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Abstract With the abundance of XML data on the web, considerable energy is spent
towards enriching them with semantics in the form of annotations. These annotations
can range from simple metadata (e.g. specifying the author of a news article) to complex
semantic relationships between data items (e.g. linking a news article about a company
to the web-site of that company). Although the vision of supporting such annotations
is spreading in the semantic web community, no considerable progress has been made in
creating the infrastructure that will enable it.

To this end we propose XRP; a system that enables the storage and querying of
annotated XML documents. The system consists of (i) a data model for representing
annotated XML documents and (ii) a query language for querying them. In the data
model annotated documents are represented as XML documents augmented with RDF
triples that can refer to XML nodes. In turn, the query language combines the expressive
power of XML and RDF query languages to allow querying these documents seamlessly
according to both their structure and semantic annotations. In this paper, we define the
data model and query language, describe a prototype implementation of the system and
present experimental results showcasing its performance and relevance in practice.
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XRP: Ενα Σύστημα για την Επισήμανση XML Εγγράφων

Σταμάτης Ζαμπετάκης
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Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Πανεπιστήμιο Paris-Sud XI, Τμήμα Επιστήμης Υπολογιστών
Leo team, INRIA Saclay and LRI

Περ́ιληψη Με την πληθώρα δεδομένων που έιναι διαθέσιμα σε XML στο διαδ́ικτυο,
σημαντική προσπάθεια γίνεται για τον εμπλουτισμό τους με σημασιολογική πληροφορία, υπό

τη μορφή επισημάνσεων. Αυτές οι επισημάνσεις μπορέι να πάρουν τη μορφή απλών μετα-

δεδομένων (π.χ. ποιος έιναι ο συγγραφέας ενός άρθρου ειδήσεων) ή και πιο πολύπλοκων

σημασιολογίκων σχέσεων μεταξύ των στοιχείων δεδομενων (π.χ. συνδέοντας το άρθρο

μιας εφημερίδας για μια επιχείρηση με την ιστοσελίδα της ίδιας της επιχείρησης). Αν και

το όραμα για υποστήριξη τέτοιων επισημάνσεων εξαπλώνεται ραγδαία στην κοινότητα του

σημασιολογικού ιστού, ακόμα δεν έχει γίνει κάποια αξιοσημείωτη πρόοδος για την δημιουργία

κατάλληλων υποδομών για την υποστήριξη τους.

Για αυτό το σκοπό προτείνουμε το σύστημα XRP· ένα σύστημα που επιτρέπει την απο-
θήκευση και επερώτηση εγγράφων XML εμπλουτισμένων με σημασιολογίκες επισημάνσεις.
Το σύστημα αποτελείται από (α) ένα μοντέλο δεδομένων για την αναπαράσταση εγγράφων

με επισημάνσεις και (β) μια γλώσσα επερωτήσεων για τα δεδομένα αυτά. Στο μοντέλο δε-

δομένων τα επισημασμένα έγγραφα αναπαριστόνται σαν έγγραφα XML επαυξημένα με RDF
τριπλέτες που μπορούν να αναφερθούν σε κόμβους ενός XML εγγράφου. Με τη σειρά της,
η γλώσσα επερωτήσεων συνδυάζει την εκφραστική δύναμη των γλωσσών επερωτήσεων για

XML και RDF δεδομένα, επιτρέποντας έτσι την εκτέλεση ενοποιημένων επερωτήσεων που
αναφέρονται τόσο στη δομή όσο και στη σημασιολογία των εγγράφων. Στην εργασία αυτη,

ορίζουμε το μοντέλο και την γλώσσα επερωτήσεων, περιγράφουμε μια πρότυπη υλοποίηση

του συστήματος και παραθέτουμε τα πειραματικά αποτελέσματα δείχνοντας τις επιδόσεις του

συστήματος και την εφαρμογή των μεθόδων μας στην πράξη.
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XRP: Une Plateforme Dédiée au Stockage et à l’Interrogation des
Documents XML Annotés
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Résumé Les données XML sont aujourd’hui omniprésentes sur le Web. Enrichir
ces données semi-structurées au moyen d’annotations sémantiques est une préoccupation
grandissante, qu’il s’agisse de simples méta-données, identifiant par exemple des entités
nommées (lieux, personnes, évènements, etc.) dans un article de presse, ou de relations
sémantiques plus complexes, comme un lien entre une entreprise citée dans ce même
article et la description de son dirigeant. Toutefois, l’infrastructure qui permettra de faire
de cet objectif une réalité tarde à voir le jour.

Dans cet article, nous présentons XRP, une plateforme dédiée au stockage et à l’
interrogation des documents XML annotés. Ce système repose sur (i) un nouveau modèle
de données permettant de représenter des documents XML enrichis de méta-données
RDF, et (ii) un langage de requête capturant l’expressivité des langages destinés aux

modèles XML et RDF. À partir de ces fondations, il devient possible d’interroger de façon
conjointe et transparente la structure et la sémantique de documents annotés. Après avoir
exposé le modèle de données et le langage de requête associé, nous présentons les détails
d’implémentation du prototype de la plateforme. Enfin, nous démontrons l’intérêt et les
performances du système dans une série d’expériences.
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Chapter 1

Introduction

1.1 XML & RDF for Expressing Semantically Rich Information

With its widespread acceptance, XML has become the language of choice for publishing semistruc-
tured data on the web, be it scientific (e.g., SwissProt), governmental (e.g., www.data.gov) or
business data.

In parallel, RDF is becoming the de facto standard for describing semantically rich data.
Its provision (combined with RDFS) for defining classes and properties, as well as relationships
between them (subsumption relations between classes or properties, and typing of properties’
attributes), which are then taken into account to answer queries, make it ideal for use in such
situations.

Until now these two data models have led separate lives (up to some work on translating
one to the other discussed in Section 2). However, we argue that this does not have to be this
way: By combining the power of both models, we could enable many real-life scenarios that
require XML data annotated with semantics (which in turn need to be taken into account in
query answering).

1.2 Problem Statement & Contributions

Consider the following scenario: A newspaper is publishing its articles in XML format. To
allow users to easier query its articles, it decides to classify them according to their topics
w.r.t. a publicly available ontology on news articles. To store classification information, the
administrator needs to be able to assign each article to (potentially multiple) concepts of the
news ontology. Moreover, she needs an automatic mechanism to reason on the ontology, so that
whenever a user searches for article topics (e.g., biology), she also gets back articles on more
specific ones (e.g., bioengineering, biofuel energy etc.). While XML does not make a provision
for this scenario, RDF could be used to link the article node to the corresponding ontology
concepts. Furthermore, if both XML and RDF could be combined, the user would be able to
query the document both on semantic relationships as well as on structural relationships (from
the XML document).

This work aims to enable such scenarios, by proposing a unified model allowing the combi-
nation of XML data with RDF data into a single instance. We have designed the model and
the corresponding query language and implemented a system for storing and querying instances
of the proposed model. Moreover, we showcase optimizations that are possible when XML and
RDF are combined in the same instance.

1



This work makes the following contributions:
Data Model for Annotated XML Documents In contrast to most existing works that

allow only the representation of either XML data or RDF data or the union thereof, the proposed
data model can even express instances where XML and RDF are actually interconnected (e.g.,
when an RDF triple refers to an XML node).

Query Language Unlike existing approaches where (as part of the query) XML data have
to be converted first to RDF before being joined with the second (or vice versa), our query
language allows writing queries that filter both according to the structural and the semantic
relationships, without having to first convert data from one format to another.

Implementation & Optimizations In contrast to existing systems, where RDF data have
to be translated to XML before being queried (or vice versa), the proposed system allows keeping
the XML and RDF data in two separate physical stores. However, at query processing it employs
a single query evaluation engine that treats both XML and RDF data uniformly, allowing for
cross-model optimizations that would not be possible if XML and RDF were queried by separate
query engines.

Experimental Results Our experiments show the behaviour of the system for different
types of queries and the effectiveness of the employed optimizations.

1.3 Thesis Organization

The structure of this thesis is as follows: We start by discussing related work in Chapter 2.
Chapter 3 presents representative use cases and the running example, used throughout the thesis.
Subsequently, Chapters 4 and 5 describe the data model and query language, respectively. The
implemented system is discussed in Chapter 6, followed by the experimental results in Chapter
7. Finally, Chapter 8 concludes the thesis.

2



Chapter 2

Related Work

Two major lines of work are closely related to this paper: The first shares our motivation of
annotating structured data and the second is related to our technical results of combining XML
with RDF. We start by discussing works on annotations.

2.1 Annotating Structured Data

2.1.1 Tools for annotating web pages

As RDF emerged, a lot of works, taking advantage of it, proposed frameworks that let users
semantically annotate web-pages either in a manual [36, 18] or in a (semi-)automatic fashion
[26, 12] (a comprehensive overview of annotation systems can be found in [24]). However, these
works focus solely on the storage and querying of annotations and do not consider the problem
of querying simultaneously data structures and the annotations on them.

The WebContent R&D project [1] is one among several recent efforts of building thematic
warehouses of Web data, and in particular crawled pages from the Web, processed with natural
language analysis tools to identify named entities and label the documents according to some
given ontologies. Our data model extends the WebContent data model by allowing XML nodes
to be referenced in RDF in all places where a URI can appear (as opposed to only subjects in
WebContent), enabling much richer data instances.

2.1.2 Embedding RDF annotations in XML documents

Similar to these works but much more focused on how to publish RDF annotations in XML
documents are the recent recommendations for embedding RDF annotations in XHTML: mi-
croformat [29], eRDF [27] and W3C’s RDFa [33] standard. Nevertheless, they do not cover
the querying aspect and they assume users are allowed to modify the original XML documents
to add annotations. This is particularly restricting, especially when users want to keep their
annotations private, or when they do not have access rights to the documents. In contrast, we
aim for a system where RDF annotations do not have to be embedded in the XML documents,
but can instead be kept in a separate physical store.

2.2 Combining XML & RDF

Parallel to the work on annotations, a significant amount of work has been spent on studying the
connection between RDF and XML. In this context, several works propose languages that allow,

3



as described in W3C’s GRDDL recommendation [28], the transformation of XML data to RDF
and vice versa [3, 9], known in the literature as lifting and lowering, respectively. Some look
into employing a query language of one model to query the other (e.g., using XQuery to query
RDF) [25, 23, 13] or building hybrid languages that embed constructs of a query language for
one model (e.g., XPath) into a query language for the other model (e.g., SPARQL) [11]. Finally,
some works present general frameworks that allow the modeling of different query languages
[15].

Note that some of these approaches solve the task of querying combined XML and RDF
data. Generally, they accomplish it by transforming RDF to XML data and then using XQuery
to query the original XML documents together with the XML-ized RDF triples. This is also the
approach we followed in our recent work [19]. The converse, that is, transforming XML to RDF
and querying both with SPARQL, has also been considered. However, (a) writing such queries
can be cumbersome, (b) the queries incur the cost of transforming data to some other format
first, and (c) these approaches do not consider the particular case where RDF triples refer to
XML nodes. Instead, we propose a system where queries can transparently combine XML and
RDF without having to convert or alter existing data.

4



Chapter 3

Use Cases & Running Example

The ever increasing volume of documents published by various organizations is making their
efficient manipulation progressively harder. Users are turning to annotations as a means of
enriching such data with semantic information, which can subsequently aid in its manipulation.
In this Chapter, we present various scenarios in which annotations are becoming essential.

3.1 Annotations of Commercial Information

A prominent use case is annotation of commercial information, such as in the newspaper scenario
presented in the introduction. Newswires, financial quotes, weather reports and other data feeds
are annotated through various channels: manually by publishers, journalists and end-users, or
automatically by extracting RDF from XHTML documents [28], or via NLP-based services
such as OpenCalais1 to disambiguate words and extract named-entities. Annotations are added
at different granularities (from single words to bigger chunks of text and entire documents)
and made available to end-users to more efficiently filter through the magnitude of available
information.

3.2 Annotations in Social Networks

A similar emergence of annotations can be witnessed in social networks. Social networks and
most recently even search engines are providing ways to let users reward contents they like, and
express their feelings. Meanwhile, methods are devised to automatically extract such opinions
from blogs, forums, product reviews, etc. Sentiment mining is gaining momentum in the data
analysis communities. Storing this type of information as semantic annotations would enable
classifying opinions into hierarchical structures. A wide range of applications could benefit from
a data model that combines XML with RDF, from crisis management to market surveys.

3.3 Annotations in Health Sciences

Last but not least, annotations play a prevalent role in Health Sciences and, in particular, in
the fields of Systems Biology and Bioinformatics. For instance, UniProt2 is a protein database

1http://www.opencalais.com/
2http://www.uniprot.org/
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containing annotations describing the function of each protein, its domain structure, etc. An-
other example is BLAST3, in which annotations are used to define similarities between parts of
different DNA or protein sequences. Many of these databases were initially modelled in XML,
and were lately transformed to RDF to exploit the new capabilities its model provides. How-
ever, structural relationships cannot be rendered as efficiently via pure RDF. Thus, a unified
approach featuring the best of both data models would be beneficial in this context.

3.4 Running example

To illustrate the proposed concepts, we employ a product catalogue scenario: Consider a web-
site that integrates information about products from various sources, such as product feeds of
on-line retailers (containing information about the products they sell) and the HTML pages of
amazon.com containing product descriptions and reviews. The data is integrated using auto-
matic inference techniques that create annotations over it, e.g., linking an item in the product
feed to its corresponding description on amazon.com. On top of that, users can manually create
two types of annotations: To aid search, they can annotate a product with its type using a
predefined ontology, moreover, they can add social networking annotations to promote products
they like and make connections to other users in the system. We will present a concrete example
of such data in the following section.

3http://blast.ncbi.nlm.nih.gov/

6



Chapter 4

The XR Data Model

In this Chapter we will introduce XR data model as a way to represent annotated documents
and then we are going to present a sample XR instance of the running example that we have
seen in Chapter 3.

4.1 XR Definition

In keeping with the widely accepted standards for representing semi-structured data (i.e., XML)
and semantic relationships (i.e., RDF), an instance of the XR data model comprises two sub-
instances: An XML sub-instance, consisting of a set of XML trees, and an RDF one, consisting
of a set of RDF triples. The connection between the two is achieved by assigning to each XML
node a unique Uniform Resource Identifier (URI), which can then be referred to from an RDF
triple, as we will explain below.

Next, we formally define XR sub-instances. We rely on a set U of URIs as defined in [34],
and a subset I ⊆ U of document identifiers or, equivalently, document URIs. We denote by L
the set of literals [31] (which for simplicity can be seen as the set of all strings). N is the set of
possible XML element and attribute names, to which we add the empty name ε. Finally, B is
a set of blank nodes (accounting for unknown literals or URIs, as we will explain later on). An
XML tree is defined as usual:

Definition 4.1.1 (XML Tree). An XML tree is a finite, unranked, unordered 1, labelled tree
T = (N,E) with nodes N and edges E, where each node n ∈ N is assigned a label λ(n) ∈ N
and a type τ(n) ∈ {document, attribute, element, text}. An attribute node must be the child of
an element node, it has a value belonging to L and it does not have any children. A text node
can only appear as a leaf. Finally, an XML tree can have at most one document node. The
document node can only appear as the root of the tree, has exactly one child and has the empty
name ε.

Most frequently, we are concerned with trees that are also documents, i.e., those rooted in
document nodes. However, we may also consider trees rooted at simple XML elements, for
instance, when XML trees are passed from the output of one query to the input of another,
without being permanently stored within a document. In our examples we will consider only
XML documents and thus omit the document node at the root of the tree. A set of XML trees
forms an XML instance:

Definition 4.1.2 (XML Instance). An XML instance IX is a finite set of XML trees.

1It is trivial to extend the definition to partially ordered trees, as per the XML standard.

7



We assume available a function that assigns a unique URI to each node in an XML instance.
A URI of a document node is commonly referred to as the document URI.

The URI assignment function is crucial for interconnecting the XML and RDF sub-instances,
as we will explain below: The unique identifiers assigned to the nodes allow the RDF sub-instance
to refer to nodes of the XML sub-instance. While discussing our system implementation in
Section 6, we present such a URI assignment function that can be used in practice. However,
for the purpose of the definitions, it suffices to consider any URI assignment function acting like
a Skolem function, i.e., returning a new (“fresh”) value every time it is called for the first time
with a given input, and consistently returning that value to any subsequent call with the same
input.

To facilitate the connection between the RDF and the XML sub-instance, an RDF sub-
instance is defined as a set of triples, which can among others refer to the URIs of the XML
nodes:

Definition 4.1.3 (RDF Instance). An RDF instance IR is a set of triples of the form (s, p, o),
where s ∈ (U ∪ B), p ∈ U , and o ∈ (L ∪ U ∪ B).

Following the common nomenclature, the components of a triple (s, p, o) are referred to from
left to right as its subject, property and object, respectively.

As defined above, the subject or the object of the triple can be bound to a so-called blank
node. Blank nodes are used in RDF [30] to denote unknown URIs or literals, similarly to
labelled nulls in the database literature [2]. For instance, one can use a blank node b1 in the
triple (b1, country, “France”) to state that the country of b1 is France, without using a concrete
URI. Blank nodes can be repeated in an RDF instance, thus allowing multiple triples to refer to
the same unknown URI or literal. For example, a second triple (b1, city, “Paris”) could specify
that the city of the same b1 is Paris. Finally, multiple blank nodes can co-exist in a data set,
thus allowing the representation of several unknown URIs or literals. For example, one may
also state that the country of some other unknown URI b2 is Morocco, while its population is an
unspecified literal b3.

Another peculiarity of RDF is that it does not model only explicit triples, but also implicit
(a.k.a. entailed) triples. The latter can be derived from the former according to a set of
entailment rules. More details on this process, known as RDF entailment, can be found in [32];
for the purposes of our discussion though, it suffices to be aware of the following: Given an RDF
instance IR, its semantics is the RDF instance I∞R , called the saturation of IR, consisting of IR
plus all the implicit triples derived from IR through RDF entailment. RDF entailment will be
central for RDF (thus XR) query answering (discussed in Section 5.2), as answers must also
take into account the implicit triples.

We can now define an XR instance as follows:

Definition 4.1.4 (XR Instance). An XR instance is a pair (IX , IR), where IX and IR are an
XML and an RDF data instance, respectively, built upon the same set of URIs.

It is important to note that the XML and the RDF sub-instances are defined over the same
set of URIs U , thus allowing RDF triples to annotate nodes of XML trees. The following example
illustrates such an interconnected XR instance.

4.2 XR Example

Figure 4.1 shows a sample XR instance corresponding to our running example of annotated
product information. It consists of three XML trees linked through RDF annotations: the prod-
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…
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“Product description”
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…
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…

#12

Companies

CompanyCompany

#15

Contact
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Name

“ACME Phones”

#16 #17

#18 #20

#19 #21

…

(⟨Alice⟩, ⟨likes⟩, #12), ! (#12, ⟨describes⟩, #3),!  (#10, ⟨date⟩, “23 May 2011”),
(⟨Alice⟩, ⟨knows⟩, B),  ! (B, ⟨email⟩, “bob@example.com”), 
(#3, rdf:type, ⟨MobilePhone⟩),! (⟨MobilePhone⟩, rdf:subClassOf, ⟨ElectronicDevice⟩),
(#3, rdf:type, ⟨ElectronicDevice⟩)

RDF sub-instance

XML sub-instance

Figure 4.1: XR instance representing annotated product information

uct catalogue of a retailer split into two XML trees containing product and company information
and an XHTML page from amazon.com containing product information. The RDF sub-instance
is shown on the top part of the Figure while the three XML trees forming the XML sub-instance
are shown on the bottom. For simplicity, we omit the document node at the root of each XML
document (the same holds for the queries presented in the following section). The subscript next
to the label of each XML node corresponds to its URI. URIs are used to allow the RDF triples
to annotate the XML trees. For instance, the first triple specifies that Alice likes the product
corresponding to the node with URI=“#12”. RDF triples can also link nodes across two XML
trees. For example, the second triple specifies that the node with URI=“#12” corresponds to
the description of the product represented by the node with URI=“#3”. Finally, the example
also illustrates the two concepts we discussed about RDF: blank nodes and entailment. The
fourth and fifth triples (shown on the second line of the RDF sub-instance) contain the blank
node B; we do not know the identity of B, although we know his e-mail address and the fact
that Alice knows him. Moreover, not all tuples shown in the RDF instance are explicit. The
last triple (shown in gray) specifying that the product with URI=“#3” is an electronic device
is implicit. It was derived from the fact that it is a mobile phone and that a mobile phone is an
electronic device.
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Chapter 5

The XRQ Query Language

Given an XR data instance, users should be able to query the data based on both its structure
(described in the XML sub-instance) and its semantic annotations (stored in the RDF sub-
instance). To this end, we design XRQ: a query language that allows querying according to
both axes. We start by defining XRQ in Section 5.1, before formally presenting its semantics in
Section 5.2. Finally, in Section 5.3 we present an extension of our query language that allows
construction of more complex output than the standard XRQ discussed below.

5.1 XRQ Definition

Staying close to the data model, XRQ consists of two main constructs: tree patterns, that allow
filtering based on the XML sub-instance and triple patterns that allow querying based on the
RDF sub-instance. Both types of patterns are defined below. Importantly, variables appearing
in tree patterns can be reused in triple patterns, thus allowing queries to select data based on
both their structure and their semantic annotations.

Definition 5.1.1 (Tree Pattern). A tree pattern is a finite, ordered, unranked, N -labelled tree
with two types of edges, namely child and descendant edges. We may attach to each node at
most one uri variable, one val variable and one cont variable. We may also attach to a node an
equality predicate of the form [val=c] for some c ∈ L.

A tree pattern is a variant of tree patterns as presented in the literature [4] with the additional
capability of attaching (one or more) variables of different types to the nodes. Variables serve two
purposes: (i) to denote data items that are returned by the query (in the style of distinguished
variables in conjunctive queries) and (ii) to express joins between tree (or triple) patterns. The
variable type specifies the exact information item from an XML node, to which the variable
will be bound. When a node nt of a tree pattern is matched against a node nd of an XML
tree, the variables attached to the node nt will be bound to the following concepts, according
to the variable’s type: uri variables are bound to the URI of nd. If nd is an element, val
variables are bound to the concatenation of all text descendants of nd; if nd is an attribute, val
variables are bound to the attribute value. Finally, cont variables are bound to the serialization
of the subtree rooted at nd. The semantics of val variables are copied from the XPath (and
XQuery) specification. Indeed, an XPath snippet of the form $x=”Paris”, where $x is bound to
some XML element, is interpreted as: check if the concatenation of all text descendants of that
element equals “Paris”. We represent such predicates by annotating a tree pattern node with
[val=“Paris”]. Similarly, a comparison of the form ... where $x=$y ... is interpreted as: the value
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b c d

a

$P: uri

Figure 5.1: Sample XRQ query

of $x (as we defined it above) is equal to the value of $y. Our queries also allow expressing such
comparisons, as we will explain later on.

Example. The bottom part of Figure 5.1 shows graphically three tree patterns for our running
example. As usual, single (double) edges correspond to parent-child (ancestor-descendant, resp.)
relationships. For instance, the tree pattern on the right looks for an html node with a descendant
div node. For each match of the pattern against the tree, $D will be bound to the URI of the
matched div node, while $V D will be bound to the concatenation of all its text descendants.

Definition 5.1.2 (Triple Pattern). A triple pattern is a triple (s, p, o), where s, p are URIs or
variables, whereas o is a URI, a literal, or a variable.

Example. The top part of Figure 5.1 depicts three triple patterns. For instance, the left-most
triple pattern asks for all URIs of type ElectronicDevice.

By combining tree and triple patterns and endowing them with a set of projected (head)
variables, we obtain an XRQ query:

Definition 5.1.3 (XRQ Query). An XRQ query consists of a head and a body. The body is a
set of tree and/or triple patterns built over the same set of variables, whereas the head is a list
of variables appearing also in the body.

Note that by using variables in multiple places within the query, one can express joins.
In general, three types of joins are possible: Joins between tree patterns, joins between triple
patterns or joins between tree patterns and triple patterns. This property of XRQ facilitates
queries that cross the boundaries between the XML documents and their RDF annotations. The
following example illustrates the expressivity of XRQ.

Example. Figure 5.1 shows an XRQ query, whose body (shown on the right) comprises
three triple patterns (shown on the top) and two tree patterns (shown at the bottom). It is
asking for all products (second tree pattern) of type ElectronicDevice (first triple pattern), the
companies that make this product (first tree pattern) and the corresponding product descriptions
(last triple pattern and tree pattern), such that somebody has expressed that he likes this
description (second triple pattern). In turn, it is returning the text value of the manufacturer’s
contact address together with that of the URI of the persons who expressed their satisfaction,
as evidenced by the existence of the variables $V P and $X in the head of the query (shown on
the left side of the Figure). Note the use of variables for expressing joins. The particular query
showcases all possible types of joins: Joins between two tree patterns (through variable $V P ),
between two triple patterns (through variable D) and between a tree pattern and a triple pattern
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(through variable $P ). Color-coding is meant to assist the reader in finding all occurrences of
a variable in the query. Note that the encircled letters do not form part of the query; they will
be used for explanation purposes when we discuss the query semantics in the next subsection.

5.2 XRQ Semantics

We now formally define the semantics of XRQ. To this end, we first define the notion of matches
and variable bindings for each of its components (i.e., tree patterns and triple patterns). A match
of a tree pattern against an XML instance is defined as usual through tree embeddings [4]:

Definition 5.2.1 (Match of a tree pattern against an XML instance). Let Q be a tree pattern
and IX an XML instance. A match of Q against IX is a mapping φ from the nodes of Q to the
nodes of IX that preserves (i) node labels, i.e., for every n ∈ Q, φ(n) ∈ IX has the same label
as n and (ii) structural relationships, that is: if n1 is a /-child of n2 in Q, then φ(n1) is a child
of φ(n2), while if n1 is a //-child of n2, then φ(n1) must be a descendant of φ(n2).

A match of a tree pattern Q against an XML instance IX defines the mapping of nodes of Q
to nodes of IX . However, recall that a tree pattern, apart from nodes, contains also variables,
which have to be bound to objects. This mapping of variables to objects, referred to as a variable
binding is formally defined below:

Definition 5.2.2 (Variable binding of a tree pattern against an XML instance). Let φ be a
match of a tree pattern Q against an XML instance IX and V the set of variables in Q. Let
v ∈ V be a variable associated to a node n. Then the variable binding f of Q against IX
corresponding to φ is a function over V such that: (i) if v is a uri variable, then f(v) is the
URI of φ(n) in IX , (ii) if v is a val variable, then f(v) is the value of φ(n) ∈ IX , as we defined
it in Section 5.1 and (iii) if v is a cont variable, then f(v) is serialization of the subtree of IX
rooted at φ(n).

As explained above, a variable binding f of Q against IX is associated to a match φ of Q
against IX . For simplicity however, in the following we will assume the existence of a match
and refer to f simply as a variable binding of Q against IX .

To capture the semantics of the triple patterns, we define matches and variable bindings for
them as well:

Definition 5.2.3 (Match of a triple pattern against an RDF instance). Let Q be a triple pattern
(s, p, o), IR an RDF instance and I∞R the saturation of IR. A match of Q against IR is a mapping
from the triple (s, p, o) to some triple tφ = (sφ, pφ, oφ) ∈ I∞R , such that φ(s) = sφ, φ(p) = pφ and
φ(o) = oφ, and for any URI or literal ul ∈ {s, p, o}, φ(ul) = ul (φ maps any URI or literal only
to itself).

It is important to note that in accordance with the RDF semantics as specified by the W3C,
a triple pattern is matched not against an RDF instance IR, but against the saturation of IR,
denoted I∞R . As defined in Section 4, I∞R contains in addition to the explicit triples of IR, a set
of implicit triples.

We recall the notion of restriction of a function to a subset of its domain. Let f be a function
over a set A. The restriction of f to a subdomain A′ ⊆ A, denoted by f |A′ , is a function f ′

over A′, s.t. f ′(x) = f(x),∀x ∈ A′. Based on this, we can define the variable binding of a triple
pattern as follows:
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Definition 5.2.4 (Variable binding of a triple pattern against an RDF instance). Let φ be a
match of a triple pattern Q against an RDF instance IR. Then the variable binding of Q against
IR corresponding to φ is the function φ|V , where V is the set of variables in Q.

We now provide the formal semantics of an XRQ query:

Definition 5.2.5 (XRQ Semantics). Let Q be an XRQ query, V be its set of variables, and
〈v1, v2, . . . , vn〉 the head variables of Q. Let I = (IX , IR) be an XR instance.

A variable binding f of Q against I is a function over V , such that for every tree (resp.,
triple) pattern P ∈ Q whose variables we denote VP , VP ⊆ V , f |VP is a variable binding of P
against IX (resp., IR).

The result of Q over I, denoted Q(I), is the set of tuples:

{〈f(v1), f(v2), ..., f(vn)〉 | f is a variable binding of Q into I}

In case of a boolean query, 〈〉 is true and the empty set of tuples is false.

The definition combines in the intuitive fashion the notion of variable bindings in the RDF
and XML sub-instances. When a variable is shared by a tree pattern and a triple pattern, our
XQR semantics ensure that it is bound to the URI of an XML node in IX , and such that some
triple in IR also mentions this URI.

Example. Applying the XRQ query of Figure 5.1 to the data instance of Figure 4.1 yields
the following result: {“ACME Phone”, 〈Alice〉}. Figure 5.2 shows the match found for each
tree/triple pattern and the variable binding for the entire XRQ query.

Joins and type casting The XRQ language allows one to attach the same variable, say $V ,
to the property of a triple pattern (which must be a URI, thus belong to U), and the value of
an XML node (which is a literal, and thus belongs to L). Rather than considering this a type
error in the query, we take the permissive approach of converting all variable bindings to L and
comparing their string representations.

5.3 Extended XRQ

As described above, applying an XRQ query returns a set of tuples. However, since the input
is an XR instance, one should ideally be able to also create such an instance as the output of
the query. To this end, we extend our query language by augmenting it with a constructor.
The constructor not only allows the generation of fresh trees and triples in the output but also
allows fresh triples to annotate fresh nodes. The definition and the semantics of the extended
language are presented below.

Definition 5.3.1 (Extended XRQ Query). An extended XRQ query consists of the body of an
XRQ query and a head of the form (SX , SR), where SX is a set of XML tree templates and SR
is a set of triples. Let VB be the set of variables in the body.

In each tree tx ∈ SX , internal nodes have N labels, while leaf labels are either (i) from N ∪L
or (ii) a variable v ∈ VB or (iii) of the form tree(u), for some variable of type uri u ∈ VB. A
node nx ∈ tx may moreover be annotated with a fresh variable (not appearing anywhere else in
SX) ux of type uri. Let VH be the set of fresh variables of type uri introduced in the query head,
and V = VH ∪ VB be the set of all query variables.

Each triple tR ∈ SR may use V variables in subject, property and/or object position.
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Figure 5.2: Pattern matches and variable binding of the query of Figure 5.1 against the XR
instance of Figure 4.1
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Figure 5.3: Sample extended XRQ query

Example. Figure 5.3 shows an example of an extended XRQ query. Its body is an extension
of the query in Figure 5.1; instead of retrieving the users who like a certain product, it retrieves
the e-mails of people they know. Of particular interest is the head of the query. In the bottom
part of the head, a new tree links together the maker of a product with the e-mails of friends of
users who like the product. In the top part of the query creates new triples that link (through
a blank node) the newly created product node with its description and the person who likes it.

We now formalize the semantics illustrated through the example. Let Q be an extended XRQ
query, (SX , SR) its head, VB the set of variables in its body and VH the set of fresh variables
in its head. A variable binding f of Q against an XR instance I is defined as for XRQ queries
(Definition 5.2.5).

Definition 5.3.2 (Extended XRQ Semantics). The result of an extended XRQ Q over I =
(IX , IR) is an XR instance (I ′X , I

′
R) is obtained by enumerating all variable bindings of Q against

I and, for each such binding f :

1. Construct I ′X : For each tree tx ∈ SX : (a) If tx consists of a single node labeled tree(u), for
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some variable of type uri u ∈ VB, add to I ′X the I node whose URI is f(u). (b) Otherwise,
add to I ′X a new XML tree TX , built by copying tx and replacing (b′) each tx leaf labeled
with some v ∈ VB by f(v), and (b′′) each tx leaf labeled with tree(u) for some uri variable
u ∈ VB, with a fresh copy of the I XML node whose URI is f(u).

Case (a) above outputs nodes from IX , with their URIs unchanged.

Nodes produced in case (b) are assigned new URIs by the URI assignment function furi.
For each tx ∈ SX , node n ∈ tx annotated with a fresh uri variable u, and binding f building
an XML tree TX from tx, the variable u is bound (by the I ′X construction) to the URI of
the TX node built out of n as in (b), (b′) or (b′′) above.

2. Construct I ′R: Copy SR, replacing each variable v by f(v) if v ∈ VB, and by the new node
URI to which v is bound, if v ∈ VH .

The above semantics deserves several comments.
First, notice that I ′X must be built before I ′R. This is so that the URIs of the possible new

XML nodes of I ′X are known by the time I ′R is built, and can appear in its triples.
Second, I ′X construction is quite complex since the language allows returning nodes from

the input IX , unchanged (case (a)), but also alternatively new XML trees built by stitching
together XML trees from IX in case (b), where query variable bindings both over IX and IR
can be glued in the returned trees. This expressive power is closely inspired from XQuery return

clauses, which can output both existing and new (re-combined) trees. We extend it to include
also data from RDF triples.

Finally, the syntactic construct tree(v) was introduced in Definition 5.3.1 and used in Defi-
nition 5.3.2 to refer to the tree whose root node URI is the binding of v. XQuery does not need
this, since it binds variables to nodes. The price for uniformly working with XML trees and
RDF triples in XR is that XR variables are bound to node URIs, making this indirection level
necessary.

The extended XRQ is closed with respect to the data model, i.e. the result of an extended
XRQ query on an XR instance is guaranteed to also be an XR instance (which facilitates query
composition). In the future, we plan to further enhance XRQ, to allow among others nesting
and grouping of the query results.
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Chapter 6

XRP Data Management Platform

We implemented XRP, an XR data management platform prototype, using Java 1.6. XRP
supports the storage of XR instances, and the evaluation of XRQ queries; it partially reuses,
and extends, the ViP2P platform1. Figure 6.1 depicts the system’s architecture. Next in this
Chapter, we describe each component in detail.

6.1 Data store

An XR instance is internally stored in tables (collections of tuples), hosted within a native
store using the BerkeleyDB persistent library [8]. RDF triples are mapped to a simple three-
attribute relation, as advocated in state-of-the-art RDF data management systems [22]. An
XML document d is stored in a tabular form as follows: the database administrator specifies a
few tree patterns td1, t

d
2, . . . , t

d
k which, together, are sufficient to store all the data from d. Each

of these tree patterns is evaluated over d using an extension of the algorithm in [10], and for
each tdi , 1 ≤ i ≤ k, we store the collection of tuples tdi (d) in BerkeleyDB. The tree pattern tdi is
stored also as metadata describing the tuple collection tdi (d). This storage solution is document-
specific and requires some human intervention. However, it generalizes easily: many of the
existing storage models for XML into relations can be described by some tree patterns, which
can be automatically computed from a document or its DTD [5], eliminating the need for human
intervention.

We end by noting that XRP implements a wrapper/mediator model, which makes it easy to
plug physical data sources of diverse implementations. For instance, in our previous work [6],
on which XRP is partially based, an RDBMS stored part of an XML database, while our native
store hosted the rest. Thus, one could easily include within XRP more efficient specialized stores
built for XML or RDF, while preserving the capability to answer queries over both.

The data store also hosts indexes, within our BerkeleyDB native tuple store. As usual,
an administrator can manually request the generation of an index that she might find helpful.
However, XRP also automatically generates indexes that we have found to be beneficial for most
XRQ queries (see “Automatic indexing” below).

6.2 Query evaluation engine

To evaluate queries, we used and enhanced ViP2P’s library of physical operators, implementing
the iterator model. Typical ViP2P operators are: scan of a stored tuple collection, selection,

1http://vip2p.saclay.inria.fr
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Figure 6.1: XRP platform architecture

projection and join operators. Join operators are of particular interest. The current imple-
mentation features HashJoin (implementing an in-memory hash join), and BindJoin, which is
a sideways information passing join (also known as a dependent or functional join) [14]. Our
implementation of BindJoin iterates over all tuples coming from its left-hand child operator,
extracts the values of the join attributes from each tuple, and makes a call to its right-hand
child, asking for all its tuples that match the join attribute values. Typically (and in particular
in XRP) the main usage of a BindJoin is to join with an indexed data collection by passing to
it values for the index key. Access to the index is modelled using a BindAccess operator; more
details on these operators can be found in [21].

6.3 Query optimizer

A query optimizer takes into account the available indexes, cardinality and size statistics etc.
and generates a query evaluation plan that is then passed to the query engine for execution.
Currently, the optimizer enumerates all possible left-deep trees, and pushes down selections and
projections.

6.4 RDF saturation

Recall from Section 5.2 that XRQ query semantics are defined not on the RDF instance, but
on its saturation, which extends the RDF instance with a set of entailed triples. To comply
with this, XRP saturates the RDF instance upon loading, through a reasoning module borrowed
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from our previous work [16], which implements the RDF entailment procedure defined in the
standard [30]. This is a one-time task performed when the RDF data is loaded. Saturation
was chosen in this work for simplicity; its efficiency compared to other techniques (taking into
consideration the cost of maintaining the database as well) is examined in a separate work [17].

6.5 URI generation for XML nodes

As discussed in the definition of the XR model in Section 4, URIs are central for XR: they form
the “glue” between the XML and RDF sub-instances, allowing RDF triples to refer to XML
nodes. To this end, whenever an XML document is imported into XRP, all its nodes should be
assigned unique URIs. To generate a node URI, we proceed in two steps: we assign a unique
ID to every XML document that is imported into the system; then we assign a unique ID to
every node within a document. The URI of a node is the concatenation of the document URI
and the node ID within the document. To assign node IDs, many of the existing XML node
labelling schemes could be used; ViP2P implements (pre-order, post-order, depth) identifiers [20]
which allow inferring, by comparing two node IDs, whether a node is a parent or ancestor of
another. ViP2P also supports Dynamic Dewey IDs [35], which, unlike the previous scheme,
adapt gracefully to updates. For XRP, we used without loss of generality the (pre-order, post-
order, depth) ID scheme.

6.6 Automatic indexing

By experimenting with XRP, we were able to make useful observations about the queries that
are usually executed in the system. In particular, most queries on annotated documents join
triples either on their subject or their object with URIs of XML nodes. For instance, the query
of our running example in Figure 5.1 falls under this category. Given the expected frequency of
such queries, we decided to have XRP automatically build indexes to speed up evaluation.

This could be accomplished by indexing either the RDF or the XML sub-instance. From the
perspective of the RDF sub-instance, triples may be joined (with XML node URIs) either on
their subject or on their object. Thus indexing the RDF data would entail building two separate
indexes (one for the subjects and another for the objects). Since typical XR queries join XML
nodes on their URIs, we opted for a single index on the URIs of XML nodes. This index is
automatically created for each XML document imported into the system and then subsequently
leveraged by the query optimizer when possible. Our experimental evaluation (Section 7) shows
that these indexes drastically improve the performance of most queries.
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Chapter 7

Experimental Evaluation

In the following, we study XRP’s performance for different queries and data sets utilizing the
various processing strategies supported by the system. Section 7.1 describes the setup of the
experiments and Section 7.2 presents the experimental results.

7.1 Experimental Setup

Data sets We used a synthetic data set containing information about football teams and players
annotated with various properties. The XML sub-instance conforms to the DTD outlined in
Figure 7.1. The documents were generated using the toXgene XML generator [7]. The RDF
instance consists exclusively of annotations about the XML players included in the XML data.
We generated a total of 12 data sets, whose characteristics are depicted in Figure 7.2. Each data
point on the graph corresponds to a different data set. We varied two independent dimensions:
the number of players, which we kept identical to the number of annotations, is shown on the
vertical axis, and the size of the Bio elements of each player, which affected the size of the
XML file, is shown on the horizontal axis. Increasing the number of players also led to an
increase of the RDF file size. Due to this correlation, the latter is also shown on the vertical
axis. The annotations were distributed following a random distribution over the players. There
is an average of one annotation per player but some players may have more than one, while
others may have no annotation at all. The XML data were transformed into relational form
by matching a tree pattern identical to the DTD of Figure 7.1 against the XML document and
generating a single tuple per match, as described in Section 6.

Queries We used a set of 3 queries shown in Figure 7.3. Q1 looks for ids of teams with
some player annotated by a particular property. Q2 is a generalization of Q1 looking for teams
with players annotated by any property. Finally, Q3 returns properties of players of a specific
team. On our data set, queries Q1 and Q3 are highly selective (i.e., they return very few results),
whereas query Q2 has low selectivity.

Execution strategies Each query looks for XML data and corresponding RDF annotations.
Thus, it contains a tree pattern (for querying the XML sub-instance) and a triple-pattern (for
the RDF sub-instance) that are joined. Obviously, a simple way to evaluate the queries is to
evaluate the tree pattern query, evaluate the triple pattern query, and then join them in order
to identify the annotated elements. Since the join compares URIs (an XML node URI with the
URI appearing as the subject of a triple), this join is a simple equi-join and can be executed
using the HashJoin operator.

We argue that queries of this form are not an exception but the rule. Indeed most queries on
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Effect of indexes on time to first result However, it is interesting to note that BindJoin
can still be of great benefit in this case for the time to the first result (FR). Since we can utilize
the index to access the indexed side of the join, getting the first result requires simply scanning
the other side of the join operator until the first match (that also satisfies all selection conditions
of the query). This may lead to very fast FR times, especially when the first match is close to
the beginning of the file. For example, in the case of Q2 in Figure 7.4 FR times are close to
zero, because the first match is among the first triples in the RDF file. On the other hand, the
same times for Q3 in Figure 7.5 are much closer to the QR times, because the players of team
“500” (selected by the query) are further down in the file. These observations can be of great
importance especially for real-time applications that require a fast turnaround time.
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Chapter 8

Conclusion & Future Work

The need for efficient ways of creating and querying annotated documents is becoming increas-
ingly apparent. In this work we make a first step in this direction by formalizing a data model for
representing such documents, a query language for seamlessly querying them according to both
their structure and annotations and a prototype implementation demonstrating the feasibility
of our approach. As part of our future work, we plan to extend the expressivity of our system by
enhancing the query language with additional constructs (e.g. grouping and sorting) and also
to study additional optimizations that may be possible when XML and RDF data are stored
within the same system.
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