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Abstract

Provenance of a resource is a record that describes entities and processes involved
in producing and delivering or otherwise influencing that resource. Generally, the
above record can be considered as information that has great importance in the
scientific community regarding the experiments that are conducted as part of its
research. This information can be later used for the validation, interpretation or
the reproduction of scientific results and is commonly stored on metadata placed in
various Metadata Repositories (MRs) or Knowledge Bases (KBs).

However, in various settings it is prohibitive to store the complete provenance
information because of (a) the immense space requirements needed and (b) the
difficulty of controlling its quality due to the existence of possible errors.

We address the problem by introducing provenance-based inference rules as a
means to reduce the amount of provenance information that has to be stored, and
to ease quality control (e.g., corrections). Roughly, we show how information can be
propagated by identifying a number of basic inference rules over a core conceptual
model representing provenance. The propagation of provenance concerns funda-
mental modeling concepts such as actors, activities, events, devices and information
objects and their associations.

However, since a KB is not static but changes over time due to several factors,
a rising question is how we can satisfy change requests while still supporting the
aforementioned inference rules. Towards this end, we elaborate on the specifica-
tion of the required add/delete operations, and consider two different semantics for
deletion of information. We describe the corresponding change algorithms, and we
report on comparative results for two repository strategies regarding the derivation
of new knowledge. The results allow us to understand the tradeoffs related to the
use of inference rules on storage space and performance of queries and updates.



Sullogistik  kai Exèlixh th Plhrofor�a Proèleush b�seiGegonìtwnPer�lhyhH proèleush (provenance) yhfiak¸n antikeimènwn apotele�tai apì mia katagraf apì ontìthte kai diadikas�e oi opo�e emplèkontai kai ephre�zoun thn paragwg  kaidhmiourg�a tètoiwn antikeimènwn. Genik�, aut  h katagraf  emperièqei plhrofor�a hopo�a e�nai exairetik  shmas�a sthn episthmonik  koinìthta kai eidikìtera sthn diexa-gwg  ereunhtik¸n peiram�twn. Aut  h plhrofor�a qrhsimopoie�tai gia thn epikÔrwsh,erm neush   thn anaparagwg  ek nèou twn episthmonik¸n apotelesm�twn kai suqn�katagr�fetai me metadedomèna apojhkeumèna se di�fora apojet ria metadedomènwn
(metadata repositories MRs)   b�sei gn¸sh (knowledge bases KBs).Parìla aut�, tètoiou e�dou sust mata mporoÔn na par�goun ter�stia posost�plhrofori¸n proèleush, perilamb�nonta epanalambanìmenh plhrofor�a. Epomènw,se di�fore rujm�sei susthm�twn e�nai apagoreutikì na katagrafe� olìklhrh h plh-rofor�a proèleush lìgw twn(a) twn meg�le apait sewn q¸rou pou qrei�zetai kai(b) th duskol�a elègqou th poiìthta th plhrofor�a exait�a laj¸n pou mpore� naemfanistoÔn.Antimetwp�zoume to parap�nw prìblhma eis�gwnta logikoÔ kanìne sumpera-sm�twn, me skopì th me�wsh th plhrofor�a proèleush pou prèpei na apojhkeute�kai kalÔterh diaqe�rish th poiìthta th plhrofor�a (p.q., se per�ptwsh diorj¸se-wn). En peril yei, analÔoume pw h plhrofor�a mpore� na diadoje� prosdior�zontabasikoÔ kanìne sumperasm�twn se èna basikì ennoiologikì montèlo anapar�sta-sh plhrofor�a proèleush. H di�dosh th plhrofor�a afor� jemeli¸dei ènnoieanap�rastash ìpw upeÔjunou fore�, drasthriìthte, gegonìta, suskeuè kai plh-roforiak� antike�mena, maz� me ti sqèsei metaxÔ aut¸n.Wstìso, efìso mia b�sh gn¸sh (KB) den e�nai statik  all� all�zei kat� thdi�rkeia tou qronou exait�a arket¸n paragìntwn, èna z thma e�nai pw mporoÔme naikanopoi soume ait sei enhmèrwsh uposthr�zonta par�llhla tou prohgoÔmenoukanìne. Pro to skopì autì, prosdior�zoume ti leitourg�e prìsjesh/afa�reshplhrofor�a, lamb�nonta upìyin duo diaforetikè shmasiolog�e gia thn per�ptwshth afa�resh. Perigr�foume tou ant�stoiqou algor�jmou kai anafèroume sugkri-tik� apotelèsmata gia duo apojhkeutikè strathgikè sqetik� me thn paragwg  nèagn¸sh. Ta apotelèsmata ma epitrèpoun na katal�boume to antist�jmisma sqetik�me th qr sh twn kanìnwn sumperasm�twn oson afor� ton apojhkeutikì q¸ro kai thnapìdosh eperwt sewn kai enhmer¸sewn.



Euqarist�eSto shme�o autì ja  jela na euqarist sw ton k. Gi�nnh Tz�tzika gia thn polÔtimhkajod ghsh kai ousiastik  sumbol  tou gia thn olokl rwsh aut  th ergas�aleitourg¸nta san �tupo epìpth. H organwtik  empeir�a all� kai h yuqraim�a touston trìpo antimet¸pish orismènwn jem�twn me bo jhsan sto na belti¸sw ton eautìmou kai ti ikanìthte mou.Epiplèon ja  jela na euqarist sw kai ton k. Martin Doerr gia ti upode�xeitou, kai th bo jeia tou kajìlh th di�rkeia th ergas�a. Oi filosofikè analutikèsuzht sei pou e�qame  tan ousiastikè, euq�riste kai epikodomhtikè.Ep�sh, ja  jela na euqarist sw ton epìpth kajhght  mou k. Dhm trh Ple-xous�kh gia ti eÔstoqe parathr sei tou kai sumboulè gia thn per�twsh aut th ergas�a, all� kai to endiafèron tou met� to tèlo th ergas�a sqetik� me thmellontik  pore�a mou.Akìmh, den ja prèpei na parale�yw ton Gi¸rgo Flour . Ton euqarist¸ gia tiupode�xei tou se �as manta� zht mata pou  tan ìmw kajoristik�. H analutikìthtatou, o epaggelmatismì tou kai h upomon  tou leitoÔrghsan w prìtupo kai ax�etìso gia aut  thn ergas�a ìso kai gia mellontikè.Par�llhla ja  jela na euqarist sw to Ergast rio Plhroforiak¸n Susthm�twntou InstitoÔtou Teqnolog�a kai 'Ereuna gia thn eukair�a pou mou dìjhke sto naqrhsimopoi sw ton exoplismì kai thn teqnognws�a tou.'Ena meg�lo euqarist¸ ja  jela na d¸sw se ìlou tou f�lou mou gia thn upo-st rixh. Ja  jela na euqarist sw xeqwrist� tou Miq�lh kai Gi¸rgo gia thn hjik sumpar�stash tou se dÔskole kai eÔkole stigmè, thn katanìhsh tou kai ta ìsaper�same maz�.Tèlo, ja  jela na ekfr�sw thn eugnwmosÔnh mou sth mhtèra mou Kater�na kaiston aderfì mou Alèxandro gia thn st rixh, thn enj�rrunsh kai thn olìyuqh ag�phtou sti dÔskole stigmè pou  tan arketè. Sa euqarist¸ polÔ gia ìla.
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Chapter 1

Introduction

We live in a digital age. Its beginning has been marked by the invention of the
personal computer and one of its characteristics is the easy and free transfer of in-
formation. However, this characteristic has a critical effect on the representation of
information. Information previously written or engraved on materials such as stone,
wood or paper has now obtained a digital representation. These have now been
replaced by digital storage media such as hard drives, disks, DVDs, etc. However,
as technology improves, their capacity increases allowing for larger amounts of in-
formation to be created and stored (RidingTheWave, 2010). In 2011 ”the amount
of information created and replicated will surpass 1.8 zettabytes (1.8 trillion giga-
bytes)” (Gantz & Reinsel, 2011).

This information explosion is also one of the effects of digital age in science. Digi-
tal technologies in various domains e.g., 3D imaging in cultural heritage, can produce
vast amounts of digital data. These data are of great significance to the scientific
research and its progress. However, their provenance might be of greater impor-
tance for scientists, especially, for the experimental process of scientific method.
Their provenance assist scientists to interpret, validate, trust and reproduce the
experimental results.

1.1 Background

The word provenance comes from the french verb provenir. According to the Oxford
English Dictionary1 and Merriam-Webster Online Dictionary2 provenance is defined
as follows.

Definition 1. (OED Provenance Definition)(i) the fact of coming from some
particular source or quarter; origin, derivation, (ii) the history or pedigree of a work
of art, manuscript, rare book, etc.; concretely, a record of the ultimate derivation
and passage of an item through its various owners.

Definition 2. (MWO Provenance Definition)(i) the origin, source, (ii) the
history of ownership of a valued object or work of art or literature.

1http://www.oed.com/
2http://www.merriam-webster.com/dictionary/

1



2 CHAPTER 1. INTRODUCTION

Initially the term was used for works of art. For instance, the provenance of works
of fine art, antiques and antiquities often assumes great importance. Documented
evidence of provenance for an object can help to establish that it has not been
altered, and its is not a forgery or a reproduction. Knowledge of provenance can
help to assign the work to a known artist and a documented history can be of use
in helping to prove ownership.

Moreover, the quality of provenance of an important work of art can make a
considerable difference to its selling price in the market; this is affected by the degree
of certainty of the provenance, the status of past owners as collectors, and in many
cases by the strength of evidence that an object has not been illegally excavated or
exported from another country.

Scientific research is generally held to be of good provenance. Provenance of
scientific results may be of greater significance than the scientific results themselves.
It can be used by scientists to further understand all the factors that were involved
in the derivation of the latter ones.

Workflow systems in the context of e-Science can be used as a tool to ease the
management of complex scientific computational processes and record provenance
information of experimental results. A workflow system is ”a system that defines,
creates and manages the execution of workflows” (Romano, 2008). Complex pro-
cesses are organized into sequences of connected steps and each step represents a
task which has to be executed. The input data each transferred through each step
until the final result.

The provenance of workflow systems is in the form of metadata that contains
information regarding the derivation of a workflow result. By recording this infor-
mation, the result can be reproduced and determine its reliability. On the other
hand, since amount of data regarding the scientific results is increasing, as discussed
previously, the amount of data regarding their provenance is increasing as well. In
fact, the size of the latter often exceeds the size of the former. Thus, the issue here
is in what way the amount of provenance information can be minimized in order to
reduce its space storage requirements. This challenge is part of the motivation for
this study as discussed in the next section.

1.2 Motivation

In the context of computer systems, provenance of a data product can be defined
as”the process that led to that data product”. As data products or data outputs are
produced by the execution of computer programs, their provenance can be recorded
under ”process”. It can include, for example, the data input used in that program,
the hardware or its users (Moreau, 2010). We will be referring to these data products
also as digital items or digital objects.

In a näıve view, the provenance of a digital item can be seen as a record specific to
it of the events and their contexts that have causally contributed or had significant
influence on its content. However, digital objects do not undergo ”changes” as
material items, which sum up to an accumulative effect. Each modification leaves
behind the original version, which may or may not be reused in another context.
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Hence, any realistic creation process of digital content gives rise to a set of digital
items – temporary or permanent, connected by metadata forming a complex DAG
(Directed Acyclic Graph) via the individual processes contributing to it.

The provenance ”history” of a single item is the DAG of all ”upstream” events
until the ultimate empirical capture (measurement), simulation S/W run or human
creative process. In a production environment, often controlled by a work-flow sys-
tem, there are no clear a priori rules which data item will be permanent. Interactive
processes of inspection of intermediate results and manual interventions or changes
of processing steps may fall out of any preconceived order of events.

Therefore, the only chance to capture the complete provenance in a reliable way
is by monitoring metadata of each step individually, and then concatenating these
elementary metadata into the complete provenance history of an item by use of
shared URIs. In cases such as the empirical 3D model generation, where ten thou-
sands of intermediate files and processes of hundreds of individual manual actions
are no rarity, it is prohibitive to register the complete history of each item its because
of the immense repetition of facts between the files: On the one side, the storage
space needed would be blown up by several orders of magnitude, and on the other
side any correction of erroneous input would require tracing the huge proliferation
graph of this input.

The major sources of redundancy are:

• transitivity of contribution: an input A to an input B to an output C is a
contribution to C,

• propagation of features of digital objects preserved by certain processing steps,
such as motif, shape, volume, edges, etc.,

• transitivity of part-whole relations,

• propagation of properties from wholes to parts and vice versa, be it for objects
and their parts or for processes and their sub- and superprocesses.

The above notion of redundancy is not yet formally well understood and may even
not be strictly logical. For instance, it is a question of convention, if we regard that
persons carrying out a process carry out all of its subprocesses. Even if we accept
this convention, it is impractical for the monitoring system to expand the persons
to all subprocesses once we encounter that one person left too early. Therefore, the
question is rather which system of propagation and exception rules would minimize
redundancy for the typical statistics of processes under consideration.

If such a system has been established, we may distinguish three epistemological
situations:

• The registered facts can reliably and completely be registered by a monitoring
system, such as a workflow shell.

• There are facts which users need to input manually to the monitoring system
but may be unwilling to do so.

• Facts come from different monitoring systems or uncontrolled human input.
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Figure 1.1: Data production and the increased space requirements

The reasoning forms we consider in this work aim at the dynamic completion (de-
duction) of facts from original input by resolving transitive closures and propagating
the properties. This is complementary to reasoning on ”data provenance”, which
traces dependency of individual elements of data sets between input and output,
and works which recognize differences of variants of instances of complex workflows.

Deduced facts have a different epistemological status than primary input: Their
truth depends directly on the truth of the primary input, whereas elements of pri-
mary input have no formal mutual dependency. This distinction is vital for effective
management of error corrections in such data. Eliminating redundancy on the input
side is a powerful measure to reduce input errors.

For representing provenance, we adopt a core conceptual model that contains
fundamental (for provenance) modelling concepts such as actors, activities, events,
devices, information objects and their associations. Over this model we identify
three basic custom inference rules which occur frequently in practice. Of course, one
could extend this set according to the details and conventions of the application at
hand.

However we should consider that a knowledge base (either stored in a system or
composed by various metadata files) changes over time. The rising question is how we
can satisfy change requests while still supporting the aforementioned inference rules,
for instance: how one can delete provenance information that has been propagated,
i.e. information that is produced by inference rules and is not explicitly stored in the
repository?

To tackle the update requirements we propose three operations, namely Add,
Disassociate, and Contract, and discuss their semantics along with the required algo-
rithms. The last two operations concern the deletion of information and are founded
on the related philosophical viewpoints, i.e. foundational and coherence semantics.
These viewpoints actually differ in the way they value the inferred knowledge in
comparison to the explicitly ingested one. This analysis is not covered by the exist-
ing works, because existing approaches Konstantinidis et al. (2008); Magiridou et al.
(2005); Gutierrez et al. (2011) consider only one of the viewpoints and only the stan-
dard RDF/S inference rules (not custom inference rules).
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Having specified provenance propagation, and provenance update, the next step
is to evaluate this approach. For this reason we report comparative results for two
repository strategies regarding the derivation of new knowledge. In our experiments
we used both real and synthetic datasets. The objective of this evaluation is to enable
us to understand the trade off between space usage, query performance and update
performance. To this end, we conducted experiments that measure the storage space
before and after the application of the inference rules, and measure the impact of
inferencing on the performance of queries and updates. In brief, the results showed
that the suggested strategy significantly reduces the storage space requirements of
provenance information while the performance of queries and updates is slightly
higher.

1.2.1 Motivating Scenario

As an application example, in the context of the IP 3D-COFORM3 [3D-COFORM
(Tools and expertise for 3D collection formation)] , the Digital Provenance Models
developed in the CASPAR IP4 [CASPAR (Cultural, Artistic and Scientific knowl-
edge for Preservation, Access and Retrieval)] has been enhanced to describe in any
required detail the very complex data acquisition and data processing processes both
on an atomic - processing step by processing step - and on an integrated level - from
acquisition to data ready for publishing.

Figure 1.2: The acquisition Phase-Workflow example (3D-Coform)

Note that a single acquisition process may create thousands of images and some
terabytes of data. The complex processes yielding massive intermediate data and
multiple versions of final products, reprocessing with improved methods or corrected
input, give raise to a need for complex generic reasoning over provenance data in
order to solve digital preservation tasks, such as:

• propagation of properties from super to subprocesses (and vice versa), such as
motif, shape, volume, edges, camera parameters etc.,

• propagation along processing steps,

• merging metadata of intermediate steps,

3www.3d-coform.eu/
4www.casparpreserves.eu/caspar-project/project-governance.html
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• error propagation from the primary input

Figure 1.3: Intermediate images of an acquisition process (3D-Coform)

The purpose of this study is to examine and exploit the above kind of reasoning.

1.3 Thesis Contribution

In this thesis our focus concentrates on the basic reasoning and inference rules based
on provenance information and the evolution of such information.

The main contributions of this thesis are:

i. We propose the introduction of inference mechanisms in order to reduce the
storage space requirements of provenance information. We argue that their
adoption has many advantages regarding the general management of provenance
information:

(a) They aim at the completeness of possible incomplete information regarding
past events (i.e., provenance) automatically,

(b) they reduce the search space of possible errors that can appear among in-
ferred or non inferred facts in a metadata environment and thus allowing
their easier correction,

(c) they reduce the overhead in time and human effort in the process of ingesting
new knowledge,

(d) they reduce the space storage requirements of provenance information.
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ii. We propose reasoning rules in order to eliminate redundancy in provenance
information. The inference mechanisms introduced are based on a different
concept than the ones proposed by other works such as (Moreau et al., 2011)
and (Moreau & Missier, 2011). The latter are based on the derivation of fur-
ther dependencies among data, while the former are based on the propagation
of properties and attributes in hierarchical structures of modelling provenance
information.

iii. We elaborate on the problem of the provenance information evolution. We de-
fine the semantics of update operations of a KB taking into account our custom
inference rules. Based on the philosophical debate between foundationalism
and coherentism of the inferred knowledge significance we have identified two
ways of deleting facts. This presents us with two novelties since (a) current
works (Bechhofer et al., 2001; Gabel et al., 2004; Noy et al., 2000; Sure et al.,
2003; Klein & Noy, 2003) do not consider both approaches (b) or/and take into
account only the RDF/S inference rules but not any user defined custom infer-
ence rules (Magiridou et al., 2005; Konstantinidis et al., 2008; Gutierrez et al.,
2011).

iv. We have conducted several experiments measuring the query performance and
the storage space requirements comparing two repository policies. Even though
we focused on our approach and for one rule, the results are indicative for the
problem of materializing (or not) the inferences in hierarchical RDF structures
including the task of computing and storing transitive closures of DAGs.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 presents the basic assumptions and definitions involved in our rea-
soning. More specifically, it elaborates on the assumptions regarding our knowledge
representation and the management of provenance information. It also introduces
our application’s ontology and finally some technical and working definitions adopted
by in the rest of this study.

Chapter 3 presents our provenance based inference rules. Each rule is explained
and encoded in first-order logic (FOL). Moreover, real examples from the cultural
heritage domain are given for a better understanding of the purpose of each rule.

In Chapter 4 we tackle the challenge of how our knowledge can be changed
by taking into account the inference rules which we introduced in Chapter 3. In
this respect, we discuss how our KB can be updated by addition or deletion of
information. More particularly for the case of deletion, we identify two ways for
handling such an operation.

Chapter 5 details on the implementation considerations of this study, analysing
the available repository policies and requirements with respect to the inference rules.
Moreover, it presents the results of the conducted experimental evaluation using as
a case study the Virtuoso triple store. We conducted experiments on real and
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synthetic data comparing two repository storage policies regarding the derivation of
new knowledge.

Chapter 6 is composed by three sections. The first one tackles the challenge of
how a larger set of rules can be defined presenting a larger set of reasoning rules and
a metamodel showing the patterns that can be identified for this purpose. The other
two sections extends our reasoning on parthood relations by defining two kinds of
it, the essential and the optional one. Moreover, we take into consideration some
temporal aspects regarding the latter two specializations of the parthood relation.

Chapter 7 compares our approach to those from related works in the bibliography.
The comparison is performed considering the tree basic parts or this study: a)the
provenance storage, b) the inference mechanisms and c) the problem of knowledge
evolution.

Chapter 8 elaborates on the applicability of this study, pondering on what would
happen if one or more of them would be ignored. It also concludes this study
summarizing its results and suggests directions for further research and work.



Chapter 2

Preliminaries

In this Chapter we analyse some of the assumptions that we will take into consid-
eration into our reasoning and more generally throughout this study. Specifically,
Section 2.1 details the assumption regarding the origin of our knowledge (Section
2.1.1) and what will be called as explicit and implicit knowledge (Section 2.1.2).
Section 2.2 presents how provenance information can be modelled, introducing our
application context (Section 2.2.2) and its basic concepts (Section 2.3). Finally, Sec-
tion 2.4 explains some other more technical assumptions and definitions adopted in
the rest of our discussion.

2.1 Knowledge Representation and Epistemological As-

sumptions

2.1.1 Epistemological Assumptions

The general assumption endorsed by this study is the provenance information which
has been recorded empirical evidence (Mudge et al., 2008). In this regard, we may
distinguish three epistemological situations:

1. The registered facts can reliably and completely be registered by a monitoring
system, such as a workflow shell.

2. There are facts which users need to input manually to the monitoring system and
may be not willing to do so.

3. Facts come from different monitoring systems or uncontrolled human input.

One of the challenge in this respect is that in many cases that the provenance
information may not even be in digital form. In this case, an expert user has to
edit them in digital form for example in xml format and ingest them in a metadata
environment. Many times however, because of the complexity of provenance infor-
mation, the human effort required to perform this task is so high that the process
might fail or result to errors in the final digitized metadata.

Moreover, because of that complexity regarding provenance information we as-
sume that our records regarding the past are incomplete. This incompleteness may

9
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be due to the inability of the maintainer to provide sufficient information or due
to more fundamental problems of cognition in the system’s domain. Such problems
are characteristic of cultural information systems. This idea is related to the Open
World Assumption (OWA), characterizing a knowledge base system that stores in-
complete knowledge. As an example, one cannot list “all Physical Objects known to
the system that are not Biological Objects in the real world”, but one may of course
list “all items known to the system as Physical Objects but that are not known to
the system as Biological Objects”.

Our approach tackles this challenge by reducing the amount of provenance meta-
data that the user has to ingest into a metadata environment. The role of the in-
ference rules is to complete the information, that the user would have to completed
by himself, dynamically and automatically. Also as an extra benefit, since the orig-
inal ingested information has been reduced, the search space for any possible errors
has also been reduced. As a result, any errors appearing in the inferred facts can
easily be corrected since their cause should be attributed only to the errors in the
original ingested/non inferred facts. The issue of how these errors can be corrected
is addressed in Chapter 4 discussing the problem of knowledge evolution.

2.1.2 Explicit and Implicit Knowledge

A Knowledge Base (KB) is a set of sentences (Russell & Norvig, 2010). We shall
use the term KB to refer to a Knowledge Base in the logical sense, either stored
in a system or composed by the contents of several metadata files. The knowledge
of a KB is expressed by the contained facts generated by the metadata of the files.
Usually the contained information is assumed to be explicit in the sense that it is
a product from metadata that have been ingested (i.e., primary input) into the KB
through manual or automated processes.

However, deductive information derived from the explicit one in the form of
logical consequences is assumed to be implicit. More formally, we say that for a
given set of sentences Σ (i.e., the KB), a sentence ̟ is a consequence of Σ, in
symbols Σ |= ϕ, iff ϕ is true in Σ (Chang & Keisler, 1990). Notice that the inferred
knowledge considered in this work is different than tacit knowledge (Polanyi, 1966;
Smith, 2003); the former has some grounds on explicit one, whereas the latter may
be the result of common sense or common knowledge.

In this work deductions are made by the application of inference rules on the
primary/ingested data as discussed in Chapter 3. Derived facts have a different epis-
temological status than primary input: Their truth depends directly on the truth
of the primary input, whereas elements of primary input have no formal mutual
dependency. Based on this distinction of the origin of information we character-
ize knowledge as explicit and implicit. Moreover, hereafter we shall use the terms
inferred, or derived equivalent to implicit.

2.2 Provenance Modelling and Management

There are different ways for representing provenance information depending on the
respective underlying metadata environment. One of these ways is that provenance
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of a data product can be represented via annotations comprising its derivation his-
tory. These annotations are readily usable as metadata (Simmhan et al., 2005). The
most usual format representing provenance metadata is XML. The data/metadata
are expressed in various Semantic Web Languages (RDF/S, OWL) under schemata
(ontologies) that are globally accessible via Internet and can be combined to a certain
degree (Zhao et al., 2004). We elaborate on ontologies in the subsequent section.

Figure 2.1: Web of Provenance (extracted from (Zhao et al., 2004))

2.2.1 On Ontologies and Models

A formal definition of an ontology is thought to be given by Gruber (1995) and is
the following:

Definition 3. (Gruber’s Ontology definition)An ontology is an explicit specifi-
cation of a conceptualization.

According to Gruber a conceptualization is “an abstract, simplified view of the
world that we wish to represent for some purpose. Ontologies in Artificial Intelligent
are explicit specifications of a conceptualization aiming at formally represent an
aspect of the world. In such an ontology, definitions associate the names of entities
in the universe of discourse (e.g.,classes, relations, functions, or other objects) with
human-readable text, describing what the names mean, and formal axioms that
constrain the interpretation and well-formed use of these terms” (Gruber, 1995).

Another more recent definition has been given by Guarino (1998):

Definition 4. (Guarino’s Ontology definition) An ontology is a logical theory
accounting for the intended meaning of a formal vocabulary, i.e. its ontological com-
mitment to a particular conceptualization of the world. The intended models of a
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<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xml:lang="en"

xml:base="http://www.ics.forth.gr/isl/rdfs/3D-COFORM_CRMdig.rdfs">

<rdfs:Class rdf:ID="D1.Digital_Object">

<rdfs:subClassOf

rdf:resource="http://www.ics.forth.gr/isl/rdfs/

3D-COFORM_CIDOC-CRM.rdfs#E73.Information_Object"/>

</rdfs:Class>

<rdfs:Class rdf:ID="D2.Digitization_Process">

<rdfs:subClassOf rdf:resource="#D11.Digital_Measurement_Event"/>

</rdfs:Class>

<rdfs:Class rdf:ID="D3.Formal_Derivation">

<rdfs:subClassOf rdf:resource="#D10.Software_Execution"/>

</rdfs:Class>

<rdf:Property rdf:ID="L1F.digitized">

<rdfs:domain rdf:resource="#D2.Digitization_Process"/>

<rdfs:range

rdf:resource="http://www.ics.forth.gr/isl/rdfs/

3D-COFORM_CIDOC-CRM.rdfs#E18.Physical_Thing"/>

<rdfs:subPropertyOf

rdf:resource="http://www.ics.forth.gr/isl/rdfs

/3D-COFORM_CIDOC-CRM.rdfs#P39F.measured"/>

</rdf:Property>

<rdf:Property rdf:ID="L1B.was_digitized_by">

<rdfs:domain

rdf:resource="http://www.ics.forth.gr/isl/rdfs/

3D-COFORM_CIDOC-CRM.rdfs#E18.Physical_Thing"/>

<rdfs:range rdf:resource="#D2.Digitization_Process"/>

<rdfs:subPropertyOf

rdf:resource="http://www.ics.forth.gr/isl/rdfs/

3D-COFORM_CIDOC-CRM.rdfs#P39B.was_measured_by"/>

</rdf:Property>

<rdf:Property rdf:ID="L2F.used_as_source">

<rdfs:domain rdf:resource="#D10.Software_Execution"/>

<rdfs:range rdf:resource="#D1.Digital_Object"/>

<rdfs:subPropertyOf rdf:resource="#L10F.had_input"/>

</rdf:Property>

<rdf:Property rdf:ID="L2B.was_source_for">

<rdfs:domain rdf:resource="#D1.Digital_Object"/>

<rdfs:range rdf:resource="#D10.Software_Execution"/>

<rdfs:subPropertyOf rdf:resource="#L10B.was_input_of"/>

</rdf:Property>

<rdf:Property rdf:ID="L4F.has_preferred_label">

<rdfs:domain rdf:resource= "http://www.ics.forth.gr/isl/rdfs/

3D-COFORM_CIDOC-CRM.rdfs#E1.CRM_Entity"/>

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

<rdfs:subPropertyOf

rdf:resource="http://www.w3.org/2000/01/rdf-schema#label"/>

</rdf:Property>

</rdf:RDF>

Figure 2.2: An example of CRMdig in RDF/S
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logical language using such a vocabulary are constrained by its ontological commit-
ment. An ontology indirectly reflects this commitment (and the underlying concep-
tualization) by approximating these intended models.

As a result, ontologies or conceptual models or vocabularies have been developed
in several domains of science such as in Biology or Archaeology in order to model
the part of our world referring to these domains. For instance, several models have
been developed for modelling provenance such as:

• Open Provenance Model

• Provenir ontology

• Provenance Vocabulary

• Proof Markup Language

• Dublin Core

• PREMIS

• WOT Schema

• SWAN Provenance Ontology

• Semantic Web Publishing Vocabulary

• Changeset Vocabulary

Among the previously referred models the most popular one is the Open Prove-
nance Model (OPM) (Moreau et al., 2011).

OPM (Open Provenance Model)

The Open Provenance Model (OPM) is a data model for provenance suggested in
a workshop in August 2007 in Salt Lake City (Moreau et al., 2011). In general, it
is defined as an annotated causality graph encoding information about events that
have happened in the past. One of the requirements of the OPM is to support a
digital representation of provenance for any “thing”, whether produced by computer
systems or not.

The Open Provenance Model is a model of artifacts in the past, explaining
how they were derived. Likewise, processes also occurred in the past, i.e. they
have already completed their execution; in addition, processes can still be currently
running (i.e., they may have not completed their execution yet). The main classes
are the agents, the processes and the artifacts as it is shown in Fig. 2.3.

We can say that the ontology assumed by OPM is minimal. It comprises only 3
classes (Artifact, Process, Agent) and five associations among them (used, wasGen-
eratedBy, wasControlledBy, wasTriggeredBy, wasDerivedFrom). The associations
and the involved entities are depicted in Fig. 2.4. OPM does not make any distinc-
tion between digital and physical objects and their provenance is represented by an
annotated causality graph.
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Figure 2.3: The main classes of OPM

Figure 2.4: The main properties of OPM

The Open Provenance Model has been selected as a reference provenance model
by the Provenance Incubator Group , part of W3C incubator Activity to provide
a mapping for a core set of other provenance vocabularies and models (presented
previously) which are well known in the community1.

2.2.2 Application Context

It is thought that OPM’s main advantage is its minimality and its purpose to model
“anything”. The result is a simple ontology that a non expert user can use it in order
to model provenance information. On the other hand, that minimality could also be
considered as a major disadvantage. Since the number of its classes is limited only to
three, one could argue that its corresponding ontological structure is not rich enough
to model the “world” of provenance. Thus, it suffers from overgeneralization and
possible loss of information. In order to overcome this disadvantage, in this work

1http://www.w3.org/2005/Incubator/prov/wiki/Provenance Vocabulary Mappings
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we consider CRMdig (Theodoridou et al., 2010) a structurally object-oriented model
which is an extension of the CIDOC CRM ontology (ISO 21127:2006) (Doerr, 2003).

In brief, CIDOC CRM is a core ontology describing the underlying semantics of
data schemata and structures from all museum disciplines and archives. It is the
result of a long-term interdisciplinary work and agreement and it has been derived
by integrating (in a bottom-up manner) hundreds of metadata schemas. In essence,
it is a generic model of recording “what has happened” in human scale.

It can generate huge, meaningful networks of knowledge by a simple abstraction:
history as meetings of people, things and information. Regarding the application of
CIDOC CRM for scientific data, the idea is that scientific data and metadata can
be considered as historical records. Scientific observation and machine-supported
processing is initiated on behalf of and controlled by human activity. Things, data,
people, times and places are related by events. Other relations are either deductions
from events or found by observation. Figure 2.5 depicts the main concepts of CIDOC
CRM.

3

participate in

E39 Actors

E55 Types

E28 Conceptual Objects

E18 Physical Thing

E2 Temporal Entities

affect / refer to

refer to / refine

location

at

E53 PlacesE52 Time-Spans

Figure 2.5: The main concepts of CIDOC CRM

CRMdig (Theodoridou et al., 2010) was initially defined during the EU Project
CASPAR2 (FP6-2005-IST-033572) and its evolution continues in the context of the
EU IST IP 3D-COFORM3 project. In numbers, CIDOC CRM contains 86 classes
and 137 properties, while its extension CRMdig currently contains 31 classes and
70 properties. Various mappings of CIDOC CRM are available at the the model’s
website4.

They include mappings to EDM (Europeana Digital Library) which includes
concepts from ORE and Dublin Core), LIDO model, UNIMARC Bibliographic for-

2http://www.casparpreserves.eu/
3http://www.3d-coform.eu/
4http://www.cidoc-crm.org/crm mappings.html
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mat, MIDAS Standard, Dublin Core Element Set, AMICO Data Model, EAD, and
various others. Moreover the harmonization with FRBR is also discussed5, as well
at the mapping between CIDOC CRM and METS (M.Doerr, 2011).

Since Open Provenance Model (OPM) and CIDOC CRMdig have been mapped
to several other models (see Fig. 2.6) we argue that they are good hubs for prove-
nance models. This justifies the need for establishing mappings between them which
has been suggested in (Salza et al., 2012). Therefore, the similar concepts exploited
in this thesis, might be used with OPM or/and other models.

Figure 2.6: CIDOC CRM’s and OPM’s mappings

Fig. 2.7 shows one small part of the model, specifically the part involved in the
inference rules introduced in Section 3.

The properties and classes shown in Fig. 2.7 are described in detail in CIDOC
CRM’s official definition.6 In brief, the properties P46 is composed of and P9 forms
part of represent the part-hood relationships of man-made objects (i.e., instances
of the E22 Man-made Object class) and activities (i.e., instances of the E7 Activity
class) respectively. Furthermore, the property P14 carried out by describes the
active participation of actors (i.e. instances of the E39 Actor class) in activities and
also implies casual or legal responsibility. Moreover, the P16 was used for describes
the use of objects in a way essential to the performance of an activity. Finally,
immaterial items (i.e., instances of the E73 Information Object class) are related
to physical carriers (i.e., instances of the E24 Physical Man-made Thing class) via
the P128 carries property and can be present at events via the P12 was present at
property. Note that the properties P46 is composed of and P9 forms part of are
transitive, reflexive and antisymmetric.

5http://www.cidoc-crm.org/docs/doer le boeuf.pdf
6http://www.cidoc-crm.org/docs/cidoc crm version 5.0.4.pdf
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Figure 2.7: Part of CRMdig schema

2.3 Ontological and Semantic Assumptions

2.3.1 Participation and Presence at Events

According to OPM, a process is considered as the set of actions performed on or
caused by artifacts and resulting in new artifacts. Processes are connected with
artifacts using used and wasGeneratedBy edges. By connecting a process to several
artifacts by used edges, we are not only stating the individual inputs to the process
but also asserting that a causal dependency expressing that the process could take
place and be complete only because all these artifacts were available. Therefore we
cannot model the participation of artifacts in the derivation history of an object
without implying causality. Entities modelled in CIDOC CRM can participate or
denote their presence at events. The properties defined for this purpose are the P14
carried out by and P12 was present at respectively. The first one is a specialization
of the second and describes the active participations of actors in activities. Note that
this property implies causal or legal responsibility of the former. The second one is
semantically more generic than the first one and describes not only the active but
also the passive presence of entities at events without implying any specific role. For
this reason, in our modelling we will consider that the actors associated to activities
via the P14 carried out by association have a specific role for carrying out those
activities. Whereas, immaterial and material objects have a passive participation at
events and thus are associated with them via the P12 present at association.
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2.3.2 Parts and Wholes

In this study we are considering reasoning forms in hierarchical structures. As
depicted in Fig. 2.7 the main properties of CIDOC CRM for decomposing wholes
into parts, be it for activities and subactivities or devices and parts, are the P9
forms part of and P46 forms part of. In this section, we will examine the definitions
of parts and wholes that we will take into account in our reasoning.

The research area which analyses such part-hood relations known in philosophy
is mereology, from the Greek word mèro, part. More formally, mereology is “simply
an attempt to set out the general principles underlying the relationships between
a whole and its constituent parts” (Varzi, 1996). Its main focus is the relation
expressed by the term part of (e.g., “X is part of Y”).

Varzi (1996) gives an overview of the mereology theories regarding the study of
the parthood relation. Ground Mereology was defined and considered as the basis
of the aforementioned theories. The theory is defined by axioms using first-order
theory with identity for the binary predicate P (representing the relation part-of):

• Reflexivity
Everything is part of itself.
∀x P(x,x).

• Antisymmetry
Two distinct things cannot be part of each other.
∀x, yP (x, y) ∧ P (y, x) → x = y.

• Transitivity
Any part of any part of a thing is itself part of that thing.
∀x, y, zP (x, y) ∧ P (y, z) → P (x, z).

Other theories are defined adding further principles to the Ground Mereology
such as the Extensional Mereology and the Closed Mereology (consult (Varzi, 1996)
for a further analysis of these theories).

Nevertheless, several problems with the parthood relation have already been
stated. Indicatively we mention the work of Artale et al. (1996). One of the most
known is that of the assumption of transitivity (Johansson, 2004; Guizzardi, 2009)
which does not hold in every case. One should consider the following counterexam-
ples:

• A handle, x, can be part of a door, y, and a door can be part of a house, z,
but yet the handle need not be (is not) a part of the house.

• This tree is part of the Black forest, and the Black forest is part of Germany,
but yet this tree is not part of Germany.

However, in this thesis we will not attempt to find a new solution to the above
problem and thus we assume that the parthood relation adheres to the axioms of
the Ground Mereology including that of transitivity.

In our reasoning we will consider activities that can be decomposed into further
subactivities (see Fig. 2.7). These activities can be also considered as events (since
there is an IsA relation between the two classes), and thus events can be decomposed



2.3. ONTOLOGICAL AND SEMANTIC ASSUMPTIONS 19

into further subevents. Usually events extend to a specific timespan and that might
be a condition in order for an event to be part of a much larger event. More
specifically, the timespan of the latter must be larger and include the former’s one.
In this respect, the larger event is considered as the whole and the subevent as the
part. For example, supposing that the World War II is an event lasting from 1939
to 1945, the multiple battles during this time are the subevents of the former. The
same assumption and reasoning will also be followed in the case of the activities and
subactivities.

With regard to devices as wholes, these can be considered as a heterogeneous
complexes having different structured parts that have a functional role. This theory
has been suggested by Gerstl & Pribbenow (1995) defining a the following categories
of parts and wholes:

• Component/Complex

• Member/Collection

• Quantity/Mass

The above classification has been defined in accordance to the compositional
structure of wholes: homogeneous, uniform and heterogeneous (Gerstl & Pribbenow,
1995, 1996). Homogeneous wholes have no compositional structure and their decom-
position is based on a quantitative measure such as weight or volume (e.g., one litre
of the water in a bottle). While heterogeneous have different structured parts having
several roles with respect to the whole (e.g.,the engine of the car which can have
multiple different parts). Uniform wholes are composed by parts that “are not dis-
tinguished according to the way they relate to the whole, although they might be
distinguished with respect to each other” (e.g, two of the three apples in the basket)
(Gerstl & Pribbenow, 1995).

Our modelling will be limited to heterogeneous physical objects. So wholes
conceptualized as masses or collections are out of context. Thus, hereafter, we will
consider that parts of a device-whole have solely a functional role type and as a result
the whole is assumed to be a functional complex. According to Gerstl & Pribbenow
components have “a specific relation to the whole different from that of the other
components with respect to functional, spatial, temporal, or other features” (i.e.,
for a car such a functional part is considered to be one of its four wheels). Table 2.1
presents some examples of wholes and their functional parts.

Whole Part

a cellphone its battery
a computer its screen
a camera its lens
a car its engine

Table 2.1: Examples of objects and their parts

In general, parts (be it for subactivities or parts of devices) can in turn be
considered as wholes themselves and subdivided further into other parts. The result
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is an hierarchy of components forming a partonomy (Tversky, 1986) (see Fig. 2.8
for an example of a partonomy).

Figure 2.8: Partonomy of a car

2.4 Working Assumptions

We shall use the term KB to refer to a Knowledge Base in the logical sense, either
stored in a system or composed by the contents of several metadata files. We shall
use K to refer to the set of RDF/S triples of a KB. Furthermore, hereafter we
assume that K denotes the set of triples as produced by the adopted metadata
schemas and ontologies and the ingested facts (“raw data” yielded by manual or
automated processes) without any post-processing.

We shall use C(K) to refer to the closure of K. Note that the closure can be
defined with respect to the standard inference rules for RDF/S and/or other custom
rules (e.g., like those that we introduce in this paper) and is unique. From a visual
perspective, in the following examples of our rules (Section 3)C(K) includes both
the dotted and plain associations, while K includes only the latter one. We shall
also use Red(K) to denote the reduction of K. The reduction is the minimal set of
facts that have the same closure as K, and it is unique if and only if the relations
are acyclic (see (Zeginis et al., 2011)).

For example considering the example of the car partonomy in Fig. 2.8 and that
the relation among the components is a transitive one, the transitive closure of the
graph is depicted in Fig. 2.9. Note that the inferred relations are denoted by dotted
lines.

The elements of K is our explicit knowledge, while the elements of C(K)-K
represent our implicit/inferred one.

A repository policy could be to keep stored either K, or Red(K), or C(K). Storing
Red(K) would give optimum (i.e., minimal) space usage, but would imply an impor-
tant overhead during changes, because the reduction should be recalculated after
every change and its algorithmic complexity is O(N3). Moreover, in some settings,
K has a different value from C(K) and the distinction between the two must be kept
clear. On the other hand, C(K) is optimal with respect to efficiency, because all the
information is stored and can be easily found, but has increased space requirements.
For this reason, for the purposes of this paper we chose to store K as a reasonable
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Figure 2.9: The transitive closure of a partonomy graph

compromise in this time-space trade off. Note that K usually contains little or no
redundancy, leading to a near-optimal space usage while avoiding the overhead of
searching for, and eliminating, redundancy.

2.5 Summary

In this Chapter we presented the assumptions and definitions adopted by this study.
Firstly, we explained how we represent our knowledge and we addressed some consid-
erations with its nature and scope (i.e., its epistemology). Secondly, we elaborated
on the question on how provenance information can be modelled. We focused on
the most popular model in this regard (i.e., OPM) and we compared to the one used
as our application context. Thirdly, we reviewed some basic semantic concepts and
assumptions involved in our reasoning, and finally we briefly introduced our working
definitions for the rest of this paper.
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Chapter 3

Provenance Inference Rules

In this Chapter we introduce a basic set of custom inference rules in order to accom-
plish our initial purpose for reducing the space storage requirements of provenance
information. Thus, each rule is intended to infer dynamically certain relations among
entities of CRMdig that otherwise had to be added by the ingestion process. The
basic idea behind this reasoning is the propagation of features and attributes from
parts to wholes. The rules chosen involve concepts that exist in almost all models
for representing provenance information and thus reflect the generalization of this
study. The inferred relations and the general reasoning respect the defined seman-
tics of the CIDOC CRM ontology. One can define a much larger set of rules with
regard to a particular underlying ontology, but that would result to a higher reason-
ing complexity and a more complicated update operations (see also Section 8.1 for
a discussion concerning these matters).

Each Section in this Chapter presents the rules accompanied by examples of the
cultural heritage domain. The rules are also encoded into first-order logic (FOL)
as a general basis for further implementations to other languages such as SWRL or
Datalog. All the relations and entities are instances of the small schema adopted in
Fig. 2.7. Note that in the included figures we do not show the transitivity-induced
properties P46 is composed of and P9 forms part of.

3.1 Participation of actors to activities

• Rule 1. Participation of actors to activities
If an actor has carried out one activity, then he has carried out all of its
subactivities.

∀x, y, z(formsPartOf(y, x) ∧ carriedOutBy(x, z)

→ carriedOutBy(y, z))
(3.1)

Example

Scientists often use 3D laser scanning in order to construct digital 3D models. These
processes involve taking many photographs of the desired model. One example from
our data is the activity Laser scanning acquisition of Canoe-shaped vase from the
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Archaeological Museum of Nicosia which was carried out by the STARC-The Cyprus
Institute. The activity has its own subactivities. It can be analysed to Sequence of
shots - Canoe-shaped vase from Archaeological Museum of Nicosia and that can
have the following subactivities, ranging, for example, from one to ten: Capture 1
to Capture 10 which store information about each captured photo.

All the above subactivities have different recorded metadata. On the other hand,
the information that the Starc Institute and John were responsible for carrying out
the Laser scanning activity is desired to be preserved following the path of all the
subactivities. Fig. 3.1 shows the edges (represented by dotted lines) which are
inferred by the rule R1.

Figure 3.1: Example of rule R1

3.2 Use of objects and their parts

• Rule 2. Use of Objects to activities
If an object (device) was used for an activity, then all parts of the object were
used for that activity too.

∀x, y, z(isComposedBy(x, y) ∧ wasUsedFor(x, z)

→ wasUsedFor(y, z))
(3.2)

Example

In 3D modelling, devices with many cameras, called multiviewdome devices (see Fig.
3.2), are usually employed. These devices are consisted of other cameras or lighting
devices. In provenance metadata, there could be a fact stating that a multiviewdome
device was used for a particular activity.

With R2 we can infer that the constituent devices were also used for that activity.
Indeed, a multiviewdome device cannot be used without using its parts. Fig. 3.3
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Figure 3.2: A multiview dome device

illustrates an indicative modelling of such a setting. The parts for example Nikon
D90, AF-5 Nikkor 18-105 and Nikon D300 of the device have been associated to the
Detailed sequence of shots.

Figure 3.3: Example of rule R2

3.3 Presence of information objects

• Rule 3. Presence of Information Objects
If a physical thing that carries an information object was present at an event,
then that information object was present at that event too.

∀x, y, z(carries(x, y) ∧wasPresentAt(x, z)

→ wasPresentAt(y, z))
(3.3)



26 CHAPTER 3. PROVENANCE INFERENCE RULES

Example

3D reconstruction from images is a common process used in archaeology in order to
document, digitize and model archaeological exhibits such as statues. Consider for
example the exhibit shown in the next figure which is part of a column of Ramesses
II located in the Egyptian museum garden in Cairo. The 3D reconstruction process
of said exhibit could be modelled as an event and the exhibit itself as a physical man-
made thing. Moreover that physical thing contains information which is represented
by the carved hieroglyphics.

That information could be modelled as an information object. According to rule
R3 if that part was present at an event, then that information was also present at
that event. Rule R3 infers the presence of information in hieroglyphics at the event
of a 3D reconstruction because the part of Ramesses II was also present at that event.
The inference is reasonable because the information was carved in hieroglyphics when
the column was built, thus the information in hieroglyphics coexists with the part
of a column which carries it and this coexistence implies their presence at events.
As a result, if there is a carries relationship between an information object and a
physical thing, rule R3 infers the presence of the former in all the events that the
latter was present at.

Figure 3.4: Part of a column of Ramesses II (left)
example of rule R3 (right)

3.4 Summary

In this Chapter we presented a set of inference rules in order to satisfy our primary
motivation of this study regarding the storage requirements of provenance informa-
tion. We focused on these three rules as they frequently occur in practice. Of course,
one could extend this set according to the details and conventions of the applica-
tion at hand (see also Section 6.1). Table 3.1 shows an overview of the introduced
inference rules accompanied by brief examples.
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Table 3.1: Summary of the inference rules

Rule
Num

Rule Name Rule Description Brief Example

R1 ActorCarried
Activity

If an actor has carried
out one activity, then
he has carried out all of
its sub activities.

”STARC-The Cyprus
Institute” is the actor
of a Laser scanning
acquisition activity
but also the actor of
the detailed sequence of
shots which are
actually sub activities
of the scanning
acquisition activity.

R2 UsedPartof
Object

If an object (device)
was used for an activ-
ity, then all parts of
that object were also
used for that activity.

If a multidome cam-
era was used for an
event, then a lens of it
was also used for that
event.

R3 Information
ObjectPresence

If a physical object (that
carries the information
object) was present at
that event, then that
information object was
also present at that
event. (note that an
information object must
have a physical object
that carries that, other-
wise it cannot exist).

If we know that a person
X1 read a poem Y1
during an event E1, then
certainly there was a car-
rier Z for that poem in
that event.
If a device was present
at an event and uses a
piece of software then
this software was also
present at that event.
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Chapter 4

Provenance Inference Rules and
Knowledge Evolution

A certain set of beliefs or knowledge, as the world itself is generally not static; it
evolves over time. Possible causes of the alteration of one’s beliefs could be that
new, previously unknown, classified, or otherwise unavailable information may have
become known; a new fact may have been revealed through a new observation or
experiment. The research area which deals with the adaptation of a KB to new
information is the area of the belief change (Gärdenfors, 1992). In this Chapter we
tackle the challenge of how our knowledge can be changed by taking into account
the inference rules introduced in Chapter 3.

4.1 Preliminaries

One of the purposes of this study is to examine the application of inference mecha-
nisms in order to automate the derivation of implicit facts among the existing ones
stored in a KB. Such mechanisms (see the introduced inference rules in Chapter 3)
can be used in a metadata environment accompanied by an inference platform. In
this regard, we assume an a priori knowledge of the latter’s inference capabilities
before the ingestion of new metadata. This concept is much related to the homo-
geneous approach which integrates both ontology and rules into a common logical
language (Antoniou et al., 2005). By this approach, the user/process that is respon-
sible for the ingestion is expected to know this model and, as a consequence, avoid
any redundant facts which can be inferred dynamically by the rules.

Be that as it may, the possibility of human errors should not be ignored. These
errors are propagated by the rules among data affecting directly the quality of prove-
nance. The user must be able to update/change the stored knowledge in order to
correct such errors and thus the support for updates is unquestionable.

On the other hand, satisfying update requests while still supporting the afore-
mentioned inference rules is a challenging issue, because several problems arise when
we update knowledge taking into account rules and implicit facts. For example,
should we remove an implicit fact from our KB or we should keep it to avoid any
possible loss of information? Moreover, when changes are performed upon a belief
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base, we temporarily have to ignore the logical consequences of the base; one can
only apply direct changes to knowledge that is stored explicitly. On the other hand,
implicit knowledge cannot be changed directly (though it could be indirectly af-
fected by the changes in the explicit knowledge). In this regard, the challenge is the
determination of what can be changed and how each change should be implemented
based on the defined semantics.

Figure 4.1: What set of change operations could transform KB to KB’

These issues will be described in more detail below using a running example. For
each change operation, we describe the KB’s states (through figures) and explain
the challenges incurred in the update process due to the existence of the inference
rules.

4.1.1 Changing our beliefs: Expansion and Contraction

In (Alchourrón et al., 1985) the authors identify three different types of belief change.
The simplest one, is expansion. Expansion refers to the näıve addition of informa-
tion to our knowledge; reckless application without taking any special provisions to
ensure the quality (i.e., consistency) of the KB after this addition. This operation
is implemented trivially as a set-theoretical union of the new information (i.e., the
change) and our beliefs (old KB). In the case that the new information contradicts
the currently held beliefs the result will be an inconsistent KB. In this matter we
apply the additional operation (discussed later in this Section) involving the removal
of information in order for our KB to be consistent.

The second one is the revision operation is defined. Similar to expansion, revision
has the very important difference that demands a certain quality on the results; the
result should be a consistent set of beliefs. There are several ways to achieve this
property on the resulting beliefs. When contradicting old knowledge one could
choose to reject the change. Hence most of the times, one chooses to apply the
changes upon the beliefs, facing however, possible inconsistency problems. These
problems could be overcome with potential additional application of consequential
changes, in order to retain the quality of the result. In some cases for example,
one may need to abandon a part of the currently held beliefs while adding the new
information. The difficult and interesting part of revision is how to select the beliefs
that should be abandoned.

A fundamental operation and, consequently, the most important operation for
theoretical purposes is contraction (Gärdenfors, 1992). Contraction corresponds
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to the removal of information from a KB, but in a consistent way. For example,
when a piece of information becomes unreliable and we would like to stop believing
it, contraction may be necessary. A property of a contraction operator is that it
should retract the unreliable information from both explicit and implicit knowledge;
the latter could re-emerge as a consequence of the remaining beliefs, so simply
removing the information from explicit knowledge may not be enough. Hence, a
contraction operator may need to also remove beliefs which at first seem unrelated
to the retracted piece of knowledge. Our suggested operations will be based on these
three different types of belief change.

4.1.2 The Principles of Knowledge Revision

In this paper, we adhere to the most significant principles of Knowledge Revision
theory as motivated by Dalal (1988). On of these principles is referred to as the
Principle of Primacy of New Information and is related to the acceptance of the
new information. This involves the complete entrustment to the incoming data and
the unconditionally acceptance of the new information. Thus, the resulting KB
should contain the new information (in case of a revision, for example) or should
not contain it(e.g, in case of a contraction).

Another principle of Dalal (1988) is Principle of Consistency Maintenance. Ac-
cording to that principle the result of a change should be a consistent KB. This is
generally accepted as we have already stated that inconsistent (under classical logic)
KBs do not carry any interesting information and, therefore, should be avoided.
Whereas for classical logic this principle is valid, there are frameworks in which the
underlying logic itself has an internal mechanism to deal with inconsistencies, such
as nonmonotonic and paraconsistent KBs (Antoniou, 1997). One thing that remains
to be settled is the exact meaning of the “consistency” term; in terms of FOL we
consider inconsistent any set that contains or implies both a proposition and its
negation. More generally in the belief change literature, the meaning of a consistent
KB is one which does not imply any tautologically false propositions.

Undebatably, the most important, and by so far the most influential principle
related to the implementation of a change, is the Principle of Persistence of Prior
Knowledge (Dalal, 1988). This principle argues that the resulting KB should retain
most of the information from the old KB.

4.1.3 Foundational versus Coherence Theories

Knowledge Representation in literature has also been considered by several related
philosophical studies. Mainly, two viewpoints have been discussed: foundational
theories and coherence theories. We argue that this is an important distinction and
thus we take them into account when dealing with deletion of knowledge.

Under the foundational viewpoint, each piece of our knowledge serves as a justi-
fication for other beliefs; our knowledge is like a pyramid, in which “every belief rests
on stable and secure foundations whose identity and security does not derive from
the upper stories or sections” (Sosa, 1980). This viewpoint implies that the ingested
facts (the “base of the pyramid”) are more important than other knowledge and that



32CHAPTER 4. PROVENANCE INFERENCE RULES ANDKNOWLEDGE EVOLUTION

implicit knowledge has no value of its own, but is depending on the existence and
support of the explicit knowledge that caused its inference.

On the other hand, according to the coherence theory, our beliefs do not require
any justification. A belief is justified by how well it fits with the rest of the beliefs,
by how well it fits with the rest of the knowledge, in forming a coherent set of facts
that contains no contradictions. In this sense, knowledge is like a raft, “every plank
of which helps directly or indirectly to keep all the others in place, and no plank of
which would retain its status with no help from the others” (Sosa, 1980). This means
that all knowledge (implicit or explicit) have the same “value” and that every piece
of knowledge (including implicit ones) is self-justified and needs no support from
explicit knowledge.

4.1.4 Elementary and composite changes

According to (Maedche et al., 2002; Stojanovic & Motik, 2002), change operations
can be classified into elementary (involving a change in a single ontology construct)
and composite ones (involving changes in multiple constructs), also called atomic
and complex in (Stuckenschmidt & Klein, 2003). Elementary changes represent sim-
ple, fine-grained changes; composite changes represent more coarse-grained changes
and can be replaced by a series of elementary changes. Even though possible, it is
not generally appropriate to use a series of elementary changes to replace a com-
posite one, as this might cause undesirable side-effects (Maedche et al., 2002); the
proper level of granularity should be identified in each case. Examples of elementary
changes are the addition and deletion of elements (concepts, properties etc) from
the ontology. There is no general consensus in the literature on the type and num-
ber of composite changes that are necessary. In (Maedche et al., 2002), 12 different
composite changes are identified; in (Stuckenschmidt & Klein, 2003) however, the
authors mention that they have identified 120 different interesting composite oper-
ations and that the list is still growing!

In this work, we focus on three elementary change operations allowing to trans-
form one KB to another, namely triple Addition(t), Disassociation(t), Contraction(t)
and a composite one Replacement(t) where t ⊂ T . All the three operations are re-
lated to the acquirement of new knowledge and how this affects the existing knowl-
edge which is stored in the current KB. Therefore, sometimes the new knowledge
does not contradict the existing one (i.e., Addition) and other times does the oppo-
site and thus some facts have to be removed in order for the KB to be consistent.
In the sequel, we will formally introduce the semantics of these operations and give
examples for each one. Even though we specify only one composite operation other
similar ones can be defined by defined as a series of elementary operations similar
to the Replacement.

4.2 Provenance Inference Rules and Knowledge Evolu-

tion

A KB changes over time, i.e., we may have requests for adding or deleting facts
due to external factors (Flouris et al., 2012) such as new observations. Satisfying
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update requests while still supporting the aforementioned inference rules is a chal-
lenging issue, because several problems arise when updating knowledge taking into
account rules and implicit facts. These issues will be described in more detail below
using a running example. For each change operation, we describe the KB’s states
(through figures) and explain the challenges incurred in the update process due to
the existence of the inference rules.

Consider a KB that contains the rule R1’s example with the activities of Laser
scanning acquisition that were carried out by the Starc Institute. The initial state of
the KB is demonstrated in Fig. 4.2 (left), where inferred associations are illustrated
by dotted lines. Over this example below we shall see examples of three change
operations: addition, disassociation, contraction.

4.2.1 Addition of Information

The addition operation performs the insertion of a new triple into the KB and since
there are no validity rules or negation, the addition of a triple cannot lead to a
contradiction (as, e.g., in the case of (Flouris et al., 2012) or in the generic belief
revision literature (Gärdenfors, 1988)). Therefore, addition is a simple operation
consisting only of the straightforward addition of the required information (triple)
in our KB. Note that if we had taken into account a repository policy that stores
the redundant-free KB, or its closure, we would have to apply additional operations
after the addition in order to compute and store Red(K) (or C(K)).

Suppose a request for adding a new actor to the subactivity of the Sequence
of shots, e.g., that Michael, who is a photographer, is also the actor of Sequence
of Shots. The update is demonstrated in the following figures. We observe that
Michael has been associated with the activity Sequence of shots, but also, due to
rule R1, he has been associated with the subactivities Capture 1 7 and Capture 1 8.
Fig. 4.2 depicts the change of this example.

Figure 4.2: Initial state of the KB (left) and state of the KB after the addition
(right)
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4.2.2 Deletion of Information

The operation of deletion is more complicated than addition in our setting. The
reason is that, due to the inference rules, we cannot succeed by simply deleting the
required information, as the deleted information may re-emerge as a consequence
of the application of the inference rules. Thus, it is often the case that additional
information should be deleted, along with the one explicitly requested by the change.
This raises the additional challenge of avoiding losing (deleting) any more knowledge
than necessary. We will visualize how we address this problem using our running
example below.

Consider an update request saying that the Starc Institute is not responsible for
the activity Capture 1 7. The question raised is whether the Starc Institute is not
responsible only for Capture 1 7, or also for other activities, i.e., how refuting the
fact that the Starc Institute is responsible for Capture 1 7 affects the information
that it is responsible for the activities Laser scanning acquisition, Sequence of shots
or Capture 1 8.

Initially, we note that the Starc Institute should also be disassociated from the
responsibility of Sequence of shots and Laser scanning acquisition; failing to do so
would cause the subsequent re-emergence of the refuted knowledge (i.e., that the
Starc Institute is not responsible for Capture 1 7) due to inference.

A more complicated issue is whether the Starc Institute should remain responsible
for Capture 1 8: note that this information was originally included because of the fact
that the Starc Institute was considered responsible for Laser scanning acquisition,
ergo (due to the inference rules), also responsible for Capture 1 8. Once the former
information is dropped, as discussed above, it is questionable whether the latter
(inferred) information should still remain in the KB, since its “reason for existence”
is no longer there. On the other hand, the fact that the Starc Institute is not
responsible for Capture 1 7 does not in any way exclude the possibility that it is
still responsible for Capture 1 8, therefore deleting this information seems like an
unnecessary loss of knowledge.

To address this issue, one should go deeper and study the related philosophical
issues regarding the epistemological status of the inferred knowledge, and whether
such knowledge has the same or different value compared to primary, explicitly
provided knowledge (i.e., ingested knowledge), (see Section 4.1.3).

This distinction is vital for effective management of data deletions. When a
piece of knowledge is deleted, all implicit data that is no longer supported must
be deleted as well under the foundational viewpoint. In our example, this should
cause the deletion of the fact that the Starc Institute is responsible for Capture
1 8. On the other hand, the coherence viewpoint will only delete implicit data if it
contradicts with existing knowledge, because the notion of support is not relevant
for the coherence model. Therefore, in our case, the fact that the Starc Institute is
responsible for Capture 1 8 should persist, because it does not in any way contradict
the rest of our knowledge, nor does it cause the re-emergence of the newly deleted
information (i.e., that the Starc Institute is responsible for Capture 1 7.

Instead of positioning ourselves in favour of one or the other approach, we decided
to support both. This is done by defining two different “deletion” operations, namely,
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disassociation and contraction, that allow us to support both viewpoints. Their
definition follows.

Figure 4.3: Actor disassociation (left) and actor contraction (right)

We will be referring to the above cases as actor disassociation and actor contrac-
tion respectively. Notice that in contrast to disassociation, the contraction operation
preserves the association (Capture 1 8, carried out by, Starc Institute).

Disassociation

Disassociation handles deletion using the foundational viewpoint. In particular, the
non-responsibility of the Starc Institute about Capture 1 7 implies some uncertainty
about its responsibility for other related activities (i.e., was he responsible for Cap-
ture 1 8?), since this knowledge is no longer supported by any explicit data. Based
on the foundational viewpoint, all such associations must also be deleted, i.e., we
should delete the following triples:

• (Capture 1 7, carried out by, Starc Institute ) // as requested

• (Capture 1 8, carried out by, Starc Institute ) //due to the loss of explicit
support

• (Sequence of shots, carried out by, Starc Institute ) //due to the loss of explicit
support

• (Laser scanning acquisition, carried out by, Starc Institute ) //to avoid re-
emergence of the deleted knowledge

Note that, in practice, implicit facts are not stored so they do not need to be
deleted; thus, in our case, we only need to delete (Laser scanning acquisition, carried
out by, Starc Institute).
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Contraction

Contraction handles deletion using the coherence viewpoint. In particular, this op-
eration assumes that there is a high degree of certainty that the non-responsibility of
the Starc Institute is only for Capture 1 7. Other activities which are still associated
with Starc Institute, such as Capture 1 8, should persist despite the lack of explicit
knowledge to support them. In this case we have to delete only the following triples:

• (Capture 1 7, carried out by, Starc Institute) // as requested

• (Sequence of shots, carried out by, Starc Institute) //due to the loss of explicit
support

• (Laser scanning acquisition, carried out by, Starc Institute) //to avoid re-
emergence of the deleted knowledge

Again, implicit facts do not need to be deleted, so the only actual deletion re-
quired is the deletion of (Laser scanning acquisition, carried out by, Starc Institute).
For contraction, one should also be careful with the implicit knowledge that is sup-
posed to persist. For example, the fact that the Starc Institute is responsible for
Capture 1 8, is not explicitly stored and will be lost by the deletion of (Laser scan-
ning acquisition, carried out by, Starc Institute) unless we explicitly add it back.

Since we focus on three inference rules, we should define similar operations for
satisfying change requests related to the other custom inference rules, i.e., R2 and
R3. The complete set of operations is given in the Appendix of this paper.

4.3 Algorithmic Perspective

The analysis like that of the previous example can be applied for deriving the exact
change plan for each change operation (the semantics of the operations are given
in the appendix this paper). Indicatively, we provide update plans (algorithms) for
three operations below:

• AssociateActorToActivity (p:Actor, a:Activity)

• DisassociateActorFromActivity (p:Actor, a:Activity)

• ContractActorFromActivity (p:Actor, a:Activity)

Algorithm 1 AssociateActorToActivity (p:Actor, a:Activity)

1: if an explicit P14 link does not exist between a and p then
2: Add an explicit P14 link between a and p
3: end if

Algorithm 1 takes as input an actor (p) and an activity (a), checks if the in-
formation that p is responsible for a already exists in the KB (line 1) and, if not,
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Algorithm 2 DisassociateActorFromActivity (p:Actor, a:Activity)

1: if an explicit P14 link exists between a and p then
2: Remove the requested P14 link between a and p
3: end if
4: for each superactivity:superAct of a related to p via the P14 link do
5: Remove possible explicit P14 link between superAct and p
6: end for

Algorithm 3 ContractActorFromActivity (p:Actor, a:Activity)

1: if an explicit “carried out by” link exists between a or a superactivity of a and
p then

2: for each direct subactivity:subAct of a do
3: Execute AssociateActorToActivity (p, subAct)
4: end for
5: end if
6: if an explicit “carried out by” link exists between a and p then
7: Remove the requested “carried out by” link between a and p
8: end if
9: for each maximal superactivity:supAct of a related to p via the “carried out

by” link do
10: for each subactivity:subAct of supAct do
11: if subAct is not superactivity or subactivity of a then
12: Add subAct to collection: Col
13: end if
14: end for
15: end for
16: Execute DisassociateActorFromActivity (p, a)
17: for each maximal activity:act in Col do
18: Execute AssociateActorToActivity (p, act)
19: end for

it adds that fact as an explicit one in the KB (line 2). This is an easy operation,
requiring just the addition of said triple in K.

Algorithm 2 takes the same input (actor p and activity a), but its purpose
is to disassociate p from the responsibility for a. Firstly, the requested explicit
association has to be removed from the KB (lines 1-3). Secondly, according to the
semantics given above, this also requires the deletion of all associations of p with
all superactivities of a (lines 4-6). Note that only explicit links need to be removed,
because implicit ones do not actually exist in K.

Finally, Algorithm 3 contracts p from the responsibility for a. This requires,
apart from the deletion of all associations of p with all superactivities of a (as in
disassociation), the preservation of certain implicit associations that would otherwise
be lost. At first, any inferred associations between p and any subactivities of a must
be explicitly added to the KB (lines 1-5). Moreover, additional associations that
need to be preserved are stored in Col (lines 9-15); to avoid adding redundant
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associations, we only consider the maximal elements of Col to add the new explicit
associations (lines 17-19).

We should clarify that each operation is independent in the sense that after its
execution there is no need for other operations to be performed in order to complete
a particular change. However, their design is modular and thus different operations
may use the same algorithms or parts of them.

Furthermore, our operations guarantee that the resulting KB will not contain the
deleted triple, either as an explicit or as an implicit fact, given the existing knowl-
edge and the custom inference rules that we consider. In addition, our operations
preserve as much as possible of the knowledge in the updated KB under the consid-
ered semantics (foundational/coherence for disassociation/contraction respectively).
The two observations have been coined as general principles in the belief revision
literature (Dalal, 1988).

4.3.1 Algorithmic Complexity

The complexity of the above algorithms is O(logN) for Algorithm 1, O(NlogN)
for Algorithm 2 and O(N2) for Algorithm 3, where N is the number of triples in
K. The above complexities assume that the triples in K are originally sorted (in
a preprocessing phase); such a sorting costs O(NlogN). Under this assumption,
Algorithm 1 practically needs to make one addition to a sorted table, thus the
O(logN) cost.

Algorithm 2 requires the computation of all the superactivities of an activity. To
do that, we need to find all the direct superactivities of a (i.e., those connected to
a via the P9 forms part of property), a process which costs O(logN); for each such
activity, one needs to add it in a sorted collection that contains all the superactivities
of a found so far, costing O(logM), where M is the size of the collection. M can
never exceed N , so the total computation time for finding one superactivity of a
and adding it in our list is O(logN). Continuing this process recursively, we will
eventually add all superactivities of a, which are at most N , so the process can be
repeated at most N times, costing a total of O(NlogN). For each superactivity, we
need to determine whether a P14 carried out by link to p exists, and, if so, delete it;
this costs O(logN) for each superactivity, i.e., O(NlogN) in total (as we can have
at most N superactivities). Thus, the combined computational cost for Algorithm 2
is O(NlogN).

Algorithm 3 is more complicated. As in disassociation, we first need to find all
superactivities of a, which costs O(NlogN). Then, we need to find the maximal
superactivities; this process requires a filtering over the set of all superactivities. In
the worst-case scenario, this requires checking each superactivity against all others,
costing O(M2) if the total number of superactivities are M. Thus, in the worst-case
scenario (where M=N), the cost of finding the maximal superactivities is O(N2).
After that, we need to compute Col (line 7), which is a process identical to the
computation of superactivities and requires O(NlogN) time. Finding the maximal
elements in Col likewise requires O(N2), whereas the execution of the disassociation
operation is O(NlogN) as explained above. Summing up the above complexities, we
conclude that the worst-case computational complexity for Algorithm 3 is O(N2).
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4.3.2 Supplementary Operations

The algorithms for the operations related to the other inference rules, e.g., for Dis-
associateActivityFromMMObject and ContractActivityFromMMObject (related to
R2), can be designed analogously. Since hierarchies of devices and parts, can be of
the same graph morphology, the respective algorithms follow the same design as the
ones of R1 discussed previously. However, some adjustments are essential such as
the replacement of the P14 carried out by with the P16 was used for link and the
activities with devices (i.e. man-made objects) which are composed of parts instead
of subactivities. Moreover, the actor now is the activity that used the specific de-
vice. The operations for rule R3, since they are not applied on hierarchies, are not
so complicated and thus their algorithms can be easily implemented. For instance,
taking into account the foundational viewpoint, deletion of a P12 was present at
link between an information object and event requires the deletion of the respective
P12 was present at links between the carriers of the former and the latter.

The complete set of operations is given in the appendix of this paper. Using the
same mindset, we could also develop algorithms for adding/deleting the transitive
relationships used in our model, such as P9 forms part of ,
textitP46 is composed of etc, as well as for adding/deleting new objects, such as
actors, activities etc.

In addition, one could compose the above operations to define more complex,
composite ones. For instance, Addition and Contraction can be composed to define
a Replace operation. Such an operation would be useful if, e.g., we acquire the
information that John (another photographer) is responsible for Capture 1 7 instead
of the Starc Institute. This means that the Starc Institute should be replaced by
John. Fig.4.4 illustrates a possible definition of replacement as a composition of
an addition and a contraction. Another version of replacement could be formed
by composing Add and Disassociate. One could similarly define more composite
operations, but this exercise is beyond the scope of this work.

Figure 4.4: Actor replacement
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Chapter 5

Implementation and
Experimental Evaluation

This Chapter analyses some of the implementation issues of this study. It specifically
details how our approach can be implemented (Section 5.1), what are the require-
ments (Section 5.1.2) and discusses the available repository policies with regard to
the inference rules. Lastly, we present results of conducted experiments (Section
5.2) comparing two strategies of whether choose to store, or not the inferences with
respect to the query performance, the storage space requirements and the perfor-
mance of update operations. Even though the experiments were based on the partOf
hierarchies of the P9 forms partOf relation of the CIDOC CRM ontology, we argue
that they can also be indicative for other hierarchies, such as the RDF/S subclassOf
one and for other rules of the same conjunctive form.

5.1 Implementation Considerations

5.1.1 On Closures and Reduction

As mentioned in Section 2.4, we use the term KB to refer to a Knowledge Base in
the logical sense, either stored in a system (e.g. an RDF triple store) or composed
by the contents of several metadata files.

We shall use the term KB to refer to a Knowledge Base in the logical sense,
either stored in a system or composed by the contents of several metadata files.
Let T be the set of all possible triples that can be constructed from an infinite set
of URIs (for resources, classes and properties) as well as literals (Gutierrez et al.,
2004). We shall use K to refer to the set of RDF/S triples of the form (subject,
predicate, object) of a KB. Furthermore, hereafter we assume that K denotes the
set of triples as produced by the adopted metadata schemas and ontologies and the
ingested facts (yielded by manual or automated processes). Then, a KB can be seen
as a finite subset K of T , i.e. K ⊂ T .

We shall use C(K) to refer to the closure of K. Note that the closure can be
defined with respect to the standard inference rules for RDF/S and/or other custom
rules (e.g., like those that we introduce in Section 3 of this paper) and is unique.

41
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More formally:

Definition 5. The closure of a K, is the set of all triples that either are explicitly
asserted or can be inferred from K.

In this regard, we can distinguish C RDFS(K), C customRules(K)
, C customRulesAndRDFS(K). We shall use C RDFS(K) and C customRules(K) to
refer to the closure of K defined with respect to the standard inference rules for
RDF/S and the custom ones respectively. The set of triples in C RDFS(K) is a
proper subset of C RDFSandCustomRules:

• C RDFS(K) ⊂ C RDFSandCustomRules(K)

Lastly, C RDFSandCustomRules(K) is the set of the explicit and inferred triples
derived both from RDFS and the custom rules. In other words, this set is the union
of the two previously defined closures:

• C RDFSandCustomRules(K) = C RDFS(K) ∪ C customRules(K)

We can use Red(K) to denote the reduction of K. The reduction is the minimal
set of facts that have the same closure as K, and for the case of RDFS rules it is
unique if the relations are acyclic (Zeginis et al., 2011). More formally:

Definition 6. The reduction is the minimal set of facts that have the same closure
as K, i.e., C(R(K)) = C(K).

Analogously we can define R customRules(K) and R customRulesAndRDFS(K).
The following diagrams (Fig. 5.1 and Fig. 5.2) show the Venn diagrams of these
sets.

Figure 5.1: Closures and Reductions (part 1)

As a result, according to the definition of reduction and closure the following
must hold:

• C customRules(R customRules(K)) = C customRules(K)

• C RDFS(R RDFS(K)) = C RDFS(K)

• C RDFSandCustomRules(R RDFSandCustomRules(K) =
C RDFSandCustomRules(K)
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Figure 5.2: Closures and Reductions (part 2)

A repository policy could be to keep either K, or Red(K), or C(K)stored. Stor-
ing C(K) could could offer better query execution time with regard to information
retrieval. However, that would increase the storage space requirements. Thus, we
exclude C(K) from our discussion due to the last fact. If, on the other hand, we
decide to store Red(K), that approach results to high maintenance cost, even though
it can minimize further the storage space. This is because in order for the minimized
storage space to be maintained, the reduction must be applied every time after there
is an update request (i.e., addition or deletion of a triple). Therefore, deciding to
keep stored K is a reasonable choice in terms of storage space and maintenance
requirements.

One of the main characteristics of a repository is also to provide efficient mech-
anisms for information retrieval. One of the issues is whether the inferred triples
should be materialized and stored or not. In the first case, the derived information
can be found and retrieved efficiently, while this is not true for the second one. How-
ever, if the inferences are not stored, the storage space requirements are lower than
the first case.

5.1.2 Requirements and Approaches

This section examines implementation requirements and approaches. Assuming that
K is stored in a triple store/repository, the key aspect of a general implementation
approach is that any inferable information (i.e., C(K) ) according to our custom
rules, should not be pre-computed and stored in the repository (static materializa-
tion) but be derived at query evaluation time instead (dynamic materialization).
This requirement is crucial in order to satisfy our initial intention to reduce the
space storage requirements. We shall also discuss other requirements and the case
of Virtuoso, an RDF data store featuring a backward chaining reasoning.

Triple stores are frameworks providing mechanisms for storing and querying RDF
graphs. Over the last few years there has been an explosion in the development
of such frameworks leading to high competition. The technologies developed vary
from commercial to open source technologies, however they all promise to handle
the management of RDF data efficiently. Some of the most popular triple stores
available are the following:
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Table 5.1: Triple Stores and their capabilities

OWLIM
family

Allegrograph Sesame Virtuoso Jena

SPARQL
Support

√ √ √ √ √

SPARQL/
Update
Support

√ √ √ √ √

Custom
rule-based
inference

√ √ √

with
external
reasoner

√ √

RDFS
inference

√

rdfs:type
rdfs:subClassOf
rdfs:subPropertyOf
rdfs:domain
rdfs:range

√

rdfs:sub
PropertyOf
rdfs:sub
ClassOf

Almost
all RDFS
axiomatic
and
entailment
rules

Material-
ization

static dynamic static dynamic static
dynamic

• Allegrograph1

• OWLIM-Lite, OWLIM-SE2

• Sesame3

• Virtuoso4

• Jena5

Jena and Sesame are open source. Allegrograph and Virtuoso have both free and
commercial versions. The free version of OWLIM family is the OWLIM-Lite, while
the commercial is the OWLIM-SE. For a larger set of triple stores, their main features
and references to their experimental evaluation one could consult the W3C’s survey
6. Thus, the issue here is choosing of a triple store that will meet the requirements
of our approach’s implementation.

One of such requirements is the ability of reasoning based on user defined custom
rules. Moreover, since CIDOC CRM and CRMdig are based on a hierarchy of
properties and classes, it would be desirable the support of inference associated to
the RDFS entailment rules of subproperty and subclass. Another requirement, as
previously discussed, is the computation of inferences (i.e., the transitive closure of
K, C(K) ) to be made at query time. Although, most of the triple stores meet the
first requirement, they fail to meet the second one.

1http://www.franz.com/agraph/allegrograph/
2http://www.ontotext.com/owlim
3http://www.openrdf.org/
4http://virtuoso.openlinksw.com/
5 http://incubator.apache.org/jena/
6http://www.w3.org/wiki/LargeTripleStores
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More specifically, some of them such as the stores of OWLIM family materialize
the full closure of K. The C(K) is usually computed and stored in the repository along
with K in a pre-processing phase before new queries can be evaluated. Examples
that do not follow this approach are Allegrograph and Virtuoso. Their reasoning
capabilities can be alternatively enabled for a specific query allowing the derivation
of new implicit facts.

In addition to the above requirements, the satisfaction of update requests of the
stored KB is not trivial. The evolution of the KB relies on the insertion of new triples
and the deletion of existing ones. Thus, the query language implemented should
support update operations on K. The new version of SPARQL query language, 1.1
(Harris & Seaborne, 2010) which is adopted by the majority of the different triple
stores, provide semantics for such operations.

Comparing Virtuoso and Jena, from a performance point of view, it has been
showed that generally the former outperforms the latter (Bizer & Schultz, 2008),
(Thakker et al., 2010). From a practical point of view, Virtuoso has more benefits
that Jena. For instance, RDF views are supported by Virtuoso in contrary to Jena
and that might be useful in the case of conjunctive inference rules. Other benefits of
Virtuoso might be the implementation of transitivity closure’s computation. That
implementation offers additional information to query results, such as the depth of
the inferred triple patterns in the transitive closure’s graph.

According to our knowledge, Allegrograph has not been extensively benchmarked
and compared to other triple stores taking also into account user defined custom
rules. The free version of Allegrograph is limited by a 5 million triples maximum.
Moreover, it does not support SQL in contrast to Virtuoso that can be used as a
general RDBMS and not limited to an RDF triple store. One other advantage of
Virtuoso is the offered flexibility with respect to RDFS reasoning. Even though,
not all RDF/S inference rules are supported, the user might define different RDF/S
schemas for a specific repository and for the same queries retrieve different informa-
tion using backward reasoning. However, in Allegrograph, according to the provided
documentation7, a new repository has to be created. Lastly, the advantages of the
implementation of the transitive closure’s computation and the definition of RDF
views, as discussed previously, also apply in this case.

The case of Virtuoso

As an implementation approach example that meets all the aforementioned require-
ments we consider the case of Virtuoso. Virtuoso is an RDF data triple store includ-
ing the feature of backward chaining reasoning; it does not materialize all inferred
facts but rather looks for the explicit facts as a foundation for the former ones
(Erling & Mikhailov, 2009). Its internal storage method is relational and so the
triples are stored in tables in the form of quads (g, s, p, o). Each column of a quad
represents the graph, subject, predicate and object.

Virtuoso support the SPARQL query language and some extensions such as
SPARUL statements. The latter is used for the update operations and includes
statements such as insert, modify, delete, load etc. Regarding Virtuoso’s reasoning

7http://www.franz.com/agraph/support/learning/SPARQL-with-Reasoning.lhtml
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capabilities, its reasoner covers the related entailment rules of rdfs:subClassOf and
rdfs:subPropertyOf and user defined custom rules can be expressed in construct
queries.

Transitivity is also supported by two different ways. Given a RDF schema
and a rule defined and associated with that, the predicates rdfs:subClassOf and
rdfs:subPropertyOf are recognized and the inferred triples are derived when needed.
In the case of another predicate the option for transitivity has to be declared in the
query (Erling & Mikhailov, 2009). This way has the advantage of retrieving infor-
mation regarding the evaluated transitivity steps. For example, it could return the
length of time associated with each transitive step or the total number of steps for a
particular triple. This might be useful in order for example to find the root activity
in the hierarchy of the activities.

5.2 Experimental Evaluation

5.2.1 An Analytical Cost Model

In this section, we present an analytical cost model with respect to the number of
inferences derived by the application of our custom reasoning rules. We focus on
the hierarchies of activities and the actors who are responsible for the former ones.

We assume that our KB is represented by instances in the form of RDF triples
(i.e., s p o) based on the CIDOC CRM’s schema. We will denote the number of
RDF data triples (i.e., instances) in our initial KB by T. We also denote the number
of redundant instances by R.

Definition 7. Let act be an activity. The set subAct(act) includes all the (direct
and indirect) subactivities of act. More formally:
subAct(act) = {subactivity|∃t : (subactivityformsPartOfact) ∈ K ∪ C(K)}.
We will denote the cardinality of subAct(act) as N i.e., N = |subAct(act)|.

Definition 8. Let ac be an actor. The set Nac(ac) includes all the activities asso-
ciated with ac. More formally:
Nac(ac) = {activity|∃(activitycarriedOutByac) ∈ K ∪ C(K)}.
We will denote the cardinality of Nac(ac) as N i.e., Car = |Nac(ac)|.

Definition 9. Let act be a activity associated with an actor ac. The set subAct(act,
ac) includes all the (direct and indirect) subactivities of act also associated to ac.
More formally:
Nactacr(act, ac) = {subactivity|subactivity ∈ subAct(act)
andsubactivity ∈ Nac(ac)}.
We will denote the cardinality of Nactacr(act, ac) as M i.e., M = |Nactacr(act, ac)|.

The inference rule R1 propagates an actor ac of an activity act to all the (direct
and indirect) subactivities of act. As a result,we have to estimate M for various
morphologies of the hierarchy of activities. Below we start the estimation of N
(i.e., the number of inferred transitive partOf associations) starting from the simple
morphologies that can occur (i.e., tree-shaped hierarchies) and conclude to the most
complex ones (i.e., DAG-shaped). Therefore the total number of triples is N+M.
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Lemma 1. Assuming a complete tree-shaped activity hierarchy of depth d and degree
b, then

N = T +
d∑

i=2

bi(i− 1)−R.

Proof. Inferred transitive activities can be derived after the level 2 of the tree. For
each level i of the tree, we have bi activities and for each activity we infer i-1 triples
of the form (act formsPartOf superact) for the upper levels of the tree.

Lemma 2. Assuming a tree-shaped activity hierarchy of depth d and a degree bi for
each level i of the trees, then

N = T +
d∑

i=2

bi(i− 1)−R.

Proof. Inferred transitive activities can be derived after the level 2 of the tree. For
each level i of the tree, we have b activities and for each activity we infer i-1 triples
of the form (act formsPartOf superact) for the upper levels of the tree.

Lemma 3. Assuming a DAG-shaped activity hierarchy of maximum depth d, and
each partOf edge has a depth value following the path from the roots of the DAG,
then

N = T +
n∑

i=1

(depthedgei(depthedgei − 1)) − R, where n is the total number of such

edges.

Proof. The depth of each partOf edge is denoted by the variable depthedge. For each
edge’s depth (i.e., depthedgei) there can be inferred depthedgei partOf edges towards
the roots of the DAG.

5.2.2 Experimental Design

The objective of this evaluations is to understand the trade off between storage space
and the performance of queries and updates. To do so, we evaluate our algorithms
experimentally and compare our strategy of storing K to the one of storing C(K).
We do not take into consideration the third strategy of storing the redundant-free
KB, because of the additional costly reduction techniques that have to be applied
after every update operation, either for addition or deletion of information.

In the first part we examine the results on real data and in the second part
on synthetic data. In the case of real data, the experimental process involves only
measurements on storage space taking into consideration the RDF/S rules and our
custom rule R1. We did not examine the rules R2 and R3 due to the absence of
data regarding those rules.

In the second case, the synthetic data was used mainly to test the scalability of
our algorithms in large datasets; our synthetic data involved only rule R1 (rule R2
can be applied on similar graph morphologies and rule R3 is much more simpler as
it is not not relying on hierarchies).

The evaluation consists of measurements on storage space and query execution
time. Secondly, the time of maintenance and update operations is measured in-
cluding the time for computing and storing transitive inferences and the time for
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Figure 5.3: Experimental design on real data

disassociating/contracting a fact from the KB. The three experiments in brief are
the following:

1. storage for real data

2. storage vs query for synthetic data

3. maintenance/update operations for synthetic data

The statistics of the data are shown in the Appendix of this paper.

Experimental Settings

We performed our experiments on a Pentium 4 Cpu at 2.55GHz and 2GB RAM,
running Linux Ubuntu 11.10. The chosen triple store was the Virtuoso’s open source
version 6.1.5 taking into account its advantages discussed in the previous section.
Based on the available memory we chose to change some parameters of Virtuoso
in order to minimize swapping as much as possible. Refer to the Appendix for the
configuration file of Virtuoso.

5.2.3 Results and Discussion

Real Data

To test our approach on real data, we extracted data of the most completed meta-
data repository available as part of the 3D COFORM project8 in FORTH-ICS. We
inserted the metadata in the virtuoso server; we compared the repository of the
initial data ingestion and the one containing all the materialized inferences with
respect to the RDF/S rules (as supported by Virtuoso) and rule R1 including the
transitive relation P9 forms part of (see Fig. 5.3).

For this experiment, we ingested a total dataset of 150,434 triples with respect
to the CIDOC CRM model in Virtuoso. The relations of P9 forms part of and
P14 carried out by were 8,937 and 0 respectively. The reason for the zero result is
that although the initial data did not consist of triples having as predicate the P14
carried out by property, there were triples having as predicates subproperties of P14
carried out by . As a result, after the RDF/S inference there were 129 triples with

8www.3d-coform.eu/

www.3d-coform.eu/
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Figure 5.4: Space evaluation on real data

the P14 carried out by predicate. The total triples in the repository in this case
were 310,919.

The same behaviour is observed with the triples regarding P9 forms part of
predicate; after the RDF/S inference there were also 8,937 since P9 forms part of
is a super property defined in CIDOC CRM. Subsequently, the total triples after
applying rule R1 to the dataset were 327,452 and the triples regarding P9 forms
part of and P14 carried out by predicates were 24,444 and 717 respectively (see also
Fig. 5.4). The number of P9 forms part of triples in this case has been increased
since we take into account the transitivity of this relation. As a result, we observe
that there was an increase of 106% and 118% in the number of total triples from
the repository containing K to the ones of the RDF/S inference and both RDF/S
and rule R1 respectively. The increase percentages in the strategies of storing the
inferences with respect to the rule R1 and/or the RDF/S rules indicate that our
approach is more beneficial considering the space storage requirements.

Synthetic Data

In addition, to test the scalability of our algorithms in large datasets, we synthesized
data involving only the P9 forms part of and P14 carried out by predicates. The
goal was the evaluation of space and query performance with respect to our rule
R1. Since it is based on the depth of the activity hierarchies, we had to realize how
critical was this parameter to our goal. We expect running time to be depending on
the depth of the activity hierarchies, so our experiments evaluated the effect of this
parameter on the running time. Another parameter that we evaluated for its effect
on performance was the number of the ingested triples.

Thus, having in mind these two parameters we synthesized hierarchies of the most
complex form i.e., DAGs. For this purpose we used PowerGen (Theoharis et al.,
2012) that generates random DAG-RDF/S schemata with subsumption hierarchies.
These are real-world-like schemata whose schema exhibits distribution commonly
found in reality and can be parametrized by several parameters such as maximum
depth and the number of classes. Thus, we generated multiple schemata of 1000
classes and depths of 3,4 and 6. Powergen produces schemata having generic prop-
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Figure 5.5: Experimental design on synthetic data

erty names. To test our approach, we require hierarchies of P9 forms part of prop-
erty, so we chose to replace the RDFS: SubClassOf property with P9 forms part of
. This way, the parameters of Powergen can also be used to tune the morphology of
P9 forms part of hierarchies.

The resulted repositories contained datasets consisting of multiple disjoint unions
of graphs of 200K, 400K, 600K, 800K and 1M P9 forms part of triples (K denotes
thousand and M million). For each dataset we distributed a number of actors ran-
domly to the activities equal to 1% of the P9 forms part of triples. Lastly, it should
be noted that the number of activities and actors has been kept the same for each
level of the graphs in each dataset. In the sequel we present the results of experi-
ments on two policies that can be followed, regarding the choice of storing or not the
inferred triples of the transitive P9 forms part of relation and the rule R1. There-
fore, in the following figures “No inference” denotes the repository containing only
the initial triples and the “Rule R1 inference” denotes the repository containing all
inferences derived from rule R1.

Storing inferred triples. In the previous experiment we showed the space re-
quirements for different repository policies on real data. However, in order to further
investigate how the space requirements are affected by the parameter of maximum
depth of DAGs and the number of triples, we conducted similar experiments for
synthetic data up to 1 million triples and depth 6 (as discussed previously). For
this experiment, we ingested dataset of 200K, 400K, 600K, 800K and 1M triples
with P9 forms part of and P14 carried out by predicates. After the ingestion, we
materialized the transitive and the inferred triples derived by applying rule R1.

In the figures below we show the results of the 200K (Fig. 5.6a), 600K (Fig.
5.6b) and 1M (Fig. 5.6c) triples in the respective maximum depths 3,4 and 6. The
total triples after the inference of rule R1 and for the 1M datasets were 3,229,902,
5,478,634 and 7,560,778 for 3, 4 and 6 depths respectively. Thus, we observe that
for the 1M triples we have an increase of 218%, 435% and 648% for depths 3,4 and 6
respectively. The critical parameters in this case are the number of triples, and the
maximum depth of the DAGs. As a consequence, both the results of the experiments
on real data and synthetic data suggest that policies following the concept of storing
the inferred triples contribute to a significant amount of overhead with respect to
the storage space needed.

Querying RDFS activity hierarchies. We also experimented with the per-
formance evaluation of a query that is expected to be one of the most common that
would involve the computation of transitive P9 forms part of relations at query
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(a) 200K triple dataset (b) 600K triple dataset

(c) 1M triple dataset

Figure 5.6: Storage space evaluation

time. That query was to “retrieve all associated actors given a particular activity”
including those of its superactivities (i.e., application of rule R1). We evaluated this
query for all the activities in the hierarchies and their respective depth, taking the
averaged measurements. Every time we changed the dataset we cleared the cached
buffers of the operating system in order to have more reliable results.

Figures 5.7a, 5.7b and 5.7c show the time of the query in milliseconds (ms) for
the datasets of 200K, 600K and 1M triples and the depths 3, 4 and 6 respectively.
We observe that in the case that our repository contained all the inferred triples of
rule R1 the time is almost the same. Since all the triples are stored there is not any
additional computation such as the transitive closure to be evaluated at query time.

In comparison, following our strategy the query time performance has an increase
reaching almost at 3.5ms. This is acceptable since the transitive closure of the P9
forms part of relation has to be computed at query time. Moreover, Fig. 5.8
indicates a slight increase in ms as a result of the increasing depth for almost all
datasets. Therefore, as the hierarchy becomes deeper, the number of the inferred P9
forms part of and P14 carried out by triples increases as well. Another observation
that can be made is that, in average, the time needed to evaluate this query for all
the activities is independent from the number of triples stored into the repository.
This can be explained by Virtuoso’s scalability feature (Erling & Mikhailov, 2009).

Computing and storing the transitive closure. One issue that concerns
the materialization policy is the time needed for the computation and storage of
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(a) 200K triple dataset (b) 600K triple dataset

(c) 1M triple dataset

Figure 5.7: Query performance

Figure 5.8: Query performance for all datasets
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Figure 5.9: Time for computation and storing the transitive closure of all datasets

the transitive closure of the P9 forms part of relations. That has a general impact
on the maintenance operations of a repository. In a database of initially 59,903,298
triples we performed the discussed task for each dataset. However, since the memory
usage of this task was increased and there was some usage of the swap file that was
cleared, before starting the task for a new dataset. In this Section we present the
results of measurements with regard to this issue.

Figure 5.9 shows the results in hours for all the triple datasets and for the various
depths. We observe that the both parameters of the depth and the number of triples
affect the time needed for the transitive closure to be computed and stored in the
repository. There seems to be an exponential correlation between the increase of
time and the one of maximum depth for all datasets. Moreover, even though the
inferences are stored in a different repository than the initial one, the numbers are
still high, taking into account that these regard only one relation. As a result, our
approach has one more advantage compared to the policy of storing all inferences.

Time evaluation of disassociation. In this experiment we measure the time
needed in order for the actor disassociation update operator to be completed. We
run this operation for all the actors in our datasets and depths and took the average
measurements.

Figures 5.10a, 5.10b and 5.10c show the results of the respective datasets and
depths. We observe that the operation in the repository following our strategy of
not storing the inferences requires less time compared to the one of storing all the
inferences. In the first case the average required time is approximately 5ms, while
in the second is 15ms. This amounts to an increase of 200% in the second case.
The main tasks of disassociation is apart from the computation of the transitive
closure, the deletion of several triples. In the first case, even though the transitivity
is evaluated at query time there are no inferred triples to be deleted. However, in the
second one, even though the transitivity is not evaluated at query time, the number
of triples that are deleted by the operation exceeds the respective one in the first
case.

Time evaluation of contraction. Lastly, in this experiment we measure the
time needed in order for the actor contraction update operator to be completed.
Similar to the previous experiments, we run this operation for all the actors in our
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(a) 200K triple dataset (b) 600K triple dataset

(c) 1M triple dataset

Figure 5.10: Time evaluation of disassociation

datasets and depths and took the average measurements.

The operation of contraction is more complicated than disassociation. Except
from disassociation which is performed in the end, the operation requires the compu-
tation of maximal activities and the addition of triples in order to preserve implicit
knowledge. Figures 5.10a, 5.10b and 5.10c show the results of the respective datasets
and depths. The time required in the repository in which all inferences are stored
is considerably less than the one following our approach. More specifically, the
numbers in average are close to the case of the disassociation operation, i.e., ap-
proximately 16-17ms. This can be explained by the fact that since all inferences are
stored, Virtuoso only checks for their existence without adding new triples into the
repository. Thus, the time required is mostly for the operation of disassociation in
order for contraction to be completed. Regarding the repository following our pol-
icy, the time is increasing in relation to maximum depth suggesting that the tasks
of the transitivity computation and the search for the maximal activities are more
time consuming in this case.
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(a) 200k triple dataset (b) 600k triple dataset

(c) 1m triple dataset

Figure 5.11: Time evaluation of contraction

5.3 Summary

This section detailed on the implementation issues of our approach. We discussed
how this could be implemented on several triple stores proposing some of which are
the most adequate for this purpose. Choosing the most scalable one, we conducted
experiments on real and synthetic data comparing two policies that could be adopted
by a metadata environment.

Our findings showed that the policy of not storing the implicit information is
beneficial with regards to the reduction of storage space requirements of provenance
information, with no significant overhead in the query time performance. Both
for the real and synthetic data the reduction percentages were over 100% and in
the second case over 200%, and compared to the second policy of storing all the
inferences, the overhead in query execution was approximately 1.5ms.

The disadvantage of the latter strategy is also realized by the fact that computing
and storing the transitive inferences, which is a KB maintenance operation, seemed
to have an exponential behaviour in relation to execution time. Lastly, regarding
the update operations disassociation and contraction, the former was executed faster
under the second strategy, while the latter one achieved better execution times fol-
lowing the first strategy. It should be noted that for all experimental measurements
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involving the synthetic data the maximum depth of graph hierarchies had a quite
influential role.



Chapter 6

Reasoning Extensions and
Temporal Aspects

In the previous Chapters we introduced a set of custom inference rules in order to
minimize the storage space requirements of provenance information. However, that
set of rules might be extended. In this chapter, firstly we elaborate on several exten-
sions to these reasoning forms (Section 6.1) describing a metamodel (Section 6.1.3)
towards a more general approach for the specific patterns that could be exploited by
the inference rules. Secondly, we explain the temporal reasoning related to CIDOC
CRM (Section 6.2), and lastly we define an essential and optional parthood relation
taking into account some of its temporal aspects as well (Section 6.3).

6.1 Extending our Reasoning Rules

In Chapter 3 we introduced a specific set of inference rules involving the propagation
of features from wholes to parts. From a semantic point of view, the rules are
reasonable with respect to the semantics of the classes and properties defined in
the ontology. For example, we assume, by convention, that a person carrying out a
process carries out all of its sub-processes; this is reflected by the formal phrasing
of the corresponding rule.

However, alternative rules could also be reasonable and applicable. For example,
an alternative rule could be defined by stating that a person carrying out a process
carries out at least one of its sub-processes or that a person carrying out a process,
also carried out all of its super-processes. In this Section we present such alternative
rules respecting the semantics of CIDOC CRM’s ontology. Following the format of
Chapter 3, the two subsections introduce two more rules accompanied by respective
examples. The last Section generalizes our approach by examining a metamodel
which can be used for the specification of similar reasoning rules.

6.1.1 Presence of actors to super activities

• Rule 4. Presence of actors to activities
If an actor carried out a subactivity, then he was present at its superactivity.

57
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∀x, y, z(carriedOutBy(x, y) ∧ formsPartOf(y, z)

→ wasUsedFor(x, z))
(6.1)

Example

Consider again the example of Section 3.1 taken from the cultural heritage domain
consisting the activities of a Laser Scanning acquisition activity and a responsible
actor the Starc-Institure. Now, we could have a state of our KB in which the Starc-
Institute is only associated via the P14 carried out by relation only to some of the
subactivities of Laser scanning acquisition e.g., to the Capture 1 7. In this case, by
the application of rule 4 the presence of the Starc Institute will be inferred to all
the superactivities of Capture 1 7. Thus, P14 was present at links will be added
associating the Starc Institute with the activities Laser scanning acquisition and
Detailed sequence of shots ,see Fig. 6.1.

Figure 6.1: Example of rule R4

6.1.2 Use of objects to subactivities

• Rule 5. Use of objects to subactivities
If an object (device) was used for an activity, then it was also used to all of
its subactivities.

∀x, y, z(isComposedBy(x, y) ∧ wasUsedFor(x, z)

→ wasUsedFor(y, z))
(6.2)
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In the example of Section 3.2 we introduced the rule for propagating the use of
devices to their parts. However, we did not consider the fact that activities can be
composed into further subactivities. In this case, the use of a specific object can be
propagated to the corresponding subactivities. In our example, the multiviewdome
device will be associated implicitly via the P16 was used for to the subactivities
of the particular activity. This is accomplished by the application of rule 5. As a
result, the multiviewdome device will be associated to Capture 1 7 and Capture 1 8
which are subactivities of the Detailed sequence of shots, see Fig. 6.2.

Figure 6.2: Example of rule R5

6.1.3 Towards a Metamodel for Reasoning Rules

In this Section, we propose a metamodel in order for a larger set of rules to be
defined and a better understanding for the pattern be exploited as a basis for this
process. This pattern is considered to be independent from our application context
ontology CIDOC CRM. However, one should consider the semantics of the entities
and the relations among them in order for the rules to be logically valid.

The basic characteristic of this model is the part of relation by which entities
can be decomposed into subentities. Two entities are often related by a property
representing some attribute, feature or role which an entity had regarding the other
one. Fig. 6.3 depicts such a model consisting of two entities having been decomposed
into further subentities and related with a property instance.

The set of reasoning rules which might be defined taking into consideration this
pattern are to propagate the features from the entities to the respective sub entities,
i.e. from wholes to parts (like the rules R1 and R2). In the same spirit one could
define rules for propagating features from the sub entities to the entities i.e., from
parts to wholes (like the rules R4 and R5).
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Figure 6.3: A metamodel for reasoning rules

6.2 Temporal Aspects

In this section, we present a temporal reasoning as an introduction to the subsequent
section regarding temporal essential and optional parts. We explain how time is
associated to ontological entities taking into account cases in which the precise time-
spans of certain events are uncertain. We then integrate this kind of reasoning
modelling the existence of material objects the so-called persistent items.

6.2.1 Time modelling in CIDOC CRM

Figure 6.4: Temporal Entity Hierarchy of CIDOC CRM

The two disjoint main classes of the model is the E2 Temporal Entity and the E77
Persistent Item. All other classes are in most cases direct or indirect specializations
of the aforementioned classes. Temporal entities comprise instances of the classes E4
Periods and E5 Events modelling phenomena that have a specific span in time (see
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Fig. 6.4). Persistent items can either be physical entities, such as people, animals or
things, or conceptual entities such as ideas, concepts, products of the imagination
or common names.

6.2.2 Temporal Reasoning on Events

CIDOC CRM is a model of possible states of affairs in the real world in which
historical phenomena are identified by periods. Periods are sets of coherent phe-
nomena or cultural manifestations bounded in time and space. Examples of periods
are the Neolithic Period, the Ming Dynasty or the Jurassic Period. Events are spe-
cializations of periods. Changes of states in cultural, social or physical systems can
be regarded as events and be represented by the E5 Event class in CIDOC CRM.
Moreover, events can be decomposed into subevents or composed by larger events
which are compatible with the definition of periods. Examples of events are the
birth of Cleopatra or the World War II (Crofts et al., 2011).

Temporal reasoning on events is associated with time spans defining their extent
in time. Events cannot have multiple time spans because that would express different
evidence about their true temporal boundaries.

The class defined in CIDOC CRM for modelling time spans of events is the E52
Time-Span. Time spans are based on the principle that in most cases the events’
temporal extents (i.e., their exact beginning and ending) are not precisely known
(Doerr et al., 2004). Most often there is only information about an outer interval,
that is, by some terminus post quem (TPQ) and terminus ante quem (TAQ) for the
event, defining the fuzzy boundaries of the event’s time span (Holmen & Ore, 2009).

On the other hand, if there is enough evidence, one could define the respective
inner interval of the event representing the certain span of its occurrence. In other
words, the inner interval corresponds to the minimum period of time covered by
an event and the outer interval corresponds to the maximum period of time within
which an event occurred. The time which exists between the two intervals symbolizes
the uncertainty of the exact timing of an event. In the case of absolute accuracy
these two intervals are identical.

The class which is defined by the ontology of CIDOC CRM for modelling time
spans of events is the E52 Time-Span. Since Time-Spans may not have precisely
known temporal extents, there are two properties in order for these temporal bound-
aries to be defined. The two properties are the P81 and P82. P81 property is
dedicated for modelling the Time-Span’s maximum known temporal extent i.e. on-
going throughout. P82 property is for modelling the minimum outer bounds of
events i.e. at some time within. The time which exists between P81 and P82 rep-
resents the uncertainty of the exact timing of an event. We can conclude that the
level of uncertainty can be reduced according to how large is the P81 time interval
in relation to P82. The above temporal aspects are illustrated in Fig. 6.5.

Alternatively, we can define the above boundaries of P81 and P82 properties and
its temporal constraints. For the P82 the 2 boundaries can be defined as “begin of
the begin” and “end of the end”. For the P81 accordingly can be defined as “end of
the begin” and “begin of the end”.
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Figure 6.5: Timespans in CIDOC CRM

Figure 6.6: Alternative Representation of Time

Constraints

Following the above definitions for the boundaries of the 2 properties, we can con-
straint these intervals in order to allow some relative chronological reasoning. The
“begin of the begin” is the start of a larger period so it has to be the precedent of
the other boundaries. After that we can define the “end of the begin”. Following
the same logic, in the timeline the constraints can be the following:

• “begin of the begin” ≤ “end of the end”

• “begin of the begin” ≤ “end of the begin”

• “begin of the begin” ≤ “begin of the end”

• “end of the begin” ≤ “end of the end”
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• “begin of the end” ≤ “end of the end”

It can be observed there is not a defined constraint between the boundaries of
P81. As a consequence the time interval of P81 can be negative. So that the “end of
the begin” can be precedent of the “begin of the end”. This is allowed conventionally
in cases in which the interval is unknown or there is not any time interval.

For simplicity purposes we can replace the above definitions:

• For the P82:

– “begin of the begin” : “P82a”

– “end of the end” : “P82b”

• For the P81:

– “end of the begin”: “P81a”

– “begin of the end” : “P81b”

So, finally the constraints with the new naming of boundaries can be:

• “P82a” ≤ “P82b”

• “P82a” ≤ “P81a”

• “P82a” ≤ “P81b”

• “P81a” ≤ “P82b”

• “P81b” ≤ “P82b”

6.2.3 Temporal Reasoning on Persistent Items

Persistent Items can either be physical entities, such as people, animals or things, or
conceptual entities such as ideas, concepts, or products of the imagination or com-
mon names. Persistent items are sometimes known in philosophy as “endurands”.
They can be repeatedly recognized within the duration of their existence by identity
criteria rather than by continuity or observation. The class defined in CIDOC CRM
which comprises these items is the E77 Persistent Item.

Persistent items’ existence is bounded by events that cause its beginning and
ending and thus by the classes (a) E63 Beginning of Existence and (b) E64 End of
Existence. Their related properties also defined in CIDOC CRM are (a) P92 brought
into existence (was brought into existence by) and (b) P93 took out of existence (was
taken out of existence by). The classes E63 and E64 are subclasses of E5 Event class.
As a result, both of them are associated to E52 Time Spans (see section 6.2.2 via
the P4 has time-span (is time-span of) property. The following figure illustrates the
above relationships:

Pushing the above reasoning further, we assume that a persistent item’s existence
has a time-span (as it is described in Section 6.2.2) which is related to the time-spans
of the aforementioned two events of existence. Its possible existence starts with the
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Figure 6.7: Temporal reasoning on persistent items

Figure 6.8: Existence of material objects

TPQ of beginning of existence and ends with the TAQ of end of existence. Its inner
interval is defined in a similar way and starts with the TAQ of beginning of existence
and ends with the TPQ of end of existence as shown in Fig. 6.8. Thus, the start
of an E63 event denotes for the creation of a persistent item and the end of an E64
one for the destruction of the latter. However, it is certain that a persistent item
exists after the end of an E63 event and before the start of an E64 one.
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6.3 Modelling Essential and Optional Parts

In Section 2.3.2 we reviewed some theories on the parthood relation. We presented
different mereonymic according to the relation of the parts and the complex objects
and the adopted assumptions used in our reasoning. In this section, we refine some
of the definitions regarding parts and wholes, introducing the notions of essential
and optional parts.

As in previous chapters we will again be limited to heterogeneous physical ob-
jects. So wholes conceptualized as masses or collections are out of context. Thus,
hereafter, we will consider that parts of a whole have solely a functional role type
and as a result the whole is assumed to be a functional complex. Additionally,
we will consider parts based on the compositional structure of the whole, the so-
called structure-dependent parts following the theory of Gerstl & Pribbenow (1996).
Structure-dependent parts are the parts that an entity can be naturally decomposed
based on the a priori knowledge of its internal constructive structure and the result-
ing part-whole relations belong to the knowledge of the decomposed entity, i.e., the
whole (Gerstl & Pribbenow, 1996).

6.3.1 Functional Essential and Optional parts

Parts can be further distinguished according to the functional role with respect to
the wholes. In this section we will discuss distinction defining a functional essential
and optional parthood relationship.

Ontological dependencies between parts and wholes is another aspect of parthood
relation. Two of such dependencies are the essential and optional one. In general,
we could say that a whole must have essential parts if it exists, but it could lack
optional parts during its existence. The distinction described can be traced from
the beginnings of philosophy (i.e., by Aristotle) and it remains a subject under
discussion until now. In philosophy the term optional is referred as accidental.
Philosophers often present arguments regarding the essential features and how the
distinction between essential and not essential was derived (Gorman, 2005; Fine,
1994). However, there is some agreement that in modal terms, the word must
reflects the notion of necessity, whereas could reflects possibility (Teresa, 2008).
Thus, replacing the two words, a whole necessary has essential, whereas it is possible
to have optional parts.

We shall specify the above notion of essential and optional dependency adding
the concept of the functionality. Thus, we are interested in the behaviour of a
device and subsequently its parts. Humans use different functional interpretations
in order to explain what a device does. Especially in engineering different meanings
for the term behaviour have been stated. Chandrasekaran & Josephson (2000) have
confined them into five different interpretations. For example, an audio amplifier’s
behaviour might be to amplify the low power audio signals or behaves well as an
effect to the output power. We are not concerned about these alternatives rather
than the general notion of function.

In order to formalize the notion we introduce the predicate
isOperational(x,functionOf(x)) where the functionOf returns some value correspond-
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ing to the behaviour of x and means that the component x has a function which is
given by the previously referred function. Of course, x cannot have any function if
it does not exist. So we have the following axiom:

∀x(isOperational(x, functionOf(x) → E(x)). (6.3)

Therefore, in order for a device to function and be operational it is essentially
depended on some parts contributing to its behaviour. These are called functional
essential parts. For other behaviours additional parts might be used but they are not
necessary for the device to be operative. The latter are called functional optional
parts. Hereafter, we will omit the term functional referring only to essential and
optional parts. In order further understand the distinction we shall present the
following example.

Suppose that we would like to buy a certain device from our local shop. This
device is composed of several smaller devices that are considered to be its essential
parts. These parts are defined by the manufacturer and accompany the device in
every other event, such as in the case of a service. However, there might be other
parts that are not sold with the device but have to be bought separately and are later
embedded on the device for a specific function. These are the optional parts. But
before defining the two relations we should define the two functional dependences
between two components as follows:

Definition 10. (essential functional dependency): A component x is function-
ally dependent on another component y iff, as a matter of necessity, y is operational
and exists whenever x is operational and exists:

efd(x, y) ≡ �(E(y) ∧ isOperational(y, functionOf(y) →

E(x) ∧ isOperational(x, functionOf(x))
(6.4)

Definition 11. (optional functional dependency): A component x is function-
ally dependent on another component y iff, as a matter of possibility, y is operational
and exists whenever x is operational and exists:

ofd(x, y) ≡ ♦(E(y) ∧ isOperational(y, functionOf(y) →

E(x) ∧ isOperational(x, functionOf(x))
(6.5)

We are now ready to define more formally the essential and optional parthood.

Definition 12. (essential part): A component x is an essential part of another
component y iff, as a matter of necessity, y is operational and exists whenever x has
a function, exists, and is part of y, or formally:

EP (x, y) ≡ efd(x, y) ∧�partOf(x, y)) (6.6)

Definition 13. (optional part):A component x is an optional part of another
component y iff, as a matter of possibility, y is operational and exists whenever x
exists, or formally:
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OP (x, y) ≡ ofd(x, y) ∧ ♦partOf(x, y)) (6.7)

The essential parts of the device are necessary in order for the device to be
operational. These parts also determine the identity of the device and coexist with
it. However, the optional parts might exist for a specific time-span of the device’s
existence and they must be related with some events of part addition or part removal.
In general, the time-span of the optional parts is defined with respect to the time-
spans of the aforementioned events (see section for more details). The components
are described purely in terms of their functions. This makes it possible in principle to
replace components by structurally different but functionally identical components.
Furthermore, the components themselves can be represented as devices in their own
terms (Chandrasekaran, 1994). Otherwise, without these parts the device cannot
operate.

One of the most fundamental defined properties in CIDOC CRM for representing
a parthood relationship among physical things is the P46 is composed of (forms part
of). The property is related to instances of the class E18 Physical Thing. The E18
class comprises all persistent physical items with a relatively stable form, man-made
or natural.

CIDOC CRM’s property P46 is a property which is (a) reflexive, (b) transitive
and (c) antisymmetric following the axioms of Ground Mereology (see Section 2.3.2).
Thus, objects are composed of other subcomponents which are assumed to also be
modelled as objects themselves holding a parthood relationship with the former
ones, thereby creating a hierarchy of part decompositions.

In order to support the above notion of essential and optional of parthood relation
in CIDOC CRM, we extend the P46 is composed of (forms part of) property by
introducing two more properties which are sub properties of the P46 one:

• is essentially composed of (essentially forms part of)
• optionally composed of (optionally forms part of)

Figure 6.9 depicts the above modelling.

Figure 6.9: Subproperties of P46 forms part of
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Figure 6.10: Time spans of essential parts

6.3.2 Temporal Essential and Optional Parts

In the section 6.2.2 we reviewed how chronological information about events can be
expressed in CIDOC CRM. In this section, we discuss how time-spans of essential
and optional objects can be defined.

Temporal Essential Parts

Essential parts, as it has been already discussed, exist with their whole that holds a
parthood relationship by default. Thus, their time spans are related to the events
of begin of existence and the end of existence when its whole was generated and
destroyed. Every such event, according to the modelling of CIDOC CRM, has
two boundaries (P81 ongoing throughout) and two (P82 at some time within) ones
which symbolize the certainty and the uncertainty of the exact timing of the event’s
occurrence respectively.

The TPQ of an essential parthood time-span’s outer interval corresponds to that
of its whole’s probable begin of existence and the TAQ to that of its whole’s probable
end of existence. The boundaries of its inner interval, i.e., TAQ’ and TPQ’, are the
TAQ of its whole’s certain begin of existence and the TPQ of its whole’s certain end
of existence, see Fig. 6.10.

We assume that the part has started to exist before the probable end of begin
of existence event (i.e., before the TAQ’ boundary) and end to exist after the end
of end of existence event (i.e., after the TAQ boundary).

Thus, the uncertainty of the parthood’s time-span includes the uncertainty of the
occurrence of events from which the whole’s existence is depended on (i.e. begin of
existence and end of existence). Though, the certainty that a part holds an essential
parthood is limited after the TAQ’ certain begin of existence event and before the
TPQ’ of end of existence event.
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Figure 6.11: Time spans of optional parts (1st case)

Temporal Optional Parts

In order for a part to be characterized as optional, it must be related to events of
part addition or part removal. Otherwise, it is an essential by default. We consider
two cases:

• the part was added but then removed from the whole
• the part was added but remained in the whole

In the first case, the part was added with a part addition event and then removed
with a part removal event. A part can be optional or non-optional, or essential,
according to the existence of the above events. If there is at least a part-addition
event related to that part then we assume that this part is an optional one. The non
existence of such an event implies that the particular part is an essential one. As a
consequence, we define the time span of optional parts in relation to the ones of the
above events. The TPQ of an optional parthood time-span’s outer interval is the
corresponding one of the part addition event and the TAQ of the part removal one.
Its inner interval starts with the certain beginning of the part addition’s event (i.e.,
the TAQ’ boundary) and ends with the certain ending of the part removal’s event
(i.e., the TPQ’ boundary). Fig. 6.11 might be helpful in order for this reasoning to
be understood.

In the second case, the part was only involved in a part addition event and so
it was not removed until the end of existence of the whole. As a result, we have a
similar mapping to the temporal boundaries as in the previous case but now since
the relation holds until the end of the existence of its whole, we replace the part
removal event with the whole’s end of existence event. The replacement is depicted
in Fig. 6.12.

Considering the possibility that our knowledge base may contain multiple events
of part addition and part removal, then a part can have multiple parthood time-
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Figure 6.12: Time spans of optional parts (2nd case)

Figure 6.13: Multiple part additions and removals

spans related again to these events. The number of these events is actually the
number of the part additions. This idea is illustrated in Fig. 6.13.

In Fig. 6.13 we can observe the two part addition events that are related to an
optional part and the parthood relations that exist in between. After a part addition
event the relation holds until a possible part removal one. However, during a part
removal and a part addition event the optional parthood relation does not hold.

6.4 Summary

The main considerations of this Chapter are the challenge of how a larger set of rules
can be defined and the refinement of the parthood relation of objects by defining
whether they are essential or optional. Regarding the first challenge, we introduced
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two more reasoning rules and showed a simple pattern that could be identified in
models and ontologies in order for other similar rules to be defined. Regarding
the second challenge, we defined how parts can be distinguished into essential and
optional when are part of wholes. We formally defined several dependencies of the
essential and optional parts, and we extended this reasoning by taking into account
the temporal aspects of such relationships.
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Chapter 7

Related Work

This Chapter studies the related current work focusing on works regarding the tech-
niques for reducing the provenance storage (Section 7.2), reasoning mechanisms
applied on provenance information (Section 7.1) and the problem of knowledge evo-
lution (Section 7.3). We compare these works and ideas related with our approach.
The existing limitations of the former suggest the advantages of our approach.

7.1 Inference Rules

Our approach is based on the implicit knowledge that can be derived by inference
rules. Nonetheless, we should clarify that the implicit knowledge considered in this
work is different than tacit knowledge (Polanyi, 1966; Smith, 2003); the former has
some grounds on explicit one, whereas the latter may be the result of common sense
or common knowledge. Tacit knowledge is considered implicit and is distinguished
from the explicit by the fact that tacit knowledge can be acquired through experience
(“know-how”). Our considered implicit knowledge, however, is based solely on facts
(“know-what”).

In addition, the reasoning forms that we consider in this work, aim at the dy-
namic completion (deduction) of facts from original input by resolving transitive
closures and propagating the property instances at query time, rather than at inges-
tion time. This is complementary to reasoning on “data provenance”, which traces
causal dependencies of individual elements of data sets between input and output.
In the latter category we should mention the works of (Moreau & Missier, 2011) and
(Moreau et al., 2011), two formal models representing provenance information. The
inference rules defined in (Moreau & Missier, 2011; Moreau et al., 2011) are focused
on the derivation of further causal dependencies between processes and artifacts and
not the propagation of features or properties among entities.

Lastly, inference rules with annotations are exploited in (Bonatti et al., 2011)
for scalable reasoning on web data. Even though these annotations are indicators
of data provenance, they do not directly model the latter.
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7.2 Provenance Storage

The problem of efficient storage of provenance information has been extensively
recognized in literature. Different methods have been presented for reducing space
storage requirements of provenance information. For example, provenance minimiza-
tion via polynomials has been studied in (Amsterdamer et al., 2011). The authors
study algorithms in order to find the “core” minimal provenance of tuples in the
results of equivalent queries. Even though, this work might be useful in database
operations, it is not focused on provenance workflow information (as our work) which
is a different problem.

Another example is (Heinis & Alonso, 2008) in which workflow DAGs are trans-
formed into interval encoded tree structures. Furthermore, similar to our notion
of property propagation, (Chapman et al., 2008) proposes provenance to inheri-
tance methods assuming a tree-form model. Moreover, it should be noted that
in (Chapman et al., 2008) DAGs are not taken into account. However, DAGs is a
more general and more complicated kind of a graph morphology than trees in which
a workflow graph might result. Moreover, the works of Heinis & Alonso (2008) and
Chapman et al. (2008) are applied in information already stored. This is less advan-
tageous in comparison to our approach which can be applied before the information
ingestion and its storage.

Additional techniques have been proposed in Anand et al. (2009). The authors
present a more general model than CIDOC CRM under the assumption that output
data may depend on some not all input data and that many scientific workflows are
based on this assumption. That model mainly captures only the dependencies among
data and taking into consideration the fact of being more general than CIDOC
CRM, it may suffer from over generalization and possible loss of information. On
the other hand, CIDOC CRM is a rich conceptual model capable of describing
provenance under a user-defined level of granularity, since its design is based on
class and property hierarchy. Nevertheless, Anand et al. (2009) also uses several
inference rules for collapsing provenance traces.

7.3 Knowledge Evolution in RDF/S

The research field of ontology evolution (Gabel et al., 2004) deals with updating
knowledge in ontologies; a detailed survey of the field appears in (Flouris et al.,
2008). However, none of these works considers custom inference rules.

Some works (e.g., (Stojanovic & Motik, 2002)) address the problem using ontol-
ogy editors. However, it has been argued (Stojanovic & Motik, 2002) that the naive
set-theoretical application of changes that takes place in most editors is insufficient,
because, first, it introduces a huge manual burden to the ontology engineer, and,
second, it does not consider the standard inference semantics of RDF/S and other
ontological languages.

In response to this need, works like (Bechhofer et al., 2001; Gabel et al., 2004;
Noy et al., 2000; Sure et al., 2003; Klein & Noy, 2003) have proposed and imple-
mented change semantics which consider the standard inference rules of RDF/S and
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determine, for each type of change request, the side-effects necessary to properly ex-
ecute said change taking into account the inference semantics. However, these works
do not consider custom inference rules and do not discriminate between coherence
and foundational semantics for their change operations (they only consider foun-
dational semantics). In certain cases, some flexibility is provided to independently
customize the semantics of some of the operations (Gabel et al., 2004). Similarly, in
(Lösch et al., 2009), one can explicitly define the semantics of change operators.

Some works deal with all change operations in a generic manner. For example,
(Magiridou et al., 2005) proposes a declarative approach which can handle all pos-
sible changes on the data part of an RDF/S KB. Under this approach, operations
(and their effects) are generically modelled, avoiding the need to define a specific
operation for each type of change request. A similar, and more generic, approach
which can handle both schema and data changes in a generic manner, appears in
(Konstantinidis et al., 2008). These works consider only the standard inference rules
of RDF/S (but (Magiridou et al., 2005) can be extended to support also custom in-
ference rules) and only the coherence semantics (i.e., there is no support for the
foundational semantics).

Our future plans include the generalization of the approach presented in
(Konstantinidis et al., 2008) in order to support the foundational semantics as well;
this will allow us to apply the updates according to the semantics described earlier,
but in a generic manner, without having to resort to the specific update plan of each
operation (which would emerge as special cases of the generic approach).

Finally, we should mention (Gutierrez et al., 2011) which elaborated on the dele-
tion of triples (including inferred ones) assuming the standard inference rules of
RDF/S for both schema and instance update focusing on the “erase” operation.
This work also considers generic operations, but only for the case of removing infor-
mation. The considered semantics is coherence semantics (only), and the authors
describe how one can compute all the “optimal” plans for executing such an erase op-
eration (contraction in our terminology), without resorting to specific-per-operation
update plans.

7.4 Summary

This study focuses on the examination of the introduction of inference mechanisms
in order to reduce the amount of provenance information produced by workflow
systems. The inference rules considered are different from just the derivation of
further dependencies among data, as currently proposed by several other provenance
models. They are based on the propagation of attributes in hierarchical structures
of data. Moreover, these are assumed before the ingestion of data, contrary to some
works that minimize already ingested and stored provenance information which is
less advantageous to our approach.

In the second part, we define the semantics of update operations for the problem
of knowledge evolution, taking into account two approaches epistemological value of
the inferred knowledge and the considered inference rules. This presents us with a
novelty since current works do not consider both approaches or take into consider-
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ation any epistemological assumptions. Moreover, they take into account only the
RDF/S inference rules but not any user defined custom inference rules which may
include more complex inferences.



Chapter 8

Concluding Remarks

This Chapter actually concludes this thesis. In Section 8.1 we further discuss some
of the assumptions adopted in this study and explain the consequences of ignoring
one or more of these assumptions. Section 8.2 summarizes the results of this study
and suggests directions for further research.

8.1 On Applicability

The purpose of this section is to discuss some of the hypotheses used in this study.
For instance, the general assumption endorsed by this study is provenance infor-
mation which has been recorded by empirical evidence (Mudge et al., 2008) and we
may distinguish three epistemological situations:

1. The facts can reliably and completely be registered by a monitoring system,
such as a workflow shell.

2. There are facts which users need to input manually to the monitoring system
and may not be willing to do so.

3. Facts come from different monitoring systems or uncontrolled human input.

From a semantic point of view, the rules are reasonable with respect to the se-
mantics of the classes and properties defined in the provenance model. For example,
we assume, by convention, that a person carrying out a process carries out all of its
sub-processes; this is reflected by the formal phrasing of the corresponding rule.

Alternative rules could also be reasonable, e.g., a rule stating that a person
carrying out a process carries out at least one of its sub-processes or that a person
carrying out a process, also carried out all of its super-processes. That of course
would give a different semantics to the “carries out” property and would affect,
consequently the modelling of evolution. More specifically, in the second case, the
semantics of the property “carry out” implies more a presence than a responsibility of
the actors to the respective activities and it might be replaced by a more appropriate
property (e.g., “was present at”).

Even though we assume a specific set of inference rules, a different set of rules
could also be reasonable and applicable. From a practical point of view, each rule
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causes the derivation of additional knowledge but a very large set of rules might
introduce other difficulties such as further dependencies among the rules affecting
the update operations (e.g., when an addition or deletion causes cascading violations
of other rules, which result in more side-effects for each operation (Flouris et al.,
2012)) and result to a more complex reasoning system.

Another assumption is that the user/process responsible for the ingestion has an
a priori knowledge of the model and the considered set of inference rules. If we ignore
this assumption, there might be redundant facts in the KB that can be derived by
the application of the rules. This redundancy would only attribute to repetitive
facts and to larger amount of space. In the case that the foundational viewpoint
is regarded, these facts are valuable explicit information, while in other cases a
reduction algorithm would be needed in order to eliminate such facts. Although
the first case does not exploit the full benefits of our approach, with respect to the
storage space requirements, it should be noted that these cases do not affect the
correctness of our proposed algorithms for the update operations.

Regarding the problem of knowledge evolution, we defined the semantics of our
update operation having in mind the exceptional cases that might occur; for example
the activity delegation to different actors. Since we assume the default application of
our rules, the support of handling such cases is significant. Yet another assumption
might be that our rules are not always valid, but their application depends on some
other condition or fact that needs to exist in the KB. However, this exercise is beyond
the scope of this study.

8.2 Synopsis and Future Work

In this paper, we argued for the need for provenance-based inference aiming at the
dynamic completion (deduction) of facts from the original input in order to reduce
the storage space requirements. The inference rules considered are different from
simply the derivation of further dependencies among data, as currently proposed
by other provenance models. They are based on the propagation of attributes in
hierarchical structures of data. This dynamic propagation may also propagate pos-
sible errors in the KB, resulted from the initial ingested data input. However, they
can be easily corrected since they are only attributed to the original (explicit) data
input and thus the search space for their identification has been reduced. Instead of
searching the whole KB for errors, an examination of the ingested facts is sufficient.

The application of inference rules introduces difficulties with respect to the evo-
lution of knowledge; we elaborated on these difficulties and described how we can
address this problem. We identified two ways to deal with deletions in this context,
based on the philosophical stance against explicit (ingested) knowledge and implicit
(inferred) one (foundational and coherence semantics). In this regard, we elabo-
rate on the specific algorithms for these operations respecting the application of our
custom rules. This presents us with two novelties, since (a) current works do not
consider both approaches and (b) they take into account only the RDF/S inference
rules but not any user defined custom inference rules.

Based on these ideas, we specified a number of update operations that allow
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knowledge updating under said inference rules. Although we confined ourselves
to three specific inference rules, the general ideas behind our work (including the
discrimination between foundational and coherence semantics of deletion) can be
applied to other models and/or sets of inference rules.

We conducted experiments on real and synthetic data comparing two policies, (a)
storing all the inferences from the rules and (b) storing only the initial ingested facts
(i.e., our considered approach), that could be adopted by a metadata environment.
The comparison was made in relation to the time performance of queries and update
operations, and the storage space requirements for each policy. The results showed
that although, the query time performance was slightly increased in the case of the
first policy compared to the second one. Nevertheless, the latter was very beneficial
not only for reducing the storage space requirements, but also for achieving better
time performance of update and maintenance operations.

A next step would be the examination of a larger set of inference rules and the
respective update operations. In this regard our plan is to study the problem in
a more generic manner, in order to deal with change operations without having to
resort to specific, per-operation update plans, in the spirit of (Konstantinidis et al.,
2008).
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Salza, S., Guercio, M, Grossi, M., Pröll, S., C.Stroumboulis, Tzitzikas, Y., Doerr,
M., & Flouris, G. 2012. D24.1 report on authenticity and plan for interoperable
authenticity evaluation system.

Simmhan, Y. L., Plale, B., & Gannon, D. 2005. A survey of data provenance in
e-science. Sigmod rec., 34(3), 31–36.

Smith, M. K. 2003. Michael polanyi and tacit knowledge. The encyclopedia of
informal education.

Sosa, E. 1980. The raft and the pyramid: Coherence versus foundations in the
theory of knowledge. Midwest studies in philosophy, 5(1), 3–26.

Stojanovic, L., & Motik, B. 2002. Ontology evolution within ontology editors. Pages
53–62 of: Ekaw’02/eon workshop.

Stuckenschmidt, Heiner, & Klein, Michel. 2003. Integrity and change in modular
ontologies.



BIBLIOGRAPHY 85

Sure, Y., Angele, J., & Staab, S. 2003. Ontoedit: Multifaceted inferencing for
ontology engineering. J. data semantics, 1, 128–152.

Teresa, R. 2008. Essential vs. accidental properties. In: Zalta, Edward N. (ed), The
stanford encyclopedia of philosophy, fall 2008 edn.

Thakker, D., Osman, T., Gohil, S., & Lakin, P. 2010. A pragmatic approach to
semantic repositories benchmarking. Pages 379–393 of: Proceedings of the 7th
international conference on the semantic web: research and applications - volume
part i. ESWC’10. Berlin, Heidelberg: Springer-Verlag.

Theodoridou, M., Tzitzikas, Y., Doerr, M., Marketakis, Y., & Melessanakis, V.
2010. Modeling and querying provenance by extending cidoc crm. Distributed
and parallel databases, 27, 169–210.

Theoharis, Yannis, Georgakopoulos, George, & Christophides, Vassilis. 2012. Pow-
ergen: A power-law based generator of rdfs schemas. Inf. syst., 37(4).

Tversky, B. 1986. Components and categorization. John Benjamins Publishing
Company. Pages 63–75.

Varzi, A. 1996. Parts, wholes, and part-whole relations: The prospects of
mereotopology. Data and knowledge engineering, 20, 259–286.

Zeginis, D., Tzitzikas, Y., & Christophides, V. 2011. On computing deltas of rdf/s
knowledge bases. Acm trans. web, 5, 14:1–14:36.

Zhao, J., Goble, C., Stevens, R., & Bechhofer, S. 2004. Semantically linking and
browsing provenance logs for e-science. Pages 158–176 of: Bouzeghoub, Mokrane,
Goble, Carole, Kashyap, Vipul, & Spaccapietra, Stefano (eds), Semantics of a
networked world. Lecture Notes in Computer Science, vol. 3226. Springer Berlin
/ Heidelberg.



86 BIBLIOGRAPHY



Appendix A

Formal Definition of Classes and
Properties

A.1 Classes

E5 Event
Subclass of: E4 Period
Superclass of: E7 Activity

E63 Beginning of Existence
E64 End of Existence

Scope note:
This class comprises changes of states in cultural, social or physical systems, regard-
less of scale, brought about by a series or group of coherent physical, cultural, tech-
nological or legal phenomena. Such changes of state will affect instances of E77 Per-
sistent Item or its subclasses.

The distinction between an E5 Event and an E4 Period is partly a question
of the scale of observation. Viewed at a coarse level of detail, an E5 Event is an
’instantaneous’ change of state. At a fine level, the E5 Event can be analysed into its com-
ponent phenomena within a space and time frame,
and as such can be seen as ans E4 Period.
The reverse is not necessarily the case: not all instances of E4 Period give rise
to a noteworthy change of state.

Examples:
the birth of Cleopatra (E67)
the destruction of Herculaneum by volcanic eruption in 79 AD (E6)
World War II (E7)
the Battle of Stalingrad (E7)
the Yalta Conference (E7)
my birthday celebration 28-6-1995 (E7)
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the falling of a tile from my roof last Sunday
the CIDOC Conference 2003 (E7)

Properties:
P11 had participant (participated in): E39 Actor
P12 occurred in the presence of (was present at): E77 Persistent Item

E7 Activity
Subclass of: E5 Event
Superclass of: E8 Acquisition

E9 Move
E10 Transfer of Custody
E11 Modification
E13 Attribute Assignment
E65 Creation
E66 Formation
E85 Joining
E86 Leaving
E87 Curation Activity

Scope note:
This class comprises actions intentionally carried out by instances of E39 Actor that re-
sult in changes of state in the cultural, social, or physical systems documented.
This notion includes complex, composite and long-lasting actions such as
the building of a settlement or a war, as well as simple, short-lived actions such
as the opening of a door.

Examples:
the Battle of Stalingrad
the Yalta Conference
my birthday celebration 28-6-1995
the writing of “Faust” by Goethe (E65)
the formation of the Bauhaus 1919 (E66)
calling the place identified by TGN ‘7017998’ ‘Quyunjig’ by the people of Iraq

E22 Man-Made Object
Subclass of: E19 Physical Object

E24 Physical Man-Made Thing
Superclass of: E84 Information Carrier

Scope note:
This class comprises physical objects purposely created by human activity.
No assumptions are made as to the extent of modification required to justify regard-
ing an object as man-made. For example, an inscribed piece of rock or
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a preserved butterfly are both regarded as instances of E22 Man-Made Object.

Examples:
Mallard (the World’s fastest steam engine)
the Portland Vase
the Coliseum

E24 Physical Man-Made Thing
Subclass of: E18 Physical Thing

E71 Man-Made Thing
Superclass of: E22 Man-Made Object

E25 Man-Made Feature
E78 Collection

Scope Note:
This class comprises all persistent physical items that are purposely created
by human activity.
This class comprises man-made objects, such as a swords, and man-made features, such as rock art. No as-
sumptions are made as to the extent of modification required to justify regard-
ing an object as man-made.
For example, a ”cup and ring” carving on bedrock is regarded as instance
of E24 Physical Man-Made Thing.

Examples:
the Forth Railway Bridge (E22)
the Channel Tunnel (E25)
the Historical Collection of the Museum Benaki in Athens (E78)

E39 Actor
Subclass of: E77 Persistent Item
Superclass of: E21 Person

E74 Group
Scope note:
This class comprises people, either individually or in groups, who have
the potential to perform intentional actions for which they can be held
responsible.
The CRM does not attempt to model the inadvertent actions of such actors. Indi-
vidual people should
be documented as instances of E21 Person, whereas groups should be documented as in-
stances of either E74 Group or its subclass E40 Legal Body.

Examples:
London and Continental Railways (E40)
the Governor of the Bank of England in 1975 (E21)
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Sir Ian McKellan (E21)

E73 Information Object
Subclass of: E89 Propositional Object

E90 Symbolic Object
Superclass of: E29 Design or Procedure

E31 Document
E33 Linguistic Object
E36 Visual Item

Scope note:
This class comprises identifiable immaterial items, such as a poems, jokes,
data sets, images, texts, multimedia objects, procedural prescriptions, computer pro-
gram code,
algorithm or mathematical formulae, that have an objectively
recognizable structure and are documented as single units.

An E73 Information Object does not depend on a specific physical carrier,
which can include human memory, and it can exist on one or more carriers simultaneously.
Instances of E73 Information Object of a linguistic nature should be declared as in-
stances of
the E33 Linguistic Object subclass. Instances of E73 Information Object of
a documentary nature should be declared as instances of the
E31 Document subclass. Conceptual items such as types and classes are not in-
stances of E73 Information Object,
nor are ideas without a reproducible expression.

Examples:
image BM000038850.JPG from the Clayton Herbarium in London
E. A. Poe’s ”The Raven”
the movie ”The Seven Samurai” by Akira Kurosawa
the Maxwell Equations

A.2 Properties

P9 consists of (forms part of)
Domain: E4 Period
Range: E4 Period
Quantification: one to many, (0,n:0,1)

Scope note:
This property describes the decomposition of an instance of E4 Period into dis-
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crete, subsidiary periods.
The sub-periods into which the period is decomposed form a logical whole - al-
though the entire picture may not be completely known - and the sub-periods
are constitutive of the general period.

Examples:
Cretan Bronze Age (E4) consists of Middle Minoan (E4)

P12 occurred in the presence of (was present at)
Domain: E5 Event
Range: E77 Persistent Item
Superproperty of:

E5 Event. P11 had participant (participated in): E39 Actor
E7 Activity. P16 used specific object (was used for): E70 Thing
E9 Move. P25 moved (moved by): E19 Physical Object
E11 Modification. P31 has modified (was modified by): E24 Physical Man-

Made Thing
E63 Beginning of Existence. P92 brought into existence (was brought into exis-

tence by):
E77 Persistent Item
E64 End of Existence. P93 took out of existence (was taken out of existence by):
E77 Persistent Item
E79 Part Addition.P111 added (was added by): E18 Physical Thing
E80 Part Removal.P113 removed (was removed by): E18 Physical Thing

Quantification: many to many, necessary (1,n:0,n)

Scope note:
This property describes the active or passive presence of an
E77 Persistent Item in an E5 Event without implying any specific role.
It connects the history of a thing with the E53 Place and E50 Date of an event.
For example, an object may be the desk, now in a museum on which a
treaty was signed. The presence of an immaterial thing implies the presence of at least one of its carriers.

Examples:
Deckchair 42 (E19) was present at The sinking of the Titanic (E5)

P14 carried out by (performed)
Domain: E7 Activity
Range: E39 Actor
Subproperty of: E5 Event. P11 had participant (participated in): E39 Actor
Superproperty of:

E8 Acquisition. P22 transferred title to
(acquired title through): E39 Actor
E8 Acquisition. P23 transferred title from
(surrendered title through): E39 Actor
E10 Transfer of Custody. P28 custody surrendered by (surrendered custody
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through): E39 Actor
E10 Transfer of Custody. P29 custody received by (
received custody through):
E39 Actor

Quantification: many to many, necessary (1,n:0,n)

Scope note:
This property describes the active participation of an E39 Actor in an
E7 Activity.
It implies causal or legal responsibility.
The P14.1 in the role of property of the property allows the nature of an Actor’s par-
ticipation to be specified.

Examples:
the painting of the Sistine Chapel (E7) carried out by Michaelangelo
Buonaroti (E21) in the role of master craftsman (E55)

Properties: P14.1 in the role of: E55 Type

P128 carries (is carried by)
Domain: E24 Physical Man-Made Thing
Range: E90 Symbolic Object
Subproperty of: E70 Thing.P130 shows features of
(features are also found on): E70 Thing
Superproperty of:

E24 Physical Man-Made Thing. P65 shows visual item (is shown by): E36 Vi-
sual Item
Quantification: many to many (0,n:0,n)

Scope note:
This property identifies an E73 Information Object carried by an instance of
E24 Physical Man-Made Thing.
In general this would be an E84 Information Carrier P65 shows visual item
(is shown by) is a specialisation of P128 carries (is carried by) which should be
used for carrying visual items.

Examples:
Matthew’s paperback copy of Reach for the Sky (E84) carries the text of
Reach for the Sky (E73)

P46 is composed of (forms part of)
Domain: E18 Physical Thing
Range: E18 Physical Thing
Superproperty of:

E19 Physical Object. P56 bears feature (is found on): E26 Physical Feature
Quantification: many to many (0,n:0,n)
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Scope note:
This property allows instances of E18 Physical Thing to be analysed into compo-
nent elements. Definition of the CIDOC Conceptual Reference Model 50
Component elements, since they are themselves instances
of E18 Physical Thing, may be further analysed into sub-components,
thereby creating a hierarchy of part decomposition. An instance of E18 Physi-
cal Thing may be shared between multiple wholes,
for example two buildings may share a common wall.
This property is intended to describe specific components that are individually doc-
umented, rather than general aspects. Overall descriptions of the structure of an in-
stance of E18 Physical Thing are captured by the P3 has note
property. The instances of E57 Materials of which an item of E18 Physical Thing is com-
posed should be documented using P45 consists of (is incorporated in).

Examples:
the Royal carriage (E22) forms part of the Royal train (E22)
the ”Hog’s Back” (E24) forms aprt of the ”Fosseway” (E24)
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Appendix B

Update Operations

Algorithm 4 AssociateActorToActivity (p:Actor, a:Activity)

1: if an explicit “P14 carried out by” link does not exist between a and p then
2: Add an explicit “P14 carried out by” link between a and p
3: end if

Algorithm 5 DisassociateActorFromActivity (p:Actor, a:Activity)

1: if an explicit “P14 carried out by” link exists between a and p then
2: Remove the requested “P14 carried out by” link between a and p
3: end if
4: for each superactivity:superAct of a related to p via the “P14 carried out by”

link do
5: Remove possible explicit “P14 carried out by” link between superAct and p
6: end for

Algorithm 22 CreateInformationObject (io:InstanceName)

1: if an E73 Information object class instance with name io does not exist then
2: Create an instance of the class E73 Information Object with name io
3: end if

Algorithm 23 DeleteInformationObject (io:InformationObject)

1: for each physical man-made thing(carrier): ph related to io via the “P 128car-
ries” link do

2: Remove the “carries” link between ph and io
3: end for
4: for each event:e related to io via the “was present at” link do
5: Remove possible explicit ”was present at” link between io and e
6: end for
7: Remove the requested E73 Information Object class instance io
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Algorithm 6 ContractActorFromActivity (p:Actor, a:Activity)

1: if an explicit “P14 carried out by” link exists between a or a superactivity of a
and p then

2: for each direct subactivity:subAct of a do
3: Execute AssociateActorToActivity (p, subAct)
4: end for
5: end if
6: if an explicit “P14 carried out by” link exists between a and p then
7: Remove the requested “P14 carried out by” link between a and p
8: end if
9: for each maximal superactivity:supAct of a related to p via the “P14 carried

out by” link do
10: for each subactivity:subAct of supAct do
11: if subAct is not superactivity or subactivity of a then
12: Add subAct to collection: Col
13: end if
14: end for
15: end for
16: Execute DisassociateActorFromActivity (p, a)
17: for each maximal activity:act in Col do
18: Execute AssociateActorToActivity (p, act)
19: end for

Algorithm 7 AssociateSubActivityToActivity (suba:Activity, a:Activity)

1: if an explicit “P9 forms part of” link does not exist between suba and a then
2: Add an explicit “forms part of” link between suba and a
3: end if

Algorithm 8 DisassociateSubActivityFromActivity (suba:Activity, a:Activity)

1: if an explicit “P9 forms part of” link exists between suba and a then
2: Remove the requested “forms part of” link between suba and a
3: end if

Algorithm 9 CreateActor (p:InstanceName)

1: if an E39 Actor class instance with name p does not exist then
2: Create an instance of the class E39 Actor with name p
3: end if

Algorithm 10 DeleteActor (p:Actor)

1: for each activity:a related to p via the “P14 carried out by” link do
2: Remove possible explicit “P14 carried out by” link between a and p
3: end for
4: Remove the requested E39 Actor class instance p
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Algorithm 11 CreateActivity (a:InstanceName)

1: if an E7 Activity class instance with name a does not exist then
2: Create an instance of the class E7 Activity with name a
3: end if

Algorithm 12 DeleteActivity (a:Activity)

1: for each superactivity:superAct of a do
2: Execute DisassociateSubActivityFromActivity (a, superAct)
3: end for
4: for each performer:p related to a via the “P14 carried out by” link do
5: Remove possible explicit “P14 carried out by” link between a and p
6: end for
7: for each man-made object:o related to a via the “P9 was used for” link do
8: Remove possible explicit “P9 was used for” link between o and a
9: end for

10: Remove the requested E7 Activity instance a

Algorithm 13 AssociateActivityToMMObject (a:Activity, o:ManMadeObject)

1: if an explicit “P9 was used for” link does not exist between o and a then
2: Add an explicit “P9 was used for” link between o and a
3: end if

Algorithm 14 DisassociateActivityFromMMObject
(a:Activity, o:ManMadeObject)

1: if an explicit “P9 was used for” link exists between o and a then
2: Remove the requested “P9 was used for” link between o and a
3: end if
4: for each superPart:superP of o related to a via the “P9 was used for” link do
5: Remove possible explicit “P9 was used for” link between superP and a
6: end for



98 APPENDIX B. UPDATE OPERATIONS

Algorithm 15 ContractActivityFromMMObject (a:Activity, o:ManMadeObject)

1: if an explicit “P9 was used for” link exists between o or a superpart of o and a
then

2: for each direct subPart of o do
3: Execute AssociateActivityToMMObject (a, subPart)
4: end for
5: end if
6: if an explicit “P9 was used for” link exists between o and a then
7: Remove the requested “P9 was used for” link between o and a
8: end if
9: for each maximal superPart:superP of o related to a via the “P9 was used for”

link do
10: for each subPart:subP of superP do
11: if subP is not superPart or subPart of o then
12: Add subP to collection: Col
13: end if
14: end for
15: end for
16: Execute DisassociateActivityFromMMObject (a, o)
17: for each maximal part in Col do
18: Execute AssociateActivityToMMObject (a, part)
19: end for

Algorithm 16 AssociatePMMThingToEvent
(ph:PhysicalManMadeThing, e:Event)

1: if an explicit “was present at” link does not exist between ph and e then
2: Add an explicit “was present at” link between ph and e
3: end if

Algorithm 17 DisassociatePMMThingFromEvent (ph:PhysicalManMadeThing,
e:Event)

1: if a “P12 was present at” link exists between ph and e then
2: Remove the requested “was present at” link between ph and e
3: end if

Algorithm 18 AssociateIObjectToEvent (io:InformationObject, e:Event)

1: if an explicit “was present at” link does not exist between io and e then
2: Add an explicit “was present at” link between io and e
3: end if
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Algorithm 19 DisassociateIObjectFromEvent (io:InformationObject, e:Event)

1: if an explicit “P12 was present at” link exists between io and e then
2: Remove the requested “was present at” link between io and e
3: end if
4: for each physical man-made thing(carrier): ph related to io via the “carries”

link do
5: Execute DisassociatePMMThingFromEvent (ph, e)
6: end for

Algorithm 20 CreateEvent (e:InstanceName)

1: if an E5 Event class instance with name e does not exist then
2: Create an instance of the class E5 Event with name e
3: end if

Algorithm 21 DeleteEvent (e:Event)

1: for each information object:io related to e via the “P12 was present at” link do
2: Remove possible explicit “P12 was present at” link between io and e
3: end for
4: for each physical man-made thing(carrier):ph related to e via the “P12 was

present at” do link
5: DisassociatePMMThingFromEvent (ph, e)
6: end for
7: Remove the requested E5 Event class instance e
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Appendix C

Statistics of Real Data
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Table C.1: Statistics of Real Data

No
inference

Rdfs
Inference

Rdfs+ru1e1
Inference

Total triples 150.434 310.919 327.452
Number of classes 41 70 70
Number of subjects 35.244 35.244 35.244
Number of predicates 77 99 99
Number of activities 12.898 12.898 12.898
Number of Actors 0 86 86
P9 forms part of 8.937 8.937 24.444
P9 consists of 10 10 10
P14 carried out by 0 129 708
P14 performed 0 0 0
P128 carries 0 0 0
P128 carried out by 0 0 0
P16 used specific object 0 1.865 1.865
P16 was used for 0 49 49
P12 was present at 0 195 195
P12 occurred in the
presence of

0 19.889 20.329

P46 is composed of 0 0 0
P46 forms part of 0 0 0
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Statistics of Synthetic Data

Table D.1: Statistics of Synthetic Graphs

Total
activities
(depth 3)

200k 400k 600k 800k 1m

Depth 0 2.653525398 2.677488955 2.671271545 2.665987434 2.660000027
Depth 1 10.05812484 10.04726189 10.04509642 10.04423587 10.04809882
Depth 2 22.32649632 22.32199733 22.32375711 22.32513623 22.32635807
Depth 3 64.96185344 64.95325182 64.95987493 64.96464046 64.96554308

103



104 APPENDIX D. STATISTICS OF SYNTHETIC DATA

Table D.2: Statistics of Synthetic Graphs

Total
activities
(depth 4)

200k 400k 600k 800k 1m

Depth 0 3.605391218 3.595468349 3.605298433 3.612158485 3.609139326
Depth 1 13.31450105 13.31587165 13.31175228 13.30370418 13.31398334
Depth 2 8.149728095 8.150567028 8.145239484 8.145506502 8.149411209
Depth 3 20.00434591 20.00640516 20.0054854 20.00475303 20.00356808
Depth 4 54.92832105 54.93397537 54.93454218 54.93619636 54.92618527

Table D.3: Statistics of Synthetic Graphs

Total
activities
(depth 6)

200k 400k 600k 800k 1m

Depth 0 3.361814306 3.369403531 3.370718243 3.369096492 3.361393734
Depth 1 14.4688454 14.51887545 14.50093815 14.4815262 14.49460902
Depth 2 7.605460893 7.613378262 7.6112755 7.608238176 7.611102949
Depth 3 7.884972679 7.866725174 7.87826673 7.882154069 7.884158889
Depth 4 7.050273757 7.047625356 7.050041522 7.05185083 7.049968574
Depth 5 16.14427193 16.14217233 16.14265802 16.14337462 16.14343832
Depth 6 43.83183256 43.7818236 43.7889554 43.80763791 43.80062498
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Virtuoso’s parameter file

;

; virtuoso.ini

;

; Configuration file for the OpenLink Virtuoso VDBMS Server

;

; To learn more about this product, or any other product in our

; portfolio, please check out our web site at:

;

; http://virtuoso.openlinksw.com/

;

; or contact us at:

;

; general.information@openlinksw.com

;

; If you have any technical questions, please contact

; our support staff at:

;

; technical.support@openlinksw.com

;

;

; Database setup

;

[Database]

DatabaseFile =

/usr/local/virtuoso-opensource/var/lib/virtuoso/db/virtuoso.db

ErrorLogFile =

/usr/local/virtuoso-opensource/var/lib/virtuoso/db/virtuoso.log

LockFile =

/usr/local/virtuoso-opensource/var/lib/virtuoso/db/virtuoso.lck

TransactionFile =

/usr/local/virtuoso-opensource/var/lib/virtuoso/db/virtuoso.trx

xa_persistent_file =
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/usr/local/virtuoso-opensource/var/lib/virtuoso/db/virtuoso.pxa

ErrorLogLevel = 7

FileExtend = 150

MaxCheckpointRemap = 1000

Striping = 0

TempStorage = TempDatabase

[TempDatabase]

DatabaseFile =

/usr/local/virtuoso-opensource/var/lib/virtuoso/db/

virtuoso-temp.db

TransactionFile =

/usr/local/virtuoso-opensource/var/lib/virtuoso/db/

virtuoso-temp.trx

MaxCheckpointRemap = 1000

Striping = 0

;

; Server parameters

;

[Parameters]

ServerPort = 1111

LiteMode = 1

DisableUnixSocket = 1

DisableTcpSocket = 0

;SSLServerPort = 2111

;SSLCertificate = cert.pem

;SSLPrivateKey = pk.pem

;X509ClientVerify = 0

;X509ClientVerifyDepth = 0

;X509ClientVerifyCAFile = ca.pem

ServerThreads = 10

CheckpointInterval = 0

O_DIRECT = 0

CaseMode = 2

MaxStaticCursorRows = 5000

CheckpointAuditTrail = 0

AllowOSCalls = 0

SchedulerInterval = 10

DirsAllowed = ., /usr/local/virtuoso-opensource/share/virtuoso/

vad/home/strubul

ThreadCleanupInterval = 0

ThreadThreshold = 8

ResourcesCleanupInterval = 0
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FreeTextBatchSize = 100000

SingleCPU = 0

VADInstallDir = /usr/local/virtuoso-opensource/share/

virtuoso/vad/

PrefixResultNames = 0

RdfFreeTextRulesSize = 100

IndexTreeMaps = 256

MaxMemPoolSize = 10000000

PrefixResultNames = 0

MacSpotlight = 0

IndexTreeMaps = 64

TransactionAfterImageLimit = 500000000

;;

;; When running with large data sets, one should configure the

;; Virtuoso process to use between 2/3 to 3/5 of free system

;; memory and to stripe storage on all available disks.

;;

;; Uncomment next two lines if there is 2 GB system memory free

; NumberOfBuffers = 170000

; MaxDirtyBuffers = 130000

;; Uncomment next two lines if there is 4 GB system memory free

; NumberOfBuffers = 340000

; MaxDirtyBuffers = 250000

;; Uncomment next two lines if there is 8 GB system memory free

; NumberOfBuffers = 680000

; MaxDirtyBuffers = 500000

;; Uncomment next two lines if there is 16 GB system memory free

; NumberOfBuffers = 1360000

; MaxDirtyBuffers = 1000000

;; Uncomment next two lines if there is 32 GB system memory free

; NumberOfBuffers = 2720000

; MaxDirtyBuffers = 2000000

;; Uncomment next two lines if there is 48 GB system memory free

; NumberOfBuffers = 4000000

; MaxDirtyBuffers = 3000000

;; Uncomment next two lines if there is 64 GB system memory free

; NumberOfBuffers = 5450000

; MaxDirtyBuffers = 4000000

;;

;; Note the default settings will take very little memory

;; but will not result in very good performance

;;

NumberOfBuffers = 30000

MaxDirtyBuffers = 20100
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[HTTPServer]

ServerPort = 8890

ServerRoot =

/usr/local/virtuoso-opensource/var/lib/virtuoso/vsp

ServerThreads = 10

DavRoot = DAV

EnabledDavVSP = 0

HTTPProxyEnabled = 0

TempASPXDir = 0

DefaultMailServer = localhost:25

ServerThreads = 5

MaxKeepAlives = 10

KeepAliveTimeout = 10

MaxCachedProxyConnections = 10

ProxyConnectionCacheTimeout = 15

HTTPThreadSize = 28000

HttpPrintWarningsInOutput = 0

Charset = UTF-8

;HTTPLogFile = logs/http.log

[AutoRepair]

BadParentLinks = 0

[Client]

SQL_PREFETCH_ROWS = 5

SQL_PREFETCH_BYTES = 12000

SQL_QUERY_TIMEOUT = 0

SQL_TXN_TIMEOUT = 0

;SQL_NO_CHAR_C_ESCAPE = 1

;SQL_UTF8_EXECS = 0

;SQL_NO_SYSTEM_TABLES = 0

;SQL_BINARY_TIMESTAMP = 1

;SQL_ENCRYPTION_ON_PASSWORD = -1

[VDB]

ArrayOptimization = 0

NumArrayParameters = 10

VDBDisconnectTimeout = 1000

KeepConnectionOnFixedThread = 0

[Replication]

ServerName = db-SHADOWFAX

ServerEnable = 1

QueueMax = 50000
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;

; Striping setup

;

; These parameters have only effect when Striping is set to 1

; in the [Database] section, in which case the DatabaseFile

; parameter is ignored.

;

; With striping, the database is spawned across multiple

; segments where each segment can have multiple stripes.

;

; Format of the lines below:

; Segment<number> = <size>, <stripe file name>

; [, <stripe file name> .. ]

;

; <number> must be ordered from 1 up.

;

; The <size> is the total size of the segment which is equally

; divided across all stripes forming the segment. Its

; specification can be in gigabytes (g), megabytes (m),

; kilobytes (k) or in database blocks (b, the default)

;

; Note that the segment size must be a multiple of the

; database page size which is currently 8k.

; Also, the segment size must be divisible by the number of

; stripe files forming the segment.

;

; The example below creates a 200 meg database striped on two

; segments with two stripes of 50 meg and one of 100 meg.

;

; You can always add more segments to the configuration, but

; once added, do not change the setup.

;

[Striping]

Segment1 = 100M, db-seg1-1.db, db-seg1-2.db

Segment2 = 100M, db-seg2-1.db

;...

;[TempStriping]

;Segment1 = 100M, db-seg1-1.db, db-seg1-2.db

;Segment2 = 100M, db-seg2-1.db

;...

;[Ucms]

;UcmPath = <path>
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;Ucm1 = <file>

;Ucm2 = <file>

;...

[Zero Config]

ServerName = virtuoso (SHADOWFAX)

;ServerDSN = ZDSN

;SSLServerName =

;SSLServerDSN =

[Mono]

;MONO_TRACE = Off

;MONO_PATH = <path_here>

;MONO_ROOT = <path_here>

;MONO_CFG_DIR = <path_here>

;virtclr.dll =

[URIQA]

DynamicLocal = 0

DefaultHost = localhost:8890

[SPARQL]

;ExternalQuerySource = 1

;ExternalXsltSource = 1

;DefaultGraph = http://localhost:8890/dataspace

;ImmutableGraphs = http://localhost:8890/dataspace

ResultSetMaxRows = 900000000

MaxQueryCostEstimationTime = 40000000 ; in seconds

MaxQueryExecutionTime = 60000000 ; in seconds

DefaultQuery = select distinct ?Concept where

[] a ?Concept LIMIT 100

DeferInferenceRulesInit = 0 ; controls inference

; rules loading

;PingService = http://rpc.pingthesemanticweb.com/

[Plugins]

LoadPath = /usr/local/virtuoso-opensource/lib/virtuoso/hosting

Load1 = plain, wikiv

Load2 = plain, mediawiki

Load3 = plain, creolewiki

;Load4 = plain, im
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;Load5 = plain, wbxml2

;Load6 = plain, hslookup

;Load7 = attach, libphp5.so

;Load8 = Hosting, hosting_php.so

;Load9 = Hosting,hosting_perl.so

;Load10 = Hosting,hosting_python.so

;Load11 = Hosting,hosting_ruby.so

;Load12 = msdtc,msdtc_sample
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