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Abstract

At the beginning of the 21st century, the processor industry made a funda-
mental shift towards multicore architectures, in order to address the diminishing
returns in single-thread performance with increasing transistor counts, and in order
to overcome the severe power problems of clock frequency scaling. Semiconduc-
tor technology trends indicate that now the era of power- and energy-constrained
manycore architectures has come. Technology projections show that the energy
consumed by data movement and communication will dominate the correspond-
ing budget of future computing systems; thus, unnecessary data movements will
subtract significant energy margin from computations.

The most popular communication model for multi-core and many-core archi-
tectures is shared-memory. Threads or processes that run concurrently on different
cores communicate and exchange data by accessing the same global memory loca-
tions. However, accesses to off-chip memory are slow and, thus, processor designs
utilize a hierarchy of faster on-chip memories to improve the speed of memory op-
erations. Memory hierarchies today are based on two dominant schemes: (i) multi-
level coherent caches, and (ii) software-managed local memories (scratchpads).
Caches manage the memory hierarchy transparently, using hardware replacement
policies, and communication happens implicitly, with cache-coherence protocols
that provoke data transfers between caches. Scratchpad memories are controlled
by the programmer or the runtime software, and communication happens explicitly,
through programmable DMA engines that perform the data transfers.

This thesis proposes architectural support in the memory hierarchy to enable
the software to control data locality; we design programmable hardware primitives
that allow runtime software to orchestrate communication and reduce the associ-
ated energy consumption.

We demonstrate a hybrid cache/scratchpad memory hierarchy that provides
unified hardware support for both implicit communication, via cache-coherence,
and explicit communication, via fast virtualized inter-processor communication
hardware primitives. We also introduce the Epoch-based Cache Management
(ECM), which allows software to assign priorities to cache-lines, in order to guide
the cache replacement policy, and, in effect, to manage locality. Moreover, we
design the Explicit Bulk Prefetcher (EBP), a programmable prefetch engine that
allows software to accurately prefetch data ahead of time, in order to hide memory
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latency and improve cache locality. Furthermore, we propose a set of hardware
primitives for Software Guided Coherence (SGC) in non-cache-coherent systems,
in order to allow runtime software to orchestrate the fetching of the most up-to-
date version of data from the appropriate cache(s) and maintain coherence at the
software object granularity.

We evaluate our proposed hardware primitives by comparing them against
directory-based cache-coherence with hardware prefetching. Our experimental re-
sults for explicit communication show that we can improve performance by 10% to
40%, and at the same time reduce the energy consumption of on-chip communica-
tion by 35% to 70% owing to significant reduction in on-chip traffic, by factors of
2 to 4. Moreover, we exploit a task-based programming system to guide hardware,
and show that our proposed hardware primitives in cache-coherent systems (ECM,
EBP) improve performance by an average of 20%, inject 25% less on-chip traffic
on average, and reduce the energy consumption in the components of the memory
hierarchy by an average of 28%. Our hardware support for non-cache-coherent sys-
tems (ECM, SGC) improves performance by an average of 14%, injects 41% less
on-chip traffic on average, and reduces the energy consumption in the components
of the memory hierarchy by an average of 44%.
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Περίληψη

Στις αρχές του 21
ου

αιώνα, η βιομηχανία των επεξεργαστών έκανε μια θεμε-

λιώδη στροφή προς αρχιτεκτονικές πολλαπλών πυρήνων, για να αντιμετωπίσει

την φθίνουσα απόδοση των επιπλέον τρανζίστορ στην επίδοση των μονοεπε-

ξεργαστών, και να ξεπεράσει τα προβλήματα κατανάλωσης ισχύος λόγω της

αύξησης των συχνοτήτων ρολογιού. Οι τάσεις της βιομηχανίας των ημιαγωγών

δείχνουν ότι έχει πλέον έρθει η εποχή των ενεργειακά περιορισμένων πολυ-

πύρηνων επεξεργαστών. Τεχνολογικές προβλέψεις δείχνουν ότι η ενέργεια

που καταναλώνεται για κίνηση δεδομένων και επικοινωνία θα κυριαρχήσει στον

ενεργειακό προϋπολογισμό των μελλοντικών υπολογιστικών συστημάτων, επο-

μένως, κάθε περιττή μετακίνηση δεδομένων θα μειώνει την διαθέσιμη ενέργεια

για υπολογισμούς.

Το πιο δημοφιλές μοντέλο επικοινωνίας για πολυπύρηνες αρχιτεκτονικές ε-

ίναι η κοινόχρηστη μνήμη. Οι διεργασίες και τα επεξεργαστικά νήματα που

εκτελούνται ταυτόχρονα σε διαφορετικούς πυρήνες επικοινωνούν και ανταλ-

λάσσουν δεδομένα προσπελαύνοντας τις ίδιες καθολικές τοποθεσίες μνήμης.

Ωστόσο, οι προσβάσεις σε μνήμη εκτός του τσιπ είναι αργές και ως εκ τούτου,

οι επεξεργαστές χρησιμοποιούν μια ιεραρχία από ταχύτερες μνήμες εντός του

τσιπ για να βελτιώσουν την ταχύτητα των προσπελάσεων μνήμης. Οι ιεραρχίες

μνήμης σήμερα βασίζονται σε δύο κυρίαρχα σχέδια: (α) πολυ-επίπεδες κρυφές

μνήμες με πρωτόκολλα συνοχής, και (β) τοπικές μνήμες διαχειριζόμενες από το

λογισμικό. Οι κρυφές μνήμες διαχειρίζονται την ιεραρχία μνήμης διαφανώς, το

υλικό εφαρμόζει πολιτικές αντικατάστασης, και η επικοινωνία γίνεται εμμέσως,

μέσω των πρωτοκόλλων συνοχής που χειρίζονται τη μεταφορά δεδομένων μετα-

ξύ των κρυφών μνημών. Οι τοπικές μνήμες ελέγχονται από τον προγραμματιστή

ή το λογισμικό εκτέλεσης και η επικοινωνία γίνεται ρητώς, μέσω προγραμμα-

τιζόμενων μηχανών άμεσης προσπέλασης μνήμης που εκτελούν τις μεταφορές

δεδομένων.

Η διατριβή αυτή προτείνει αρχιτεκτονική υποστήριξη στην ιεραρχία μνήμης

για να επιτρέψει στο λογισμικό να διαχειριστεί την τοπικότητα των δεδομένων

που χρησιμοποιεί. Σχεδιάζουμε προγραμματιζόμενα στοιχεία υλικού που επι-

τρέπουν στο λογισμικό εκτέλεσης να ενορχηστρώσει την επικοινωνία και να

μειώσει τη σχετιζόμενη κατανάλωση ενέργειας.
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Παρουσιάζουμε μια υβριδική ιεραρχία μνήμης που λειτουργεί ταυτοχρόνως

σαν κρυφή μνήμη, και σαν τοπική μνήμη διαχειριζόμενη από το λογισμικό. Πα-

ρέχουμε ενιαία υποστήριξη στο υλικό τόσο για έμμεση επικοινωνία, μέσω πρω-

τοκόλλων συνοχής, όσο και για ρητή επικοινωνία μέσω γρήγορων στοιχείων

υλικού που υποστηρίζουν εικονικοποίηση. Εισάγουμε επίσης την διαχείριση

κρυφής μνήμης μέσω ‘εποχών’, που επιτρέπουν στο λογισμικό να αναθέσει

προτεραιότητες στα δεδομένα της κρυφής μνήμης, να καθοδηγήσει την πολιτική

αντικατάστασης, και ουσιαστικά να διαχειριστεί την τοπικότητα των δεδομένων.

Επιπλέον, σχεδιάζουμε μια προγραμματιζόμενη μηχανή ρητής προσκόμισης που

επιτρέπει στο λογισμικό να μεταφέρει εγκαίρως, και με ακρίβεια, τα δεδομένα

που θα χρειαστεί, με σκοπό την μείωση των καθυστερήσεων στις προσπελάσεις

μνήμης, και την βελτίωση της τοπικότητας στην κρυφή μνήμη. Επιπροσθέτως,

προτείνουμε στοιχεία υλικού που επιτρέπουν στο λογισμικό να διαχειριστεί την

συνοχή των κρυφών μνημών σε συστήματα που δεν υλοποιούν πρωτόκολλα συ-

νοχής, έτσι ώστε να επιτρέψουμε στο λογισμικό εκτέλεσης να ενορχηστρώσει

την μεταφορά της πιο πρόσφατης έκδοσης των δεδομένων από τις κατάλληλες

κρυφές μνήμες και να διατηρήσει την συνοχή στο επίπεδο των αντικειμένων του

λογισμικού.

Αξιολογούμε τα προτεινόμενα στοιχεία υλικού συγκρίνοντάς τα με υλικό

που υλοποιεί πρωτόκολλα συνοχής κρυφών μνημών βασιζόμενα σε καταλόγους,

και περιλαμβάνει μηχανές αυτόματης προσκόμισης. Τα πειραματικά μας αποτε-

λέσματα για ρητή επικοινωνία δείχνουν ότι μπορούμε να βελτιώσουμε την επίδο-

ση κατά 10% έως 40%, και ταυτόχρονα να μειώσουμε την κατανάλωση ενέργειας

στην επικοινωνία εντός του τσιπ κατά 35% έως 70% λόγω της σημαντικής με-

ίωσης στην κυκλοφορία δεδομένων εντός του τσιπ, κατά παράγοντες 2 έως

4. Επιπλέον, χρησιμοποιούμε ένα σύστημα προγραμματισμού που βασίζεται σε

έργα για να καθοδηγήσει το υλικό, και δείχνουμε ότι τα προτεινόμενα στοιχεία

υλικού σε συστήματα με πρωτόκολλα συνοχής κρυφών μνημών βελτιώνουν την

επίδοση κατά μέσο όρο 20%, μειώνουν την κυκλοφορία εντός του τσιπ κατά

μέσο όρο 25%, και μειώνουν την κατανάλωση ενέργειας στην ιεραρχία μνήμης

κατά μέσο όρο 28%. Σε συστήματα που δεν υλοποιούν πρωτόκολλα συνοχής

κρυφών μνημών, η αρχιτεκτονική υποστήριξη που προτείνουμε βελτιώνει την

επίδοση κατά μέσο όρο 14%, μειώνει την κυκλοφορία εντός του τσιπ κατά μέσο

όρο 41%, και μειώνει την κατανάλωση ενέργειας στην ιεραρχία μνήμης κατά

μέσο όρο 44%.
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1
Introduction

During the last decades of the 20th century, performance improvement in comput-

ing systems was driven to a considerable extend by advances in semiconductor

technology and Moore’s Law [1], which predicts that the number of transistors

per chip doubles every 18 months. Additionally, Dennard Scaling [2] allowed

the power density of chips to remain nearly constant across process generations

owing to smaller transistors, improved transistor speed, and supply voltage scal-

ing. Computer architects utilized the increasing transistor counts and came up with

innovative architectural designs that offered exponential scaling in single-core pro-

cessor performance. Superscalar processors with out-of-order and speculative exe-

cution and with large caches exploited instruction-level parallelism (ILP), and deep

pipelines permitted significantly higher clock frequencies.

At the beginning of the 21st century, the processor designers were confronted

with diminishing returns from ILP mining, while higher clock frequencies encoun-

tered serious power consumption limits. At that point, the industry made a funda-

mental shift towards processors with multiple cores and fixed clock frequencies, in

order to continue improving the aggregate chip performance while staying within

the power envelope. Figure 1.1 illustrates historical microprocessor scaling trends

and clearly shows the inflection point where processors with multiple cores ap-

1
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Figure 1.1: Microprocessor scaling trends of the last 35 years. Chuck Moore, AMD
[3] - Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham,
K. Olukotun, L. Hammond and C. Batten - Dotted line extrapolations by C. Moore.

peared when designs hit the ILP and power wall.

The advent of multicore processors and the upcoming manycore era pose sig-

nificant challenges for the computing industry. The hardware industry is facing

serious power constraints in chip designs, and the software industry is looking af-

ter a solution to the “parallel programming crisis”.

The exploitation of processors with multiple cores requires application devel-

opers to write parallel code and delve into the details of the underlying architecture.

Parallel programming is traditionally considered hard and the programmers need

to put significant effort in order to write efficient programs and debug complex

concurrency bugs. Achieving performance that scales with the number of cores

requires tangling with tedious and time-consuming tasks such as scheduling, syn-

chronization, and locality optimizations. The research community and software

engineering industry are currently in a race to find appropriate programming mod-

els and abstractions to ease programmability, and improve performance efficiency.

For the semiconductor industry, the ITRS technology roadmap [4] indicates

the end of Dennard scaling, since transistor speed and voltage supply do not scale

proportionally to dimensions anymore. Although transistor density per chip will

continue to double in successive process generations (following Moore’s Law), the
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energy efficiency of transistors will not follow the same rate, thus every future

processor chip will be power-limited [5]. Recent studies also forecast that due to

power constraints, future processor chips will not be able to operate all existing

cores simultaneously and will require a large fraction of the cores to be switched

off [6]. The dark silicon in future chips may be as much as 50% [7, 8].

1.1 Motivation: Cost of Communication

Processor architectures will change dramatically in the next decade as, the power

constraints impose hard limits. Future chips will further increase the on-chip par-

allelism and offer hundreds of cores, while applications and algorithms need to

adapt and harness the computing resources as architectures evolve. The scientific

community is very active and calls for innovations and major breakthroughs to

overcome the new technological obstacles [9]. Research organizations have re-

cently published several reports that identify new challenges, predict technological

trends, and provide research directions [10, 11]. There is general consensus that

future computing performance growth faces a new reality [12]:

“Energy efficiency is the new fundamental limiter of processor perfor-

mance, way beyond numbers of processors”

A recent study from the Exascale Computing Initiative of US Department of

Energy (DoE) indicates that the energy consumed by data movement and commu-

nication will dominate the energy budget of future computing systems [10, 13].

Figure 1.2 presents projections on the energy cost of communication relative to

the cost of FLOP for 2010 and 2018 systems. The largest increase in energy con-

sumption occurs when data move off-chip, and the associated cost is an order of

magnitude higher than the cost of a FLOP. Moreover, the cost of moving data on-

chip is commensurate to the distance traveled. The projections for the 2018-2020

technology show that the cost of FLOP will scale reasonably well and advances

in memory technologies and interfaces [14] can reduce the energy cost of off-chip

memory accesses. On the contrary, the cost of on-chip communication and data

movement is not improving at similar rates in future technologies, when counting

these costs for a fixed physical distance (e.g. 5 millimeters). Industrial research

groups also confirm the latter trends. A paper recently published by Intel’s Ex-

ascale Technology Group [15] indicates that signaling power is expected to scale

much worse than logic power, causing on-chip and off-chip communication to be-
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Figure 1.2: Projections on the energy cost of communication relative to the cost
of floating-point operation (FLOP) for 2010 and 2018 systems. John Shalf et al.,
NERSC DoE [13] - c©Springer-Verlag 2010.

come a larger fraction of overall power. Nvidia’s architecture research group also

states that fetching operands costs more energy than computing on them [5, 16]. It

becomes apparent that the cost of communication is so pronounced, that unneces-

sary data movements subtract significant energy budget from computations.

To address this challenge requires achieving two primary goals: (a) minimize

data movement by exploiting on-chip locality, and (b) removing unnecessary over-

head from communication. The future architectures can no longer sustain the lux-

ury of software-invisible innovation [11]. The computer architecture community

needs to rethink the computing stack and co-design architectures, programming

environments, and applications, with energy efficiency in mind. The application

algorithms should perform more work per unit of data movement, the program-

ming environments should exploit locality and further optimize data movement,

and the architecture should expose hooks for the software to control the memory

hierarchy, i.e. provide efficient and low overhead communication primitives.

Memory hierarchies today are based on two dominant schemes: (a) multi-

level coherent caches [17], and (b) software-managed local memories (scratch-

pads) [18,19]. Caches manage the memory hierarchy transparently, using hardware

replacement policies and communication happens implicitly, via cache-coherence
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protocols that provoke and control data movements between caches. Scratchpad

memories are controlled by the programmer, or the runtime system, and commu-

nication happens explicitly, through programmable DMA engines that perform the

data movements.

Recent studies on parallel programming models and runtimes for software-

managed memories [20–22] allow the use of explicit communication with minimal

burden for the programmers. These programming models require only the iden-

tification of the input and output datasets of parallel tasks. Moreover, evolutions

of these programming models allow the underlying runtime systems to track inter-

task dependencies and explore task-based dataflow parallelism [23–28].

Architectures with scratchpad memories allow software to reason about local-

ity, control data movement, and hide the memory latency through DMAs. How-

ever, such architectures lend themselves better to workloads with known datasets.

The use of irregular data, e.g. linked-lists, requires careful data marshaling (scatter-

gather lists). On the other hand, current cache designs have a more software

friendly best-effort behavior and can support diverse workloads, but they are trans-

parent and optimize only for the common case. Software cannot reason about

the presence of specific data in the cache, the underlying data transfers, and com-

munication. Cache replacement policies and hardware cache-coherence protocols

manage memory and data movement transparently.

We believe that there is enough design space to explore between the two types

of memory architectures and communication styles, so that we can exploit the best

of both worlds to improve performance and reduce energy consumption.

1.2 This Thesis

This thesis proposes and evaluates architectural support for the power-constrained

manycore systems of the future. We focus on the memory hierarchy design, which

is where communication occurs. Our work gives answers to the following two key

questions:

Q1. How should the memory hierarchy be designed, to offer the flexibility of a

cache but still allow software to control locality and data movement?

Q2. What hardware primitives should the architecture provide to minimize the

communication overhead and reduce the associated energy consumption?
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We answer question 1 by designing a Hybrid Cache/Scratchpad Memory Hi-

erarchy where software can opt to manage locality explicitly when datasets are

known, or resort to the cache when datasets are hard to manage. To achieve

the same goal in cache-based memory hierarchies, we introduce the Epoch-based

Cache Management (ECM) scheme that allows software to guide cache replace-

ment decisions, hence, control data locality and reason about data movement.

We answer question 2 by designing Explicit Communication Hardware Prim-

itives that allow software to direct data movement between scratchpad memories

without relying on coherence protocols, thus removing the associated control over-

head and reducing energy. To achieve the same effect in cache-based memory hi-

erarchies, we propose hardware primitives for Software Guided Coherence (SGC)

that allow software to orchestrate data movement, fetch the most up-to-date ver-

sion of data from the appropriate cache(s), and maintain coherence at the software

object granularity.

Contributions

Our architectural support consists of two major parts and the associated contribu-

tions are listed below:

A. We design a hybrid cache/scratchpad memory hierarchy and provide unified

hardware support for both implicit and explicit communication within the

same address space1. This part makes the following contributions:

A1. We provide run-time configurability of the local memory resources and

allow them to operate either as cache or scratchpad memory or a dy-

namic mix of the two. We also merge the cache controller and the

network interface into a unified design to economize on circuits, and

provide fast and low-overhead hardware primitives for explicit inter-

processor communication.

A2. We quantify the performance and energy benefits of explicit communi-

cation by comparing against directory-based hardware cache coherence

with hardware prefetching.
1 This work was performed jointly with Stamatis Kavadias, George Kalokerinos and George

Nikiforos. Vassilis Papaefstathiou and Stamatis Kavadias contributed equally to the definition of the
explicit communication hardware primitives. Stamatis Kavadias was the sole contributor of the ex-
plicit synchronization primitives. Vassilis Papaefstathiou was the sole contributor of the performance
evaluation of the explicit communication primitives presented here. George Kalokerinos and George
Nikiforos were major contributors to the development of the FPGA prototype. All collaborators
contributed equally to the verification and evaluation effort of the FPGA prototype.
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A3. We implement an FPGA prototype of the proposed architecture and

measure the hardware cost and latency of the hardware primitives.

A4. We present the paper design of Coherent RDMA to permit copies

between scratchpad and cacheable memory regions.

B. We propose hardware/software co-design for cache-based memory hierar-

chies, assuming a task-based programming system similar to OmpSs [23].

We design hardware primitives to allow runtime software to transfer task

arguments and guide the cache replacement policy. Moreover, we provide

hardware support to allow software to manage coherence in systems with

non-coherent caches. This part makes the following contributions:

B1. We propose the Explicit Bulk Prefetcher (EBP), a programmable pre-

fetch engine that allows software to accurately prefetch data ahead of

time and improve cache locality in task-based programs.

B2. We propose Epoch-based Cache Management (ECM), a generic light-

weight mechanism to guide cache replacement decisions, assign local

cache resources to tasks, and isolate the effects of prefetching.

B3. We propose hardware primitives for Software Guided Coherence

(SGC) in non-cache-coherent systems, to allow the runtime software

to orchestrate data movement, fetch the most up-to-date version of task

arguments from the appropriate cache(s), and maintain coherence at

task granularity.

B4. We evaluate these hardware primitives (EBP, ECM, SGC) using a task-

based runtime and a set of benchmark applications in systems with and

without cache-coherence. We measure performance and energy con-

sumption, and compare against directory-based cache-coherence with

hardware prefetching.

Parts of work A have been published in the IEEE Micro Magazine (IEEE Mi-

cro) 2010 [29], Transactions on High-Performance Embedded Architectures and

Compilers (Transactions on HiPEAC) 2010 [30], and IEEE International Confer-

ence on Embedded Computer Systems: Architectures, Modeling, and Simulation

(IC-SAMOS) 2009 [31].

Parts of work B have been published and presented in the ACM International

Conference on Supercomputing (ICS) 2013 [32]. An additional publication is cur-

rently under preparation for submission to a journal.
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1.3 Outline

The rest of this thesis is organized as follows. Chapter 2 describes the hardware

communication mechanisms found in manycore architectures, overviews task-

based parallel programming models, and reviews related work. Chapter 3 presents

our architectural support that allows software to guide data transfers (communi-

cation) through the memory hierarchy and describes the design of related hard-

ware primitives. First, we design a hybrid cache/scratchpad memory hierarchy

with explicit communication primitives. Then, we present a hardware/software co-

design with task-based programming models for cache-based memory hierarchies,

in systems with and without cache-coherence. Chapter 4 describes the experi-

mental methodology used for the evaluation of our proposed architectural support,

presents our simulation infrastructure, and describes our design of a minimal task-

based runtime system. Chapter 5 presents the performance evaluation of our ar-

chitectural support and the proposed hardware communication primitives by com-

paring them against directory-based cache-coherence with hardware prefetching.

Chapter 6 summarizes our work, discusses the lessons learned, and presents fu-

ture work. Appendix A presents the design of an FPGA prototype that implements

our hybrid cache/scratchpad memory hierarchy and evaluates hardware cost and

performance. Appendix B describes the paper design of Coherent RDMA.



2
Background and Related Work

This chapter presents the basic concepts and relevant work on topics closely related

to the field of our research. In Section 2.1 we describe the dominant hardware com-

munication mechanisms found in manycore architectures. In Section 2.2 we make

an overview of the most appealing task-based programming models for manycore

architectures and focus on the emerging task-based dataflow programming model.

Finally, in Section 2.3 we review related work.

2.1 Communication in Manycore Architectures

The most popular communication model for multi-core and many-core architec-

tures is shared-memory. Threads or processes that run concurrently on different

cores communicate and exchange data by accessing the same global memory loca-

tions. However, accesses to off-chip memory are slow and, thus, processor designs

utilize a hierarchy of faster on-chip memories to improve the speed of memory ac-

cesses. Memory hierarchies today are based on two dominant schemes: (i) multi-

level coherent caches, and (ii) software-managed local memories (scratchpads).

Caches manage the memory hierarchy transparently, using hardware replacement

policies, and communication happens implicitly, with cache-coherence protocols

9
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Figure 2.1: Implicit Communication with cache-coherence, pull type (left) push
type (right)

that provoke data transfers between caches. Scratchpad memories are controlled

by the programmer or the runtime software and communication happens explicitly,

through programmable DMA engines that perform the data transfers.

The actual communication occurs every time a thread reads a word that has

last been modified by another thread. We call producer the modifying thread, and

consumer the reading thread. Although the terms producer and consumer have

been traditionally associated with stream processing, we use the terms in a true

dependence-based definition that is completely general and applies to all cases of

shared-memory programming.

Depending on which of the two sides is the initiator of the data exchange,

we characterize the Communication as Push or Pull. Pull communication, where

the consumer initiates data transfers, is the default shared-memory communication.

We present below communication via cache-coherence in Section 2.1.1 and explicit

communication in Section 2.1.2

2.1.1 Cache-based Implicit Communication

When the producer updates its local copy and the consumer had an old copy, the

latter will get invalidated. When the consumer later discovers that it needs the

(new) data, it suffers the latency of a miss or a remote read. This exchange is

depicted in the left side of Figure 2.1: A miss is sent to the directory, which in
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turn forwards the request to the producer that has the updated copy. Then the

requested blocks are sent to the consumer either through the directory, or – in an

optimized protocol – directly from the producer to the consumer. The total number

of messages is three, two control (small) and one data message. To transfer many

blocks of data, additional miss requests can proceed in overlap with the earlier

ones.

The right side of Figure 2.1 depicts the push type communication, where the

producer initiates data transfers. When the producer produces and writes the next

value, it first has to obtain exclusive access to the cache block. An upgrade request

is sent to the directory, which invalidates the consumer’s copy, and allows the pro-

ducer to complete its write. A subsequent read on the consumer’s side will result

in a miss that is sent to the directory. In an optimized protocol, the directory con-

troller will issue a “forward” request to the producer, which will then transfer its

data directly to the consumer. The total number of messages is four control (small)

messages plus the data transfer message, and again, the transfer of multiple blocks

of data can proceed in a pipelined fashion, overlapped with the earlier transfers.

2.1.2 Scratchpad-based Explicit Communication

The left part of Figure 2.2 shows the pull scenario with explicit communication and

RDMA operations. The consumer has knowledge of the producer’s addresses, and

issues an RDMA request directly to it. Then a stream of data is sent as a reply and

placed in the consumer’s memory. This transfer costs one control (small) message

plus a data message, while the amortized cost for large volumes of communicated

data is just the data transfer messages themselves.
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The right side of Figure 2.2 shows the push scenario with explicit commu-

nication and RDMA operations. The producer has knowledge of the consumer’s

addresses, and issues a remote-write (for a single word of data) or a RDMA re-

quest (for a larger block of data) directly to it. Then a stream of data is directly

sent and placed in the consumer’s memory. The transfer cost in this case is just the

data message(s), and large transfers can proceed at network speed in a pipelined

fashion.

2.1.3 Comparison of Implicit vs. Explicit Communication

We have measured the messages required for communication in previous sections

and we compare the cost of explicit communication versus implicit communication

using coherent caches, and found a reduction in the number of network packets

by factors on the order of two to five times for the most common communication

patterns. While the comparison using message counts is not directly related to

performance due to overlapping, there are concrete advantages in the explicit com-

munication architecture: we expect it to scale better, since it does not require a

coherence protocol and it offers reduced memory latency to critical data. We also

expect that it will consume less energy, as it needs to switch fewer packets for the

same data transfer. The network energy consumption is related not only to the

packet volumes, but also to the total number of packets. The reason is that at the

control plane each packet – however small – is processed fully for every hop in

the network. We present a quantitative evaluation with application benchmarks in

Chapter 5.

2.2 Task-Based Programming Models

This thesis considers a family of the task-based programming models, where a pro-

gram is split into tasks. Tasks are asynchronous function calls performing chunks

of work that run to completion. We describe below the most popular task-based

programming models and libraries.

OpenMP

OpenMP allows programmers to easily convert a serial program into parallel with

pragma annotations in the code. Moreover, OpenMP version 3.0 defines directives

to support task parallelism [33] and version 4.0 extends the latter support by allow-
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ing dependencies between tasks to be specified. Tasks derive from statements, code

blocks, or functions that are annotated with the task pragma. The taskwait direc-

tive offers synchronization between tasks and the barrier directive allows waiting

until all outstanding tasks complete. OpenMP pragmas are converted into calls

to the underlying runtime library at compile-time and are supported by all major

compiler toolchains.

Cilk

Cilk/Cilk++ [34] is one of the most popular task-based programming models. The

language offers a spawn statement that allows independent tasks, which may run

in parallel, to be specified. The sync statement allows a parent task to wait until

all of its child tasks have completed. Tasks are enqueued in per-worker deques

and the scheduler dynamically decides at run-time which tasks are executed. The

Cilk scheduler applies randomized work-stealing to utilize all worker threads and

balance load. Each worker executes tasks from the top of its local deque or “steals”

from the bottom of other workers’ deques. Blumofe et al. [35] showed that Cilk

programs execute in almost optimal time and take optimal space, within a constant

factor, when compared to the serial elisions of the respective programs.

Thread Building Blocks - TBB

Threading Building Blocks (TBB) [36] is a C++ framework that was developed

by Intel Corporation to ease parallel programming on multicore architectures. The

TBB library is based on templates and offers a rich set of constructs to support the

most common parallel programming patterns. The programmer specifies “tasks”,

rather than threads, and the underlying run-time library maps and schedules these

tasks dynamically to worker threads. Besides the typical fork-join task dependence

pattern, TBB supports acyclic graphs of dependent tasks using reference counts;

dependent tasks are spawned when their reference count becomes zero. The TBB

scheduler is based on task-stealing and is similar to Cilk. The scheduling strategy

is depth-first work and breadth-first stealing.

Task Dataflow Programming

The task-based dataflow programming models aim to simplify parallel program-

ming by discovering task dependencies at runtime and dynamically extracting task

parallelism. Such models require the programmer (or the compiler) to identify
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1 / / t h e t a s k s r e q u i r e d f o r C h o l e s k y d e c o m p o s i t i o n
2 void dgemm_blk (N, BS , double A[N] [N] ,
3 double B[N] [N] , double C[N] [N ] ) ;
4 void d s y r k _ b l k (N, BS , double A[N] [N] , double C[N] [N ] ) ;
5 void d p o t r f _ b l k (N, BS , double A[N] [N ] ) ;
6 void d t r s m _ b l k (N, BS , double T [N] [N] , double B[N] [N ] ) ;
7 . . .
8 double d a t a [N] [N ] ;
9 . . .

10 f o r ( i n t j =0 ; j < N ; j +=BS ) {
11 f o r ( i n t k=0 ; k < j ; k+=BS ) {
12 f o r ( i n t i = j +1 ; i < N ; k+=BS ) {
13 double ∗ A = &d a t a [ i ] [ k ] ;
14 double ∗ B = &d a t a [ j ] [ k ] ;
15 double ∗ C = &d a t a [ i ] [ j ] ;
16
17 #pragma x s s task input (A{ 0 : BS} { 0 :BS} ) \
18 input (B{ 0 : BS} { 0 :BS} ) \
19 i n o u t (C{ 0 : BS} { 0 :BS} )
20 dgemm_blk (N, BS , A, B , C ) ;
21 }
22 }
23
24 f o r ( i n t i =0 ; i < N ; i +=BS ) {
25 double ∗ A = &d a t a [ j ] [ i ] ;
26 double ∗ C = &d a t a [ j ] [ j ] ;
27 #pragma x s s task input (A{ 0 : BS} { 0 :BS} ) \
28 i n o u t (C{ 0 : BS} { 0 :BS} )
29 d s y r k _ b l k (N, BS , A, C ) ;
30 }
31
32 #pragma x s s task i n o u t ( d a t a { 0 : BS} { 0 :BS} )
33 d p o t r f _ b l k (N, BS , &d a t a [ j ] [ j ] ) ;
34
35 f o r ( i n t i = j +1 ; i < N ; i +=BS ) {
36 double ∗ T = &d a t a [ j ] [ j ] ;
37 double ∗ B = &d a t a [ i ] [ j ] ;
38 #pragma x s s task input ( T { 0 : BS} { 0 :BS} ) \
39 i n o u t (B{ 0 : BS} { 0 :BS} )
40 d t r s m _ b l k (N, BS , T , B ) ;
41 }
42 }
43
44 #pragma x s s w a i t a l l
45 . . .

Figure 2.3: Cholesky decomposition using the task dataflow programming model
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tasks (functions) that may run in parallel, annotate the memory footprint of their

arguments (addresses), and declare the side-effect of each task argument in mem-

ory (read/write). Representative examples of such programming models include

OmpSs/SMPSs [23, 24, 37], BDDT [38], Legion [39], Serialization Sets [25] and

other proposals that follow similar concepts and techniques [28, 40, 41].

The underlying runtime libraries use the memory footprints and the side-effects

of each task argument to identify task dependencies and build dependency graphs

as directed acyclic graphs (DAGs) at runtime. Independent tasks are immediately

scheduled for execution on the available cores, while dependent tasks are kept in

internal data structures and queues, waiting until all of their dependencies are sat-

isfied. Tasks in this model may execute out-of-order using the scheduling tech-

niques followed in processors, while respecting task dependencies in the same way

that processors respect register dependencies, i.e. true dependencies (RAW), anti-

dependencies (WAR) and output dependencies (WAW). Deterministic execution

and the preservation of task dependencies are guaranteed by the order in which

the main application thread issues tasks, similarly to the order that instructions are

issued in a sequential program.

In this work, we consider the programming model proposed in [24], which

is based on C pragmas and follows syntax similar to the popular OpenMP task

pragmas [33]. We also consider the extensions to this programming model that

provide support for multi-dimensional memory regions in task arguments [37]. The

side-effects of task arguments may be declared as one of: (i) input: for read-only

arguments, (ii) output: for write-only arguments1, and (iii) inout: for arguments

that are both read and written. A code example of Cholesky decomposition with

the task dataflow programming model is shown Figure 2.3.

2.3 Related Work

This section presents related work for the architectural support we propose in Chap-

ter 3. Our main focus is on literature relevant to our hybrid cache/scratchpad

memory hierarchy, and the hardware/software co-design for task-based dataflow

programming models in cache-based memory hierarchies.

Configurable Local Memory
Configuration of memory blocks has been studied before in the Smart Memo-

1 Arguments that are guaranteed to be written before they are read may also be declared as output.
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ries [42] project, but from a VLSI perspective. They demonstrate that using their

custom “mats”, i.e. memory arrays and reconfigurable logic in the address and

data paths, they are able to form a big variety of memory organizations: single-

ported, direct-mapped structures, set-associative, multi-banked, local scratchpad

memories or vector/stream register files. The TRIPS prototype [43] also imple-

ments memory array reconfiguration, but in very coarse granularity. They organize

arrays into memory tiles (MTs), which include an on-chip network (OCN) router.

Each MT may be configured as an L2 cache bank or as a scratchpad memory, by

sending configuration commands across the OCN to a given MT.

Cache-scratchpad configurability has been proposed elsewhere and a few of

its variants are supported in some embedded processors. Ranganathan et al. [44]

proposed associativity-based partitioning and overlapped wide-tag partitioning of

caches for software-managed partitions (among other uses). The cache subsys-

tem in ARM and PowerPC architectures allow locking of cache contents. Intel’s

Xscale also allows per line locking for virtual address regions, which are either

backed by main memory, or not. The design of our hybrid cache/scratchpad mem-

ory generalizes the use of line state for configurable communication initiation and

synchronization, in addition to locking lines in the cache.

Interprocessor Communication Hardware
Network interface (NI) placement in the memory hierarchy has been explored in

the past. In 90’s, the Alewife multiprocessor [45] explored an NI design on the

L1 cache bus to exploit its efficiency for both coherent shared memory and mes-

sage passing traffic. At about the same time, the Flash multiprocessor [46] was

designed with the NI on the memory bus for the same purposes. Cost effectiveness

of NI placement was evaluated by assessing the efficiency of interprocessor com-

munication (IPC) mechanisms. Mukherjee et al. [47] demonstrated highly efficient

messaging IPC with a processor caching buffers of a coherent NI, placed on the

memory bus. Streamline [48], an L2 cache-based message passing mechanism, is

reported as the best performing in applications with regular communication pat-

terns among a large collection of implicit and explicit mechanisms in [49]. More-

over, NI Address Translation was extensively studied in the past to allow user-level

access, overcoming operating system overheads [50], and leveraging DMA directly

from the applications [46].

Syncretic adaptive memory (SAM) [51] integrates a stream register file (SRF)

with a cache, exploiting compiler mapping of generalized streams. SAM targets
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a stream processing environment and does not provide support for direct commu-

nication between cores. Exploiting caches for streaming data in general purpose

systems was considered in [52] via hardware support and in [53] via the compiler.

Our design integrates equivalent and more scalable mechanisms inside caches than

those of [52], providing virtualized RDMA support for efficient bulk transfers.

Leverich et al. [54] provide a detailed comparison of cache versus partitioned

cache-scratchpad on-chip memory systems for CMPs, and find that hardware pre-

fetching and cache optimizations eliminate the advantages of the mixed environ-

ment. However, they consider communication between on-chip cores and off-chip

main memory. By contrast, our evaluation for on-chip core-to-core communication

(between scratchpad memories), shows that explicit communication offers signifi-

cant traffic and energy reduction.

Hardware and Software Prefetching
There is a vast amount of previous work on hardware prefetchers that try to predict

memory access patterns and prefetch data without any software guidance such as

[55, 56]. However, we propose a hardware-software approach for prefetching that

is based on the fully accurate knowledge about task memory footprints, known

a-priori by the runtime software (before tasks start executing).

Guided region prefetching (GRP) [57] is a related scheme that augments load

instructions with compiler-generated hints to improve the accuracy of a hardware

prefetcher. GRP requires sophisticated compiler analysis, the hints are not always

accurate, and the prefetches are triggered by L2 misses during the execution of

code. Our approach differs from GRP, since we use fully accurate memory foot-

prints and the data are fetched early before task execution with the potential to hide

all L2 misses.

Most pertinent to this work is Streamware [53], and the related architectural

support [52] that target stream processing. They propose a software programmable

Stream-Load-Store (SLS) hardware unit that resembles EBP, and is used by the

runtime software. However, they do not tackle the problem of cache pollution

and interference due to prefetching, as we propose with the use of ECM. ARM’s

Preload Engine (PLE) [58] that is also similar to EBP does not address cache pol-

lution either.

Software Guided Cache Replacement
“KILL” [59] and “Evict-me” [60] are two related schemes that try to improve cache

replacement decisions and reduce pollution in the presence of prefetching. Both
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of them are based on sophisticated compiler analysis and instruction hints (using

ISA modification) that are used in conjunction with the replacement policy. These

approaches try to identify which data will not be used in the future and mark this

data appropriately. In the task-based execution context, this approach could only

be useful for the data of the current task, while there can be no information about

the behavior of the next task, the data of which can be prefetched. In addition,

when a task completes, such schemes would require massive marking (or eviction)

of each task’s dataset. The latter could be an erroneous behavior if some of the data

is reused by the next task. ECM on the other hand, easily handles all these cases

and only requires software to advance the local epoch. Moreover, the epoch quotas

offer an additional criterion to throttle prefetching.

Prefetch Aware Cache Replacement
PACMan [61] is a relevant prefetch-aware cache management hardware scheme

that builds on top of RRIP [62]. PACMan tries to reduce cache pollution and pre-

fetch interference by handling demand and prefetch requests separately. To achieve

this effect, PACMan modifies the cache insertion and hit promotion policies. Al-

though this scheme might perform well for intra-task prefetching (when data for

the current task is prefetched), it cannot handle inter-task prefetching. ECM ad-

dresses prefetching across tasks and helps EBP to throttle prefetches in order to

reduce traffic and pollution.

Software Managed Coherence
Some recent research prototypes adopt the use of non-cache-coherent memory hi-

erarchies and rely on software to manage coherence. Intel’s Single-chip Cloud

Computer (SCC) [63], a 48-core manycore prototype chip, does not support hard-

ware cache-coherence, but offers specialized on-chip “message buffers (MPB)”

(8KB per core), and cache flushing instructions to allow software to maintain co-

herence. The software sends data by copying them to the MBP (put) and receives

data by copying data from remote MBPs (get); sending more than 8KB data, re-

quires segmentation. Our support for Software Guided Coherence (SGC) does not

require software to copy any data, and allows arbitrarily large data transfers.

Intel’s Runnemede [15] architecture does not also provide hardware cache-

coherence but offers several cache-management instructions to maintain coher-

ence. The architecture provides the following instructions at cache-line granular-

ity: prefetch, invalidate (remove without writing back dirty data), and update (from

backing store). Our SGC primitives, have lower software overhead because they
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can operate with larger than cache-line granularities, and allow for cache-to-cache

transfers without always involving the backing store, thus save more energy.

Fensch [64] proposes an OS-based alternative to hardware cache-coherence.

They propose mapping lines to physical caches at page-level with OS support (first

touch) and offer hardware support with a TLB-like structure that identifies remote

cache accesses using virtual addresses. This scheme does not require any hardware

cache-coherence protocol, and also supports some controlled migration and repli-

cation of data. On the other hand, our SGC scheme supports finer granularities,

as fine as a cache-line, allows bulk prefetching of cache-lines, does not perform

remote accesses repeatedly (saves traffic and energy), and avoids the OS overhead.

The Rigel [65] architecture also manages cache-coherence under software con-

trol. The processor is organized in clusters, with 8 cores per cluster, and features a

shared “cluster cache” – L1 cache. Another level of banked “global cache” allows

sharing between the clusters. Coherence between the cluster caches and the global

cache banks is enforced by software, using either eager or lazy synchronization.

Two types of memory operations are defined: “local” (in the cluster cache) and

“global” that bypass the cluster cache. The architecture offers cache management

instructions to flush or invalidate the cluster cache, at the granularity of cache-line

and the entire cache. Our support for SGC does not rely on remote accesses (cache

bypass) or flushing, which spend energy on data movements, but performs direct

cache-to-cache transfers to minimize traffic and reduce the associated energy.

Moreover, there are relevant proposals that assume software properties such as

“data-race freedom” to improve directory-based cache-coherence in terms of traf-

fic, latency, and storage. The VIPS coherence protocol [66] removes the directory

and the invalidations, by applying a write-back policy for private data and a write-

through policy for shared data. DeNovo [67] is based on Deterministic Parallel

Java [41] to identify data regions and performs region self-invalidation using com-

piler hints. The DeNovo protocol does not keep sharers in the directory, however,

writers have to “register” in the shared cache level and some form of indirection

is required. Cohesion [68] is hybrid hardware/software memory model that per-

mits coherence for memory regions to be managed by either hardware protocols,

or software. This design allows regions to move from the hardware coherence do-

main to the software coherence domain without copying. Our SGC scheme com-

pletely removes hardware cache-coherence protocols and directories, keeps every-

thing in software, and offers only minimal hardware primitives to facilitate direct

data movement in the memory hierarchy.





3
Architectural Support

This chapter proposes architectural support that allows software to manage the

memory hierarchy, control locality, and guide data movement. We present low

overhead hardware communication primitives that can be exploited by software to

reduce the energy of communication in manycore systems.

First, we design a hybrid cache/scratchpad memory hierarchy with unified sup-

port for implicit and explicit communication using common hardware primitives,

Section 3.1. Then, we present a hardware/software co-design with task-based pro-

gramming models for cache-based memory hierarchies. Our hardware support al-

lows software to manage cache locality and orchestrate data movement, in systems

with and without cache-coherence, Section 3.2.

3.1 Hybrid Cache/Scratchpad Memory Hierarchy

This section proposes architectural support to unify the hardware mechanisms for

implicit and explicit communication. We provide run-time configurability for the

local memory resources and allow them to operate as a mix of cache and scratch-

pad memory. We merge the cache controller and network interface functions and

provide fast hardware primitives for explicit inter-processor communication and

21
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synchronization that can be used at user-level.

Section 3.1.1 overviews the architecture of the proposed integrated memory

hierarchy and network interface, along with the supported synchronization primi-

tives. Section 3.1.2 presents our approach for run-time configurable local memory

that allows portions of the local cache to operate as scratchpad memory. Sec-

tion 3.1.3 explains our support for virtualized user-level DMA and how the cache

controller and the network interface integrate. Section 3.1.4 introduces hardware

primitives for advanced inter-processor communication and synchronization. De-

tails about the FPGA prototype that implements our proposed hardware support ap-

pear in Appendix A. Moreover, we study the case for Coherent RDMA and present

our paper design in Appendix B.

3.1.1 Architecture Overview

Memory hierarchies of modern multicore computing systems are based on one

of the two dominant schemes – multi-level caches, or directly addressable local

scratchpad memories. Caches transparently decide on the placement of data, and

use coherence to support communication, which is especially helpful in the case

of implicit communication, i.e. the input dataset and/or the producer of data are

not known in advance. However, caches lack determinism and make it hard for the

software to explicitly control and optimize data transfers and locality in the cases

when it can intelligently do so. Furthermore, coherent caches scale poorly to over

hundreds of processors. Scratchpad memories (or software-managed memories)

are popular in embedded [69] and special purpose systems [18, 19, 70], because

they offer predictable performance – suitable for real-time applications – and also

offer scalable performance by allowing explicit control and optimization of data

placement and transfers. Explicit communication uses remote direct memory ac-

cesses (RDMA); it is efficient, and it becomes possible in the cases when the pro-

ducer knows who the consumers will be, or when the consumer knows its input

dataset ahead of time. Recent advances in parallel programming and runtime sys-

tems [20, 22, 71] allow the use of explicit communication with minimal burden to

the programmers, who merely have to identify the input and output data sets of

their tasks.

Our goal is to provide unified hardware support for both implicit and explicit

communication within the same address space as shown in Figure 3.1. To achieve

low latency, we integrate our mechanisms close to the processor - in the upper

cache levels, unlike traditional RDMA that is implemented at the I/O bus level. We
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Figure 3.1: Implicit vs. Explicit Communication

provide configurability of the local SRAM blocks that lie next to each core, so that

they operate either as cache or scratchpad memory, or as a dynamic mix of the two.

Configurability is at run-time allowing different programs with different memory

requirements to run on the same core, or even different stages of a program to

adapt the underlying memory to their needs. We also strive to merge the hardware

required by the cache and the scratchpad memory into one integrated Network

Interface (NI) and Cache Controller (CC), in order to economize on circuits.

We propose a simple, yet efficient, solution for cache/scratchpad memory con-

figuration at run-time and a common NI that serves both cache and scratchpad

communication requirements. The NI receives DMA commands and delivers com-

pletion notification in designated portions of the scratchpad memory. This allows

the OS and runtime systems to allocate as many NI command buffers as desired

per protection domain, thus effectively virtualizing the NI, while providing user-

level access to its functions so as to drastically reduce latency. We improve SRAM

utilization compared to traditional NIs (that used dedicated memories) by shar-

ing the SRAM blocks between the processor and the NI, and we sustain high-

throughput operation by organizing these SRAM blocks as a wide interleaved

memory. Scratchpad space can be allocated inside the L1 or L2 caches and con-

sequently the NI is brought very close to the processor, reducing latency. Our NI

also offers fast messages, queues, and counters, as synchronization primitives, to

support advanced interprocessor communication mechanisms.

Our proposed architecture targets chip multiprocessor systems with tens or

hundreds of processor cores: each core has at least two levels of private caches

and communicates with shared memory using Global Virtual Addresses [72]. The

next sections describe run-time configuration of the local SRAM blocks as cache

and/or scratchpad. We explain how scratchpad memory can be used to support

virtualized NI command buffers, and present our hardware synchronization prim-
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itives. Details about the FPGA prototype that implements our proposed hardware

support appear in Appendix A.

3.1.2 Run-time Configurable Scratchpad

Scratchpad memory space in our scheme is declared as a contiguous address range

and corresponds to some cache lines that are pinned (locked) in a specific way of

the cache, i.e. cache line replacement is not allowed to evict (replace) them.

Scratchpad areas can be allocated inside either L1 or the L2 caches. Most appli-

cations seem to require relatively large scratchpad sizes, so the L2 array is a more

natural choice. Moreover, L2 caches offer higher degree of associativity, hence

more interleaved banks. Although L2 latency is higher than L1, the performance

loss due to this increased latency is partly compensated in two ways: (i) The L2

and scratchpad supports pipelined random accesses (read or writes) at a rate of 1

per clock cycle; (ii) configurable parts of the scratchpad space can be cacheable in

the (write-through) L1 caches1.

Owing to the use of progressive address translation [72], caches and scratch-

pad operate with virtual addresses, and the TLB only needs to be consulted when

messages are transferred through the NI and the NoC to another node. In lieu of

the processor-TLB, our architecture has a small table called Address Region Table

(ART). As shown in Figure 3.2, ART provides a few bits that determine whether

an address region contains cacheable or directly addressed (scratchpad) data. This

is important when remote scratchpad regions are addressed, so that the hardware

accesses them remotely, rather than locally caching them. It also obviates tag bit

comparison to verify that a memory access actually hits into a scratchpad line;

hence, tag bits of scratchpad areas are freed, and can be used for other purposes,

such as implementing communication semantics for RDMA commands, counters,

and queues that will be described shortly. Regions marked as local scratchpad in

the ART occupy a set of blocks in the data portion of an L2 memory “way” block,

such that low-order bits (the cache index) are compatible with the scratchpad ad-

dress. The region can be freely allocated into any of the cache “ways”, with ART

identifying the “way” used. Each of the blocks in the region is marked as non-

evictable in its state bits. This marking allows the distinction of memory access

1 Write-back policy can also be used, provided that coherence between L1 and L2 is maintained.
However, the write-through policy simplifies coherence without any performance loss. The inclusion
property assumed here, is more intuitive than exclusion that would require moving locked lines
between the cache levels.
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Figure 3.2: Memory access flow of the hybrid cache/scratchpad memory.

semantics at cache block granularity, and is used to ignore the actual tag-matching

of the hit logic, as well as to prevent replacements. This mechanism allows for run-

time configurable partitioning of the on-chip SRAM blocks between cache and

scratchpad use, thus adapting to the needs of the application that is being run at

each point in time.

3.1.3 Virtualized User-Level DMA

NI command buffers are DMA control areas that are allocated upon user software

demand and reside in normal scratchpad regions. These buffers share the same

ART entry with normal scratchpad and the distinction is made using a special bit

(cache-line state), set upon allocation. Any user program can have dedicated NI

command buffers (DMA registers) in its scratchpad region; this allows a low-cost

virtualized DMA engine where every process/thread can have its own resources.

To ensure protection of the virtualized resources, we also utilize permission bits in

the ART and demand the OS/runtime system to update the ART appropriately on

context switches. Moreover, the inherent support for dynamic number of DMAs at

run-time promotes scalability and allows the processes to adapt their resources on

the program’s communication patterns that might differ among different stages of

a program.

DMAs are issued as a series of store instructions – to provide the arguments:

(i) opcode, (ii) size, (iii) source address, and (iv) destination address – destined

to words within command buffers, that gradually fill DMA command descriptors,

possibly out-of-order. The NI uses a command protocol to detect command com-
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pletion and inform the DMA engine that a new command is present. All new and

pending commands are kept in a Network Job List that is served by the NI accord-

ing to its scheduling policy. When serving DMAs, the NI generates packets along

with their customized lightweight headers. RDMA packets belong to one of the

two primitive categories: Write or Read. The NI carefully segments the DMAs

into smaller packets when they exceed the maximum network packet size. The

cache controller uses the Network Job List to request write-backs upon replace-

ments and fills upon misses: the same mechanisms serve DMA transfers as well as

cache operations.

3.1.4 Additional Interprocessor Communication Primitives

We provide additional NI features that offer additional flexibility to the program-

mer in order to achieve more efficient communication between processors. We

implement Remote Stores with write combining, to scratchpad regions of remote

processors, in order to optimize remote access latency [73]; the ART can identify

scratchpad ranges as remote. NI command buffers, described above, can also be

used for fast Messages, allowing atomic, multi-word transfers. Message data are

provided directly by the processor and no source address is needed. In addition,

an explicit acknowledgment address can be specified to support software notifica-

tion of transfer completion; acknowledgment addresses are allowed to be “null” to

deactivate the mechanism. Multi-segment RDMA completion notification requires

additional hardware support as described below.

We implement Counters with atomic add-on-store capability, also hosted in

scratchpad space, as a primitive to support completion notification for an unordered

sequence of operations, such as multiple RDMA transfer completion, barriers, and

other synchronization operations. Counters are initialized with a value (e.g total

transfer size in bytes) via local or remote stores and trigger single-word writes to

notification addresses when they expire (reach zero). For RDMA transfer comple-

tion, software can specify an explicit acknowledgment address targeting a counter,

which will gather all partial acknowledgments for DMA segments, as illustrated in

Figure 3.3a. In the scenario shown, a single RDMA transfers 640 bytes. The desti-

nation region is mapped in the scratchpad of two separate nodes (nodes B and C).

When all acknowledgments arrive at the counter, as well as the initialization value

of -640, the counter triggers three notifications towards preconfigured addresses on

nodes A, B and C. Counters is the only support required by the network interface

for adaptive/multipath routing NoC optimizations, since RDMA transfer comple-



3.2. CACHE-BASED MEMORY HIERARCHY 27

+128

Node A

+128

+128
−640

640
notify

Counter

Node B

Node C

+128

zero

+128

?=

(a) Multi-packet RDMA completion

pckt2 pckt1

req1

pckt3wr

rd

pckt1

req3 req2 req1

wr

rd

.

pckt1

pckt1

(b) Multiple-reader Queues

Figure 3.3: Illustrating our proposed interprocessor communication primitives.

tion notifications will also work correctly with out-of-order packet arrivals. The

only requirement for correct operation of counters is that the NoC never generates

duplicate packets.

Finally, we provide Remote Queues as an appropriate level of abstraction for

multiprocessor synchronization [74]. Queues are hosted inside scratchpad regions

and their configuration (size, pointers and item granularity) can be programmed

in the tags of special control lines. Single Reader Queues are provided to sup-

port efficient many-to-one control information exchange, with receiver polling to

a single location. Moreover, Multiple Reader Queues (mr-Qs) are provided as a

means for many-to-many synchronization, by allowing asynchronous write (en-

queue) and read (dequeue) operations from any number of processors. As shown

in Figure 3.3b, read requests arriving at an empty mr-Q are recorded, waiting until

corresponding writes arrive, thus effectively matching read and write requests in

time. Upon successful matching, a response packet is generated; matching is dual,

i.e. either writes or reads might wait to be matched. Multiple reader queues can

also be used for locks or to accelerate task/job dispatching.

3.2 Cache-based Memory Hierarchy

This section presents a hardware/software co-design with task-based programming

models for cache-based memory hierarchies. We propose architectural support

that allows software to manage cache locality and orchestrate data movement, in

systems with and without cache-coherence. The runtime software can exploit our

hardware support to improve performance and reduce the energy consumption.
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Section 3.2.1 overviews the inherent characteristics of task-based dataflow pro-

gramming models, makes observations on their behavior in the memory system,

and discusses the opportunities for architectural support and hardware/software co-

design. Section 3.2.2 proposes the Explicit Bulk Prefetcher (EBP), a programmable

prefetch engine that allows software to accurately prefetch data ahead of time and

improve cache locality in task-based programs. Section 3.2.3 introduces Epoch-

based Cache Management (ECM), a generic lightweight mechanism to guide cache

replacement decisions, assign local cache resources to tasks, and isolate the effects

of prefetching. Section 3.2.4 explains the case for Software Guided Coherence

(SGC) in non-cache-coherent systems and presents hardware primitives that allow

runtime software to maintain coherence at task granularity. Finally, section 3.2.5

discusses the intended use of the proposed hardware primitives by task-based run-

time software.

3.2.1 Opportunities for Software Guidance

One common approach to parallel programming is to decompose a program into

a set of tasks and distribute them among the processing elements. Many task-

based programming models have been proposed in the literature [23, 33, 34, 36]

and promise to ease programming effort by abstracting out the elements of parallel

programming that are traditionally considered hard and time consuming, such as

scheduling, synchronization, and locality optimizations. This work considers a

class of emerging task-based dataflow programming models where the memory

footprint of each task is declared by the programmer and the runtime software

automatically detects task dependencies based on these footprints and schedules

independent tasks concurrently [23–25, 39, 40]. In this context, we focus on the

memory behavior of fine-grain tasks and their impact on cache locality, which

greatly affects performance and energy consumption. The use of fine-grain tasks

can unleash large amounts of parallelism and has the potential to allow many-core

computing resources to be utilized.

Each task has its own unique memory footprint and the associated data will

eventually be transferred into the portion of the underlying memory hierarchy that

is closest to the core that executes this task, i.e. L1 and/or L2 cache. Given that

tasks are separate units of work, each with its own memory footprint, reuse of

cache contents among tasks is a difficult problem that locality-aware schedulers

are trying to alleviate [75]. However, task data reuse is not always possible, and

depends on the distance between producer and consumer tasks, which is an intrinsic



3.2. CACHE-BASED MEMORY HIERARCHY 29

characteristic of each application. Moreover, several types of applications do not

benefit from a single type of scheduler and their behavior may be incompatible

with specific scheduling algorithms. Often times, applications benefit from load-

balancing and work-stealing, which makes locality a conflicting goal; the most

extreme case of locality scheduling dictates that all tasks execute sequentially in a

single core.

The task-based dataflow programming models use the memory footprints of

tasks to build dependency graphs (DAGs) and maintain significant amount of infor-

mation that is used to dynamically drive runtime decisions. Essentially, the runtime

system discovers producer-consumer relations among tasks, maintains such knowl-

edge internally and uses it to schedule and execute the tasks in the correct order.

Owing to this, the most recent copy of a task argument will reside in the memory

hierarchy (L1 cache or higher cache/memory levels) of the core that last executed

the “producer” task. Effectively, the runtime system keeps, in software, knowledge

and state equivalent to hardware directories in cache-coherent systems. However,

the underlying memory architecture is still agnostic of what runtimes are trying to

achieve. Therefore, hardware decisions are based on rather simplistic assumptions.

Our thesis is that the runtime software maintains important semantic knowledge

regarding the execution sequence and memory footprints of tasks, which can be

shared with the underlying hardware to achieve an effective hardware-software

synergy. To this end, we propose architectural support and runtime co-design to

improve cache locality, optimize execution, and reduce the energy footprint of task-

based workloads.

We present the Explicit Bulk Prefetcher (EBP), a programmable prefetch en-

gine that can be utilized by the runtime software to prefetch task data. EBP is rem-

iniscent of an RDMA (remote direct memory access) engine, but it is designed for

cache-based architectures, integrates with the local cache hierarchy of each core,

and offers a low overhead memory-mapped interface that can be used at user-level.

EBP enables runtime software to prefetch task data in bulk before each task exe-

cutes and to perform common optimizations such as double-buffering. This form

of software-directed prefetching can overcome some of the challenging issues with

hardware-only prefetchers such as timeliness, accuracy, and access pattern predic-

tion.

Although prefetching has the potential to improve cache locality and hide mem-

ory latency, its effectiveness is affected by the ability of the cache to keep the

prefetched data. When applying double-buffering optimizations, prefetching can
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pollute the cache and evict useful data. To address the latter issues and short-

comings, we propose Epoch-based Cache Management (ECM), a mechanism that

allows software to guide the cache replacement policy, expose its knowledge of

tasks to the cache hierarchy, assign cache resources to them, and isolate the effects

of prefetching. ECM is based on the notion of Epoch, which can be defined by

software as the lifetime of a task, i.e. the time period during which a task executes.

ECM offers a memory-mapped interface that allows software to advance epochs,

i.e. signal the beginning of new tasks, and assign quotas to epochs, i.e. declare the

space a task is allowed to allocate in the cache. All data accessed (or prefetched) by

a task is associated with an epoch number in the cache. ECM guides the cache re-

placement policy, by allowing it to distinguish between data belonging to different

tasks. The hardware cost of ECM is very small.

The nature of task-based dataflow programming allows the runtime system to

identify producer-consumer relationships between tasks and offers the opportunity

to arrange the data movement between the cores that execute these tasks. The po-

tential for software-guided data transfers is extremely important for future many-

core systems since it does not mandate hardware cache-coherence and thus, allows

removing the associated control traffic overhead so as to reduce energy consump-

tion in communication. We propose hardware primitives for Software Guided Co-

herence (SGC) in non-cache-coherent systems, to allow the runtime software to

orchestrate fetching the most up-to-date version of the task arguments from the

appropriate cache(s) and maintain coherence at task granularity.

3.2.2 Explicit Bulk Prefetcher

Task-based programming models with annotated memory footprints allow the run-

time to know before-hand which data will be used by a task before that task ex-

ecutes. This observation offers the opportunity to prefetch task data in a timely

fashion and improve cache locality. The Explicit Bulk Prefetcher (EBP) is a hard-

ware unit that allows software to explicitly prefetch memory ranges that correspond

to task arguments. Software can utilize EBP to prefetch data for the next task(s)

waiting in the scheduling queue, effectively applying double- or multi- buffering,

in order to minimize cache misses and improve task execution.

EBP is a programmable prefetch engine that offers a memory-mapped interface

and accepts a set of commands at user-level. We design EBP as a per-core engine

that operates on a private coherent L2 cache. We target L2 caches since their

large capacity – when compared to L1 caches – makes them more suitable for bulk
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prefetching and because processor pipelines and critical paths are less susceptible

to changes in the L2 cache. Moreover, we choose a memory-mapped interface

instead of a register-mapped interface, in order to avoid ISA changes and make our

design less intrusive. EBP is reminiscent of existing RDMA engines [18, 58].

The memory-mapped interface offered by EBP, is designed to allow memory

ranges to be specified with virtual addresses, thus offering fast user-level access

with low software overhead. In order to translate virtual addresses2 and ensure

protection, EBP requires access to the local TLBs; typically the 2nd level TLB.

The use of virtual addresses provides EBP with the capability to prefetch across

page boundaries, which is a common limiting factor in hardware-only prefetchers.

In addition, EBP can trigger page-table walking hardware early and minimize, or

even hide, the effect of TLB misses.

EBP Request Engine

The EBP engine supports 2D memory ranges with a constant stride in order to min-

imize the number of required prefetch operations in common array patterns, such

as blocking/tiling. The interface defines the following memory-mapped registers

to initiate prefetch operations:

• Address: The starting virtual address for a prefetch.

• Block Size: The size (bytes) of each block.

• Block Number: The number of blocks to prefetch.

• Block Stride: A constant stride (measured in bytes) used for the calculation

of the next block address.

• Epoch: This field is used by ECM as described later.

• Opcode: This field marks whether this data will be used as Read-Only or

Read-Write. Based on this value, the associated cache-lines are requested

with the proper coherence permissions: Shared or Exclusive.

Upon writing the “Opcode” register, all command fields are atomically en-

queued in a “Command FIFO” and each command is served in-order by the inter-

nal “Request Engine” (Figure 3.4). The “Request Engine” converts each memory

range into multiple cache-line aligned requests, performs address translation, and
2We assume that the L2 cache is physically tagged.
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Figure 3.4: An overview of the Explicit Bulk Prefetcher (EBP)

probes the cache. If a cache-line is present in the cache with the appropriate co-

herence permissions, then the request is skipped. If the cache-line is not present,

or present with “limited” permissions, then a new request is sent to the coherence

directory to fetch or upgrade the cache-line. In case a cache set is full, an old

cache-line is evicted to make space. The intermediate “Command FIFO” supports

multiple outstanding prefetch operations (32 in our implementation). The “Re-

quest Engine” also supports multiple outstanding cache-line requests, the num-

ber of which is however limited by the number of miss status handling registers

(MSHRs). We assume that up to 8 outstanding requests can be issued without

occupying all MSHRs.

3.2.3 Epoch-based Cache Management

Current cache replacement policies base their decisions on the recent history of

referenced cache-blocks and try to predict which blocks will be referenced in the

near future. They typically assume that the most recent or the most referenced

blocks should remain in the cache [62] and try to optimize this behavior. How-

ever, the behavior of task-based execution models is substantially different, since

after the lifetime of a task, the reference history of many cache-blocks used by the

completed task may be useless and can negatively affect performance.

The replacement decisions become even more challenging in the presence of

prefetching [61], e.g. when utilizing EBP. The use of EBP has the potential to

effectively hide memory latency when the software can initiate it ahead of time,

before data is requested by a task, for example when the runtime software uses

double-buffering. However, the effectiveness of EBP is also affected by the ability
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current epoch, while accesses from the prefetcher use the next epoch.

of the cache to keep the prefetched data. Prefetching is known to cause cache

pollution, therefore double-buffering data for the next task may evict data needed

by the current task. Likewise, the current task may evict data prefetched for the

next task.

These inefficiencies offer an opportunity to improve performance and energy

consumption by making the cache aware of the tasks’ lifetimes and datasets. We

propose Epoch-based Cache Management (ECM), a hardware mechanism that al-

lows software to expose the knowledge of tasks and their requirements to the cache

hierarchy in order to improve replacement decisions, optimize cache locality, and

minimize data movement.

Epoch Essentials

ECM is based on the notion of Epoch, which can be defined as the time period

during which a task executes, which we refer to as the task lifetime. Epochs are

tracked locally on each core, in the form of a memory-mapped register visible to

the local cache. Every memory access that arrives from the processor, is augmented

in hardware with the current epoch and marks the corresponding cache-line. The

epoch number is kept in the tag of each cache-line and occupies a few bits, e.g.

3 bits to support 8 epochs. ECM only requires the software to advance the epoch

register at the beginning of a new task. The epochs are free to wrap around without

any special handling. Figure 3.5 illustrates an overview of epochs.

The epoch number is essentially a short identifier that allows the cache to dis-

tinguish between data that belong to different tasks while maintaining a short his-
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tory, i.e. data accessed by the last 8 tasks. The replacement policy can use the

epoch numbers contained in the tags of each set and the current epoch register,

in order to quickly filter old data and decide which cache-lines to victimize when

needed. This strategy effectively prioritizes data used by the current task. When

all cache-lines in a set belong to the current epoch, the replacement policy operates

as it would do without epochs and uses the reference state of cache-lines (e.g. LRU

bits).

Epochs Quotas for Cache Space Allocation

However, when the runtime employs double-buffering optimizations and uses EBP,

the cache must also handle another active task context, i.e. the next task and its

data. The cache has to ensure that data between these active task contexts do not

interfere in a destructive manner. To address the latter issue, we introduce software-

controlled Quotas for epochs and their corresponding tasks. ECM offers a set of

memory-mapped quota registers that enables software to assign a portion of cache

space for each “active” epoch. We consider active epochs to be the “current” and

“next” epoch, which correspond to the current task and the first waiting task in the

processor’s task queue. Older epochs do not have quotas. The software assigns

quotas, expressed in number of bytes for the active epochs, using the memory

footprint of each task, in order to reserve cache space for the task. We implement

this scheme in private L2 caches.

The underlying hardware mechanism uses the quotas to construct flexible and

lightweight partitions for each epoch. When a quota is assigned, the byte quantity is

converted into equivalent number of ways, depending on the size and associativity

of the cache. The scheme rounds up the quota to the closest multiple of equivalent

cache ways and handles cases of over-booking; the sum of quotas cannot exceed

the number of cache ways. ECM enforces the quotas in a best-effort manner and

guarantees that each active epoch can allocate at least its assigned quota (ways) per

set. However, an active epoch is allowed to allocate more than the assigned ways

in a set, when another active epoch does not fully utilize its quota. Moreover, an

active epoch is also free to use cache-lines that belong to old epochs.

Cache Replacement With Epochs

The replacement policy counts the allocated ways for the active epochs in a per-set

basis and based on the quotas, decides whether an epoch can allocate more space.
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When a cache set is fully utilized with cache-lines that belong to active epochs,

the replacement policy selects a victim that belongs to the requesting epoch, by

consulting only the reference state bits (e.g. LRU bits) that belong to this epoch.

Cache-line allocation for an active epoch is not tied to specific cache ways but is

instead dynamically selected. An overview of cache replacement using ECM is

illustrated in Figure 3.6.

When EBP is used in conjunction with ECM, each prefetch request is aug-

mented with the “Epoch” field of the prefetch command, to signify whether this

request belongs to the current or the next epoch. In addition, EBP probes ECM

to discover whether its quota has exceeded, i.e. the corresponding set is full with

cache-lines that belong to active epochs. When a set is full, EBP throttles prefetch-

ing by skipping requests destined to this specific set, in order to avoid evicting

cache-lines that were recently prefetched.

ECM can be easily implemented at low hardware cost, and in fact we have al-

ready implemented it along with EBP in an FPGA prototype [76]. Adding 3 epoch

bits per tag in a 256KB 8-way set-associative L2 cache has a memory overhead of

only 0.5%.
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Generalization of Epochs

We have described before the use of epochs in a task-based programming environ-

ment, however, the epochs are a more generic mechanism that allows software to

guide cache-replacement decisions and control data locality. Epoch-based cache

management can offer locality guarantees equivalent to those found in software-

managed memories (scratchpads).

We extend our hardware design to support a set of long-lived active epochs

that have higher priority than normal epochs. We add an extra priority bit in the

epoch field (e.g. a 4th bit) to support 8 high-priority epochs that are always active

(i.e. epochs 8-15) and they are not influenced by epoch wrap-around; we also add

the associated epoch quota registers. The replacement policy treats these high-

priority epochs as “non-evictable” and never replaces the associated cache-lines

in favor of other epochs. Cache-lines of high-priority epochs are only replaced

by accesses that belong only to the same high-priority epoch. Cache replacement

within a high-priority epoch uses only the reference state bits of this epoch (e.g.

LRU bits). To preserve locality guarantees among high-priority epochs, we do not

allow high-priority epochs to exceed their quota space. The hardware handles the

transient case of resizing high-priority epochs, mainly when epoch quotas shrink,

by marking this in the associated quota register and performing extra evictions

when needed.

The software can use these 8 high-priority epochs to maintain the equivalent

of 8 buffers in scratchpad memory. The software now manages epochs, instead

of local memory addresses, and can issue EBP commands to prefetch data for

these epochs; like it would do to fetch data into scratchpad memory buffers. A

representative case where software can benefit from high-priority epochs is stencil

codes (e.g. Jacobi). The parallel contexts in such codes, reuse a large part of an

array across iterations, and exchange the boundary elements with their neighbors.

During the boundary exchanges, the cache replacement policy may evict data that

will be reused in the next step. The code may use high-priority epochs (long-lived)

for the accesses of the “core” array part and normal epochs (short-lived) for the

accesses (or prefetches) of the boundary elements. Essentially, the use of different

types of epochs, allows software to guide cache replacement and expose different

levels (and durations) of temporal locality, in order to minimize data movement.
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3.2.4 Software Guided Coherence

The majority of processor chips with multiple cores implement cache-coherence

to ease programmability. The coherence protocols are implemented purely in

hardware, track the location of data copies (typically at cache-line granularity)

throughout the memory hierarchy, and perform the data movement between cores

transparently. As core counts increase and the trends for the coming years pre-

dict hundreds of cores per chip, hardware cache-coherence becomes increasingly

expensive and inflexible. Designing efficient cache-coherence protocols and ver-

ifying [77, 78] them for a “sea of cores” is in doubt. Moreover, recent studies

indicate that the cost of inter-processor communication and data movement will

become, in future technologies, more expensive than computation in terms of en-

ergy and power [11,13,15,16]. Cache-coherence protocols incur significant cost in

on-chip network traffic and energy mainly due to superfluous control packets that

are exchanged between the directories and caches; we illustrate such behaviors in

Section 2.1 and present a quantitative evaluation in Section 5.1.

Some early research prototypes of future manycore architectures have adopted

the use of non-coherent caches [15, 79] and increasingly rely on software to main-

tain coherence. We advocate that non-coherent caches is a viable option for future

manycore chips, as long as the architecture offers the appropriate hardware support

to allow software to guide hardware data transfers and enforce coherence. There-

fore, we propose architectural support for Software Guided Coherence (SGC) so

that task-based dataflow programming models can exploit their internal knowledge

about producer-consumer relationships among tasks, orchestrate data movement

between the cores that execute these tasks, and maintain coherence. Our scheme

is based on the observation that, the most up-to-date copy of a task argument will

reside in the memory hierarchy (L1 cache or higher cache/memory levels) of the

core that executed the “producer” task.

Support for Non-Coherent Caches

Our hardware support builds upon the Explicit Bulk Prefetcher (EBP), presented in

Section 3.2.2, and we augment it with extensions for non-coherent caches (EBP-

NC). The most important addition is a “source core” field in the register set of EBP.

To maintain coherence, the software should also provide, for each prefetch opera-

tion, a core number in the system, i.e. the core that last executed the “producer”

task for each task argument. Each EBP-NC engine is capable of delegating/ser-
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vicing commands to/from remote engines utilizing separate buffers for local and

remote commands. Further details on EBP-NC are described later.

Correct task execution and coherent memory behavior can only be guaranteed

if the process of prefetching task arguments has completed before task execution

starts; (pre)fetching becomes an obligatory step and older versions of the asso-

ciated data are overwritten. EBP-NC handles command completion using a set

of programmable hardware “counters” that can be associated with commands; we

support up-to 32 counters. Each counter measures the packet volume (bytes) trans-

ferred for the command(s) associated with it. The complete sequence of packets

belonging to a command carries the associated counter number. Moreover, we

propose the use of per core “mailboxes”, i.e. dedicated hardware FIFOs, as a prim-

itive for low-volume direct inter-processor communication that allows cores to ex-

change information, e.g. dispatching task descriptors. These hardware primitives

are explained in detail in a later section.

Data Transfers Between Non-Coherent Caches

Upon a transfer request, the local EBP-NC engine delegates the command to the

EBP-NC engine of the source core (remote). Instead of breaking the request in

cache-lines – the basic transfer unit – the data are requested in bulk, using a single

block transfer, in order to save traffic and energy in the underlying network. The

remote EBP-NC engine probes the local cache, at cache-line granularity, in order to

send back the most up-to-date version of the data. Each destination engine updates

the associated hardware counter when each cache-line arrives, in order to trigger

transfer completion and notify the software to begin task execution.

However, requesting data from remote caches presents some non-trivial cases

that require special handling, such as misses (data not present in the cache) and

“dirty” cache-lines. Our EBP-NC engine defines two types of opcodes for data

transfers: (i) Fetch and (ii) Fetch-with-Ownership (Fetch-O). The “Fetch” opera-

tion is intended for transferring read-only data, i.e. input task arguments, while

the “Fetch-O” operation is intended for data that will be written, i.e. output and

inout task arguments. The Fetch-O operation is required to ensure correctness and

allows a cache to acquire ownership for specific data (cache-lines) from a previous

remote owner/writer, by clearing the “dirty-bit” of the involved cache-lines in re-

mote caches. If a specific cache-line is dirty in more than one cache, then it can

cause inconsistent memory behavior if write-backs occur in wrong order.

When an EBP-NC engine serves block transfer requests, it “splits” each request
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Single Chip with Directly Accessible Shared Memory

Operation
Source Cache lookup result

Actions
miss hit-clean hit-dirty

Fetch • 1) cache forwards to memory
2) memory sends data

Fetch • 1) cache sends data

Fetch • 1) cache updates memory
2) cache sends data

Fetch-O • 1) cache forwards to memory
2) memory sends data

Fetch-O • 1) cache sends data

Fetch-O • 1) cache clears dirty-bit
2) cache sends data marked dirty

Table 3.1: Actions required for software-guided coherence in a single chip that
provides all cores with direct access to the shared memory.

into cache-lines and probes the cache at cache-line granularity. During each probe,

the engine may find the requested cache-lines in one of the following three possible

states: (i) not-present (miss), (ii) valid (hit-clean), and (iii) dirty (hit-dirty). Based

on the two types of request opcodes (Fetch or Fetch-O) and the cache-line state, the

EBP-NC engine in conjunction with the cache controller follow a set of predefined

steps that appear extensively in Table 3.1. The latter table defines the behavior

of transfer requests, when transfers take place between caches that share the same

main memory and have direct access to it. Several cases that appear in Table 3.1

have common actions and we discuss below the details for each different case.

When the engine experiences a miss (either with Fetch or Fetch-O opcode), as

shown in Figure 3.7a, then it forwards the request to the main memory which in

turn responds to the cache that originally made the request; there is no need to bring

the data to the intermediate serving cache. When the engine experiences a clean-hit

(either for Fetch or Fetch-O opcode), as shown in Figure 3.7b, then it just sends

the data to the requesting cache. In the latter two cases the incoming cache-lines,

arriving at the receiver cache, are up-to-date in main memory, so the receiver cache

can silently evict them and possibly fetch them again (upon processor demand)

through normal cache misses.

However, when a cache-line is dirty in the cache, then different actions need to
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Figure 3.7: Transfers between caches in a single chip under software-guided co-
herence: All possible cases of a Fetch operation (a,b,c) and a Fetch-O operation
(d) that hits on a dirty cache-line

be performed. When a Fetch request finds a cache-line dirty, Figure 3.7c, the source

cache has to update main memory, wait for acknowledgment, and then send the

data back to the destination cache. The step to update main memory is critical since

the destination cache may, at some point, evict that line and request it back through

a normal cache miss. Waiting for the acknowledgment is also important since

packets may travel out-of-order in the on-chip network. When a Fetch-O request

finds a cache-line dirty in the cache, Figure 3.7d, then a data response with the

data marked dirty is sent to the destination cache and the dirty-bit is cleared. The
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Multiple Chips without Directly Accessible Shared Memory

Operation
Source Cache lookup result

Actions
miss hit-clean hit-dirty

Fetch •
1) cache forwards to memory
2) memory sends data marked remote
3) dst. cache updates memory

Fetch • 1) cache sends data marked remote
2) dst. cache updates memory

Fetch • 1) cache sends data marked remote
2) dst. cache updates memory

Fetch-O • 1) cache forwards to memory
2) memory sends data marked dirty

Fetch-O • 1) cache sends data marked dirty

Fetch-O • 1) cache clears dirty-bit
2) cache sends data marked dirty

Table 3.2: Actions required for software-guided coherence on multiple chips that
do not provide all cores with direct access to the total shared memory.

destination cache sets the line as dirty, since it is the new owner, and is responsible

to write-back upon eviction at any point in time.

Support for Multiple Chips

Our primitives for software-guided coherence are scalable and offer support for

systems that extend beyond a single chip. We allow the use of these primitives

across multiple chips with distributed, physically separate memories. An important

requirement for the exploitation of a multi-chip distributed memory system is the

existence of a Global Virtual Address Space, (a) so that software can refer to any

and all objects in the entire system using a single, global identifier (pointer) –

its global (virtual) address, and (b) communication primitives can operate within

this global space. We assume that the runtime and OS establish a Global Virtual

Address Space which is visible to all cores in the system (even across chips) and

that all tasks belonging to an application operate within this address space. Task

arguments should maintain their global virtual addresses throughout the system

in order to preserve pointer-based data structures intact and enable dependency

resolution without additional overheads. However, the virtual-to-physical address

mappings on each chip should be a local decision, internal to each chip, and is
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Figure 3.8: Transfers between caches on multiple chips under software-guided
coherence: (a) Fetch and (b) Fetch-O operations that hit on a dirty cache-line

allowed to differ among chips.

We use the same transfer primitives as in the case of a single chip and list

the specific cases in Table 3.2. We describe below how these transfer primitives

operate when the main memories of the communicating cores/caches are physically

separate and direct access between them is not provided.

The behavior of the Fetch operation is almost independent of the cache-line

state (miss, clean, dirty) in the remote cache. In all these cases, data responses to

caches outside the same chip (memory territory) are marked as “remote” and the

receiver cache should update its local main memory in order to be able to access it

through normal cache misses in the future; the receiver should use the local virtual-

to-physical mappings for the update. A representative case where a Fetch operation

hits on a dirty cache-line is presented in Figure 3.8a.
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The Fetch-O operation across caches with separate main memories is also in-

dependent of the cache-line state (miss, clean, dirty) in the remote cache. Given

the request for ownership (intention to write), all data responses to caches outside

the same chip (memory territory) are sent as “dirty”. The latter choice allows the

receiver cache to keep these lines dirty and update the local main memory only

upon evictions; the receiver should use the local virtual-to-physical mappings for

the update. When a Fetch-O operation finds a cache-line dirty in the remote node,

it clears the dirty bit, as shown in Figure 3.8b.

Hardware Primitives

This section presents the details of EBP-NC and the associated hardware primi-

tives, i.e. counters and mailboxes, required to support communication in systems

with non-coherent caches. An overview of EBP-NC is presented in Figure 3.9.

Extensions to Explicit Bulk Prefetcher
We extend the EBP register set and define the EBP-NC interface with the following

memory-mapped registers to support systems with non-coherent caches:

• Source Address: The starting virtual address that will be used by the source

core.

• Source Core: The source core number that will serve the operation.

• Destination Address: The destination virtual address that will be used for the

destination core.

• Destination Core: The destination core number that will receive the data.

• Acknowledgment Counter: The acknowledgment counter that will track the

completion of the operation.

• Acknowledgment Core: The core that will receive the acknowledgment for

the completion of the operation.

• Block Size: The size (bytes) of each block (as in EBP).

• Block Number: The number of blocks to prefetch (as in EBP).

• Block Stride: A constant stride (measured in bytes) used for the calculation

of the next block address (as in EBP).
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• Epoch: This field is used by ECM (as in EBP).

• Opcode: Three opcodes are defined: (i) Fetch, (ii) Fetch-with-Ownership,

and (iii) Message. This field marks the access mode of the data and effec-

tively controls the actions in the source cache (as described in Section 3.2.4).

The “Message” opcode transfers one cache-line from the source address to

the “Mailbox” of the destination core.

The EBP-NC engine requires software to specify the cores that participate in

each transfer (core numbers), so that transfers are directed and serviced from the

memory hierarchy (caches) of the last writer/producer that modified the data. Ef-

fectively, we request the last writer (source core) to provide its coherent view of

the data. The destination core is typically the core that initiates the operation and

requests the data. However, instead of assuming the destination core to be the

initiator, we provide the flexibility for a “third-party” core to initiate commands

between other cores, e.g. the task-based runtime executing on a specific core may

arrange transfers between any pair of cores in order to maintain coherence.

When the source core number differs from the local core number, then the

engine forwards the command descriptor to the appropriate remote EBP-NC en-

gine, otherwise, it operates as in EBP. The engine uses a separate command queue

for remote operations and supports up-to 64 remote commands. The arbitration

between the “local command queue” and the “remote command queue” follows

a round-robin policy. Any number of cores may issue remote commands at any

point in time, so the engine has to handle the case of overflows in the finite queue
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resources (64 entries). Instead of enforcing any resource allocation policies for the

remote commands – or require any software synchronization – we choose to handle

such scenarios with negative acknowledgments to counters (explained later in this

section).

Moreover, instead of having a single address for each command, we choose

to have separate source and destination addresses in order to offer more flexibility

to the software and allow it to offload memory copies. Both addresses are virtual

addresses and the translation to physical is performed at the corresponding core.

In addition, the engine permits arbitrary byte alignments between the source and

the destination addresses by following a destination alignment policy, i.e. gener-

ates cache-line aligned responses using the destination address. In the context of

task-based dataflow programming models, copies can be exploited to implement

memory renaming for task arguments. Renaming task arguments, i.e. changing

their memory addresses, is equivalent to register-renaming in out-of-order proces-

sors and allows the runtime to eliminate output dependencies (WAW) and anti-

dependencies (WAR) between tasks. Memory renaming can avoid unnecessary

serialization due to memory reuse and has the potential to expose more task paral-

lelism.

Counters
Our scheme for coherence among tasks in non-cache-coherent environments re-

quires that all EBP-NC commands associated with a task have completed before

that task becomes eligible for execution. To address this issue, we use some

special software-programmable hardware counters and add an “acknowledgment

counter” field in the EBP-NC command interface. Our design supports up-to 32

signed counters (32-bit) and offers a memory-mapped interface to allow software

access with plain load/store instructions. Each EBP-NC command can be associ-

ated with an acknowledgment counter and every response data packet arriving in

the destination cache contains the acknowledgment counter number. Upon writ-

ing the data to the cache, the destination engine atomically increments the associ-

ated counter with the payload size (bytes) of the packet. The software may check

the current counter value and based of the total transfer size of each command

(block_size×block_number), it can decide when a command has completed. Our

design assumes that the underlying network does not generate duplicate packets.

However, tracking and checking counters per task argument entails significant

software overhead and under certain circumstances the software may exhaust this
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finite resource (32 counters in our design). To minimize software overhead and

counter usage, we permit multiple commands to use the same hardware counter

with the intention to collect the aggregate volume of task arguments that belong to

a task, thus the software may use and check only one counter. A counter may be

initialized to zero, prior to the EBP-NC command, in order to wait for the appro-

priate value, or initialized to the negative value of the expected transfer size (the

counters are signed) in order to wait for zero.

To further optimize waiting on a counter, each counter offers a “blocking” ac-

cess mode using an alternate address. Loads to the alternate address return only

when the associated counter value becomes zero, or when a negative acknowl-

edgment arrives; negative acknowledgments indicate failure to access a remote

resource. The blocking mode can substitute polling on a counter, with the potential

to save energy when the software waits for transfer completion. Each counter also

features a status register where the software may check, in non-blocking mode, if

the counter triggered zero or an error occurred, i.e. a negative acknowledgment has

been received.

The EBP-NC interface defines an “acknowledgment core” field to indicate

which core will receive acknowledgment to the specified counter (acknowledg-

ment counter) when a packet is delivered; this information is contained in each

response packet. If a packet is delivered to a core different from the acknowledg-

ment core, then a special “ack” packet is sent to update a remote counter with the

packet payload size. This extra field offers the flexibility for a remote core to be

notified about packet deliveries. This feature is useful when a “third-party” core

arranges transfers between remote cores.

Mailboxes
Communication between cores in non-cache-coherent environments requires set-

ting up communication buffers, i.e. memory addresses known in advance. A sender

core may exploit the EBP-NC primitives to perform cache-to-cache transfers to the

receiver core. However, the software running at a receiver should regularly check

the communication buffers for new data. Any core may communicate with any

other core in the system, so every receiver should allocate per-sender communi-

cation buffers and check all of them regularly. To avoid the memory overhead of

communication buffers and the software overhead of polling, we use “Mailboxes”.

Mailboxes are small memory-mapped hardware FIFO buffers, 4 KBytes in our

design, that allow low-volume communication between cores. Every core has a
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local mailbox that receives atomically incoming data from the network. The soft-

ware can utilize the EBP-NC “Message” opcode to directly transfer data from the

local cache to a remote mailbox. The “Message” command in EBP-NC fetches

one cache-line (64-bytes), from the local cache using the source address and trans-

mits it to the destination core’s mailbox through the network. The network packets

carrying messages to mailboxes have a special opcode.

Any number of cores may send data to remote mailboxes at any point in time,

so the case of overflows in the finite mailbox buffer (4 KBytes - 64 cache-lines)

has to be handled. Instead of enforcing any resource allocation policies for the

mailboxes – or require any software synchronization – we use negative acknowl-

edgments to counters, allowing software to retry.

Each mailbox is memory-mapped to the local core and features a control reg-

ister to indicate the current size of the buffer. The software can check for new data

in the mailbox by checking the current size on the control register. Mailbox data

can only be accessed in FIFO order (dequeue) using a single address. Every load

operation dequeues 8-bytes from the FIFO. The format of the data arriving to the

mailbox is defined by the software. The task-based runtime running on a master

core can utilize mailboxes to dispatch task descriptors to workers, and the worker

cores can signal task completion to a master. Mailboxes optimize waiting for new

data (e.g. task descriptors) featuring “blocking” access when the mailbox is empty.

The blocking mode can substitute polling to the control register, with the potential

to save energy when the software waits new data (e.g. workers waiting for tasks).

3.2.5 Software Use

This section sketches the use of our proposed hardware primitives in task-based

runtime software. We assume that a typical task-based runtime consists of a “Task

Manager” that allows applications to submit tasks in the form of task descriptors.

Task descriptors contain at least: (i) a pointer to the task code and (ii) the argument

list for the task. Each task argument contains: (i) a memory pointer (or a scalar

value), (ii) argument size (memory range), and (iii) argument type (input, output,

inout). The task manager uses the task arguments’ address ranges to detect depen-

dencies and schedule the independent tasks. Scheduling usually involves putting

tasks in intermediate “ready queues” where worker threads can dequeue and ex-

ecute tasks. When workers complete tasks, they notify the task manager so that

dependent tasks satisfy their dependencies and eventually become eligible for exe-

cution.
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1 TaskManager ∗ t a s k _ m a n a g e r ;
2 TaskQueue ∗ t a s k _ q u e u e ;
3 i n t w o r k e r _ i d ;
4 bool a c t i v e ;
5
6 void worke r_ loop ( ) {
7 Task ∗ t a s k = NULL ;
8 / / b a s i c worker loop
9 whi le ( a c t i v e ) {

10 t a s k = f e t c h ( ) ;
11 i f ( t a s k != NULL ) {
12 e x e c u t e ( t a s k ) ;
13 r e l e a s e ( t a s k ) ;
14 }
15 }
16 }
17
18 Task ∗ f e t c h ( ) {
19 Task ∗ new_task = NULL ;
20 / / f e t c h a new t a s k
21 i f ( ! t a sk_queue −>empty ( ) )
22 new_task = ta sk _queue −>dequeue ( ) ;
23 re turn new_task ;
24 }
25
26 void e x e c u t e ( Task ∗ t a s k ) {
27 / / t a s k e x e c u t i o n
28 t a s k −> f u n c t i o n _ p o i n t e r ( t a s k −>a r g s ) ;
29 }
30
31 void r e l e a s e ( Task ∗ t a s k ) {
32 / / n o t i f y t h e r u n t i m e abou t t h e t a s k c o m p l e t i o n
33 task_manager −>c o m p l e t e d _ t a s k ( worker_ id , t a s k ) ;
34 }

Figure 3.10: Skeleton code for worker threads in a task-based runtime.

Figure 3.10 presents a rudimentary skeleton code in C++ for the part of the

task-based runtime that is used by the worker threads. The workers operate on a

standard loop (worker_loop) and perform the following steps:

1. fetch(): fetch a task from the task queue,

2. execute(): execute the task using the function pointer and the arguments,

3. release(): notify the task manager about the completion of a task.
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Double-buffering Tasks

The execution of tasks by the workers is one of the most performance critical parts

of the runtime and the application itself. We propose EBP (Section 3.2.2) in or-

der to allow the workers to prefetch task data and avoid as many cache misses as

possible during task execution. The runtime can implement double-buffering of

tasks, i.e. initiate prefetching for the next task data as early as possible, before the

current task execution. This would provide EBP with (hopefully) adequate time to

complete data transfers before the current task completes, and hide the associated

transfer latency.

Based on the skeleton code shown in Figure 3.10, we present an implementa-

tion of double-buffering in Figure 3.11. We provide new implementations for the

functions fetch() and execute(). At first, during the fetch step, the runtime attempts

to dequeue two tasks from the task queue (the current and next task), if it succeeds

to do so (enough tasks in the queue), the next time it will dequeue just one task (the

next). At steady state, the worker will always have the next task in the “pipeline”

and can initiate prefetching for it.

Prefetching is performed before task execution in the execute step. At first,

the worker will prefetch data for two tasks and the next time, at steady state, it

will prefetch just one (the next). The prefetching step involves iterating through

all task arguments, and issuing an EBP command (EBP_PREFETCH) for each of

them. The EBP_PREFETCH function uses the address, the size, and the type found

in each task argument to initiate an EBP command through the memory-mapped

registers. Command initiation requires 5 store instructions to the EBP registers.

The software overhead for double-buffering is mostly commensurate to the

number of task arguments. Assuming a modest number of task arguments (e.g. 5),

the overhead to initiate prefetch commands is in the order of tens of clock-cycles.

Such a number of clock cycles is directly comparable to a long latency cache miss

served by off-chip DRAM. However, employing this technique has the potential to

save many cache misses as presented in our evaluation in Chapter 5.

Cache Management of Tasks’ Data

Applying double- or multi- buffering of tasks’ arguments incurs the danger of cache

pollution and interference between the tasks’ data in the cache. We propose ECM

(Section 3.2.3) to make the cache aware about task contexts and the lifetimes of

their associated data. With ECM, the software can allocate local cache resources
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1 Task ∗ n e x t _ t a s k = NULL ;
2 bool c u r r _ t a s k _ p r e f e t c h e d = f a l s e ;
3 bool n e x t _ t a s k _ p r e f e t c h e d = f a l s e ;
4
5 Task ∗ f e t c h ( ) {
6 Task ∗ c u r r _ t a s k = NULL ;
7 i f ( n e x t _ t a s k == NULL ) {
8 i f ( ! t a sk_queue −>empty ( ) ) / / f e t c h t h e c u r r e n t t a s k
9 c u r r _ t a s k = ta s k_queue −>dequeue ( ) ;

10 i f ( ! t a sk_queue −>empty ( ) ) / / f e t c h t h e n e x t t a s k
11 n e x t _ t a s k = ta s k_queue −>dequeue ( ) ;
12
13 c u r r _ t a s k _ p r e f e t c h e d = f a l s e ;
14 n e x t _ t a s k _ p r e f e t c h e d = f a l s e ;
15 }
16 e l s e {
17 c u r r _ t a s k = n e x t _ t a s k ; / / n e x t t a s k becomes c u r r e n t
18
19 i f ( ! t a sk_queue −>empty ( ) ) / / f e t c h new n e x t t a s k
20 n e x t _ t a s k = ta s k_queue −>dequeue ( ) ;
21 e l s e
22 n e x t _ t a s k = NULL ;
23
24 c u r r _ t a s k _ p r e f e t c h e d = n e x t _ t a s k _ p r e f e t c h e d ;
25 n e x t _ t a s k _ p r e f e t c h e d = f a l s e ;
26 }
27
28 re turn c u r r _ t a s k ;
29 }
30
31 void e x e c u t e ( Task ∗ t a s k ) {
32 / / p r e f e t c h t a s k argument s f o r c u r r e n t and n e x t t a s k
33 i f ( ! c u r r _ t a s k _ p r e f e t c h e d ) {
34 f o r ( i n t i =0 ; i < t a s k −>args_num ; i ++ )
35 EBP_PREFETCH( t a s k −>a r g s [ i ] ) ;
36 }
37 i f ( n e x t _ t a s k != NULL ) {
38 f o r ( i n t i =0 ; i < n e x t _ t a s k −>args_num ; i ++ )
39 EBP_PREFETCH( n e x t _ t a s k −>a r g s [ i ] ) ;
40 n e x t _ t a s k _ p r e f e t c h e d = t rue ;
41 }
42
43 / / f i n a l l y t a s k e x e c u t i o n
44 t a s k −> f u n c t i o n _ p o i n t e r ( t a s k −>a r g s ) ;
45 }

Figure 3.11: Skeleton code for double-buffering tasks.



3.2. CACHE-BASED MEMORY HIERARCHY 51

1 void e x e c u t e ( Task ∗ t a s k ) {
2 / / advance t o new epoch
3 ECM_EPOCH_ADVANCE ( ) ;
4
5 / / p r e f e t c h t a s k argument s f o r c u r r e n t and n e x t t a s k
6 i f ( ! c u r r _ t a s k _ p r e f e t c h e d ) {
7 / / s e t c u r r e n t epoch quo ta
8 ECM_EPOCH_QUOTA( t a s k −> a r g s _ s i z e , ECM_EPOCH_CURRENT ) ;
9 f o r ( i n t i =0 ; i < t a s k −>args_num ; i ++ )

10 EBP_PREFETCH_EPOCH( t a s k −>a r g s [ i ] , ECM_EPOCH_CURRENT ) ;
11 }
12 i f ( n e x t _ t a s k != NULL ) {
13 / / s e t n e x t epoch quo ta
14 ECM_EPOCH_QUOTA( n e x t _ t a s k −> a r g s _ s i z e , ECM_EPOCH_NEXT ) ;
15 f o r ( i n t i =0 ; i < n e x t _ t a s k −>args_num ; i ++ )
16 EBP_PREFETCH_EPOCH( n e x t _ t a s k −>a r g s [ i ] , ECM_EPOCH_NEXT ) ;
17 n e x t _ t a s k _ p r e f e t c h e d = t rue ;
18 }
19
20 / / f i n a l l y t a s k e x e c u t i o n
21 t a s k −> f u n c t i o n _ p o i n t e r ( t a s k −>a r g s ) ;
22 }

Figure 3.12: Skeleton code for double-buffering tasks with epochs.

to tasks, guide the replacement policy, and isolate the effects of prefetching.

Based on the skeleton code of Figure 3.10 and the additions of Figure 3.11, we

illustrate in Figure 3.12 the use of ECM. We provide a new implementation of the

execute() function that uses the ECM features. Before the actual task execution, the

code advances the local hardware epoch (ECM_EPOCH_ADVANCE). This simple

step signals a new task lifetime and effectively indicates that the data belonging to

older tasks (marked in the cache with an older than current epoch) are not critical

anymore and are candidates for replacement.

Afterwards, the runtime allocates space (declares quotas) for the tasks that is

going to prefetch and indicates the associated epoch (ECM_EPOCH_QUOTA).

This piece of code assumes a field in every task descriptor that contains the to-

tal size of task arguments (args_size); this field is calculated by the “Task Man-

ager” during the internal dependence analysis step when it iterates the task ar-

guments to find task dependencies. The step to issue EBP commands for each

task argument is almost identical to before and the only difference is the epoch

field (EBP_PREFETCH_EPOCH); commands now require an extra store instruc-

tion per argument. The epoch field indicates whether an EBP command uses the
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current or the next epoch for its data and thus, adheres to the associated quota.

Prefetch commands now require 6 store instructions compared to 5 when epochs

are not used. It becomes apparent from the description above and the code excerpt,

that the software use of ECM features incurs a small additional overhead on top

of double-buffering. The latter minimal changes in the runtime code that exploit

ECM, offer significant performance improvement as it appears from our evaluation

in Chapter 5.



4
Experimental Methodology

This chapter describes the experimental methodology we follow to evaluate the ar-

chitectural support we propose in Chapter 3. The hardware primitives are modeled

in architectural simulators that support manycore systems and allow us to com-

pare different system configurations. Section 4.1 presents the simulated system for

the hybrid cache/scratchpad memory hierarchy and the benchmarks we implement.

Section 4.2 describes the simulation infrastructure, the runtime software, and the

benchmarks we use to evaluate the hardware primitives for cache-based memory

hierarchies.

4.1 Hybrid Cache/Scratchpad Memory Hierarchy

This section describes the experimental methodology we follow to evaluate the

hybrid cache/scratchpad memory and the explicit communication hardware prim-

itives we presented in Section 3.1. The hybrid cache/scratchpad memory and the

associated hardware primitives are modeled in an architectural simulator, as de-

scribed in Section 4.1.1. Moreover, we use some popular shared-memory bench-

marks that exhibit diverse communication patterns and port them to use our pro-

posed architectural support, Section 4.1.2.

53
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Figure 4.1: A configuration with 64 cores using 4-core tiles connected in a 2D
concentrated mesh topology. Each core is coupled with private L1 and L2 caches
and our merged cache controller/network interface (NI).

4.1.1 Simulator

We use SIMICS 3.0 [80] for full-system simulation and GEMS [81] to implement

the timing model for caches, scratchpads, coherence, and RDMA controllers. For

accurate NoC modeling we use GARNET [82] and measure NoC energy and power

with ORION 2.0 [83].

Cache-coherence is based on a GEMS MOESI directory-based protocol with

distributed directories. The system is configured in 4-core tiles where each proces-

sor core is coupled with private L1 and L2 caches. Processor tiles are connected to

a single NoC node, forming a 2D concentrated mesh topology. The distributed di-

rectories, one per memory channel, are placed in a diagonal-X fashion as proposed

in [84], and memory blocks are interleaved across memory channels in cache-block

granularity. Figure 4.1 illustrates a configuration with 64-cores. We further aug-

ment caches with strided hardware prefetching [85] optimized with tagging [86].

We also add our configurable scratchpad memory and RDMA engines inside the

private L2 caches and segment large RDMAs into multiple maximum sized net-

work packets. The configuration parameters of our simulated system are listed in

Table 4.1.
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Parameter Setting
Cores 1, 2, 4, 8, 16, 32 or 64, in-order RISC at 2 GHz
L1 I/D Caches 64KB, 2-way associative, 64-byte block,

1 port, 1 clock cycle latency
L2 Caches private 256KB, 16-way associative, 64-byte blocks,

2-port, 7 clock cycle latency, 32 MSHR,
unified, coherent, non-inclusive

Coherence MOESI distributed directory, per memory channel,
Protocol 4 virtual networks, 10 clock cycles latency,

up-to 32 directory protocol engines, non-blocking
Data Prefetcher PC-based stride and tagged, 512-entry history table

prefetching degree: 1, 2, 4
Scratchpad SW based dynamic allocation in L2,

block granularity, L1-cacheable
RDMA SW based dynamic allocation of command buffers in L2,
Controller 64KB max transfer
Remote Stores two 64-byte coalescing remote store buffers
NoC Concentrated Mesh at 2 GHz, 4 cores per node,

16-byte control packets, 80-byte data packets,
8-byte links, 1 cycle link traversal, 5-stage router pipeline

4 virtual networks, 4 VCs per virtual network
DRAM 1GB off-chip DRAM, up-to 8 memory channels,

1 channel per 8 cores, 80ns access time

Table 4.1: Configuration parameters for full-system simulation of the hybrid
cache/scratchpad memory and the explicit communication hardware primitives.

4.1.2 Benchmarks

In order to evaluate explicit communication and synchronization and compare them

with implicit communication via cache-coherence, we choose four benchmark ker-

nels that exhibit diverse communication patterns:

• Smith-Waterman: A widely used bioinformatics algorithm that performs

local protein sequence alignment. The anti-diagonal wavefront paralleliza-

tion of this kernel exhibits a typical one-to-one streaming pattern.

• 2D Jacobi: A five-point stencil code where each node communicates with

all of its neighboring nodes exhibiting a nearest-neighbor pattern.

• Bitonic Sort: A popular sorting kernel where multiple different node pairs

exchange data depending on the sorting phase and form the butterfly pattern.
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• FFT: We use the Splash-2 [87] FFT kernel to exercise all-to-all communi-

cation.

We optimize separately the shared-memory and the explicit communication

versions of the benchmarks, in order to make fair comparisons. All shared-memory

implementations are carefully optimized with blocking and the shared arrays are

padded appropriately to avoid false sharing. MCS [88] locks and barriers are used

for synchronization. Porting the shared-memory implementations of the bench-

marks to use explicit communication, i.e. RDMAs, Remote Stores and Coun-

ters, and benefit from direct scratchpad-to-scratchpad transfers was not a trivial

task and required us to fully understand the data exchange patterns. The explicit

communication versions of the benchmarks make minimal use cache-coherence,

mainly to exchange scratchpad buffer pointers during the initialization phases.

4.2 Cache-based Memory Hierarchy

This section describes the experimental methodology we follow to evaluate the

hardware primitives for cache-based memory hierarchies we presented in Sec-

tion 3.2. The hardware primitives are modeled in an architectural simulator that

supports manycore systems with and without cache-coherence. We also co-design

and implement task-based runtime software that exploits the new hardware primi-

tives.

Section 4.2.1 presents our custom simulation infrastructure, FORTHSim, that

builds on top of popular architectural simulators and integrates tools for power

estimation. Section 4.2.2 describes the design of TaskFlow, a minimal task-based

dataflow runtime system that implements the basic task constructs and follows the

OmpSs/SMPSs tasking syntax. Moreover, we convert six popular benchmarks to

the task-based programming model, Section 4.2.3.

4.2.1 Simulation Infrastructure

FORTHSim is a cycle-level execution-driven simulator for multi-core architectures

written in C++1. The purpose of the simulator is to evaluate the HW primitives

1 We opted to develop our custom simulator, since GEMS [81] does not support the newer ver-
sions of SIMICS [80] and the simulation speed for configurations with large core counts was pro-
hibitive. The newer GEM5 [89] simulator that uses M5 [90] instead of SIMICS was in “alpha” mode
when we started this work.
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proposed for non-cache-coherent systems and compare them against pure hardware

cache-coherence under common hardware assumptions.

FORTHSim overview

The implementation of FORTHSim builds upon the popular GEMS simulator [81]

and integrates some well respected tools and models for architectural evaluation

such as: the PIN dynamic binary instrumentation tool [91], the Garnet NoC mod-

els [82], Orion2 NoC power estimator [83], and the DRAMSim2 multi-channel

memory controller [92]. FORTHSim uses Cacti 6.5 [93] to estimate the energy

for memory structures such as the caches and coherence directories. The simulator

runs unmodified x86 binaries at application level; operating system activity is not

simulated. A high level overview of the simulation infrastructure is depicted in

Figure 4.2.

The simulator follows an execute-first methodology, that is: each instruction

is first executed at native hardware speeds and then it is simulated. A per-thread

online trace from the native execution is generated in memory and is fed to the sim-

ulated architecture which models the processor cores, the detailed memory system,

the NoC and the DRAM. Given that OS is not simulated, the simulation engine

implements some OS functions critical for the simulation, such as: thread-to-core

assignment and virtual-to-physical memory mappings.

The simulator is divided into a front-end and a back-end part. The front-end

consists of a custom PIN tool that performs dynamic binary instrumentation at

instruction-level to capture the instructions executed by the application. Each x86

macro instruction is converted to a number of RISC-like instructions (equivalent

to uops), however these instructions are more abstract than those found in typical

ISAs. The simulator ISA defines the following major categories of operations: (i)

integer, (ii) floating-point, (iii) branch, (iv) load, (v) store, and (vi) atomic. The

back-end consists of an independent thread that runs in parallel with the front-

end and implements the simulation engine, the processor models, interfaces with

GEMS Ruby and controls the simulation event-queue.

The front-end and the back-end operate independently and communicate via

a set of per-thread producer-consumer instruction queues (lock-free). Each in-

strumented application thread in the front-end enqueues all executed instructions,

while the core assigned to each thread in the back-end dequeues and models each

instruction. The length of the instruction queues, which is configurable, controls

the slack of the native execution relative to the simulated execution. An instruction
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Figure 4.2: FORTHSim high-level overview: the major components appear on the
left bar.

queue length of one entry forces the native execution and the simulated execution

to run in lock-step; queue lengths of 16-128 entries offer high simulation accuracy

while allowing for normal simulation speeds. When an instruction queue becomes

full, the native application thread yields the native core to allow for other applica-

tion threads to execute instructions and fill their instruction queues. The back-end

simulation progresses on a cycle-by-cycle basis, when all the active threads have

at least one instruction in their respective queue. Effectively, the simulated execu-

tion may control how fast the native execution advances in a per-thread granularity

and thus affect the actual application behavior. Under certain scenarios, e.g. locks,

task-stealing, the flow of the native execution will change to reflect the simulated

behavior.
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The simulator exploits advanced PIN features and implements function rewrit-

ing in order to allow the application that runs natively to communicate and inte-

grate tightly with the simulator. For instance, with function rewriting, the function

gettimeofday() returns the simulator system time instead of the native system time.

FORTHSim components and configuration

The simulator consists of the following major components:

• Simulation Engine : A custom PIN tool that collects all application instruc-

tions and controls the progress of simulation events in a cycle-by-cycle basis.

• Ruby Cache and Directory Models: The Ruby memory system simulator is

part of GEMS and allows the definition of detailed memory systems and co-

herence protocols using a domain specific language called SLICC. Ruby of-

fers tens of configuration parameters, such as: cache organization and sizes,

number of cache-levels, coherence protocols etc.

• Garnet NoC models: Garnet is a detailed NoC simulator that integrates with

Ruby and allows the definition of arbitrary NoC topologies, router architec-

tures, link bandwidths and latencies etc. Moreover, it integrates with the

Orion2 NoC power estimator.

• DRAMSim2 Memory and Controller Models: DRAMSim2 is a detailed me-

mory controller model that allows for accurate DRAM simulation and power

estimation. It supports multi-channel memory controllers, incorporates

DRAM timing models for most DDR2 and DDR3 chips, and offers several

configuration parameters such as: burst lengths, page management policies,

addressing schemes etc.

Evaluated System

We model a tiled manycore architecture with directory-based cache-coherence and

distributed directories (per memory controller). We also model the same architec-

ture without hardware cache-coherence for our software-guided coherence scheme.

Our design uses up to 64 in-order cores with a two-level private cache hierarchy,

similar to the Intel Xeon-Phi co-processor architecture [94]. We also add an out-

of-order superscalar core for the role of the master processor that runs the main
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Parameter Setting
Master Core out-of-order superscalar at 2 GHz, 4-wide,

128-entry ROB, 96-entry LD/ST queue,
Worker Cores up to 64, in-order at 2 GHz
L1 Caches 32KB, 4-way, 64-byte block,

1 port, 1-cycle, LRU, split I/D
L2 Caches private 256KB, 8-way, 64-byte block,

2-port, 8-cycles, NRU, 16 MSHRs,
unified, coherent, inclusive

Coherence MESI directory per memory controller,
4 virtual networks, 10-cycles, non-blocking

L2 Prefetcher PC-based stride, 64 streams, degree of 4
NoC 2D Mesh at 2 GHz, 2 cores per node,

16-byte control packets, 80-byte data packets,
16-byte links, 1-cycle link, 5-stage routers,

4 virtual networks, 4 VCs per virtual network
DRAM 4 dual-channel memory controllers,

16GB DDR3 SDRAM, PC3-15400,
8 banks, FR-FCFS scheduling policy

EBP per core, 32 commands, 8 outstanding requests
ECM 8 epochs using 3 bits per L2 tag
EBP-NC per core, 32 local commands, 64 remote commands
Counters per core, 32 counters , signed 32-bit values
Mailboxes 4KB per core, 64 cache-lines

Table 4.2: Detailed architectural parameters for the simulations that evaluate our
architectural support for cache-based memory hierarchies.

application thread and spawns tasks. Power estimation is for 32nm technology.

Further details for simulation parameters appear in Table 4.2.

For the evaluation of our proposed architectural support we also implement

a per-core PC-based stride prefetcher [85] that prefetches cache-lines into the L2

cache. We also model a state-of-the-art prefetch-aware replacement policy [61] for

the purpose of comparison with ECM.

4.2.2 Task-based Runtime

We implement TaskFlow, a runtime system for the task-based dataflow program-

ming model that supports the basic task spawning and waiting constructs as dis-

cussed in Section 2.2. It supports two-dimensional address ranges for declaring

task footprints and uses a block-based approach with arbitrary granularity for dy-

namic dependence analysis [38]. Pragmas are converted into calls to the underlying
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runtime library using a source-to-source compiler2 that is based on CIL [95].

The runtime can utilize an arbitrary number of worker threads but only a single

master thread can spawn tasks. To issue tasks, the compiler generated code builds

task descriptors containing:

(i) the function pointer of each task.

(ii) the base memory pointer for each argument.

(iii) the dimensions of each argument.

(iv) the argument type describing the memory side-effects (input, output, inout).

Upon task spawning, the runtime analyzes inter-task dependencies using internal

metadata for the application memory and decides whether tasks are eligible for

immediate execution. Ready (independent) tasks are scheduled to worker threads,

while dependent tasks are kept in internal data structures until all their dependen-

cies are satisfied. Eventually, all tasks become eligible for scheduling. The run-

time fully supports out-of-order execution of tasks. The implementation utilizes

private per-worker FIFO queues to schedule tasks and follows a round-robin low-

est occupancy first scheduling policy to achieve load balancing in the presence of

unbalanced tasks.

When the runtime executes on architectures that implement EBP and ECM, it

utilizes our hardware support to optimize task-based execution. It prefetches task

data in a double-buffered fashion using EBP and leverages ECM to manage the

local cache resources. The runtime advances ECM epochs on task boundaries and

assigns epoch quotas to tasks based on their memory footprint.

For non-cache-coherent systems we implement a slightly modified version of

the runtime. In this version, the runtime keeps the history of tasks and the actual

core that executed each task, so that it can provide SGC with the location of the last

producer/writer of task arguments. Task spawning uses EBP-NC to push the task

descriptors to worker caches and notifies them with messages in their mailboxes.

The workers notify the master core about task completions by sending messages to

its mailbox.

4.2.3 Task-based Benchmarks

We use six widely used benchmark applications, after converting them to the task-

based dataflow programming model using C pragmas. Most benchmarks originate
2Foivos Zakkak developed the support in the SCOOP compiler for our runtime API.
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from the SMPSs distribution and are sketched in [37]. All benchmarks accept a

block size as input parameter to allow controlling the memory footprint of tasks

and, in effect, the task granularity. The benchmarks are the following:

• Matrix Multiplication: An implementation of dense matrix multiplication

using routines from the BLAS [96] package. We run the benchmark with

1000× 1000 double precision matrices.

• Jacobi: The iterative 5-point stencil linear equation solver. We run Jacobi

with 1000× 1000 double precision matrices.

• FFT: The 2D Fast Fourier Transform uses the FFTW [97] package for 1D

FFT computations and performs transposition and twiddling in-place. We

run FFT with 1M points.

• Bitonic Sort: A comparison-based sorting kernel. The implementation uses

Quicksort to create an initial bitonic sequence and then performs a logarith-

mic number of merge phases. We sort 1M long integers.

• Cholesky: The Cholesky decomposition of a positive-definite matrix into

the product of a lower triangular matrix and its conjugate transpose. The im-

plementation uses routines from the BLAS [96] package. We run Cholesky

with a 1280× 1280 double precision matrix.

• Sparse LU: The LU factorization of a sparse matrix3 as the product of a

lower triangular matrix and an upper triangular matrix. We run Sparse LU

with a 1280× 1280 double precision matrix.

3 Some sub-blocks of the matrix may be null, i.e. contain zeros values.



5
Evaluation

This chapter evaluates the architectural support we propose in Chapter 3 using the

experimental methodology we present in Chapter 4. We simulate parallel work-

loads in manycore systems with up to 64 cores and compare our architectural

support against directory-based cache-coherence with hardware prefetching. We

measure and analyze multiple aspects of our hardware support and examine the

impact in performance, memory traffic, and energy consumption. Section 5.1 eval-

uates our hybrid cache/scratchpad memory hierarchy and the associated explicit

communication hardware primitives. Section 5.2 evaluates our architectural sup-

port for cache-based memory hierarchies which is co-designed with a task-based

dataflow programming system that provides software guidance.

5.1 Hybrid Cache/Scratchpad Memory Hierarchy

This section evaluates the hybrid cache/scratchpad memory hierarchy and the ex-

plicit communication primitives we propose in Section 3.1 using the experimental

methodology we present in Section 4.1. We simulate the execution of popular par-

allel workloads in manycore systems with up to 64 cores and compare explicit com-

munication against implicit communication via directory-based cache-coherence

63
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with or without hardware prefetching.

Section 5.1.1 presents the performance benefits of explicit communication in

a set of popular benchmarks. Section 5.1.2 investigates the impact of our explicit

communication architectural support in the on-chip network traffic. Section 5.1.3

measures energy consumption in the on-chip network and shows significant sav-

ings in energy and power.

In the evaluation that follows we run all benchmarks with datasets that fit in

the on-chip cache/scratchpad memories in order to isolate and quantify the effects

of implicit and explicit communication models in on-chip communication. We

keep the total application dataset sizes fixed and increase the number of cores in

order to study the potential of the communication models for fine-grain on-chip

communication patterns.

5.1.1 Benefits from Explicit Communication and Synchronization

For each benchmark we run experiments with up to 64 cores to quantify the effects

of explicit communication and synchronization in execution time. In Figure 5.1 we

present a comparison of the achieved speedups for the following configurations:

(i) plain hardware managed caches, (ii) hardware managed caches with strided

hardware prefetching, (iii) scratchpad memory with RDMAs, Remote Stores and

synchronization primitives, (iv) a perfect memory system where every memory

access costs a single clock cycle. For the measurements of the prefetching version

we experiment with various prefetch degrees and present only the most efficient

configuration per benchmark1.

The parallelism in Smith-Waterman varies from step-to-step since the num-

ber of blocks that can be processed in parallel are only those located in the anti-

diagonal wavefront. The maximum available parallelism depends on the input se-

quences length, in our case the peak is 64 and was limited by the on-chip memory

size. The graph illustrates that the RDMA version achieves speedups very close

to the perfect case, while on the other hand the hardware prefetcher has negative

effect on performance and achieves speedup lower than the plain cache configura-

tion. The reason for the bizarre behavior of the prefetcher is that it prefetches data

too early, i.e. the producer core has not finished computing the next block, and

this leads to a catastrophic sharing pattern; the producer/writer “loses” the exclu-

sive ownership of cache-blocks the time it writes them. On 64 cores, the RDMA

1We also used large OS page sizes (up-to 4MB) in order to overcome the prefetcher limitation
that does not permit prefetching across page boundaries.
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Figure 5.1: Speedup vs core count: Comparing implicit communication with
caches and prefetchers versus explicit communication with scratchpad memories
and RDMA.

version is 30% and 38% faster than a plain cache and a cache with prefetcher

respectively.

The speedups2 measured for Jacobi demonstrate that the RDMA version fol-

lows closely the perfect case, i.e. the latency of communication can be perfectly

hidden since communication happens only between neighboring NoC nodes. For

the hardware prefetching configuration, performance declines on more than 32

cores and cannot follow the perfect case. Using 64 cores for the same problem

size, parallelism becomes finer, and communication increase offers the RDMA ver-

2Superlinear speedups are an effect of the increased total L1 cache size.
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sion a larger advantage that reaches 13% faster execution than the prefetcher-based

version. The reason for this behavior is the excess coherence traffic injected by pre-

fetching: although the prefetcher’s efficiency is very high – 96% of the prefetched

data are actually used – the associated traffic creates contention in the directories

and increases the cache miss latencies. Increasing the prefetching degree further

in order to hide the additional latency makes things worse as the traffic is further

increased. Moreover, the communication is not restricted to neighboring nodes, as

the indirection through the distributed directories forces the cache requests to cross

more NoC nodes and create additional congestion.

Communication in Bitonic increases with the number of participating proces-

sors, thus for small core counts the local sorting phases dominate in the execution

time. However, for 64 cores the RDMA version outreaches the prefetcher-based

version and results in 40% faster execution time, ideally following the perfect case.

On large core counts communication increases, the pattern changes from step-to-

step and the amount of exchanged data becomes finer, so the prefetcher cannot

predict and prefetch data accurately in time. Additionally barrier synchronization

time increases on many cores and extra communication is required. On the other

hand, our completion notification mechanisms, i.e. counters, trigger local notifica-

tions when all data are delivered in place by RDMA, thus saving trips through the

NoC.

FFT exhibits an all-to-all communication pattern, and for large core counts

where computation and communication become fine-grain we observe that no ver-

sion follows very closely the perfect case, however for 64 cores the RDMA version

is 16% faster than the prefetcher-based version. The bottleneck in the RDMA

version is the massive initiation of short RDMA transfers that cannot be amor-

tized. Similarly, the startup overhead (learning period) of the prefetcher cannot be

amortized. To alleviate the RDMA initiation cost we implement an FFT version

with remote stores that incur virtually no cost to communicate with remote nodes.

This FFT version is optimized so that the transpose step, the actual communica-

tion step, is combined with the FFT computation, through coalesced remote stores.

On 64 cores, the remote store version is 9% and 25% faster than the RDMA and

prefetcher-based version respectively.

5.1.2 On-chip Traffic

We collect detailed NoC statistics in order to compare the traffic generated by each

communication model. We compare the number of control and data packets gen-
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erated in each case, and measure the associated transfer volumes in bytes; Figures

5.2 and 5.3 respectively. The bars that present the number of packets and the total

NoC volume are normalized to the case of two cores with plain caches in order to

gain insight about the increase in communication when many cores collaborate to

solve the same problem.

On-chip Packet Count

The use of explicit communication with RDMA achieves significant reduction in

the number of control packets in all benchmarks since it generates negligible con-

trol traffic – close to zero (Figure 5.2). There are also additional benefits in the

number of data packets and the transferred volume that are further analyzed.

In Smith-Waterman, the RDMA version generates 40% less data packets, on

64 cores, when compared to plain caches since the shared-memory version of the

benchmarks uses an extra dependence array to signal completion of sub-blocks;

flag synchronization/polling is used to satisfy the dependences. On the other hand,

the RDMA version uses completion counters to trigger local notifications at the

receiver, when all inputs are delivered in-place. The version of Smith-Waterman

with prefetching has already exhibited the destructive early prefetching pathology

and transfers superfluous data; the RDMA version injects less than one quarter of

the data packets injected in the prefetcher-based version.

In Jacobi and Bitonic, we observe that explicit communication using RDMA

generates about half the data packets when compared either with plain caches or

caches with prefetchers. The reason that caches transmit more data packets here is

due to the iterative producer-consumer pattern between processor pairs that reuse

the same cache lines and force then to ping-pong between nodes – producer re-

quests exclusive ownership and causes invalidation/forwarding at the consumer.

The RDMA version of the FFT benchmark injects 30% less data packets: the

RDMA version does not need the barrier synchronization required by the shared-

memory version, but instead uses RDMA with completion counters to trigger local

notifications when all data arrive. The version with remote stores behaves similarly

to RDMA for data packets but requires additional control packets to signal the

successful delivery of the remote store packets, i.e. remote store acknowledgments.
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Figure 5.2: NoC packet count, normalized to 2-core plain cache total number of
packets.

On-chip Packet Volume

In terms of total transferred volume through the NoC (Figure 5.3), the RDMA

version of Smith-Waterman injects 4 and 10 times less volume than plain caches

and caches with prefetching respectively. The RDMA version of Jacobi reduces

NoC volume by a factor of 4 when compared with the volume transferred by

caches. Similarly, the RDMA version of Bitonic generates 2.5 and 3 times less

NoC volume than plain caches and caches with prefetching respectively. For the

FFT benchmark, the RDMA and Remote Store versions transfer 2.8 and 1.8 times

less volume than caches.
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Figure 5.3: NoC packet volume (bytes), normalized to 2-core plain cache total
volume.

5.1.3 Network Energy, Energy-Delay, and Power

In order to evaluate and compare the impact of explicit communication mech-

anisms in NoC power, we carefully collect detailed statistics inside the GAR-

NET [82] NoC models and feed the ORION 2.0 [83] NoC power estimation tool.

We compare the behavior of each communication mechanism using three metrics:

(i) Energy consumption, (ii) Energy Delay Product (EDP), (iii) Power consump-

tion. The results are presented in Figures 5.4, 5.5 and 5.6. The bars are normalized

to the case of plain caches in each configuration, i.e. 2, 4, 8, 16, 32 and 64 cores,

and we cannot compare energy and power among different configurations since the

hardware resources (number of NoC router and links) are different.
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Figure 5.4: NoC Energy, normalized to plain cache energy consumption.

NoC Energy

As far as the NoC energy is concerned, the results illustrate that for large core

counts, explicit communication achieves significant energy reduction on 64 cores

that ranges from 35% to 70% when compared to caches with or without prefetch-

ing, Figure 5.4. The communication intensity of each application greatly influ-

ences the dynamic energy consumption, however explicit communication not only

is beneficial in all cases but also offers additional NoC energy benefits when the

applications have high communication demands, e.g. Jacobi.
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Figure 5.5: NoC Energy Delay Product (EDP), normalized to plain cache EDP.

NoC Energy-Delay Product

Energy-delay product (EDP) is proposed as useful metric that offers equal “weight”

to either energy or performance; lower EDP values are always desirable. Our eval-

uation demonstrates that explicit communication achieves both lower execution

time and lower NoC energy consumption, therefore the EDP metric shows a reduc-

tion of 50% to 90% when compared to plain caches and a reduction of 40% to 70%

when compared to caches with prefetching, Figure 5.5.

NoC Power

Analyzing the power consumption in Figure 5.6, shows that the lower energy con-

sumption and EDP of explicit communication is not only an effect of shorter ex-
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Figure 5.6: NoC Power, normalized to plain cache power consumption.

ecution time, as it appears for the prefetcher version, but also due to the fact that

it generates less NoC packets. The latter effect offers a reduction in the total NoC

power that ranges from 10% to 30% when compared with plain caches and 10% to

50% when compared with caches with prefetching. Prefetching results in increased

NoC power consumption when compared to plain caches.
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5.2 Cache-based Memory Hierarchy

This section evaluates the architectural support for cache-based memory hierar-

chies we propose in Section 3.2 using the experimental methodology we present

in Section 4.2. We simulate the execution of task-based workloads in manycore

systems with up to 64 cores and memory hierarchies with and without cache-

coherence. We measure and analyze multiple aspects of our hardware support and

examine the impact in performance, memory traffic and energy consumption.

Section 5.2.1 presents the performance of task-based benchmarks using the

proposed software-directed hardware primitives: (i) Explicit Bulk Prefetcher (EBP),

(ii) Epoch-based Cache Management (ECM) and (iii) Software Guided Coherence

(SGC), and compares them against a hardware-only prefetcher. Section 5.2.2 an-

alyzes the impact of our hardware support in the on-chip network traffic and the

off-chip memory traffic. Section 5.2.3 measures the energy consumption of our

hardware primitives and illustrates significant reduction in energy and power. Fi-

nally, Section 5.2.4 compares the Epoch-based Cache Management scheme with

several cache replacement policies.

5.2.1 Performance Analysis

We evaluate the performance of our proposed hardware primitives (EBP and ECM)

in a cache-coherent system by contrasting them to a baseline without and with HW-

only prefetching. Moreover, we evaluate our architectural support for software-

guided coherence (SGC) in an identical system with non-coherent caches and make

direct comparisons with the cache-coherent system. SGC implements our proposed

hardware support for non-cache-coherent systems (EBP-NC,Counters,Mailboxes).

We run the benchmarks with block sizes that generate fine-grain tasks, each

with a memory footprint size approximately equal to the L1 cache size (32KB).

Figure 5.7 and Figure 5.8 present the percentage of performance improvement (ex-

ecution time) over the baseline without prefetching for runs with up to 64 worker

cores, for four configurations: (i) hardware L2 prefetcher (HWP), (ii) EBP, (iii)

EBP with ECM, and (iv) SGC with ECM. All measurements include the software

runtime overhead. We also plot the speedup achieved by the baseline without pre-

fetching, normalized to single core serial execution without runtime overhead (ig-

nore pragmas), to show how each benchmark scales in our implementation.

We observe that the configuration with EBP in conjunction with ECM always

outperforms HWP. For the benchmarks that scale almost linearly (Matrix multipli-
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cation, Jacobi, FFT, and Bitonic) the improvement over HWP for the higher core

counts (>=16) ranges from 16% in FFT to 43% in Jacobi, which is the most mem-

ory intensive benchmark. Bitonic is 26% faster in 32 cores but appears 10% faster

in 64 cores because the master thread saturates and cannot generate enough tasks

to feed the workers and allow for tasks double-buffering. Matrix multiplication is

consistently better by more than 18%. For benchmarks that do not scale linearly

and are more compute intensive (Cholesky, Sparse LU) the improvement ranges

from 3% in Sparse LU up to 22% in Cholesky. EBP alone (without ECM) is not

always better than HWP. In Jacobi it performs worse than HWP by more than 13%

and in FFT it achieves almost the same performance. In the rest of the benchmarks,

EBP alone performs either worse than EBP+ECM (8% in Matrix multiplication)

or achieves the almost same performance (Bitonic, Cholesky, Sparse LU). On av-

erage, for the 64-core configuration, EBP+ECM is 20% faster than the HW-only

prefetcher and 15% faster than EBP alone.

The non-cache-coherent system with the SGC hardware primitives and ECM

(SGC+ECM) introduces small performance degradation when compared to EBP

with ECM in the cache-coherent system. The most important reason for this SGC

behavior is the requirement to wait until all transfers have completed before tasks

start executing. The workers cannot hide the transfer latency when they do not

have enough tasks to apply double-buffering. The latter situation appears with

“fork-join” task patterns and at the beginning of every application. Moreover, the

runtime version for non-cache-coherent systems has more work to perform since it

needs to analyze the task arguments and infer the last writer/producer. This extra

operation may, under specific circumstances, saturate the master core faster than

the standard runtime version and reduce the rate of task spawning. A representative

example of faster saturation of the master core is the case of the FFT benchmark.

In FFT, the tasks implementing the transpose steps face fragmentation of their task

arguments, i.e. internal pieces of an argument have been written by different tasks

that run in different cores. In the latter case, the runtime has to provide multiple

different last writers for sub-ranges of a task argument.

For the higher core counts (>=16) the performance of FFT with SGC+ECM is

from 4% to 18% slower than with EBP+ECM. Jacobi runs up to 9% slower in 64

cores. Bitonic is up to 7% slower and Matrix Multiplication is up to 5% slower.

The performance of SGC+ECM in Cholesky and Sparse LU is almost similar to

that of EBP+ECM. On average for the 64-core configuration, the performance of

SGC+ECM is 6% lower than EBP+ECM. For the 16-core and 32-core setups, the
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Figure 5.7: Performance improvement over the baseline without prefetching for
each of the following configurations: (i) Hardware Prefetcher (HWP), (ii) Explicit
Bulk Prefetcher (EBP), (iii) Explicit Bulk Prefetcher with Epoch-based Cache
Management (EBP+ECM), (iv) Software Guided Coherence with Epoch-based
Cache Management (SGC+ECM). The line plots the baseline speedup normal-
ized to the serial code execution time that ignores the task pragmas (no runtime
overhead). Plots are for Matrix Multiplication, Jacobi, and FFT benchmarks.
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Figure 5.8: Performance improvement over the baseline without prefetching for
each of the following configurations: (i) Hardware Prefetcher (HWP), (ii) Explicit
Bulk Prefetcher (EBP), (iii) Explicit Bulk Prefetcher with Epoch-based Cache
Management (EBP+ECM), (iv) Software Guided Coherence with Epoch-based
Cache Management (SGC+ECM). The line plots the baseline speedup, normal-
ized to the serial code execution time that ignores the task pragmas (no runtime
overhead). Plots are for Bitonic, Cholesky, and Sparse LU benchmarks.
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average performance degradation is 2% and 3% respectively. On average, for the

64-core configuration SGC+ECM is 8% faster than EBP alone and 14% faster than

HWP.

L2 Cache Misses

To gain more insight into the latter results, we study the impact of EBP and ECM

in the number of L2 misses. Figure 5.9 presents the reduction in L2 misses over

the baseline without prefetching for the four configurations and for setups with

high cores counts (>=16). EBP with ECM significantly reduces the number of L2

misses, outperforms HWP, and achieves reduction of more than 80% on five out

of six benchmarks (Jacobi, Bitonic, Cholesky, Sparse LU). HWP performs relative

well in a number of benchmarks (Jacobi, Bitonic, Sparse LU) and reduces the

associated L2 misses by up to 75%, however, in the rest of the benchmarks it cannot

identify the memory access patterns accurately and the reduction in L2 misses falls

below 40%. On the other hand, EBP with ECM consistently provides more than

18% additional reduction in L2 misses over HWP. The additional reduction in L2

misses ranges from over 18% (Jacobi, Bitonic, Sparse LU) to 68% (Cholesky). In

FFT the reduction is up to 27% and in Matrix Multiplication is up to 45%.

EBP alone cannot always perform better than HWP (e.g. Jacobi) and is less ef-

fective than EBP+ECM. When EBP prefetches data and requires L2 replacements,

the replacement policy cannot distinguish between old task data, current task data

and next task data, thus the victim selection is not optimal, causes interference,

and reduces the effectiveness of prefetching. On average, for the 64-core setup,

EBP+ECM reduces L2 misses by an additional 32% over the HW-only prefetcher

and an additional 7% over EBP alone.

In the non-cache-coherent system, SGC with ECM (SGC implements the EBP-

NC version) offers a small additional reduction in L2 cache misses. The expla-

nation for this improved behavior lies in the internals of the runtime version for

non-cache-coherent systems. The task descriptors are “pushed” from the cache of

the master core directly to the caches of the worker cores and messages with task

descriptor pointers are delivered to the workers’ mailboxes. The standard runtime

version enqueues the task descriptors to the workers’ queues and the workers effec-

tively “pull” the descriptors from the master’s cache; the cache-coherence protocol

handles the underlying transfers. On average, for the 64-core setup, SGC+ECM

reduces L2 misses by an additional 6% over EBP+ECM, by an additional 13%

over EBP alone, and by an additional 38% over the HW-only prefetcher.
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Figure 5.9: Reduction in the number of L2 misses over the baseline without pre-
fetching when running with 16, 32, and 64 worker cores (higher is better).
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5.2.2 Memory Traffic Analysis

We study the implications of EBP, ECM, and SGC on the memory system by mea-

suring the on-chip and off-chip traffic. Given that the memory traffic is sensitive

to task-scheduling, i.e. which task is executed on which core and in what order,

we use a fixed off-line schedule that was captured when running the application

on the baseline system. We replay the same schedule in the runtime for each of

the four configurations. We present the results for on-chip network (NoC) traffic

in Figure 5.10 and for off-chip memory (DRAM) traffic in Figure 5.11 for setups

with high core counts (>=16). The traffic volumes are normalized to the traffic

generated by the baseline without prefetching for each configuration.

On-Chip NoC Traffic

The results for on-chip traffic, presented in Figure 5.10, indicate that EBP with

ECM does not generate excessive traffic when compared to the baseline without

prefetching. In some cases, EBP with ECM generates even less traffic than the

baseline. On the contrary, HWP results in increased traffic on most benchmarks

because of inaccuracy in its predictions and the associated cache pollution. The

improved traffic behavior observed in the 64-core setups is partly attributed to the

increased on-chip cache size when the number of cores increases; on high core

counts a larger portion of the benchmarks’ datasets fits on-chip3. In the presence

of prefetching (either HWP or EBP), data from the producers’ caches are trans-

ferred earlier to the consumers’ caches (before they are evicted), thus saving traf-

fic. However, the improved behavior of EBP+ECM is also because of the smarter

cache management of the task datasets and the throttling technique employed (Sec-

tion 3.2.3).

EBP+ECM generates less on-chip traffic on all benchmarks when compared

to both HWP and EBP alone, Figure 5.10. On the other hand, EBP alone gener-

ates significantly more traffic in a number of benchmarks (Matrix multiplication,

Jacobi, FFT), which can be up to 55% higher than the baseline (e.g. FFT on 16

cores). EBP alone prefetches the requested cache-lines blindly in the cache and

incurs destructive interference between data belonging to the active task contexts

(current and next). When EBP prefetches cache-lines that map to fully-occupied

sets with data from active tasks, the replacement policy has to evict useful data,

whereas ECM throttles prefetching for these sets by consulting the epochs and

3We did not use larger datasets because of the prohibitive simulation times.
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Figure 5.10: NoC traffic volume normalized to the baseline without prefetching
when running with 16, 32, and 64 worker cores (lower is better).
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their associated quotas. On average, for the 64-core setup, EBP+ECM generates

25% less on-chip traffic than the HW-only prefetcher, and 14% less traffic than

EBP alone.

In the non-cache-coherent system, SGC with ECM achieves significant reduc-

tion in the on-chip traffic when compared to all cache-coherent configurations.

The EBP-NC version employed here delegates the prefetch commands directly to

the caches of the last producer/writer core; the runtime version for non-cache-

coherent systems infers this information from the task graph and the history of

tasks. This procedure eliminates a large portion of the control traffic required in

cache-coherent systems, i.e. the cache follows the coherence protocol and makes

requests (per cache-line) to the directory, which in turn forwards the requests to

the current owner of the cache-line (the cache of the last writer). On average, for

the 64-core setup, SGC+ECM generates 15% less on-chip traffic than EBP+ECM,

30% less traffic than EBP alone, and 41% less traffic than the HW-only prefetcher.

Moreover, when SGC+ECM is compared to the cache-coherent baseline without

prefetching, it generates 34% less on-chip traffic.

Off-Chip DRAM Traffic

The off-chip DRAM traffic, presented in Figure 5.11, shows a similar trend with

on-chip traffic and the pathological cases of EBP described earlier are again clearly

shown. HWP increases DRAM traffic in a number of benchmarks due to inaccurate

predictions and speculation about which data will be used by a task. On the other

hand, the use of ECM allows the cache replacement policy to make better choices

about which data to replace and avoids evicting data useful for the current and next

task. On average, for the 64-core setup, EBP+ECM generates 30% less off-chip

DRAM traffic than the HW-only prefetcher and 20% less traffic than EBP alone.

Bitonic presents a noteworthy behavior on 64 cores, where EBP reduces off-

chip traffic by more than 80% over the baseline. This behavior is explained by the

nature of comparison-based sorting which leads to a coherence pattern where data

come as shared (to compare) and then upgrade to exclusive (to swap). In Bitonic,

the application has marked this data as inout and EBP fetches them directly in

exclusive mode. This avoids writebacks when data is dirty in another cache and

downgrades due to the reads required for comparisons, assuming a MESI cache-

coherence protocol.

The results for the non-cache-coherent system with SGC+ECM vary among the

benchmarks. We observe that in a number of benchmarks (Matrix Multiplication,
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Figure 5.11: DRAM traffic volume normalized to the baseline without prefetching
when running with 16, 32, and 64 worker cores (lower is better).
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Jacobi, FFT) the DRAM traffic is up to 22% more than the baseline (FFT on 16-

cores). In Bitonic the DRAM traffic is up to 16% more than EBP+ECM. The reason

for this behavior is because SGC cannot apply the throttling technique with the help

of ECM. The prefetch commands are delegated to the source node (last producer)

and thus at the remote node EBP-NC cannot know if data can fit the destination

cache (initiator). The remote EBP-NC cannot apply any throttling criterion since

the occupancy and epochs at the destination cache are not available. Thus, all data

are transferred and the portion of them that does not fit is skipped at the destination;

cache sets may be full with data for active epochs. During task execution these data

are fetched again from DRAM. In Cholesky and Sparse LU the traffic generated

by SGC+ECM is less than EBP+ECM by up to 13% and up to 61% respectively.

The reason for this improvement is that in the cache-coherent system the MESI

coherence protocol serves clean/shared cache-lines from DRAM – silent evictions

of clean cache-lines – whereas SGC serves them from the last producer cache; in

Sparse LU a very large portion of data is found in the producer’s cache. On average,

for the 64-core setup, SGC+ECM generates 4% less off-chip DRAM traffic than

EBP+ECM, 22% less traffic than EBP alone, and 34% less traffic than HWP.

5.2.3 Energy and Power Analysis

Following the methodology discussed in Section 5.2.2, we use the simulator in-

frastructure to measure the dynamic energy consumption4 of the memory system

components (L1, L2, Directory, DRAM) and the on-chip interconnect (NoC). We

present separately the on-chip energy and the total energy of the memory system.

Additionally, we calculate the energy-delay product (EDP) metric and the power

consumption. The results presented below are normalized to the baseline without

prefetching for each configuration.

On-Chip Energy

We present our results for the on-chip dynamic energy (L1, L2, Directory, NoC)

using breakdowns in Figure 5.12. We observe that the energy dominant compo-

nents are the L1 cache and the NoC. The energy spent in each component varies

among the benchmarks and largely depends on whether a benchmark is compute-

or memory-intensive. The results indicate that EBP+ECM consumes almost the

4Note that we do not include static energy measurements, which are influenced by execution time,
thus our comparisons are conservative.
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Figure 5.12: On-chip dynamic energy normalized to the baseline without prefetch-
ing when running with 16, 32, and 64 worker cores (lower is better).
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same energy as the baseline, whereas the HW-only prefetcher is slightly more en-

ergy hungry. On the other hand, EBP alone increases energy consumption in a

number of benchmarks up to 22% (Jacobi, FFT). On average, for the 64-core con-

figuration, EBP+ECM consumes 6% less on-chip energy than EBP alone, and 7%

less energy than the HW-only prefetcher.

The results on the non-cache-coherent system with SGC+ECM show signifi-

cant reduction in the on-chip energy consumption when compared to the cache-

coherent system. On a large extend, the improvement comes from the on-chip

network due to reduced on-chip traffic (Section 5.2.2) and to a lesser extend by

the elimination of the hardware coherence directory. Moreover, we observe a sig-

nificant reduction in L1 cache energy for Cholesky and Sparse LU on 64-cores.

These benchmarks lack enough task parallelism to utilize all cores (illustrated in

the speedup curves in Section 5.2.1) and the workers spin waiting for tasks. In the

non-cache-coherent version of the runtime the workers “block” on the mailbox,

thus saving energy. On average, for the 64-core setup, SGC+ECM consumes 35%

less on-chip energy than EBP+ECM, 42% less energy than EBP alone, and 41%

less energy than the HW-only prefetcher. Moreover, SGC+ECM consumes 38%

less on-chip energy than the cache-coherent baseline without prefetching.

Total Memory System Energy

We include the off-chip DRAM dynamic energy and present the total memory sys-

tem dynamic energy using breakdowns in Figure 5.13. In almost all the bench-

marks, the dynamic energy consumption is dominated by the off-chip DRAM,

while the second major component is the L1 cache. The most important finding

is the reduction of DRAM energy when prefetching is used (either HWP or EBP).

This behavior is due to the open-row management and the scheduling policy of the

memory controller (FR-FCFS [98]). With prefetching, the memory controller has

the potential to serve more requests from open rows and reduce the number of row

activations and precharges, which contribute significantly to DRAM energy. With

EBP, task data is requested in bulk and close in time, thus offering the memory

controller more opportunities to exploit open row buffer locality. On average, for

the 64-core setup, EBP+ECM consumes 14% less energy than EBP alone, and 28%

less energy than the HW-only prefetcher.

On the non-cache-coherent system, SGC+ECM applies even more aggressive

prefetching and allows more outstanding requests to memory since it uses the hard-

ware counters to trigger transfer completion. On the other hand, the number of
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Figure 5.13: Dynamic energy consumption of the memory system’s components.
The energy is normalized to the baseline without prefetching when running with
16, 32, and 64 worker cores (lower is better).



5.2. CACHE-BASED MEMORY HIERARCHY 87

outstanding requests in the cache-coherent system is limited by the number of miss

status handling registers (MSHRs). Furthermore, the reduction in on-chip and off-

chip DRAM traffic we observed before (Section 5.2.2) offers additional energy

savings. SGC+ECM consumes 16% less energy than EBP+ECM, 30% less energy

than EBP alone, and 44% less energy than the HW-only prefetcher. Moreover,

SGC+ECM consumes 48% less energy than the cache-coherent baseline without

prefetching.

Energy-Delay Product

We use the energy-delay product (EDP) [99, 100] as metric to measure the effi-

ciency of our hardware primitives in our dual goals: (a) lower energy consumption

and (b) higher performance (lower delay). EDP offers equal “weight” to energy or

performance loss, so if either energy or delay increase, EDP will increase; lower

EDP values are desirable. Figure 5.14 presents our results using the total energy in

the memory system and the execution time of each benchmark.

All configurations improve the performance over the baseline without prefetch-

ing (Section 5.2.1), but some of them result in increased energy consumption in a

number of benchmarks (Section 5.2.3). The EDP metric that treats performance

and energy equally provides more insight about the efficiency of the associated

mechanisms. EBP+ECM performs better in all benchmarks and consumes less en-

ergy so we observe important EDP reduction. EBP alone suffers from increased

energy consumption in a number of benchmarks (Jacobi, FFT) and has achieved

lower performance than EBP+ECM, so this aggregate effect is also depicted in

EDP figures. The hardware prefetcher improved performance less than the com-

peting configurations and consumed more energy, thus the EDP reduction is also

lower. On average, for the 64-core setup, EBP+ECM achieves 16% lower EDP

than EBP alone, and 30% lower EDP than the HW-only prefetcher.

The comparison of the non-cache-coherent system with SGC+ECM against

the configurations of the cache-coherent system is intriguing. SGC+ECM showed

a small performance degradation in execution time when compared to EBP+ECM,

but on the other hand reduced the energy consumption in the memory system. The

results indicate that the energy reduction outweighed the performance loss in al-

most all the benchmarks. The only exception is FFT since the performance loss due

to saturation of the task master (as explained before) gives a disadvantage. On aver-

age, for the 64-core setup, SGC+ECM achieves 10% lower EDP than EBP+ECM,

26% lower EDP than EBP alone, and 40% lower EDP than the HW-only prefetcher.
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Figure 5.14: Energy-delay product using the dynamic energy of the memory sys-
tem’s components. The energy-delay product is normalized to the baseline without
prefetching when running with 16, 32, and 64 worker cores (lower is better).
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Power Consumption

We measure the total dynamic power consumption of the memory system and

present our results in Figure 5.15. Power is the rate of energy consumption and

thus faster execution without proportional reduction in energy leads to increased

power consumption. Our results indicate that EBP+ECM achieves lower dynamic

power consumption than the baseline without prefetching in half of the benchmarks

(Bitonic, Cholesky, Sparse LU). In Matrix Multiplication and FFT the dynamic

power consumption increases up to 13% and up to 7% respectively. In Jacobi, the

most memory intensive benchmark, the dynamic power increases by up to 46%.

The latter behavior means that the performance improves more than energy reduc-

tion in these benchmarks. The performance in Jacobi improved by more than 80%

in the higher core counts (>=16) and thus reducing the energy at the same rate is

very hard. Finding the “sweet spot” to achieve the same dynamic power with the

baseline, at the cost of lower performance improvement, is feasible, however, this

is not the focus of this work. The hardware prefetcher dissipates significantly more

power in almost all benchmarks by double-digit percentages that can be as high

as 51% (Jacobi). EBP alone is not always better than HWP and dissipates more

power in several cases (Matrix Multiplication, FFT). On average, for the 64-core

setup, EBP+ECM consumes 8% less power than EBP alone, and 23% less power

than the HW-only prefetcher. When compared to the baseline without prefetching,

EBP+ECM consumes on average 2% less power on 64-cores.

The results on the non-cache-coherent system with SGC+ECM show signif-

icant reduction in the dynamic power consumption when compared to the cache-

coherent system. SGC+ECM consumes energy more efficiently and achieves lower

dynamic power than the baseline without prefetching in most of the benchmarks.

The exceptions are Jacobi and FFT where the increase in dynamic power con-

sumption tops at 10%; the explanation in the previous paragraph also holds here.

On average, for the 64-core setup, SGC+ECM consumes 26% less power than

EBP+ECM 34% less power than EBP alone, and 49% less power than the HW-

only prefetcher. When compared to the baseline without prefetching, SGC+ECM

consumes on average 28% less power on 64-cores.
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Figure 5.15: Dynamic power consumption of the memory system’s components.
The power is normalized to the baseline without prefetching when running with
16, 32, and 64 worker cores (lower is better).
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Figure 5.16: Comparison of replacement policies when EBP is utilized, runs for
16 worker cores.

5.2.4 Comparing Cache Replacement Policies

We explore a number of candidate replacement policies for use with EBP and

present our findings for 16-cores in Figure 5.16. We examine the typical NRU

and LRU replacement policies, RRIP [62], and the state-of-the-art prefetch-aware

replacement policy PACMan [61] in its three variants: PACH, PACM, PACHM5.

Moreover, given that ECM is versatile and can be used in conjunction with many

replacement policies, we also evaluate three variants with ECM: (i) NRU+ECM,

(ii) LRU+ECM, and (iii) RRIP+ECM. We observe that when EBP is utilized, the

PACMan variants perform worse than NRU and LRU, whereas the ECM variants

can be up to 22% faster than LRU (Jacobi). In PACMan, the reference history

that is accumulated during a task lifetime is useless for the next task and requires

several misses before cache-lines with old task data become candidates for replace-

ment. This behavior appears to have a negative effect on performance. On the other

hand, the ECM epochs help to effectively filter “old” cache-lines and allow the data

prefetched for the next task to be preserved in the cache.

5For RRIP and PACMan we use 2-bit values and the version without set dueling.





6
Conclusions

This chapter concludes this thesis. We summarize our work in Section 6.1, discuss

the lessons learned in Section 6.2, and present future work in Section 6.3.

6.1 Summary

This thesis designs memory hierarchies that allow software to manage data locality,

and presents simple, yet efficient, hardware communication primitives that permit

software to guide data transfers – thus to control how and when cores communicate.

We show that software has the knowledge and the potential to guide hardware so as

to improve performance and reduce the energy cost of communication in manycore

architectures.

In Section 3.1 we presented a memory hierarchy that incorporates the func-

tionality of both a coherent-cache and a scratchpad memory in a common address

space. Software can opt to utilize a portion of the local cache memory as scratch-

pad memory and use our explicit hardware communication primitives in order to

optimize and control data locality for the cases where it can intelligently do so, i.e.

when it has prior knowledge about the dataset and the associated memory ranges.

For the portions of the dataset where data accesses are not known in advance or ex-

93
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hibit irregular access patterns, e.g. tree traversals, the software may delegate con-

trol to the cache and the coherence protocol. The explicit hardware communication

primitives allow software to get involved in the data movement when it knows the

locations of the data in the memory hierarchy, i.e. the addresses and the cores that

it needs to communicate with. The evaluation of our explicit communication sup-

port shows that applications with known datasets and communication patterns can

benefit from our hardware primitives to improve performance, to remove the un-

necessary control overhead imposed by cache-coherence, and to reduce the energy

consumption of on-chip communication. Our experimental results show that our

proposed hardware primitives can improve performance by 10% to 40%, and at the

same time reduce the energy consumption of on-chip communication by 35% to

70% owing to significant reduction in on-chip traffic by factors of 2 to 4.

In Section 3.2 we considered cache-based memory hierarchies with and with-

out cache-coherence. We proposed a hardware/software co-design, assuming a

task-based dataflow programming system, which uses tasks with annotated mem-

ory footprints. The task-based dataflow programming models use the memory

footprints of tasks to build dependency graphs (DAGs) and maintain significant

amount of information that is used to dynamically drive runtime decisions. Es-

sentially, the runtime system discovers producer-consumer relations among tasks,

maintains such knowledge internally and uses it to schedule and execute the tasks

in the correct order.

We exploited the opportunities and the knowledge inherent in such program-

ming environments and proposed hardware primitives to allow the runtime to guide

hardware data transfers and improve cache locality. We introduced the Explicit

Bulk Prefetcher (EBP), which allows the runtime to prefetch task data in bulk,

before each task executes, and perform common optimizations such as double-

buffering. This form of software-guided prefetching controls data movement in the

cache and addresses some of the challenging issues with hardware-only prefetch-

ers such as timeliness, accuracy, and access pattern prediction. Moving further, we

proposed Epoch-based Cache Management (ECM), a generic lightweight mecha-

nism that allows software to guide the cache replacement policy, expose its knowl-

edge of tasks to the cache hierarchy, assign cache resources to them, and secure

that useful cache-lines are not evicted by the prefetched lines. ECM is based on

the notion of Epoch, which can be defined by software as the lifetime of a task,

i.e. the time period during which a task executes. Thus, ECM guides the cache

replacement policy, controls cache locality, and allows the cache to identify and
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prioritize data belonging to different tasks, so as to minimize data movement. Our

experimental results in cache-coherent systems show that our proposed hardware

primitives (ECM, EBP), when compared to hardware prefetching, improve perfor-

mance by an average of 20%, inject 25% less on-chip traffic on average, and reduce

the energy consumption in the components of the memory hierarchy by an average

of 28%.

The memory footprints of tasks, the producer-consumer relationships identified

between tasks, and the scheduling history, allow the runtime to know the addresses

and the locations of data throughout the system. The software effectively keeps a

directory at task argument granularity, and thus, it can directly guide data move-

ment and communication in the memory hierarchy without the traffic and energy

overhead of hardware cache-coherence. We exploited this very important oppor-

tunity and proposed hardware primitives for Software Guided Coherence (SGC) in

non cache-coherent systems. We enable runtime software to orchestrate fetching

the most up-to-date version of the task arguments from the appropriate cache(s)

directly, and maintain coherence at task granularity. Our hardware support for non

cache-coherent systems (ECM, SGC) compared to cache-coherence and hardware

prefetching, improves performance by an average of 14%, injects 41% less on-chip

traffic on average, and reduces the energy consumption in the components of the

memory hierarchy by an average of 44%.

6.2 Discussion

Throughout the design and evaluation of our architectural support we faced several

issues regarding the development of applications, the scalability of runtime soft-

ware, and the efficiency of our hardware primitives. We discuss below the main

issues, and provide insight on the use of our architectural support.

The development of applications that directly exploit the hybrid cache/scratch-

pad memory hierarchy and the explicit communication hardware primitives is a

very tedious and time-consuming task. It requires very careful management of the

limited local memory resources, and sheer understanding of the data exchange pat-

terns between the communicating cores. Achieving direct transfers between the

scratchpad memories is the most challenging task, since it requires the program-

mer to orchestrate the transfers between the asynchronous contexts that produce

and consume data. In our evaluation we used datasets that fit in the on-chip memo-

ries, however, applying the same techniques (direct transfers between scratchpads)
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using larger datasets depends on the intrinsic time proximity of data reuse in each

application, and requires more sophisticated application algorithms, such as multi-

level tiling [101]. We did not modify the application algorithms to directly compare

against the standard versions used in cache-coherent systems.

Moreover, in the hybrid cache/scratchpad memory hierarchy, the use of RDMA

commands that transfer small portions of data cannot be always amortized ade-

quately, but RDMA is always beneficial when each transfer exceeds a certain size

(i.e. larger than 128-bytes). We proposed the use of coalesced “Remote Stores”

for the cases where short transfers are required, however, exploiting this hardware

primitive in large application parts is a complicated procedure. The application

programmer has to carefully identify the stores that are used for computations, and

decide which of them to convert to “remote-stores” (by selecting the appropriate

remote addresses), so as to achieve communication inter-mixed with computation.

We applied the latter technique in the FFT kernel, and our experience confirms the

complexity to use “remote-stores” manually. Applying this technique extensively

requires compiler analysis to identify the last write access for each memory ad-

dress in code blocks [102]. On the other hand, sporadic use of remote-stores for

low volume communication is easy and efficient.

The issues we described so far concern the manual use (by the programmer)

of the architectural support for the hybrid cache/scratchpad memory hierarchy. We

solve these issues in our more generic architectural support for cache-based sys-

tems that is co-designed with a task-based dataflow runtime system.

The evaluation of our hardware/software co-design using fine-grain tasks re-

vealed a number of scalability bottlenecks in the task-based runtime software. Our

runtime utilizes a single master thread that spawns tasks, performs dependence

analysis, and schedules tasks. We find that fine-grain tasks that execute for a few

tens of thousands of clock cycles saturate the single master thread, and thus this

master thread cannot utilize all the available worker threads/cores. Such behaviors

appear in our evaluation mainly when 64 cores are available. To utilize multiple

master threads, the runtime software requires a more sophisticated design, espe-

cially when the system does not feature coherent-caches; an example of such an

advanced and scalable runtime system is Myrmics [103].

Our evaluation also revealed, that the most performance critical part of the

runtime system is dependence analysis. Our runtime implements block-based dy-

namic dependence analysis with arbitrary byte granularity [38] and uses internal

metadata structures that keep state for the dependent tasks; the block granularity is
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selected by each application. One of the benefits from the latter approach is that it

permits arbitrary overlapping between the address ranges of task arguments. How-

ever, several task-based applications with fine-grain tasks use 2D memory ranges

with small element blocks, thus the dependence analysis has to examine a large

number of small blocks. For instance, a task argument of 32 KBytes that uses

64 × 64 elements (element size of 8 bytes), requires the runtime to examine 64

metadata and perform the associated dependence checks. Efficient dependence

analysis under the latter constraints is a good candidate for specialized hardware

support. Nexus++ [104] offers such hardware support, however, it uses only the

base addresses of arguments, and does not support overlapping address ranges.

Our hardware support for Software Guided Coherence (SGC) assumes that a

task argument is produced by a small number of producer tasks, thus, it would

require a small number of commands to directly fetch the most recent version of a

task argument from the producers’ caches. However, we found that FFT exhibits

excessive fragmentation of task arguments, i.e. internal pieces of an argument

have been produced by many different tasks that run on many different cores, due

to the transpose steps. The latter effect causes the runtime to issue many prefetch

commands that cannot be amortized, thus, negatively affecting the performance

and the efficiency of our hardware support. However, our scheme still reduces

the energy when compared to cache-coherence with hardware prefetching. Such

cases can be addressed at application level, the code can use extra memory buffers,

change the data layout across phases, and apply the equivalent of OpenMP copyout

in an on-chip memory that will be treated as the home location of data. We did not

modify the application algorithms to directly compare against the standard versions

used in cache-coherent systems.

6.3 Future Work

We list here some ideas for further extensions that came up during the evaluation

our architectural support, and can potentially improve performance.

Support for Cache Allocation of Write-First Data

The “output” type task arguments specified by the OmpSs/SMPSs task-based pro-

gramming model, offer an opportunity for hardware optimization. An output task

argument effectively means that this argument is considered write-first and thus,

the old values of the associated memory range are “don’t care”. We can offer an
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extra operation in the non-cache-coherent version of the Explicit Bulk Prefetcher

(EBP-NC), e.g. “Allocate” opcode, to allow software to directly allocate the cache-

lines associated with an output argument, without requiring to fetch the old data.

The contents of these cache-lines can be filled either with zero values, or with val-

ues from a pseudo-random generator (security feature), or keep the values of the

cache-line that is being replaced (don’t spend energy on the data arrays). If the ad-

dress range is not cache-line aligned, the unaligned portions of the range have to be

fetched from main memory. However, the use of such primitive requires software

to flush the associated range from the old producer cache, if any, to avoid having

the same cache-line dirty in more than one cache. For the latter operation, we can

offer an extra operation in EBP-NC, e.g. “Purge” opcode, that would only clean

the dirty bits of an address range in the remote cache, instead of flush, in order save

energy from the associated write-backs; such write-backs are useless.

Epoch-Based Flushing and Eager Self-Flushing

The inherent characteristics of some application algorithms, or the scheduling poli-

cies of runtime systems, may cause excessive delay between the execution of de-

pendent tasks (producer-consumer pairs), leading to long data reuse distances, and

possibly limited on-chip temporal locality. The latter behavior could be an effect

of breadth-first like scheduling that favors new tasks instead of dependent tasks

(favored by work-first like scheduling). Exhibiting long data reuse distances effec-

tively means that the producer cores would run several independent tasks before a

consumer requests that data, therefore, data produced in the past have low probabil-

ity of been present in the producer’s cache. However, the runtime would still make

such requests to the latest producer core to ensure correctness; required by Soft-

ware Guided Coherence. Although we discourage the use of inefficient algorithms

and scheduling policies, we can offer hardware support to improve such cases.

We can offer hardware flushing based on epochs, instead of addresses. We can

modify the Epoch-based Cache Management scheme, so that all the dirty cache-

lines of an epoch are automatically flushed before an epoch is reused (becomes

active). The epoch-based flushing mechanism would access each cache-set once,

and would guarantee the maximum number of probes in the cache; always equal

to the number of cache sets. The epoch-based flushing mechanism can be further

improved if the hardware tracks with counters the number of dirty cache-lines per

epoch. When a cache-line becomes dirty, the associated epoch counter will be

incremented, and when an eviction occurs the counter will be decremented. By
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counting the number of dirty cache-lines per epoch, flushing can terminate when

the associated counter is zero; we hope that most times flushing will be terminated

after a few probes (significantly less than the maximum required).

The use of dirty-line tracking counters can assist the automatic flushing mech-

anism, and we believe that most times these counters would be zero (or close to

zero), thus minimizing the need for flushing. In order to further minimize the need

for flushing, we can also offer an optional “eager-flush” mechanism that can be

enabled by software. The eager-flush mechanism evicts pro-actively data belong-

ing to the oldest (inactive) epoch during processor accesses, i.e. when a processor

accesses a cache-set to acquire data for the current task, the dirty cache-lines that

belong to the oldest epoch (oldest task) are victimized.

The automatic self-flushing mechanism has an important property: guaran-

tees that data produced outside a “max-epochs” window will not be present in the

producer’s cache. The latter guarantee can allow software to avoid fetching data

from the last producer, if that specific producer core has executed more than “max-

epochs” tasks since the actual producer task. In order to exploit this guarantee,

software should keep a per-core task sequence number and store, in the internal

data-structures, the associated sequence number for each task argument.





A
FPGA Prototype

A.1 FPGA-based Implementation

Our hardware prototype is implemented in a Xilinx Virtex-5 FPGA using four Mi-

croBlaze soft-cores as processors. The processors are 32-bit, in-order, and have a

traditional 5-stage pipeline that also supports single-precision floating-point oper-

ations. Each processor tile has a private data cache hierarchy, with a configurable

L2 cache/scratchpad memory tightly-coupled with our NI. Instructions are fetched

from private L1 instruction caches. The prototype is equipped with a 256MB

DDR2 SDRAM that is used as main memory and is shared between tiles. Com-

munication between tiles and the on-chip DRAM memory controller is achieved

through a 64-bit, 5-port crossbar switch (XBAR) that features three priorities and

applies round-robin scheduling; contention-less crossbar traversal costs 1 clock

cycle. An additional switch port can be used to provide multi-FPGA connectivity

through multiple external high-speed serial links (RocketIO), and thus our modular

design can be expanded with multiple boards in order to build larger scale systems.

Cache-coherence is not currently supported. The operating clock frequency of the

system is currently 75MHz and its block diagram along with the major components

is illustrated in Figure A.1.
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Figure A.1: FPGA Prototype Block Diagram

A.1.1 Configurable Cache/Scratchpad Memory

Every tile of our prototype implements a private data L1 cache and a private, con-

figurable, data L2 cache/scratchpad. These are smaller than one would expect in

a CMP, due to limited FPGA resources. Typically, L1 caches range from 16 to

64 KBytes, 2 to 4 way set associative, with 64-byte lines. Our implementation

has scaled down the L1 caches to 4KB, direct-mapped, with 32-byte cache-lines.

L1 caches are write-through, with 256-bit wide (one cache line) refills, a single-

cycle hit latency, and follow “no-allocate” policy on store misses. L2 caches, on

the other hand, are usually much larger, with sizes beyond 1MB, associativity up

to 16-ways, and line size of 64 bytes or more. Scaling down again, we have de-

signed a 64 KB, 4-way set-associative write-back L2 cache with 32-byte lines. Our

L2 cache supports multiple hits under a single miss in order to minimize proces-

sor idle time. The L2 controller serves write-backs and fills on misses, using the

transfer primitives of the tightly-coupled NI as described below.

The key component that allows us to configure and use parts of the L2 cache

as scratchpad is the Address Region Table (ART); its function is similar to a tradi-

tional TLB, but it provides only protection and type information –not physical ad-

dress translation– hence the ART can be smaller than a TLB (and have no misses),

because it can describe potentially huge regions of the address space in each entry.

The ART classifies each memory access as one of: (i) cacheable, (ii) local scratch-

pad, (iii) remote scratchpad, (iv) tag access (used to access and set lock bits in L2),
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or (v) register access (NI control registers that customize specific features). The

ART is placed in parallel with the L1 cache, and is probed on every memory ac-

cess of the processor; a copy of the ART is also used by the incoming NI. Routing

in our prototype is based on physical addresses, thus we use a static mapping: each

L2 data and tag array has a unique physical address (nodeID and way number are

encoded in the address bits).

An important issue for the efficient use of scratchpads and their associated

DMAs is the available memory bandwidth. Scratchpad areas in our design are

hosted inside the L2 memory banks and the NI accesses them at high rate when

performing DMAs. On the other hand, the default set-associative cache organi-

zation would require all the ways (tags + data) to be probed in parallel, causing

conflicts and thus limiting the available data array bandwidth for the NI. In order

to reduce the bandwidth required by the typical L2 cache operation and use it more

efficiently for NI operations, we implement a phased L2 cache: the tag arrays are

accessed first and the data arrays are accessed only on hits. Our cache-line wide

(256-bit) L2 data array, allows L1 misses to be served in a single clock cycle, thus

we avoid occupying the data arrays for multiple cycles. The outgoing and incom-

ing NI paths also access data in 256-bit chunks and since the NoC is 64-bit wide,

the maximum access rate per path is 1 per 4 clock cycles. As a result, more than

50% of L2 cycles is guaranteed for L1 requests.

Figure A.2 presents the datapath and the pipeline of our design. All mem-

ory accesses arriving from the processor are checked against the ART regions and

probe the L1 cache. Hits are served normally, while misses, stores, scratchpad and

tag accesses, are sent to L2 along with all required control information: type of ac-

cess and way (if scratchpad). In the first cycle, the L2 controller arbitrates among

requests from NI in, NI out and the L1, and probes the tags. In the next cycle,

the selected agent accesses the data of a specific cache way. To reduce scratch-

pad access latency, scratchpad lines are L1-cacheable. The L2 controller keeps

the cached scratchpad lines coherent by issuing local invalidations when writes ar-

rive from remote nodes; no further coherence actions are required since the L1 is

write-through. Scratchpad loads that miss in the L1 have a minimum latency of 4

clock cycles, while stores take 3 clock cycles to reach the L2. The observed pro-

cessor latency for stores is 1 clock cycle, stores are immediately acknowledged and

propagate in the pipelined memory hierarchy.
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Figure A.2: Cache/Scratchpad Pipeline

A.1.2 NI Operation and Mechanisms

The NI is tightly-coupled to the L2 cache and serves all transfers from/to the tile’s

memory and the NoC. The heart of the outgoing NI path is the Network Job List

that keeps the posted jobs that need to be served. The incoming NI path serves

inbound traffic, stores data in-place and, depending on the type of traffic (cache or

DMA), collaborates with the L2 controller to complete operations.

NI Command and Control Lines are allocated upon software demand inside

scratchpad areas. The state bits of locked lines distinguish them to four types:

• Normal Memory: normal scratchpad memory without side-effects.

• Command Buffer: are analogous to (virtualized) I/O command registers, and

buffer RDMA and message requests. They are monitored by command com-

pletion hardware, which posts new jobs to the Network Job List.

• Queue: such cache lines contain metadata (pointers, size, item granularity)

in the free tag part, describing a queue implemented as a circular buffer. The

actual queue space is allocated separately, by software, inside scratchpad ar-

eas, outside the cache line itself. Two types of queues are supported: (i) Sin-

gle Reader Queues (many-to-one) and (ii) Multiple Reader Queues (many-

to-many). Single Reader Queues require one head and one tail pointer and
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the element size can be configured to 4-bytes, 8-bytes, 16-bytes, or a full

scratchpad line. The head and tail pointers can be read via loads to spe-

cific block offsets. The Multiple Reader Queues have a fixed element size of

32-bytes and require one head pointer and two tail pointers: (i) a write-tail

pointer for write packets (enqueues) and (ii) a read-tail pointer for read pack-

ets (dequeues). Incoming write packets (e.g. from remote store, message, or

RDMA) destined to queue-type lines, are enqueued inside the circular buffer,

and the NI controller updates the tail (or write-tail) pointer. Incoming read

packets destined to Multiple Reader Queues record their response address

in the queue body and update the read-tail pointer. Bound checking and

pointer wrap-around is handled for head and tail pointers, as well as testing

for queue full conditions. Matching a dequeue packet with an earlier en-

queue packet (or vice-versa) is achieved by comparing the tail pointers with

the head pointer and result in posting a new job in the Network Job List.

The head pointer of Single Reader Queues is updated under software control

while the head pointer of Multiple Reader Queues is updated by the NI when

it completes the transfer associated with a match operation.

• Counter: these lines contain a 24-bit counter in the free tag part, and up to

four notification addresses in the data part. Writes to word-offset zero incre-

ment the counter by the (signed) contents of the write. Upon reaching zero,

the counter triggers the transmission of notification packets to the notifica-

tion addresses by posting several jobs in the Network Job List.

Additionally, the NI serves incoming RDMA-Read requests. In order to meet

the buffering requirements for incoming requests, without dedicating a separate

memory block, we require the software to allocate a Read Service Queue, in the

form of a Multiple Reader queue, and then assign its address to a special register.

NI Commands and Protocol

Commands to the NI are issued as a series of stores to the data part of Command

Buffer lines. Our protocol defines two types of commands: (i) Copy and (ii) Mes-

sage. Copy descriptors are DMAs and have a fixed size of four 32-bit words, while

messages have any size up to one cache-line (eight 32-bit words in our prototype).

In order to achieve automatic command completion, every descriptor should con-

tain its own size (in bytes) inside the word at offset zero. The first word of every

descriptor contains the following fields: (i) 8-bits descriptor size (bytes), (ii) 8-bit
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opcode (copy/message), (iii) 16-bit copy size (bytes - max 64 KBytes), used only

when opcode is copy. For Copy descriptors this first word is followed by three

mandatory virtual address arguments: (a) source, (b) destination, and (c) acknowl-

edgment. For Message descriptors the first word is followed by two mandatory

virtual address arguments –(a) destination and (b) acknowledgment– and up to five

optional words that constitute the actual payload of the message. The NI uses its

copy of the ART to distinguish local source addresses (write-RDMA) from remote

sources addresses (read-RDMA), to validate (for protection purposes) the address

arguments.

Completion Monitor

The NI includes a monitor circuit for command buffers, and uses the descriptor size

to detect completion of commands, even in the presence of out-of-order stores, but

assuming single-write of each word inside the command buffer line. The moni-

tor is activated when stores arrive to cache-lines marked as command buffers, and

a bitmap of the already completed words is formed and updated. The bitmap is

kept in the free tag bits of these lines and when the number of consecutive “ones”

matches those implied by the descriptor size, then command completion is trig-

gered. Upon completion, a new job description containing the address of the com-

mand buffer is posted in the Network Job List. Since the completion bitmap is

kept in the tags of each command buffer line, interleaved command issuing is sup-

ported offering full virtualization (e.g. threads can preempted while composing a

command).

Remote Stores

Store instructions to addresses belonging to remote scratchpad regions (as iden-

tified by the ART), result in network packets carrying write requests, identical to

RDMA or message packets (of data size 1 or more words). Stores marked as “re-

mote” are kept in the Remote Store Buffer, and served by the outgoing NI engine

as soon as it is free. A write-combining mechanism is implemented: if multiple re-

mote stores to adjacent addresses arrive before some previous ones have departed,

they are all coalesced in a single, multi-word-write packet. In order to support re-

mote stores’ completion notification, i.e. keep track if all remote stores have been

successfully delivered, we use a special NI register that counts the total volume

(in bytes) of departed remote store traffic; the acknowledgment address of remote
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store generated packets is automatically set to point to this register. Every time

remote stores arrive in their destination(s), acknowledgment packet(s) that contain

the delivered size are sent back to the sender in order to update the NI counter. The

software can check the latter counter for zero to ensure that all remote stores have

been successfully delivered.

Completion Notifications

We assume multi-path (adaptive) network routing, hence the multiple packets of

a large RDMA may arrive out-of-order; the packet data will be written in-place,

given that each of them carries its own destination address, but RDMA completion

detection must now be performed by counting the number of bytes that have ar-

rived (our network never generates duplicates). We implement counters to support

RDMA completion notification. Each session, of one or more RDMA operations,

uses one counter (allocated by software) as the acknowledgment address for its op-

erations. The issuer decrements that counter by the total size of all RDMA trans-

fers. Every RDMA packet carries the counter address in its acknowledgment field;

upon successful write, an acknowledgment is sent to the counter and increments

it by the packet size. When the counter reaches zero the NI automatically sends

notification packets to its pre-configured notification addresses.

Cache Transfer Support

The L2 cache controller issues requests for fills and write-backs by posting new

job descriptions in the Network Job List. The job descriptions contain the appro-

priate opcodes and address: source address for a fill and destination address for a

write-back. The outgoing NI uses the provided opcodes to format and generate the

appropriate outgoing packets. The cache controller uses a Miss Status Handling

Register (MSHR) structure, to keep track of outstanding write-backs and misses

(transient cache-line states), and updates it appropriately when the NI serves the

requests. The number of supported outstanding cache misses is limited by the

number of MSHRs; we currently support one outstanding miss.

Outgoing NI

The outgoing NI engine features a Network Job List in order to accept and manage

requests for outgoing network operations. The sources of requests are typically the

following:
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• L2 Cache Controller: requests for write-backs and fills.

• Completion Monitor: explicit transfers, i.e. RDMAs and messages, when

command completion is triggered for command buffers.

• Counters: up-to four completion notifications when a counter expires.

• Multiple Reader Queues: responses when enqueues and dequeues match.

• Remote Store Buffer: remote stores waiting in the remote store buffer.

• Incoming NI engine: remote acknowledgments from incoming packets.

Requests are posted in the Network Job List in the form of job descriptions.

Each job description contains: (i) an opcode field that specifies how the arguments

are interpreted and how the outgoing NI engine should handle the transfer, (ii) an

address field that specifies either a local or a remote address (it may be a cacheable

address, a command buffer, an acknowledgment, or a Multiple Reader Queue),

(iii) the destination node number for the generated packet(s), (iv) the network pri-

ority (three available) of the packet(s) in order to avoid deadlocks of higher level

protocols, e.g. cache-coherence.

Upon receiving a job description, the outgoing NI first uses the destination

node number to arbitrate for the NoC (request-grant protocol). When a network

slot is granted the NI proceeds to the transfer, otherwise the current descriptor is

recycled and put in the back of the Network Job List. The latter recycling tries

to avoid head-of-line (HOL) blocking, when network destinations are congested,

without requiring “expensive” per-output queues (VoQs). Recycling allows us to

remove the outgoing per-priority network FIFOs, since pending transfers can wait

inside the Network Job List and the packets need not be generated.

When a network slot is granted by the NoC, the NI operates in “cut-through”

mode and generates packets – along with their customized lightweight headers and

CRC checksums – that belong to one of the two primitive categories: Write or

Read. Cache write-backs, RDMA writes, messages, remote stores and acknowl-

edgments belong to the Write category (carry data payload and acknowledgment

address), while cache fills, RDMA reads and remote loads belong to Read category

(carry the request arguments). Orthogonally to the primitive category, the packets

in our prototype are sent with different network priorities as follows:

• Low priority: cache fills, RDMA reads, remote loads
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• Medium priority: write-backs, RDMA writes, messages, remote stores.

• High priority: acknowledgments.

The payload of Write packets is acquired from the L2 data arrays, by itera-

tively reading chunks of 256-bits; the chunks are in turn serialized through the

64-bit NoC in four successive clock cycles. The NI segments large transfers, i.e.

RDMA-Writes, into smaller packets when they exceed the maximum packet size

(256-bytes in our prototype), or when alignment reasons dictate it. An RDMA

transfer is served until it occupies a maximum network packet and then the corre-

sponding job is recycled in the Network Job List; the associated command descrip-

tor is also updated. Forcing large RDMA transfers to pause, offers fairness and

reduces the latency of small packets that may wait behind large RDMAs. More-

over, the segmentation mechanism uses both source and destination addresses in

order to generate packets that do not cross 256-byte boundaries. Additionally, our

outgoing NI engine supports arbitrary source and destination address alignments

(byte offsets) and leverages a barrel shifter to properly align and pad packets; the

latter operation is only performed at the source nodes and thus the packets arrive

to destinations nodes already aligned. When all packets of an RDMA transfer have

been sent, the NI updates the actual command descriptor to signal local RDMA

departure and allows the associated command buffer to be reused by software.

Incoming NI

The incoming NI exploits the header CRC contained in all packets and operates

in “cut-through” mode to reduce latency. As soon as the header CRC is verified,

i.e. destination address and packet size are correct, packets’ payload can be safely

delivered in memory without having to wait for body CRC verification; body CRC

is carried in the last word of the packet. Upon reception, the NI writes the packets

in per-priority network queues and notifies the incoming engine; network priorities

are strictly served in descending order. The incoming NI engine gathers up-to

four 64-bits words from the incoming network queues in order to create 256-bit

chunks and write them at once in the wide L2 memory. The engine has first to

identify whether a packet belongs to cache or scratchpad traffic, by checking the

state bits of the destination address. If the destination is a cache-line waiting to

be filled, then the NI delivers data in place and signals the L2 controller; only

write-type packets are supported for incoming cache traffic. Write-type packets

destined to lines in scratchpad space have to perform different steps according to
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the type of the line. In plain scratchpad lines, data are delivered in-place and an

extra write with the packet size is performed to the acknowledgment address, if

non-NULL. All writes from the incoming network, generate local invalidations to

the L1 cache to ensure that no stale scratchpad data remain there. Incoming write

packets destined to Counter lines are handled in an analogous manner; only the first

word is considered. If a packet is destined to a Queue, then the queue descriptor

is accessed and the appropriate tail pointer (read-tail for read packets and write-

tail for write packets) is used to enqueue the incoming packet. Read-type packets

carrying a DMA request use the queuing steps, mentioned before, to enqueue in

the Read Service Queue. Read DMA requests are handled as if they were Write

DMA’s from the local processor; however, a command buffer is fetched from the

Read Service Queue pool, and a new job description is posted in the Network Job

List.

A.2 Hardware Cost, Latency and Software Evaluation

This section reports on the implementation cost of our FPGA prototype, presents

latency figures and evaluates software operations on top of our primitives. First,

we report on the total area complexity of the prototype and then we compare plain

cache and scratchpad designs against our integrated Cache/Scratchpad and NI. Fi-

nally, we illustrate the latency of the primitive operations supported by our NI and

present some case studies with software evaluation.

A.2.1 Design Cost in FPGA Resources

Table A.1 presents the hardware cost of the system blocks. The numbers refer to

the implementation of the design in a Xilinx Virtex-5 FPGA (XUPV5-LX110T

development board) with the back-end tools provided by Xilinx. The most com-

plex block of our NI design is the Outgoing engine which serves jobs from the

Network Job List and implements a low latency RDMA engine that supports ar-

bitrary byte alignments and sophisticated packet segmentation. The outgoing NI

engine costs approximately 40% of the total NI LUTs and 45% of the total NI Flip-

Flops. The current total design occupies less that 65% of the available LUTs and

Flip-Flops in our FPGA device, however we utilize 90% of the available memory

blocks (BRAMs) and thus larger caches cannot be implemented.
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Block LUTs Flip Flops BRAMs
MicroBlaze + Instr. Cache 2712 2338 4
L1 + ART. 913 552 3
L2 Cntrl. + Arrays + Arb. 1157 893 23
NI Total 5364 2241 2
- Rem-Store Buff. 398 312 0
- Compl. Monitor 223 62 0
- Counters 286 99 0
- Queues 1011 45 0
- Outgoing NI 2042 1015 1
- Incoming NI 1404 708 1
Tile Total 10146 6024 34
NoC (5x5) 2820 750 0
DDR2 SDRAM Cntrl. 3745 4463 0
Total (4x Tile) 47149 29309 136

Table A.1: Hardware Cost Breakdown in FPGA Resources

A.2.2 Area Benefits of Integrated Cache/NI Controller

We have counted and report separately, in Figure A.3, the area complexity of three

different designs: (i) all SRAM operating as cache only, and a cache controller; (ii)

all SRAM operating as scratchpad only, and a NI providing DMA’s; (iii) our con-

figurable cache/scratchpad with its integrated NI/cache controller. The cache only

design supports one outstanding miss, while serving hits under single miss, and

does not support coherence. The scratchpad only design supports 8-byte aligned

RDMAs and network packet segmentation.

The area here is reported in gates, to ease comparison, assuming that each LUT

and each Flip-Flop is equivalent to 8 gates. The measurements do not include the

L1 cache and the memory arrays. As seen, the integrated design (iii) has a com-

plexity considerably lower than the sum of the complexities of the two dedicated

designs, owing to several circuits being shared between the two functionalities.

The circuit sharing is mostly observed on memory block datapath, the outgoing

and incoming NI, and economizes 35% in hardware complexity.

A.2.3 End-to-End Latency

Figure A.4(a) presents the latency breakdown of the following primitive NI opera-

tions: Remote-Store, Message and RDMA-Write transfers. The SW initiation cost,
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Figure A.3: Comparison of the area complexity for three separate designs: (i)
Cache only, (ii) Scratchpad and RDMA-only and (iii) Integrated Cache and
Scratchpad.

the NI transmit latency, the crossbar (XBAR) latency and the NI receive latency of

every operation are constant under zero network-load conditions – both the outgo-

ing and incoming path implement cut-through. The latency for the delivery of the

packets’ payload in the remote memory is commensurate to the size of the transfer.

Remote-Stores of 4-bytes cost 18 cycles and are faster than the equivalent mes-

sages and DMAs, since the initiation is implicit – no descriptor has to be posted.

Minimum-sized messages and RDMAs of 4-bytes have the same end-to-end la-

tency of 21 clock cycles. Although the RDMA has to read the payload from mem-

ory, and implies an extra memory access when compared with the case of a mes-

sage, the outgoing NI manages to hide this extra latency during the NoC arbitration

stage. For transfer sizes larger than 16-bytes RDMA achieves lower latency than

remote stores and messages, however RDMA requires the packet payload to be

already present in memory, thus is suitable for larger bulk transfers. The latency

for large RDMAs is presented in Figure A.4(b) which shows that 64-bytes can

be delivered remotely in just 28 clock cycles while 512-bytes cost only 92 clock

cycles.

The NI transmit path has a latency of 8 clock cycles: 2 of them are attributed

to the pipelined path to reach L2, 1 to enqueue a request in the network job-list,

1 for the outgoing NI to process the new request and 4 of them are spent on the
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Figure A.4: Remote-Store, Message, RDMA-write, Remote-Load and RDMA-
read transfers latency breakdown, as a function of data size (bytes)

NoC arbitration. The NoC request-grant phase takes 2 clock cycles but the granted

network slot starts 2 clock cycles later – during that time the NI hides the latency of

reading from memory and preparing packet headers. For transfer sizes that exceed

the maximum network packet size, i.e. 256-bytes, and need to be segmented, an

extra latency of 6 clock cycles is experienced per segment: 2 clock cycles are spent

to recycle a request through the Network Job List and 4 clock cycles are spent again

in NoC arbitration.

The NI receive path latency has two components: (i) the incoming cut-through

latency and (ii) in-place delivery of packet’s data in the memory. The incoming cut-

through path has a latency of 3 clock cycles: 2 clock cycles are needed to receive

the packet headers and check CRC and 1 clock cycle is needed to inform the in-

coming DMA engine about a new packet arrival. The incoming DMA engine, that
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delivers data in-place, needs 2 clock cycles to dequeue the packet headers from the

incoming network queues and the remaining latency, until the last word is delivered

in memory, is commensurate to the payload size. For 32-byte packets, 4 clock cy-

cles are need to gather a 256-bit chunk and 2 additional clock cycles are needed in

order to arbitrate for the tag and memory arrays. The memory arbitration latency is

overlapped with the gathering of the next packet words and thus experienced only

once per packet.

Figure A.4(c,d) illustrates the latency breakdown of primitive remote read oper-

ations: Remote-Load and RDMA-Read. Besides the SW initiation cost, all remote

read operations have a constant latency of delivering a request to a remote node

which is 17 clock cycles – equal to delivering a packet of 8-bytes, contains the des-

tination address for the source node. Thereafter, the request takes 3 clock cycles to

be processed by the NI and be converted into an RDMA-write, as if it was initiated

locally. The response latency follows the same steps with an RDMA-write and

experiences the same latencies. Back at the initiator, the reception of a Remote-

Load response takes an extra 2 clock cycles, when compared to and RDMA-Read,

since the data should follow the L2 pipeline and be returned to the processor –

RDMA-Reads are delivered in the L2/Scratchpad memory. A remote load of 4-

bytes costs as low as 38 clock cycles while an RDMA -Read of the same size costs

39 clock cycles. Reading 64-bytes from a remote node costs just 46 clock cycles

while reading 512-bytes takes 110 clock cycles.

A.2.4 Case Studies: Software Use of Hardware Primitives

This subsection focuses on the use of the proposed hardware primitives by soft-

ware constructs and illustrates some common cases where our primitives find use.

Apart from minimizing the latency of data transfers through virtualized low-latency

RDMA and remote stores, software can use our primitives to efficiently implement

higher level operations such as: (i) Transfer Completion Notification, (ii) Barrier,

and (iii) Distributed and Centralized Task/Job Dispatching.

Transfer Completion Notification

We study a common scenario where a producer sends data to a consumer in pre-

agreed buffer space that forms a circular queue. The consumer needs to know

when all data have arrived and typically a software-built protocol manages the

low-level details. The use of interrupts for the reception of packets at the consumer



A.2. HARDWARE COST, LATENCY AND SOFTWARE EVALUATION 115

is prohibitive due to frequent context-switches (especially for small packets) and

thus packet reception is typically triggered by checking a flag in the last word of

the packet. The problem becomes harder when out-of-order networks come into

picture and when the transfer size exceeds the maximum network packet size. The

producer has to squeeze flags in the buffers to be transferred and the consumer

needs to poll all these flags before arrival is triggered; additionally data are not

contiguous in the buffer space since the flags have been injected. Our proposed

solution is the use of Counters and the acknowledgment address offered by RDMA

operations, Section 3.1.4. A counter per-buffer can be allocated at the consumer

side and the producer can use its address as acknowledgment address when it issues

RDMAs.

We measure the performance of these two sketched implementations in the

FPGA prototype for a scenario where 10000 buffers are produced and sent with

RDMA to a circular queue with 4 buffer slots at the consumer. For the measure-

ments we vary the buffer size using the following values: (i) 200 bytes, (ii) 500

bytes, (iii) 1000 bytes and (iv) 2000 bytes; sizes beyond the maximum network

packet size, i.e. 256-bytes, generate multiple RDMA segments. As illustrated

in Table A.2, the HW counter approach offers up-to 33% improvement over the

software-only approach; the performance gains increase with the size of the trans-

fer since the number of RDMA segments increases.

Barrier

It is a very common operation used by parallel programs to synchronize a number

of parallel threads/tasks. The typical software implementation, for a few partici-

pating threads, involves a lock-protected memory location which is increased when

each thread reaches the barrier; the last thread that reaches the barrier wakes-up all

other waiting threads. In lieu of atomic instructions on MicroBlaze, we use an

external hardware mutex module, provided by Xilinx, that is placed on the mem-

ory bus and allows test-and-set (TAS) like operations in a “fast” non-cacheable

address space (SRAM). Using the hardware mutex module, we implement a sense-

reversing centralized barrier.

The barrier implementation using the Counter primitive is straightforward: the

counter is initialized with the number of threads (negative value) and each thread

sets a local scratchpad address as notification address of the counter (up-to four

supported). Upon reaching a barrier, increments to the counter are sent through re-

mote stores. When the counter becomes zero, it triggers automatic notifications



116 APPENDIX A. FPGA PROTOTYPE

to the pre-configured notification addresses. Multiple counters can be chained

(counter notifies counters) to create larger wake-up trees and thus support higher

number of cores in a scalable manner [105].

We measure and compare in Table A.2, the performance of the two imple-

mentations in an empty loop with 10000 back-to-back barriers, while varying the

number of threads from 1 to 4. The HW counter is up-to 6.8 times faster than the

equivalent lock-based implementation on 4 cores.

Distributed and Centralized Task Dispatching

Spawning and dispatching tasks/jobs is crucial in parallel and distributed systems,

thus we study two cases of task dispatching: (i) distributed and (ii) centralized.

Case (i) refers to a set of masters that initiate tasks to specific workers (statically

scheduled): each worker maintains a queue where multiple masters may enqueue

tasks but only the owning worker may dequeue (many-to-one communication).

Case (ii) refers to a central pool of tasks (queue) where multiple masters may en-

queue and multiple workers may dequeue allowing for dynamic scheduling and

load-balancing (many-to-many communication). The typical software implemen-

tation of (i) requires the masters to acquire a lock in order to enqueue a task and

increase the tail pointer, while the worker may dequeue without acquiring a lock.

However, in case (ii), where multiple workers dequeue, a lock is also required to

guard the head pointer. Our proposed solution for (i) is a Single Reader Queue

(SRQ) per worker and for (ii) a central Multiple Reader Queue (MRQ); these prim-

itives offer atomic enqueue and dequeue operations, Section 3.1.4.

We measure and compare the performance of the software-only vs. hardware-

assisted implementations is an program where each master spawns 10000 empty

tasks. We vary the number of masters and workers accordingly and report the

results in Table A.2. For case (i) the lock-based enqueue incurs an overhead, which

for 1 master cannot be amortized by the task size, whereas some of the overhead

is overlapped with multiple masters. The SRQ implementation performs up-to 4.9

times faster and the number of masters does not influence the task processing time.

In case (ii), the lock contention increases the task processing time when multiple

workers serve tasks from the central queue. On the other hand, the MRQ performs

very well allowing for up-to 7.7 times faster processing of tasks.
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Transfer Completion
size clock cycles/iteration improv.

(bytes) SW only HW Cnt. percent
200 233 206 13%
500 552 449 23%
1000 1084 831 30%
2000 2152 1620 33%

Barrier
cores clock cycles/barrier improv.

# Lock Based HW Cnt. factor
1 111 41 2.7x
2 194 66 2.9x
3 357 78 4.5x
4 574 84 6.8x

Distributed Task Scheduling
Masters clock cycles/task improv.
Workers Lock Based HW SRQ factor
1M - 1W 199 40 4.9x
2M - 1W 152 40 3.8x
3M - 1W 151 40 3.8x

Centralized Task Scheduling
Masters clock cycles/task improv.
Workers Lock Based HW MRQ factor
3M - 1W 232 87 2.6x
2M - 2W 237 44 5.3x
1M - 3W 270 35 7.7x

Table A.2: Comparison of software-only operations vs. hardware-assisted.





B
Coherent RDMA

B.1 Coherent RDMA Support

RDMA is hardware copying between two address regions. Such copying is straight-

forward if the address regions belong to scratchpads memories (fixed positions)

but it becomes more complicated if one of them is cacheable. Data belonging to

cacheable regions can lie anywhere in the memory hierarchy and are able to mi-

grate at any given time; they move at blocks (block size = 1 cache line) of multiple

words (typically 4-16). The major issue is how to locate all the different blocks

that are possibly scattered throughout the system and how to orchestrate a copying

to/from many numerous different locations.

Typically, DMA in the I/O space is not coherent in many contemporary plat-

forms and the solutions are either based on operating system support or on snoop-

based coherence, which is customary in bus-based systems. Nowadays, RDMA

finds its application on-chip, in heterogeneous platforms like IBM Cell [18], and

allows moving data to/from private local memories but also to cacheable regions

and main memory. Coherence of DMA transfers in Cell is handled by the Element

Interconnect Bus (EIB) [106], since its global broadcast nature allows snooping to

be applied. The major downside of snoop-based coherence is its limited scalabil-

119
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ity, and thus it is not an acceptable solution. However, the scalable directory-based

coherence protocols do not support or handle DMAs.

Cache transfers and RDMAs should have a consistent view of the memory and

avoid fetching or using stale data; therefore Coherent-RDMA is a necessity and

should be supported in the preferred directory-based coherent systems. We assume

that at least one of the two regions participating in the copy (RDMA) operation is

scratchpad, i.e. not both are cacheable; DMA engines are attached next to each

scratchpad memory and are used to serve their data transfer requirements, they are

not an offloading mechanism for data copying between cacheable regions [107].

B.1.1 Requirements Analysis of Coherence Support for RDMAs

This section studies the coherence protocol requirements in order to support data

transfers between cacheable and private (scratchpad) space. We first examine the

steps followed by coherent caches and the steps followed by DMA engines and

then we propose step-by-step modifications to support coherent DMAs.

For the next sections, we assume a system with private L1 and L2 caches, a

shared SNUCA L3 cache with distributed banks and their associated home direc-

tories. For the directory-based coherence protocol we assume a MESI protocol

similar to that of [108].

Cacheable Reads under Directory-Based Coherence

A typical cache, during a read miss, sends a read request message to the appropriate

home directory (according to some bits from the block address), and then waits for

a data response. The message contains the requested block address, the opcode

(get shared-GETS) and the NodeID to be used for the response. Sending a GETS

request, involves the allocation of a Miss Status Handling Register (MSHR) to

handle all the intermediate (transient) protocol states and other corner cases that

might occur, e.g. NACKs, races. According to the state kept in the directory for

that block, a series of actions is performed: (i) if the block is not-present(NP) then

data are fetched from an off-chip memory, sent back to the cache, and the state is

set to Shared(S) while the share vector is updated, (ii) if the block is in Shared(S)

state, then a copy of the block is sent back to the cache and the share vector is

updated, (iii) if the block is in Exclusive(E) state then a FWD_GETS request is

sent to the cache that has the most up-to-date copy in order to downgrade while the

status in the directory is set to shared and the share vector is updated.
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Figure B.1: RDMA from Cacheable Region to Scratchpad

RDMA Reads between Scratchpad Regions

As far as a DMA controller is concerned, the steps for an RDMA read involve

data transfers between private address spaces hosted in scratchpad memories. The

DMA engine sends a read request message to the node responsible for the related

memory addresses (the NodeID of the remote node is usually found through a rout-

ing table or some bits from the DMA source address) and waits for the data to be

sent back with an acknowledgment. The message sent, includes the source address

of the data, the destination memory address that belongs to the requesting node,

the opcode (READ) and the DMA size, an additional acknowledgment address

of a completion counter is provided. The remote node responds with data in the

form of one or more RDMA-Write(WRITE) packets in case DMA size exceeds the

maximum NoC packet size.

Coherent RDMA Reads: from Cacheable Region to Scratchpad

This subsection describes the steps proposed to achieve coherent RDMA reads in a

system with directory-based coherence, the flow of data is illustrated in Figure B.1.

First, the DMA engine should be able to identify that the source address of a DMA

command belongs to a cacheable region (consult the ART for this information),
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and then send read request(s), i.e. RDMA-Read packet(s) with READ opcode, to

the appropriate home directory. The DMA engine is required to split an RDMA-

read request that spans cache block boundaries into multiple smaller requests (of at

most one block size), since directories keep state per cache block and it is difficult

to handle requests that affect multiple blocks. The fact that RDMA-reads copy

data to private spaces, allows the directory and caches to be agnostic of existent

scratchpad copies, therefore do not need to track sharing and thus simplify the

integration. Moreover, the directory should be able to handle RDMA-read packets

and perform the following operations depending on the requested block state:

Not Present (NP):

If the block is Not-Present(NP) in the directory tables, i.e. it is not present

in any cache, then the request should be forwarded to the appropriate off-

chip memory controller (memory channel). Directories do not need to create

and keep any state (e.g. sharing) for such blocks. The off-chip memory

controller should handle RDMAs as in the normal non-coherent case, i.e.

serve RDMA-read requests and respond with RDMA-write packets directly

to the requesting node. Moreover, that controller should be able to perform

sub-block reads if the requested size is less than a cache block.

Shared(S) or Present(P):

If the block is present possibly in Shared(S) state, the directory should for-

ward the request to an appropriate cache to provide the data response. The

directory should not mark a scratchpad as a sharer. An appropriate cache is

considered the next-level cache (L3 or an L3 slice responsible for that block),

usually placed next to the directory (or directory bank), or any cache(L2) that

is owner of the block (proximity aware selection would improve latency and

limit traffic). All caches should be able to serve RDMA-read requests and

respond with RDMA-write packets directly to the requesting node, even for

sub-block requests.

Exclusive(E):

In case the block is held Exclusive(E) by a single cache, then the request

should be forwarded to that cache in order to provide the most up-to-date

data. The directory state should not change to Shared(S) and the cache

should not downgrade or write-back if the data were Modified(M) locally.

The cache should respond to a READ as in the case of a FWD_GETS to a

Shared(S) block.
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Cacheable Writes under Directory-Based Coherence

Writing data through caches, typically involves fetching an exclusive copy of the

cache block first and then modifying it. Fetching the old cache block for writing

is achieved either with a get-exclusive (GETX) request if the block is not present

in the cache or an upgrade(UPGD) request if it has been read before and kept in

Shared(S) state. A GETX or UPGD request instructs the directory to invalidate all

the current sharers if the block is in Shared(S) state. The directory sends invalida-

tion messages, waits for all ACKs, updates the state to Exclusive(E) and in the case

of a GETX, sends the data back to the requesting cache. When the block gets into

Exclusive(E) state of if it was already in it, then a FWD_GETS request is sent to

the sole cache that has the most up-to-date copy in order to provide the data. If the

block is not-present(NP), then it is fetched through an off-chip memory controller

and brought in Exclusive(E) state.

RDMA Writes between Scratchpad Regions

The DMA engines perform RDMA Writes by generating RDMA Write(W) data

packets carrying the instructed payload and destined to a remote destination ad-

dress. In case the DMA size exceeds the maximum NoC packet size then multiple

packets are generated by carefully modifying the destination memory address in or-

der to put data in place. The NodeID of the remote node is usually found through

a routing table or some bits from the DMA destination address. Every RDMA

packet carries an acknowledgment address of a counter that is used to trigger the

completion of transfer.

Coherent RDMA Writes: from Scratchpad to Cacheable Regions

This subsection describes the steps proposed to achieve coherent RDMA writes in

a system with directory-based coherence, the flow of data is illustrated in Figure

B.2. First, the DMA engine should be able to identify that the destination address

of a DMA command belongs to a cacheable region (consult the ART for this in-

formation), and then send data packet(s), i.e. RDMA-Write packet(s) with WRITE

opcode, to the appropriate home directory. The DMA engine is required to split

an RDMA-write command that spans block boundaries into multiple packets (of

at most one block size), since directories keep state per cache block and it is dif-

ficult to handle data that affect multiple blocks. The fact that RDMA-writes push

data suddenly from private spaces into a shared coherent space is unusual – caches
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Figure B.2: RDMA from Scratchpad to Cacheable Region

always get exclusive ownership before writing – but can be handled with proper

support. The directory should be able to recognize RDMA-Write packets and per-

form the following operations depending on the affected block state:

Not Present (NP):

If the block is Not-Present(NP) in the directory tables, i.e. it is not present

in any cache, then the data should be forwarded to the appropriate off-chip

memory controller (memory channel). Directories do not need to create and

keep any state (e.g. modified) for such blocks. However, the off-chip mem-

ory controller should be able to handle sub-block writes and send acknowl-

edgments, to an address contained in the packet, in the form of RDMA-

Write.

Present(P):

If the block is present in the next-level cache then it should be written and the

state should be set to Modified(M). Sub-block writes and acknowledgments

should be supported.

Shared(S):

If the block is present in Shared(S) state, then the directory should invalidate
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all sharers, wait for the invalidation acknowledgments and forward the writ-

ing of data to an appropriate cache. The directory should only mark the block

as modified(M) without keeping any ownership information. An appropriate

cache here is considered the next-level cache (L3 or a slice responsible for

that block), usually placed next to the directory (or directory bank). Caches

should be able to handle sub-block writes and send acknowledgments, to an

address contained in the packet, in the form of RDMA-Write.

Exclusive(E):

In case the block is held Exclusive(E) by a single cache, then an invalidate

request should be sent to that cache in order to write-back data, if they were

modified(M) locally, or send a clean ack, without data. Thereupon, the direc-

tory is allowed to perform the RDMA-write and send an acknowledgment.

The incoming RDMA could affect the complete block, so the possible write-

back from the original cache is useless and in order to optimize, a special

no-write-back invalidation should be used. If the incoming RDMA-Write

is affecting a sub-block, then we either have to wait for the possible write-

back and then modify the part instructed by the RDMA-write or perform the

RDMA-Write immediately and request a special partial write-back.

Another more favorable option, that easily unifies all the above cases and

simplifies integration is to forward the RDMA-Write to the sole owner, force

it to update the block contents in place and set the local state to Modified(M);

the latter choice works for all cases, either full or sub-block writes.

B.1.2 Differences Between Coherent Caches and DMA Engines

Studying carefully the assumptions for the operation of caches using a directory-

based protocol and the assumptions of the DMA engine there are some key differ-

ences. The different assumptions are sorted below:

Data transfer size:

RDMA-read requests and RDMA-write packets specify the size of the data

transfer explicitly while cache requests always imply data transfers of cache

block size. The latter observation entails that an RDMA might specify a

size less than cache block size but might also specify a size larger than a

cache block that affects multiple cache-lines. There are also combinations

of sizes less than a cache-line and arbitrary addresses that affect multiple

cache blocks.
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Request Addresses:

Cache Writes always use an address that is aligned to cache block boundaries

or to half-block if the next-level cache block size is larger (e.g. L2 cache-

lines can be 64-bytes while L3 cache-lines can be 128-bytes). Cache read

requests are allowed to have an address with arbitrary word offset in order to

support critical-word-first. In the case of DMAs, either read or write, there

is no restriction in address alignment, meaning that an arbitrary byte offset

can be used.

Sharer Tracking:

In order to preserve coherence, the directory keeps track of the sharers that

have copies of each cache block. On the other hand this is not the case for

RDMAs since there cannot be any marking of copies that need to be purged;

copies are private and sharing is achieved under software control.

Writing Exclusion:

Data writing by caches entails an exclusive ownership of a block and the

directory enforces this exclusion. Getting an exclusive ownership presumes

that the requesting cache gets a copy of the old data first. In the RDMA

paradigm, data can be written to any destination address without reading

them before and without accounting any ownership; software explicitly con-

trols transfers and is responsible to enforce and protect any required owner-

ship policies.

Packet Format:

The packet format used by the coherence protocol for requests and data trans-

fers contains an opcode (selecting from a rich set: GETS, GETX, PUTX,

UPDG, DOWG, FWD_GETS, FWD_GETX, ACK, INV, DATA, DATAX),

an address, a source node id, a destination node id and a data payload in case

of data transfers. On the other hand RDMAs have only two packet types

(READ and WRITE), carry up to three address fields (destination address

for WRITEs, additional SOURCE address for READs and ACK address)

and a DMA size field.

Packet Destinations:

All cache requests and data transfers are sent to the home directory, which

always introduces a level of indirection, while RDMA packets are always

sent point-to-point.
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B.1.3 Proposed Modifications in Support of Coherent RDMA

This section summarizes the proposed modifications in each participating module,

i.e. DMA engine, directory, cache, in order to support Coherent RDMA.

Modifications in DMA Engines

In order to support RDMA transfers from/to cacheable regions, the DMA engines

should be able to identify a region as cacheable, this can be achieved by checking

the outgoing ART table which is already checked for access permissions on every

transfer. Additionally, the packets generated by the RDMA requests, either read

or write, should be split in several smaller ones so as not to cross cache block

boundaries; requires careful segmentation based on the source/destination address

offsets and DMA sizes. The fact that RDMAs can read/write from/to cacheable

regions requires memory barriers (fences) to include them in their wait-set, the

latter can be achieved using our completion detection counters.

Modifications in the Directory and Coherence Protocol

The directory should be able to identify READ and WRITE type packets that are

sourced from DMA engines and should forward them to the appropriate desti-

nation. All RDMA-Read packets should be forwarded to the closest cache that

keeps the data if the block is in Shared(S) state, or to the sole cache that holds the

most up-to-date copy if the block is in Exclusive(E) state, or to off-chip memory

controller if the block is Not-Present(NP) in the cache hierarchy. Upon receiv-

ing RDMA-Write packets, the directory should invalidate all possible sharers and

forward packets to the next-level cache if the block is in Shared(S) state, forward

packets to the sole owner cache(L2) if the block is in Exclusive(E) state, or set

state to Modified(M) and forward packets to the next-level cache(L3) if the block

is present but not cached. Finally, all packets should be forwarded to the off-chip

memory controller if the block is Not-Present(NP).

Modifications in Caches

The caches should be able to accept READ and WRITE packets and generate data

responses in the form of RDMA-write packets. Incoming RDMA-read packets

should generate RDMA-Write data responses and incoming RDMA-Write packets

should generate acknowledgments that effectively follow the RDMA-Write format.



128 APPENDIX B. COHERENT RDMA

Additionally, the caches should be able perform sub-block reads and writes of an

instructed size. The latter size affects only sequential bytes inside the same block

and does not exceed block size. The provided addresses can be of arbitrary align-

ment. Moreover, they should support cache block updates on exclusively owned

blocks and update state to Modified(M).

Open Issues in Coherent RDMA Support

One of the open issues for Coherent RDMA Support is handling the negative ac-

knowledgments (NACKs) that may be sent by home directories. Several directory

implementations make use of NACKs in some special cases when a request cannot

be handled immediately or when they run out of buffer space. NACK-free directo-

ries eliminate most NACKs but a small number of residual cases have significant

complexity and cost [109]. One possible solution for such cases is to force the

directory to piggyback the original RDMA packets inside the NACKs. The latter

option allows the DMA engines to replay the requests/packets without keeping any

state at the source; there is no need to have MSHR like structures to handle corner

cases.
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