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PerÐlhyh

Η περιγραφή του περιεχομένου εικόνων ειναι η διαδικασία η οποία συλλέγει την πληροφορία που υπάρχει στα

pixels της εικόνας και την εκφράζει με τέτοιο τρόπο ώστε να μπορεί να χρησιμοποιηθεί για ταίριασμα, ανίχνευση

και αναγνώριση αντικειμένων σε εικόνες. Η περιγραφή είναι μια βασική διαδικασία σε όλους τους τομείς της

υπολογιστικής όρασης. Τα αποτελέσματα στη διαδικασία της όρασης μπορούν να βελτιωθούν σημαντικά εαν

η μέθοδος της περιγραφής μπορει να παραμένει αναλλοίωτη σε αλλαγές του περιεχομένου της εικόνας. Σε

αυτην την εργασία, προτείνεται μια νέα μέθοδος περιγραφής εικόνων που παραμένει αναλλόιωτη σε αλλαγές της

εικόνας και βασίζεται σε Λαπλασιανά προφίλς και ακτινικό μετασχηματισμό Fourier. Το Λαπλασιανό προφίλ

ενός pixel ειναι ενα διάνυσμα Λαπλασιανών τιμών σε διαφορετικές κλιμακώσεις τις εικόνας στις ανάλογες συν-

τεταγμένες. Η χρήση του ακτινικού μετασχηματισμού Fourier σε μικρές γειτονιές γύρω από το Λαπλασιανό

προφίλ προσφέρει σε ένα περιγραφέα την ικανότητα να παραμένει αναλλοίωτος στη μετατόπιση, περιστροφή και

κλιμάκωση της εικόνας. Ο υπολογισμός των Λαπλασιανών τιμών σε διαφορετικές κλιμακώσεις της εικόνας είναι

εύκολα εφικτός με τη χρήση του αλγορίθμου Γκαουσιανή Πυραμίδα Μισής Οκτάβας. Το μέγεθος του περι-

γραφέα μπορεί να μεταβάλλεται με τη χρήση διαφορετικού αριθμού επίπεδων από την πυραμίδα. Τα πειράματα

αποδεικνύουν την ικανότητα της προτεινόμενης μεθοδου να παραμενει αμεταβλητη (στην μετατόπιση, την περι-

στροφή και τη κλιμάκωση) και να περιγράφει με παρόμοιο τρόπο τα ίδια αντίκειμενα σε διαφορετικές εικόνες. Τα

πειράματα δείχνουν επίσης ότι όσο μεγαλύτερο ειναι το μέγεθος του Λαπλασιανού προφίλ που χρησιμοποιείται

για την κατασκευή ενός περιγραφέα, άρα όσο μεγαλύτερο το μέγεθος του περιγραφέα, τόσο καλύτερα απο-

τελέσματα παίρνουμε. Η νέα μέθοδος περιγραφής εικόνων φαίνεται οτι είναι κατάλληλη για την περίπτωση που

πρέπει να γίνει ανίχνευση και αναγνώριση διαφημισ-τικών λογότυπων σε εικόνες η εντοπισμός και αναγνώριση

διαφημιστικών λογότυπων σε ακολουθίες εικόνων που λαμβάνονται απο κάμερες σε κινητά τηλέφωνα.

Λέξεις - Κλειδιά:

περιγραφή περιεχομένου εικόνων, γκαουσσιανή πυραμίδα μισής οκτάβας, λαπλασιανό προφίλ, ακτινικός μετασχη-

ματισμός Fourier, αμετάβλητη στις αλλαγές, αναγνώριση

i



Résumé

Le processus de description du contenu d’une image consiste à extraire l’information représentée par l’ensemble

des pixels de l’image et l’exprime de sorte qu’elle soit utilisable pour l’appariement, la détection and la recon-

naissance. La description est une procedure de base dans tous les domaines de la vision par ordinateur. Dans

les processus de vision, les résultats peuvent être significativement améliorés si le modèle de description est

invariant par rapport variations du contenu de l’image. Dans ce projet, une nouvelle méthode de description

invariante est proposée; elle est basée sur des profils de Laplaciens et la transformée de Fourier radiale. Le

profil de Laplaciens d’un pixel d’une image est une séquence des valeurs de Laplaciens à différentes échelles

de l’image à ce même pixel. L’ajout de la transformée de Fourier Radiale aux valeurs de Laplaciens dans

un petit voisinage autour du profil de Laplaciens forme un descripteur invariant en translation, rotation et

homothétie. Le calcul des valeurs de Laplaciens à différentes échelles est facilement réalisable en utilisant la

Pyramide Gaussienne Demi Octave. La taille du descripteur peut varier en changeant le nombre de niveaux

utilisés dans la pyramide. Les experiences attestent la capacité de la méthode proposée à être invariante (par

rapport translation, rotation et homothétie) et à être discriminante. Elles montrent aussi que, plus le profil

de Laplacien est grand, donc plus la taille du descripteur est grande, et meilleurs seront les résultats. La

nouvelle méthode de description apparait être adaptée pour détecter et reconnâıtre des logos publicitaires

sur des images ou encore le suivi de logos publicitaires dans des séquences d’images prises par des caméras

de téléphone portable.

Mot - clés:

description de l’image, pyramide gaussienne demi octave, le profil laplacien, transformée de Fourier radiale,

invariance, la reconnaissance

ii



Abstract

Description of the image content extracts the information represented by the set of image pixels and ex-

presses it in a form that is useful for matching, detection and recognition. Description is a basic procedure

for all areas of computer vision. Results in vision processes can be significantly improved if the description

method is invariant to changes in image contents. In this project, a new invariant image description method

is proposed based on Laplacian profiles and Radial Fourier transform. The Laplacian profile of an image

pixel is a sequence of Laplacian values of corresponding coordinates to different scales of the image. Adding

the Radial Fourier transforms of the Laplacian values of small pixel neighbourhoods around the Laplacian

profile corresponding coordinates of different scales formulates an invariant descriptor to translation, rota-

tion and scaling. The computation of Laplacian values at different scales is easily achieved by the use of

the Half-Octave Gaussian Pyramid. The size of the descriptor can be varied by changing the number of

pyramid levels used. Experiments attest to the capabilities of the new proposed method towards invariance

(to translation, rotation and scaling) and discriminative power and as well as show that the longest the

Laplacian profile is, so the longest the size of the descriptor, the better the results are. The new description

method appears suitable for detecting and recognizing publicity logos on images or, furthermore, tracking

publicity logos on sequences of images taken from cameras on cell phones.

Keywords:

image description, half-octave gaussian pyramid, laplacian profile, radial Fourier transform, invariance, recog-

nition
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Computer vision vision

To develop a technology that provides machines with the ability to see with performance found in biological

systems is a very difficult and challenging problem that when solved is expected to have an enormous impact

on human quality of life, leading to a technology for more “intelligent”machines that will be able to evaluate

and further interact with their environment by visual stimuli. Computer vision is a mixture of artificial

intelligence and machine learning focused on obtaining information from images. Image processing, the

predecessor and base of computer vision, has existed since the 1960’s but the first big steps towards artificial

vision were taken in the 1980’s, when methods for interpreting image content by mathematical calculations

on pixels were introduced. Computer vision is an extended field with a number of subdomains exploring a

variety of different issues from image representation to camera integration.

Description in computer vision is the extraction of information from images. The description of image

content has two major factors: the invariance to image transformations and the discrimination ability on

existing objects or structures in images. Algorithms for image description have been introduced over the

previous decade. In the 1990’s, methods used in computer vision were mainly geometry-based, such as Multi

Camera reconstruction for 3-D scenes representation and mathematical matrices that expressed projective

geometric relationships such as the Fundamental Matrix and the Trifocal Tensor. In the 2000’s, appearance-

based methods were introduced, such as Scale-Invariant Feature Transform (SIFT) [31] and Histogram of

Oriented Gradients (HOG) [19]. Appearance in an image can be interpreted as the mathematical represen-

tation of attributes like shape, color, lightning, direction or size. The success of appearance-based methods

have led researchers to focus on them. Image content description based on appearance can be both invariant

and discriminative, without the one factor burdening the other, because it considers objects or structures as

a unity and aims to identify these unities in images. This project proposes a new method that attempts to
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capture appearance and perform efficiently concerning both invariance and discrimination.

1.1.2 Setting the Problem

Contributing to a field as vast as computer vision, requires centring on several smaller and more particular

problems and working on their solution. The motivation for this project lies in the need for an efficient

method to detect and recognize publicity logos from real-world images as well as tracking and recognition

of publicity logos on sequences of real-world images (e.g. videos). For the rest of this document, the use

of the term detection in images implies also tracking in sequences of images. Logos can exist in countless

different positions and directions in real-world images and, nevertheless, the variety of them in shape, size,

color combination and structure is endless. This project is the first step towards developing a new high

performance image descriptor that will be able to perform on images belonging to complex objects. To

achieve this goal, we seek a highly discriminative invariant image descriptor.

An image descriptor is a vector which represents an image or a part of an image in a certain manner,

including Laplacian profiles and Radial Fourier transform, capturing meaningful information on pixel neigh-

bourhoods. In this first approach, invariance exploration is limited only to translation, rotation and scaling

for images. The starting point of the descriptor construction is the representation of images to a color space

that can reveal all the important information of the image content. The LC1C2 color space was chosen

as it provides an effective image representation. The Half-Octave Gaussian pyramid is used to calculate

Laplacian values in different scales and provide the Laplacian profiles to corresponding image positions as

well as Laplacian values of neighbourhoods around the Laplacian profiles, imposing invariance to different

scales and positions. Radial Fourier transforms computed on Laplacian values of neighbourhoods around

the Laplacian profiles provided magnitude and phase information on local appearance that enhanced the in-

variance to rotation. Laplacian profiles and Radial Fourier information were stacked in vectors to formulate

descriptors covering the whole image. The normalization of the vectors with the L2 formula added to the

improvement of the descriptors. Finally, all the descriptors of an image were further combined in a large

global descriptor vector that describes the image.

1.1.3 Experimental validation

In this project we have performed first experiments to evaluate invariance to translation, rotation and scaling

and as well discrimination power. These initial experiments have provided the confirmation that the new

method can work in practice. Both for the tests of invariance and discrimination, results indicated that

both invariance and discrimination improve as the sizes of descriptor vectors are increased by the addition
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of information from the Half-Octave Gaussian pyramid levels. The more pyramid levels used, the more

invariant and discriminative the descriptors become.

Invariance is measured by the Root Mean Square Error (RMSE) [49]. Translation invariance experiments

revealed a periodic noise in the descriptor. The RMSE plot, for a fixed interval, repeats in the exact same

way. A probable explanation for this repeating trend is the Radial Discrete Fourier transform used in place

of the Radial Fourier Transform (due to images being discrete signals) in the construction of the descriptors.

Rotation invariance RMSE plot showed invariance to symmetry. Scaling invariance experiments showed

expected results. While the scaling becomes increases, the RMSE increases. In general, the results are not

perfect but they are good enough in the sense that they confirm invariance.

Discrimination has also been demonstrated. Experiments were conducted using the INRIA Person

Dataset collected by Dalal [17], an image dataset widely used and suitable for demonstrating discrimi-

nation. Global image descriptors from 2416 images containing humans and 4832 images not containing

humans resulted in different classification models for the Support Vector Machines (SVM) method [11]. The

models were used to identify several patches taken from an image as positive (containing humans) or neg-

ative (non containing humans). This is a common method for locating humans present in images. Results

showed that the majority of humans were located in the testset images. Therefore, we can be optimistic

that discrimination can be obtained while maintaining invariance to translation, rotation and scaling.

1.1.4 Chapter sequence

The present chapter introduces the reader to common methods of image description and summarizes the

initiatives and objectives of this project. Chapter Two describe the most important currents in the existing

state of the art of image description by discussing three widely used techniques and concluding through the

comparison of their attributes that the proposed method should perform dense description. Chapter Three

establishes the particular problem of publicity logo detection and recognition in real world images, to which

this project contributes, and sets the demands for an efficient new method on it. Chapter Four describes

in detail the proposed method. Representing the image in LC1C2 color space increases the probability

for success as this color space provides meaningful details on the image content. Extracting Laplacian

profiles and collecting Radial Fourier information on small circular neighbourhoods around them formulate

the basic descriptor vector structure on each of the three color space components. Normalization adds

to the improvement of performance. Finally, the SVM method is used for creating classification models

used in discrimination experiments. In Chapter Five, the method is tested for evaluating its invariance

abilities towards translation, rotation and changes of scale. Invariance is demonstrated in all three cases
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but the RMSE plots also reveal issues that need further exploration. In Chapter Six, tests continue on the

evaluation of the discriminative power of the proposed method. Discrimination exists in the proposed method

and performance improves depending on the quantity of information used from the Half-Octave Gaussian

pyramid. The final Chapter reviews the conclusions reached through the experimental validation for the

new method and collocates further improvements based either on the undesirable outcomes revealed during

testing or on totally new ideas that move one step ahead in the construction of the proposed descriptors.
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Chapter 2

Invariant Image Descriptors

2.1 Introduction

This Chapter reviews three widely used methods of the current state of the art for image description. The

methods are firstly reviewed for using one image channel (grayscale) and then additional information is given

on their extension to three image channels (color). At the end, there is a discussion on the disadvantages of

this methods in relation to the problem of publicity logo detection and recognition. This provides a basis

for the theoretical approach of the new image description method later explained in this report.

2.2 Scale Invariant Feature Transform (SIFT)

In 1999, David Lowe presented Scale Invariant Feature Transform (SIFT) [31]. SIFT transforms an image

into a large collection of local descriptors vectors, each of which is invariant to image translation, scaling,

and rotation, and robust to illumination changes and affine or 3-D projection. This description method

performs description by keypoints: keypoints, otherwise called points of interest, refer to image points of

specific importance according to a set of rules. Keypoints are located on an image and description takes

place just around these points. Experimental results on SIFT attest to its successful performance.

In order to explain the way SIFT works, a brief explanation over the method called Difference of Gaus-

sians (DoG) must be given. Convolving one image with two Gaussian functions of different variance and

subtracting one convolved image from the other creates a new image that preserve spatial information that

lies between the range of frequencies that are preserved in the two blurred images. This method is called the

method of Difference of Gaussians and is a simpler way to implement the method of Laplacian of Gaussian

(LoG), which is calculating the Laplacian derivatives of pixels on images. In LoG theory, local extrema

indicate local change in original image and therefore indicate keypoints for SIFT. So, the local extrema on

the Difference of Gaussian created images also indicate keypoints. Figure 2.1,adapted from [23], shows a

DoG example and figure 2.2, adapted from [24], shows a Log example in one dimension. It is obvious that
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the result (the blue line plot) is the same for DoG and LoG. Consequently, DoG is used to locate keypoints

for SIFT.

Figure 2.1: Difference of Gaussians. The Gaussian plot-
ted in red color is subtracted by the one plotted in green
color. The blue plot is the DoG. Adapted by [23]

Figure 2.2: Laplacian of Gaussian. The red plot is a
Gaussian. The green plot is the first derivative. The blue
plot is The second derivative or LoG. Adapted by [24]

Keypoints are detected in different scales of the image. The original image is convolved with a set of

Gaussian functions G(x, y, σk), with variable standard deviation σk equal to 2
k
2 . The blurring accumulates

the scaling of the image to smaller dimensions. Then the differences of successive Gaussian-blurred images

are taken. Considering the original image as I(x, y), a convolved image as L(x, y, k) and a DoG image as

D(x, y, σk), the DoG image occurs from:

L(x, y, k) = G(x, y, σk) ∗ I(x, y) (2.1)

and

D(x, y, σk) = L(x, y, ki)− L(x, y, kj) (2.2)

where k is a scaling factor and σ=
√

2 is the scale. The convolved images are grouped by octave (an

octave corresponds to doubling the value of σ), and the value of ki is selected to obtain a fixed number of

convolved images per octave. Local extrema that occur at the multiple scales of the Difference of Gaussians

are considered as good candidates for keypoints. More precisely, each pixel on a DoG image is compared

to its eight neighbours at the same scale and nine corresponding neighbouring pixels in each of the two

neighbouring scales. If the pixel value is a maximum/minimum among all compared pixels, it is considered

as a keypoint. The keypoints found are then filtered so the less informative are eliminated. The combination

of Difference of Gaussians and different scales results to collecting keypoints of different sizes, which leads
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to a good image description. [31, 51, 50].

Figure 2.3: Differences of Gaussian images in SIFT. The original image is repeatedly smoothed by Gaussian
functions. Gaussian images are subtracted to produce the DoG images. [28]

Figure 2.4: Selection of local extrema: each pixel on a DoG image is compared to its eight neighbours at the same
scale and nine corresponding neighbouring pixels in each of the two neighbouring scales. If it is an extremum among
all compared pixels, it is a keypoint. [40]

Figure 2.5: SIFT keypoint is a geometric frame of four parameters: the keypoint center coordinates x and y, its
scale, and its orientation [43].
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2.2.1 Grayscale SIFT

A SIFT keypoint, illustrated in figure 2.5 [43], is a circular image region with an orientation. It is described

by a geometric frame of four parameters: the keypoint center coordinates x and y (point of interest), its

scale (the radius of the region), and its orientation (an angle expressed in radians). [31, 43]

After locating the keypoints, SIFT creates local descriptors for local neighbourhoods, from a grid of

histograms of oriented gradients. An image gradient is a directional change in the intensity or color in an

image. The gradient of a pixel p(x, y) is a 2-D vector with the components given by the derivatives in the

horizontal and vertical directions of the image. The gradient vector points in the direction of largest intensity

(darker colors), and the length of the gradient vector corresponds to the rate of change in that direction. In

SIFT theory, the gradient at each pixel is regarded as a sample of a three-dimensional elementary feature

vector, formed by the pixel coordinates and orientation. Consider a SIFT descriptor as a 3 dimensional

spatial histogram of image gradients characterizing the appearance around a keypoint. In more detail, a set

of 16 orientation histograms of 8 bins are created around a keypoint center. These histograms are computed

from gradient magnitude and orientation values of samples in a 16 × 16 neighbourhood region around the

keypoint, such that each histogram contains samples from a 4 × 4 subregion of the neighbourhood region.

Samples are weighed by the gradient norm and accumulated in a 3 dimensional histogram h, which forms

the local descriptor of the keypoint neighbourhood region. An additional Gaussian weighting function is

applied to give less importance to gradients farther away from the keypoint. A SIFT descriptor is illustrated

in figure 2.6, adapted from [43].

Figure 2.6: The SIFT descriptor is a spatial histogram of the image gradients: 16 histograms at 16 locations
around a keypoint with 8 orientations each. The descriptor is further adjusted with an additional Gaussian weighting
function. Adapted by [43]

A subset of SIFT descriptors found on an image are presented in figure 2.7. For creating these figures,

an implementation of SIFT was used, created by Vedaldi and Fulkerson [43]. The number of the descriptors

8



shown on these images is extremely small regarding to the real number of the descriptors found to reduce

clutter. The yellow circles have a radius analogous to the scale where the descriptor was created. The

yellow line (radius) shows the main orientation of the descriptor and the descriptor itself is in green color,

with the orientations of each bin being obvious at each 4 × 4 subregion. The 3-D histogram (consisting of

8× 4× 4 = 128 bins) is stacked as a single 128-dimensional vector. [31, 43]

Figure 2.7: SIFT descriptors on images

2.2.2 Color SIFT

Alternative SIFT versions have been developed since the original was released, some of which use color

components of the image instead of just one greylevel component. Burghouts and Geusebroek [8] propose

and evaluate three colour SIFT methods and prove better performance of the algorithm against the original

one. Three color components are derived from a linear transformation of the three RGB channels of the

image, one representing intensity of the image and the rest two being chromatic components. The local

greyvalue invariant gradients as proposed in the original SIFT version and a set of local photometric invariant

gradients are calculated and compared based on the discriminative power they offer, the invariance to

transformations and the information content they can carry. Information content refers to the ability of

an invariant to distinguish between color transitions and photometric events such as shadow, shading and

highlights. According discriminative power, it is shown that SIFT using color invariant gradients outperform

SIFT using greyvalue gradients. In the part of invariance and information content, color SIFT methods have

comparable results to the original SIFT version.

2.3 Histogram of Oriented Gradient (HOG)

Another very important image description method is the Histogram of Oriented Gradient (HOG) which was

introduced by Dalal and Triggs [19] in 2005 and it was originally developed for human detection. The idea

is to evaluate well-normalized local histograms of image gradient orientations in a dense grid, taking under
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consideration that local object appearance and shape within an image can be described by the distribution

of intensity gradients or edge directions, even without knowledge of their exact corresponding positions in

the image.

2.3.1 Grayscale HOG

The use of orientation histograms was a subject of research for several years before 2005 [37, 38, 41] and

set the theoretical base for both HOG and SIFT. The method works by dividing an image into smaller

spatial regions, called cells, and for each cell computing a local 1-D histogram of gradient directions or edge

orientations for the pixels within it. Therefore, HOG performs dense description. Dense description means

that every image pixel is an important feature or a part of a feature and the whole image is subjected to

description (features can be collected the one next to the other or overlapping each other). The term feature

refers to a part of an image or a specific structure in the image, which can be a curve, a segment, a region

with a homogeneous color/texture, or just a point (keypoint) [12]. Turning attention back to cells, cells

can be rectangular (R-HOG) or circular (C-HOG). Before computing the gradients, it is essential that the

original image undergoes Gaussian smoothing followed by a discrete derivative mask such as uncentred [-1,

1], centred [-1, 0, 1] or cubic-corrected [1, -8, 0, 8, -1], as well as 3× 3 Sobel masks and 2× 2 diagonal ones

 0 1

−1 0

 and

 −1 0

0 1

 (2.3)

Experiments showed that the simple 1-D [-1, 0, 1] masks at σ = 0 work best. Less essential is to normalized

color and gamma values to the original image, though sometimes it can have better results. Figure 2.8,

taken from the presentation of Dalal et al. [20] on HOG used for object detection, illustrates the explained

method.

The histograms of the cells are evenly spread over 0 to 180 degrees, if the gradient is “signed”, or 0 to

360 degrees,if the gradient is “unsigned”. The histograms of the cells are finally contrast-normalized by a

norm of gradients across a larger region of the image, called a block. The blocks can overlap, in which case

some cells contribute more than once to the image description. The normalization of the cells in a block can

be done by four different ways as proposed in [19]. Let v be the unnormalized descriptor vector containing

all cell histograms in a block, ||v|| k be its k-norm for k = 1,2 and e be some small constant. Then one of

the following schemes can be used for normalization:
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L2− norm : f =
v√

||v||22 + e2
(2.4)

L1− norm : f =
v

(||v||1 + e)
(2.5)

L1− sqrt : f =

√
v

(||v||1 + e)
(2.6)

L2−Hys : f =
v√

||v||22 + e2
, after limiting the maximum values of v to 0.2 (2.7)

All schemes provide significant improvement to the performance of HOG, especially in invariance to

changes in illumination or shadowing. The L2-Hys, L2-norm, and L1-sqrt schemes have similar good perfor-

mance and the L1-norm has slightly less good performance than the rest. The normalized descriptor blocks

are called the Histogram of Oriented Gradient (HOG) descriptors. The combination of the normalised

oriented histograms of all the cells represent the descriptor of the image.

Figure 2.8: Histogram of Oriented Gradient. The image is segmented in cells. A block consists of a set of cells.
Blocks can overlap. [20]

2.3.2 Color HOG

Research on HOG have also been focused in using color to increase power. In case of a color image, gradients

are calculated separately for each color channel and then the one with the largest norm is taken as the pixel’s

gradient. Rishabh and Satish explain this in [36], where their implementation of HOG for human detection

in RGB images is described. Furthermore, in Villamizar et al. [44] paper according detection on images, it
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is proposed to use a color-based detector with HoG descriptors in order to create a system that improves

detection performance in outdoor scenes under cast shadows.

2.4 GIST of image: Spatial Envelope

Other approaches than dense and keypoint description have also been explored. A very interesting approach

in image description has been proposed by Oliva and Torralba [34]. In this work, the meaning of object in

an image is differentiated by the meaning of the scene of an image. What is referred to as scene of an image,

is the “gist”of the image rather than all the separate details. It is proposed that specific information about

object shape or identity is not essential for scene recognition and that modelling a holistic representation of

the scene gives enough information for its probable semantic category.

2.4.1 Grayscale GIST

Oliva and Torralba propose a computational model of the recognition of real world scenes based on a very

low dimensional representation of the scene, for which they use the term Spatial Envelope. The model

of Spatial Envelope generates a multidimensional space in which scenes sharing membership in semantic

categories (e.g. forests, mountains, buildings, streets, highways, coasts) are projected in a similar way. A set

of perceptual dimensions is proposed for categorizing images: naturalness, openness, roughness, expansion

and ruggedness of the image scene. Figure 2.9 [34] presents an example for the degree of roughness of images

with different content when projected in 3-D, with the third dimension corresponding to the intensity of the

image pixels. These dimensions describe the dominant spatial structure of an image scene and represent the

holistic spatial scene properties, termed Spatial Envelope properties.

Figure 2.9: Scenes with different spatial envelopes and their surface representation, where the height level corre-
sponds to the intensity at each pixel. The images show: a) skyscrapers, b) an highway, c) a perspective street, d)
view on a flat building, e) a beach, f) a field, g) a mountain and e) a forest. [34]
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Spatial Envelope scene properties in Oliva and Torralba’s paper [34] are evaluated by the use of energy

spectra. The spectra of many images of a semantic category (examples of basic level scene categories: tall

buildings, highways, city close-up views, e.t.c) are averaged in one energy spectrum per category and the

spectral signatures for each category are created. They use spectral signatures to categorize images.

Most of GIST method implementations as proposed in [22], resize the original image to a fixed size square

image, where a number of orientation histograms are calculated on a grid and create the description of the

image.

2.4.2 Color GIST

In [33] Oliva and Schyns examine the contribution of color in gist of scenes and prove that color is an

important property of image description and recognition. The GIST method can be implemented to use

image color by extracting the orientation histograms in all image channels and combining them into one

descriptor [30].

2.5 Discussion on Existing Descriptors

Keypoint descriptors, like SIFT, perform remarkably well in several applications such as matching invariant

keypoints or object detection. This breakthrough in computer vision led to draw attention from dense

descriptors. Dense descriptors tend to be generally more powerful and computationally simpler than keypoint

descriptors. As it is suggested by experiments in the paper of Dalal and Triggs [19], even the best current

keypoint based approaches are likely to have false positive rates at least 1 or 2 orders of magnitude higher

than the dense grid approach of HOG for human detection, mainly because keypoint detectors are not able

to detect human body structures reliably. Keypoint detectors miss the perceptual information of the image

or cannot describe properly objects as a unity. On the exact opposite side, descriptors that concentrate

on general structure, the gist, of the image scene cannot capture details of objects. They are efficient for

categorizing images simply and quickly, but not for object recognition. In contrast to both, dense descriptors

can catch the appearance of objects and describe them efficiently. This is the reason why HOG method

outperforms other methods in human detection.

In the case of logo detection and recognition, the same issue as in human detection appears. The

appearance of publicity logos are of major importance as they consist of a set of objects (e.g. letters,

shapes) and attributes (e.g. shape, texture, colors) that make sense only when combined in an exact way.

Consequently, it is reasonable to ask for a dense image description that will lead to detecting and recognizing
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logo structures in images properly.

A major disadvantage though of dense description methods is that they are not invariant to all possible

image transformations. They usually are invariant to light or background variations but not to rotation or

affine transformations. This is an issue in favour of keypoint description methods which are usually well

invariant.

The basic introduction of the method proposed in this project is that it will conduct dense description,

as it is the most suitable, but with respect to invariance. This is the reason why the construction of the

descriptor vectors must contain information on both the exact appearance of an object in an image and

general information about the image signal at that image area that can help identify the same pattern in

different positions or angles. The challenge is to introduce a dense descriptor that will capture the most

possible discriminative and invariant information without the one effecting negatively the other.
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Chapter 3

Need for a new image description
method

3.1 Logo detection and recognition

The original motivation for the description method proposed through this work was to perform publicity

logo recognition on images taken by mobile phone cameras. Publicity logo detection and recognition is a

complicated matter due to the wide variety of existing logos: different shapes, sizes, color combinations and

structures. Additionally, real-world images containing logos are more complicated due to the infinite number

of differences in background, light, view angle, distance from the camera, etc. Therefore, the description

method to be used in such a case must be robust to every possible main content of the image and be able

to locate and identify a logo correctly.

Figure 3.1: Examples of real-world images containing publicity logos [35, 7].

One main goal towards the evolution of a new method is that it must be strongly discriminative in order

to be successful, without ignoring the need for vigorous invariance, exactly for the reason that publicity logo

appearance can vary a lot in real-world images. But dense description methods, that are suitable for our

purpose, lack in invariance. Our proposed method intends to be innovative especially for this case, which

implies it should be able to maximize both discrimination and invariance without the one existing at the

expense of the other.

A secondary but equally important issue to be examined for this particular goal, is the case of memory
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constraint. According to the conclusion of Chapter 2, a dense description is the most suitable for logo detec-

tion and recognition. As assumed, the larger in size the descriptors of an image are, the more information

they can represent and therefore allow robust recognition. But allowing a large descriptor size leads to

the need of a lot of memory resources and huge calculations that affect the speed of performance. Setting

the constrains that the process is real-time and on a computer with very limited memory capacities, the

description method to be proposed must provide as small-sized descriptors as possible in order to perform

in acceptable time limits. This problem is not examined in this project but is a subject for future work.

Logo detection and recognition is only one case of object detection in real world images that motivated

this project. There are more cases as complicated as logos, where our proposed method could also be

suitable. For example, such cases are detection and recognition of humans or faces in real world images.

3.2 Proposed descriptors

The introduced description method proposed in Chapter 4 aims to create image descriptors that can describe

an image densely in an efficient way that obey the constrains set on the previous section. In this primary

approach, attention is focused on two basic problems:

1. imposing invariance against the three basic image transformations, which are translation, rotation and

scaling of the image, and

2. obtaining a good discrimination power.

Experiments presented in Chapters 5 and 6 prove that the proposed descriptors contain invariant information

regarding all three basic image transformations, and have also a good discriminative power.
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Chapter 4

Creation of a new Invariant Image
Descriptor

4.1 Color space

Color has a high discriminative power and provides an important amount of information on the content of

images [25, 8, 26, 41]. Consequently, it is reasonable that computer vision and image processing research is

often focused on color representation of images. A color space, or color model, is a system for describing

color numerically. Well known color spaces include the RGB color space for scanners, cameras and displays,

CMYK for color printing and YUV for TV/video. The color space to be used depends on the research

subject or on the application because every color space has different advantages and disadvantages.

In this project, the color space LC1C2 is used for the images. This color space was introduced by Shih

and C. Liu [39] for face recognition because it provides an effective image representation. The abbreviation

stands for luminance (L) channel and two chrominance channels (C1, C2). This color space is a linear

transformation of the input RGB color space. The L channel is designed to capture intensity or luminance

characteristics of an image. The C1 and C2 channels are designed to extract color properties such as hue

and saturation. The transformation from the RGB color space to the LC1C2 color space is easily given by:

L = R+G+B (4.1)

C1 = R−B (4.2)

C2 = R+B − 2×G (4.3)

In figure 4.1 there is an image of the Google Logo [42] and the three LC1C2 components are in figures 4.2, 4.3

and 4.4.
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Figure 4.1: Original RGB image [42]. Figure 4.2: L component

Figure 4.3: C1 component Figure 4.4: C2 component

4.2 Half-Octave pyramid

4.2.1 Gaussian derivatives

The next step is to decide how to extract meaningful information from the image representation. It is known

since the 1980s that Gaussian derivatives provide a scale and rotation invariant image description [14, 16].

The use of Gaussian derivatives on image pixels are the basis of both HOG and SIFT (see Chapter 2).

Hall and Crowley [27] used the Gaussian derivatives for face detection with log polar histograms. Crowley

et al. [12] explain that the first and second Gaussian derivatives capture information about changes of the

surface normal and measure the intensity of edges, the second order Gaussian derivatives (Laplacian of

the Gaussian) are good descriptors for compact image features such as bars, blobs and corners and the

higher order Gaussian derivatives are more sensitive to the image noise. They state that sets of Gaussian

derivatives, second order derivatives especially, can be used to describe image neighbourhoods over a range

of orientations and scales and allow an excellent description of local appearance for object detection and

recognition. These sets are referred to as Gaussian Jet. They conclude that combining normalization of scale

and orientation provides an invariant feature vector that can be used for robust detection and recognition.

A scale invariant local Jet for an N ×N image requires computing second order derivatives of the image
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at Log(N) scales. In the 1980’s, a linear time pyramid algorithm was introduced for computation of the

second order Gaussian derivatives Jet [9, 14, 16]. The algorithm creates an image structure named the Half-

Octave Gaussian Pyramid. An integer coefficient version of the Half-Octave Gaussian Pyramid algorithm

introduced by Crowley and Riff [15] uses repeated convolutions of the binomial kernel (1,2,1).

4.2.2 Implementing Half-Octave Gaussian pyramid

The Half-Octave Gaussian pyramid for an N = W ×H image is composed of up to K images [13, 12]:

K = 2× Log2(min(W,H)) (4.4)

Each of the k ∈ [1,K] images of the pyramid is convolved with the Gaussian filter G(x, y, 2(k+1)/2) and

resampled with a sample distance of 2(k−1)/2 (this is the reason why the pyramid it is called Half-Octave [48]),

so that the scale/distance ratio is constant to ensure scale invariant impulse response. To produce the base-

level pyramid image P (x, y, 0), for k = 0, the original image is initially convolved with a filter with σ0 = 1:

k = 0 : P (i, j, 0) = P (x, y) ∗G(i, j, σ0) (4.5)

where * is the convolution symbol. The k = 0 image can be retained instead of this image for high-resolution

analysis if desired. The next level pyramid image, for k = 1, is produced by convolving the previous image,

for k = 0, with a low pass Gaussian filter with σ1 =
√

2σ0:

k = 1 : P (i, j, 1) = P (i, j, 0) ∗G(i, j,
√

2σ0) (4.6)

which is the same as convolving:

k = 1 : P (i, j, 1) = P (i, j, 0) ∗G(i, j, σ0) ∗G(i, j, σ0) (4.7)

The same process continues for k > 1, by convolving each previously sampled image with a low pass Gaussian

filter:

k = 1 : P (i, j, k) = P (i, j, k − 1) ∗G(i, j, 2k/2σ0) (4.8)

Every k image of the pyramid has half the number of samples of the k − 1 image and double the number

of samples of the k + 1 image which results in a total of 2 ×N ×N samples in all k levels (images) of the

pyramid. Aliasing is minimized (less than 1% of signal energy) by the fact that the image has been low-pass
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filtered by previous convolutions. This algorithm has linear algorithmic complexity (i.e. O(N)) and gives

a discrete representation of scale space with 2 ×M total samples. The aim of its use in this project is to

extract imformation at different image scales.

Figure 4.5: Illustration of sampling in the Half-Octave Gaussian pyramid. The symbol “+”represents image
samples. Each image has half the pixels of the previous image, viewing the images from the bottom left towards top
right. [13]

Figure 4.6: The pyramid is composed of P = N(1 + 1/2 + 1/4 + 1/8 + . . .) = 2Nsamples [13].

The implementation of the Half-Octave Gaussian pyramid used, made by Combe [10], constructs a collage

image consisting of the convolved images created at each k level of the pyramid. The images are accessed

by their coordinates, which are also part of the output. The enumeration of the pyramid levels starts from

the lowest level to the highest. The first level is the lowest and largest and the last level is the highest and

smallest. The pyramid was used on each of the three LC1C2 image components separately. The exact way

is described in the next section.
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Figure 4.7: The result of Half-Octave Gaussian pyramid implementation ont the L channel of the image [42]: the
output is an image consisting of all the convolved images created at each k level of the pyramid.

4.3 Laplacian profiles

As mentioned previously, second order Gaussian derivatives (Laplacian of the Gaussian) are good descriptors

for compact image features. We need to use this characteristic of the Laplacian values of image pixels in

order to build the new descriptor. The Laplacian values of image pixels can be easily calculated with the

method of the Half-Octave Gaussian pyramid. In [13], this process is well described: for a 2-D Gaussian

function at scale σ, G(x, y, σ), the equation is:

∂G(x, y, σ)

∂σ
=
∂2G(x, y, σ)

∂x2
+
∂2G(x, y, σ)

∂y2
= ∇2(G(x, y, σ) ∗ P (i, j)) = ∇2P (i, j, k) (4.9)

For a 2-D Gaussian impulse response, the Laplacian can be computed either as a sum of second derivatives

at a given scale k or as a difference of pyramid samples at adjacent scales k and k− 1. The formula for both

looks like:

∇2P (i, j, k) = Pxx(i, j, k) + Pyy(i, j, k) ≈ P (i, j, k)− P (i, j, k − 1) (4.10)
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The second computational manner stems from the Difference of Gaussians (DoG) that was already mentioned

in Chapter 2 in the SIFT section. The implementation by Combe [10] computes the Laplacian values by

difference of Pyramid samples at adjacent scales.

In order to create the descriptors, Laplacian values are collected at a subset of pyramid levels. The levels

at the top of the pyramid lack of informative power compared to lower levels because the scaling is too

intense. The Laplacian value at the bottom level cannot by computed because there is no level below. For

the above reasons, only a subset of the middle levels of the pyramid are used for the descriptors.

Starting from the highest chosen level at a given pixel position and going down to the lowest chosen

level, a Laplacian value is calculated at each level and stored into a vector. This vector is referred to as the

Laplacian profile. The position at each level, where the Laplacian value is calculated, is indicated by the

selected pixel position at the highest level following the rule that a pixel value at a level k is the interpolated

value of the corresponding pixel neighbourhood at level k − 1.

Figure 4.8: Laplacian profile: the vector created by computing the Laplacian values of corresponding coordinates
at a selected subset of pyramid levels. The red x indicate the position and the green letters the levels computed
Laplacian values. The structure of the Laplacian profile vector is [a, b, c, d, e]. The process is shown only at the L
channel for simplicity.

In figure 4.8 is shown that from all the created pyramid levels, only the levels indicated with red x are

taken into account for the creation of the descriptor. For simplicity, the process is shown only at the L

channel. It is the same at the C1 and C2 channels. Using Laplacian values to a number of different pyramid

levels imposes scaling invariance to the description method.
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4.4 Radial Fourier transform using the Radial Discrete Fourier

transform

The Fourier transformation is well known and broadly used as it defines a relationship between a signal

in the time domain and the signal representation in the frequency domain without any addition or loss of

information in the process [47]. It has the ability to capture the magnitude and the phase of a signal and

provide significant details about its form.

In order to impose translation, rotation and scaling invariance as well enhance the discriminative power

of the descriptors, the Laplacian values of a small neighbourhood of a circular ring at four pixels is taken

around the Laplacian profile corresponding coordinates at each selected level except the first and the last

one (for example in figure 4.8 these are levels b, c and d, see figure 4.9 for result). But these values are

too few to add a significant amount of information to the descriptor. On the contrary, the use of a Fourier

transform can provide more serious information extracted from these four pixel neighbourhoods, capturing

the essence of the image around a Laplacian profile.

Consider the four neighbours of a Laplacian profile pixel existing on the periphery of a circle. Theoreti-

cally, the use of Radial Fourier transform in terms of angular frequency is the most efficient form of Fourier

transform to capture the magnitude and the phase of the four pixel neighbourhood, as they exist on a circle.

The formula for a continuous signal z using angular frequency is:

F (ω) =

−∞∫
∞

f(z)e−iωzdz (4.11)

where ω is the angular frequency.

Practically, the image is a discrete signal and the four neighbour Laplacian values are also discrete signals.

In order to calculate the Radial Fourier transform, the generalized formula of Discrete Fourier transform

(DFT) [45] for discrete signals is an efficient way as it was derived to particularly handle discrete signals.

The Radial DFT (RDFT) formula, for a sequence of N complex numbers x0, ..., xN−1 that are transformed

into the frequency space sequence of N complex numbers X0, ..., XN−1, interpreting the angular frequency

ω in its discrete equivalent ω = 2πnk
N and replacing the integral by summation, is given by:

Xk =
N−1∑
n=0

xne
− 2πi

N kn (4.12)

for k= 0, 1, ..., N-1 and i being the imaginary unit
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Figure 4.9: Laplacian values of four neighbours are taken around the Laplacian profile corresponding coordinates
of all selected levels except the first and the last one. The rectangular areas of black dots as rectangular areas cut
off from the previous figure around the red x (Laplacian values). Consider the four neighbours of a Laplacian profile
corresponding pixel existing on the periphery of a circle.

For the four Laplacian values x0, x1, x2 and x3 of every four sample neighbourhood of each level, the

Radial Discrete Fourier transform values are:

X0 = x0e
− 2πi

4 0×0 + x1e
− 2πi

4 0×1 + x2e
− 2πi

4 0×2 + x3e
− 2πi

4 0×3 (4.13)

X1 = x0e
− 2πi

4 1×0 + x1e
− 2πi

4 1×1 + x2e
− 2πi

4 1×2 + x3e
− 2πi

4 1×3 (4.14)

X2 = x0e
− 2πi

4 2×0 + x1e
− 2πi

4 2×1 + x2e
− 2πi

4 2×2 + x3e
− 2πi

4 2×3 (4.15)

X3 = x0e
− 2πi

4 3×0 + x1e
− 2πi

4 3×1 + x2e
− 2πi

4 3×2 + x3e
− 2πi

4 3×3 (4.16)

Solving the equation, by using Euler’s formula [46] when necessary, they become:
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X0 = x0 + x1 + x2 + x3 (4.17)

X1 = x0 + x1e
−πi2 + x2e

−πi + x3e
− 3πi

2 = x0 + x1(−i) + x2(−1) + x3i = x0 − x1i− x2 + x3i (4.18)

X2 = x0 + x1e
−πi + x2e

−2πi + x3e
− 3πi

4 = x0 + x1(−1) + x2 + x3(−1) = x0 − x1 + x2 − x3 (4.19)

X3 = x0 + x1e
−πi2 + x2e

−πi + x3e
− 3πi

2 = x0 + x1(−i) + x2(−1) + x3i = x0 − x1i− x2 + x3i (4.20)

The results show that X0 has only a real part and is the sum of x0, x1, x2 and x3, X1 and X3 are the same

with real and imaginary part and X2 has only a real part but signed. The Radial Discrete Fourier transform

can be used to replace, in the descriptor vector, the four neighbour Laplacian values of each level taken

around the Laplacian profile corresponding coordinates with meaningful information about the magnitude

and phase of the image signal at this limited local area. One pair of meaningful information is the absolute

value and the sign of X2. The second pair is the magnitude and phase of the complex number X1 (or

X3). The X0 number is dependent on the actual location, the coordinates, where the calculations on the

image take place [52]. For this reason, it was decided to be ignored in the construction of the descriptors.

Considering a complex number z = x+ iy, magnitude A and phase Φ are computed by the formulas [45]:

A =
√
x2 + y2 (4.21)

Φ = atan2(x, y) (4.22)

As X1 (or X3) are complex numbers, their magnitude A and phase Φ can be calculated by the above formulas.

Magnitude depicts the amount of a certain existing frequency and phase can be interpreted as the position of

this frequency in the image. Image translation and rotation impose a scaling by multiplication with a linear

phase factor to the Xk values. Their module is not affected by such multiplication so they are independent

of translation and rotation to the original neighbourhood. Therefore, magnitude and phase should not be

affected. Magnitude A along with the absolute value and sign of X2 are expected to provide information

to assist translation invariance, and phase Φ is expected to provide rotation invariance. Eventually, four

values, which are the absolute value and the sign of X2, the magnitude A and the phase Φ from X1 (or X3),

provide important local information which can describe an area relatively in a unique way that can force

a descriptor to identify this area regardless of translation or rotation of the image. Repeating the same in

more than one pyramid level following the Laplacian profile of the area, provides extra invariance of the

descriptor to scaling of the image. The order of the four values in the descriptor is absolute value of X2 -
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A - sign(X2) - Φ. To summarize, the final descriptor vector is visualized in figure 4.10. For simplicity, the

process is shown at only one channel. It is the same for all channels. In order to create a descriptor of all

the three L, C1 and C2 channels, the three final descriptors of each channel are concatenated by order L -

C1 - C2 :

Color descriptor = concat( descriptor for L, descriptor for C1, descriptor for C2 ) (4.23)

Figure 4.10: The structure of the final descriptor vector in case of four selected levels in the pyramid and only for
one channel of the image. The red dots represent the pixels corresponting to the Laplacian values of the Laplacian
profile. The yellow dots represent the four neighbour areas around the Laplacian profile pixels of the middle selected
pyramid levels.

4.4.1 Implementing Radial Discrete Fourier transform

The implementation of RDFT for the four neighbour Laplacian values was done by using Euler’s form for

the e−
2πi
N kn factor of the RDFT formula, that is:

e−
2πi
N kn = cos(

2π

N
kn)− i sin(

2π

N
kn) (4.24)

Presenting the transformation of x0, x1, x2 and x3 to the frequency space values X0, X1, X2 and X3 in

matrix form, we get:



X0

X1

X2

X3


=



e−
2πi
4 0×0 e−

2πi
4 0×1 e−

2πi
4 0×2 e−

2πi
4 0×3

e−
2πi
4 1×0 e−

2πi
4 1×1 e−

2πi
4 1×2 e−

2πi
4 1×3

e−
2πi
4 2×0 e−

2πi
4 2×1 e−

2πi
4 2×2 e−

2πi
4 2×3

e−
2πi
4 3×0 e−

2πi
4 3×1 e−

2πi
4 3×2 e−

2πi
4 3×3


×



x0

x1

x2

x3


(4.25)
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and using Euler’s form while making the multiplications, the equation becomes:



X0

X1

X2

X3


=



cos(0)− i sin(0) cos(0)− i sin(0) cos(0)− i sin(0) cos(0)− i sin(0)

cos(0)− i sin(0) cos(π2 )− i sin(π2 ) cos(π)− i sin(π) cos( 3π
2 )− i sin( 3π

2 )

cos(0)− i sin(0) cos(π)− i sin(π) cos(2π)− i sin(2π) cos(3π)− i sin(3π)

cos(0)− i sin(0) cos( 3π
2 )− i sin( 3π

2 ) cos(3π)− i sin(3π) cos( 9π
2 )− i sin( 9π

2 )


×



x0

x1

x2

x3


(4.26)

By replacing sines and cosines and dismantling the relevant matrix, the equation becomes:



X0

X1

X2

X3


=

(


1 1 1 1

1 0 −1 0

1 −1 1 −1

1 0 −1 0


− i



0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1


)
×



x0

x1

x2

x3


(4.27)

which is very simple to be interpreted into source code in order to get the real and imaginary part of X0,

X1, X2 and X3.

4.5 Normalization

The last but very necessary operation is the normalization of the descriptor vector. Normalizing descriptor

vectors makes them comparable. A normalized vector v, also called unit vectors or norm, has a magnitude

of 1 and it is symbolized as v̂. The normalized vector v̂ is given by:

v̂ =
v

||v||
, where ||v|| is the norm of the vector v (4.28)

It was decided that the norm of the vector, ||v||, must be the L2 norm, also named Euclidean norm, because

the elements of the descriptor vectors have signed numbers. The L2 norm is:

L2 =

√√√√ n∑
i=0

x2i , where n is the vector size and xi the vector elements (4.29)

This normalization forces the descriptor vectors to be comparable. After the normalization, the test results

improve significantly, especially for complicated datasets.
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4.6 Visualization of the descriptor

At this point, the descriptors are completed. To make the procedure described step by step in the previous

sections clearer, it is wise to summarize it visually. Figure 4.11 explaines briefly the procedure. To clarify

the way this method works, think that moving higher to the pyramid levels, due to the levels becoming

smaller, the small four pixel neighbourhoods around the Laplacian profiles correspond to larger areas on

the original image. This happens because a pixel at higher levels is interpolated from a neighbourhood of

pixels at a lower level, see figure 4.12 for illustration. This way a descriptor, corresponding to a couple of

coordinates on the higher selected pyramid level, can represent a relatively big part on the original image.

The higher the pyramid level the descriptor starts from, the larger the described area is on the original

image. Consequently, the four pixel neighbourhoods at each level correspond to a different area size in the

original image but around the same center which corresponds to the coordinates of the starting point of the

descriptor at the highest level. Subsequently, the descriptors catch the appearance of the area in several

proportions defined by concentric disks of different radius.

Figure 4.11: Constructing the descriptor for 5 levels of the pyramid. Consider these five levels as the selected levels
of a pyramid for the construction of the descriptor corresponding to the pixel coordinates at the top level of this
image (red dot at Level 5). First the procedure follows the red arrows to collect the Laplacian profile values and then
follows the green arrows to add the RDFT details of the Laplacian values of the four neighbour areas around the
Laplacian profile at middle levels. Using pixels to a number of different pyramid levels imposes scaling invariance,
using Laplacian profile values and Radial Fourier derived values and magnitudes of local four pixel neighbourhoods
imposes translation invariance and using phase information for the local four pixel neighbourhoods imposes rotation
invariance. Pyramid skeleton adapted from [29].
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Figure 4.12: A small neighbourhood in a higher level
corresponds to a larger neighbourhood to lower levels.
Adapted from [32].

Figure 4.13: The appearance of the area is caught in
several proportions defined by concentric disks of different
radius.

4.7 Support Vector Machines

A Support Vector Machine (SVM) is a data classification algorithm for supervised learning. The SVM theory

in its present form was introduced by Cortes and Vapnik [11] in 1995. The concept is to map data, that are

difficult to classify, to a predetermined higher dimensional space via a Kernel function K where they can be

separated by a hyperplane or set of hyperplanes into classes. The support vectors are the samples (consider

the samples as vectors with elements the coordinates at each dimension) that define the hyperplane. SVM

classifiers are very commonly used in computer vision because the size of data is usually enormous. Dalal and

Triggs [19] used SVM for human detection. Dorkó and Schmid [21] used SVM over keypoints as intermediate

part detectors for general object recognition, and tested two types of final classifiers. For the experiments in

Chapter 6, the online available SVM library LIBLINEAR [5] was used, a linear SVM classifier for data with

millions of instances and features that works relatively fast. LIBLINEAR was used for creating classification

models from image descriptors of a training set and then classification of image descriptors of a test set.

A SVM finds the hyperplane that: a) maximizes the margin between training data of different classes

or b) maximizes the margin and minimizes misclassifications in case the training data are not separable.

Margin is the distance between the nearest training data samples of any class. The first kind is called Hard

Margin SVM and is used when the data are seperable in a higher dimensional space. The second kind is
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called Soft Margin SVM and is used when the data are not linearly separable even in a higher dimensional

space by Hard Margin SVM. The difference between Hard and Soft Margin SVM is that Soft Margin allows

a few outliers not to be correctly classified when the data are not linearly seperable so as to be able to find

a solution. Misclassified samples and samples within the margin are penalizes but allowed to exist. In Soft

Margin SVM, a constant C balances between the two parts of the criterion, classification and penalizing.

The larger the value of C is, the more intense the penalization is, so the SVM tends to be Hard Margin. In

the experiments that will follow, we use the INRIA Person Dataset by Dalal [17]. Human bodies in images

are as hard as logos to be described in images due to their complexity in appearance. Due to the size and

complexity of the dataset, a Soft Margin SVM is believed to be more suitable for experiments. This is

already proposed in [18] and [36] where the same dataset was used.

Figure 4.14: Soft Margin SVM: in this example, a SVM needs to be trained with samples from two classes in one
dimension. The samples in one dimension (red x and o) are very difficult to separate. But after projecting them to a
higher dimensional space of two dimensions (blue x and o) with a Kernel function K, they can be easily separated by
a linear hyperplane. There is only one x which is one the hyperplane and one o that is misclassified. These outliers
are penalized but allowed by the SVM in order to find a linear solution. Samples on the margin are the support
vectors.
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Chapter 5

Evaluation of invariance

5.1 Experiments

5.1.1 Experimental hypothesis on invariance

The first round of experiments is designed to test the invariance of the new method concerning translation,

rotation and scaling. The description method is expected to be translation, rotation and scaling invariant.

The reasons are those explained in Chapter 4: a) using pixels at a number of different pyramid levels

is expected to impose scaling invariance to the description method, b) using Laplacian profile values and

Radial Fourier derived values and magnitudes of local four pixel neighbourhoods around the Laplacian

profiles is expected to impose translation invariance and c) using phase information for the local four pixel

neighbourhoods around the Laplacian profiles is expected to impose rotation invariance. However, this

ideal invariance is expected to be degraded by quantization and sampling noise required for compacting the

descriptor. The extent of this degradation is unknown.

5.1.2 Initial experimental evaluation of invariance

The rule for these experiments is to select a pixel on an image and define a particular image transformation

of a specified size, e.g. translate the image 10 pixels to the right or rotate the image 20 degrees with this

pixel as rotation center. A descriptor vector is created for this pixel for the original image and one for each

of the possible transformed images indicated by the parameters. For example, for x pixels of translation

to the left, a total of x + 1 descriptors are made, one for the original image position, one for the original

image position + 1 pixel, one for the original image position + 2 pixels, etc. The selected pixel follows

the transformations, meaning it is translated with translation, it is the rotation center of rotation and it is

interpolated in scale changes. Even though only a single pixel is selected on the image, the descriptor vector

corresponds to a larger area on the image, as explained in Chapter 4.

In order to perform the transformations, the open-source online library OpenCV 2.0 [3] was used. The
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description is formed from the highest selected pyramid level towards the lowest in order to create a descriptor

from a pixel selected at the original image. Its position on the highest selected pyramid level is located

according to the constrains set by the pyramid interpolation method. Invariance is measured by the Root

Mean Square Error (RMSE) [49], otherwise named Root Mean Square Deviation (RMSD), between the

descriptor vector for the original image pixel position and the descriptor vector for each transformed image

pixel corresponding position. The formula is:

RMSE =

√√√√√ n∑
i=1

(x1,i − x2,i)2

n
(5.1)

where x1,i and x2,i elements of two vectors. The experiments show the existence of invariance to all three

transformations.

5.2 Results

5.2.1 Translation

The first experiment shows translation of an image to the right for 114 pixels.

Figure 5.1: Translation 114 pixels to the right.

The selected pixel is shown as a red spot on both the original image and the translated copy (figure 5.1).

The plot in figure 5.2 presents the RMSE for descriptors created for 3 (green), 4 (blue), 5 (red), 6 (magenta)

and 7 (black) pyramid levels. The number of pyramid levels selected, for this case and for the rest of the

following cases, depends on the image size. Bigger images can provide pyramids with more levels.
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Figure 5.2: Translation to the right. RMSE for descriptors created for 3 (green), 4 (blue), 5 (red), 6 (magenta) and
7 (black) pyramid levels. The highest selected pyramid level for the construction of the descriptors is the 4th from the
top (3 levels discarded from the top of the pyramid, according to Chapter 4 in the Laplacian profiles section). Two
aspects are the most important. First is using more pyramid levels for the construction of the descriptors, resulting
in smaller RMSE, which means more invariance. Second is that the plot repeats every 32 pixels of tranlstion.

According to the RMSE plot, there are two basic effects that need to be commented. The first is

that using more pyramid levels for the construction of the descriptors results in a smaller RMSE, which

means that the descriptors created using more pyramid levels for translated images are more alike, so more

invariant. The second is that RMSE is periodic with a period of 32 pixels of translation. It increases

with some fluctuations before starting to decrease until reaching zero and then it repeats the exact same

way. A probable explanation is the fact that the descriptor includes elements derived from Radial Fourier

transform. Generally, translating a function leaves the magnitude unchanged and adds a constant to the

phase. Specifically, For an image of size M × N pixels, the RDFT repeats itself every M points in the

x-direction and every N points in the y-direction [1]. The periodic nature of RDFT forces the RMSE plot

to repeat with respect to position. In figure 5.4 the original image from figure 5.3 is translated to a distance

that is equal to its width and/or its height times a integer factor.
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Then, the representation for each of the images in the frequency space is illustrated. It is obvious from

the frequency space representations that the RDFT repeats itself every time the image is translated with an

integer product of its dimensions. The same effect occurs when the image is translated and the pyramid is

created. Consider the neighbourhoods around Laplacian profile corresponding pixels as little images. Then

each one of this little images is translated, slower to higher levels, and the RDFT repeats every time the

translation of each one of them completes an integer product of its dimension. The higher the level is, the

smallest the effect is to the RDFT as the change is very slow due to the small size of the higher levels. Every

time all neighbourhoods in every pyramid level synchronize in completing a translation equal for each to

their dimensions, which occurs every 32 pixels for this image case, the error is minimized to zero because

the descriptors in the original image and the translated image become equal.

Figure 5.3: The Discrete Fourier transformation (DFT) of an M ×N image. Adapted from [6].

Figure 5.4: At the left side, translation of the M ×N image for a product of M points in the x-direction and for
a product of N points in the y-direction. At the right side there are the Discrete Fourier transforms (DFT) of each
one of the translated images separately. For each translation of M points in the x-direction and every N points in
the y-direction the DFT repeats [1]. Adapted from [6].
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Figure 5.5: Consider the neighbourhoods around Laplacian profile pixels as little images. While the original image
translates, the neighbourhoods of the Laplacian profile pixels also translate, slower at higher levels due to their small
size. The RDFT repeats every time the translation of each of neighbourhoods completes an integer product of its
dimension. Pyramid skeleton adapted from [29].

The repetition occurs every 32 pixels of translation due to our decision to discard the first three levels

of the pyramid, for the reasons indicated in Chapter 4 in the Laplacian profiles section. In case there were

more levels discarded from the top of the pyramid, then the repetition will occur faster, as the translation of

neighbourhoods around Laplacian profile pixels is more significant due to the bigger size of the lower pyramid

levels. For example, if 4 levels from the top of the pyramid are discarded, the repetition occurs every 16

pixels of translation, see figure 5.7. The translation this time is downwards. The direction of translation

makes no difference to the results. The interval which the repetition occurs is a product of 2 due to the

interpolation used with the pyramid which causes each level to have half the samples of each lower level

and double the samples of its higher level. The conclusion is that repetition depends on the total number

of pyramid levels created from an image, therefore the size of the image is relevant as bigger images create

higher pyramids, and the subset of levels selected to create the descriptor can be larger.

To summarize, the descriptors examined show the existence of invariance to translation in a periodic form,

as for a fixed interval, different under different circumstances, the RMSE is decreasing to zero. Moreover,

the addition of pyramid levels to the construction of the descriptor leads to better results in invariance

to translation. Concerning translation to the left and upwards, the same results are obtained, such as for

translation to the right or downwards that were already examined.
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Figure 5.6: Translation 72 pixels downwards [42].

Figure 5.7: Translation downwards. RMSE for descriptors created for 3 (green), 4 (blue), 5 (red) and 6 (magenta)
pyramid levels but the higher selected pyramid level for the construction of the descriptors is the 5th from the top (4
levels discarded from the top of the pyramid, according to Chapter 4 in the Laplacian profiles section). Again, using
more pyramid levels for the construction of the descriptors results in smaller RMSE, which means more invariance.
Now, the plot repeats every 32 pixels of tranlstion.
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5.2.2 Rotation

Regarding rotation, figure 5.12 contains results on rotation to the left. The RMSE plot reveals that using

more pyramid levels for the construction of the descriptors results in smaller RMSE, which means that the

descriptors for rotated images are more similar, so there is more invariance to rotation. Another important

aspect is that the RMSE increases as the degrees of rotation increase, but only until a point, and then

decreases radically until it reaches zero. This fact attest to rotation invariance of the new method descriptors,

as the RMSE reaches a maximum for a large number of rotation degrees and for small rotation the descriptors

between rotated images tend not to differ a lot.

Figure 5.8: Original image [35]. Figure 5.9: Rotation 30◦.

Figure 5.10: Rotation 180◦. Figure 5.11: Rotation 360◦.

37



Figure 5.12: Rotation results for 360◦ to the left. RMSE for descriptors created for 3 (green), 4 (blue), 5 (red) and
6 (magenta) pyramid levels.

Figure 5.12 shows the variation in the descriptor resulting from rotation of the image around the selected

point. The lack of symmetry in this case was a surprise. One could assume that the RMSE should have

increased evenly until 180◦ and then should decrease evenly to reach zero at 360◦. To assure that the result

is not arbitrary, figure 5.13 shows the results of the same test with the same image pixel but with rotation to

the right. The result for the rotation in the different direction is the exact symmetric to the central vertical

axis (180◦) of the result in figure 5.12.

The main reason is that RDFT represents an image as a summation of cosine-like images. The RDFT

derived Xk values are complex numbers characterized by their magnitude and phase. As mentioned in

Chapter 4, rotation should not effect RDFT. Though, as explained in [2], when rotating an image, new

frequencies appear due to the fact that RDFT always treats an image horizontally and vertically. Hense,

the rotated image is treated as a different image by the RDFT. The area content that is described around

the selected pixel in the image is not symmetrical, so the corresponding area in every rotated image is very

different, causing the RDFT Xk values to vary and the RMSE plot to fluctuate.
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Figure 5.13: Rotation results for 360◦ to the right. RMSE for descriptors created for 3 (green), 4 (blue), 5 (red) and
6 (magenta) pyramid levels. The result is the exact symmetric to the central vertical axis of the result in figure 5.12.

Figure 5.14: The top images displayed are horizontal cosines, the right being the rotation of the left. The bottom
images are their Fourier transforms. The rotated cosine has a Fourier transform that is much more complicated, with
strong diagonal and plus sign shaped horizontal and vertical components. This occurs because rotating an image
causes new frequencies to appear as RDFT always treats an image horizontally and vertically. The rotated image is
considered as a different image. Considering that the area described by the descriptor corresponding to a selected
pixel is not symmetrical, the RDFT varies in a non fixed way and causes the RMSE plot to not be symmetrical. [2]
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In order to validate this explanation, a image with a pattern that is symmetrical every 1
3 of a circle is

rotated to the right for 360◦. The image is in figure 5.15 and the RMSE is shown in figure 5.18. A pixel

is selected close to the center of the pattern so the neighbourhood around it will repeat with rotation. The

RMSE has three peaks which are imposed by the three similar shapes in the image. While the image rotates,

the same set of frequencies appear every time the rotation covers 120◦ and forces RMSE to decrease close

to zero.

In conclusion, in order to have an RMSE plot that is increasing evenly until 180◦ and then decreasing

evenly to reach zero at 360◦, the described area in the original image must be totally asymmetrical and

not repeating. In contrast, if the described area is symmetrical, the symmetry will cause a similar set of

frequencies to appear at related moments during rotation and the RMSE to decrease at those moments.

Figure 5.15: Original image. The pattern in the center of the image will repeat every 1
3

of a circle (120◦). The
rotation center should be close to the pattern center in order to capture the symmetry. [4]

Figure 5.16: Rotation 33◦. Figure 5.17: Rotation 153◦.
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Figure 5.18: Rotation results for 360◦ to the right. RMSE for descriptors created for 3 (green), 4 (blue), 5 (red)
and 6 (magenta) pyramid levels. RMSE repeats approximately every 1

3
ofacircle. The small fluctuation in the RMSE

occur because the pattern is not exactly identical at each of the three directions and also because the selected pixel
is not exactly on the center of the pattern.

5.2.3 Scaling

Invariance to scaling is tested with images scaled with a factor of
√

2, meaning that each scaled image is
√

2 smaller than the previous one. The results of RMSE have again two aspects to be discussed. First,

using more pyramid levels for the construction of the descriptors results in smaller RMSE, which means

more invariance, exactly as shown for translation and rotation. Second, after a number of scales, the RMSE

is stable, earlier for descriptors constructed with less pyramid levels. This occurs because when the image

becomes too small after several times of scaling, the constructed pyramid can have too few levels, even just

one. Then, the constructed descriptors are actually the same vector of three elements (one Laplacian value

of each of the LC1C2 channels) and contain no useful information. Consequently, the description of an image

scaled to smaller size is not feasible at any scale.
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Figure 5.19: Original image [7].

Figure 5.20: Scaled smaller of 2, 4, 6 and 8 times with scaling factor
√

2.
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Figure 5.21: Scaling to smaller images with scaling factor
√

2. RMSE for descriptors created for 3 (green), 4 (blue),
5 (red) and 6 (magenta) pyramid levels.

Concerning scaling to larger images, there is no limit of scaling apart from hardware constrains. The

RMSE increases at each scaled image until it reaches a point that is almost stable. This is because for a very

large scaled image the interpolated corresponding pixel local neighbourhood does not change significantly

after some time.

Figure 5.22: Enlarged image with scaling factor
√

2. The
original is in figure 3.1.

Figure 5.23: 3 times larger with scaling factor
√

2.
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Figure 5.24: Scaling to larger images with scaling factor
√

2. RMSE for descriptors created for 3 (green), 4 (blue),
5 (red) and 6 (magenta) pyramid levels.
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Chapter 6

Evaluation of discrimination

6.1 Experiments

6.1.1 Experimental hypothesis on discrimination

A second round of experiments was designed to test the discriminative power of the proposed method.

The expectation for a discriminative power lays in the use of Laplacian values, which can capture local

image extrema, and the use of the Radial Fourier transform of local areas, which can provide an appearance

identification for these areas. It is expected that results can improve with the addition of pyramid levels in

the construction of the descriptors. Depending on this facts, it is expected that the proposed method can

be discriminative.

6.1.2 Initial experimental evaluation of discrimination

The discrimination power of the proposed method has been tested on the INRIA Person Dataset by Dalal [17].

Human detection is a well examined problem in computer vision and the INRIA Person Dataset is a widely

used database for this purpose. Therefore, there is assurance that this database is efficient for dense descrip-

tion testing. Consequently, it was wise to use this database for the first experimentations of the proposed

method.

LIBLINEAR [5] was used on descriptors created densely on 2416 positive images and 4832 negative

images, all of size 96 × 160. Positive refers to images containing humans and negative to images not

containing any humans. The size of the images, 96×160 pixels, allows the creation of 9 level pyramids using

the implementation of the Half-Octave Gaussian pyramid by Combe [10]. Possible meaningful descriptor

vectors can be made starting from the 7th level of the Gaussian pyramid and be constructed for either 3,

4, 5 or 6 levels of the Gaussian pyramid or starting from the 6th level of the Gaussian pyramid and be

constructed for either 3, 4 or 5 levels. The reason is that, from the 9 levels of the pyramid, the 2 or 3 highest

levels and the bottom level were abandoned and only levels between the 7th or 6th and the 2nd were taken
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into account, as indicated in Chapter 4 in the Laplacian profiles section. Therefore, local descriptor vectors

per highest selected level pixel can occur having one of the different sizes shown to the table below:

Chosen levels Descriptor vector size
from 7 to 5 (3 levels) (3 + (1× 4))× 3 = 21
from 7 to 4 (4 levels) (4 + (2× 4))× 3 = 36
from 7 to 3 (5 levels) (5 + (3× 4))× 3 = 51
from 7 to 2 (6 levels) (6 + (4× 4))× 3 = 66
from 6 to 4 (3 levels) (3 + (1× 4))× 3 = 21
from 6 to 3 (4 levels) (4 + (2× 4))× 3 = 36
from 6 to 2 (5 levels) (5 + (3× 4))× 3 = 51

Table 6.1: Descriptor creation starting from the 7th or the 6th level. This size corresponds to only one pixel position
from the highest selected pyramid level, here the 7th or the 6th. The right column shows how the descriptor size
occurs. For each set of selected levels there is the same number of Laplacian profile values plus 4 values per each
middle selected level. The descriptor vectors are created for a all 3 channels of the image L, C1 and C2. For more
details, consult Chapter 4.

For a dense image description, a large descriptor vector is created from the combination of all local

descriptors, each of them corresponding to one pixel position of the highest selected level of the pyramid.

The combination is simple: while scanning the highest selected pyramid level, computed descriptor vectors

at each pixel position are stacked linearly in a common vector. At the two higher middle selected levels

of the pyramids (see Chapter 4 in the Laplacian profiles section), the four pixel neighbourhoods around

the Laplacian profiles (see Chapter 4 in the Radial Fourier transform section) overlap as they are too close

together. The final vector is a global image descriptor for a given image and its size is (x-dimension of the

highest selected level) × (y-dimension of the highest selected level) × (the size of a local descriptor vector).

The global image descriptors for all 2416 positive images and 4832 negative images created different SVM

models, one for each different case of table 6.1. Six images of various dimension containing human figures

were used as testset. These images come with groundtruth accompanying files. Groundtruth is a term used

to express the real content of images according particular classes of objects or structures. For example,

the groundtruth for images containing humans is the representation of the exact number, positions and

sizes of humans in each image. In this project the groundtruth for images is the top-left and bottom-right

coordinates of rectangles surrounding humans in the testset images. This groundtruth was created by Dalal

and Triggs and published with their paper on human detection with HOG [19]. The procedure for testing

discrimination includes selecting patches from a testset image of dimension 96 × 160. The window moves

8 pixels per time either for the x or the y coordinate. The patches are also collected to different scales of

the test image. After the image is scanned completely, it is resized with a factor of 95% and a new set

of patches is collected from the resized image. Then the image is resized again and the patch collection
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repeats, until the resized image size becomes smaller than the patch size. What this particular procedure

actually does is to create a database out of images (meaning the patches) of positive and negative content.

Every patch is examined by extracting its global descriptor and classifying it by one of the SVM models,

depending on the size of the local descriptors (according to the number of selected pyramid levels) and the

higher pyramid level used for its construction. When patches are identified as positive, they are compared

to the groundtruth of the image. If a positive classified patch matches at least 60% percent with the image

groundtruth, then the result counts as True Positive (TP). In the opposite case, it is considered a False

Positive (FP). The performance is checked by three measures which are Detection Rate (DR), Error Rate

(ER) and False Positive Per Window (FPPW). Their definitions are presented in the next three formulas:

DR =
True Positive Patches

Groundtruth
(6.1)

ER =
Groundtruth - True Positive Patches

Groundtruth
(6.2)

FPPW =
False Positive Patches

Number of Created Windows
(6.3)

where True Positive Patches refer to all created patches identified positive correctly, False Positive Patches

refer to all patches mistaken for positive and Number of Created Windows refers to all patches created for

an image in all scales while checked with a particular SVM model. The SVM models used were Soft-Margin

with C = 0.01. The selection of C was made after a series of testing and cross-validation. Though, it

was expected that this value will be the choice as it was proposed before in [18] and [36] where the same

dataset was used. The seven models showed the maximum accuracy in comparison to models for a different

C value. Table 6.2 lists the 5-fold cross-validation accuracy values per model by the number of levels used

in the descriptors that were used to train the models. According to this table, performance improves with

the addition of pyramid levels to the construction of the descriptors.

Used levels Accuracy
from 7 to 5 (3 levels) 96.1507%
from 7 to 4 (4 levels) 97.42%
from 7 to 3 (5 levels) 97.42%
from 7 to 2 (6 levels) 97.9857%
from 6 to 4 (3 levels) 96.3852%
from 6 to 3 (4 levels) 97.4614%
from 6 to 2 (5 levels) 97.9443%

Table 6.2: 5-fold cross-validation accuracy of SVM models. The column Used levels indicates the highest level and
the number of pyramid levels used for the creation of the descriptors that the SVM models were trained with.

47



6.2 Results

The first experimental results are very modest but attest to the existence of a discrimination character in the

new method. According to DR and ER, the results for descriptors from the 7th pyramid level are better in

comparison to the results for descriptors from the 6th pyramid level. Remember that the higher the pyramid

level is, the less pixels it has, so the less local descriptors are created covering bigger parts on the original

image. DR and ER for the descriptors from the 7th pyramid level are stable regardless of the amount of

used levels in the construction of the vectors. The FPPW plot in figure 6.4 decreases with the addition of

levels, which shows that the performance improves as it becomes more accurate.

The unexpected turnout is that for descriptors from the 6th pyramid level, DR decreases, so ER increases,

with the addition of pyramid levels in the construction of the vectors. The addition of pyramid levels used

for the construction of the descriptors was expected to have a positive effect on performance. This fact

indicates that larger descriptor vectors do not necessarily perform better as the success of description can

also lay on the manner information is organised in the vectors. The organization of information in the

descriptor vectors refers to the vector element values, for example Laplacian values and RDFT information,

and their size, which in our case depends on the pyramid levels used. A more accurate explanation is that,

because the starting pyramid level for the descriptor construction is too low, so it has bigger dimensions but

not enough lower levels underneath, the created descriptors are too many and correspond to smaller areas

on the original image, making the global image descriptor too noisy and less descriptive. Apparently, less

descriptor vectors that cover larger areas on the original image can be more informative.

Figure 6.1: Plot of Detection Rate and Error Rate on different descriptor size, depending on used pyramid levels,
starting from 7th pyramid level. All different size descriptor SVM models detected successfully every human in the
images. Detection Rate is plotted in blue and Error Rate in red.
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Figure 6.2: Plot of Detection Rate and Error Rate on different descriptor size starting from 6th pyramid level.
Only the SVM model of descriptors made from 3 pyramid levels detected successfully every human in the images.
The other two models detected four out of a total of six people in the images. Detection Rate is plotted in blue and
Error Rate in red.

On the other hand, the FPPW indicates that descriptors created staring from the 6th pyramid level stand

less chances to make a mistake. This fact in relation to DR and ER indicate that descriptors from the 6th

pyramid level are weaker in identifying humans than descriptors from the 7th pyramid level but offer more

certainty of the result. The assumption taken is that a larger number of local descriptors combined into the

global descriptor can provide more accurate detail on the image appearance. Moreover, FPPW shows the

behaviour that was expected, decreasing in both cases with the addition of pyramid levels to the creation of

the vectors, which means that the performance improves by becoming more accurate.

Figure 6.3: Plot of False Positives on different descriptor sizes starting from the 7th pyramid level. It decreases
with the addition of pyramid levels in the construction of the descriptors.
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Figure 6.4: Plot of False Positives on different descriptor sizes starting from the 6th pyramid level. It decreases
with the addition of pyramid levels in the construction of the descriptors.

The DR and ER contradict the calculated 5-fold cross validation accuracy on the SVM models. According

to table 6.2, DR must increase with the addition of pyramid levels in the construction of the vectors, while

ER must decrease. The difference between the two facts could most probably be explain by the data

distribution. Therefore, tests on more testset images were done using the same SVM models or other SVM

models made from the same trainset but with different C parameter values. All had similar results as the

above, contributing to the belief that descriptors from the 7th pyramid level have better DR but descriptors

from the 6th pyramid level have better FPPW. To conclude, results show that the starting level of the

descriptors is as important as the number of levels used for the construction of the vectors.
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Chapter 7

Conclusion

7.1 Lessons learned

In this report we have provided initial results with experimental evaluation of a new invariant image de-

scriptor. While these results are encouraging, much remain to be done. According to the first experimental

results, invariance to translation, rotation and scaling and discrimination power exist for the new description

method. The proposed descriptors can combine dense description with translation and scale invariance and

especially invariance to rotation which is hard for dense description. A basic fact demonstrated is that the

strength of descriptors generally improve with the addition of pyramid levels in computations. Comparing

to the experiments conducted before including Radial Fourier transforms in the process (they are not in-

cluded in this report), Radial Fourier transforms provided significantly better performance without using a

larger number of elements in the descriptor vector. The conclusion of this project is that this method has a

promising future.

7.2 Discussion and Future work

An important issue to be examined further in the future is the number of neighbours used around the

Laplacian profiles. It has been shown in the previous Chapters that the Radial Fourier transform of four

neighbours around the Laplacian profile corresponding pixels in middle levels is a good approach as the

magnitude and phase provided meaningful details on the neighbourhood appearance regarding translation

and rotation. Though, a combination of all eight neighbours could have a more powerful result. Moreover,

the neighbourhood does not necessarily need to be fixed for every level. The number of neighbours can

grow larger while descending the pyramid levels in a shape, for example in a circle or rectangle, and the

neighbours to be used can belong to the periphery or the whole area of the shape.

Another important avenue for further research is the creation of descriptors in a tree structure following

the four neighbours of Laplacian profile values to lower levels. This would capture the appearance of the
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image in larger neighbourhoods while the size of the levels increases by descending the pyramid, which can

result as expected to more efficient description of the local area. There are different ways this idea can

be implemented. One way is to consider pixel neighbourhoods corresponding to the four neighbours of the

Laplacian profile of the level above and every pixel of this neighbourhoods would initiate another set of

neighbourhoods to the level below. A second way is to consider pixel neighbourhoods corresponding to the

four neighbours of the Laplacian profile of the level above that don’t further initiate new neighbourhoods

to lower levels. Also, the manipulation of the new neighbourhoods can vary. One probable way is Radial

Fourier transforms and another is to just take the Laplacian values.

The size of the descriptor varies with the length of the Laplacian profile. Larger descriptor sizes were

found to have better results but there is the question of memory constraint. The descriptor size against

the availability of memory is an important issue. The Principal component analysis method (PCA) can

help explore more accurately the limits of this trade-off. Another matter is the structure of the descriptor.

The complex number X0, derived from the Radial Fourier transforms in Chapter 4, was not used for the

construction of the descriptors. Perhaps, including the value of X0 in the descriptor can have an effect on

performance. Invariance to other image transformations except translation, rotation and scaling, such as

illumination changes and affine transformations, must also be examined. The method should be enhanced

to be efficient for any kind of image transformation to work in the best possible way.

The new proposed method, after reaching a satisfactory level of performance, must be compared with the

state of the art existing algorithms, for instance HOG. Theoretically, it is expected to have results as good

as the state of the art methods, although many aspects concerning performance remain to be examined.

The final purpose of the future plans is to eventually test the method on publicity logo indexing and

recognition. Of course, the method can be used for other purposes, though the ultimate goal is to be efficient

for difficult datasets such as logos.
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de Recherche, mar 2009. Contribution to MinImage, Deliverable Report 4.1.1.3, Analyse Faisabilité /
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