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Abstract

The aim of this study is to investigate if the evolutionary rate of proteins is affected,

firstly by structural characteristics of proteins and then by protein localization. In-

formation about the evolutionary rate of proteins can provide valuable insights into

the functional and structural importance of specific protein regions; furthermore

it yields information about the evolutionary history, relationships and functional

divergence and finally it can be useful in evolutionary biology, bio-informatics and

drug discovery fields. Regarding structural characteristics of proteins, secondary

structure characteristics were studied, particularly Alpha helices and Beta sheets

in a data set that was extracted from the Protein Data Bank. The intention was

to investigate how the quantity of protein secondary structural elements affects its

evolutionary rate. We found that proteins containing more amino acids assigned

as Beta sheets rather than Alpha helices, tend to evolve faster. We classified our

proteins in KEGG pathways, in order to conduct pathway analysis, and compared

the evolutionary rates of proteins containing bigger percentage of Alpha helices

and Beta sheets within each pathway. From the Uniprot database we extracted

the possible locations for each protein and examined their impact on evolution-

ary rate. Furthermore, we performed a Gene Ontology analysis on both Alpha

helix and Beta sheet proteins to identify their corresponding biological processes,

molecular functions, and cellular components. This analysis aimed to investigate

whether these two types of proteins participate in different gene ontology terms,
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which could potentially explain the observed differences in their evolutionary rates.

We found that B proteins are found more in the extracellular region while A pro-

teins inside the cell; this could possibly explain their difference in the evolutionary

rates. For the second part of the study concerning protein localization we used a

data set from the G.Gkouridis lab (IMBB-FORTH), there are three protein loca-

tions, i.e., heavy membranes, light membranes and solution to investigate (i) if the

protein localization affects the evolutionary rate of proteins, and (ii) if secondary

structure elements in different locations affect the evolutionary rate.
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Chapter 1

Introduction

1.1 Phylogenetics

Phylogenetics is the study of the evolutionary history and relationships among

organisms, and it plays a fundamental role in the understanding of the natural

world. By analyzing the similarities and differences in genetic and morphological

traits among different species, researchers can reconstruct the evolutionary rela-

tionships among those species and infer patterns of evolutionary change over time

Wiley and Lieberman (2011). Phylogenetics has a long history dating back to the

work of Charles Darwin and Alfred Russel Wallace, who proposed the theory of

evolution by natural selection in the mid-19th century Nei et al. (2000).

1.1.1 Phylogenetic trees

A phylogenetic tree is a visual representation of the evolutionary relationships be-

tween different organisms, species, or genes that share a common ancestor. These

trees are useful for organizing information about the diversity of life, structuring

taxonomic classifications, and providing insights into evolutionary events. Addi-

tionally phylogenetic trees demonstrate the shared ancestry of organisms, which

is a strong piece of evidence for evolution, a thorough understanding of these trees
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is necessary to fully comprehend the abundance of evidence supporting the theory

of evolution. Robinson and Foulds (1981).

A phylogenetic tree consists of external nodes, which are the tips representing

the existing sequences, and internal nodes representing hypothetical ancestors.

The nodes are connected to each other by branches, where the length of each

branch represents an estimation of the amount of change that occurred between

two nodes. Currently, molecular data, such as DNA or protein sequences, are pri-

marily used to construct phylogenetic trees. The initial goal of these trees was to

determine the relationships among the species represented by the sequences, but

their purposes have expanded. Now, they are also used to investigate the relation-

ships among sequences themselves, without taking into account the host species.

Additionally, phylogenetic trees are used to infer the functions of genes that have

not yet been experimentally studied, as well as to uncover the mechanisms that

cause microbial outbreaks, among other applications. Hall (2013)

1.1.2 Homologous sequences

Homology is a general term used to describe a relationship of shared ancestry be-

tween entities, such as genes, without specifying the exact evolutionary scenario.

When entities share homology, they are called homologs. The terms ”orthologs”

and ”paralogs” are subcategories of homologs. Orthologs are genes related through

speciation, or vertical descent, while paralogs are genes related through duplica-

tion.Koonin (2005)

Vertical descent is the transmission of genes across generations through nor-

mal reproduction and replication mechanisms within a particular species. This

process typically involves recombination within sexually reproducing populations.

Zhaxybayeva and Doolittle (2011)

Gene duplication is a process in which a single gene produces two identical

genes, which cannot be distinguished from each other. These duplicated genes are
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referred to as paralogues if they are present within the same genome or as ortho-

logues if they are present in different genomes. Gene duplication is considered to

be significant in evolution as it provides raw material for the development of new

gene functions. By producing a duplicate gene, natural selection has more oppor-

tunities to create new and innovative functions with less constraints. Magadum

et al. (2013)

1.1.3 Bulding phylogenetic trees

To construct a phylogenetic tree, four steps are necessary: (i) recognizing and

obtaining a group of homologous DNA or protein sequences, (ii) aligning those

sequences, (iii) inferring a tree from the aligned sequences, and (iv) presenting the

tree in a manner that is understandable to others and communicates the pertinent

information. Hall (2013) The accuracy and reliability of the phylogenetic tree

depend on the quality of the data and the chosen methods. Therefore, it is essential

to carefully select the sequences and algorithms used in each step. Additionally,

phylogenetic analysis is an iterative process that may involve refining the data

and methods to obtain a more accurate tree. It is also important to consider that

phylogenetic trees are hypotheses, not definitive facts.

The most tricky part of building a phylogenetic tree is the tree estimation from

the aligned sequences. Various methods are commonly used to estimate phyloge-

netic trees including Maximum Parsimony, Maximum Likelihood, Bayesian Infer-

ence, and Neighbor Joining Hall (2013). Maximum Parsimony seeks to construct

the tree with the fewest evolutionary events Mount (2008). Maximum Likelihood

estimates the tree that best fits the observed data Felsenstein (1981). Bayesian In-

ference uses probabilities to estimate the tree Huelsenbeck et al. (2001). Neighbor

Joining constructs the tree by finding pairwise distances between sequences Saitou

and Nei (1987). In this study we used an open software (RAxML Stamatakis

(2014)) which uses the Maximum Likelihood method to infer the phylogenetic
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trees.

1.1.4 Maximum likelihood method

Maximum likelihood is a method used in phylogenetics to estimate the most likely

evolutionary history or relationship between a group of organisms based on molec-

ular data, such as DNA or protein sequences. The method assumes a particular

model of molecular evolution and calculates the likelihood of the data given a

particular tree topology and model parameters. The likelihood of the data given

a particular tree and branch lengths is calculated by multiplying the probabilities

of observing the nucleotides or amino acids at each site in the sequence data. The

probability of observing each nucleotide or amino acid is determined by the model

of molecular evolution used. The likelihood of the tree is then calculated as the

product of the likelihoods of the data at each site (Equation 1.1).

L = Pr(S1, S2, ..., Sn|T, θ) (1.1)

Where L is the likelihood function, S1, S1, ..., Sn are the nucleotide or protein

sequences in the alignment, T is the tree topology, and θ represents the model

parameters, such as the nucleotide or protein substitution rates. The likelihood of

each possible tree topology is calculated, and the tree with the highest likelihood

is considered the most likely tree. Felsenstein (1981)

1.1.5 Comparing phylogenetic trees

In this study we are interested in comparing the total branch lengths of the phylo-

genetic trees. This comparison can be challenging as there are certain restrictions

that need to be considered to avoid leading to inaccurate results. Firtsly to com-

pare two phylogenetic trees, it is necessary that they are inferred for the same set

of organisms Felsenstein and Felenstein (2004). The evolutionary relationships
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between different organisms are inferred based on the sequence similarity or other

molecular markers, and if different organisms are included in the two trees be-

ing compared, the comparison would not be valid. And secondly the trees must

be inferred with the same evolutionary model in order for the branch lengths to

be comparable Felsenstein and Felenstein (2004). This ensures that the branch

lengths represent the same evolutionary distances and can be directly compared.

1.2 Evolutionary rate of proteins

The evolutionary rate of proteins refers to the rate at which the amino acid se-

quences of proteins change over time as a result of genetic mutations and natural

selection. The rate of evolution varies among different proteins, and can be influ-

enced by factors such as the function of the protein, its expression level, and the

selective pressures acting on it.Pál et al. (2006). The evolution of proteins can

also be influenced by various other factors such as their structure, the location

of the genes in the genome, their expression patterns, their position in biological

networks, and their ability to tolerate errors during the process of translation.

Echave et al. (2016)

According to the work of Echave et al. (2016) and previous researches Fig-

ure 1.1 shows the dependence relationship between some of the factors that affect

protein evolution. Figure 1.1 : a) Transcription causes increased spontaneous mu-

tation rates in Saccharomyces cerevisiae Datta and Jinks-Robertson (1995) and

Escherichia coliWright et al. (1999) , probably by exposing the non-transcribed ss-

DNA to mutagenic chemicals, b) Recombinational repair of double-sheeted breaks

in S. cerevisiae increases the frequency of nearby point mutations Rattray and

Strathern (2003), c) Genes that are close to recombination hotspots in S. cere-

visiae are expressed at higher levels during vegetative growth than most other

genesGerton et al. (2000), d) Essential genes are clustered in regions of low re-
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combination in S. cerevisiae and Caenorhabditis elegans Pál and Hurst (2003), e)

Proteins that are more dispensable tend to be expressed at lower levels than less

dispensable ones Pál et al. (2003), f) More protein–protein interactions have been

reported for highly expressed proteins than for low-abundance proteins in S. cere-

visiae Von Mering et al. (2002), however, this correlation is not supported by all

interaction-detection methods Von Mering et al. (2002), and might reflect a detec-

tion bias towards high-abundance proteins, g) It has been reported that essential

genes have more protein–protein interactions than non-essential genes Jeong et al.

(2001), this correlation might be an artefact of biases in certain interaction data

sets Coulomb et al. (2005).

Figure 1.1: Interdependence between the factors that affect protein evolu-
tion.Echave et al. (2016)

Our knowledge regarding how functional and structural limitations combine to

influence differences in evolutionary rates is currently limited. In order to obtain

a comprehensive understanding of protein evolution, it is crucial to identify the

specific structural and functional characteristics that ultimately determine protein

evolutionary rates and develop mechanistic explanatory models. Echave et al.

(2016) Proteins that are involved in essential cellular processes, such as DNA

replication or protein synthesis, tend to evolve at a slower rate, as changes in their

amino acid sequence can have a greater impact on protein function. In contrast,

proteins that have more variable functions, such as those involved in immune
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recognition or sensory perception, may evolve more rapidly, as mutations may not

have as strong an effect on protein function. Echave et al. (2016)

1.2.1 Importance of evolutionary rate of proteins

Understanding the reasons behind the variation in protein evolutionary rates is

critical in several fields, such as molecular evolution, comparative genomics, and

structural biology. Quantifying the rate of protein evolution is a powerful tool to

determine the relative significance of genetic drift and selection, and to identify

selective forces using genomic data. Protein evolution analyses also offer a unique

approach to investigate speciation (Webster et al. (2003)), senescence (Cutter

and Ward (2005)), and social lifestyle (Bromham and Leys (2005)). Additionally

protein evolution analysis can identify functionally important sites that can be

used in protein design, peptides associated with genetic diseases, drug targets, or

protein interaction partners. The rate of protein evolution can be also utilized to

predict the impact of various mutations on disease. Recognizing and accounting

for confounding factors that influence protein evolution can greatly enhance the

accuracy of these predictions. Pál et al. (2006)

1.2.2 Calculating evolutionary rate of proteins

The evolutionary rate of proteins can be quantified as the speed of genetic change

between a taxonomic group over a certain period of time. The genetic change

is measurable and can be calculated as the amino acid substitutions in a given

protein alignment. For a group of organisms the amino acid substitutions can be

calculated by the total branch length of their phylogenetic tree Yang (1998). In

this study the period of time for which the evolutionary rate will be calculated

can not be determined; therefore to overcome this obstacle a group of mammals

was chosen for the structural characteristics analysis and a group of insects for the
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protein localization analysis. For every protein the phylogenetic gene tree of the

chosen organisms is inferred. Under the assumption that the age of the common

ancestor (root of the tree) is the same, the evolutionary rate for a specific protein

can be calculated as the total branch lengths of each tree.

1.3 Protein structure characteristics

Proteins are large biomolecules composed of one or more chains of amino acids.

They play a crucial role in many biological processes, including catalyzing bio-

chemical reactions, replicating DNA, responding to stimuli, and transporting molecules

from one location to another. They are composed of a linear sequence of amino

acids, which are linked together by peptide bonds to form a polypeptide chain.

All the information about the sequence of amino acids exists in the DNA of each

organism. The sequence of amino acids determines the structure and function of

the protein . In the majority of the organisms there are 20 different types of amino

acids that can be arranged in a nearly infinite number of ways to form different

proteins.

Protein structure refers to the three-dimensional arrangement of atoms in a

protein molecule. The long chains of amino acids can fold into specific shapes,

which are critical to their function. The structure of a protein can be described

at 4 levels: primary, secondary, tertiary, and quaternary. The primary structure

is the linear sequence of amino acids in the polypeptide chain. The secondary

structure refers to local spatial arrangements of the polypeptide chain; the most

common types are Alpha helices and Beta sheets. The tertiary structure describes

the overall three-dimensional folding of the protein molecule, which is largely de-

termined by non-covalent interactions such as hydrogen bonds, ionic bonds, van

der Waals forces, and hydrophobic interactions between amino acid side chains.

The quaternary structure refers to the association of two or more polypeptide
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chains into a larger functional unit.Branden and Tooze (2012)

Protein structure is essential for its function, as the three-dimensional shape

of a protein determines its interactions with other molecules. The active site of an

enzyme, for example, is a specific region of the protein with a unique structure that

allows it to interact with substrates and catalyze chemical reactions. Similarly, the

structure of a receptor protein determines its ability to recognize and bind to spe-

cific ligands. Protein structure can be determined experimentally using techniques

such as X-ray crystallography, NMR spectroscopy, and electron microscopy. These

methods provide detailed information about the three-dimensional arrangement

of atoms in a protein. The Protein Data Bank (PDB Berman et al. (2000)), is one

of the bigger databases that contains the 3D structural data of proteins and is a

key resource for the scientific community for studying the structure and function

of biological macromolecules and it is also used in this study.

In the recent past there was also a huge research effort on predicting the protein

structure from the amino acid sequence. AlphaFold Jumper et al. (2021) was

developed, which is a deep learning-based protein folding prediction algorithm. It

uses a combination of deep neural networks and Monte Carlo sampling methods to

predict the three-dimensional structure of a protein from its amino acid sequence.

AlphaFold is also used in a part of this study.

1.3.1 Secondary structure characteristics

The secondary structure of a protein refers to the local spatial arrangement of its

backbone atoms (mainly the Cα atoms) without regard to the conformations of its

side chains.The two most common types of secondary structure are alpha helices

and beta sheets. In this study we will focus on those two types of secondary

structure. Alpha helices are tightly coiled structures that form a right-handed

helix, with the amino acid side chains pointing outward from the helix axis. Beta

sheets, on the other hand, are extended structures that are stabilized by hydrogen
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bonds between adjacent sheets, which can be either parallel or anti parallel.

The spatial orientation of the peptide backbone, defined by a set of dihedral

angles (Φ, ϕ) and specific hydrogen bonds, determines the secondary structure of

a protein. Regular secondary structures are formed when the backbone dihedral

angles repeat specific values. The principal geometry for the alpha helix is Φ = 60◦

and ϕ = 45◦ with hydrogen bonds from the NH of the fifth residue in the chain

to the C=O group on the first residue, or between residues i and (i + 4). To

observe an alpha helix in a protein, one would see a right-handed helical structure

when looking down its axis from the amino terminal end. In soluble proteins, the

length of an alpha-helix is typically 11 amino acid residues, which corresponds

to three turns of the helix. Since all the backbone amide groups participate in

intra-chain hydrogen bonds, interactions of helices with other peptide domains or

small molecules take place solely through side-chain interactions. The beta sheet

is formed by dihedral angles of Φ = 130◦ and Φ = 120◦, creating an elongated

structure with some right-handed twist. The stability of beta sheets in proteins

and protein complexes is ensured by hydrogen bonds between protein chains, which

can be arranged in either parallel or antiparallel orientations. An other crusial

characteristic are turns which refer to a type of structure that connects two sheets

of a beta sheet or two alpha helices. These turns are typically four residues long

and stabilize the protein structure by reversing the direction of the polypeptide

chain. There are several different types of turns, that are classified according to

the number of residues involved in the hydrogen-bonded structure. The formation

of turns is critical for the stability and function of many proteins. Unordered or

random structure is generally defined as a conformation that is not helix, sheet,

or turn. Pelton and McLean (2000).

According to SCOP classification (Andreeva et al. (2014),Andreeva et al. (2020))

alpha helices and beta sheets are divided in 4 groups all-α, all-β, α/β and α+ β.

Where in α/β proteins, the secondary structure is composed of alternating Alpha
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helices and Beta sheets, while in the α + β proteins, the secondary structure is

mainly composed of Alpha helices with some Beta sheets interspersed.

In the following analysis we will focus on Alpha helices and Beta sheets and the

rest of the secondary structure will be considered as unordered and mentioned as

coil, more information and details will be found in the section 2.2.4. The intention

is to investigate how the quantity of secondary structural elements of a protein,

in terms of Alpha helices and Beta sheets, affects its evolutionary rate.

1.3.2 Relative solvent accessible area (RSA)

Relative solvent accessible area (RSA) is the measure of the proportion of the

solvent-accessible surface area of an amino acid residue that is actually accessible

to the solvent, compared to the solvent-accessible surface area of that amino acid

in a fully extended state. The RSA is useful for analyzing protein structures

because it provides information about the accessibility of individual residues in a

protein, which can be related to their biological function. Residues that are buried

in the protein core are likely to be involved in stabilizing the protein structure,

while residues on the protein surface are more likely to be involved in interactions

with other molecules. RSA values range from 0% to 100%, with 0% indicating

a completely buried residue and 100% indicating a completely exposed residue.

Petersen et al. (2009)

We will use this measure to investigate if there is a difference in the mean RSA

of proteins containing Alpha helices and Beta sheets.

1.4 Protein localization

Protein localization refers to the process by which proteins are targeted to specific

locations within the cell, where they perform their biological functions. Proteins

can be localized to different compartments within the cell, including the nucleus,
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cytoplasm, plasma membrane, mitochondria, and endoplasmic reticulum. In mul-

ticellular organisms, proteins can be found in specific tissues or organs, such as

muscle tissue or the liver. The specific localization of a protein is determined by

signals present in the protein itself, known as localization signals, which direct the

protein to its correct destination Janmey (1998). There are several types of local-

ization signals, including nuclear localization signals (NLSs), which direct proteins

to the nucleus, and signal sequences, which direct proteins to the endoplasmic

reticulum and the mitochondria Lange et al. (2007) . Other localization signals

include transmembrane domains, which anchor proteins to the plasma membrane,

and peroxisomal targeting signals, which target proteins to peroxisomes. Protein

localization is a complex and dynamic process that can be regulated by various

mechanisms. For example, post-translational modifications, such as phosphory-

lation and ubiquitination, can regulate protein localization by altering localiza-

tion signals or by promoting protein degradation Choudhary and Mann (2010).

Studying protein localization is important for understanding protein function and

cellular processes, as well as for developing new therapeutics that target specific

proteins in specific locations.

In a part of this study we will focus on proteins that are located in membranes

and in solution. We will investigate whether proteins localization, in terms of

membrane and soluble proteins, affect the evolutionary rate of proteins.

1.4.1 Membrane proteins

Biological membranes are critical barriers that separate living cells from their

surroundings, and in eukaryotes, they also compartmentalize organelles within the

cell. Organelle membranes include those that surround the nucleus, mitochondria,

endoplasmic reticulum, Golgi apparatus, lysosomes, and secretory vesicles. These

membranes have highly specialized functions that vary depending on their location

within the organism and within each cell. Membrane proteins are essential for the
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proper functioning of the membrane because they perform important functions

within it. The fundamental structure of biological membranes is established by

the arrangement of lipids, which form a phospholipid bilayer.

Many of the functions of the membranes are carried out by proteins. Each

biological membrane has its own specific functions, which are enabled by a unique

set of proteins embedded within it. The amount and types of proteins present

within a membrane vary depending on the specific needs of the cell or organelle. On

average, biological membranes are made up of 50% proteins by mass, meaning that

there are 50 lipid molecules for every protein molecule. This is due to the fact that

lipids are relatively small molecules, while proteins are much larger in comparison.

Lipids in the membrane bilayer function mainly as solvents for membrane proteins

which tend to be hydro-phobic in nature. Depending on their mode of association

with the membrane, membrane proteins can be broadly classified into integral and

peripheral membrane proteins. Integral membrane proteins are tightly bound to

the membrane and can only be removed by using detergents or other agents that

disrupt the membrane. They are typically transmembrane proteins that span the

entire lipid bilayer or have one or more hydrophobic domains that anchor them

to the membrane. Peripheral membrane proteins, on the other hand, are loosely

associated with the membrane and can be removed by changing the ionic strength

or pH of the solution. They are typically found on the surface of the membrane

or attached to integral membrane proteins. Peripheral membrane proteins often

play a regulatory role in signaling pathways or membrane transport processes.Tan

et al. (2008)

1.4.2 Soluble proteins

Soluble proteins are proteins that are not associated with biological membranes

and are present in the aqueous environment of cells or extracellular fluids. These

proteins have a wide range of functions, including catalyzing biochemical reac-
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tions, serving as structural components, regulating gene expression, and acting

as signaling molecules. Soluble proteins can be further classified based on their

physical and chemical properties, such as size, shape, charge, hydrophobicity, and

solubility. Some examples of soluble proteins include enzymes, antibodies, hor-

mones, and cytokines.

1.5 Results from previous research

Findings of previous research that analyzed the evolutionary rate of proteins based

on their secondary structure characteristics, as well as the evolutionary rate of

proteins based on their specific localization within cells, will be presented.

1.5.1 Secondary structure characteristics

In the work of Bloom et al. (2006) structural determinants of the rate of pro-

tein evolution in yeast were studied. They quantified the evolutionary rate of

proteins as the number of nonsynonymous substitutions per site, dN. All open

reading frames (ORFs) in S. cerevisiae were Blasted against those in Saccha-

romyces bayanus and vice versa. Pairwise hits with an E value of < 10−20 were

retained and aligned with ClustalW, using the aligned protein sequences to align

the nucleotide sequences. Evolutionary rate, the numbers of nonsynonymous sub-

stitutions per nonsynonymous site (dN) was computed for these hits using the

Phylogenetic Analysis by Maximum Likelihood. They correlated dN with the

fraction of helix sites, fraction of sheet sites, fraction of turn sites, and fraction

of coil sites, and they found that none of these quantities correlated significantly

with dN and neither did they correlate with the expression level. They invest-

gated the relationship between protein structure classification and evolutionary

rate for 137 proteins. The result can be seen in Figure 1.2; the median evolution-

ary rate of all-β proteins was higher than other types, but the highest individual
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evolutionary rates were found in α/β and α + β proteins. However, no class of

proteins, including all-β proteins, showed a significantly increased evolutionary

rate after correcting for multiple tests. They concluded that secondary structure

composition and protein-fold classification had almost no effect on evolutionary

rate, although they were skeptical that their analysis might underestimate the

contribution of protein structure to evolutionary rate.

Figure 1.2: Box plots of the distributions of evolutionary rate for different SCOP
classes.Bloom et al. (2006)

In an other study of Abrusán and Marsh (2016) they investigated whether

alpha helices of beta sheets are more robust to mutation. Mutational robustness

is the ability to accept mutations without change. The authors of this study il-

lustrate that there is a variation in the mutation tolerance of different secondary

structure elements of proteins, specifically helices and sheets. They explain that

this variation is due to the dissimilarity in the count of non-covalent residue in-

teractions within these secondary structure units. The researchers conducted a

comprehensive study using SCOP domains and the Protein Data Bank (PDB)

and found that alpha helices are more robust than beta sheets, meaning they can

handle more mutations in the sequence without compromising their secondary

structure. The study suggests that this is mainly due to the greater number of

residue interactions in helices. Moreover, both helices and sheets are more robust

than regions without any secondary structure (coils). They used a comparative

method first, then made all possible pairwise structural alignments between all do-
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mains within all SCOP families. Next, they determined the secondary structure

of the domains in the alignments, and examined how secondary structure similar-

ity (the percent of aligned helix residues that remained helices in both proteins)

changes with sequence similarity, a result that can be seen in Figure 1.3. Alpha

helices change significantly less with sequence change than beta sheets in case of

all-α, all-β and α + β domains. They also indicate that the higher robustness of

helices is caused by their higher number of residue-residue interactions. They cal-

culated the relative solvent accesible area (RSA) for each residue and an average

RSA for each protein. Alpha helices tend to have bigger RSA than beta sheets.

Figure 1.3 also indicates that residues of helices are significantly more robust for

mutations than sheets in all SCOP classes, except for the most buried residues

with RSA < 0.1.

Figure 1.3: Secondary structure similarity of pairwise alignments as a function of
sequence similarity and RSA. Abrusán and Marsh (2016)
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1.5.2 Protein localization

Sojo et al. (2016) investigated whether membrane proteins are dramatically less

conserved than water-soluble proteins across the tree of life. The study findings

indicate that membrane proteins have fewer orthologs compared to water-soluble

proteins throughout the evolutionary history. This could either be due to higher

evolutionary rates leading to sequence divergence beyond a detectable threshold

by sequence-searching algorithms, or it could be actual gene loss. The study

provides evidence for both possibilities. The results show that evolutionary rates

for membrane proteins are generally faster than those of water-soluble proteins

across all domains of life, including archaea, bacteria, and eukaryotes Figure 1.4.

They used Nei’s sequence-diversity measure for a measure of evolutionary rate,

which was calculated by averaging the number of differences per alignment position

per pair of sequences, and then averaging these over the number of pairs, for each

group of orthologs. Notably, the evolutionary rates of membrane proteins are

faster in the aqueous regions that face outside of the membrane than in the inside-

facing regions. They also demonstrated that aqueous sections evolve faster overall

than membrane-spanning sections in membrane proteins. Splitting the aqueous

sequences into outside- and inside-facing sections confirms that regions exposed

to the environment evolve faster than those facing the cytosol.

Figure 1.4: Nei’s sequence diversity measure for membrane and soluble proteins
in archaea, bacteria and eukaryotes. Sojo et al. (2016)

In other previous studies, it was found that the evolutionary rate of a protein
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is strongly correlated with its subcellular localization. Proteins that are secreted

from the cell or are located on the external parts of membranes evolve faster than

intracellular proteins in both mammals and yeast Tourasse and Li (2000),Julenius

and Pedersen (2006)Liao et al. (2010), although the reasons for this are not fully

understood. It is believed that structural and packing constraints, such as the

exposure of amino acid residues to the solvent Oberai et al. (2009),Franzosa et al.

(2013), as well as the subcellular localization of the proteins and their portions

Julenius and Pedersen (2006),Liao et al. (2010), are the strongest predictors of

evolutionary rate. In parasites, membrane proteins diverge faster than intracel-

lular water-soluble proteins, likely due to the pressure to avoid detection by the

host Volkman et al. (2002),Plotkin et al. (2004). This pattern may be specific

to the ”red-queen” (the co-evolutionary arms race between parasites and their

hosts) dynamics of parasitic interactions, which require constant adaptation just

to maintain fitness.



Chapter 2

Materials & Methods

2.1 Simulation with INDELible

Simulated data are usually used to investigate the accuracy and efficiency of a

method. In this case the method is phylogenetics; the phylogenetic tree is obtained

through the maximum likelihood approach and true phylogenetic relationships

are rarely known with certainty. Therefore simulations help to investigate the

accuracy and efficiency of phylogenetic relationships. INDELible which is a tool

for biological sequences simulation is used; it can simulate nucleotides, amino acids

and codons. INDELible takes as input a given phylogenetics tree with branch

lengths assigned and gives as an output the simulated biological sequence. The

input tree was taken from The Human genome Browser at UCSC (Kent et al.

(2002)); it is the following tree containing 20 mammals. (Figure 2.1)

The input to INDELible is a tree and the output is a simulated sequence that

can be explained by the given tree; both nucleotide and amino acids sequences

were simulated. Then the simulated sequence was used as an input to calculate

again the phylogenetic tree with a program for phylogenetic analysis (RAxML

subsection 2.2.6), and the final step is the calculation of the total branch length of

the simulated tree. The aim here was to investigate how the total branch length

22
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Figure 2.1: Phylogenetic tree of 20 mammals from USCS

of the simulated tree responds to changes in the total branch lengths of the given

tree. Thus the UCSC tree was used changing it’s branch lengths multiplying by

numbers from 0.2 to 18 for amino acid sequences and from 0.2 to 14 for nucleotide

sequences with a step of 0.2. The following plots (Figure 2.2) show the relation

between total branch lengths of the given and the simulated tree Fletcher and

Yang (2009)).

(a) Given vs simulated total
branch length in proteins

(b) Given vs simulated total
branch length in dna

Figure 2.2: Relation of total branch length between given and simulated trees for
protein and dna.

According to the plots, in protein simulations the total branch length (tbl) of

given versus simulated trees is almost 1 : 1 up to total branch length of 12 in the
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given tree; this means that both increase with the same rate. Above 12 as the

given total branch length increases the simulated one increases with a smaller rate.

On the other hand for dna sequences up to total branch length of 6 the simulated

tbl increases faster than the given tbl; after that number the simulated one starts

to increase slower than the given one, and it seems that it reaches a plateau for

big total branch lengths. This is maybe due to number of possible nucleotides

which is 4 (A, C, G, T). Having increased total branch lengths means that there

is a higher rate of mutation; this can cause the multiple mutation of a site which

can end to the same nucleotide as the one before the mutation and this position

will not be detectable in the simulated sequence. This explanation may account

for the difference in rates between the given and simulated branch lengths. This is

different for proteins because the possible amino acids are 20 and it’s much more

difficult to have multiple mutations that with lead to the same amino acid as the

one before the mutation; it is thus more difficult to reach to saturation. Since

protein sequences up to a total branch length of 12 are comparable in given vs

simulated trees this threshold will be used in further analysis.

2.2 Data set from PDB

One of the data sets analysed was retrieved from the Protein Data Bank (PDB)

(Berman et al. (2000)) with applied filters for SCOP (Structural Classification of

Proteins) classification. SCOP is another database for all proteins with known

structure that aims to provide detailed and comprehensive description between

those proteins (Andreeva et al. (2014),Andreeva et al. (2020)). The aim in this

part of the study was to find the effect of proteins that contained mostly Alpha

helices and proteins that contained mostly Beta sheet on evolutionary rate. There-

fore according to SCOP classification 19,126 Alpha and 29,546 Beta proteins exist

and retrieved from the PDB. This data set can be provided in a .txt file containing
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the PDB id of the proteins due to the size of the file. The PDB files downloading

was done with Python (version 3.9.13) and the Biopython package (version 1.81)

(Cock et al. (2009)).

2.2.1 Organisms used for Phylogenetic analysis

Phylogenetic analysis and particularly building of phylogenetic trees is essential

in this study for the calculation of the evolutionary rate or proteins, through the

total branch length of each evolutionary tree. As mentioned in subsection 1.1.5,

in order to have comparable evolutionary trees they much be built with the exact

same organisms, and to have comparable branch lengths the trees much be inferred

with the same evolutionary model. For this data set 16 mammal organism were

chosen (Table 2.1) covering a wide range of the mammalian species tree.

Table 2.1: Table with the mammals selected for the analysis

scintific name common name

h.sapiens human
c.l.familiaris dog
m.musculus house mouse
b.taurus bull
b.b.bison buffalo
e.a.asinus donkey
d.leucas beluga whale
e.caballus horse
f.catus cat
l.africana African bush elephant
u.americanus American black bear
p.troglofytes chimpanzee
p.paniscus Bonobo
p.leo African lion
r.norvegicus Norwegian rat
s.scrofa Eurasian wild pig
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2.2.2 g:Profiler

g:Profiler is a collection of tools that are commonly used in standard pipelines

of genes or proteins for computational analysis. g:GOSt performs the functional

enrichment analysis of individual or multiple gene lists, and g:Orth allows to map

orthologous genes across species (Raudvere et al. (2019),Reimand et al. (2007)).

The data set from PDB consist of protein PDB ids which are used in order to find

the gene code for the protein in h.sapiens and other 15 organisms that will be used

in order to build the phylogenetic tree. The gene codes for each protein for the

16 organisms are collected and used in the next steps of the analysis. g:GOSt can

measure the enrichment of the gene set provided in a given Gene Ontology category

i.e. ”GO:PB→ Biological Process”, ”GO:MF→ Molecular Function”, ”GO:CC→

Cellular Component” and more. It can be used as a statistical measure to evaluate

the significance of the functional annotations obtained for a set of genes. The

analysis was done with Python (version 3.9.13) and gProfiler module for python.

2.2.3 Ensemble and Biomart tool

Ensemble (Smedley et al. (2009),Cunningham et al. (2022),Van Rossum and Drake

(2009)) is a flexible infrastructure for access to genomic data and annotation; it

can deliver reference data for genome interpretation for any species. It consists

of several different tools; one of them is Biomart which was used in this study.

Biomart can perform advanced querying of biological data sources through a web

interface and an interface with Python (pyBiomart). The gene codes obtained

from g:Profiler for each protein and each of the 16 organism are used in Biomart

in order to retrieve their amino acid sequences (fasta files). For this procedure, first

the organism is specified, then the gene code is provided and finally the required

output is selected, which is the amino acid sequence in our case. This procedure

is done in Python environment, not in web interface, and it is automated in order
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to be able to run it for a big number of different queries . The analysis performed

using Python (version 3.10.4) and pyBiomart which is a simple pythonic interface

for Biomart.

2.2.4 DSSP

The DSSP program (Kabsch and Sander (1983),Touw et al. (2015)) was designed

to standardize secondary structure assignment, DSSP is a database of secondary

structure assignments for all protein entries in the PDB. It is also the program that

can calculate the secondary structure from a PDB file. The secondary structure

of proteins in this data set is essential for this study, in order to investigate how it

impacts the evolutionary rate. This program was used taking as input the PDB

files of the proteins and receiving as an output the secondary structure of proteins

which contain the 8-states of secondary structure [H,B,E,G,I,T,S,-]. The 8-states

Table 2.2 was then converted to 3-state Alpha-helix, Beta-sheet and Coil; for this

conversion the following dictionary was used (H : H,B : E,E : E,G : H, I : C, T :

C, S : C,− : C). The 3-state secondary structure was used for further analysis.

The percentage of Alpha helices, Beta sheets and coil was determined for each

protein, and the proteins were classified as A proteins if A% was bigger than B%

and also classified as B proteins if the B% was bigger than A%.

Table 2.2: Table 8-state secondary structure description of code letters

Code Description

H Alpha helix
B Beta bridge
E Sheet
G Helix-3
I Helix-5
T Turn
S Bend



28 CHAPTER 2. MATERIALS & METHODS

2.2.5 ClustalW

ClustalW is a widely used system for aligning any number of homologous nu-

cleotide or protein sequences. For multi-sequence alignments, ClustalW uses pro-

gressive alignment methods. In these, the most similar sequences, i.e. those

with the best alignment score are aligned first. Then progressively more distant

groups of sequences are aligned until a global alignment is obtained. This heuris-

tic approach is necessary because finding the global optimal solution is prohibitive

concerning both memory and time requirements. ClustalW performs very well in

practice. The algorithm starts by computing a rough distance matrix between each

pair of sequences based on pairwise sequence alignment scores. These scores are

computed with the pairwise alignment parameters for DNA and protein sequences.

Next, the algorithm uses the neighbor-joining method with midpoint rooting to

create a guide tree, which is used to generate a global alignment. The guide tree

serves as a rough template for clades that tend to share insertion and deletion fea-

tures. This generally provides a close-to-optimal result, especially when the data

set contains sequences with varied degrees of divergence, so the guide tree is less

sensitive to noise (Thompson et al. (2003). The alignment of the protein sequences

for the 16 organisms and for every protein in the data set is done with ClustalW.

The fasta files gathered before are turned into multiple sequence alignments of 16

organisms and are ready for use in the next step. The analysis was done using

Python (version 3.9.13) and the Biopython package (version 1.81) (Cock et al.

(2009)).

2.2.6 RAxML

RAxML is an open source software for sequential and parallel Maximum Likeli-

hood based inference of large phylogenetic trees (Stamatakis (2014)).

It takes as an input the multiple sequence alignment, acceptable formats are
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relaxed interleaved or sequential PHYLIP or FASTA, and it has many options as

an input depending on the users preferences. One of the main options is -m which

is used to specify the substitution model to be used for phylogenetic inference.

The substitution model describes the probabilities of different types of nucleotide

or amino acid substitutions that occur over evolutionary time. In this study we

used the WAG model, a substitution model for amino acid sequences in phylo-

genetic analysis. The name ”WAG” stands for Whelan and Goldman (Whelan

and Goldman (2001)), the authors who developed the model. The WAG model

assumes that different amino acids have different propensities for substitution and

that these propensities vary according to the evolutionary distance between se-

quences. The model uses a maximum likelihood approach to estimate the rates of

amino acid substitutions from a multiple sequence alignment. The WAG model

is a popular choice for analyzing protein-coding genes because it accounts for the

compositional heterogeneity and variable evolutionary rates among different amino

acid residues.

RAxML produces several different outputs during the course of a phylogenetic

analysis. In this study the output used is RAxML bestTree; it contains the best

scoring maximum likelihood tree found by the program. The tree is used to

calculate the total branch length which will be used further in the analysis.The

analysis was done with Python (version 3.9.13) and the Biopython package (version

1.81), (Cock et al. (2009)).

2.2.7 Data set and protein chains

A protein can be formed from one or more identical or different chains. Different

proteins can contain one or more identical chains. For each protein in the data set

all different chains were used for this study. The data set with SCOP classification

from PDB contained 19,126 Alpha and 29,546 Beta proteins. These numbers were

reduced to 4,148 Alpha and 5,466 Beta, since only for those chains we found fasta
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files for the 16 organisms chosen for this study. Also each chain used was classified

as Alpha or Beta according to the percentage of Alpha helices and Beta sheets in

their secondary structure. These numbers were further changed according to the

classification to Alpha and Beta proteins, and the data set then consisted of 4,270

Alpha and 3,867 Beta proteins. Each chain is encoded by a gene; when a chain is

found in multiple proteins then the chain was kept only once in the data set; this

check was done with the gene name of each chain. This step is important in order

to avoid multiple identical chains in the data set that could change the results

due to their multiple occurrence; this is not the actual information we wanted to

obtain. The final step was to keep only once the chains that appeared more than

once; thus the final data set consisted of 662 Alpha and 579 Beta chains with

unique genes.

2.2.8 Alignment trimming

In this step of the analysis the aim is to trim the multiple sequence alignments of

the 16 organisms obtained for each protein, according to their secondary structure.

The desired result is the alignment containing only regions that are Alpha helices

for A proteins and Beta sheets for B proteins, in order to use only those regions

to investigate if the evolutionary rate of these regions is affected by the secondary

structure of the region. We kept for Alpha helices the regions with code letter

”H” and for Beta sheets the regions with code letter ”E”. For each multiple se-

quence alignment the trimmed regions were again connected in order to obtain one

trimmed multiple sequence alignment for each protein. An example of alignment

trimming can be seen in Figure 2.3. After the alignment trimming was applied,

the trimmed alignments are used as an input to RAxML to infer the trees for each

alignment and calculate the rates through the total branch lengths. The data set

consisted of 662 Alpha and 579 Beta chains was further reduced to 497 Alpha and

499 Beta chains due to the removal of proteins with rates over than 12. Those
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proteins were removed for two reasons: firstly because of the simulation results

with INDELible and secondly because some proteins had very high evolutionary

rates ( the trimmed alignment was done based on the h.sapiens sequence and had

big gaps with the rest of the organisms) This analysis step was done with Python

Figure 2.3: Example of alignment trimming

(version 3.9.13) and the Biopython package (version 1.81), (Cock et al. (2009)).

2.2.9 Relative solvent accessible area

RSA is a measure to quantify the accessible area of a residue. In the file obtained

from DSSP, also used for secondary structure calculation, there is a column called

ACC which stands for the accessible surface area of a residue. ACC is the number

of water molecules in contact with this residue *10, or residue water exposed

surface in Å² (Kabsch and Sander (1983),Touw et al. (2015)). To calculate the

RSA we used the following formula

RSA =
ACC

MaxASA

. MaxASA Maximal Accessible Surface Area (MaxASA) refers to the total area of

a given amino acid residue that is exposed to the solvent when the protein is in its

native state. It is typically measured in square angstroms (Å²). MaxASA values

for different amino acid residues have been experimentally determined and can be

used to calculate RSA values for each residue in a given protein. The MaxASA
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used to calculate RSA can be found in Table 2.3. After having calculated RSA

for each residue of each protein, we calculate a mean RSA for each protein and

investigate if the mean RSA is different for A and B proteins. Also we calculate

another mean RSA for the residues that are assigned to Alpha helices or Beta

sheets, and then investigate if the mean RSA in residues of Alpha helices and

Beta sheets is different.

Table 2.3: Maximum solvent accessible surface area (MaxASA) values for common
amino acids.

Amino acid MaxASA (Å2)

Ala (A) 129.0
Arg (R) 274.0
Asn (N) 195.0
Asp (D) 193.0
Cys (C) 167.0
Gln (Q) 225.0
Glu (E) 223.0
Gly (G) 104.0
His (H) 224.0
Ile (I) 197.0
Leu (L) 201.0
Lys (K) 279.0
Met (M) 224.0
Phe (F) 240.0
Pro (P) 159.0
Ser (S) 155.0
Thr (T) 172.0
Trp (W) 285.0
Tyr (Y) 263.0
Val (V) 174.0

2.2.10 Kegg pathways analysis

For the pathway analysis, we used the KEGG (Kyoto Encyclopedia of Genes and

Genomes) database Kanehisa and Goto (2000),Kanehisa (2019),Kanehisa et al.

(2023). Proteins were searched in the KEGG database to find pathways related

to each protein. In order to search proteins in KEGG database the gene name of
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each protein was collected from PDB since the PDB name of proteins was used

in the analysis so far. Proteins can take part in more than one pathway; thus all

pathways related with the gene name were collected. We wanted to gather all the

pathways that contained A and B proteins, with the intention of investigating if

in each pathway there is a difference on the evolutionary rate of A and B proteins.

All pathway analysis was done with Python(version 3.9.13) and the Biopython

package (version 1.81), (Cock et al. (2009)).

2.2.11 Proteins localization through Uniprot

UniProt (Universal Protein Resource) is a comprehensive protein database that

provides a central repository of protein sequence and function information. Uniprot

contains high-quality protein sequences, curated functional annotations, and other

related information such as protein-protein interactions, gene ontology (GO) terms,

and cross-references to other biological databases (uni (2023)). In this study

Uniprot is used to collect protein localization information from the section sub-

cellular location. Protein localization in this part of the study is divided in three

teams, membrane proteins which are found only in membranes, soluble proteins

which are found anywhere else except membranes and both proteins that can be

found both in membranes and solution. The analysis was done with Python (ver-

sion 3.9.13) (Cock et al. (2009)). 662 Alpha and 579 Beta chains were searched

in Uniprot for their sub-cellular location. 610 Alpha and 547 Beta chains a sub-

cellular location existed in Uniprot.

2.2.12 Gene Ontology analysis

We used g:GOSt and performed gene set enrichment analysis for the two gene pro-

tein sets, for Alpha helices proteins and Beta sheet proteins. For each Gene On-

tology category (Biological process, Molecular function and Cellular component)
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we kept the 11 GO terms with the smallest p-values for each protein category (A

and B proteins). Then we used the python library GOatools Klopfenstein et al.

(2018) and Python (version 3.11.3) to plot the GO terms for each Gene ontology

category and protein set (we used different colors) in the gene ontology hierarchy

tree and compared A and B proteins according to gene ontology terms.

2.3 Data set from G.Gouridis lab

To investigate the protein localization effect on the evolutionary rate, a data set

from G.Gouridis group at IMBB in FORTH was used, and can be provided in

an excel file. This data set consisted of 2.789 proteins from organism Spodoptera

frugiperda and their protein localization which consisted of three possible options:

light membrane (LM), heavy membrane (HM) and Soluble (SUP). A similar pro-

cess as for the structural characteristics was applied in this part. We chose different

organisms for the phylogenetic analysis and a different source for the orthologs of

the 16 organisms. The remaining procedure for inferring the phylogenetic tree,

calculating the rate of evolution and calculating the secondary structure was the

same as for the structural characteristics. ClustalW was used for the multiple se-

quence alignment, RAxML for the inference of the phylogenetic trees, and DSSP

for the secondary structure calculation.

2.3.1 Organisms used for Phylogenetic analysis

This time 16 insects were chosen(Table 2.4) covering a wide range of the insects

species tree.

2.3.2 OrthoDB

OrthoDB is a comprehensive database of orthologs. OrthoDB provides an in-

terface for exploring the evolutionary relationships between genes from different
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Table 2.4: Table with the insects selected for the analysis

scientific name common name

s.frugipedra Fall armyworm
d.elegans flower-feeding fruit fly
d.melanogaster fruit fly
c.capitata Mediterranean fruit fly
b.coprophila darkwinged fungus gnat
a.gifuensis aphidius wasp
d.similis white pine sawfly
d.plexippus monarch butterfly
v.cardui painted lady
p.glaucus eastern Tiger Swallowtail
b.mori silkworm moth
o.brumata Winter moth
c.carnea green lacewing
i.elegans blue-tailed damselfly
p.h.corporis Body and head lice
f.candida springtail

species. It contains orthologous groups that are computationally predicted using

a variety of methods, including reciprocal best hits, clustering algorithms, and

phylogenetic analysis. The database includes data from a wide range of organ-

isms, including animals, plants, fungi, bacteria, and archaea. OrthoDB provides

a standardized nomenclature for orthologs and paralogs across all species, which

facilitates cross-species comparisons and functional annotation.Waterhouse et al.

(2013),Kriventseva et al. (2019)

The orthologs and the fasta files in this part of the study were retrieved from

OrthoDB, not from the web interface, but using Python (version 3.9.13) and URL

extraction in order to run it automatically for big sets of proteins.

2.3.3 AlphaFold

AlphaFold Jumper et al. (2021) is an artificial intelligence system developed by

the research group at DeepMind that predicts the 3D structure of a protein based

on its amino acid sequence. It uses a deep neural network trained on a large
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database of protein structures to generate predictions with high accuracy. The

system is based on a novel machine learning method called attention-based neural

networks, which allows it to effectively capture the complex relationships between

different parts of the protein sequence and predict its 3D structure with unprece-

dented accuracy. We used AlphFold to get the predicted 3D structure for the

proteins of the G.Gouridis data set. The 3D structure was used to classify pro-

teins according to their secondary structure characteristics with DSSP (Kabsch

and Sander (1983),Touw et al. (2015)), to Alpha and Beta proteins depending on

their percentage of Alpha helices and Beta sheets. We wanted to investigate if the

secondary structure characteristics affected evolutionary rate.

2.4 Statistical methods

2.4.1 t-test

T-test is a type of statistical test that is used to compare the means of two groups,

and to determine if there is a significant difference between these means. In our

case the independent t-test was used, which means that the two groups under

comparison are independent from each other. Mathematically, the t-test takes a

sample from each of the two sets and establishes the problem statement by assum-

ing a null hypothesis, i.e. that the two means are equal. Based on the applicable

formulas, certain values are calculated and compared against the standard values,

and the assumed null hypothesis is accepted or rejected accordingly. If the null

hypothesis qualifies to be rejected, it indicates that data readings are strong and

probably not due to chance. The data values required for the T-test are the mean

difference, the difference between the mean values of each data set, the standard

deviation of each group, and the number of data values of each group. The out-

comes of a t-test is the t statistic.The t-statistic is calculated as the difference
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between the means of two groups

t =
x1 − x2√
s12

n1
+ s22

n2

divided by an estimate of the standard error of the difference (x1,2 =sample means

of each group, s1,2 =sample standard deviation of each group, n1,2 =sample size

of each group). This estimate takes into account the sample sizes and variances

of each group. Large t statistic indicates that the difference between the means of

the two groups is relatively large compared to the variability within each group,

suggesting that the difference is unlikely to have occurred by chance.

The p-value in a t-test is the probability of obtaining a test statistic (such as

the t-statistic) as extreme or more extreme than the one observed in the sample,

assuming the null hypothesis is true. In other words, it represents the probability

of observing a difference between the means of two groups as large or larger than

the one observed in the sample, if there is actually no difference between the

population means. The p-value is calculated as the area under the t-distribution

curve, that is greater than the absolute value of the calculated t-value. The p-

value is typically compared to a predetermined significance level, such as 0.05, to

determine whether the result is statistically significant. If the p-value ≤ 0.05, the

result is considered statistically significant, and the null hypothesis is rejected in

favor of the alternative hypothesis that there is a significant difference between the

population means. If the p-value > 0.05, the result is not statistically significant,

and the null hypothesis is not rejected. (Kim (2015))

The t-test was performed with Python (version 3.9.13), numpy package Harris

et al. (2020), pandas package McKinney et al. (2010) and scipy package Virtanen

et al. (2020)
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2.4.2 Linear Regression

Linear regression is a statistical method used to model the relationship between

two variables by fitting a linear equation to the observed data. In simple linear

regression, we are interested in predicting a dependent variable (y) based on a

single independent variable (x). The linear equation can be represented as y =

a+b∗x, where a is the intercept of the line and b is the slope of the line. The goal

of linear regression is to find the best-fitting line through the data points by the

least squares method. This is done by minimizing the sum of the squared residuals,

the differences between the predicted values and the actual values. Once the best-

fitting line is found, it can be used to make predictions about the dependent

variable based on values of the independent variable. The most common way to

evaluate the resulting equation from linear regression is the R-squared R2 value.

This metric measures the proportion of variance in the dependent variable that is

explained by the independent variables in the model. R2 values range from 0 to

1, with higher values indicating a better fit. R2 alone is not always sufficient to

evaluate the quality of a regression model, although in this study it will be used

to evaluate the linear regression models. Seber and Lee (2003)

The t-test was performed with Python (version 3.9.13), numpy package Harris

et al. (2020), pandas package McKinney et al. (2010), sklearn package Pedregosa

et al. (2011) and matplotlib package Hunter (2007).

2.4.3 Compositional data analysis

Compositional data analysis is a statistical framework for the analysis of data

that measures the relative proportions of different parts that make up a whole,

where the sum of the parts is constant. These types of data are common in many

fields, including geology, biology, chemistry, economics, and more. Compositional

data analysis methods are designed to deal with the special nature of composi-



2.4. STATISTICAL METHODS 39

tional data, where traditional statistical methods may not be appropriate due to

the constraints imposed by the sum of the parts being constant. This constant

sum constraint can create spurious correlations and lead to invalid statistical in-

ferences if not accounted for properly. Techniques for compositional data analysis

aim to extract meaningful information from compositional data by transforming

them into unconstrained data sets that can be analyzed using standard statistical

methods. This involves various methods for data preprocessing, transformation,

and analysis, such as log ratio and additive log ratio (alr), centered log-ratio trans-

formation, principal component analysis, regression models, and more. Aitchison

(1982)

In this analysis the percentages of Alpha helices, Beta sheets and Coil are con-

sidered as compositional data; this means that they contain relative information

and that they are parts of some whole. The total branch length is the depen-

dent variable and the percentages the compositional variables; the aim was to

investigate the relationship between the structural characteristics (A%, B%, C%)

and the evolutionary rate of proteins (total branch length). We use log ratio and

additive log ratio transformations for the analysis Pawlowsky-Glahn and Egozcue

(2006). For the log regression the formula used was

y = b1 ∗ ln(x1) + b2 ∗ ln(x2) + b3 ∗ ln(x3) + a

and the additive log ratio formula is

y = b1 ∗ ln(
x1

x3

) + b2 ∗ ln(
x2

x3

) + a

.
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Results and Discussion

3.1 Results form PDB data set

3.1.1 Analysis including all proteins from the data set

The data set with all Alpha helices (A) and Beta sheets (B) according to SCOP

classification, consist of 19,126 A and 29,546 B proteins. After running the process

to obtain the trees for each protein, many proteins were excluded from the set

because fasta files for some organisms were missing, hence fasta files for all 16

organisms existed for 4,148 A and 5,466 B protein chains. Proteins may consist

of one or more identical amino acid chains or of two or more different amino

acid chains. When proteins consisted of two or more different chains, every chain

was scanned to check if the amount of A-helices or B-sheets was higher in their

secondary structure, in order to place the chain in the correct group. Following

this step, the set consisted of 4,270 A and 3,867 B proteins. Each chain is encoded

by a gene. In order to check if a chain is found in many proteins, the gene name

of the chain was checked for each protein. In Figure 3.1(a) the total branch length

(tbl) is plotted against the times a gene name appears in the data set. Some genes

are over-represented in the data set appearing many times, in some cases over a

100 times. It seems that the genes that are over-represented in Alpha helices tend

40



3.1. RESULTS FORM PDB DATA SET 41

to evolve faster than those in Beta sheets which tend to evolve slower. This is

only an optical observation and it is important to keep the chains with the same

gene names only once in the data set to avoid misleading results. After removing

multiple chains, the final data set consisted of 662 Alpha and 579 Beta chains with

unique genes.

(a) Times of appearance of gene
name in the data set and their

tbl

(b) t-test for all A and B proteins

Figure 3.1: Analysis of all A and B proteins from PDB

In these 662 Alpha and 579 Beta chains with unique genes, a t-test was applied

to find out if the means of the total branch lengths (evolutionary rate) of the two

groups have a significant difference between them. The results of the t-test can

be visualised in the following box plot Figure 3.1 (b). The p-value of the t-test is

6.28 ∗ 10−4,much smaller than 0.05. The mean tbl of A is 2.12, the mean tbl of

B is 2.58, which indicates that the mean of total branch length of B proteins is

significant different from the mean of A proteins. Hence B proteins tend to have

higher evolutionary rates than A proteins for the data set used for this analysis.

3.1.2 Analysis for proteins that contain only A or B struc-

ture

Following the previous analysis, proteins with only A or B structure and coil in

their chains were chosen from the original data set (662 A, 579 B proteins) and the

new set, consisted of 359 A and 253 B proteins. Again a t-test was applied and the
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results are shown in Figure 3.2: the p-value of the t-test is 7.92∗10−3, the mean of

A proteins is 2.37, and mean of B is 2.89. The significant difference between the

two means imply that and B proteins tend to evolve faster. The means in both

groups have slightly higher values than in the previous analysis, and the difference

between the two means is also slightly higher for this set of proteins.

Figure 3.2: t-test for proteins containing only A or only B secondary structure

3.1.3 Analysis for trimmed A and B proteins

The next step was to trim the alignments obtained for each protein according to

their secondary structure, whereby the aim was to have the alignment containing

only regions that are Alpha helices for A proteins and Beta sheets for B proteins;

the evolutionary rate has been checked only in those regions. On the other hand,

we also trimmed the alignments and kept for A proteins the part that does not

contain Alpha helices and for Beta proteins the part with no Beta sheets. We

name that parts ”coil”. In the trimmed alignments a t-test was applied and the

results are in Figure 3.3. For only secondary structure characteristics, the p-value

of the t-test is equal to 1.5 ∗ 10−3, the mean of A is 1.901, and mean of B is 2.381.

There is a significant difference between the means of trimmed alignments, and

proteins with trimmed alignments containing Beta sheets tend to evolve faster.
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For the remaining trimmed part that did not contain Alpha helices for A proteins

and Beta sheets for B proteins, the p-value is equal to 2.2 ∗ 10−3, the mean of A

is 2.122, and mean of B is 2.586. We also observe that for both A and B protein

coil regions, have higher mean evolutionary rates than the secondary structure

regions.

(a) Box plot for trimmed
alignments with Alpha helices

and Beta sheets

(b) Box plot for trimmed
alignments with coils

Figure 3.3: Box plot for trimmed alignments

3.1.4 A and B percentage analysis

We then considered the percentage of Alpha helices, Beta-stands and Coils in

order to investigate if there is a relation between the evolutionary rate and the

percentages of secondary structure. The percentage for each group was calculated

for each protein using the secondary structure and the length of the protein se-

quence. The following image shows a ternary plot with the three groups and the

proteins, whereby the contribution of each group is explained for each protein in

Figure 3.4.

Linear regression was applied in 2-D using the percentage of Alpha helices from

both A and B proteins and the total branch length,in order to investigate the effect

of A% on evolutionary rate. The same method was then applied for B% effect.

The plots are shown in Figure 3.5, whereby the slope for B% is positive and for

A% is negative. This indicates that B% has a positive effect on the evolutionary
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Figure 3.4: Ternary plot for A, B and Coil percentages

rate and the A% has a negative effect on evolutionary rate. This inspite the fact

the coefficient of determination R2 has a very low value close to zero, which means

that the model does not explain any aspect of the variation of the data and that

this results of linear regression are unreliable. Plot (c) in Figure 3.5 shows the

relationship of A% and B% in the proteins of the data set. Those two values are

inversely proportional, which means that while one value increases the other will

decrease, which is expected since we are talking about percentages adding to 1.

3.1.5 Compositional data analysis

Linear regression was also applied in 4-D to percentages of A, B, Coil and total

branch length. The percentages are considered as compositional data which means

that they contain relative information and are parts of the some whole. As men-

tioned in 2.4.3 we used two transformation methods, the log ratio and additive log

ratio (alr) transformation. The total branch length was the dependent variable

and the percentages the compositional variables.

For the log regression the equation obtained after linear regression was

y = −0.10 ∗ ln(perA)− 0.03 ∗ ln(perB) + 0.31 ∗ ln(perC) + 2.13
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(a) Scatter plot A% vs total
branch length of A and B

proteins

(b) Scatter plot B% vs total
branch length of A and B

proteins

(c) Scatter plot A% vs B%

Figure 3.5: Linear Regression for A% and B% vs total branch length

. The slopes of each percentage show that A and B have a slightly negative

effect on total branch length, whereby A has a more negative a effect than B, and

Coil has a positive effect on total branch length. The coefficient of determination

R2 = 0.019 is very low, almost zero, and therefore the results of linear regression

are unreliable because the variation of the data can not be explained from the

linear model.

For the additive log ratio (alr) the equation obtained after linear regression

was

y = −0.11 ∗ ln(perA
perC

)− 0.03 ∗ ln(perB
perC

) + 1.98

. Both slopes are negative indicating a negative effect on total branch length,

whereby the slope for B is less negative than the one for A. The coefficient of

determination R2 = 0.018 is still very low, close to zero, therefore the results of
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the linear regression are unreliable because the variation of the data can not be

explained from the linear model.

3.1.6 Relative Solvent Accessible area analysis

RSA is calculated for each amino acid in the proteins of the data set. Then for

each protein a mean RSA is calculated in order to have one single value assigned

to each protein. Proteins with small length < 30 amino acids are excluded from

the data set. The data set contains 627 A and 565 B chains. Thus each protein is

described by its mean RSA, and the t-test is applied to the values of mean RSA of

A and B proteins. The results of the t-test are shown in Figure 3.6. The density

plot shows the distribution of mean RSA values for each group of proteins; the two

distributions are very close, with B proteins having slightly more proteins with

mean RSA values in the region 0.3− 0.4. Regarding the t-test, the means of the

two groups are almost identical, with the mean for A proteins equal to 0.282 and

for B proteins equal to 0.288. The p-value > 0.05 which indicates that the means

of the two groups do not have a significant difference.

(a) Density plot for mean RSA
values of A and B proteins

(b) Box plot for mean RSA of A
and B proteins

Figure 3.6: Result of the RSA analysis of A and B proteins

Furthermore, did the same analysis this time containing only residues that are

assigned to Alpha helices for A proteins and Beta sheets for B proteins. RSA is

calculated for each residue; A mean RSA is then calculated for the residues that

belong to the desired secondary structure for each protein. Proteins with small
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length < 30 amino acids are excluded from the data set, and the data set now

contains 647 A and 565 B chains. We have a measure for each protein, this time

containing information for RSA for Alpha helices and Beta sheets residues only;

and the t-test is again applied for the mean RSA of A and B proteins. The results

can be seen in Figure 3.7, the density plot for A proteins is slightly displaced to

the right, which means that A proteins may tend to have an increased mean RSA

for their amino acids that belong to Alpha helices. The t-test can also confirm

this result, whereby the mean for A proteins equals to 0.235 and for B proteins to

0.179; the p-value is equal to 1.9 ∗ 10−70, thus showing that the means of the two

groups are significantly different.

(a) Density plot for mean RSA
values of A and B proteins

(b) Box plot for mean RSA of A
and B proteins

Figure 3.7: Result of RSA analysis of A and B proteins regarding residues that
belong to their secondary structures

We also applied the same analysis including only the amino acid that corre-

spond to the coil region for A and B proteins. The results can be seen in Figure 3.8,

the mean RSA of coils of A proteins is 0.34 and of B proteins 0.36, and the p-value

is 0.012, which indicates that there is a significant difference between the mean

RSA values of A and B proteins. Coil regions of B proteins have slightly larger

mean RSA values.
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(a) Density plot for mean RSA
values of A and B proteins

(b) Box plot for mean RSA of A
and B proteins

Figure 3.8: Result of RSA analysis of A and B proteins regarding residues that
belong to coil

3.1.7 Protein localization analysis

To find the sub-cellular location for each protein we used Uniprot. 662 Alpha

and 579 Beta chains were searched in the Uniprot database for their sub-cellular

location; the sub-cellular location existed for 610 Alpha and 547 Beta chains. Then

those sub-cellular locations where categorized in three possible groups: Membrane

proteins for proteins that where found only in membranes, Soluble proteins for

proteins that where not found in membranes and Both for proteins that could be

found both in solution and membranes. Following this categorization of the data

set, the results can be seen in Table 3.1.

Table 3.1: Table with groups and number of proteins for A and B proteins

A proteins B proteins

Membrane 69 129
Soluble 391 276
Both 150 142

Firstly we wanted to check whether there is a significant difference in the mean

of each localization group in A and B proteins. We applied a pairwise t-test for each

possible pair (membrane-soluble, membrane-both and soluble-both) for A and B

proteins separately. The box plots,the means and p-values for each pairwise t-test

can be found in Figure 3.9 for A proteins and in Figure 3.10 for B proteins. The
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t-test results show no significant difference in the means of the groups, neither for

A nor for B proteins. This indicates that within A proteins and within B proteins

the protein localization does not affect the evolutionary rate of the proteins.

(a) Box plot for Membrane,
Soluble and Both groups against

tbl

Mean p-value

Membrane / (m-s) 1.98 0.43
Soluble / (m-b) 2.19 0.67
Both / (b-s) 2.11 0.71

(b) t-test results for each possible pairwise
groups

Figure 3.9: Protein localization analysis for A proteins

(a) Box plot for Membrane,
Soluble and Both groups against

tbl

Mean p-value

Membrane / (m-s) 2.71 0.48
Soluble / (m-b) 2.53 0.65
Both / (b-s) 2.58 0.85

(b) t-test results for each possible pairwise
groups

Figure 3.10: Protein localization analysis for B proteins

3.1.8 Pathway analysis

We used the 662 unique A protein chains and the 579 unique B protein chains

to determine in which pathways they take part. The KEGG database was used

for the determination of pathways. The search found 479 A and 406 B proteins

in KEGG pathways, the remaining 183 A and 173 B were not assinged to any
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KEGG pathways. Then a t-test has been applied to the proteins that were found

in KEGG pathways; the box plot and the results can be found in Figure 3.11. B

proteins tend to evolve faster since the p-value is 6.7 ∗ 10−3 and the means of the

two groups have a significant difference; while the mean of A proteins is 2.02 and

the mean of B proteins is 2.43.

(a) Box plot and t-test result for
proteins that exist in KEGG

pathways

(b) Box plot and t-test results
for proteins that do not exist in

KEGG pathways

Figure 3.11: Box plots for proteins that exist or not in KEGG pathways

A t-test was also applied to the proteins that did not exist in KEGG pathways

(Figure 3.11). Again B proteins tend to evolve faster since the p-value is 4.6∗10−2

and the mean of the two groups have a significant difference; while the mean of A

proteins is 2.38, and the mean of B proteins is 2.93.

In each pathway that has both A and B proteins, a t-test was again applied

to check if there is a significant difference of means of the total branch length

between A and B proteins. Since in 297 pathways both A and B proteins exist,

the t-test was applied 297 times. We found that in 297 pathways that contained

both A and B proteins, only 13 pathways had p-values¡0.05. In those 13 pathways,

in 11 pathways B proteins had a bigger mean, and in the remaining 2 pathways

A proteins had a bigger mean. The results of the mean total branch lengths for

the two groups and the 13 pathways can be found in Figure 3.12. In most of the

pathways A and B proteins do not have a significant difference in their evolutionary

rate. In pathways with significant difference, B proteins tend to evolve faster in
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most of the cases.

Figure 3.12: Mean total branch length of A and B proteins in pathways with
significant difference between the groups

We then performed a Gene Ontology analysis for the proteins that exist the 13

pathways with significant tbl difference between A and B proteins. We searched

with g:GOSt from g:Profiler 4 different protein categories: A proteins that evolve

faster than B proteins, A proteins that evolve slower than B proteins, B proteins

that evolve faster than A, and B proteins that evolve slower than A. Then for the

three gene ontology categories (biological process, molecular function and cellular

component) we kept the 10 terms for each 4 protein categories that had the larger

p-values when the hierarchical test g:GOSt applied. We then applied another filter

and kept in each protein category only the terms that appears only in one specific

protein category and removed the terms that appear in more than one protein

category. Three Gene Ontology hierarchical trees were plotted for the three Gene

Ontology categories and for the terms remaining in each protein category.

The tree for biological processes Figure 3.13 indicates that: A proteins that

evolve faster than B proteins are involved in regulation of cell communication and

response to oxygen-containing compound; A proteins that evolve slower than B are

involved in response to endogenous stimulus and positive regulation of metabolic

process; B proteins that evolve faster than A are involved in signal transduction

and regulation of response to stimulus; while B proteins that evolve slower than

A are involved in regulation of metabolic process.
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Figure 3.13: Gene ontology hierarchical tree for Biological process

Figure 3.14: Gene ontology hierarchical tree for Molecular function

The tree for molecular function Figure 3.14 indicates that: A proteins that

evolve faster than B are involved in protein binding; A proteins that evolve slower

than B are involved in ion and chromatin binding and nuclear receptor activity;

B proteins that evolve faster than A are involved in signaling receptor activator

activity; while B proteins that evolve slower than A are involved in cytokine

receptor binding and growth factor activity.

Figure 3.15: Gene ontology hierarchical tree for Cellular component

The tree for Cellular Component Figure 3.15 indicates that: A proteins that

evolve faster than B are found in cytoplasm and its perinuclear region and in

bounding membranes of organelle; A proteins that evolve slower than B are found

in nucleus and inside organelles; B proteins that evolve faster than A are found

in membranes,cell surface and extracellular regions; while B proteins that evolve
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slower than A are found in cell periphery, cytosol and cytoplasmic vesicles.

3.1.9 Gene Ontology analysis

The purpose of this analysis was to investigate whether A and B proteins tend

to take part in different Gene ontology categories (biological process, molecular

function and cellular component) that could also explain their difference in their in

evolutionary rate we observed from our analysis. The gene ontology hierarchical

tree for biological process can be found in Figure 3.16. A proteins tend to get

involved in the regulation of biological processes and the response in chemical and

organic stimulus, while B proteins take part in signaling, cell communication and

adhesion, and anatomical structure development

Figure 3.16: Gene ontology hierarchical tree for Biological process

The Gene ontology hierarchical tree for molecular function (Figure 3.17) in-

dicates that both A and B proteins take part in binding, A proteins take also

part in DNA-binding transcription factor activity while B proteins take part in

transmembrane receptor protein kinase activity and proteins kinase activity.

Concerning the Gene ontology hierarchical tree for cellular component (Fig-

ure 3.18), we can observe that both A and B proteins can be found in cytoplasm

and cytosol. A proteins can be found in chromatin, intra-cellular anatomical

structure, membrane enclosed lumen and nucleoplasm. B proteins can be found

in membranes, cell surface, extracellular regions, cell junction and cell periphery.

This result shows that A proteins tend to be inside the cell and close to the nu-

cleus, while B proteins are found more in cell surface and extracellular region. The

existence of B proteins in the extracellular region and cell surface could explain
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Figure 3.17: Gene ontology hierarchical tree for Molecular function

their tendency to evolve faster than A proteins, as reported in previous researches

mentioned in section 1.4, indicating that proteins outside the cell tend to evolve

faster. This statement can have many possible explanations: proteins may have

greater selective pressure due to the interaction with the environment, and also

proteins inside the cell are more crucial for the function of the cell and may be

more conserved.

Figure 3.18: Gene ontology hierarchical tree for Cellular component

3.2 Data set from G.Gouridis lab

This data set consisted of 2,789 proteins from the organism Spodoptera frugiperda

and their protein localization; consisted of three possible options: light membrane
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(LM), heavy membrane (HM) and Soluble (SUP). Those proteins were reduced

to 651 proteins that exist in OrthoDB and have fasta files for the 16 organism

selected. Then the 651 proteins were assigned to the three groups, light membrane

(LM), heavy membrane (HM) and soluble (SUP), whereby a protein was assigned

to a group if it was found in that location more than 50% of the times. Thus the

numbers of proteins in each group was 60 HM, 118 LM and 466 SUP. The proteins

and the percentage of their occurrence in the three possible locations can be seen

in Figure 3.19 ternary plot.

Figure 3.19: Ternary plot of the percentage of protein occurrence in the three
possible locations

3.2.1 Analysis of evolutionary rate and protein localization

First a pairwise t-test was applied on the total branch lengths of the proteins, on

all possible pairs in the 3 locations, to check if the protein location affects the

evolutionary rate. The results of the t-test and the box plots for each location can

be found in Figure 3.20. The means of the two membrane locations LM and HM

do not have a significant difference, but for both t-tests for LM-SUP and HM-SUP

the p-values < 0.05, which means that membrane proteins tend to evolve faster

than soluble proteins in this data set.
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(a) Box plot for LM, HM and
SUP groups against tbl

Mean p-value

LM / (LM-HM) 2.71 0.63
HM / (LM-SUP) 2.53 1.14 ∗ 10−5

SUP / (HM-SUP) 2.58 7.39 ∗ 10−6

(b) t-test results for each possible pairwise
groups

Figure 3.20: t-test results for all possible location pairs

3.2.2 Analysis for evolutionary rate and structural char-

acteristics

We then proceeded to investigate if the percentage of Alpha helices, Beta sheets

and coils is different in the different protein locations. We used AlphaFold to

get the structure of the proteins and DSSP to calculate the secondary structure.

Proteins with a percentage of Alpha helices bigger than the Beta sheet percentage

(A% > B%) were assigned as A proteins and the opposite (B% > A%) as B

proteins. After this classification the 648 protein were split to 528 A proteins and

120 B proteins. The two membrane locations LM and HM are merged to one

location as membrane proteins (M). We established visual representations plotted

to check if a difference can be visually spotted (Figure 3.21). The two groups,

membrane and soluble proteins, can not be visually distinguished as shown by the

plots, and a statistical method should be applied for further investigation.

Thereafter t-test is applied on A% for membrane and soluble proteins and on

B% for membrane and soluble proteins. The results are shown on Figure 3.22 and

they indicate that the mean percentage of Alpha helices is significantly different

in membrane and soluble proteins, which means that membrane proteins tend

to have a larger percentage of Alpha helices. Regarding beta-sheet percentage,

the mean of the beta-sheet percentage is significantly different in membrane and
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(a) Ternary plot for A%, B% and
coil%

(b) 2D plot of A% vs total
branch length

Figure 3.21: Visual representation of structural characteristics

soluble proteins; thus soluble proteins tend to have a larger percentage of Beta

sheet in their structure in this data set.

(a) Box plot for A% in
membrane and soluble protein

(b) Box plot for B% in
membrane and soluble proteins

Figure 3.22: t-test results for A% and B% in membrane and soluble proteins

In order to investigate whether proteins with Alpha helices or Beta sheets tend

to evolve faster, a t-test was applied in the total branch lengths of A and B proteins

and the result (Figure 3.23) indicates that the means of the two groups do not

have a significant difference: the secondary structure characteristics do not affect

evolutionary rate in this data set.

Finally, we investigated whether there is a difference in the evolutionary rate

of A and B proteins within the protein location groups (Membrane, Soluble). The

Membrane protein group consists of 178 proteins, 159 A and 19 B proteins, and

the Soluble group consists of 463 protein, 363 A and 100 B proteins. A t-test was

again applied on the evolutionary rate of proteins within each group for A and B
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Figure 3.23: Box plot of total branch length in A and B proteins

proteins. The results (Figure 3.24) indicate that there is no significant difference

in A and B proteins neither in Membrane proteins nor in Soluble ones. This result

leads again to the conclusion that secondary structure characteristics do not affect

the evolutionary rate of this data set.

(a) Box plot for total branch
length in A and B Membrane

protein

(b) Box plot for total branch
length in A and B Soluble

protein

Figure 3.24: t-test results for total branch length in A and B, membrane and
soluble proteins
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Conclusions

This study examined the effect of structural characteristics and protein location

on evolutionary rate of proteins. For the data set from the PDB containing all

Alpha helices and Beta sheets according to the SCOP classification, a pipeline

has been developed to evaluate the evolutionary rate of the proteins in the data

set. Due to constraints in the pipeline, the number of proteins was reduced and

the analysis has been conducted with the proteins that fulfill the requirements of

the method we used. We observed that Beta sheet proteins tend to evolve faster

than Alpha helix proteins in all analyses, including whole proteins, proteins con-

taining only Alpha helices or Beta sheets in their structure, and trimmed proteins

containing only the desired secondary structure (H for helices or E for sheets) as

well as trimmed proteins containing only coil. In the PDB data set, we calculated

the mean Relative Solvent Accessible Area (RSA). The results of the statistical

test showed that there was no significant difference in the mean RSA values of

the A and B proteins; however, concerning only parts of the proteins that are

helices or sheets, the mean RSA value was larger in helices, and for parts that

are neither helices nor sheets, i.e. coil parts, the mean RSA values are slightly

higher in proteins with bigger percentage of Beta sheets. Concerning the pathway

analysis performed in both proteins that existed and did not exist in Kegg path-
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ways, Beta sheet proteins tend to evolve faster. We found that in most pathways

no significant difference has been observed in A and B proteins, whereby only in

13 pathways there was a difference in the evolutionary rates; in the 11 of them

the B proteins were faster while in the remaining 2 A evolved faster. Addition-

ally, protein localization (Membrane and soluble) within A and B proteins did not

affect the evolutionary rate for the PDB data set. Gene ontology analysis pro-

vided some interesting results, concerning biological processes: A proteins seem

to take part in the regulation of biological processes while B proteins participate

in cell communication and adhesion as well as developmental process. According

to molecular function term results both A and B take part in binding processes

and B proteins also take part in trans-membrane signaling receptor activity. As

for Cellular component term it seems that A proteins are found mostly inside the

cell and near the nucleus while B proteins are found in extracellular regions, cell

periphery and membranes; this could possibly yield an explanation for their faster

evolutionary rates.

For the second part of the study examining the G.Gouridis data set, we found

that membrane proteins tend to evolve faster than soluble proteins, and that mem-

brane proteins tend to have higher percentages of A helices and soluble proteins

higher percentages of Beta sheets. However, secondary structure analysis has

shown that A and B proteins of this data set did not have a significant difference

in their evolutionary rates.
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