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Power and Performance Analysis of Key-Value Stores
on ARM and x86 Based Servers

Abstract

With the current rate of data growth, processing needs are becoming difficult
to fulfill due to CPU power and energy limitations. Data serving systems and
especially persistent key-value stores have become a substantial part of data pro-
cessing stacks in the data center, providing access to massive amounts of data for
applications and services. Key-value stores exhibit high CPU and I/O overheads
because of their constant need to reorganize data on the devices.

In this master thesis, we examine the efficiency of two key-value stores on
four servers of different generations and with different CPU architectures. We
use RocksDB, a key-value that is deployed widely, e.g. in Facebook, and Kreon,
a research key-value store that has been designed to reduce CPU overhead. We
evaluate their behavior and overheads on an ARM-based microserver and three
different generations of x86 servers. Our findings show that microservers have
better power efficiency in the range of 0.68-3.6x with a comparable tail latency
and they incur 1.1-2.7x lower energy cost. However, microservers to be more cost-
effective they need to have a purchase price several times lower, and typically
around or more than 3x, than higher end servers.





Ανάλυση Ισχύος και Απόδοσης Συστημάτων

Αποθήκευσης Ζευγαριών Κλειδιού-Τιμής σε

Διακομιστές Βασισμένους σε ARM και x86

Περίληψη

Ο συνεχώς αυξανόμενος ρυθμός παραγωγής δεδομένων, καθιστά την ολοκλήρω-

ση της επεξεργασίας τους όλο και πιο δύσκολη λόγω των περιορισμών σε ισχύ και

ενέργεια στα κέντρα δεδομένων. Τα συστήματα εξυπηρέτησης δεδομένων και ιδίως

τα συστήματα μόνιμης αποθήκευσης ζευγαριών κλειδιού-τιμής αποτελούν σημαντι-

κό μέρος της επεξεργασίας δεδομένων στα μοντέρνα κέντρα δεδομένων, παρέχοντας

πρόσβαση σε δεδομένα για εφαρμογές και υπηρεσίες. Τα συστήματα αποθήκευσης

ζευγαριών κλειδιού-τιμής αυξάνουν τον φόρτο του επεξεργαστή και των συσκευών

αποθήκευσης λόγω της συνεχούς τους ανάγκης για αναδιοργάνωση των δεδομένων.

Σε αυτή τη μεταπτυχιακή εργασία, εξετάζουμε την αποδοτικότητα δύο συστημάτων

αποθήκευσης ζευγαριών κλειδιού-τιμής σε τέσσερις διαφορετικές γενιές διακομιστών

με διαφορετικές αρχιτεκτονικές επεξεργαστών. Χρησιμοποιούμε την RocksDB, ένα
σύστημα αποθήκευσης ζευγαριών κλειδιού-τιμής που χρησιμοποιείται ευρέως, π.χ.

στην Facebook, και το Kreon, ένα ερευνητικό σύστημα αποθήκευσης ζευγαριών
κλειδιού-τιμής που έχει σχεδιαστεί για να μειώνει τον φόρτο του επεξεργαστή. Μέσα

από τη μελέτη μας, αξιολογούμε τη συμπεριφορά των δύο συστημάτων και την επι-

βάρυνση που προκαλούν στον επεξεργαστή και στις συσκευές αποθήκευσης. Εξε-

τάζουμε ένα μίκρο-διακομιστή ARM και τρεις διαφορετικές γενιές διακομιστών x86.
Τα αποτελέσματα της αξιολόγησής μας, δείχνουν ότι οι μίκρο-διακομιστές έχουν 0.68-
3.6x καλύτερη απόδοση ισχύος με συγκρίσιμο χρόνο καθυστέρησης και 1.1-2.7x χα-
μηλότερο κόστος σε ενέργεια. Ωστόσο, το συνολικό κόστος των μίκρο-διακομιστών

είναι καλύτερο, μόνο όταν η τιμή αγοράς τους είναι σημαντικά, π.χ 3 φορές, χαμη-

λότερη των τυπικών διακομιστών.
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Chapter 1

Introduction

Projections for data growth show that data doubles roughly every two years [25]
leading to high demand for more processing capacity to serve and process the
data. Given current technology limitations for power and energy [13, 15], this
increasing demand for CPU cycles can only be satisfied by increasing the processing
density within existing power and energy budgets. One approach to achieve this,
is to execute certain classes of applications in microservers rather than high-end
servers. Microservers include CPUs with different, lower-power designs, such as
ARM processors, compared to typical data center servers that use higher-end Intel
or AMD processors.

Previous research [20, 4, 6, 23, 16] has examined the benefits of running ap-
plications on microservers and in certain cases microservers have been deployed
in production setups [14], [26]. These previous works use mobile, desktop, web
server, database, and other workloads to examine performance and energy trade-
offs.

Persistent key-value (KV) stores are a main component of data analytics stacks
and data access frameworks in general [9, 7, 2, 3, 14, 12, 10]. Typically, persistent
KV stores are complex systems because they constantly re-organize data on storage
devices to achieve high data rates for write, scan, and read operations. As such,
each user-initiated operation in KV stores requires several thousands of CPU cycles
in the common path [22]. Recently, new designs for KV stores have emerged that
trade storage device efficiency for CPU efficiency, in an effort to increase data
serving density [21, 14].

In this master thesis we explore the use of microservers to increase data serv-
ing density with persistent KV stores. We use two KV stores: RocksDB [10], a
persistent KV store from Facebook that is widely deployed in production setups.
Furthermore, we use Kreon [22], a research key-value store that reduces CPU
overhead and therefore CPU cycles for each KV operation. In order to provide a
thorough analysis, we use four different, server-grade systems that span a broad
range of processor architectures, memory hierarchy characteristics, and fabrication
process technologies. We run YCSB [8] using the default workloads that cover a
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2 CHAPTER 1. INTRODUCTION

wide range of cloud use-cases.
We evaluate power efficiency, absolute performance, and architectural charac-

teristics that affect performance and tail latency. We use one ARM microserver
and three different generations of data center x86 servers. These servers cover a
wide range of fabrication processes technology, micro-architectural features, and
amount of processing and memory resources. For performance experiments we
carefully select KV store configuration setups to make our evaluation realistic.
For power measurements we use a power monitor connected right after the power
supply unit (PSU). For both performance and power measurements we perform a
large number of experiments and we present the most relevant data. Finally, we
also provide an analysis for how different server types contribute to the total cost
of ownership in data centers when used for data serving. Our results show that
microservers:

1. Are 0.68-3.6x times more power efficient.

2. Result in a 1.27-5.3x lower absolute performance where a major factor to
performance is memory (DRAM) throughput.

3. Do not have a big impact to tail latency.

4. Have on average 1.1-2.7x lower energy cost.

5. Are more cost-effective if they have a purchase price around 3x lower than
high-end servers.

The rest of the master thesis is organized as follows. Section 2 compares our
work with related research. Section 3 presents our experimental methodology
and Section 4 presents our experimental analysis. Finally, Section 5 presents an
analysis for energy and equipment costs and Section 6 concludes our master thesis.



Chapter 2

Related Work

Previous work has compared microservers and high-end servers in terms of per-
formance and energy consumption. The authors in [11] show that current high-
end Out-Of-Order processor micro-architectures are inefficient for running scale-
out (cloud) workloads. They use performance counters to identify key micro-
architectural needs for these workloads and sources of inefficiency. Also, authors
in [6] revisit the RISC vs. CISC architecture using mobile, desktop, and server
workloads. They find that RISC and CISC ISAs are irrelevant to power and
performance characteristics of modern cores, whereas micro-architectural features
have an important impact on them. In our work we use performance monitor
counters with the difference that we want to identify micro-architectural features
that affect the performance and power of KV stores. Moreover, we examine how
micro-architectural features affect tail latency of KV stores.

Also, authors in [4] and [20] compare x86 and ARM architectures in terms
of power efficiency for web server, database, and other workloads. They con-
clude that x86-based servers are more efficient for compute-intensive workloads
and ARM-based servers are advantageous in computationally lightweight appli-
cations in terms of power efficiency. One major difference from our work is that
we use KV stores and we evaluate them in an ARM server (not mobile) and x86
real deployed servers. Another difference is that we show how micro-architectural
features affects performance.

In [1], the authors show that low-power embedded nodes with flash storage can
deliver over an order of magnitude more queries per joule for random read-intensive
workloads using a custom KV store on a custom cluster. Also in [14] they use a
custom KV store that runs to a customized compact server design based on ARM
processors and they show that is reliable, highly scalable and cost-effective. In con-
trast, in our work we use two persistent key-value stores, one research (Kreon [22])
and one widely deployed in production products (RocksDB [10]) and we run them
on a range of commodity servers.

Authors in [16] show that x86 servers are more energy efficient in I/O-intensive
workloads and ARM servers are more energy efficient for database query processing

3
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with slightly lower performance. They present a total cost of ownership (TCO)
analysis and they find out that an ARM-based cluster has lower TCO except
for I/O intensive workloads, where it incurs 50% higher TCO compared to an
x86-based cluster. Furthermore, authors in [20] use a monthly cost model to
analyze cost-efficiency of ARM and x86-based data centers. They conclude that
from the perspective of cost-efficiency ARM-based data centers are advantageous
for computationally lightweight applications. In our work, we calculate energy
cost (dollars per hour) to show the most cost efficient server type for KV stores.
Furthermore, we include purchase price and depreciation time of server and we use
a wide range of prices, 3, and 5 years depreciation time in order to see how these
two affect total cost.



Chapter 3

Experimental Methodology

In this section we describe our experimental setups and how we perform our mea-
surements.

Table 3.1: Our evaluation servers and their hardware components.

CPU

(all 64-bit)

#

chips

Fabrication

technology
ISA

#

cores

#

Threads

Clock

GHz

L1

KB/core

L2

KB/2core

L3

MB/chip

DRAM x DIMM

GB

S1
X-Gene 1

ARMv8
1 40 nm ARM 8 8 2.40 32 256 8

16x1=16

DDR3

S2
Xeon(R)

E5520
2 44 nm x86 8 16 2.27 32 256 8

2x6=12

DDR3

S3
Xeon(R)

E5620
2 32 nm x86 8 16 2.40 32 256 12

2x12=24

DDR3

S4
Xeon(R)

E5-2630 v3
2 22 nm x86 16 32 2.40 32 256 20

32x8=256

DDR4

3.1 Server characteristics

In our work we use four different types of servers that span a broad range of
processor architectures, memory hierarchy characteristics, and fabrication process
technologies. Table 3.1 summarizes the characteristics of each server. Server S1 is
an ARM-based server, whereas servers S2, S3, and S4 are x86 servers of different
generations. All servers have similar clocks (2.27-2.4 GHz), similar size of L1 cache
per core (32KB), and similar L2 cache size (256KB), shared in all cases by a pair
of cores. L3 cache is shared by the whole chip and the normalized per-core size
is similar. Servers S2, S3, and S4 have two NUMA nodes while S1 has a single
NUMA node. The number of DIMMs and the total DRAM size differ in all cases,
as shown in Table 3.1. Finally, servers S1 and S2 use similar fabrication process
technology (40-44 nm), S3 uses a 32 nm process, and S4 uses a 22 nm process.
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6 CHAPTER 3. EXPERIMENTAL METHODOLOGY

Table 3.2: Memory (DRAM) throughput for one thread and a number of threads
equal to the number cores in the server, as measured with STREAM [17].

#threads=1 #threads=#cores #threads=64
GB/s GB/s GB/s

S1 7.7 8.6 8.5

S2 9.0 21.5 21.2

S3 9.4 23.9 23.5

S4 14.2 68.9 60.6

We perform various point-to-point comparisons among these servers to identify
characteristics that have an impact on system performance and power efficiency.
To minimize the impact of the software stack, all servers run the same Linux kernel
(version 4.4) with the same version of the GCC compiler (version 4.8) toolchain.
Finally, all servers are equipped with the same type of NVMe storage device, a
Samsung 950 PRO 256GB.

For calibration purposes we measure the memory throughput in each server
using the STREAM [17] memory benchmark with an increasing thread count.
Table 3.2 shows these results for the Triad scenario.

3.2 KV stores

RocksDB [10] is an LSM-based persistent key-value store that is widely used in
production at Facebook. Is is optimized for fast storage but it can be also used
for hard disk drives. It contains multiple levels of increasing size where keys are
sorted within each level. Each level is divided in multiple units of fixed size named
SSTable (SST) and each of them is stored in a separate file.

In RocksDB, the first level is stored in memory (named memtable) and when it
becomes full it is flushed in first levels SSTs. In order to provide write amortization,
in keep the ratio between 2 successive levels to be less that 10x. In the case where
the ratio exceeds this value, a compaction is triggered. A compactions merges
SSTs of level Li with SSTs of the next level (LI+1). RocksDB interacts with
storage when it writes a memtable to the device, creating a new SST and during
compactions. In both cases it uses read-write API to access files.

Kreon [22] is a persistent write-optimized key-value store designed for flash
storage. The main design tradeoff is that it increases I/O randomness in order
to reduce CPU overhead and I/O amplification. To achieve this, Kreon uses a
write-optimized data structure and memory-mapped I/O.

Kreon uses a multi-level indexing data structure similar to the LSM-Tree [19],
with levels of increasing size. This enables batched data transfers to lower levels to
amortize insert costs. Kreon uses a per-level full index (B-tree) to enable partial
data reorganization which reduces I/O amplification and CPU overhead. Further-
more, Kreon stores key-value pairs in an append-only log to avoid data movement
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during spill (merge) operations.

Kreon uses memory-mapped I/O to further reduce CPU overheads related to
the I/O cache in three ways: (a) It eliminates cache lookups for hits by using valid
virtual memory mappings. Accesses to data that are not in memory result in page
faults that are then handled by Linux kernel. (b) Read/write system calls require a
data copy between user and kernel space for protection purposes. Memory-mapped
I/O removes the need for data copies when performing I/O. (c) Memory-mapped
I/O uses a single address space for both memory and storage, which eliminates the
need for pointer translation between them. Therefore, this approach removes the
need for serialization and deserialization when transferring data between memory
and storage.

3.3 Workloads

We run a C++ version of YCSB [24, 8] using the proposed workloads in the
recommended sequence: Load the database, run workloads in order A, B, C, F,
and D, clear the database, load the database again and run workload E. In all cases
the key is about 30 bytes and the value is 1000 bytes. We use datasets that fit in
main memory for all servers, since we are mainly interested in CPU efficiency.

For our analysis, we run two different experiments for both key-value stores.
For Kreon the first experiment uses a single YCSB thread and a single Kreon table
with a dataset of 3M records that fits in memory and does not cause I/O traffic
(no snapshots) for all servers. We run this experiment to identify the performance
and energy characteristics of the core’s architecture. In the second experiment
for Kreon we run YCSB with multiple threads to identify server performance and
power consumption under high utilization. In this case, the duration of each run
for 3M records is short, which does not allow us to observe server performance
under steady state. For this reason, and since servers have different main memory
sizes, we use for each server a dataset proportional to its memory. We use 350K
records per 1GB of DRAM i.e., 2.4M for S1, 4.2M for S2, 8.4M for S3, and 89.6M
for S4. Finally, we use 64 YCSB threads and 32 Kreon tables in all cases to keep
all servers at high CPU utilization.

For RocksDB the first experiment uses a single YCSB thread and one database
with dataset of 6M records. We enable direct I/O with 2GB block cache. In this
experiment we identify the performance and energy characteristics of the core’s
architecture with I/O traffic. In the second experiment for RocksDB we run YCSB
with multiple threads again with direct I/O. To avoid thread contention and keep
utilization high we choose to keep the number of YCSB threads equal to the
number of hardware threads for all servers (S1 does not support hardware threads
and therefore, this is the number of cores). We use a number of databases equal
to half the number of YCSB threads.

Since our interest is CPU behavior, in our experiments we try to maintain
similar I/O behavior across servers. For this purpose, we configure the datasets in a
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Table 3.3: Workloads used with YCSB. All workloads use Zipf distribution except
for D that uses latest distribution.

Workload

A 50% reads, 50% updates
B 95% reads, 5% updates
C 100% reads
D 95% reads, 5% inserts
E 95% scans, 5% inserts
F 50% reads, 50% read-modify-write

manner where the LSM multi-level structure exhibits the same I/O behavior across
servers: We use 4 databases and 5M records for S1, 8 databases and 10M records
for S2/S3, and 16 databases and 20M records for S4. With these parameters, the
number of flushes and compactions for each workload are the same for each server.
Finally, we adjust the size of block cache, to fit the same amount of dataset for
each server i.e, 2GB for S1, 4GB for S2/S3 and 8GB for S4.

3.4 Power measurements

We measure power for all platforms with a Microchip MCP39F511A Power Monitor
Demonstration Board [18]. The Power Monitor is connected right after the power
supply unit (PSU), which converts the AC wall socket supply to DC. It reports
mean power readings every second. This measures the total power of the board,
including CPU, memory, and storage devices.

We also use the Linux kernel perf tool to collect and analyze performance
monitor counters (PMC) that are available in all servers. We calculate branch
miss ratio, instructions per cycle (IPC), and Last-Level-Cache (LLC) (i.e. L3)
miss ratio. We perform our calculation based on reading from the following PMCs:
branches, branch misses, instructions, cycles, L3 cache references and L3 cache
misses. The ARM-based server S1 has limited set of performance counters and it
is does not provide counters for the LLC (L3).



Chapter 4

Experimental Analysis

In this section we focus our analysis around four main questions:

• Which server architecture is more power efficient?

• Which server architecture achieves the highest absolute throughput?

• Which micro-architectural features (do not) matter?

• Does server performance translate to tail latency benefits?

Next, we discuss each of these in detail.

4.1 Which server architecture is more power efficient?

We measure power efficiency as ops/joule in all servers for both KV stores (Fig-
ure 4.1). Figures 4.1a and 4.1c show the efficiency of each server for Kreon and
RocksDB under high utilization, above 80% in all runs shown. First, for both KV
stores, we can categorize servers in two groups: S2, S3 and S1, S4. We see that
S1 and S4 are more power efficient than S2 and S3 for both KV stores. Compared
to servers S2 and S3, S1 executes 1.6-3.6x more ops/joule for Kreon and 1.8-3x
more ops/joule for RocksDB. Similarly, compared to S2 and S3, S4 achieves 2.1-
2.7x more ops/joule for Kreon and 1.4-2.5x more ops/joule for RocksDB. We note
that servers S2, S3 have the same architecture as S4, but differ significantly in
fabrication process technology (Table 3.1).

Between S1 and S4 there is greater variance. S4 has both a more aggressive
architecture and more recent fabrication process (22nm for S4 vs. 40nm for S1).
However, S1 achieves between 0.68-1.47x more ops/joule for Kreon and between
0.96-1.87x for RocksDB. We notice that S1 is better at writes (Load A, Load E)
for both KV stores except Load E at Kreon that is slightly worse. Finally, S4
achieves always slightly more operations per joule in scans (Run E).

Figures 4.1b and 4.1d depict ops/joule for the single-threaded experiment
(one YCSB thread and one database) for both KV stores. This experiment shows

9



10 CHAPTER 4. EXPERIMENTAL ANALYSIS

the behavior of a single thread with abundant resources, including shared micro-
architectural resources, memory throughput, caches, I/O. We notice that a single
thread in server S1 is more power efficient compared to a single thread in server
S4 by 1.46-1.86x for Kreon and by 1.03-1.74x for RocksDB.
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Figure 4.1: Power efficiency (ops/joule) for Kreon (top) and RocksDB (bottom).

Compared to S2 and S3, S1 exhibits single-thread efficiency (ops/joule) between
1.89-2.55x for Kreon and 1.79-2.81x for RocksDB. Compared to S2 and S3, S4
achieves a single-thread efficiency (ops/joule) between 1.06-1.45x for Kreon and
1.49-2.06x for RocksDB. Therefore, despite its older fabrication process, S1 is
more power efficient compared to S2 and S3, than S4.
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Finally, between servers S2 and S3 we do not observe any significant differences
in ops/joule in both the high-utilization and single-thread experiments. Their CPU
architectures are similar, they both have 2 NUMA nodes and they have about the
same fabrication process.

Overall, server S1 is better by 0.68-3.6x in terms of ops/joule in all our ex-
periments for both KV stores, despite the fewer resources and older fabrication
technology.

4.2 Which server architecture achieves the highest ab-
solute throughput?

Figures 4.2a and 4.2c show absolute performance expressed in kops/s. We see
that servers of different generations exhibit significant differences in performance
for KV stores up to 5.3x. In Kreon, S1 exhibits up to 5.3x worse performance
(kops/s) compared to S4 and between 1.34-2.0x worse performance compared to
S2 and S3. Servers S2 and S3 have approximately the same absolute performance
and 2.0-2.7x worse compared to S4. In RocksDB, S1 exhibits 1.75-3.23x fewer
kops/s compared to S4 and 1.27-2.2x lower performance compared to S2 and S3.
S4 achieves 1.24-2.2x higher performance compared to S2 and S3.

Next, we examine the achieved IPC per core (not per hardware thread). Fig-
ure 4.2b shows that IPC follows the same trend as absolute performance across all
servers. S4 achieves the highest IPC among all servers in the range of 1.46-2.38,
whereas S1 achieves the lowest IPC in the range of 0.64-1.03. If we multiply IPC
with the number of cores in each server, we approximately get the same trend as
absolute performance.

Figure 4.3a captures single thread performance for each server type. It mea-
sures absolute performance (ops/s) with a single YCSB thread assigned to one
core. We see that a single thread in S1 performs 1.34-1.76x worse than S2, S3.
Compared to S4, S1 has 1.9-2.1x lower throughput. Finally, S4 compared to S2,
S3, achieves 1.3-1.4x higher throughput. This experiment, with all resources avail-
able to one thread, shows (Figure 4.3b) that S1 achieves again the lowest IPC,
between 0.73-1.07. Server S4 achieves the highest IPC between 1.72-2.09. We
get the same trend across servers, as single thread performance. In comparison
in multi-threaded experiments, the differences in absolute performance and IPC
between servers decreases, compared to single-thread experiment.

4.3 Which micro-architectural features (do not) mat-
ter?

Next, we examine CPU performance counters for several events to identify sources
of performance differences. We study branch and L3 cache miss ratios, and the
impact of hardware multi-threading, as shown in Figure 4.4. We perform these
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Figure 4.2: Multi-threaded absolute performance and IPC for Kreon (top) and
RocksDB (bottom), under high CPU utilization.

measurements for both multi-threaded and single-threaded experiments for each
server. Results are averages across all cores.

Branch misses Figures 4.4a and 4.4c show that the branch miss ratio does
not exceed 3.18% for all servers and workloads for both KV stores. We observe
that S4 has significantly lower branch miss ratio compared to the other servers
and in most cases it incurs less than 50% of the misses. However, given the
overall low branch miss ratio, this does not contribute significantly to the observed
performance differences.
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Figure 4.3: Single-thread absolute performance and IPC for Kreon (top) and
RocksDB (bottom).

L3 misses As a note, L3 miss ratio is not available for S1 because of counter
limitations on the specific platform. Figures 4.4b and 4.4d show that the L3
miss ratio differs between 1-6% of L3 references across servers for both Kreon and
RocksDB. Although total L3 cache sizes differ across servers, the amount of L3
cache per core is about the same: S1 and S2 have 1 MB/core, whereas S3 and S4
have 1.5 and 1.25 MB/core, respectively, resulting in similar L3 miss ratios.

To examine how larger L3 caches and other components contribute to perfor-
mance, we run the single-threaded experiment, with a single YCSB thread assigned
to one core. Figure 4.5a shows that the L3 cache miss ratio differs up to 6% of
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(c) RocksDB branch miss ratio
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Figure 4.4: Performance monitor counter measurements for branch and L3 cache
miss ratio in multi-threaded experiment for Kreon (top) and RocksDB (bottom).

all L3 cache references among all servers for both KV stores. This difference is
similar to multi-threaded runs (Figures 4.4b and 4.4d), although in this case the
per core L3 size differs significantly across servers. Therefore, L3 cache size does
not contribute significantly to performance.

Hardware multi-threading S1 supports a single hardware thread per-core
while S2, S3, and S4 have hyper-threading and thus they provide two hardware
threads per-core. We perform the experiment of Figure 4.2a with hyper-threading
disabled. We find that servers S2 and S3 perform 1.22-1.31x fewer kops/s, com-
pared to the same experiment with hyper-threading enabled, whereas S4 performs
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Figure 4.5: Single-thread L3 miss ratio for Kreon and RocksDB.

1.15-1.22x fewer kops/s. Similarly, IPC with hyper-threading disabled, has a drop
of 1.22-1.34x and 1.16-1.29x for servers S2/S3 and S4 respectively. This shows
that using twice the number of hardware threads (hyper-threading) only increases
performance between 1.15-1.34x across all cases.
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Figure 4.6: IPC for four hardware threads (running YCSB) with an increasing
available memory throughput.

Memory throughput DRAM throughput affects IPC. Table 3.2 shows that S1
has 2.5x lower maximum memory throughput than S2, S3 and 7x lower maximum
memory throughput than S4. The differences are smaller for the maximum memory
throughput observed by a single thread.

To examine how memory throughput affects KV store performance, we create
one microbencmark which can consume a specific amount of memory throughput.
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We run, for both KV stores, four YCSB threads concurrently with four threads of
our microbenchmark, each of them pinned to one physical core. We choose four
threads because this is the minimum number of threads that can consume the
total memory throughput. In every run we decrease the throughput consumed by
our microbenchmark to increase the available throughput for Kreon and RocksDB.
Figure 4.6 shows the resulting IPC for four YCSB threads running Load A and
Run C. We observe that in all cases we achieve better IPC when available memory
throughput increases. Overall, all systems are underprovisioned and they can
benefit from more memory throughput than the currently provisioned 2.1, 5.4, 9.1
GB/s/core for S1, S2, and S4 respectively.

4.4 Does server performance translate to tail latency
benefits?

In this section we examine the impact of server type on tail latency. To capture
how tail latency deteriorates as load increases, we increase the number of appli-
cation threads per hardware threads on each server from 1-to-1 up to 8-to-1. We
also examine lower and higher loads, but we find this range to be representative.
Figure 4.7 shows the average and tail latency for S1 and S4 and two workloads,
Load A and Run C, for both Kreon and RocksDB. We use only S1 and S4 because
these two server types exhibit the largest difference in performance. For Kreon we
focus on in-memory KV store performance, where the server and CPU type has
the highest impact. For this reason, we use 3M keys in Load A for both S1 and
S4, where they fit in memory in both servers. Then, for Run C we run a larger
number of get operations to extend the execution time to 5 minutes on each server
and obtain reliable 99.9% tail latency measurements.

In Figures 4.7a and 4.7b, we see that average response time differs as follows:
S4 has slightly lower average latency compared to S1 for Load A. More specifically,
S4 average response time is 17 µs, compared to 23 µs. In Run C however, S1 and
S4 have almost the same average latency 8µs for S1 vs. 9µs for S4. We notice
that as load increases, tail latency deteriorates significantly for both workloads
and both servers, to hundreds of times compared to average latency at high load.
In Load A, tail latency becomes up to 107x worse (S4, 8-to-1 99.9%), whereas
in Run C, tail latency becomes up to 626x worse (S1, 4-to-1, 99.9%) compared
to average latency in the same run. We also observe that generally, tail latency
deteriorates in a similar manner on both servers, without one of the two servers
exhibiting worse behavior compared to the other.

For RocksDB we run two different experiments. In the first experiment, we
examine the performance of RocksDB with I/O traffic. For both Load A and Run
C, we use the same dataset size as in the multi-threaded experiment (5M keys for
S1 and 20M keys for S4). As we use a 4x larger dataset in S4 we also use a 4x
larger user-space block cache (2GB for S1 and 8GB for S4) in combination with
direct I/O to bypass the Linux kernel buffer cache. For Run C, we use a number



CHAPTER 4. EXPERIMENTAL ANALYSIS 17

1/1 2/1 4/1 8/1
Ratio of application/hardware threads

102

103

104

Av
er
ag

e 
an

d 
ta
il 
la
te
nc
y 
(u
se
c)

20
8

56
4

18
01

51
41

23

45

89

17
028

7

10
03

36
97

14
13

8

43
5

10
70

34
82

12
03

7

13
2

45
9

14
29

41
46

17

31

63

13
2

(a) Kreon, Load A

1/1 2/1 4/1 8/1
Ratio of application/hardware threads

101

102

103

104

Av
er

ag
e 

an
d 

ta
il 

la
te

nc
y 

(u
se

c)

9 9 9 98

16

33

68

22

44

19
55

1

29
97

6

22 24

20
66

8

28
04

5

14 14 14 14

9

20

41

82

S1 average
S4 average
S1  99
S4  99
S1 99.9
S4  99.9

(b) Kreon, Run C

1/1 2/1 4/1 8/1
Ratio of application/hardware threads

102

103

104

Av
er
ag

e 
an

d 
ta
il 
la
te
nc
y 
(u
se
c)

36
9

84
2 15

52

43
60

43

89

14
5 29

7

70
75

76
00

52
38 91

71

39
39 46
36

50
66 10

75
1

12
77 22

70

22
02 40

91

59

88

13
1 24

4

(c) RocksDB, Load A

1/1 2/1 4/1 8/1
Ratio of application/hardware threads

102

103

104

Av
er
ag

e 
an

d 
ta
il 
la
te
nc
y 
(u
se
c)

30
1

15
85

44
02

97
27

72

14
1 22

0 38
2

20
62 33

68 50
32

11
17

3

42
9

28
72

85
18

21
06

8

75
2

16
90 24

90

57
28

10
4 16

1 18
8 32

3

(d) RocksDB, Run C

Figure 4.7: Average and tail latency (µs) for Load A and Run C with Kreon (top)
and RocksDB (bottom).

of operations (gets) required for 5 minute run for all cases. Figure 4.7c shows
for Load A that in all cases (except 1-to-1) S4 has slightly better average latency
compared to S1. In the case of 1-to-1, S4 has an average latency of 59 µs compared
to 43 µs for S1. Figure 4.7d shows for Run C that when we have low load (1-to-1
and 2-to-1) S1 has better latency time compared to S4. In case of high load (4-
to-1 and 8-to-1) S4 becomes better compared to S1. Finally, we notice that as the
load is increase further, the tail latency also increases for both S1 and S4 for both
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workloads (Load A and Run C). More specifically, in Load A, tail latency becomes
up to 120x worse (S4, 1-to-1, 99.9%), whereas in Run C, tail latency becomes up
to 55x (S1, 8-to-1, 99.9%) compared to average latency in the same run.

In the second experiment we examine how the size of the block cache affects the
average and tail latency. We provide results only for Run C as in loads RocksDB
bypasses the block cache. We use the same setup as in the first experiment and
we only keep the case with high load (8-to-1). We keep the ratio of the dataset
to the block cache size to be the same for both S1 and S4 for each case. We start
with the block cache disabled and we increase the size as follows: 512MB/2GB,
1GB/4GB and 2GB/8GB for S1/S4 respectively.
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Figure 4.8: Average and tail latency (µs) for Run C in RocksDB with different
I/O block cache sizes.

Figure 4.8 shows the results of this experiment. When there is no block cache,
S1 is much better and up to 5.9x compared to S4 for both average and tail latencies.
In this case we observe that the average disk queue depth is 254 for S4 and 10 for
S1. As S4 has faster CPU compared to S1, it also processes requests and sends
them to the device at a higher rate. This results in more pressure to the device
and higher average and tail latencies.

Finally, as we increase the size of the block cache, both S1 and S4 achieve
better average and worse tail latencies. Increasing the size of the block cache, also
means that a larger part of the dataset fits in the cache and this results in lower
average latency (higher hit ratio). On the other hand a larger cache also results
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in slower hits, misses, and evictions, which increases the tail latency. The average
latencies of S1 are slightly worse compared to S4 and the biggest difference of 1.21x
is when the block cache ratio is 512MB/2GB (S1/S4). In this case S1 has average
latency of 442 µs compared to 364 µs of S4. By increasing the block cache size, S1
always has higher tail latency compared to S4 up to 1.88x for a block cache ratio
of 2GB/8GB for 99.9%.
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Chapter 5

Server cost analysis

In this section we examine the tradeoffs across servers to purchase and energy costs.
For this purpose, we calculate the cost of a cluster which provides a cumulative
throughput of 100M ops/s. We use a cost model that calculates the total cost (Ct)
based on energy and equipment (server) cost [16] as:

Ct = Cs + Cp (5.1)

where Cs is the purchase price of the server and Cp is the energy cost for the entire
server lifetime.

Cp is further defined as:

Cp = Ts · Cph · (U · Pa + (1 − U) · Pi) (5.2)

Ts is the server lifetime in years. We use two representative values for the
typical server lifetime, 3 years as the low end and 5 years as the high end [5,
27]. Cph is the electricity cost in $/kWh. We choose a higher value of 0.25
$/kWh (price in Australia) and a lower value of 0.07 $/kWh (price in Russia) as
in [16]. U and Pa represent the average utilization and power for each workload
from our measurements. Finally, Pi is the idle power of each server. Table 5.1
summarizes the values we use in the cost model, based on our experimental setup
and measurements.

We also present a variant of this model, Ce, where we remove the purchase
price and essentially equate total cost with energy consumption. The purchase
cost of each server can vary significantly for reasons such as market volume and
is not easy to identify a representative value. For this reason Ce refers only to
energy cost per hour to achieve the required throughput, given our performance
and power measurements:

Ce = Cph · (U · Pa + (1 − U) · Pi) (5.3)

Table 5.2 shows the results for Ce. The first block of columns is the required
number of servers to achieve the target throughput for each configuration (server

21
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Table 5.1: Values for the energy and equipment cost model.

Variable Value Description

Cs $ the price of a server

Ts 3-5 years server lifetime

U % server utilization

Cp $ electricity total costs

Cph $/kWh electricity cost per hour

Pa W average server power

Pi,S1 41 W S1 server idle power

Pi,S2 133 W S2 server idle power

Pi,S3 163 W S3 server idle power

Pi,S4 104 W S4 server idle power

type, workload type). Low and high cost is the energy cost per hour ($/h) that each
cluster requires at the low and high prices we consider for electricity. Normalized
costs are all the costs normalized to S1. We notice that normalized costs for low
and high costs are the same because Cph is the same for all servers and consequently
it is cancelled in ratios. We calculate energy cost for two workloads (Load A and
Run C) for each KV store (RocksDB and Kreon) and we include one summary
line for the average across all workloads and KV stores, assuming all are running
concurrently in each cluster. We use this average number to calculate the required
number of servers in each case. Furthermore, for U and Pa we use the average
values that each server achieves for both KV stores on Load A and Run C in our
measurements.

Table 5.2: Energy cost for each server type and workload.

Workload
# Servers Low cost ($/h) High cost ($/h) Normalized cost to S1

S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

Kreon Load A 368 215 191 87 1.20 3.20 3.44 1.44 4.30 11.42 12.29 5.14 1 2.66 2.86 1.20

Kreon Run C 128 95 83 36 0.45 1.51 1.48 0.60 1.60 5.39 5.27 2.15 1 3.37 3.30 1.34

RocksDB Load A 662 321 311 240 2.12 4.50 4.84 2.55 7.59 16.05 17.29 9.10 1 2.11 2.28 1.20

RocksDB Run C 704 510 532 245 3.23 6.82 7.57 3.33 11.55 24.36 27.04 11.89 1 2.11 2.34 1.03

Average 297 198 179 84 1.08 2.88 2.92 1.19 3.86 10.27 10.41 4.26 1 2.66 2.70 1.10

Table 5.2 shows that S1 always requires the largest number of servers (for
both KV stores and both workloads). More interestingly, for both the low and
high electricity price, S1 incurs the lowest cost per hour compared to all other
server types to achieve the required throughput of 100M ops/s. The normalized
results show that S2 and S3 that have similar fabrication technology incur between
2.11-3.37x higher cost, whereas S4 with more recent fabrication technology incurs
between 1.03-1.34x higher energy cost.
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Figure 5.1: Cost in $/h for servers that run a KV store related to the purchase
price of each server and depreciation time.

To take into account how the server equipment affects the total cost, we include
the server purchase price. This requires using a depreciation period and calculating
energy cost for the full server lifetime (depreciation period). Given that purchase
price can vary significantly, Figure 5.1 plots in the y axis the cost per hour at
different purchase prices in the x axis. For each server type we calculate two
curves, for a 3-year and a 5-year lifetime, respectively. Furthermore, we plot costs
for both low (Figures 5.1a) and high (Figures 5.1b) electricity price. As expected,
in all cases, increasing the depreciation period from 3 to 5 years results in lower
per-hour total cost.

More interestingly, Figure 5.1a shows that S1 has a higher sensitivity to pur-
chase price and total cost increases faster (larger slope) because of the increased
number of servers required to achieve 100M ops/s. Despite lower energy costs, for
S1 to be more cost-effective compared to S4, S1 needs to have several times lower
purchase price, e.g. $3K for S4 and less than $1K for S1 for more than a 3x differ-
ence. The same observation holds for a 5-year depreciation period. Furthermore,
we notice that for 3 years depreciation time the distance (horizontal) between
any two server type is bigger than the distance for 5-year lifetime. This happens
because as depreciation time increases, the total energy cost increases, whereas
the purchase price remains the same. Consequently, energy costs affect more the
total cost per hour. Effectively, the shorter the lifetime of servers the larger the
difference in purchase price of which microservers become more cost-effective.

Figure 5.1b shows that at higher electricity cost S1 and S4 are generally sig-
nificantly more attractive than S2. Similar to the low electricity cost, for S1 to be
more attractive compared to S4, S1 needs to maintain several times, and typically
more than 3x, lower purchase cost compared to S4.

In summary, if we consider only energy costs (Table 5.2), S1 is always more
cost-effective, when trying to achieve a performance mark of 100 Mops/s. However,
if we take into account purchase price and depreciation period, then S1 needs to
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have several times, and typically at least 3x, lower purchase cost compared to S4
to be more cost-effective.



Chapter 6

Conclusions

Persistent KV stores are an important component for modern software stacks in
the data center. In this work, we examine how the processor micro-architecture
and memory hierarchy affect data serving systems. We use four server types and
two different KV stores (Kreon [22] and RocksDB) to measure power efficiency
and absolute performance.

A microserver (S1) results in 1.6-3.6x better power efficiency compared to an
x86 server with the same fabrication technology (S2). S1 is up to 1.87x more power
efficient compared to S4, a more powerful server of newer process technology (22nm
vs. 40nm). Although all processors have similar CPU clocks, servers with more
cores result in higher performance. S4, with 2x more physical cores from S1 and
hyper-threading enabled, achieves up to 5.3x more operations per second than
S1. All of these come with small impact in tail latency. Our analysis shows that
architectural features such as aggressive branch predictors, large caches, and hyper-
threading do not provide significant benefits in performance. The most significant
performance benefit comes from better memory throughput.

We perform a cost analysis based on energy cost, which shows that S1 has
1.1-2.7x lower energy cost. If in addition we include server equipment cost and
a depreciation period of 3 to 5 years (server lifetime), then total cost efficiency
depends on server purchase price. For microservers, such as S1 to be more cost-
effective they need to have a purchase price several times lower, and typically
around or more than 3x, than higher end servers, such as S4.

In summary, the most appropriate solution for KV stores is microservers with
large numbers of cores, relatively simple branch prediction, small caches, no hyper-
threading, and large memory throughput, if however, they also have a significantly
lower purchase price compared to high-end servers.
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