([OS_binary.keys(), OS_binary.values()]).T 
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    OS_binary_pd.columns= ['Patient', 'Status'] 
 
final_OS = pd.merge(OS_binary_pd, OS_days_pd, on="Patient", how="left") 
final_OSS = final_OS.set_index('Patient') 
 
print("Data cleaning with VarianceThreshold") 
thresholder_rad = VarianceThreshold(threshold=0.0) 
thresholder_deep = VarianceThreshold(threshold=0.0) 
 
radiomics_selected = thresholder_rad.fit(radiomics_pd) 
mask_rad = thresholder_rad.get_support() 
radiomics_ = radiomics_pd.loc[:,mask_rad] 
 
print("Z-normalization") 
radiomics_transformed = StandardScaler().fit_transform(radiomics_) 
 
# Transform radiomics data to DataFrame 
radiomics = pd.DataFrame(data=radiomics_transformed, index=radiomics_.index, 
columns=radiomics_.columns) 
 
def apply_feature_selection(df, labels, cutoff_pvalue=0.05): 
    X=[] 
    for key in list(df.index): 
        X.append(df.loc[key]) 
    X = np.array(X) 
    y = np.hstack(labels) 
     
    selector = kbest(fc, k="all") 
    best_features = selector.fit_transform(X, y) 
    f_scores, p_values = fc(X, y) 
    critical_value = st.f.ppf(q=1-cutoff_pvalue, dfn=len(np.unique(y))-1, 
dfd=len(y)-len(np.unique(y))) 
     
    best_indices=[] 
    for index, p_value in enumerate(p_values): 
        if f_scores[index]>critical_value and p_value<cutoff_pvalue: 
            best_indices.append(index) 
    print("Best ANOVA features:" + str(len(best_indices))) 
 
    if len(best_features)>0: 
        best_columns = np.array(list(df.columns))[best_indices] 
        best_features = np.array(list(df[best_columns].values)) 
    else: 
        best_columns = np.array(list(df.columns)) 
        best_features = np.array(list(df.values)) 
 
    try: 
        sel_ = SelectFromModel(Lasso(alpha=0.01)) 
        sel_.fit(best_features, y) 
        selected_features_bool = sel_.get_support() 
        final_selected=[] 
        final_features=[] 
        for index, feat_id in enumerate(best_columns): 
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            if selected_features_bool[index]: 
                final_selected.append(feat_id) 
        final_selected = np.array(final_selected) 
    except: 
        print("No features left after Lasso") 
        final_selected = best_columns 
         
    print("Best Lasso features: "+str(len(final_selected))) 
    return final_selected 
 
 
pids = np.array(list(OS_binary.keys()),dtype=str) 
f_labels = np.array(list(OS_binary.values())) 
sss = StratifiedKFold(n_splits=4,shuffle=True) 
kfolds = [] 
for train_index, test_index in sss.split(pids,f_labels): 
    kfolds.append([pids[train_index],pids[test_index]]) 
 
for index,split in enumerate(kfolds): 
    print(split[0]) 
 
results = {} 
for model_name in deep.keys(): 
    print(model_name) 
    deep_selected = thresholder_deep.fit(deep[model_name]) 
    mask_deep = thresholder_deep.get_support() 
    deep_ = deep[model_name].loc[:,mask_deep]     
     
    deep_ = StandardScaler().fit_transform(deep[model_name]) 
    deep_df = pd.DataFrame(data=deep_,index=deep[model_name].index, 
columns=deep[model_name].columns) 
 
    #Keep specific patients with known labels 
    patients_split = [] 
    for patients in list(radiomics_pd.index): 
        if patients in list(deep_df.index): 
            patients_split.append(patients) 
     
    deep_final = deep_df.loc[patients_split] 
     
    Concordance_index = [] 
    for index,split in enumerate(kfolds): 
        tr_split = [] 
        tst_split = [] 
        for key in list(radiomics.index): 
            if key in list(split[0]): 
                tr_split.append(key) 
            elif key in list(split[1]): 
                tst_split.append(key) 
 
        binary_labels = [] 
        for pid in list(radiomics.loc[tr_split].index): 
            if pid in final_OS.values: 
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                binary_labels.append(OS_binary[pid]) 
 
     
        days_labels = [] 
        for pid in list(radiomics.loc[tr_split].index): 
            if pid in final_OS.values: 
                days_labels.append(OS_days[pid]) 
 
        try: 
            radiomics_feat = apply_feature_selection(radiomics.loc[tr_split], 
binary_labels) 
            deep_feat = apply_feature_selection(deep_final.loc[tr_split], 
binary_labels) 
        except:  
            print('something went wrong') 
            continue 
 
        path="results/RF_rad_deep/"+model_name+"_RF_nsplit"+str(index) 
        os.mkdir(path) 
        pd.DataFrame(radiomics_feat).to_csv(path+"/selected_radiomics.csv") 
        pd.DataFrame(deep_feat).to_csv(path+"/selected_deep.csv") 
 
        selected_radiomics = {} 
        for key in list(radiomics.index): 
            selected_radiomics[key] = 
radiomics[radiomics_feat].loc[key].to_numpy() 
 
        selected_deep = {} 
        for key in list(deep_final.index): 
            selected_deep[key] = deep_final[deep_feat].loc[key].to_numpy()         
         
 
        combined_patterns_rad_deep = {} 
        for key in list(selected_deep.keys()): 
            try: 
                combined_patterns_rad_deep[key] = 
np.concatenate((selected_radiomics[key], selected_deep[key])) 
            except: 
                print(key) 
                continue  
 
         
        x_pd=pd.DataFrame.from_dict(combined_patterns_rad_deep, orient='index')   
        X_train = x_pd.loc[tr_split] 
        X_test = x_pd.loc[tst_split] 
        y_train = final_OSS.loc[tr_split] 
        y_test = final_OSS.loc[tst_split] 
     
        # give structure to y 
        struct_arr_train = 
y_train.astype({'Status':'?','Survival_in_days':'<f8'}).dtypes 
        y_train_np = np.array([tuple(x) for x in y_train.values], 
dtype=list(zip(struct_arr_train.index,struct_arr_train)))   
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        struct_arr_test = 
y_test.astype({'Status':'?','Survival_in_days':'<f8'}).dtypes 
        y_test_np = np.array([tuple(x) for x in y_test.values], 
dtype=list(zip(struct_arr_test.index,struct_arr_test)))   
         
        rsf = RandomSurvivalForest(n_estimators=1000, 
                                   min_samples_split=10, 
                                   min_samples_leaf=6, 
                                   n_jobs=-1) 
     
 
        rsf.fit(X_train,y_train_np) 
 
        score_ = rsf.score(X_test,y_test_np) 
         
        print(score_) 
        Concordance_index.append(score_) 
 
        pred = rsf.predict(X_test) 
        predictions = np.round(pred, 3) 
        pd.DataFrame(predictions).to_csv(path+"/predictions_RF_rad_deep.csv") 
        pd.DataFrame(y_test_np).to_csv(path+"/labels_test_RF_rad_deep.csv") 
 
        surv = rsf.predict_survival_function(X_test, return_array=True) 
        hazard = rsf.predict_cumulative_hazard_function(X_test, return_array=True) 
 
        for i, s in enumerate(surv): 
            plt.step(rsf.event_times_, s, where="post", label=str(i)) 
        plt.ylabel("Survival probability") 
        plt.xlabel("Time in days") 
        plt.legend(X_test.index) 
        plt.title("CI %.4f" % score_) 
        plt.grid(True) 
        plt.savefig(path+"/plot_performance_model for" + model_name + "and nsplit" 
+ str(index) + ".png",dpi=300) 
        plt.clf() 
 
        for i, s in enumerate(hazard): 
            plt.step(rsf.event_times_, s, where="post", label=str(i)) 
        plt.ylabel("Cumulative hazard") 
        plt.xlabel("Time in days") 
        plt.legend(X_test.index) 
        plt.title("CI %.4f" % score_) 
        plt.grid(True) 
        plt.savefig(path+"/plot_performance_hazard_model for" + model_name + "and 
nsplit" + str(index) + ".png",dpi=300) 
        plt.clf() 
 
    try: 
        print('List of possible CI:', Concordance_index) 
        print('\nMaximum CI That can be obtained from this model 
is:',max(Concordance_index)) 
        print('\nMinimum CI:',min(Concordance_index)) 
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        print('\nMean CI:',statistics.mean(Concordance_index)) 
        print('\nStandard Deviation is:', statistics.stdev(Concordance_index)) 
    except: 
        print('only one CI points') 
        continue 
     
    results["rad_deep for model "+model_name] = pd.Series({"Maximum 
CI":max(Concordance_index),"Minimum CI":min(Concordance_index),"Overall 
CI":statistics.mean(Concordance_index),"Standard 
Deviation":statistics.stdev(Concordance_index)})     
 
final_results = pd.DataFrame.from_dict(results, orient="index") 
final_results.to_csv("results/RF_rad_deep/results_RF_rad_deep.csv")  

 

Code A2 
 
import os 
import sys 
import pandas as pd 
import numpy as np 
import pickle as pkl 
import matplotlib.pyplot as plt 
import statistics 
from sklearn.feature_selection import SelectFromModel 
from sklearn.feature_selection import VarianceThreshold 
from sklearn.linear_model import Lasso 
from sklearn.preprocessing import StandardScaler 
from sklearn.feature_selection import f_classif as fc 
from sklearn.feature_selection import SelectKBest as kbest 
from sksurv.metrics import concordance_index_censored 
from sksurv.svm import FastSurvivalSVM 
import scipy.stats as st 
from sklearn.model_selection import StratifiedKFold 
 
#load radiomics data 
radiomics_pd = 
pkl.load(open("features_for_overall_survival_median/radiomics_pandas.pkl", "rb")) 
 
#load deep feature 
deep_avg = 
pkl.load(open("features_for_overall_survival_median/deep_features_avg.pkl", "rb")) 
deep_max = 
pkl.load(open("features_for_overall_survival_median/deep_features_max.pkl", "rb")) 
 
#merge deep features vectors (avg and max) to a single feature vector 
deep={} 
for net in list(deep_avg.keys()): 
    deep[net] = deep_avg[net].merge(deep_max[net], left_index = True, right_index 
= True) 
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# import labels 
with open("features_for_overall_survival_median/days_OS_dictionary.pkl", 'rb') as 
f: 
    OS_days = pkl.load(f) 
    OS_days_pd= pd.DataFrame([OS_days.keys(), OS_days.values()]).T 
    OS_days_pd.columns= ['Patient', 'Survival_in_days'] 
     
with open("features_for_overall_survival_median/binary_OS_dictionary.pkl", 'rb') 
as f: 
    OS_binary = pkl.load(f) 
    OS_binary_pd= pd.DataFrame([OS_binary.keys(), OS_binary.values()]).T 
    OS_binary_pd.columns= ['Patient', 'Status'] 
 
final_OS = pd.merge(OS_binary_pd, OS_days_pd, on="Patient", how="left") 
final_OSS = final_OS.set_index('Patient') 
 
print("Data cleaning with VarianceThreshold") 
thresholder_rad = VarianceThreshold(threshold=0.0) 
thresholder_deep = VarianceThreshold(threshold=0.0) 
 
radiomics_selected = thresholder_rad.fit(radiomics_pd) 
mask_rad = thresholder_rad.get_support() 
radiomics_ = radiomics_pd.loc[:,mask_rad] 
 
print("Z-normalization") 
radiomics_transformed = StandardScaler().fit_transform(radiomics_) 
 
# Transform radiomics data to DataFrame 
radiomics = pd.DataFrame(data=radiomics_transformed, index=radiomics_.index, 
columns=radiomics_.columns) 
 
def apply_feature_selection(df, labels, cutoff_pvalue=0.05): 
    X=[] 
    for key in list(df.index): 
        X.append(df.loc[key]) 
    X = np.array(X) 
    y = np.hstack(labels) 
     
    selector = kbest(fc, k="all") 
    best_features = selector.fit_transform(X, y) 
    f_scores, p_values = fc(X, y) 
    critical_value = st.f.ppf(q=1-cutoff_pvalue, dfn=len(np.unique(y))-1, 
dfd=len(y)-len(np.unique(y))) 
     
    best_indices=[] 
    for index, p_value in enumerate(p_values): 
        if f_scores[index]>critical_value and p_value<cutoff_pvalue: 
            best_indices.append(index) 
    print("Best ANOVA features:" + str(len(best_indices))) 
 
    if len(best_features)>0: 
        best_columns = np.array(list(df.columns))[best_indices] 
        best_features = np.array(list(df[best_columns].values)) 
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    else: 
        best_columns = np.array(list(df.columns)) 
        best_features = np.array(list(df.values)) 
 
    try: 
        sel_ = SelectFromModel(Lasso(alpha=0.01)) 
        sel_.fit(best_features, y) 
        selected_features_bool = sel_.get_support() 
        final_selected=[] 
        final_features=[] 
        for index, feat_id in enumerate(best_columns): 
            if selected_features_bool[index]: 
                final_selected.append(feat_id) 
        final_selected = np.array(final_selected) 
    except: 
        print("No features left after Lasso") 
        final_selected = best_columns 
         
    print("Best Lasso features: "+str(len(final_selected))) 
     
    return final_selected 
 
pids = np.array(list(OS_binary.keys()),dtype=str) 
f_labels = np.array(list(OS_binary.values())) 
sss = StratifiedKFold(n_splits=4,shuffle=True) 
kfolds = [] 
for train_index, test_index in sss.split(pids,f_labels): 
    kfolds.append([pids[train_index],pids[test_index]]) 
 
for index,split in enumerate(kfolds): 
    print(split[0]) 
 
results = {} 
for model_name in deep.keys(): 
    print(model_name) 
    deep_selected = thresholder_deep.fit(deep[model_name]) 
    mask_deep = thresholder_deep.get_support() 
    deep_ = deep[model_name].loc[:,mask_deep]     
     
    deep_ = StandardScaler().fit_transform(deep[model_name]) 
    deep_df = pd.DataFrame(data=deep_,index=deep[model_name].index, 
columns=deep[model_name].columns) 
 
    #Keep specific patients with known labels 
    patients_split = [] 
    for patients in list(radiomics_pd.index): 
        if patients in list(deep_df.index): 
            patients_split.append(patients) 
     
    deep_final = deep_df.loc[patients_split] 
     
    Concordance_index = [] 
    for index,split in enumerate(kfolds): 
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        tr_split = [] 
        tst_split = [] 
        for key in list(radiomics.index): 
            if key in list(split[0]): 
                tr_split.append(key) 
            elif key in list(split[1]): 
                tst_split.append(key) 
 
        binary_labels = [] 
        for pid in list(radiomics.loc[tr_split].index): 
            if pid in final_OS.values: 
                binary_labels.append(OS_binary[pid]) 
     
        days_labels = [] 
        for pid in list(radiomics.loc[tr_split].index): 
            if pid in final_OS.values: 
                days_labels.append(OS_days[pid]) 
        
        try: 
            radiomics_feat = apply_feature_selection(radiomics.loc[tr_split], 
binary_labels) 
            deep_feat = apply_feature_selection(deep_final.loc[tr_split], 
binary_labels) 
        except:  
            print('something went wrong') 
            continue 
 
        path="results/SVM_rad_deep/"+model_name+"_SVM_nsplit"+str(index) 
        os.mkdir(path) 
        pd.DataFrame(radiomics_feat).to_csv(path+"/selected_radiomics.csv") 
        pd.DataFrame(deep_feat).to_csv(path+"/selected_deep.csv") 
 
        selected_radiomics = {} 
        for key in list(radiomics.index): 
            selected_radiomics[key] = 
radiomics[radiomics_feat].loc[key].to_numpy() 
 
        selected_deep = {} 
        for key in list(deep_final.index): 
            selected_deep[key] = deep_final[deep_feat].loc[key].to_numpy() 
         
        combined_patterns_rad_deep = {} 
        for key in list(selected_deep.keys()): 
            try: 
                combined_patterns_rad_deep[key] = 
np.concatenate((selected_radiomics[key], selected_deep[key])) 
            except: 
                print(key) 
                continue 
         
        x_pd=pd.DataFrame.from_dict(combined_patterns_rad_deep, orient='index')   
        X_train = x_pd.loc[tr_split] 
        X_test = x_pd.loc[tst_split] 
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        y_train = final_OSS.loc[tr_split] 
        y_test = final_OSS.loc[tst_split] 
     
        # give structure to y 
        struct_arr_train = 
y_train.astype({'Status':'?','Survival_in_days':'<f8'}).dtypes 
        y_train_np = np.array([tuple(x) for x in y_train.values], 
dtype=list(zip(struct_arr_train.index,struct_arr_train)))   
        struct_arr_test = 
y_test.astype({'Status':'?','Survival_in_days':'<f8'}).dtypes 
        y_test_np = np.array([tuple(x) for x in y_test.values], 
dtype=list(zip(struct_arr_test.index,struct_arr_test)))   
         
        estimator = FastSurvivalSVM(alpha=0.1, max_iter=1000, tol=1e-5, 
random_state=0) 
        estimator.fit(X_train,y_train_np) 
        score_ = estimator.score(X_test,y_test_np) 
         
        print(score_) 
        Concordance_index.append(score_) 
 
        pred = estimator.predict(X_test) 
        predictions = np.round(pred, 3) 
        pd.DataFrame(predictions).to_csv(path+"/predictions_SVM_rad_deep.csv") 
        pd.DataFrame(y_test_np).to_csv(path+"/labels_test_SVM_rad_deep.csv") 
 
    try: 
        print('List of possible CI:', Concordance_index) 
        print('\nMaximum CI That can be obtained from this model 
is:',max(Concordance_index)) 
        print('\nMinimum CI:',min(Concordance_index)) 
        print('\nMean CI:',statistics.mean(Concordance_index)) 
        print('\nStandard Deviation is:', statistics.stdev(Concordance_index)) 
    except: 
        print('only one CI points') 
        continue 
     
    results["rad_deep for model "+model_name] = pd.Series({"Maximum 
CI":max(Concordance_index),"Minimum CI":min(Concordance_index),"Overall 
CI":statistics.mean(Concordance_index),"Standard 
Deviation":statistics.stdev(Concordance_index)})     
 
final_results = pd.DataFrame.from_dict(results, orient="index") 
final_results.to_csv("results/SVM_rad_deep/final_results_SVM_rad_deep.csv")  

 

Code B1 
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import os 
import sys 
import pandas as pd 
import numpy as np 
import pickle as pkl 
import matplotlib.pyplot as plt 
import statistics 
from sklearn.feature_selection import SelectFromModel 
from sklearn.feature_selection import VarianceThreshold 
from sklearn.linear_model import Lasso 
from sklearn.preprocessing import StandardScaler 
from sklearn.feature_selection import f_classif as fc 
from sklearn.feature_selection import SelectKBest as kbest 
from sksurv.metrics import concordance_index_censored 
import scipy.stats as st 
from sklearn.model_selection import StratifiedKFold 
from sksurv.ensemble import RandomSurvivalForest 
 
 
 
#load radiomics and transcriptomics data 
radiomics_pd = 
pkl.load(open("features_for_overall_survival_median/radiomics_pandas.pkl", "rb")) 
transcriptomics_pd = 
pkl.load(open("features_for_overall_survival_median/transcriptomics_pandas.pkl","r
b")) 
 
#load deep feature 
deep_avg = 
pkl.load(open("features_for_overall_survival_median/deep_features_avg.pkl", "rb")) 
deep_max = 
pkl.load(open("features_for_overall_survival_median/deep_features_max.pkl", "rb")) 
 
#merge deep features vectors (avg and max) to a single feature vector 
deep={} 
for net in list(deep_avg.keys()): 
    deep[net] = deep_avg[net].merge(deep_max[net], left_index = True, right_index 
= True) 
 
# import labels 
with open('features_for_overall_survival_median/days_OS_dictionary.pkl', 'rb') as 
f: 
    OS_days = pkl.load(f) 
    OS_days_pd= pd.DataFrame([OS_days.keys(), OS_days.values()]).T 
    OS_days_pd.columns= ['Patient', 'Survival_in_days'] 
  
with open('features_for_overall_survival_median/binary_OS_dictionary.pkl', 'rb') 
as f: 
    OS_binary = pkl.load(f) 
    OS_binary_pd= pd.DataFrame([OS_binary.keys(), OS_binary.values()]).T 
    OS_binary_pd.columns= ['Patient', 'Status'] 
 
final_OS = pd.merge(OS_binary_pd, OS_days_pd, on="Patient", how="left") 
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final_OSS = final_OS.set_index('Patient') 
 
print("Data cleaning with VarianceThreshold") 
thresholder_rad = VarianceThreshold(threshold=0.0) 
thresholder_tran = VarianceThreshold(threshold=0.0) 
thresholder_deep = VarianceThreshold(threshold=0.0) 
 
radiomics_selected = thresholder_rad.fit(radiomics_pd) 
transcriptomics_selected = thresholder_tran.fit(transcriptomics_pd) 
mask_rad = thresholder_rad.get_support() 
mask_tran = thresholder_tran.get_support() 
radiomics_ = radiomics_pd.loc[:,mask_rad] 
transcriptomics_ = transcriptomics_pd.loc[:,mask_tran] 
 
print("Z-normalization") 
radiomics_transformed = StandardScaler().fit_transform(radiomics_) 
transcriptomics_transformed = StandardScaler().fit_transform(transcriptomics_) 
 
# Transform radiomics, transcriptomics data to DataFrame 
radiomics = pd.DataFrame(data=radiomics_transformed, index=radiomics_.index, 
columns=radiomics_.columns) 
transcriptomics = 
pd.DataFrame(data=transcriptomics_transformed,index=transcriptomics_.index, 
columns=transcriptomics_.columns) 
 
def apply_feature_selection(df, labels, cutoff_pvalue=0.05): 
    X=[] 
    for key in list(df.index): 
        X.append(df.loc[key]) 
    X = np.array(X) 
    y = np.hstack(labels) 
     
    selector = kbest(fc, k="all") 
    best_features = selector.fit_transform(X, y) 
    f_scores, p_values = fc(X, y) 
    critical_value = st.f.ppf(q=1-cutoff_pvalue, dfn=len(np.unique(y))-1, 
dfd=len(y)-len(np.unique(y))) 
     
    best_indices=[] 
    for index, p_value in enumerate(p_values): 
        if f_scores[index]>critical_value and p_value<cutoff_pvalue: 
            best_indices.append(index) 
    print("Best ANOVA features:" + str(len(best_indices))) 
 
    if len(best_features)>0: 
        best_columns = np.array(list(df.columns))[best_indices] 
        best_features = np.array(list(df[best_columns].values)) 
    else: 
        best_columns = np.array(list(df.columns)) 
        best_features = np.array(list(df.values)) 
 
    try: 
        sel_ = SelectFromModel(Lasso(alpha=0.01)) 



Application Grade Thesis 

 

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/  

 

Page 79 of 87 

        sel_.fit(best_features, y) 
        selected_features_bool = sel_.get_support() 
        final_selected=[] 
        final_features=[] 
        for index, feat_id in enumerate(best_columns): 
            if selected_features_bool[index]: 
                final_selected.append(feat_id) 
        final_selected = np.array(final_selected) 
    except: 
        print("No features left after Lasso") 
        final_selected = best_columns 
         
    print("Best Lasso features: "+str(len(final_selected))) 
    return final_selected 
 
 
pids = np.array(list(OS_binary.keys()),dtype=str) 
f_labels = np.array(list(OS_binary.values())) 
sss = StratifiedKFold(n_splits=4,shuffle=True) 
kfolds = [] 
for train_index, test_index in sss.split(pids,f_labels): 
    kfolds.append([pids[train_index],pids[test_index]]) 
 
for index,split in enumerate(kfolds): 
    print(split[0]) 
 
results = {} 
for model_name in deep.keys(): 
    print(model_name) 
    deep_selected = thresholder_deep.fit(deep[model_name]) 
    mask_deep = thresholder_deep.get_support() 
    deep_ = deep[model_name].loc[:,mask_deep]     
     
    deep_ = StandardScaler().fit_transform(deep[model_name]) 
    deep_df = pd.DataFrame(data=deep_,index=deep[model_name].index, 
columns=deep[model_name].columns) 
 
    #Keep specific patients with known labels 
    patients_split = [] 
    for patients in list(radiomics_pd.index): 
        if patients in list(deep_df.index): 
            patients_split.append(patients) 
     
    deep_final = deep_df.loc[patients_split] 
     
    Concordance_index = [] 
    for index,split in enumerate(kfolds): 
        tr_split = [] 
        tst_split = [] 
        for key in list(radiomics.index): 
            if key in list(split[0]): 
                tr_split.append(key) 
            elif key in list(split[1]): 
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                tst_split.append(key) 
 
        binary_labels = [] 
        for pid in list(radiomics.loc[tr_split].index): 
            if pid in final_OS.values: 
                binary_labels.append(OS_binary[pid]) 
 
        days_labels = [] 
        for pid in list(radiomics.loc[tr_split].index): 
            if pid in final_OS.values: 
                days_labels.append(OS_days[pid]) 
 
        try: 
            radiomics_feat = apply_feature_selection(radiomics.loc[tr_split], 
binary_labels) 
            transcriptomics_feat = 
apply_feature_selection(transcriptomics.loc[tr_split], binary_labels) 
            deep_feat = apply_feature_selection(deep_final.loc[tr_split], 
binary_labels) 
        except:  
            print('something went wrong') 
            continue 
 
        path="results/RF_rad_trans_deep/"+model_name+"_RF_nsplit"+str(index) 
        os.mkdir(path) 
        pd.DataFrame(radiomics_feat).to_csv(path+"/selected_radiomics.csv") 
        pd.DataFrame(transcriptomics_feat).to_csv(path+"/selected_transcriptomics.
csv") 
        pd.DataFrame(deep_feat).to_csv(path+"/selected_deep.csv") 
 
        selected_radiomics = {} 
        for key in list(radiomics.index): 
            selected_radiomics[key] = 
radiomics[radiomics_feat].loc[key].to_numpy() 
 
        selected_transcriptomics = {} 
        for key in list(transcriptomics.index): 
            selected_transcriptomics[key] = 
transcriptomics[transcriptomics_feat].loc[key].to_numpy() 
 
        selected_deep = {} 
        for key in list(deep_final.index): 
            selected_deep[key] = deep_final[deep_feat].loc[key].to_numpy() 
         
 
        combined_patterns_rad_trans_deep = {} 
        for key in list(selected_deep.keys()): 
            try: 
                combined_patterns_rad_trans_deep[key] = 
np.concatenate((selected_radiomics[key], selected_transcriptomics[key], 
selected_deep[key])) 
            except: 
                print(key) 



Application Grade Thesis 

 

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/  

 

Page 81 of 87 

                continue  
         
        x_pd=pd.DataFrame.from_dict(combined_patterns_rad_trans_deep, 
orient='index')   
        X_train = x_pd.loc[tr_split] 
        X_test = x_pd.loc[tst_split] 
        y_train = final_OSS.loc[tr_split] 
        y_test = final_OSS.loc[tst_split] 
     
        # give structure to y 
        struct_arr_train = 
y_train.astype({'Status':'?','Survival_in_days':'<f8'}).dtypes 
        y_train_np = np.array([tuple(x) for x in y_train.values], 
dtype=list(zip(struct_arr_train.index,struct_arr_train)))   
        struct_arr_test = 
y_test.astype({'Status':'?','Survival_in_days':'<f8'}).dtypes 
        y_test_np = np.array([tuple(x) for x in y_test.values], 
dtype=list(zip(struct_arr_test.index,struct_arr_test)))   
         
        rsf = RandomSurvivalForest(n_estimators=1000, 
                                   min_samples_split=10, 
                                   min_samples_leaf=6, 
                                   n_jobs=-1) 
     
 
        rsf.fit(X_train,y_train_np) 
 
        score_ = rsf.score(X_test,y_test_np) 
         
        print(score_) 
        Concordance_index.append(score_) 
 
        pred = rsf.predict(X_test) 
        predictions = np.round(pred, 3) 
        pd.DataFrame(predictions).to_csv(path+"/predictions_RF_rad_trans_deep.csv"
) 
        pd.DataFrame(y_test_np).to_csv(path+"/labels_test_RF_rad_trans_deep.csv") 
 
        surv = rsf.predict_survival_function(X_test, return_array=True) 
        hazard = rsf.predict_cumulative_hazard_function(X_test, return_array=True) 
 
        for i, s in enumerate(surv): 
            plt.step(rsf.event_times_, s, where="post", label=str(i)) 
        plt.ylabel("Survival probability") 
        plt.xlabel("Time in days") 
        plt.legend(X_test.index) 
        plt.title("CI %.4f" % score_) 
        plt.grid(True) 
        plt.savefig(path+"/plot_performance_model for" + model_name + "and nsplit" 
+ str(index) + ".png",dpi=300) 
        plt.clf() 
 
        for i, s in enumerate(hazard): 
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            plt.step(rsf.event_times_, s, where="post", label=str(i)) 
        plt.ylabel("Cumulative hazard") 
        plt.xlabel("Time in days") 
        plt.legend(X_test.index) 
        plt.title("CI %.4f" % score_) 
        plt.grid(True) 
        plt.savefig(path+"/plot_performance_hazard_model for" + model_name + "and 
nsplit" + str(index) + ".png",dpi=300) 
        plt.clf() 
 
    try: 
        print('List of possible CI:', Concordance_index) 
        print('\nMaximum CI That can be obtained from this model 
is:',max(Concordance_index)) 
        print('\nMinimum CI:',min(Concordance_index)) 
        print('\nMean CI:',statistics.mean(Concordance_index)) 
        print('\nStandard Deviation is:', statistics.stdev(Concordance_index)) 
    except: 
        print('only one CI points') 
        continue 
     
    results["rad_trans_deep for model "+model_name] = pd.Series({"Maximum 
CI":max(Concordance_index),"Minimum CI":min(Concordance_index),"Overall 
CI":statistics.mean(Concordance_index),"Standard 
Deviation":statistics.stdev(Concordance_index)})     
 
final_results = pd.DataFrame.from_dict(results, orient="index") 
final_results.to_csv("results/RF_rad_trans_deep/results_RF_rad_trans_deep.csv")  

 

 

Code B2 
 
import os 
import sys 
import pandas as pd 
import numpy as np 
import pickle as pkl 
import matplotlib.pyplot as plt 
import statistics 
from sklearn.feature_selection import SelectFromModel 
from sklearn.feature_selection import VarianceThreshold 
from sklearn.linear_model import Lasso 
from sklearn.preprocessing import StandardScaler 
from sklearn.feature_selection import f_classif as fc 
from sklearn.feature_selection import SelectKBest as kbest 
from sksurv.metrics import concordance_index_censored 
from sksurv.svm import FastSurvivalSVM 
import scipy.stats as st 
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from sklearn.model_selection import StratifiedKFold 
 
#load radiomics and transcriptomics data 
radiomics_pd = 
pkl.load(open("features_for_overall_survival_median/radiomics_pandas.pkl", "rb")) 
transcriptomics_pd = 
pkl.load(open("features_for_overall_survival_median/transcriptomics_pandas.pkl","r
b")) 
 
#load deep feature 
deep_avg = 
pkl.load(open("features_for_overall_survival_median/deep_features_avg.pkl", "rb")) 
deep_max = 
pkl.load(open("features_for_overall_survival_median/deep_features_max.pkl", "rb")) 
 
#merge deep features vectors (avg and max) to a single feature vector 
deep={} 
for net in list(deep_avg.keys()): 
    deep[net] = deep_avg[net].merge(deep_max[net], left_index = True, right_index 
= True) 
 
# import labels 
with open("features_for_overall_survival_median/days_OS_dictionary.pkl", 'rb') as 
f: 
    OS_days = pkl.load(f) 
    OS_days_pd= pd.DataFrame([OS_days.keys(), OS_days.values()]).T 
    OS_days_pd.columns= ['Patient', 'Survival_in_days'] 
     
with open("features_for_overall_survival_median/binary_OS_dictionary.pkl", 'rb') 
as f: 
    OS_binary = pkl.load(f) 
    OS_binary_pd= pd.DataFrame([OS_binary.keys(), OS_binary.values()]).T 
    OS_binary_pd.columns= ['Patient', 'Status'] 
 
final_OS = pd.merge(OS_binary_pd, OS_days_pd, on="Patient", how="left") 
final_OSS = final_OS.set_index('Patient') 
 
print("Data cleaning with VarianceThreshold") 
thresholder_rad = VarianceThreshold(threshold=0.0) 
thresholder_tran = VarianceThreshold(threshold=0.0) 
thresholder_deep = VarianceThreshold(threshold=0.0) 
 
radiomics_selected = thresholder_rad.fit(radiomics_pd) 
transcriptomics_selected = thresholder_tran.fit(transcriptomics_pd) 
mask_rad = thresholder_rad.get_support() 
mask_tran = thresholder_tran.get_support() 
radiomics_ = radiomics_pd.loc[:,mask_rad] 
transcriptomics_ = transcriptomics_pd.loc[:,mask_tran] 
 
print("Z-normalization") 
radiomics_transformed = StandardScaler().fit_transform(radiomics_) 
transcriptomics_transformed = StandardScaler().fit_transform(transcriptomics_) 
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# Transform radiomics, transcriptomics data to DataFrame 
radiomics = pd.DataFrame(data=radiomics_transformed, index=radiomics_.index, 
columns=radiomics_.columns) 
transcriptomics = 
pd.DataFrame(data=transcriptomics_transformed,index=transcriptomics_.index, 
columns=transcriptomics_.columns) 
 
def apply_feature_selection(df, labels, cutoff_pvalue=0.05): 
    X=[] 
    for key in list(df.index): 
        X.append(df.loc[key]) 
    X = np.array(X) 
    y = np.hstack(labels) 
     
    selector = kbest(fc, k="all") 
    best_features = selector.fit_transform(X, y) 
    f_scores, p_values = fc(X, y) 
    critical_value = st.f.ppf(q=1-cutoff_pvalue, dfn=len(np.unique(y))-1, 
dfd=len(y)-len(np.unique(y))) 
     
    best_indices=[] 
    for index, p_value in enumerate(p_values): 
        if f_scores[index]>critical_value and p_value<cutoff_pvalue: 
            best_indices.append(index) 
    print("Best ANOVA features:" + str(len(best_indices))) 
 
    if len(best_features)>0: 
        best_columns = np.array(list(df.columns))[best_indices] 
        best_features = np.array(list(df[best_columns].values)) 
    else: 
        best_columns = np.array(list(df.columns)) 
        best_features = np.array(list(df.values)) 
 
    try: 
        sel_ = SelectFromModel(Lasso(alpha=0.01)) 
        sel_.fit(best_features, y) 
        selected_features_bool = sel_.get_support() 
        final_selected=[] 
        final_features=[] 
        for index, feat_id in enumerate(best_columns): 
            if selected_features_bool[index]: 
                final_selected.append(feat_id) 
        final_selected = np.array(final_selected) 
    except: 
        print("No features left after Lasso") 
        final_selected = best_columns 
         
    print("Best Lasso features: "+str(len(final_selected))) 
     
    return final_selected 
 
pids = np.array(list(OS_binary.keys()),dtype=str) 
f_labels = np.array(list(OS_binary.values())) 
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sss = StratifiedKFold(n_splits=4,shuffle=True) 
kfolds = [] 
for train_index, test_index in sss.split(pids,f_labels): 
    kfolds.append([pids[train_index],pids[test_index]]) 
 
for index,split in enumerate(kfolds): 
    print(split[0]) 
 
results = {} 
for model_name in deep.keys(): 
    print(model_name) 
    deep_selected = thresholder_deep.fit(deep[model_name]) 
    mask_deep = thresholder_deep.get_support() 
    deep_ = deep[model_name].loc[:,mask_deep]     
     
    deep_ = StandardScaler().fit_transform(deep[model_name]) 
    deep_df = pd.DataFrame(data=deep_,index=deep[model_name].index, 
columns=deep[model_name].columns) 
 
    #Keep specific patients with known labels 
    patients_split = [] 
    for patients in list(radiomics_pd.index): 
        if patients in list(deep_df.index): 
            patients_split.append(patients) 
     
    deep_final = deep_df.loc[patients_split] 
     
    Concordance_index = [] 
    for index,split in enumerate(kfolds): 
        tr_split = [] 
        tst_split = [] 
        for key in list(radiomics.index): 
            if key in list(split[0]): 
                tr_split.append(key) 
            elif key in list(split[1]): 
                tst_split.append(key) 
 
        binary_labels = [] 
        for pid in list(radiomics.loc[tr_split].index): 
            if pid in final_OS.values: 
                binary_labels.append(OS_binary[pid]) 
 
     
        days_labels = [] 
        for pid in list(radiomics.loc[tr_split].index): 
            if pid in final_OS.values: 
                days_labels.append(OS_days[pid]) 
 
        try: 
            radiomics_feat = apply_feature_selection(radiomics.loc[tr_split], 
binary_labels) 
            transcriptomics_feat = 
apply_feature_selection(transcriptomics.loc[tr_split], binary_labels) 
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            deep_feat = apply_feature_selection(deep_final.loc[tr_split], 
binary_labels) 
        except:  
            print('something went wrong') 
            continue 
 
        path="results/SVM_rad_trans_deep/"+model_name+"_SVM_nsplit"+str(index) 
        os.mkdir(path) 
        pd.DataFrame(radiomics_feat).to_csv(path+"/selected_radiomics.csv") 
        pd.DataFrame(transcriptomics_feat).to_csv(path+"/selected_transcriptomics.
csv") 
        pd.DataFrame(deep_feat).to_csv(path+"/selected_deep.csv") 
 
        selected_radiomics = {} 
        for key in list(radiomics.index): 
            selected_radiomics[key] = 
radiomics[radiomics_feat].loc[key].to_numpy() 
 
        selected_transcriptomics = {} 
        for key in list(transcriptomics.index): 
            selected_transcriptomics[key] = 
transcriptomics[transcriptomics_feat].loc[key].to_numpy() 
 
        selected_deep = {} 
        for key in list(deep_final.index): 
            selected_deep[key] = deep_final[deep_feat].loc[key].to_numpy() 
         
        combined_patterns_rad_trans_deep = {} 
        for key in list(selected_deep.keys()): 
            try: 
                combined_patterns_rad_trans_deep[key] = 
np.concatenate((selected_radiomics[key], selected_transcriptomics[key], 
selected_deep[key])) 
            except: 
                print(key) 
                continue 
         
        x_pd=pd.DataFrame.from_dict(combined_patterns_rad_trans_deep, 
orient='index')   
        X_train = x_pd.loc[tr_split] 
        X_test = x_pd.loc[tst_split] 
        y_train = final_OSS.loc[tr_split] 
        y_test = final_OSS.loc[tst_split] 
     
        # give structure to y 
        struct_arr_train = 
y_train.astype({'Status':'?','Survival_in_days':'<f8'}).dtypes 
        y_train_np = np.array([tuple(x) for x in y_train.values], 
dtype=list(zip(struct_arr_train.index,struct_arr_train)))   
        struct_arr_test = 
y_test.astype({'Status':'?','Survival_in_days':'<f8'}).dtypes 
        y_test_np = np.array([tuple(x) for x in y_test.values], 
dtype=list(zip(struct_arr_test.index,struct_arr_test)))   
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        estimator = FastSurvivalSVM(alpha=0.1, max_iter=1000, tol=1e-5, 
random_state=0) 
        estimator.fit(X_train,y_train_np) 
        score_ = estimator.score(X_test,y_test_np) 
         
        print(score_) 
        Concordance_index.append(score_) 
 
        pred = estimator.predict(X_test) 
        predictions = np.round(pred, 3) 
        pd.DataFrame(predictions).to_csv(path+"/predictions_SVM_rad_trans_deep.csv
") 
        pd.DataFrame(y_test_np).to_csv(path+"/labels_test_SVM_rad_trans_deep.csv") 
 
    try: 
        print('List of possible CI:', Concordance_index) 
        print('\nMaximum CI That can be obtained from this model 
is:',max(Concordance_index)) 
        print('\nMinimum CI:',min(Concordance_index)) 
        print('\nMean CI:',statistics.mean(Concordance_index)) 
        print('\nStandard Deviation is:', statistics.stdev(Concordance_index)) 
    except: 
        print('only one CI points') 
        continue 
     
    results["rad_trans_deep for model "+model_name] = pd.Series({"Maximum 
CI":max(Concordance_index),"Minimum CI":min(Concordance_index),"Overall 
CI":statistics.mean(Concordance_index),"Standard 
Deviation":statistics.stdev(Concordance_index)})     
 
final_results = pd.DataFrame.from_dict(results, orient="index") 
final_results.to_csv("results/SVM_rad_trans_deep/final_results_SVM_rad_trans_deep.
csv")  


