
Uspector: A web platform to support design

workflow management and formal evaluation

of prototypes

Georgios Topsis

Thesis submitted in partial fulfilment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Professor Constantine Stephanidis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

University of Crete
Computer Science Department

Uspector: A web platform to support design workflow management
and formal evaluation of prototypes.

Thesis submitted by
Georgios Topsis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Georgios Topsis

Committee approvals:
Constantine Stephanidis
Professor, Thesis Supervisor

Dimitris Plexousakis
Professor, Committee Member

Dimitris Grammenos
Principal Researcher, Committee Member

Departmental approval:
Antonios Argyros
Professor, Director of Graduate Studies

Heraklion, November 2019

Uspector: A web platform to support design workflow
management and formal evaluation of prototypes.

Abstract

Designers use their skill set to develop usable and aesthetically pleasing prod-
ucts that are effective at addressing users’ needs. Among the available product
design approaches, User-Centred Design (UCD) is the prevailing one, as it focuses
on optimising the product around the users’ abilities, requirements and prefer-
ences, rather than requiring them to change their behaviour to accommodate it.
By design UCD is an iterative process, thus designers often struggle to deal with
the continuous management and usability testing of the designed mockups. After
each iteration, designers need not only to revise their mockups based on the find-
ings and insights emerging from user testing, but also to centrally organise them
so as to manage new series of usability tests that will assess the new designs. This
is a resource-consuming process for design teams and project managers.

This thesis presents Uspector, a web platform that aims to accommodate the
needs of designers, practitioners and evaluators during the iterative user-interface
design process of a product. In particular, through Uspector: (i) designers can
organise their creative content in projects of screens, with every screen consisting
of a set of variations, and they can keep track of their evolution over time; (ii)
practitioners can efficiently organise and conduct usability experiments using the
Heuristic Evaluation methodology in order to uncover possible usability issues of
designs; and (iii) evaluators can be supported while inspecting designs for errors.

Uspector has been tested in a case study of iterative design. The case study
has confirmed that the platform could eventually assist designers to centralise and
organise their creative content, uncover possible usability issues by conducting
multiple low-cost and rapid usability tests, as well as inspect the evolution of their
work through Uspector’s version control system.

Uspector: Μια διαδικτυακή πλατφόρμα για την
υποστήριξη της διαχείρισης της ροής σχεδιασμού

και υποβοήθησης της διαδικασίας αξιολόγησης

πρωτότυπων

Περίληψη

Οι σχεδιαστές χρησιμοποιούν τις ικανότητές τους για την ανάπτυξη εύχρηστων και

αισθητικά ευχάριστων προϊόντων που ικανοποιούν τις ανάγκες των χρηστών. Ανάμεσα

στις διαθέσιμες προσεγγίσεις σχεδιασμού προϊόντων, η Ανθρωποκεντρική Σχεδίαση

(UCD) είναι η επικρατούσα καθότι εστιάζει στη βελτιστοποίηση του προϊόντος γύρω
από τις ικανότητες, τις απαιτήσεις και τις επιθυμίες των χρηστών, αντί να τους α-

ναγκάσει να αλλάξουν τη συμπεριφορά τους για να το αξιοποιήσουν. Εγγενώς, η

Ανθρωποκεντρική Σχεδίαση είναι μια επαναληπτική διαδικασία, έτσι οι σχεδιαστές

συχνά αντιμετωπίζουν δυσκολίες στη συνεχή διαχείριση και τον έλεγχο ευχρηστίας

των παραγόμενων mockups. Μετά από κάθε επανάληψη, οι σχεδιαστές χρειάζεται
όχι μόνο να αναθεωρήσουν τα mockups τους με βάση τα ευρήματα και τις ιδέες που
προκύπτουν από τις δοκιμές ευχρηστίας, αλλά και να τα συγκεντρώσουν και οργα-

νώσουν κατάλληλα ώστε να διαχειριστούν μια νέα σειρά δοκιμών ευχρηστίας για την

αξιολόγηση τους.

Αυτή είναι συχνά μια απαιτητική και χρονοβόρα διαδικασία για τις ομάδες σχεδια-

σμού και τους διαχειριστές των projects.
Η παρούσα διπλωματική εργασία παρουσιάζει τη διαδικτυακή πλατφόρμα Uspec-

tor, η οποία στοχεύει στην κάλυψη των αναγκών των σχεδιαστών, των επαγγελματιών
(practitioners) και των αξιολογητών δοκιμών ευχρηστίας κατά την επαναληπτική δια-
δικασία σχεδιασμού των διεπαφών ενός προϊόντος. Ιδιαίτερα, μέσω του Uspector: (i)
Οι σχεδιαστές μπορούν να οργανώσουν το δημιουργικό τους περιεχόμενο σε projects
από οθόνες, με κάθε οθόνη να αποτελείται από μια σειρά εναλλακτικών εκδόσεων, κα-

θώς επίσης και να παρακολουθούν την εξέλιξή τους με την πάροδο του χρόνου. (ii) Οι
practitioners μπορούν να οργανώσουν και να διεξάγουν αποτελεσματικά πειράματα ευ-
χρηστίας χρησιμοποιώντας την μεθοδολογία της ευρετικής αξιολόγησης προκειμένου

να αποκαλυφθούν πιθανά ζητήματα ευχρηστίας των σχεδίων τους. (iii) οι αξιολογη-
τές μπορούν να υποστηριχθούν κατά την αξιολόγηση της ευχρηστίας των σχεδίων για

σφάλματα.

Αφού πραγματοποιήσαμε μια αξιολόγηση χρηστικότητας στο Uspector, προέκυψε
ότι, στο πλαίσιο της διαδικασίας της Επαναληπτικής Σχεδίασης η πλατφόρμα θα μπο-

ρούσε τελικά να βοηθήσει τους σχεδιαστές να συγκεντρώσουν και να οργανώσουν

το δημιουργικό τους περιεχόμενο, να αποκαλύψουν πιθανά ζητήματα ευχρηστίας με

τη διεξαγωγή πολλαπλών, χαμηλού κόστους και αποδοτικών, δοκιμών ευχρηστίας κα-

θώς και να επιθεωρούν την εξέλιξη των σχεδίων τους μέσω του συστήματος version
control του Uspector.

Ευχαριστίες

Ευχαριστώ την Κατερίνα, για την διάθεση της να βοηθήσει στην ανάπτυξη της

παρούσας αναφοράς.

Επίσης, ευχαριστώ ιδιαίτερα το Ινστιτούτο Πληροφορικής του ΙΤΕ και το ΄Ιδρυμα

Ωνάση για την αναγνώριση και ενίσχυση της προσπάθειας μου κατά τη διάρκεια των

σπουδών μου.

Contents

Table of Contents i

List of Tables iii

List of Figures v

1 Introduction 1

1.1 Overview - Setting the problem . 1

1.2 Thesis Structure . 2

2 Literature review 5

3 System Requirements 21

3.1 Context of Use . 21

3.1.1 Physical Context . 21

3.1.2 User Context . 22

3.2 Features and Functional Requirements 24

3.2.1 User . 24

3.2.2 Project . 27

3.2.3 Screen . 30

3.2.4 Screen Variation . 31

3.2.5 Version of a Screen Variation 33

3.2.6 Heuristics Collection . 34

3.2.7 Usability test . 35

3.2.7.1 Usability Test: Monitoring and Participation . . . 37

3.2.7.2 Usability test Configuration 41

4 System Architecture 45

4.1 System Architecture . 45

4.2 Data Modelling . 48

4.2.1 Overview . 48

4.2.2 Uspector entities . 49

4.3 Technologies . 55

i

5 Uspector platform 57
5.1 User Authentication . 57
5.2 User Workspace . 58

5.2.1 User Dashboard View . 58
5.2.2 Projects View . 59
5.2.3 Project Settings View . 60
5.2.4 Screens View . 60
5.2.5 Workflow View . 62

5.3 Screen Viewer . 62
5.4 Usability Tests View . 63

5.4.1 Heuristics Collections Edit View 64
5.5 Usability Test Conduction . 65

5.5.1 Usability Test Dashboard View 66
5.5.2 Usability Test Monitoring View 66
5.5.3 Usability Test Settings View 66

5.6 Test Evaluation Session . 70
5.7 Utilities . 72

5.7.1 User Profile View . 72
5.7.2 Push and Email Notifications 72

6 Evaluation 75
6.1 Evaluation Methodology . 75
6.2 The experiment . 76

6.2.1 Participants . 76
6.2.2 Use Case Scenario and Tasks 76
6.2.3 The process - Evaluation Sessions 77

6.3 Evaluation Results and Findings 78

7 Summary and Future Work Directions 81
7.1 Summary . 81
7.2 Future Work . 82

7.2.1 Empower Practitioners of Usability Tests 82
7.2.2 Heuristic Evaluation using Multiple Screen Variations . . . 83
7.2.3 Prototypes - User Testing 83
7.2.4 Pilot study of Uspector platform 83

Bibliography 85

A Evaluation process - Scenario of use 89

ii

List of Tables

2.1 Comparison of design management systems which support design
versioning . 14

2.2 Usability testing tools that use Heuristic Evaluation methodology 20

4.1 User entity . 50
4.2 Project entity . 51
4.3 Screen entity . 52
4.4 Variation entity . 52
4.5 Version entity . 53
4.6 Usability Issue entity . 54
4.7 Usability Test entity . 54

6.1 Incomplete tasks of test’s scenario from at least one participant . 79

A.1 Set of tasks . 89

iii

iv

List of Figures

2.1 Mockflow tool . 7

(a) Revision history . 7

(b) Diff tool between revisions 7

2.2 Balsamic tool . 8

2.3 Design versioning in Follio desktop app 9

2.4 Design versioning in Invision . 9

2.5 Design versioning in Figma . 10

2.6 Design versioning in Kaktus . 10

2.7 Design versioning in Plant app . 11

2.8 Pics.io tool . 12

(a) Visual comparison of revisions 12

(b) Design versioning with labels 12

2.9 Design versioning in tool Versions by Sympli.io 13

2.10 Suit tool - Form for inserting a usability problem 17

2.11 Capian tool . 17

2.12 Usability issues inspection on websites using UX Check 18

2.13 UXQuiz tool . 19

(a) Quiz about general usability rules 19

(b) Results page . 19

2.14 Heuristic evaluation tool of Usabilitest platform 19

(a) An evaluator answers questions per system’s task by navi-
gating a website . 19

(b) Results page . 19

4.1 Front-end architecture . 46

4.2 Back-end architecture . 48

4.3 Referencing and Embedding data models [2] 49

4.4 The conceptual data model of Uspector platform 50

4.5 Uspector overall architecture . 55

4.6 Uspector MEAN stack overall architecture 55

5.1 User Authentication in Homepage 57

5.2 Authentication forms in Homepage 58

5.3 User Workspace - top bar . 59

v

5.4 User dashboard view . 59
5.5 Projects view . 60
5.6 Project settings view . 61
5.7 Screens View . 61
5.8 Workflow view . 62
5.9 Screen viewer . 63
5.10 Usability tests View . 65
5.11 Heuristics collections edit View . 65
5.12 Toolbar for practitioner to control the progress of a usability test . 65
5.13 Usability test dashboard view . 66
5.14 Usability test monitoring view . 67
5.15 General settings form of a usability test 67
5.16 Heuristics management of a usability test 68
5.17 Design selection on a usability test 69
5.18 Selection of a different screen variant and or a different version of a

specific screen . 69
5.19 View with the list of current invitations 70
5.20 Search and invite users to a usability test 70
5.21 Evaluation session - evaluator reports a usability issue 72
5.22 User profile view . 72
5.23 Push and email notifications . 73

6.1 Usability Ttesting steps of Uspector evaluation experiment 75
6.2 Evaluation session . 77

vi

Chapter 1

Introduction

1.1 Overview - Setting the problem

Nowadays, one of the most critical success factors of software applications is the
usability [37]. Given the current market in which there are several alternatives
for a specific type of software, if the system is hard to use, the users will look for
another application that let them to achieve their goals easily. Therefore, project
managers and design teams should develop a product under effective, low-cost
and flexible processes which allow them to constantly produce and validate new
ideas. As a design team become bigger and more in-homogeneous, the need of a
solid workflow management method and a fast validation process of new ideas is
becoming vital for the development of a software product.

In the intermediate stages of User-Centred Design (UCD) process, designers
typically produce a large number of design artefacts: site maps, story boards,
static mockups, interactive prototypes, etc. [48]. Although a number of surveys
and empirical evidence have shown that designers need better tools to manage
and evaluate these design artefacts [48][40][43], designers are still using classic file
storage and sharing services as well as ad-hoc versioning solutions, like manually
renaming files [48][33]. This may be for two reasons: first, there is not a digital
assets management (DAM) system, oriented fully on designer’s workflow needs
(management of mockups’ revisions and variations) and second, there are no ap-
propriate and effective methods for comparing, and find the differences/changes,
between two static mockups (revisions of the same design), which are visualised as
bitmap images. Although, a portion of the design tools have define their own file
formats (i.e Sketch, psd), non of them is widely used by design teams due to their
dependencies on specific Operating System (OS) or tools (i.e Sketch, Photoshop).

During each design iteration, and in particular after the creation of a design,
the need for feedback from other designers, usability experts or end users is rises.
This implies that a usability assessment of new designs should take place from a
practitioner. That continuous need for validation of new ideas leads to a high cost
on development’s time and budget of a project/product. The major drivers of this

1

2 CHAPTER 1. INTRODUCTION

cost are the technology platform, the recruitment/honorariums of the participants,
and the facilitation and analysis of test’s results. Moreover, we need a usability
evaluation methodology which can be applied not only during the design phase
of a product, but also after a product has been implemented and launched in the
market.

We created Uspector platform as a web-based solution to the aforementioned
issues of design workflow management and continuous usability evaluation of de-
signs. To manage design workflow, Uspector firstly ask from designers to upload
their work as static images. Label new designs as screens, variations or versions
according to the relation of each one with the other designs of the product. Subse-
quently, users of our platform can operate as practitioners by conducting usability
tests following the Heuristic Evaluation (HE) methodology, in order to uncover
possible usability issues of their designs. During the set-up stage of a test its
practitioner is able to manage the deadlines of each evaluation phase (evaluation
phases of HE), use a number of heuristics collections (Nielsen’s and custom ones),
include or exclude specific designs to test and of course, recruit other users to
participate as evaluators on the test. During the evaluation session the evaluators
have the ability to report (Phase 1) and subsequently rate the severity (Phase 2)
of all reported usability issues. After the completion of a usability assessment its
practitioner is able to analyse the results in order to export useful insights about
the current designs of a product. Based on these insights, a designer is able to
revise accordingly one or more designs that have been inspected on the test and
re-upload them on Uspector. Finally, Uspector through its design version and
comparison system track and records all designs’ changes as well as maintains a
backup for each version, and so it gives the ability to designers to inspect the
evolution of their work.

1.2 Thesis Structure

The rest of this master thesis is organised in seven (7) main sections as indicated
in the table of contents:

• Chapter 2 will introduce the current state of the art in relevant topics that
this thesis is based upon. Firstly, it will review the literature regarding design
version control systems and heuristic evaluation. Lastly, it will present a
small review and comparison of existing systems with Uspector.

• Chapter 3 will report the functional requirements of each system’s feature
which were gathered for designing the system. Also, it will present the
terminology (the vocabulary used in Uspector).

• Chapter 4 will dive into the high-level architecture (front and back-end)
and the technical aspects (technologies) of the platform. Moreover, it will
illustrate the conceptual model and the representation of the data that was
adopted.

1.2. THESIS STRUCTURE 3

• Chapter 5 provides a tour in Uspector platform. It presents most the most
important views by analysing each visual component of system’s user inter-
faces. It answers the questions of how these views comply with the defining
system’s features in chapter 2 as well as how end-users interact with them.

• Chapter 6 will report the evaluation process, the scenarios utilised as well as
the findings that were obtained.

• Finally, chapter 7 will summarise this work and discuss future directions.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Literature review

Heuristic Evaluation

Heuristic Evaluation (HE) is the most popular of usability inspection method
developed by Jacob Nielsen together with Rolf Molich 1990 [46] [42]. Indeed, it
is well known across many fields: from Human Computer Interaction (HCI) and
usability engineering to graphic design, visual design, information architecture,
and to developers and project managers. The strength of the method is that it
is quick, cheap, and easy to do. It is usually carried out by a single or a few
evaluators who are equipped with just ten (10) usability heuristics [44]. This set
of heuristics describe ten general principles for interaction design and they are
used by the evaluators to examine a user interface and identify usability issues.
However, though simple to execute, the method is open-ended and easily leads to
unreliable results, i.e. there is little agreement in the problems reported by different
evaluators of the same interface and high number of false alarms or problems
that are missed [29]. Nevertheless, these weaknesses do not seem to reduce its
popularity [31]. Increasingly, it appears that both usability specialists and non-
specialists, who are not trained to carry out usability evaluations, use the method
at some point during the development cycle. Finding ways to improve the method’s
performance is therefore practical and desirable.

To achieve better evaluation result with the HE methods on various information
technology systems, many studies have been conducted to extend the traditional
HE method in different ways [41]. Some differ in the heuristics they employ,
some enhance the collaboration among participants [49], and others such as HE-
Plus [34] [35] add a con-textualized layer called ”usability problem profile” to aid
the evaluation process. Our work use an extended version as well, given the fact
that it allows practitioners to define their own collections of heuristics so that they
have the flexibility to uncover usability issues for a specific product’s domain (i.e
apps for mobile devices, ambient environments etc).

In the the following subsection we present the comprehensive comparison study
that was conducted to determine if the Uspector could produce results just as
effective on existing works and how Uspector constitutes a more complete solution

5

6 CHAPTER 2. LITERATURE REVIEW

to designers who need a more streamlined workflow.

Existing systems

Our research and analysis on existing works in the areas of design workflow man-
agement and usability inspection tools focused on working state-of-the-art systems
from the domain of industry rather than of literature.

Our study based on two major system’s characteristics, the support of a mech-
anism for designs’ variations and versions as well as the conduction of usability
inspection experiments using the HE methodology. In total, we concluded in a set
of nineteen tools, fourteen (14) of which are Digital Assets Management (DAM)
systems which support design workflow management (design variations and/or
design version control systems) and the rest five (5) systems are usability test-
ing applications which assist evaluators to perform usability inspections on their
designs, using the Heuristic Evaluation (HE) methodology.

For the purpose of the comparison between Uspector platform and any of the
existing systems, we extracted a set of attributes/requirements for each one of the
two desired features (design workflow management, conduction of usability test
using HE methodology) that a tool should support. Obviously, the categorisation
of a software product/application can differ from the perspective it is studied. So,
it is obvious that above systems support many more features which we did not
take into account on our analysis.

Digital Assets Management platforms that support control systems
for designs’ Variations and Versions

A Digital Asset Management system is a solution for storing, managing and shar-
ing digital assets among different members of a team. This kind of services can
provide an appropriate environment for designers to store, manage, share and track
the changes among mockups’ revisions during the iterative design process (UCD
methodology) of a software product.

In particular, our analysis focused on DAM systems which (i) are platform
agnostic and (ii) support design workflow of a designer. Therefore, we concluded
on the following set of criteria for systems comparison.

• Version History

• Version Comparison Mechanism

• Designs Variations support

• Platforms

• Files Supported

7

Below, we present briefly each tool as well as their differences with Uspector
platform.

1. Git
Git [7] is a free and open source distributed version control system designed to
handle everything from small to very large projects with speed and efficiency.
It provides a version history for bitmap images or vector files (Sketch, svg
etc), but its ”diff” tool does not offer meaningful insights due to the fact
that those file types contains vectors and not text.

Git is primarily designed for code (as in: text files) rather than designs (as in:
sketch files and pictures) and it follows the software development workflow
instead of the design one. Moreover, in comparison with Uspector platform
it does not support the notion of design alternative.

2. Mockflow
Mockflow [26] is an web-based solution for planning UI/UI, visualising user
interfaces, creating user flows, documenting styles and approving designs.

It provides a revision history (figure 2.1a) and a visual comparison system
(figure 2.1b) with three modes to designers who want to highlight the changes
between two different design revisions. Nevertheless, it does not support de-
sign alternatives as Uspector platform does. Moreover, Mockflow supports
only designs with its native file format, a format which is generated by its ed-
itor for mockups creation, instead of being file format agnostic like Uspector
(accept bitmap images).

(a) Revision history (b) Diff tool between revisions

Figure 2.1: Mockflow tool

3. Balsamic
Balsamic [22] is a wireframing tool which supports the creation and man-
agement of mockups variations (represent the idea of multiple variations of
a same page/screen) but it lacks a VCS for designers

As shown in figures 2.2a and 2.2b, Balsamic supports the creation and man-
agement of design alternates. Moreover, like Uspector, a designer can pro-
mote one of them as the Official one and keep revise it until it is approved

8 CHAPTER 2. LITERATURE REVIEW

for development. A characteristic that differentiate from Uspector on this
feature, is the support of the merging functionality between two design al-
ternates. Balsamic keep only one design with the union of all changes.

Unlike Uspector, balsamic app does not support control systems for tracking
(versioning) and comparing designers work.

(a) Creation of a design Alternate
(b) Promote a design alternate to be
the Official one

Figure 2.2: Balsamic tool

4. Follio
Folio [6] is a Mac only app, based on Git; with fair enough options as source
files(sketch, photoshop, illustrator and SVG). Organising files is a bit messy
as everything is at the same place and you cannot structure it. Nevertheless,
it integrates with existing version control systems like github, bitbucket etc.
Moreover, Follio allow teammates of a team to create and share versions
(figure 2.3) of their designs and automatically keep them in sync.

Unlike Uspector, Follio does not support the management of design alterna-
tives and it is dependent on specific file formats (Sketch, psd, AI), a decision
of the app which exclude designers who do not use Sketch, Photoshop or
Adobe suite tools for the creation of their designs.

5. Invision app
InVision app [9] is a prototyping tool created for designers, by designers. It
allows designers to quickly and easily create interactive prototypes for your
designs.

This system allow designers to track changes on their designs and roll-back
on any of them via an intuitive version history system. Moreover, as shown in
figure 2.4 Invision app also offer a visual ”diff” tool to designers to inspect
the differences between two revisions of a UI mockup. Although Invision
app is kind the norm in the preferences of designers, it still does not give

9

Figure 2.3: Design versioning in Follio desktop app

the ability to a designer to define two designs as alternative mockups, like
Uspector platform does.

Figure 2.4: Design versioning in Invision

6. Figma
Figma [5] is the a UI design tool that was expected to run through a web
browser. It automatically saves versions of designer’s work and allows its
management at a later time (figure 2.5).

Although, Figma is currently popular among designers, tool for creating
and prototyping user experiences it does not allow a designer to create and
manage variations of a design without adding more mockups to your project.
That is a limitation which restrict designers from ”connect” two designs,
refine their ideas, and proceed, in the iterative design process, with one of
them.

7. Kaktus

10 CHAPTER 2. LITERATURE REVIEW

Figure 2.5: Design versioning in Figma

Kaktus [10] is a Mac-only desktop application that introduces a version con-
trol system and an effective visual ”diff” tool, for Sketch files only. Designers
using Kaktus are able to manage changes, document their work and keep
their team in sync. It streamlines design workflow by offer to designers the
experience of Git, with branches and commits.

Of course all of them are possible due to the nature of the comparable for-
mat [21] of Sketch files. In comparison with Uspector, Kaktus (i) is not
platform agnostic, cause it is available only on Mac OS, (ii) it is not avail-
able to every designer, cause it supports only Sketch files and (iii) it does
not support the functionality of design variations management, like Balsamic
and Uspector tools do.

Figure 2.6: Design versioning in Kaktus

11

8. Plant app
Plant [27] is a Mac app and Sketch plugin offering complete version control
for designers and teams. In particular, Plant keeps a version history and
allows the visually comparison between any two versions (figure 2.7).

In comparison with Uspector, Plant is a Mac only app which does not inte-
grate with other version control systems like git.It also supports only Sketch
files and so designers should use the Sketch app in order to create their design
assets. One more limitation of Plant app is that it does not allow design-
ers to create design variations on a single mockup. Those core limitations
differentiate Uspector and make it a more complete solution for designers.

Figure 2.7: Design versioning in Plant app

9. Pics.io
Pics.io [13] is a complete solution for designers to manage and distribute
their digital content - on top of Google Drive. It offers a simple and straight-
forward version control system (figure 2.8b) to designers in order to track the
changes of their designs after a revision cycle. Moreover, Pics.io offers a visual
comparison tool for images which allow a designer to pick and compare, side
by side, whichever two different versions of the same screen (figure 2.8a).
Additionally, a designer can also approve or disapprove a specific revision
does not fulfil the desired requirements/expectations.

Although Pics.io provides a more intuitive and complete solution to designers
to compare and find the differences between different revisions of a design
() than Uspector, it still lacks the support of design variations which allow
designers to validate their different ideas for a specific screen/page/mockup
of a system.

10. Abstract
Abstract [14] is a Mac only app which assists designers to manage, collaborate
and version their Sketch files. Its version control for designers supports
a modern design workflow. It tries to simulate the development workflow

12 CHAPTER 2. LITERATURE REVIEW

(a) Visual comparison of revisions (b) Design versioning with
labels

Figure 2.8: Pics.io tool

that git offers with branches, commits and merges into the equivalent design
workflow for designers.

Nevertheless, compared to Uspector, it is not platform agnostic and it sup-
ports only Sketch files, given the fact that it depends on Mac OS and Sketch.
Also, currently it does not support the creation and management of designs
variations.

11. Trunk
Trunk [16] is a Mac only desktop app which offer an automated version con-
trol system for designers. It supports only Sketch, Photoshop and Illustration
files which is a limitation to designers who do not include any of these files in
their tool stack. Moreover, Trunk has been designed as a solution to design
versioning without take care about the management of design variations by
a designer.

12. Playbook
Playbook [47] has been designed to be a revision control and comparison
system for interactive mockups. It does not compare static images, but the
interactivity of two designs. More specifically, Playbook assist designers to
track the changes of two design revisions in terms of how the end users
interact on them rather than what they actually see.

Although Playbook assist a ”diff” tool for design revisions, its approach is to-
tally different than Uspector which aims to find the differences of two design
revisions by comparing visually. Moreover, Uspector provides a mechanism
to designers for the creation and management of design variations.

13

13. Versions by Sympli
Versions [19], is a version control tool (figure 2.9) for designers with visual
difference tool, merge and conflict resolution. Versions is based on Git but
with a visual interface you can use to version and share your design work.
Works with GitHub, Bitbucket, GitLab and Azure Devops. Versions com-
pared to Uspector is not platform agnostic and it does support only Sketch
file-type. Moreover, is does not allow designers to create and manage design
variations.

Figure 2.9: Design versioning in tool Versions by Sympli.io

14. GoVisually
GoVisually [24] is a web app similar to Uspector. It also supports designers
with a version control system, a feedback tool and it accepts designs as
bitmap images. Nevertheless, designers cannot refine their ideas about a
screen/page using design variations.

A summary of the comparison between Uspector platform and the above ex-
isting systems is shown in table 2.1. Each column of the table represents one
requirement and each row a usability testing tool. Subsequently, we present a
brief review of offerings of Uspector, against existing works, as a DAM platform
which support design versions and variations.

14 CHAPTER 2. LITERATURE REVIEW

Table 2.1: Comparison of design management systems which support design ver-
sioning

Version
History

Version
Compari-
son

Platform Files sup-
ported

Design
Variations
support

Git Yes No(CM) All All No

Mockflow Yes Yes (visual) All Native files No

Balsamic No No Web app Images,
Sketch,
PSD

Yes

Folio Yes Yes Mac Sketch,
PSD, AI

No

Invision app Yes Yes Web app images,
PSD, PDF,
AI, Sketch

No

Figma Yes Yes(CM) Web app All No

Kaktus Yes Yes Mac Sketch No

Plant Yes Yes Mac Sketch No

Pics.io Yes Yes Web app images, au-
dio, video,
PSD, PDF,
AI, Sketch

No

Abstract Yes Yes Mac Sketch No

Trunk Yes Yes Mac Sketch,
PSD, AI

No

Playbook Yes Yes(user
behaviour)

Web app PSD Yes

Versions by
Sympli

Yes Yes Web app Sketch No

GoVisually Yes No Web app Images,
PSD

No

Uspector Yes Yes(Visual,
UI)

Web app images Yes

CM: Commit Message

PSD: Photoshop file type

AI: Adobe Illustration file type

UI: Usability Issues

15

In summary, Uspector is the only one which is independent from a specific OS,
as a web platform, and a set of app-bind file types, such as Sketch, psd etc. This
characteristic makes Uspector available to all designers regardless the design tools
they use in their workflow for the creation of design assets. Nowadays, all design
tools which create art-boards or mockups provide an option to export design assets
as images (i.e file formats jpeg, png), but not all of these tools support an option
to export as Sketch or psd file formats.

Another difference between Uspector and existing tools is the support of de-
sign variations. Only our platform, PlayBook and Balsamic systems treat design
variations of a screen/page as a different entity and not as individual designs.
This feature gives to designers the ability to create alternates during the early de-
sign phase when exploring concepts and in later stages for reviewers to add their
feedback and propose changes. Based on the insights of reviewer’s feedback the
designer can decide which concept is more ”suitable” for a product’s needs and
so, proceed with the revision only of this design alternative, dropping the other
ones, in the later phase of iterative design process. This kind of decisions by the
designers are accommodated by Uspector and Balsamic apps, in contrast with the
other existing systems, by allowing them to mark a design variation as Final or
Official respectively.

The most important advantage of our platform over the existing ones is the
way with which a designer is able to compare two versions (diff tool). Tools Kak-
tus, Plant App, Abstract and Truck of the above list are based on MacOS and
depend also on the specific design tool Sketch [3]. This tool exports artworks in
Sketch file format which allows an external system, such as design version control
system, to compare two files and present a rich map of the differences. This means
that this subset of systems which support Sketch file format are able to present the
visual changes between two design versions to their users. In a different direction
tools Git, Folio, Invision App and Sympli.io indirectly compare two design ver-
sions by allowing user to write relative commit messages on version upload phase.
Finally, Playbook (tool 12) follows a totally different approach by comparing inter-
active prototypes rather than static versions of designs (i.e needed user interaction
changed from click to hover events from version x to x+1). Apart from the above
methods, Uspector follows a hybrid approach that allow designers to compare two
design versions by their commit messages as well as by the set of the usability
issues which have been reported after one or more usability evaluations on them.

Usability testing platforms that use the Heuristic Evaluation method-
ology

Usability testing tools aim to support practitioners and evaluators to conduct and
perform usability assessments on a set of design, trying to overcome time bottle-
necks due to paper-based activities and face-to-face meetings. There are many
ways to classify these tools based on the collaboration between the participants,
the selected Usability Evaluation Method (UEM) etc. Some of these categories are

16 CHAPTER 2. LITERATURE REVIEW

formal and agile, moderated and un-moderated, summative and formative UEM.

In particular, our analysis focused on Usability inspection tools which use the
HE methodology. Additionally, our research targeted tools which (i) are platform
agnostic and (ii) support usability assessments using HE methodology (extended
version with custom heuristics) and (iii) can assist practitioners to asses the usabil-
ity of their work during multiple phases/stages of product’s development process
(not only after release/launch of product). Therefore, we concluded on the follow-
ing set of criteria for systems comparison.

• Platforms

• Usability Evaluation Methodology

• Conduction Stage: Phase of a product’s development that a usability test
can take place

• Custom heuristics: Support of practitioner’s defined set of heuristics

Below, we present briefly each tool as well as their differences with Uspector
platform.

1. SUIT
SUIT [30] is an acronym for Systematic Usability Inspection Tool and it
was an Internet-based tool that supports the evaluators during the usability
inspection of software applications, using the HE methodology. SUIT makes
it possible to reach inspectors everywhere, guiding them in their activities. It
has been designed to support the evaluators performing usability inspections,
trying to overcome time bottlenecks due to paper-based activities and face-
to-face meetings.

Although its development has been discontinued, SUIT has similar function-
alities with Uspector, like inviting evaluators to report, rate the severity and
suggest solutions for possible usability issues. Nevertheless, unlike Uspector,
it does not support custom heuristics, it refers to the evaluation of systems
which have been already launched and it treats HE as an one phase evalua-
tion session without giving the ability to practitioners to filter and aggregate
only the set of valid reported issues before evaluators rate their severity.

One more limitation of SUIT tool is that each reported usability issue refers
to a whole page/mockup, lacking the information of the specific area of a
design for which the issue has been reported to.

2. Capian
Capian [15] is a web platform that enables evaluators, while browsing through
a website, to save screenshots of it and annotate the specific areas that violate
the Nielsen’s Heuristics set [44] along with detailed description about the

17

Figure 2.10: Suit tool - Form for inserting a usability problem

violation. Figure 2.11 shows the final HTML report of all reported issues,
with the ability for other users to comment on them.

Several limitations of Capian are that it does not support custom heuristics
and like SUIT it treats HE methodology as a one-phase process without
allowing practitioners to manage their own reported usability issues before
they will be rated for their severity.

Figure 2.11: Capian tool

3. UXCheck
UXCheck [17] is a Chrome Extension that helps designers run a heuristic
evaluation on any website. UXCheck brings up a list of Nielsen’s 10 heuristics

18 CHAPTER 2. LITERATURE REVIEW

to help an evaluator identify, report and rate issues (figure 2.12).

Although UXCheck supports the definition and use of custom heuristics by a
test’s practitioner, like SUIT and Capian, it is based on a usability method-
ology in which the evaluators have to report and evaluate the severity of
their own reported usability issues individually at during the report time.

Figure 2.12: Usability issues inspection on websites using UX Check

4. UXQuiz (UruIT)
UXQui [18] is a web-based quiz that aims to assist designers in evaluating
the User Experience (UX) of any digital product which offers a Graphical
User Interface (GUI) to its users. The inspected product could be either
under design or it could have already launched. Evaluators have to answer
a bunch of questions about general usability rules (not Nielsen’s heuristics)
questions using a predefined rating scale (figures 2.13a and 2.13b).

A usable feature of UxQuiz is the ability to be used during each phase/stage
of a product’s development. Still, it does not offer to practitioners the cre-
ation, use and management of custom heuristics/guidelines. Also, the evalua-
tors of its usability assessments they have to complete a quiz with heuristics
rather than follow the classic HE methodology. That tool’s characteristic
limit the expression power of evaluators because through the the quiz they
cannot freely describe/report a possible usability issue.

5. Usabilitest
Usabilitest [50] is a web platform, which consists of a large number of tools
for remote usability testing and information architecture like Cards Sorting,
Prioritisation Matrix, Heuristic Evaluation, SUS (System Usability Scale).
Figures 2.14a and 2.14b show how an evaluator answers a set of predefined
questions, which are based on 247 web usability guidelines by Dr. David
Travis of Userfocus [38].

19

(a) Quiz about general usability rules (b) Results page

Figure 2.13: UXQuiz tool

Usabilitest is the more complete solution in comparison with the rest of our
review in exissting systems. It offers to a test participants a verbose and
complete set of heuristics to use, but it still does not support the creation,
use and management of custom heuristics. Moreover, like SUIT and UXQuiz
respectively, evaluators report an issue that refers to a whole page/design
instead of a specific area of it and the evaluation methodology that is applied
to tests is not the classic HE methodology, but rather a quiz with list of
questions/heuristics and a 1-5 rating scale.

(a) An evaluator answers questions per sys-
tem’s task by navigating a website

(b) Results page

Figure 2.14: Heuristic evaluation tool of Usabilitest platform

An overview of the comparison between Uspector platform and the above ex-
isting systems is shown in table 2.2. Each column of the table represents one
requirement and each row a usability inspection tool.

20 CHAPTER 2. LITERATURE REVIEW

Table 2.2: Usability testing tools that use Heuristic Evaluation methodology

Platform UEM Development
stage

Custom
heuristics

SUIT Web app HE(1 phase) Production No
Capian Web app +

extension
HE(1 phase) Production No

UXCheck Browser ex-
tension

HE(1 phase) Production Yes

UXQuiz Web app Quiz with
heuristics

All No

Usabilitest Web app Quiz with
heuristics

Production No

Uspector Web app HE(2 phases) Design - Produc-
tion

Yes

UEM: Usability Evaluation Methodology

As Table 2.2 indicates, all existing usability testing tools are web-based and
refer to post-launch testing. Therefore, their users (test practitioners) are able
to conduct usability tests only on launched systems and not before, during the
design phage. Regarding the evaluation methodology, none of them treats HE
methodology as a two stage process during which a user firstly examines the UI and
individually reports any discovered usability issues, and then rates the aggregated
list of all reported usability issues. Additionally, our review on existing works
shows that non of the them support the creation, use and management of custom
heuristics by the practitioner of a usability experiment.

In the final analysis, none the systems in tables 2.1 and 2.2 offers a complete
solution for both features, design workflow management and conduction of usabil-
ity assessments based on HE methodology. In particular, Uspector, as a platform
agnostic platform (web app) (i) streamline design workflow by storing design as-
sets (bitmap images), organising them in projects, screens, design variations and
versions and (ii) accelerate the validation of new ideas and concepts that design
variations and versions carry, through a usability inspection tool which use an ex-
tended HE methodology (custom heuristics). Uspector designed and implemented
to be used by designers and practitioners both during the design phase (wireframes
and high fidelity mockups) and after the launch of a software product (screenshots
of a live system).

Chapter 3

System Requirements

This chapter provides the details regarding the environmental and technological
components that comprise the Uspector platform. More specifically, it describes
the context of use (under which conditions the system should be used), the target
group (users with different profiles and roles) as well as the functional requirements
for each system’s feature.

3.1 Context of Use

3.1.1 Physical Context

Uspector is designed and developed to be a cost effective and accessible platform
for designers, usability tests’ practitioners and evaluators. aking this into account,
there was a need to find the smallest possible intersection among the sets of physical
and digital resources that these different user types require in their daily workflows.

More specifically, due to the fact that Uspector is a web platform, the environ-
ment in which Uspector is used composed by a typical desktop PC (with mouse
and keyboard) or a tablet device, a modern web browser as well as an internet
connection.

Terminology in Uspector

This section will describe some of the main entities in Uspector application. It will
clarify the terms Screen, Variation and Version as they adopted in the context
they are used.

Screens, Variations and Versions

A major logical entity of Uspector platform is the Screen. Every screen represents
the design of a digital product’s logical entity and expresses a specific functionality,
feature, or state of this digital product. Designers who use Uspector are expected
to have already designed a first version of a screen (using an external design tool)

21

22 CHAPTER 3. SYSTEM REQUIREMENTS

before uploading it. For example, consider that the product under development is
an e-shop; one of its screens would be the “Homepage”.

For any screen, multiple variations may exist, with each one expressing a differ-
ent approach of the desired functionality, feature or state which this specific screen
represents. This need is fulfilled by Variation entity. Using the above example,
the screen for the “Homepage” of the digital product can have two variations, one
for dark and one for light theme (color theme) respectively.

Lastly, entity Version is the object which describes the outcome of the ID
process which a designer follows to design a digital product. Every time a designer
refines the design of a screen’s variation by addressing a number of its usability
issues, a new version of this design is ready to be uploaded in Uspector. For each
variation a large number of versions may have been created with the latest of
them being the current one. Extending the ”e-shop” example, a variation with
name “Dark theme” of screen “Homepage” can have three versions, with each
one of them to solve a subset of previous’ usability issues such as issues about
navigation, typography and accessibility.

Designs

In Uspector there is an extensive use of term Design. A design can be either a
wireframe (low fidelity) or a mockup (high fidelity) and it represents the work of a
designer for a specific version of a screen’s variation. Contrary to screen, variation
and version, a design does not have abstract meaning, but it refers to the actual
artwork of that has been produced via a design tool.

3.1.2 User Context

The main users of Uspector platform are UI(User Interface) designers, practitioners
of usability tests and HCI experts who acquire the necessary expertise to evalu-
ate the usability of UI designs using the HE methodology. A registered user of
the system can occasionally use the system as any of these roles. For example,
the user can firstly use the system as a designer and upload a product’s designs.
Subsequently, the same user can operate the system as a practitioner by setting
up, promoting and conducting a usability test and lastly, Uspector can be used
by users who are invited, by tests’ practitioners, to evaluate the usability of other
designer’s work.

Designers

• Main goals: Uspector platform can support designers during an ID process
towards developing a product/service/solution. Designers aim at organis-
ing and evaluating their designs namely screens, variations and versions.
Moreover, they intend to monitor the evolution of their designs’ usability

3.1. CONTEXT OF USE 23

by inspecting in which versions of the design a usability issue reported and
resolved respectively.

• Age: There is not a specific age constrain.

• Expertise: Uspector offers variation and version control systems which aim
to support the ID process of a digital product. So, basic knowledge of ID
process is preferred.

• Experience in using corresponding systems: Experience is not a given and
it is not compulsory. In all probability, designers have already used similar
version control systems (like Figma, Abstract) during the ID process of a
digital product. Moreover, Uspector designed to be easy to learn and equally
easy to remember.

• Frequency of use: Frequent. Designers will use Uspector every time a new
version of a new or existing design has been created during the (relatively)
fast ID process of a digital product.

Practitioners

• Main goals: Practitioners collaborate with other users, who operate as eval-
uators, aiming to conduct usability tests, following HE methodology, upon
designers’ work in order to reveal possible usability issues of their designs.

• Age: There is not a specific age constrain.

• Expertise: Knowledge of HE methodology is required. Practitioners need to
configure and conduct their usability tests according to HE methodology.

• Experience in using corresponding systems: Experience is not a given and it
is not compulsory. In all probability, practitioners have already used online
tools to conduct user testing.

• Frequency of use: Occasionally. Practitioners need to use the system when-
ever they want to create usability evaluation experiments and while such
experiments are ongoing. During the conduction of a usability test prac-
titioners should monitor the process and control evaluation phases when
needed.

Evaluators

• Main goals: Evaluators aim to participate on usability tests in which they
are invited by practitioners. They want to be able to complete a usability
test remotely, asynchronously and spend as less time as possible.

• Age: There is not a specific age constrain.

24 CHAPTER 3. SYSTEM REQUIREMENTS

• Expertise: According to HE methodology the evaluators should be HCI ex-
perts who are able to examine the UI and assess its compliance with “heuris-
tics” and/or other recognised usability principles. It is not expected that
evaluators will have a deep knowledge-understanding of each product’s do-
main (i.e financial/management, music).

• Experience in using corresponding systems: Experience is not a given and it
is not compulsory. Although candidate evaluators of a set of designs should
be HCI experts. So, they should acquire significant understanding on HE
methodology. Nevertheless, they are not required to have prior experience
using web platforms which assist the usability evaluation of a digital prod-
uct’s designs.

• Frequency of use: It varies. They are going to use it only upon invitation on
a usability test.

3.2 Features and Functional Requirements

3.2.1 User

1. User Sign in
Users should have the ability to sign in to the platform using their personal
credentials.

Actors: All registered users
Functional Requirements

• Users should provide an email and password to sign in.

• In case of a successful user sign in (valid combination of the provided
e-mail and password) to the system, an authenticated session should be
created.

• In case of an unsuccessful user sign in (e.g. wrong credentials, server
error) an appropriate error message should be displayed to the user.

2. User Registration
Users should be able to register to platform using their personal information,
such as their name, email and password.

Actors: All users
Functional Requirements

• Users should provide a username, with a maximum length of 20 char-
acters

• Users should provide an available (not already occupied by other regis-
tered user) email address

3.2. FEATURES AND FUNCTIONAL REQUIREMENTS 25

• Users should provide and confirm a password with minimum length of
5 characters (each character can be alphanumeric or symbol)

• In case of an error (email is occupied, password length, passwords does
not confirmed) an appropriate message should be displayed

• System should provide textual hints to users so that they should be able
to provide valid credentials

3. User Logout
Users should have the ability to log out from the platform at any time.

Actors: All registered users
Functional Requirements

• Users should be able sig out from the Uspector system.

• System should terminate user’s session and so, remove all its temporary
data from browser’s storage, after a successful user logout.

4. Track and Display User Activity
Users should be able to view a brief history of their actions (relate to content
management) on the system.

Actors: All registered users
Functional Requirements

• Users should be able to view the type and date of users’ actions for the
following Create, Rename, Update and Delete (CRUD) operations:

– Create, rename, update and delete a project

– Create, rename, update and delete a usability test

– Create, rename, update and delete a screen

– Create, rename, update and delete a screen variation

– Create, rename, update and delete a version

– Create, rename, update and delete a heuristics collection

• Users should be able to view a small description and the date of each
one of their actions.

• Actions of the user’s activity should be sorted by date in a descending
order (i.e. newer to older) by default.

5. View and Management of user notifications
Users should be notified asynchronously by the system after an event, rela-
tive to their content, occurred. Notifications’ content should contain proper
messages according to the type of the event. Users should be able to view and
clear their notifications at any time.

26 CHAPTER 3. SYSTEM REQUIREMENTS

Actors: All registered users
Functional Requirements

• Users should be able to read older and newer notifications that they
have received.

• Users should be able to view details about the actor, the date and a
description of the action for the event that a notification relates to.

• Users should be able to clear/delete old notifications.

• Whenever a user is invited to participate in an evaluation test, a re-
spective notification should be displayed that would allow him/her to
accept or reject the invitation.

6. Display Profile Details
Users should have the ability to view a full preview of their profile informa-
tion at any time. Moreover, they should be able to view a brief preview of
other users’ profile.

Actors: All registered users
Functional Requirements

• Users should be able to preview their profile information, such as their
username, profile picture, links to personal profiles on social networks
as well as profession’s title and experience.

• Default profile picture of a user should be an auto-generated letter
avatar according to their email address.

• Users should be able to inspect a partially preview of other users’ pro-
file information, such as their profile picture, username and profession
details.

7. Profile and Settings Management
Users should be able to set or modify any of their personal information or
system preferences at any time so that they can update their identity and
expertise.

Actors: All registered users
Functional Requirements

• Users can update their default profile picture by uploading their per-
sonal image files. Users should also be allowed to revert back to default
profile picture at any time.

• Users should be able to change their profession, experience level as well
as the links to their social media profiles.

• Users should be able to change their password after system validate
their authorisation by asking their current active password.

3.2. FEATURES AND FUNCTIONAL REQUIREMENTS 27

• Users should be allowed to change this default system’s behaviour and
enable-disable email notifications at any moment.

8. Send Email Notifications
System should send personalised emails to users’ registered emails in order
to notify them for an incoming invitation to participate on a usability test.

Actors: Practitioners
Functional Requirements

• Email should contain URL to Uspector platform.

• Email should contain details about the sender, invitation and usability
test.

• A private URL to usability test should also be included so that email
recipient can participate on the evaluation session without having an
account to Uspector platform.

9. Display State and Statistics of User Content
Users should be able to view details and statistics about their content’s (projects,
screens, variations, versions, usability tests etc) current state .

Actors: All registered Users
Functional Requirements

• Users should be able to view in a glance a brief summary about the
current state of their content (projects, screens, usability tests).

• Alongside with the above information, users should be able to view
details about the usability tests in which they are invited as well as
details about the their pending invitations from practitioners.

3.2.2 Project

1. Display Projects
Each user can possess a private set of projects, archived or active.

Actors: Designers
Functional Requirements Designers should be able to view the following
details about each project:

• Name and project icon.

• For each project The design which represents the current (latest) version
of the final variation (marked as Final) of this cover screen defines this
project’s thumbnail. In case of an empty project, a placeholder image
should be used as the cover image. Otherwise the first screen that has
been uploaded screen should be used as the cover image.

28 CHAPTER 3. SYSTEM REQUIREMENTS

• Total number of created screens.

2. Project Management
Users should be able to create, rename and delete a project.

Actors: Designers
Functional Requirements

• Users should be able to mark a project as Favourite.

• Users should be able to archive a project, when all of its screens have
been marked as Approved.

• During a project’s creation users should be able to provide a name which
is not already occupied by other project as well as a brief description
of the project (optional).

• Users should be able to delete a project. System should detects acciden-
tal users’ actions and ask for confirmation before permanently remove
a project.

• Users should be able to rename a project. A valid name should have at
least two letters and should be unique (i.e. should be used as the name
of another active or archived project).

3. Display Details of a Project
Users should be able to view detailed information about a project.

Actors: Designers
Functional Requirements
For a project the following details should be displayed:

• Name

• Icon and domain’s information of the digital product, which the designs
describe to.

• Specific indicator if the project is marked as Favourite.

• Name of the cover screen.

• Total number of screens categorised by state (In progress, Under eval-
uation, Approved).

• Creation date and time.

• Total number of usability tests which are conducted for this project.

4. Projects Collection Management
Users should be able to search, sort and filter their projects according to a
set attributes.

Actors: Designers
Functional Requirements

3.2. FEATURES AND FUNCTIONAL REQUIREMENTS 29

• Users should be able to search their projects by name. System should
retrieve and display search results during the query construction by
designers. Moreover, system should present the number of retrieved
results to users.

• Users should be able to clear current search query.

• All possible sorting options should be the following:

– By name (ascending, descending)

– By creation date (new vs. old)

– By number of screens

• Users should be able to filter their projects based on the following at-
tributes:

– Activeness status (active, archive)

– Favourite status

5. Display Workflow of a Project
Each project consists of a set of screens. System should display which of them
are in progress i.e. screen needs testing until it is ready), under evaluation
(i.e. when belonging to at least one usability test) or Approved.

Actors: Designers
Functional Requirements

• Users should be able to view their list of screens categorised by their
progress status (In progress, Under evaluation, Approved).

• For each status category the following details should be displayed:

– In progress: Name of final screen’s variation and name of its current
version

– Under evaluation: Number of usability tests on which this screen
is evaluated.

– Approved: The full date when designer marked screen as Approved.

6. Display and Update Project Details
Users should be able to set and/or update its details about their projects.

Actors: Designers
Functional Requirements

• Users should be able to set and update the following details about the
digital product which project represents:

– Brief project’s description with length up to 200 characters.

– Project icon (png, jpg formats).

– Brief digital product’s domain description with length up to 200
characters.

30 CHAPTER 3. SYSTEM REQUIREMENTS

3.2.3 Screen

1. Display Screens of a Project
Users should be able to view all screens of a project.

Actors: Designers
Functional Requirements
Users should be able to view the following details for each screen:

• Name and current state (In progress, Under evaluation, Approved).

• Thumbnail of a design which represents the current version of the Final
screen’s variation.

• Name of Final screen’s variation.

• Name of current version of Final screen’s variation.

• Total number of unresolved usability issues. These issues represent the
unresolved issues of the current version of Final screen’s variation

• Total number of screen’s variation .

• A screen should properly indicated whether it’s a newly uploaded one
or not.

2. Screen Management
Users should be able to create, delete, rename a screen. Moreover, users
should be able (un)mark a screen as Approved.

Actors: Designers
Functional Requirements

• Users should be able to upload one or more images from their local
storage in order to create one or more screens respectively.

• For every newly created screen system should do the following opera-
tions:

– Initialise the name of the screen using the filename without its
file extension. For example, if a user uploads a file with name
“Homepage.jpg” then screen’s name should be “Homepage”

– In case of an already occupied name, the system should initialise
the screen’s name by appending a number to the filename that
would indicate how many screen have the same name increased by
1 (one).

• Owners of screens should be allowed to rename them. System should
not accept empty or occupied names.

• Users have the ability to delete on one or more screens. Regardless the
number of selected screens, users should confirm their intention before
any screens are removed permanently.

3.2. FEATURES AND FUNCTIONAL REQUIREMENTS 31

• System should automatically delete all variations and versions of a
screen which is going to be deleted.

• Users should not be able to delete a screen if its status is Under Eval-
uation as a result of its participation on one or more usability tests.

3. Screens Collection Management
Users should be able to search, sort and filter screens of their projects. More-
over, users should be able to change the screens’ view mode according to the
device type for which they have been designed.

Actors: Designers
Functional Requirements

• Users should be able to search by name their screens.

• Users should be able to clear current search query.

• Users should be able to sort the screen by (in their following order):

– Name (ascending, descending)

– Creation date and time (new, old)

– Total number of unresolved usability issues

• Users should be able to filter their projects based on their status (In
progress, Under evaluation, Approved).

• Users should be able to adjust the view mode of a Screen element in the
UI. More specifically, system should provide options to users to adjust
the Screen elements of a project according to the type of device which
have been designed for (desktop, mobile).

3.2.4 Screen Variation

1. Display Variations of a screen
Every designer should be allowed to view the set of variations of any of
his/her screens.

Actors: Designers
Functional Requirements
For each screen’s variation the following details should be displayed:

• Name (i.e Variation D)

• Number of its current version

• Variation’s status (i.e. whether it is marked as Final or not)

2. Screen Variation Management
Users should be able to create, rename or delete a screen’s variation.

32 CHAPTER 3. SYSTEM REQUIREMENTS

Actors: Designers
Functional Requirements

• Users should be able to create a screen’s variation by optionally defining
a custom name and a commit message which describes the differences
of the new variation against the existing ones.

• The default name of a new variation composed as a string “Variation
X”, where X is a variable which takes sequential capital letters in the
English alphabet. For example, the first variation is called “Variation
A”, the second “Variation B” and so on.

• System should automatically create the first version of a newly cre-
ated screen’s variation with the name “Version 1” and commit message
“Initial Message”.

• System should allow users to replace the file before the creation of a
screen’s variation to prevent errors.

• Users should be able to rename an existing screen’s variation

• In case of empty or already occupied names system should display
proper error messages.

• Users should be able to delete a screen’s variation. If the variation is
part of a usability test then the deletion is prohibited by the system

• When the user deletes a screen variation, all its versions should be
deleted as well.

3. Display Details of a Screen Variation
Users should be able to view details about a variation of a screen.

Actors: Designers
Functional Requirements
System should display the following details for a screen’s variation:

• Name (i.e Variation B)

• Specific indicator only for variations which are marked as Final by their
owners

• Commit message, explaining the differences with already existing screen’s
variations

• Creation date and time

4. Mark a Screen Variation as Final
Users should be able to set a screen’s variation as the final one. This mark
express the decision of the designer to keep working with the direction that
this screen’s variation represents.

Actors: Designers
Functional Requirements

3.2. FEATURES AND FUNCTIONAL REQUIREMENTS 33

• By default, the first uploaded variation of a screen is marked Final by
the system. If a final variation deleted the next variation by creation
date is marked as Final.

• Only one variation of a screen should have been marked by its owner
as Final at any time.

3.2.5 Version of a Screen Variation

1. Display Versions of a Screen Variation Every designer should be allowed to
view the set of versions for a specific screen variation.

Actors: Designers
Functional Requirements
For each version the following details should be displayed:

• Name (i.e Version 2)

• Total number of (un)resolved usability issues

2. Version Management
Users should be able to view, create, rename and delete a version.

Actors: Designers
Functional Requirements

• Users should be able to provide name on version creation. Default
name should be “Version X”, where X is a variable which takes sequen-
tial numbers starting from 1. For example, the first version is called
“Version 1”, the second “Version 2” and so on.

• Users should be able to provide a commit message which explains the
differences between the new version and the previous versions.

• Users should be able to delete a version after they confirm their inten-
tion.

3. Display and Manage usability issues of a version
Users should be able to view and resolve any pending usability issues of a
version. In case a version already contains a list of ”resolved” issues, the
user should be able to mark any of them as Unresolved.

Actors: Designers
Functional Requirements

• Users should be able to view the total number of (un)resolved usability
issues, which have been reported by evaluators during tests, of a design’s
version.

34 CHAPTER 3. SYSTEM REQUIREMENTS

• For each usability issue the system should display its (i) title (ii) violated
set of heuristics (iii) description (iv) average severity ratings (as given
by the evaluators) and (v) suggested solutions.

• Designers should be able to resolve a usability issue on a specific version,
after confirming their intention.

3.2.6 Heuristics Collection

1. Display and Management of Heuristics Collections
Users should be able to view the list of default and custom heuristics collec-
tions.

Actors: Practitioners
Functional Requirements

• For each heuristics collection the following details should be displayed:

– Name (i.e Heuristics for Mobile apps)

– Total number of heuristics rules

– Accessibility status (Protected or not)

• Protected heuristics collections should not be edited or deleted by users.

• Users should be able to rename a non protected heuristics collection.
Empty or already occupied names should not be allowed and system
should display proper error messages.

• Users should be able to delete a non protected heuristics collection after
confirming their intention.

2. Display and Manage Heuristics of a Heuristics Collection
Users should be able to view the list of heuristics of a heuristics collection.

Actors: Practitioners
Functional Requirements

• For each heuristic the following details should be displayed:

– Title (i.e Visibility of system status)

– Description with a maximum length of 200 characters

• Users should be able to rename a heuristic

• Users should be able to delete a heuristic after asking them for confir-
mation

• Rename and delete actions should be prohibited to heuristics which
belongs to a protected heuristics collection

3.2. FEATURES AND FUNCTIONAL REQUIREMENTS 35

3.2.7 Usability test

1. Display Usability tests
Users can view a set of usability tests classified by the role of them on each
test. These roles can be either the practitioner who manages the test or one
of the evaluators who participate in it.

Actors: Designers
Functional Requirements
Users should be able to view the following details for each usability test:

• Name

• Availability status, locked or unlocked. (Only for Practitioners)

• Evaluation progress status which is indicated by usability test’s states.
These states are the following: Idle (Not started yet, paused/locked),
Phase 1, Phase 2 and Completed. These states have been defined based
on HE methodology.

• Deadline of current evaluation progress status.

• Name of the project for which the test is conducted.

• Total number of designs which are going to be inspected by test’s par-
ticipants (evaluators).

• A snippet of the invited evaluators who participate on the test. This
snippet have to contains information for up to five evaluators. For each
evaluator, system should present the profile picture accompanied by the
username. (Only Practitioners)

• A proper message with the total number of invitations with status Pend-
ing (evaluator has not answered yet).

2. Usability test Management
Users should be able to create, rename and delete a usability test.

Actors: Practitioners
Functional Requirements

• For each new usability test users should provide a, non already occupied,
name and select an existing project of designs and choose the evaluation
methodology (HE, User testing) on which the new usability test will be
based.

• Practitioners should be able to delete their usability tests after confirm-
ing their intention.

• Practitioners should be allowed to change usability tests’ names. Sys-
tem should not accept empty or already occupied names.

36 CHAPTER 3. SYSTEM REQUIREMENTS

3. Usability Tests Collection Management
Users should be able to search, sort and filter their usability tests based on a
set of attributes.

Actors: Practitioners, Evaluators
Functional Requirements

• Users should be able to search by name their personal and shared us-
ability tests. Moreover, system should present the number of retrieved
results to users.

• Users should be able to view the original list of usability tests by clearing
any filtering options (e.g. search, filters, sorting).

• A set of usability tests can be sorted by:

– By name (ascending, descending)

– By creation date (first, last). Users should be able to sort by this
attribute only for the set of usability tests on which user is the
practitioner.

• Users should be able to filter their projects based on the following at-
tributes:

– User role in tests (practitioner, evaluator)

4. Answer to an Invitation for Participation on a Usability Test
Invited users to a usability test should be able to accept or decline the invi-
tation before participating to it.

Actors: Practitioners, Evaluators
Functional Requirements

• Users should be able to accept or decline an invitation before gaining
access on the test. Access should be denied until the invited user reply
to the invitation.

• System should display the following details about the invitation:

– Practitioner’s username and email.

– Invitation date from the practitioner of the test.

– Usability test details such as project name, domain information as
well as the scenarios of use.

– In case an evaluator rejects an invitation, the system should archive
the invitation and prevent the access to this usability test.

– In case an evaluator accepts an invitation, the system should grant
access to usability test in order to start the evaluation session.

3.2. FEATURES AND FUNCTIONAL REQUIREMENTS 37

5. Display Summary and Statistics about a Usability Test
Users should be able to preview a brief summary of their usability tests’ de-
tails.

Actors: Practitioners
Functional Requirements

• System should display an overview of usability test’s current state. More
specifically, the following details should be displayed:

– Availability (public, private)

– Evaluation session status (phase 1 or 2)

– Deadline of current phase

– Total number of designs

– Total number of heuristics collections

– Progress of each evaluator (i.e user 1 completed Phase 1 of the
evaluation)

3.2.7.1 Usability Test: Monitoring and Participation

1. Display set of reported Usability Issues
All participants (practitioner and evaluators) of a usability test should be
able to view a subset of the reported usability issues during each phase of a
evaluation session.

Actors: Practitioners, Evaluators
Functional Requirements

• Practitioners of a usability test should be able to view the whole set of
reported usability issues which exposed during Phase 1 of an evaluation
session by the evaluators.

• During Phase 2, evaluators have to rate the severity of each usability
issue which is approved by the practitioner after the end of Phase 1.

• Each usability issue should contain the following details:

– Details about the author: Practitioners should see all details about
the author of usability issues, such as profile photo, name and email.

– Title, description, set of violated heuristics, severity rating and
suggested solution to the problem.

– Date of the report by its author (evaluator).

2. Update of a Usability test’s Visibility Status
Practitioners of a usability test should be able to (un)lock it during the eval-
uation session.

38 CHAPTER 3. SYSTEM REQUIREMENTS

Actors: Practitioners
Functional Requirements

• Practitioners should be able to (un)lock a usability test only when eval-
uation session is on phases 1 or 2. In case a test is not started yet
or it has already completed then it is locked, and so not available to
evaluators. In these conditions the test is state Idle.

• System should automatically add test’s settings in view mode only in
case a usability test is unlocked. Practitioners should be able to config-
ure a usability test when it is in Idle state, which means it has either
not started yet or its practitioner has temporally locked it.

3. Control of Evaluation Session State
Practitioners should be able to control the current state of evaluation pro-
cess for a specific usability test. Those different states of the process are Not
started, Phase 1, Phase 2 and Completed.

Actors: Practitioners, Evaluators
Functional Requirements

• Practitioners should not be allowed to start or complete phases 1 and
2 if the previous phase is not completed. More specifically, there are
some requirements for each of the following transitions:

– Idle to Phase 1 : Settings of usability test should be completed.

– Phase 1 to Phase 2 : Settings of usability test should be completed
and Phase 1 should be completed.

• Practitioners should be able to inspect all evaluators’ progress (current
phase of evaluation process) at any time during the evaluation session
which they participate.

• Evaluators should be able to proceed to phase 2 as soon as they have
inspected the usability of every available design in a usability test.

• Evaluators should be able to complete a usability test after they rate
the severity of all reported usability issues during Phase 1. Moreover,
the evaluators should confirm their action to complete the test before
system save their ratings on the usability test.

• Practitioners should confirm any action which is related with update of
the evaluation progress’ status for any evaluation test.

4. Start an evaluation session of a usability test
Evaluators should view a proper welcome message alongside with test’s de-
tails and information of the evaluation session.

Actors: Evaluators
Functional Requirements

3.2. FEATURES AND FUNCTIONAL REQUIREMENTS 39

• System should display information about the usability test such as:

– Name

– Deadlines for Phase 1 and Phase 2

– Number of designs to be inspected by the evaluators

– Details about the practitioner, such as username and picture profile

– Number of heuristics

• System should display a brief description about the process of the eval-
uation session and the methodology that the evaluators should follow
in order to complete the test (phases, steps and a small tutorial).

5. Change Theme of the Design/Mockup Viewer
All users of Uspector (independent of their role) can customise the page of
design viewer between a light, a grey and a dark theme. Each one of these
themes apply a different color palette to all visual elements of this page.

Actors: Practitioners, Evaluators
Functional Requirements

• Each theme should provide high contrast between visual elements of
the page.

• Users should be able to update their preferences and alternate themes
at any time.

6. Display Details of a Usability Test
Users should be able to view details about the process and methodology of the
evaluation session.

Actors: Practitioners, Evaluators
Functional Requirements

• System should display information about the usability test such as:

– Name

– Deadlines of each phase as defined by the practitioner during test’s
configuration

– Status of evaluation session

– Project name (Only Practitioners)

– Number of accepted and pending invitations to evaluators (Only
Practitioners)

– Creation Date (Only Practitioners)

– Number of designs to be inspected

– Details about test’s practitioner, such as username and picture pro-
file (Only Evaluators)

40 CHAPTER 3. SYSTEM REQUIREMENTS

– Number of heuristics

• Practitioners and evaluators, who have already accepted their invita-
tions to a usability test, should be able to view the current status of its
evaluation process.

• Users should be able to view the title and a brief description (max 200
characters) about a heuristic/rule. System should display provide the
ability to a test’s participants to recall the definition of each avaailable
heuristic at any time during an evaluation session.

7. Display set of Designs for inspection
The Practitioner and the evaluators of a usability test should be able to view
the set of designs which are selected during the test configuration and they
are evaluated during the current evaluation session.

Actors: Practitioners, Evaluators
Functional Requirements

• System should display the name and the thumbnail of usability test’s
designs.

• At any time, participants should be able to indicate the active design
among the others.

[Here]

8. Search and Navigation among Designs for Monitoring and Evaluation
Evaluators should be able to search and quickly navigate among the designs
of a usability test in order to find and inspect a specific design.

Actors: Practitioners, Evaluators
Functional Requirements

• System should support live searching on a usability test’s available de-
signs. As the user constructs a query, system should filter the designs
by name, and presents to the user the filtered set as well as the total
number of them.

• Users should be able to indicate which design is the active one (loaded
in the viewer), during their navigation to the set of available designs of
a usability test.

• Practitioners and evaluators should be able to fast and intuitively nav-
igate and load in the viewer whichever design is available in a usability
test.

9. Usability Issue Report, Edit and Delete
During Phase 1 of an evaluation session evaluators can report, edit and delete

3.2. FEATURES AND FUNCTIONAL REQUIREMENTS 41

usability issues on specific positions/points of a design.

Actors: Evaluators
Functional Requirements

• Each newly reported usability issue should contain the following infor-
mation:

– Position (X, Y) upon design, where X, Y are the horizontal and
vertical coordinates respectively.

– Title of usability test.

– Set of criteria/heuristics which reported usability issues violates.

– A brief description (max 200 characters) of the reason of a usability
issue report.

• Reported usability issues should be displayed correctly on any of the
supported screens.

10. Usability Issues Rating
During Phase 2 of an evaluation session, evaluators should rate the severity
of all reported usability issues of each design. A reported usability issue can
be created from any of the evaluators during Phase 1 of evaluation session.
Moreover, system should allow evaluators, optionally, to suggest solutions to
the practitioner on how to resolve one or more of the discovered usability
issues.

Actors: Evaluators
Functional Requirements

• Evaluators should rate the severity of all reported usability issues during
a usability test. The provided scale to evaluators is the severity rating
scale which defined by J. Nielsen [46] [44].

• System should indicate to each evaluator which usability issues have
already been rated and for which this process is still pending.

• Evaluators should be able to suggest a solution to the practitioner about
a usability issue that they report on a design.

• Evaluators should be able to edit a severity rating after its submission
but before they complete the phase 2 of the evaluation.

3.2.7.2 Usability test Configuration

(a) Display and Configuration of a Test’s Settings
System should display the current configuration settings of a usability
test at any time during its lifetime (before, during and after an evalua-
tion session takes place)

42 CHAPTER 3. SYSTEM REQUIREMENTS

Actors: Practitioners
Functional Requirements

• Settings should be locked in case a usability test’s state is Phase 1
or Phase 2 which means that evaluators are able to report and rate
usability issues. Practitioners should be allowed to configure one or
more test’s settings only if they manually lock it temporarily and
so put the test in the state Idle.

• System should notify (using proper warning messages) the practi-
tioner of a test if settings are not available for configuration (state
is not Idle).

[Here]

(b) Configuration of a test’s General Settings
Every usability test should have a set of general settings.)

Actors: Practitioners
Functional Requirements

• The following options for configurations should be offered:

– Deadlines for each evaluation phase (Phases 1, Phase2). Sys-
tem should not allow practitioners to define a deadline for Phase
1 with a date older that the current one. In the same direc-
tion, the deadline for phase 2 should be ahead of the specified
deadline for phase 1. Both deadlines should be required by the
test’s practitioner before a test starts.

(c) Management of available Heuristics Collections in a Test
Practitioners should be able to define which heuristics collections will be
used in a usability test. These heuristics collections should be available
for use to evaluators during Phase 1 of evaluation in order to assist
them to report and document possible usability issues for the usability
test’s designs.)

Actors: Practitioners
Functional Requirements

• A practitioner should be able to select a subset of available heuris-
tics collections which are going to be used by evaluators in a us-
ability test.

• Search all heuristics collections and display the number of search
results.

• Practitioners should be able to (de)select a single or all heuristics
collections.

(d) Include/Exclude Designs in a Usability Test
Each usability test is connected with a project which consists a set of

3.2. FEATURES AND FUNCTIONAL REQUIREMENTS 43

screens. Practitioners should be able to include a subset of designs (spe-
cific variation and version) which need to be evaluated. These designs
will be available for inspection to evaluators during the evaluation ses-
sion.

Actors: Practitioners
Functional Requirements

• The system should display all screens of the project. For each
screen system should display a screen’s name, selected variation
and version as well as a thumbnail of it.

• A practitioner should be able to include and/or exclude a design
from the selected set of designs which will take part in the evalua-
tion process of a usability test.

• Search all designs and display the number of search results.

• Practitioners should be able to select, deselect or leave deselected
a single or all designs.

• Practitioners should be able to change selected variation and ver-
sion of a specific screen before they include it to a usability test.
System should display details for each variation and version helping
a practitioner to select with ones of them to include to a usability
test for evaluation .

(e) Management of Invitations in a Usability Test
Each usability test is connected with a project which consists a set of
screens. Practitioners should be able to include a subset of designs (spe-
cific variation and version) which need to be evaluated. These designs
will be available for inspection to evaluators during the evaluation ses-
sion.

Actors: Practitioners
Functional Requirements

• A practitioner of a usability test should be able to search users using
their emails. System should retrieve results only if query length is
more than two characters.

• For each retrieved search result system should display user’s profile
picture and name

• A practitioner should be able to invite someone who has not account
on the Uspector platform using his/her email

• System should allow practitioners to invite multiple users

• System should display all invitations of a usability test. For each
invitation, details such as user’s email and profile picture as well as
the date of invitation should be displayed.

• Practitioners should be able to search invitations by user’s email

44 CHAPTER 3. SYSTEM REQUIREMENTS

• System should provide a unique share URL for each invited evalu-
ator which is not a registered user of the platform. This URL gives
access to the evaluation session of the usability test.

• Practitioners should be able to cancel an invitation that has been
sent to candidate evaluators. In that case, an invited user will still
be able to answer, as soon as they acquire the invitation’s email,
but he/she will not be able to use the provided unique URL to the
test because it will not be valid anymore.

• System should allow to enable and/or disable the access to a us-
ability test, using a share URL, for a specific invitation.

Chapter 4

System Architecture

This chapter presents (i) an abstract overview of system’s architecture, (ii) a con-
ceptual data model of the system and (iii) the core technologies which were used
to develop Uspector.

In particular, it describes the overall system architecture (i.e. the main com-
ponents and their relations), the data model (i.e. entities and their relations), as
well as the different technologies used to build the front and back-end components
of the platform.

4.1 System Architecture

Overview

Uspector is a web platform and its architecture follow the client-server model.
That means that the server hosts, delivers and manages most of the resources and
services to be consumed by the clients.

The high-level architecture of Uspector platform has been driven by the afore-
mentioned features and functional requirements which are described in chapter 3.
It consists of several interconnected components with specific role in the function-
ality of the platform.

Front-end Architecture

A high-level scope of client-side part’s architecture is showed in figure 4.1). The
main module is called App and consists of two sub-modules Account, Home as
well as a collection of utilities modules. Utilities contribute to track users’ actions,
manage push notifications, enhance intercommunication among view’s components
(each page/view compose a component), support the communication with the
RESTful API and manage data store/retrieval operations from/to browser’s local
storage.

45

46 CHAPTER 4. SYSTEM ARCHITECTURE

Figure 4.1: Front-end architecture

Account Module

The Account module contains the modules and components which are responsible
to manage the visible views of a registered user. More specifically, it represents
the private section of application, which provides the workspace, the tools and
the information to the user to manage and/or evaluate the designs of other users.
Module Account contains the following sub-modules:

• User Dashboard

• Projects

• Screens

• Workflow

• Project Settings

• Screen Viewer

• Usability Tests

• Usability Test Dashboard

• Usability Test Configuration

• Usability Test Session

• Heuristics Collections

4.1. SYSTEM ARCHITECTURE 47

Home Module

The Home module contains the modules and components which are responsible
to manage the public views (Homepage with authentication forms) of Uspector
platform. Therefore, it is the entry gate (app’s public side) of Uspector platform
for the incoming visitor and so, its role is to manage the task of user authentication
in the client-side of the application, in terms of asking users’ credentials, showing
proper messages on unsuccessful user attempts and navigating users in the rest
system on a successful sign in.

Data Module

The most used modules of Utilities is the Data module which is used for the man-
agement of browser’s local storage, communication among different components
and the communication with the RESTful API. More specifically, it contains the
following modules:

• User Service: Implements CRUD operations for the data type User

• Project Service: Implements CRUD operations for the data type Project

• Screen Service: Implements CRUD operations for the data type Screen

• Variation Service: Implements CRUD operations for the data type Variation

• Version Service: Implements CRUD operations for the data type Version

• Usability issue Service: Implements CRUD operations for the data type
Usability issue

• Usability test Service: Implements CRUD operations for the data type Us-
ability test

• Data Service: Manage local storage of browser. This service focus on save
and retrieve all data which are related logged in user’s session, such as token,
preferences and settings.

Back-end Architecture

The business logic of system is managed by its nodejs server. The main building
blocks of the back-end architecture are: (i) Server app, (ii) Services endpoints
(RESTfull API), (iii) Web socket emitters and (iv) Data models component. As
shown in figure 4.2, the server app is responsible to initialise the server and manage
incoming requests to assets (images, illustrations etc), the endpoints of services
manage the incoming http requests for them, the web sockets emitters guarantee
asynchronous communication between a client and the server and lastly the Data
Models Component is responsible to model and manage the stored data in the
database.

48 CHAPTER 4. SYSTEM ARCHITECTURE

Figure 4.2: Back-end architecture

4.2 Data Modelling

4.2.1 Overview

A critical task for the development of Uspector was to define a conceptual data
model that describes a map of concepts as well as their relationships used for the
design and development of the database. The definition of this map is directly
connected with the information that is stored in the database.

For the purposes of the design and development of Uspector’s database we
used a document-based database, namely MongoDB [12], due to the scalability
and the freedom that offers in modelling data and defining relationships among
them. Data schemas do not need to have an immutable structure beforehand,
and so, they can be modified on the fly according to applications needs. Lastly, a
Mongo database contains collections which consecutively contain documents, the
data of which, can be retrieved easily in JSON format.

MongoDB does not support joins (like SQL databases) and so, it allowed us to
model data either with embedded documents (denormalised model) or referencing
documents (normalised model) (figure 4.3) according to application’s needs.

In Uspector we use a hybrid data model that combines embedding and refer-
encing models. Two key factors defined the design of data model, the frequency

4.2. DATA MODELLING 49

Figure 4.3: Referencing and Embedding data models [2]

of read-write operations and the growth of documents. Small models, such
as Notifications and HeuristicsCollection, defined as embedded to bigger ones, like
User and Utest respectively. On the contrary, models such as Project, Screen and
UsabillityIssue which require frequent and fast CRUD operations need to be inde-
pendent (not embedded) models. That decisions lead to a scalable and dynamic
data model which offers fast CRUD operations, but at the same time, they made
the preservation of atomicity for complex operations (operations which relate more
than one model) a difficult challenge for us.

In particular, architecture of our database consist of the following building
blocks:

• Collections: User, Project, Screen, Variation, Version, UsabilityIssue, Us-
abilityTest, Sessions

• Documents: Instances of each collection i.e for a registered user “George”
there is a document of collection User stored in the database

• Fields: Attributes of each collection

• References: A connection between two collections

4.2.2 Uspector entities

After the collection of functional and non functional requirements, the basic logical
entities are extracted. An overview of Uspector’s database schema is shown in class
diagram which is shown in figure 4.4.

50 CHAPTER 4. SYSTEM ARCHITECTURE

Figure 4.4: The conceptual data model of Uspector platform

User

Entity User describes the end-user of the system. Users can be designers, prac-
titioners, evaluators or any combination of them. Uspector offers functionalities
for both registered and unregistered end-users. The fields of the User entity are
described in Table 4.1.

Table 4.1: User entity

Field Type Description

shortId String, unique A short id which
uniquely identify a user

username String, required Name of user
email String, unique,

required
Email of user

role String Role of user

4.2. DATA MODELLING 51

avatar String Path to profile picture
of user

password String, required Password of user
personal Personal information of

user
activity ObjectId[User] History of user’s actions
project ObjectId[Project] List of reference to

user’s projects
heuristicsSets [SubDocument] List of heuristics collec-

tions
notifications SubDocument Notifications prefer-

ences
salt String Salt of user’s password
utests ObjectId[Utest] List of references to

user’s usability tests

Project

Entity Project represents a folder of screens. A project can consist of multiple
screens and it can be associated with multiple usability tests. Each one of them
can be responsible to evaluate a specific design of a subset of project’s screens.
More details about the fields and associations of the model Project are described
in Table 4.2.

Table 4.2: Project entity

Field Type Description

shortId String, unique A short id which uniquely identify a
project

name String, required Name of project
description String Brief description of project
domain String Product’s domain description
archived boolean Status of project (active, archived)
favorite boolean Indication if a project is favorite
appIcon String Icon of product
owner ObjectId[User] Reference to project’s owner
screens ObjectId[Screen] List of references to project’s screens
coverScreen ObjectId[Screen] Reference to cover screen of a project

Screen, Variation, Version

These three entities, which are defined in subsection 3.1.1, describe (i) the design
of a product’s logical entity which express a specific functionality, feature, state or

52 CHAPTER 4. SYSTEM ARCHITECTURE

component of this product, (ii) a different approach of the functionality, feature or
component which is represented by a screen and (iii) an instance of the iterative
design process for a screen variation, respectively.

A screen can consists of multiple variations and each variation can consist of
multiple versions. More details about the fields and associations of these models
are shown below, on tables 4.3, 4.4 and 4.5.

Table 4.3: Screen entity

Field Type Description

shortId String, unique A short id which uniquely identify a screen
name String, required Name of screen
status String Progress status of screen (in-progress,

under-evaluation, ready)
owner ObjectId[User] Reference to owner of screen
project ObjectId[Project] Reference to ancestor project
variation ObjectId[Variation] List of references to screen’s variations

Table 4.4: Variation entity

Field Type Description

shortId String, unique A short id which uniquely identify a vari-
ation

name String, required Name of variation
final boolean, required Indicates if a screen’s variation is the final

one
commitMessage String Message which describes the diff with

other variations of screen
owner ObjectId[User] Reference to variation’s owner
versions ObjectId[Version] List of references to variation’s versions
project ObjectId[Project] Reference to ancestor project
screen ObjectId[Screen] Reference to ancestor screen

4.2. DATA MODELLING 53

Table 4.5: Version entity

Field Type Description

shortId String, unique A short id which uniquely identify a ver-
sion

name String, required Name of version
commitMessage String, required Message which describes the differences

against previous version
imgPath String Path to file(image) of design
originalName String, required Name of file in the client’s storage
systemName String, unique, re-

quired
Name of file in the server’s storage

current Boolean, required Indicates if a version is the current one
usabilityIssues ObjectId List of references to usability issues
owner ObjectId[User] Reference to owner of version
project ObjectId[Project] Reference to ancestor project
screen ObjectId[Screen] Reference to ancestor screen
variation ObjectId[Variation] Reference to ancestor variation
utests ObjectId[Utest] Reference to ancestor usability tests

Usability issue

Entity Usability issue hold details about a usability problem reported by an eval-
uator in a specific design/mockup. For example it can contains information about
the set of heuristics that this design violates, a relative description and a rating of
the reported problem. More details about the fields and associations of the model
Usability issue are described in Table 4.6.

Usability test

Entity Usability test describes an experiment for the evaluation of designs’ us-
ability. It is the link between a designer and an evaluator, because through the
evaluation session the participants (evaluators) inspect a designer’s work in order
to report possible usability problems. A practitioner can have multiple usability
tests and each one of them can consists of multiple designs and associate with
multiple evaluators. More details about the fields and associations of the model
Usability test are described in Table 4.7.

54 CHAPTER 4. SYSTEM ARCHITECTURE

Table 4.6: Usability Issue entity

Field Type Description

shortId String, unique A short id which uniquely identify an issue
orderId Number Composite id based on user, design and

usability test
posX Number Horizontal coordinate of position
posY Number Vertical coordinate of position
owner ObjectId[User] Reference to the creator of a usability is-

sue
project ObjectId[Project] Reference to the project in which the de-

sign belongs
screen ObjectId[Screen] Reference to the screen in which the de-

sign belongs
variation ObjectId[Variation] Reference to the screen’s variation in

which the design belongs
utest ObjectId[Utest] Reference during which the issues has

been reported
version ObjectId[Version] Reference to the screen’s version in which

the design belongs
title String Short title of usability issue
heuristics Array of heuris-

tics
Set of violated heuristics

description String Description of usability issue
suggestedSolution String Suggested solution which solves usability

issue
severity Number Mean Severity rating of usability issue

Table 4.7: Usability Test entity

Field Type Description

shortId String, unique A short id which uniquely identify an issue
name String Name of test
practitioner ObjectId[User],

required
Organizer of the test

type String Type of evaluation methodology
status Availability and progress of evaluation

session
project ObjectId[Project] Reference to the project in which the de-

sign belongs
scenarios List[String] Two scenarios of use
deadline SubDocument Deadlines of evaluation phase 1 and 2
severityRatingScale SubDocument Rating scale for the severity of a usability

issue
heuristicsSets [SubDocument] List of heuristics collections
invitations [SubDocument]
designs ObjectId[Version] Reference to version of a screen’s variation

4.3. TECHNOLOGIES 55

4.3 Technologies

The Uspector platform is designed and developed based on MEAN stack model
(figure 4.5a). MEAN is a free and open-source JavaScript software stack for build-
ing dynamic, fast and robust web applications. MEAN comprises of a set of four
technologies stands for: (M) MongoDB [12], the database that will be use, (E) Ex-
press.js [4], (A) AngularJs [1], the client-side technology which is a JavaScript li-
brary to render the application, and finally (N) Node.js [39], which is the JavaScript
server-side language used for the server logic. The development of Uspector based
on the Angular-Fullstack Generator [8] which is a boilerplate code generator. That
decision has led to the fact that codebase has been developed following the best
software patterns and techniques (i.e authentication, data consistency etc), both
at front-end and back-end.

Based on the MEAN stack, the following tools and technologies have been
used for the development of Uspector platform. The Overall architecture cycle in
Uspector platform is illustrated in figure 4.6.

(a) MEAN stack model [36]
(b) Single Page Application archi-
tecture

Figure 4.5: Uspector overall architecture

Figure 4.6: Uspector MEAN stack overall architecture

56 CHAPTER 4. SYSTEM ARCHITECTURE

AngularJs, CSS Framework

On the client side, Uspector has a JavaScript layer that can freely communicate
with web services on the server and, using the data from web services, make real-
time updates to itself. For that purpose, JavaScript MVC framework AngularJs [1]
is used. That decision leads us to design and build Uspector following patterns of
Single-page web app architecture (figure 4.5b).

In order to get Uspector from prototype to production the CSS framework
Foundation for Sites (version 6.5.3) was used. The choice of this framework enable
us to make Uspector a responsive (i.e. various devices with different capabilities are
supported), accessible, consistent (by following design patterns) and customisable
platform.

Nodejs, Express, MongoDB, Mongoose

Uspector’s back-end based on Node.js and MongoDB for the construction of server
and database respectively. Both decisions led Uspector to be a scalable, flexible
and fast platform.

Node.js [39] is an open-source, cross-platform JavaScript run-time environment
that executes JavaScript code outside of a browser. Node.js lets developers use
JavaScript for server-side scripting—running scripts to produce dynamic web page
content before the page is sent to the user’s web browser. It is also responsible to
send requests and receive responses, as well as to interact with databases and files.

Express [4], is a web application framework for Node.js, released as a free and
open-source software under the MIT License [25]. It is designed for building web
applications and APIs. It also provides routing, view rendering and more. This
framework provides I/O request handling and easy integration of third-party ser-
vices and middle-ware, features which led to a faster development of the RESTFul
API and more extensible server.

MongoDB [12] is a free and an open-source, cross-platform document-oriented
database program. It is a NoSQL document database, meaning that MongoDB
uses JSON documents with schemas. Also, since MongoDB supports data transfer
through JSON format, data transfer from the web application is easy and econom-
ical. Moreover, JSON also allows easy client-server data transmission.

Mongoose [11] is an Object Data Modeling (ODM) library for MongoDB and
Node.js. It manages relationships between data, provides schema validation, and
is used to translate between objects in code and the representation of those objects
in MongoDB.

Chapter 5

Uspector platform

This chapter outlines the details of the various front-end components that have
been implemented in the context of Uspector, namely: (i) User Authentication
(homepage) (ii) User Workspace, (iii) Screen Viewer, (iv) Test Evaluation
Session. All visual elements and functionalities, of every system’s component that
the user interacts with, is described in the following chapter. Additionally, snap-
shots of the underlying functionality will be provided to illustrate the interaction
of the user with the system.

5.1 User Authentication

Uspector is designed to be a web platform, accessible from any modern browser.
By accessing system’s public address (URL) users are landing in the Homepage
(figure 5.1) of the system. The aim of this view is to introduce users in the
platform’s goal and drive them into the system’s authentication process, through
the login and registration forms.

Figure 5.1: User Authentication in Homepage

57

58 CHAPTER 5. USPECTOR PLATFORM

Home View

User Authentication component enables on the one hand registered users to access
their personal content (see login form at figure 5.2a) and on the other hand visitors
to create an account to the Uspector platform (see registration form at figure 5.2b).
Both functionalities comply with the functional requirements of system’s features
1-3 on section 3.2.1.

(a) Login form (b) Registration form

Figure 5.2: Authentication forms in Homepage

5.2 User Workspace

Upon successful authentication, users enter into the restricted area of Uspector,
which is the composite component of User Workspace. Its nature is not to rep-
resent a specific page of the system, but rather a ¡¡container¿¿ which define the
main layout of app’s UI and hosts the top bar (with account details and main nav-
igation) and the active, according to current user’s navigation, view (i.e projects,
screens, usability tests etc). Through User Workspace component users acquire
access and manage their and/or other’s users content based on their role (owner
or participant) on them. Moreover, users can navigate in the usability tests on
which they participate as evaluators. Finally, users are able to set up their profile
and configure the settings of the system.

Composite views consists of multiple different sub-views and as such ,the visual
elements of User Workspace view are globally accessible components. As shown
in figure 5.10 these visual elements are: (i) Uspector logo (also link to User Dash-
board), (ii) main navigation menu, (iii) user profile and notifications information
and (iv) toggle buttons for notifications and profile panels respectively.

5.2.1 User Dashboard View

User Dashboard view, as shown in figure 5.4, assists users to inspect the current
state of their projects, designs and usability tests at a glance. Moreover, they can
inspect their progress of usability tests in which participate as evaluators as well
as a history review of their activity on the platform.

5.2. USER WORKSPACE 59

Figure 5.3: User Workspace - top bar

In particular, a practitioner of a usability test can view the current state of
evaluation session (availability to evaluators, phase, deadlines), of invitations to
other users (total numbers of each different state) and the project for which a
usability test is conducted. Similarly, a user is able to view, for each one of his/her
projects, its current state (active, archived), progress of its screens (states In-
Progress, Under evaluation and Approved) as well as the number of usability tests
that have/had been conducted on for it.

This view fulfils the functional requirements of features in sections 3.2.1.4 and
3.2.1.9.

Figure 5.4: User dashboard view

5.2.2 Projects View

One of the platform’s core views is the Projects view in which a designers can
view and manage their collection of projects. As shown in figure 5.5 there are the
following main visual components:

• Search box with floating label: As user types the query projects should be
filtered by their name.

• Filter Forms: Filter projects by state (active, archived, favourite).

60 CHAPTER 5. USPECTOR PLATFORM

• Project creation button: A Cal-to-Action button which open a modal window
to the user. This window contains a form with input elements for project’s
name and description (max 200 characters).

• Grid of projects: Responsive grid with projects as rectangular tiles. For each
project, a brief summary about its details, to assist its owner to recognise it
during his/her navigation, is provided. In particular, these details are to its
name, its cover screen, total number of screens and the number of usability
tests which are conducted for this project. Moreover, for each project a
number of actions, such as (un)archive, (un)mark as favourite and deletion,
are provided to its owner.

Projects view match the functional requirements about the display and man-
agement, both as individual entities and collection, of projects (features on section
3.2.2).

Figure 5.5: Projects view

5.2.3 Project Settings View

Designers are able set and update the details of a project such as project description
and product’s icon. figure 5.6 depicts the Project Settings view as this designed
and implemented in order to comply with the functional requirements of feature
3.2.2.6.

5.2.4 Screens View

Each project consists of a set of screens which are presented in Screens view.
Designers can create, update and delete screens according to their preferences. All
functional requirements about the display and management, both as individual
entities and collection, of screens (features of section 3.2.3) are satisfied by the
following components of the UI (figure 5.7):

5.2. USER WORKSPACE 61

Figure 5.6: Project settings view

• Search box with floating label: As user types the query, screens should be
filtered by their name.

• Filter Forms: Filter projects by state (in progress, under evaluation, ap-
proved)

• Tile view button: Open a panel for the configuration of the tiles’ layout,
such as the adjustment of dimensions’ ratio and sizes.

• Screen creation button: A call to action button which allow designers to
select design assets from their local storage in order to create multiple screens

• Grid of screens: Responsive grid with screens as rectangular tiles. Designers
can also drag their designs assets from local storage to and drop them to this
area in order to create multiple screens.

Figure 5.7: Screens View

62 CHAPTER 5. USPECTOR PLATFORM

5.2.5 Workflow View

While reviewing the project, there are various screens which look ready and good
to implemented (development phase of a project), while there are others which
they need a bit of revision before it will be approved and then, screens which their
designers want to expose to evaluators through one or more usability tests. To
segregate all of these screens in their respective status the user can navigate the
Workflow view (figure 5.8) in which the screens can be marked as: (i) In Progress
(Pink), (ii) Under Evaluation (Purple) and (iii) Approved (Green).

Figure 5.8: Workflow view

5.3 Screen Viewer

After loading a screen, the system displays the view Screen Viewer. Designers
have the ability to manage screen’s variations and versions as well as the usability
issues which are associated with them. The main components of the layout are
the following:

• Breadcrumb with expandable panel with the set of project’s screens: Shows
the path to the active screen and give the ability to designers to search,
browse the remaining set of screens. The main goal of this panel is to let
users to load an another screen in the viewer with a fast and effective way.

• View modes: Designers are able to load the viewer in different modes (i.e.
inspection, hot-spots and comparison mode).

• Action buttons: Settings of viewer and export options

• Secondary navigation menu: Allow designers to navigate and manage (create,
rename, delete) the variations and versions of the active screen.

• Viewer: The main component of the view which displays the active design
(mockup of a specific version of a screen’s variation).

5.4. USABILITY TESTS VIEW 63

• Inspection mode: View all reported issues from all usability tests and eval-
uators. For each reported issue, a practitioner is able to view a title, a brief
description of the usability problem, the set of violated heuristics (only ti-
tles), a mean severity rating calculated by individual ratings (available only
after Phase 2) as well as a suggested solution for the problem to designer,
if that is provided by the issue author (evaluator). Moreover, a designer
should be able to filter them based on the usability test, creator and its
status (resolved or not).

• Comparison mode: Designers should be able to visually compare two differ-
ent versions of the same screen’s variation.

The importance of this view is obvious because of the large number of system’s
features which Screen Viewer implements. Functional requirements about the
display and management, both as individual entities and collections, of variations
and versions (see requirements of features are fulfilled.

Figure 5.9: Screen viewer

5.4 Usability Tests View

The main layout of Usability Tests view is divided in two panels, the left one
which contains and allow a practitioner to manage the set of usability tests which
he/she conduct(ed) as well as the right one, which contains and similarly allow the
practitioner to manage the set of heuristics collections (custom or not) which are
available to tests.

Regarding the left panel, these components satisfy the functional requirements
about the display and management, both as individual entities and collections, of
usability tests (features on section 3.2.3). Similarly, in the right panel the func-
tional requirements about the creation and management of heuristics collections
are fulfilled (features on section 3.2.6.1).

64 CHAPTER 5. USPECTOR PLATFORM

Both panels address a user who behave as practitioner, who aims to create
and conduct usability tests on projects of designs. More details about the visual
elements and the functionalities of this view are presented below.

• Search box with floating label: As user types the query, usability tests should
be filtered by their name.

• Filter Forms: Filter usability tests by user’s role on them (practitioner, eval-
uator)

• Grid of usability tests: Responsive grid with usability tests as rectangular
tiles. For each test the practitioner is able to view its name, its practitioner’s
profile photo, its current availability to evaluators (locked or not), the current
state of its evaluation session and finally, a small list (up to five) of active
(accepted the invitation) evaluators’ personal photos and the project for
which this test is conducted. Moreover, system allow practitioner to rename
and delete a usability test.

• Button for Usability Test creation: A Call-to-Action button that presents
the creation form modal window.

The right panel consists of the components regarding the presentation and
management of heuristics collections. Therefore, the following components fulfil
the functional requirements of system’s features on section 3.2.6.

• List of heuristics collections: This list composed by both custom and custom
(defined by the test’s practitioner) and ready-made heuristics collections (J.
Nielsen heuristics collection).

• Button for Heuristics Collection creation: A Call-to-Action button which
make available a form in a modal window, which ask from the user to define
the name of new heuristic collection.

5.4.1 Heuristics Collections Edit View

Practitioners are able to create, update and delete their custom heuristics col-
lections as well as the content of them. A heuristics collection contains a set of
heuristics guidelines/rules, where each one consists of a title and a brief descrip-
tion of this guideline. The goal of Heuristics Collections Edit view is to comply
with the functional requirements of system’s feature on section 3.2.6.1. It contains
a form with collection name as well as a list of existing heuristics for a specific
heuristics collection (figure 5.11).

5.5. USABILITY TEST CONDUCTION 65

Figure 5.10: Usability tests View

Figure 5.11: Heuristics collections edit View

5.5 Usability Test Conduction

The first visual element on the views relative to the conduction of a usability test
is shown on figure 5.12. It presents the toolbar of a practitioner in order to control
the availability and the phase of the evaluation session at any time..

Figure 5.12: Toolbar for practitioner to control the progress of a usability test

66 CHAPTER 5. USPECTOR PLATFORM

5.5.1 Usability Test Dashboard View

During and after the conduction of a usability test system displays the statistics
and the analytics of its progress in the Usability Test Dashboard view. A practi-
tioner of a test has the ability to overview, at any time, the status of the evaluation
session, the invitations (e.g. answers from invited users) as well as its availability
to evaluators. As shown on figure 5.13, this view fulfils the functional requirements
of feature 3.2.7.5.

Figure 5.13: Usability test dashboard view

5.5.2 Usability Test Monitoring View

Apart from Usability Test Monitoring view a practitioner can monitor the progress
of the evaluation through the Usability Test Monitoring view. More specifically,
the organiser of the test is able to view which usability issues have been reported
during and after Phase 1 as well as he/she is able to inspect which one of them
have been rated about the severity by all evaluators.

Moreover, after the completion of Phase 1, a phase in which evaluators report
usability issues on the designs, the practitioner is able to read, edit, delete, merge
and finally approve or disapprove a reported usability issue. Only approved issues
will pass to Phase 2 of the evaluation. As shown on figure 5.14 the above func-
tionalities are fulfilled. Usability Test Monitoring view comply with the functional
requirements of features on section 3.2.7.1.

5.5.3 Usability Test Settings View

Usability Test Settings view contains all configurations that a practitioner is able
to do before starts the conduction of a test. More specifically, as defined on
feature 10a these configurations are classified in four independent categories which
are: (i) General Settings, (ii) Heuristics Settings, (iii) Designs Settings and (iv)
Invitations Settings. Each one of them consists of required and optional settings.

5.5. USABILITY TEST CONDUCTION 67

Figure 5.14: Usability test monitoring view

Below, details and descriptions about each category of usability test configuration
are presented.

General Settings

The category of general settings refers to the list of configurations about the dead-
lines of each evaluation phase, the severity rating scale, as well as the optional
definition of two scenarios of use. According to figure 5.15 the panel contains
a form with the above components which fulfils the functional requirements of
feature 3.2.7.1(a).

Figure 5.15: General settings form of a usability test

Selection of Heuristics

The second category of settings refers to the configuration of test’s heuristics collec-
tions. A practitioner has the ability to use any heuristics collection which belongs

68 CHAPTER 5. USPECTOR PLATFORM

to him/her. Moreover, a practitioner can view the details (title, description) of
every heuristic of a collection in order to make a decision to use it or not in a
usability test. The main components of the view are (i) search box, (ii) used and
available heuristics collections and action buttons to move a set of selected items
from one set to the other (figure 5.16).

Figure 5.16: Heuristics management of a usability test

Selection of Designs

Similar to Heuristics management section the layout as well as the visual compo-
nents are the same. The difference in this section is the content that a practitioner
has to manage. Instead of heuristics collections, practitioner should include at least
one design for evaluation in the usability test. As shown in figure 5.17 each list
item consists of a design thumbnail, name of screen and its selected combination
of variation and version.

In case a practitioner wants to change the selected design of a specific screen
he/she should click the action button of the relative screen’s item and interact
with a form in a modal window. The main components of this view (figure 5.18)
are:

• Details of current design, such as names for screen, final variation and current
version. Also, a thumbnail of the design is provided as a visual hint to assist
the practitioner to include it or not in the evaluation session of the test.

• Form to select a different variation and/or version of a specific screen. During
this selection, there is a preview of the current design (combination of screen,
variation and version) a practitioner is currently inspect.

Both views fulfil the functional requirements about the inclusion of one or more
designs in a usability test during its configuration (features on section 3.2.7.1(b)).

5.5. USABILITY TEST CONDUCTION 69

Figure 5.17: Design selection on a usability test

Figure 5.18: Selection of a different screen variant and or a different version of a
specific screen

Invitations Management

The fourth category of settings refers to the participants of a usability test. To
comply with the functional requirements of system’s feature on section 3.2.7.1(c)
the following views are implemented (figure 5.19 and figure 5.20).

• Search box: Search invitations by invited user’s name as a practitioner types
a query

• A grid of tiles about test’s current invitations. This set consist of pending,
accepted, cancelled and rejected invitations to/from users. For each invita-
tion details about the invited user (name, personal photo, email), sent date,
current state are provided. Moreover, a practitioner is able to cancel (after
action confirmation) and share (via a private URL) an invitation.

• Button for user invitation: A Call-to-Action button which opens a modal

70 CHAPTER 5. USPECTOR PLATFORM

window and focus practitioner’s attention on searching (by username or
email) and sending invitations to users in order to participate in a usability
test.

The task of user invitation for the participation in a usability test is critical to
its successful conduction and completion.

Figure 5.19: View with the list of current invitations

Figure 5.20: Search and invite users to a usability test

5.6 Test Evaluation Session

Test Evaluation Session view is accessible both by registered and from unregistered
users who are invited to participate on a usability test. In either case, a user should
be invited to participate on a usability session in order to deal with this view of
the platform. Its main goal is to assist evaluators to find, report and rate usability
issues on designs of the test. The main components of this view as shown in
figure 5.21 are the following:

5.6. TEST EVALUATION SESSION 71

• Breadcrumb: Show evaluator the path to the usability test which she/he
participates to.

• Evaluation progress badges: Messages which indicate the current availability
of test and phase of the evaluation session.

• Toggle button for a panel with a form for evaluation session’s configuration:
an evaluator can configure the viewer by defining its color theme (light, dark,
grey).

• Toggle button for a panel with the list of details about the available heuristics
collections. These details relate to title and description of each heuristic.

• Manage progress button: Evaluators are able to define the completion of a
evaluation phase.

• Viewer which contains the active design (mockup). Its dimensions depends
on the designs digital ratio, width and height (in pixels). Viewer respect the
image ratio and shrink it accordingly if at least one of image’s dimensions
overcome screens limits. Moreover, design viewer hosts the set of reported
usability issues for this digital asset.

• Usability issue popover: Popovers contain information about usability issues
according the current phase of evaluation session. The whole set of issue’s
details composed by its title, set of violated usability heuristics, a brief de-
scription of the issue and the severity rating of the its author (only after
Phase 2).

• Navigation buttons: Evaluators can browse among designs of a test during
the evaluation session.

The above components of these views fulfil the functional requirements of sys-
tem’s features on section 3.2.7.1.

72 CHAPTER 5. USPECTOR PLATFORM

Figure 5.21: Evaluation session - evaluator reports a usability issue

5.7 Utilities

5.7.1 User Profile View

Profile view contains all the personal information of a user as well as his/her pref-
erences on system settings. As shown in figure 5.22 each tab contains configuration
option of a different area of settings. More specifically, users can update the their
profile pictures, profession details, links to personal social media profiles/pages,
and their entry password. Moreover, they are able enable or disable email no-
tifications from the system. This view matches the functional requirements of
system’s features 6 and 7 on 3.2.1.

Figure 5.22: User profile view

5.7.2 Push and Email Notifications

System notifications are an important feature of the platform. Users are notified
and are interrupted from their current task only when an important event occurs,

5.7. UTILITIES 73

like an invitation for the participation on a usability test. The notifications panel
on the main top bar displays all (read and unread) notifications of a user (fig-
ure 5.23a). Moreover, a user will receive a personalised email (figure 5.23b), in
order to participate on a usability test. The following figures show the outcome
of system’s notification mechanism which has been designed and implemented in
order to conform to the functional requirements of system’s features on sections
3.2.1.5 and 3.2.1.8.

(a) Notifications on invited users (b) Email to Invited user

Figure 5.23: Push and email notifications

74 CHAPTER 5. USPECTOR PLATFORM

Chapter 6

Evaluation

The objective of this chapter is to report the set-up, the experiment and outcomes
of an evaluation that attempted to assess the Uspector platform. The main goal
of this process is to evaluate if the system assist designers to organise and evaluate
their designs. We followed the three key steps of Usability Testing as shown in
figure 6.1.

This section will present: (i) the evaluation methodology, profile of evaluators
and tools which we used (step 1) (ii) the process of the experiment (step 2) and
(iii) the findings about the usability of Uspector platform in terms of the number
and the severity of the reported usability issues (step 3).

Figure 6.1: Usability Ttesting steps of Uspector evaluation experiment

6.1 Evaluation Methodology

Before proceeding to a formal user-based evaluation of the platform we decided to
conduct a usability test using the Cognitive Walkthrough (CW) methodology [32]
in order to reveal possible major usability issues of our digital product. We followed
the steps as presented in the website of Interaction Design Foundation [20]. Our
main goal was to see whether or not a new user can easily carry out tasks within
our system. Therefore, we were looking for an extremely cost-effective, compared
to many other forms of usability testing, fast and task-oriented, in contrast to

75

76 CHAPTER 6. EVALUATION

HE which is a more holistic usability inspection, methodology to get the most
severe usability issues. One more aspect which assist to made our decision was
the fact that using the CW methodology we would drive evaluators to focus on
finding usability issues which are related to end-users’ most common tasks instead
of spending time of the evaluation trying to inspect all the system’s functionalities.

6.2 The experiment

6.2.1 Participants

Our team decided to recruit only two participants for the first usability test in
Uspector due to time limitations. A small but satisfactory number of participants
in order to reveal a significant portion of possible usability problems according
to Nielsen [45]. The task was to find participants with a specific user profile
(expertise, age, experience etc). Finally, evaluators consist of both genders (one
female and one male) and both of them belong to the age group of 30-40 years
old. Moreover, they have a high expertise on the domain of HCI. All participants
are familiar with the iterative design process and the principles of HCI as well as
the domains of version control systems and usability testing methodologies and
platforms.

The two participants’ responsibilities were to attempt to complete a set of rep-
resentative task scenarios presented to them in as efficient and timely a manner as
possible, and to provide feedback regarding the usability and acceptability of the
user interface. The participants were directed to provide honest opinions regard-
ing the usability of the application, and participated participate in post-session
debriefing sessions.

6.2.2 Use Case Scenario and Tasks

A critical task about our try to evaluate the Uspector platform was to define a
flexible, short, simple and understandable set of “connected” tasks which construct
a realistic scenario of use Uspector. This set should have represented the most
common user flows in order to get the most valuable findings about the way a
regular user would use our system, what usability issues(s) he would deal with and
what is the overall user experience.

As a result, we ended up with a set of forty four (44) tasks, with each one having
a descriptive title and a brief description. The final use case scenario browse a large
portion of the system and it is presented in Appendix A. For each one of the above
set of tasks, the following four questions [32] have been asked for each evaluator.

• Question 1 (Q1): Will the user try and achieve the right outcome?

• Question 2 (Q2): Will the user notice that the correct action is available to
them?

6.2. THE EXPERIMENT 77

• Question 3 (Q3): Will the user associate the correct action with the outcome
they expect to achieve?

• Question 4 (Q4): If the correct action is performed; will the user see that
progress is being made towards their intended outcome?

6.2.3 The process - Evaluation Sessions

The usability test that was conducted, had four stages: (i) the preparation, (ii)
the introduction, (iii) the actual test and (iv) the debriefing session.

Preparation

During the preparation stage we set-up the desktop computer to the initial state
of Uspector. We decided not to use external artefacts or recording devices, such
as cameras, microphones or one-way mirrors. As regards the practitioner of the
experiment, he only needed a pen and a paper sheet with the lists of tasks that
the evaluator should carry out during the session.

As figure 6.2a shows, the main set-up of the room consisted of a desk, a chair, a
desktop PC (display, keyboard and mouse) with a modern browser and an internet
connection. More specifically, we used a desktop PC with the operating system
Windows 10 [28] and as browser we used Chrome [23].

The participants received an overview of the usability test procedure, equip-
ment and software. Aiming to further assist the assessors with the process of
evaluation, the tasks were not written in paper sheets, as the common practice
commands, but instead they were provided to them inside Uspector itself using
an integrated popup tool as figure 6.2b shows. Participants were able to read
and navigate among tasks during sessions without time limits. There were also a
backup plan in case of an error with the relative feature of our system, which was
the use of an electronic presentation (Microsoft Office presentation).

(a) Set up of the evaluation session (b) Integrated tool for tasks presentation

Figure 6.2: Evaluation session

78 CHAPTER 6. EVALUATION

Introduction

Before the conduction of the experiment and after the preparation stage the evalu-
ators were invited in the classroom, one by one in separate sessions. We introduced
ourselves and discussed about the process,their roles and the final goal of the eval-
uation process. Subsequently, we explained to them the system’s goal as well as
product’s domain.

The Test

During the test the practitioner was observing and listening user’s actions and
suggestions carefully so that he identify user’s emotions. Finally, he was trying to
answer the four questions for each task that the evaluator should have carry out.
Moreover, he was keeping notes about possible usability issues which may or may
not have a direct relation with a specific task of the scenario. This method led to
a significant number of questions which the practitioner had the opportunity to
ask the evaluators in the debriefing session.

The Debriefing Session

The last stage was the most informal due practitioner and evaluators had a conver-
sation about their experience using the system. Part of the below findings emerged
from this session which indicates the importance of this stage in a usability test.

6.3 Evaluation Results and Findings

During the conduction of the test the participants were operating the scenario’s
tasks and at the same time the practitioner was recording not only the successful
completion of each task but also the details (about the reason) behind an unsuc-
cessful task’s completion. Each assumption about the reason of a failure based
also on participants feedback and thoughts as part of their experience with our
platform.

On table 6.1 we present details (the question (Q1-Q4) that a participant’s
actions did not ”answered” correctly) about the set of tasks (scenario of use on
Appendix A) which did not fully completed by at least one of the participants.
Moreover, we state which one of them have been resolved after a revision that has
been applied after the conduction of the usability assessment.

6.3. EVALUATION RESULTS AND FINDINGS 79

Table 6.1: Incomplete tasks of test’s scenario from at least one participant

Task
ID

Task De-
scription

Participant 1 Participant 2 Resolved

1 Log in to
the system

Q2 - Expected lo-
gin form submis-
sion on keystroke
Enter

Q2 - Big distance
between form and
trigger button

Yes

2 Change and
set the pro-
file picture

Yes cannot find up-
load button

Yes

5 Create a
new project

Q2 - Cannot find
action’s trigger
button

Q2 - Cannot find
action’s trigger
button

Yes

6 Change
application
icon of the
project

Q1 - Cannot un-
derstand what a
screen is

Q2 - Cannot find
action’s trigger
button

Yes

8 Select
and delete
screens

Q2 - Cannot find
action’s button

Yes Yes

12 Load screen
TV and
create a
screen vari-
ation using
file

Q1 - Confusion
between screen
and variation

Q2 - Cannot find
trigger button

No

13 View de-
tails for a
design

Q1 - Confusion
between screen
and variation

Cannot find trig-
ger button

No

15 Mark
project
Calmi de-
signs as
Favourite

Q2 - Cannot find
action button
”Favorite”

Yes Yes

16 Yes Q4 - Cannot view
system’s feedback

Yes Yes

21 Create a
custom set
of heuristics

Q2 - Cannot find
trigger action
button

Yes No

23 Search and
invite a user
to a test

Q3 - Cannot un-
derstand the la-
bel/signifier

Yes Yes

80 CHAPTER 6. EVALUATION

Yes

30 Report a
usability
issue

Q2 - Cannot find
the way to add an
issue upon a de-
sign

Yes No

42 Set a
screen as
a project’s
cover

Q1 - Cannot un-
derstand what a
cover means

Q2 - Cannot find
action button
”Set screen as
cover”

Yes

One of the most severe usability issue this experiment revealed is related to
the architecture of the information of Uspector platform. In particular, there are
some navigation problems based on the relations of entities Screen, Variation and
Version. Participants could not find how these pieces of information are intercon-
nected and how they are going to manage them through our platform. Several
times during the evaluation session, there was not convergence between their men-
tal and system’s models about these entities. As a result, this overall confusion
led to mistakes during their navigation in the app, in cases they were managing
screens although their intentions were to manage variations and/or versions and
and vice versa.

Similarly, one more navigation problem that was uncovered, is that partici-
pants have difficulties to find their heuristics collections. Their expectations was
to find and manage all (custom) heuristics during usability tests’ configuration
and not before. That issue refers to the relation between entities Usability test
and Heuristic Collection as those have been defined in chapter 4 about the data
modelling of Uspector platform.

Furthermore, the execution of the scenarios’ tasks by the participants uncov-
ered issues about the readability and discoverability of signifiers, icons and buttons
labels, mainly due to their small size of font.

Finally, the following notes were gathered by the us, as test organizers/moderators,
both during the evaluation session as a result of participants’ actions on several
tasks and during the debriefing sections after the end of the each experiment. In
particular, one of the participants expected to be able to define the order in which
the designs of a test will be available to the evaluators. Also, both of them en-
countered difficulties on tracking the progress of a test when they participate on
a usability test as evaluators.

In general, it was clear to participants the overall goal of Uspector platform
as well as how this system aims to assist designers during the iterative design
processes for the development of a service/product.

Chapter 7

Summary and Future Work
Directions

In this chapter we summarise the proposal of Uspector platform and present our
future directions with respect to its features and interaction paradigm.

7.1 Summary

Over the last few years, getting bigger and bigger the portion of the industry that
have recognised the role of customers’ overall user experience; before, during and
after their interaction with a service/product, for the success of a company’s goal.
At the same time, in order a company to remain competitive in the market, it needs
to apply fast-paced production processes so that it releases new features or brand
new services/products. Otherwise, customers will choose a similar service/product
from a competitor. Under those circumstances, design teams of companies and
organisations look for solutions to deal with the continuous management and us-
ability testing of the designed mockups.

To that end, this thesis presents Uspector, a web platform that aims to accom-
modate the needs of designers, practitioners and evaluators during the iterative
user-interface design process of a product. In particular, through Uspector: (i) de-
signers can organise their creative content in projects of screens, with every screen
consisting of a set of variations, and they can keep track of their evolution over
time; (ii) practitioners can efficiently organise and conduct usability experiments
using the Heuristic Evaluation methodology in order to uncover possible usability
issues of designs; and (iii) evaluators can be supported while inspecting designs for
errors.

From an engineering perspective the Uspector platform: (i) introduces a cen-
tralised storage for all design files, plus an easier way for designers to organise
(projects, define variations), search and sync their mockups, (ii) provide a version
control system so that designers track the changes of their work, (iii) offers a dash-
board to practitioners to organise, configure, conduct and analyse a usability test

81

82 CHAPTER 7. SUMMARY AND FUTURE WORK DIRECTIONS

and (iv) provide an editor to evaluators in order to report and, subsequently, rate
the severity of reported usability issues in a design.

Uspector has been tested in a case study of iterative design. In particular,
we have conducted a usability experiment using the methodology of Cognitive
Walkthrough. With the assistance of two HCI experts we identify a significant
number of usability issues regarding the visibility of several signifiers/ and buttons’
labels and the readability of important visual elements (typography issues) of
our application User Interface. An important insight was the major confusion of
evaluators about relations among Screen, Variation and Version which is a high
priority for further investigation and possible refinement. In general, the case study
has confirmed that Uspector platform could eventually assist designers to centralise
and organise (projects, screens, designs variations) their creative content, uncover
possible usability issues by conducting multiple low-cost and rapid usability tests,
as well as inspect the evolution of their work through Uspector’s version control
system.

7.2 Future Work

The Uspector platform designed and implemented using effective and broadly-used
software patterns and technologies. More specifically, using AngularJs, RESTFul
API and following Component-Based development practices Uspector has been
structured to be a modular application, a feature which assist other designers
and developers to extend its functionality by adding new features. Moreover, its
information architecture enables the addition of external building blocks which
will not affect the clarity and intuitiveness of system’s navigation.

Under those circumstances, there are some enhancements and directions which
could be followed in the continuation of platform’s development in order to em-
power practitioners in a more effective way, conduct advanced heuristic evaluation
tests and support other evaluation methodologies (user testing) as well.

7.2.1 Empower Practitioners of Usability Tests

Practitioners of usability tests are already supported by automating and acceler-
ating both the process of configuration and the process of conduction of a test.
Nevertheless, there is a big part of work related to the aggregation, cleaning and
filtering of the results after the phase 1 of a evaluation session which practitioners
are responsible to carry out. For example, after the completion of phase 1 by
all evaluators in a usability test, its practitioner should remove empty or invalid
usability issues reports, resolve typography errors on them or even merge reports
which refer to the same usability issue.

Having that in mind, an addition to the platform could be a semi-automated
mechanism which calculate the similarity probability of two reports, from the
same or different evaluators, to be a duplicate report. In case of a pair with a
probability greater than a specific threshold then system notify the practitioner

7.2. FUTURE WORK 83

and ask his/her confirmation to merge these two reports by keeping the data of
each one at the same time. A proposed algorithm to support this feature could
be to calculate the probability function mentioned above as the distance between
two spots of the reports upon a design and the intersection between the heuristics
set that each issue violates.

7.2.2 Heuristic Evaluation using Multiple Screen Variations

An equally interesting feature could be the support of an evaluation including two
or more screen variations. So far, in Uspector there is the limitation to select a
version from only one variation of a specific screen in order to include it in a us-
ability test for evaluation. Therefore, designs from two different screen’s variations
cannot exist in the same usability test. This design decision currently constrains
practitioners who want for example to examine which screen’s variation would lead
to better usability results in a specific user flow (series of screens) of their product.

System could overcome this limitation and allow practitioners to include de-
signs from different screen’s variation by inserting the notion of user paths on
which one and only one screen’s variation can be included. In that way, a usability
test would consists of a number of user paths, a number which is function of the
number of screens and the number of variation each one of them has included in a
test. For example, if we have two (2) screens with one (1) and three (3) variations
respectively then this test will consist of six (2 x 3) different user paths. Moreover,
the practitioner of a test could split the set of evaluators in six (6) subsets and
support the comparison of each path’s results.

7.2.3 Prototypes - User Testing

A major direction and challenge would be to integrate and support and other
usability methods, besides heuristic evaluation. More specifically, Uspector could
support the creation of prototypes for each project and so the conduction of user
testing on them by candidate end-users of a product.

Due to high modularity of Uspector, the design and development of this func-
tionality in the existing code-base is not difficult. More specifically, Screen Viewer
view could support one more tab panel to support Hot-spots mode in order to give
the ability to designers to “connect” their screens by defining hot-spots area on
them. As a result a connected set of designs would be a prototype of designer’s
project. Subsequently, a practitioner could conduct a usability test by either using
heuristic evaluation or user testing methodology.

7.2.4 Pilot study of Uspector platform

A more extended and complete usability evaluation experiment should be con-
ducted on Uspector tool. In particular, a second round of the evaluation test that
we conducted have to be conducted with a bigger set of participants (up to five),
in order to validate the changes that the results of the first round had triggered.

84 CHAPTER 7. SUMMARY AND FUTURE WORK DIRECTIONS

Moreover, a user testing with end users, who will be professional designers and
usability testing coordinators, could be conducted in order to reveal extra possible
usability problems in the overall user experience that Uspector platform offer to
its users.

Bibliography

[1] AngularJS — Superheroic JavaScript MVW Framework. https://

angularjs.org/. [Online; accessed 4-May-2019].

[2] Daprota M2 MongoDB Data Modeling Adviser.

[3] The digital design toolkit.

[4] Express - Node.js web application framework. https://expressjs.com/.
[Online; accessed 4-May-2019].

[5] Figma: the collaborative interface design tool. https://www.figma.com/.
[Online; accessed 4-May-2019].

[6] Folio - Simple visual version control tool for Mac based on Git. http://

folioformac.com. [Online; accessed 6-May-2019].

[7] Git. https://git-scm.com/. [Online; accessed 9-May-2019].

[8] GitHub - angular-fullstack/generator-angular-fullstack: Yeoman genera-
tor for AngularJS with an Express server. https://github.com/

angular-fullstack/generator-angular-fullstack. [Online; accessed 4-
May-2019].

[9] InVision | Digital product design, workflow & collaboration. ttps://www.

invisionapp.com/. [Online; accessed 6-May-2019].

[10] Kactus. https://kactus.io/. [Online; accessed 23-April-2019].

[11] Mongoose ODM v5.5.5. https://mongoosejs.com/. [Online; accessed 4-
May-2019].

[12] The most popular database for modern apps. https://www.mongodb.com/.
[Online; accessed 4-May-2019].

[13] Simple and powerful media asset management. https://pics.io/hello.
[Online; accessed 4-May-2019].

[14] Sketch version control & design workflow management.

85

86 BIBLIOGRAPHY

[15] Streamline your interface review process – Capian. https://capian.co/.
[Online; accessed 8-May-2019].

[16] Trunk Version Management Software For Designers.

[17] UX Check. https://www.uxcheck.com. [Online; accessed 8-May-2019].

[18] UX Quiz. http://uruit.com/ux-quiz/. [Online; accessed 8-May-2019].

[19] Versions: Git for Designers.

[20] How to Conduct a Cognitive Walkthrough . https:

//www.interaction-design.org/literature/article/

how-to-conduct-a-cognitive-walkthrough, 2019. [Online; accessed
20-October-2019].

[21] New file format in Sketch 43 . https://sketchplugins.com/d/

87-new-file-format-in-sketch-43, 2019. [Online; accessed 20-October-
2019].

[22] Balsamiq - a wireframing tool. https://balsamiq.com/, 2019. [Online; ac-
cessed 20-October-2019].

[23] Chrome browser. https://www.google.com/chrome/, 2019. [Online; ac-
cessed 20-October-2019].

[24] Go Visually. https://govisually.com/, 2019. [Online; accessed 20-October-
2019].

[25] MIT - License. https://opensource.org/licenses/MIT, 2019. [Online;
accessed 20-October-2019].

[26] Mockflow tool. https://mockflow.com/, 2019. [Online; accessed 20-October-
2019].

[27] Plant – version control app and Sketch plugin for designers. https://

plantapp.io/, 2019. [Online; accessed 6-May-2019].

[28] Windows 10. https://www.microsoft.com/el-gr/windows/, 2019. [Online;
accessed 20-October-2019].

[29] Terence S. Andre, H. Rex Hartson, Steven M. Belz, and Faith A. Mccreary.
The user action framework: a reliable foundation for usability engineering
support tools. International Journal of Human-Computer Studies, 54(1):107–
136, January 2001.

[30] Carmelo Ardito, Rosa Lanzilotti, Paolo Buono, and Antonio Piccinno. A tool
to support usability inspection. volume 2006, pages 278–281, 01 2006.

BIBLIOGRAPHY 87

[31] Robert W. Bailey, Robert W. Allan, and P. Raiello. Usability testing vs.
heuristic evaluation: A head-to-head comparison. Proceedings of the Human
Factors Society Annual Meeting, 36(4):409–413, 1992.

[32] Marilyn Blackmon, Peter Polson, Muneo Kitajima, and Clayton Lewis. Cog-
nitive walkthrough for the Web. volume 4, pages 463–470, April 2002.

[33] A. S. Carter and C. D. Hundhausen. How is User Interface Prototyping
Really Done in Practice? A Survey of User Interface Designers. In 2010 IEEE
Symposium on Visual Languages and Human-Centric Computing, pages 207–
211, September 2010.

[34] Chattratichart, Jarinee, Jacqueline Brodie, and Jacqueline. Extending the
heuristic evaluation method through contextualisation. Human Factors and
Ergonomics Society Annual Meeting Proceedings, 46:641–, 09 2002.

[35] Jarinee Chattratichart and Gitte Lindgaard. A Comparative Evaluation of
Heuristic-based Usability Inspection Methods. In CHI ’08 Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’08, pages 2213–2220, New
York, NY, USA, 2008. ACM. event-place: Florence, Italy.

[36] +Piyas De. Single Page Application with Angular.js, Node.js and MongoDB
(MongoJS Module).

[37] A. Dhouib, A. Trabelsi, C. Kolski, and M. Neji. A classification and compari-
son of usability evaluation methods for interactive adaptive systems. In 2016
9th International Conference on Human System Interactions (HSI), pages
246–251, July 2016.

[38] User focus. Userfocus - 20 search usability guidelines. https://www.

userfocus.co.uk/resources/searchchecklist.html, 2019. [Online; ac-
cessed 20-October-2019].

[39] Node js Foundation. Node.js. https://nodejs.org/en/. [Online; accessed
4-May-2019].

[40] V. Grigoreanu, R. Fernandez, K. Inkpen, and G. Robertson. What designers
want: Needs of interactive application designers. In 2009 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), pages 139–146,
September 2009.

[41] Ling, Guanhua Chen, Salvendy, and Gavriel. Extension of heuristic evaluation
method:a review and reappraisal. Ergonomia - An International Journal of
Ergonomics and Human Factors (IJE, 27:179–, 01 2005.

[42] Rolf Molich and Jakob Nielsen. Improving a human-computer dialogue. Com-
mun. ACM, 33(3):338–348, March 1990.

88 BIBLIOGRAPHY

[43] Mark W Newman and James A Landay. Sitemaps, Storyboards, and Specifi-
cations: A Sketch of Web Site Design Practice. page 12.

[44] Jakob Nielsen. Enhancing the explanatory power of usability heuristics. In
Proceedings of the SIGCHI conference on Human Factors in Computing Sys-
tems, pages 152–158. ACM, 1994.

[45] Jakob Nielsen and Thomas K. Landauer. A mathematical model of the finding
of usability problems. In Proceedings of the INTERACT ’93 and CHI ’93
Conference on Human Factors in Computing Systems, CHI ’93, pages 206–
213, New York, NY, USA, 1993. ACM.

[46] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In Pro-
ceedings of the SIGCHI conference on Human factors in computing systems
Empowering people - CHI ’90, pages 249–256, Seattle, Washington, United
States, 1990. ACM Press.

[47] Stephen Oney, John Barton, Brad Myers, Tessa Lau, and Jeffrey Nichols.
Playbook: Revision Control and Comparison for Interactive Mockups. In
Maria Francesca Costabile, Yvonne Dittrich, Gerhard Fischer, and Anto-
nio Piccinno, editors, End-User Development, volume 6654, pages 295–300.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[48] Fatih Kursat Ozenc, Miso Kim, John Zimmerman, Stephen Oney, and Brad
Myers. How to support designers in getting hold of the immaterial material
of software. In Proceedings of the 28th international conference on Human
factors in computing systems - CHI ’10, page 2513, Atlanta, Georgia, USA,
2010. ACM Press.

[49] Helen Petrie and Lucy Buykx. Collaborative heuristic evaluation: improving
the effectiveness of heuristic evaluation. 11 2019.

[50] usabiliTEST. usabiliTEST: Products. https://www.usabilitest.com. [On-
line; accessed 8-May-2019].

Appendix A

Evaluation process - Scenario of
use

Table A.1: Set of tasks

Task id Description

1 Log in to the system using the credentials:
• username: practitioner@test.abc
• password: practitioner

2 Change and set the profile picture using the following file: “profile-
picture.png”

3 Turn off email notifications
4 Create a new project.
5 Give to this new project the followings details:

• Name: Calmi
• Description: Calmi is a master thesis at HCI lab

6 Change application icon of the project using the following file:
“calmi app icon.png”

7 Create five (5) screens in the project using the following files (from folder
v1):
• “History - v1.2.1.png”
• “Home–v1.1.png”
• “Notifications - v1.png”
• “Program - v1.5.png”
• “Users-v1.png”

89

90 APPENDIX A. EVALUATION PROCESS - SCENARIO OF USE

8 Select and delete the following screens:
• History - v1.2.1
• Notifications – v1

9 Rename the following screens:
• Home – v1.1 to Home page
• Program – v1.5 to Program page
• Users - v1 to Users page

10 Enlarge the titles of the screens, order screens reverse-alphabetically
11 Create a new screen using file “v1 / TV - A – v1.png” and the following

details:
• Screen name: TV
• Variation name: Variation A

12 Load screen TV and create a screen variation using file “v1 / TV - B –
v1.png” and the following details:
• Variation name: Variation B
• What differs this variation from others?: Dark theme

13 View details for the design: Program - variation A - iteration 1
14 Rename project Calmi to: Calmi designs
15 Mark project Calmi designs as Favorite
16 Create a custom set of heuristics with the name “Mobile Heuristics” and

add the following heuristic:

• First heuristic
• Title: Prioritisation of Function Over Form
• Description: Design decisions are driven by what an element is meant

to do rather than prioritising its visual style

17 Second heuristic
• Title: Availability of Information
• Description: The strategic placement of interface elements at users’

fingertips so they don’t have to rely on memory

18 Create a usability test with the following details:
• Name: HE – calmi
• Project: Calmi – designs
• Type: Heuristic evaluation

91

19 Configure and save general settings of test HE – Calmi with the following
details:
• Phase 1 deadline: 20/04/2019
• Phase 2 deadline: 30/04/2019
• Severity rating scale: Nielsen

20 Use the following sets of heuristics in the test:
• Nielsen
• Mobile – Heuristics

21 Include the following designs in the test:
• Home page: variation A - iteration 1
• Program page: variation A - iteration 1

22 Change the selected design for the screen TV: Select Variation B, Iteration
1 and include it for evaluation in the usability test

23 Search and invite “evaluator@evaluator.abc” to evaluate test HE – Calmi
Start test

24 You want to login to the system using the following credentials:
• Email: evaluator@evaluator.abc
• Password: evaluator

25 Read new notifications
26 Accept the invitation from user practitioner for participation in the us-

ability evaluation of test HE – Calmi
27 Begin the evaluation of test HE - Calmi
28 Report the following usability issues:

• Screen: Program Page
• Title: Small negative space between two action buttons
• Heuristics: Error prevention
• Description: The negative space between action button “more” and

select program button is too small which will drive to high error
rates from user

29 Report the following usability issue:
• Screen: Home Page
• Title: Wrong font on title
• Heuristics: Consistency and standards
• Description: Font of page title should be consistent with the main

font of the system

92 APPENDIX A. EVALUATION PROCESS - SCENARIO OF USE

30 Report the following usability issue:
• Screen: TV Page
• Title: Not relevant icon - label on menu item
• Heuristics: Match between system and the real world
• Description: The combination of smile icon and label “Program”

do not indicate the functionality of finding a collection of possible
media which will relax user

31 Complete phase 1 of evaluation
32 View the progress of all evaluators in test HE – Calmi

Specifically, in which phase of evaluation each one is working on
33 Proceed to evaluation phase 2 of the usability test HE – Calmi
34 Rate each of the reported usability issues in all designs of the test with

the following:
• Screen: Program Page
• Severity: Cosmetic problem only: need not be fixed unless extra

time is available on project
• Suggested solution: Use the same font for all content across the pages

of the screen

35 Screen: Home Page
• Severity: Major usability problem: important to fix, so should be

given high priority
• Suggested solution: -

36 Screen: TV Page
• Severity: Minor usability problem: fixing this should be given low

priority
• Suggested solution: -

37 Complete the evaluation phase 2 and then logout
38 Load screen Home page and view existing usability issues
39 Use the file “v2/Home – v2.1.png” to create a new iteration for variation

Variation A of screen Home Add the following details:
• What you were working at ?:
• Resolve existing issues about color contrast of graph

40 Mark variation Variation B of screen TV as the Final variation
41 Mark screen Home as ready
42 Set screen TV as cover of project Calmi designs
43 View the workflow of project Calmi designs
44 Archive project Calmi designs and then logout.

