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Towards a universal molecular classifier

Abstract

Despite the plethora of biological datasets, it is difficult to gather a satisfactory
amount of biological data and derive safe conclusions regarding disease diagnosis.
On top of that, a challenging problem of disease diagnosis and their treatment
is to identify their complex characteristics that span to tens of thousands. We
mathematically shape these characteristics using publicly available datasets, from
disease studies, via a low dimensional space representation. In essence, using so-
phisticated statistical methods, suitable for very high dimensional data, we are
able to provide a list of the most probable diseases for a given patient, but also
include don’t-know-predictions (cases with uncertain disease diagnosis). The ben-
efit of this diagnostic framework is that it can assist medical doctors by directing
them towards the most probable diseases for a given patient and allows for timely
disease diagnosis and treatment. The analysis is time-efficient and can be con-
ducted in real time, with very little computational power and low ram and disk
memory requirements.





Περίληψη

Παρά την πληθώρα των βιολογικών δεδομένων, είναι δύσκολο να συγκεντρωθεί

μια ικανοποιητική ποσότητα αρκετά ομοιογενών δεδομένων αυτού του είδους, ώστε να

προκύψουν ασφαλή συμπεράσματα που θα οδηγούσαν στη διάγνωση κάποιας νόσου.

Επιπλέον, στο πρόβλημα διάγνωσης και θεραπείας ασθενειών, επιφέρει πρόσθετη πο-

λυπλοκότητα η δυσκολία προσδιορισμού και ο εντοπισμός των πολύπλοκων χαρα-

κτηριστικών τους, που εκτείνεται σε δεκάδες χιλιάδες. Διαμορφώνουμε μαθηματικά

αυτά τα χαρακτηριστικά, χρησιμοποιώντας δημόσια διαθέσιμα δεδομένα από μελέτες

ασθενειών, μέσω αναπαραστάσεων χαμηλότερων διαστάσεων. Στη συνέχεια, χρησι-

μοποιώντας εκλεπτυσμένες στατιστικές μεθόδους, κατάλληλες για δεδομένα πολλών

διαστάσεων, είμαστε σε θέση να παράσχουμε μια λίστα πιο πιθανών ασθενειών για

έναν συγκεκριμένο ασθενή, αλλά επίσης να συμπεριλάβουμε περιπτώσεις μη πρόβλε-

ψης (περιπτώσεις στις οποίες η διάγνωση ασθένειας είναι αβέβαιη). Το όφελος αυτού

του διαγνωστικού εργαλείου συνίσταται στη βοήθεια που μπορεί να παρέξει στους

ιατρούς, υποδεικνύοντας τις πιθανότερες ασθένειες ενός ασθενή ώστε να επιτρέψει

έγκαιρη-αξιόπιστη διάγνωση και συνεπώς θεραπεία. Η ανάλυση είναι χρονικά αποδο-

τική. Μπορεί να πραγματοποιηθεί σε πραγματικό χρόνο, με ελάχιστη υπολογιστική

ισχύ και χαμηλές απαιτήσεις μνήμης.
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Chapter 1

Introduction

Every day huge amounts of blood and tissue samples are collected from patients
from all over the world and are being analyzed. The gathering, categorization and
even the digital storage of samples in an everyday computer has been an ordinary
task for doctors, given the many scientific advances. The natural next step would
be, the creation of an easily scalable data analysis framework, able to analyze
datasets such as those, in real time, without the need of investing in expensive
hardware, capable of categorizing new profiles to any known possible outcome
(such as diseases, phenotypes etc). Such a framework could be used as a tool, to-
wards the enhancement of the accuracy and the minimization of the time needed
for disease diagnosis of a patient. With the employment of such a tool, a hospi-
tal could become a lot more competitive in terms of diagnostic performance and
of course treat patients better. Even though research on distinguishing samples
with a certain disease from samples without it, based on gene expression data, has
progressed, the problem of identifying any disease still remains a relatively virgin
research area. Previous research on such problems focused only on correctly dif-
ferentiating samples with a specific disease from samples without that particular
disease [Salem et al.Salem et al., 20172017, Bittner et al.Bittner et al., 20002000, Dudoit et al.Dudoit et al., 20022002, Ben-Dor et al.Ben-Dor et al.,
20002000, Shahjaman et al.Shahjaman et al., 20172017, Lee et al.Lee et al., 20082008] , or on correctly differentiating sub-
types of a specific disease [Khan et al.Khan et al., 20012001, Kang et al.Kang et al., 20192019]. Furthermore, most
published papers lack a large scale experimental evaluation and validation.
We, have identified only one paper [Lee et al.Lee et al., 20192019] that attempts to tackle the
problem of identifying any disease. [Lee et al.Lee et al., 20192019] first model an individual sup-
port vector machine (SVM)[HearstHearst, 19981998] for each disease and then train each SVM
to differentiate samples with a specific disease from all other samples. The trained
models are then integrated into a Bayesian network whose structure is based on
prior knowledge from the MeSH disease hierarchy [LipscombLipscomb, 20002000]. Finally, in or-
der to estimate the posterior probabilities of the final output, they used the loopy
belief propagation algorithm [PearlPearl, 19821982]. Through this framework, they were
able to outperform the best documented single genes on 30 out of 32 diseases that
were used for evaluation. While their work seems able of addressing the task of

1



2 CHAPTER 1. INTRODUCTION

identifying any disease, the framework they employed is rather over-complicated,
difficult to implement and not easily scalable on new data and diseases.
Our proposed approach is much simpler and computationally efficient. In effect,
we propose a dimensionality reduction framework for classifying high dimensional
data. We first apply principal component analysis [PearsonPearson, 19011901], that enables
us to capture the underlying characteristics of each available dataset in a lower
dimensional space. We then adopt an appropriate metric and measure the sim-
ilarity between one sample and a dataset. The framework is easily scalable to
any number of different classes and has been shown to be able to identify a pa-
tient’s disease, from a single gene expression array, provided that there exist ”clean
datasets”11 from that disease. In contrast to typical machine learning approaches,
new datasets and classes can easily be added to our classifier without the need of
retraining a model on the previously analyzed data. New diseases and datasets
can be analyzed and included in the classification of new samples with little to no
effort.

1Datasets that consist of samples with the exact disease that has to be identified.



Chapter 2

Materials and Methods

2.1 About the data

2.1.1 Gene-expression data

When a biological study takes place, biologists gather either tissue or blood
samples from various subjects (e.g. human patients), extract their RNA and place
it in an appropriate chip which will produce the expression of each gene that the
chip can measure for each specific sample. The produced expression for a specific
gene comes in the form of different colors according to the expression level (see
figure 2.12.1). With the appropriate preprocessing on the colored gene expression
output, data appropriate for statistical analysis is created. The analysis of this
kind of data has many applications. For instance, in drug response analysis, for the
categorization and classification of samples to different diseases, for the detection
of unknown biological similarities among subjects or diseases, for the creation of a
disease network that shows relations between different diseases and among others,
for the quality testing of new samples. Our current work is sorely focused on
the categorization part, but could also be extended to other uses, such as quality
control of new samples.

2.1.2 The Biodataome database

The data were downloaded from Biodataome Lakiotaki et al.Lakiotaki et al. [20182018] (fig 2.22.2).
Biodataome is a database of genomic and epigenomic data. All available datasets
have already been uniformly preprocessed and automatically annotated with Disease-
Ontology terms. Each such dataset is a whole biological study (usually on a specific
disease) accompanied with a publication. Being able to process the vast amount
of information that exists in these datasets will output insights on a huge amount
of diseases. For our main experiments, we used datasets from Biodataome that
have the following characteristics: created with the GPL570 technology, have no
duplicates (i.e. no datasets have common samples), have adequate sample size
(sample size ≥ 40) and are labeled with a popular disease (label that appears on

3



4 CHAPTER 2. MATERIALS AND METHODS

Figure 2.1: Creation and uses of gene-expression data

at least three datasets from GPL570 that have at least 40 samples). These spec-
ifications led to 139 datasets with 55,000 features in each dataset, and a total of
13,457 samples.

2.1.3 Manual Curation

The initial dataset labels (those that were provided by Biodataome) are not
as disease specific as our experiments would require. Since the problem that we
are trying to solve is, categorizing a new sample to a specific disease, we also
have to make our datasets disease specific. We hence manually labeled each of
the above datasets’ samples to a specific disease label. More specifically, by using
the disease-ontology terms or the cell line id codes from the information that was
provided in the metadata of each such dataset, we were able to label each sample
to a specific disease, or to healthy (if the sample was healthy or normal). Us-
ing the aformentioned labels, we created a dataset pool containing disease-specific
datasets, by splitting each original dataset to newly formed datasets that only
consist of samples that have the same disease. Some samples were removed from
each dataset, from this newly created pool and were used for evaluation purposes.

Let Si denote the pool of these removed samples, and let Pooli denote the pool
of the curated datasets with the remaining samples. Pooli contains 166 datasets,
from 37 different diseases, while there are a total of 234 curated datasets spread
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Figure 2.2: Distribution of data in Biodataome

among 47 different diseases. In order to assign a label to a sample, we can con-
sult the label of the dataset that appears most similar to the sample in question.
However, for the purpose of removing possible dataset bias (such as batch effect
bias, etc.) and to adequately solve the problem of predicting a sample to a specific
disease, when we are labeling a sample from Si to a dataset from Pooli we remove
from the possible results, the datasets that originate from the same study as the
sample in question. Table 2.12.1 shows the distribution of samples and datasets of the
curated disease specific datasets. As shown in this table, the two most prevalent
classes are breast cancer, with 3,629 samples, spread among 38 datasets, which is
then followed by the ”healthy” (a.k.a. ”normal tissue”) class which contains 1,297
samples spread among 46 datasets.

2.1.4 Unseen disease cases

Many of the original 139 datasets contained samples of different diseases. This
resulted in some disease labels having only one dataset under their name. In cases
where a dataset from Pooli has too few samples, those samples were only used
for classification. For these aforementioned reasons, there exist some samples in
the classification phase, that are not possible to correctly classify (i.e. there does
not exist a dataset in Pooli with the same label as these samples, or there exists
exactly one dataset in Pooli with the same label, but it originates from the same
initial dataset as the samples). These samples were generally excluded from the
results, unless stated otherwise.
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Disease Number of samples Number of datasets

Breast cancer 3629 38

Healthy 1297 46

Colorectal cancer 998 16

Lung cancer 940 11

Asthma 702 6

Lymphoblastic leukemia 638 6

Melanoma 585 10

Glioma 502 8

Lymphocytic leukemia 471 8

Ovarian cancer 391 7

Prostate cancer 337 7

Viral infectious disease 265 3

Rheumatoid arthritis 233 4

Endometrial cancer 175 4

Myeloid leukemia 170 3

Cancer 168 2

Myelodysplasia 159 1

Head and neck cancer 147 3

Hereditary spherocytosis 135 2

Pancreatic cancer 127 3

Gastric cancer 126 6

Ishikawa cells 120 2

Renal cell carcinoma 120 4

Hepatitis c 108 1

Bladder cancer 97 2

Thyroid cancer 94 2

Neuroblastoma 86 1

Ulcerative colitis 82 2

Hepatocellular carcinoma 65 4

Infants born to arsenic exposed mothers 64 1

Multiple myeloma 63 2

Cellular senescence 48 1

Pilocytic astrocytoma 41 1

Squamous cell carcinoma 41 2

Cervical cancer 38 3

Burkitt lymphoma 34 1

Human papillomavirus 30 1

Epithelial carcinoma 27 2

Fibrosarcoma 20 1

Hypernephroma 18 1

Leukemia 18 1

Inflammatory bowel disease 15 1

Osteosarcoma 15 1

Actinic keratosis 10 1

Anaplastic astrocytoma 7 1

Meningioma 1 1

Table 2.1: Total sample and dataset count per disease.
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2.1.5 Splitting and dataset pool creation

Let pop be a pool of disease specific datasets, and i = 1, · · · , 30 indicate a
single run of our algorithms. At each iteration we create a pool of randomly drawn
samples from pop (Si) that will be used for evaluation and a pool of datasets
(Pooli) that consist of the rest of the samples that are not present in Si. More
specifically, for each iteration approximately 10% of the samples of each dataset in
pop are used for evaluation, while the rest of the samples are used for the creation
of Pooli. If a dataset from Pooli has too few samples (less than 20), then all the
samples from that dataset will be placed in Si instead.

2.2 Our Frameworks

We developed two frameworks for the classification of gene-expression data. A
log-likelihood based ranker [Fortet and MourierFortet and Mourier, 19531953] and a Maximum Mean Dis-
crepancy (MMD)[Gretton et al.Gretton et al., 20122012, Borgwardt et al.Borgwardt et al., 20062006] based ranker. The
first is a linear method, based on a combination of Principal Component Analysis
(PCA)[PearsonPearson, 19011901] and multivariate Gaussian probability distribution [TongTong,
19901990], while the latter, is a non-parametric and not necessarily linear method de-
vised for computing distribution distances in the reproducing kernel Hilbert space
[Berlinet and Thomas-AgnanBerlinet and Thomas-Agnan, 20042004]. Both frameworks rank, for each given sam-
ple, all the available datasets, from the most similar to the least similar. Among
them, we favor the log-likelihood based framework, because, through dimension-
ality reduction, it is very computationally and memory efficient. The MMD based
framework was used more as a competing framework. MMD does not perform
dimensionality reduction, and we were interested to see how such a framework
would perform on the same data. Both frameworks consist of three phases11:

• The precomputation phase, where all the datasets are analyzed and appro-
priate computations for later steps are stored.

• The main phase, where the distances between unlabeled samples and the
datasets that were used in the previous phase are computed.

• The prediction phase, were a disease label is assigned to each unlabeled
sample according to the distances computed in the previous phase.

After the precomputation phase, a bootstrap phase was later added. Bootstrap
provides statistical significance for the distances that were computed in the main
phase, and increases the accuracy and robustness of the results22. We evaluated
the results using the ranki probability which indicates the probability of a true

1Additional explanation on these phases will be found in section 2.2.32.2.3
2Elaboration on this phase will be found in section 2.2.32.2.3
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label of a classification sample to appear in the ith place of the produced disease
similarity list.

2.2.1 The log-likelihood classifier

The log-likelihood classifier is based on estimating the probability density of
a given sample originating from a specific distribution. This is achieved through
PCA and the multivariate Gaussian probability density estimation.

2.2.1.1 Log-likelihood classifier for high dimensional data

We assume that each sample from our data follows a multivariate Gaussian
distribution X ∼ Nk(µX ,ΣX) where X is a random dataset from Pooli, k is the
dimentionality of X, µX = E[X], and ΣX = E[(X − µX)(X − µX)T ]

Then, for a given sample x = (x1, · · · , xk)T we can compute the probability
that x comes from the distribution of X whose probability density function is given
by

p(x|X) =
exp (−1

2
(x− µX)TΣ−1X (x− µX))√

(2π)k|ΣX |
The difficulty of using this equation in our case, is that k ≈ 5, 5 ·104 and hence

the covariance matrix ΣX will consist of k · k = 3,025 · 109 elements. Storing
such a big matrix requires more than 24Gb of available RAM memory, which can
limit the capabilities of a regular computer. Memory limitations aside, another
problem that would arise with the above equation, is that ΣX would be rank de-
ficient, meaning that it would be not invertible. To overcome this computational
and mathematical burden, we reduced the dimensionality of each dataset using
Principal Component Analysis (PCA). We performed PCA on each dataset, and
stored the nX most significant eigenvectors (P i

X) and eigenvalues (λiX)33.

The covariance matrix can be estimated by: ΣX = PXLXP
T
X + Iσ2X , where I is an

identity matrix, Lx is a diagonal matrix containing the eigenvalues λiX and σ2X is
the variance that is not explained by the most significant principal components.
The multivariate Gaussian probability density function now becomes

pX(x1, · · · , xk) =
exp (−1

2
(x− µX)TPXMXP

T
X(x− µX))√

(2π)k|ΣX |

where MX is a diagonal matrix, whose diagonal elements are
λiX

λiX + σ2X
.

3The eigenvectors whose cumulative eigenvalues account for approximately 50% of the variance
of the dataset.
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The determinant of the covariance matrix can be estimated by the product of
the eigenvalues |ΣX | = det(ΣX) = ΠnX

i=1λi. Since not all eigenvalues of ΣX are
stored, the determinant could be rewritten as:

|ΣX | = ΠnX
i (λiX + σ2X)× σ2(k−nX)

X ,

where nX the number of the most significant principal components.

Using the equation based on the principal components and the eigen values,
enables making computations in such an order that a k × k matrix will never be
created. The biggest intermediate matrixes that would have to be created, would
be of size k × nX << k × k.
For simplicity we assumed standard multivariate normal distribution and in order
to avoid numerical overflows (zero roundings), we used the natural logarithm of
the probability density function.

ln (pX(x1, · · · , xk)) = −1

2
k ln (2π)−1

2
[(k−nX) ln(σ2X)+

∑
i

ln(λiX+σ2X)]−1

2
(xTPX)MX(P T

Xx).

2.2.1.2 Tuning the log-likelihood hyperparameter

To employ the log-likelihood classifier, we would need to specify how many
principal components should be used from each dataset. For the sake of estimat-
ing the optimal hyperparameter, we used all the Biodataome datasets from the
GPL570 technology, that were not included in other experiments and contained at
least 20 samples. These datasets were not used elsewhere either because they were
not labeled with a disease, or because they contained duplicates. The datasets were
split in 90% training samples and 10% testing samples. We then estimated how
well the log-likelihood classifier can assign test samples to their original dataset,
for various percentages of explained variance. As seen in figure 2.32.3, using only
the principal components that explain ∼ 50% of the variance of a given dataset,
seemed to be the best choice. This threshold seems to enjoy the best achieved
accuracy on the above experiment (left), as well as, the best achieved ranking of
the target class on average (right), for this kind of data.

2.2.2 The MMD metric

In order to get good insights on how accurate the log-likelihood’s framework
performance is, we constructed another similar framework, whose core relies upon
the MMD in order to compute the distance between a sample and a given disease.
The MMD is given by

MMD(X,Y )2 = Ex,x′ [K(x, x′)] + Ey,y′ [K(y, y′)]− 2Ex,y[K(x, y)]

where X,Y are two distributions, x, x′ are independent random variables from
distribution X, y, y′ are independent random variables from distribution Y , and
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Figure 2.3: Tuning log-likelihood’s percentage of principal components to keep
Probability of finding a sample’s original dataset for different log-likelihood hyper-
parameters (left). Expected rank value for different log-likelihood hyperparameters
(right)

K is an appropriate kernel fucntion. In the case where X,Y are two datasets, the
above equation, translates to:

MMD(X,Y )2 =
1

m(m− 1)

m∑
i=1

m∑
j 6=i

K(xi, xj)+
1

n(n− 1)

n∑
i=1

n∑
j 6=i

K(yi, yj)−
2

mn

m∑
i=1

n∑
j=1

K(xi, yj)

where n,m are the number of samples in X,Y respectively.
For the purpose of our experiments K was a Gaussian kernel given by:

K(x, y) = exp(−‖ x− y ‖
2

2γ2
),

which is a non-linear symmetric kernel where γ is a hyper-parameter whose value
should be tuned appropriately44.

In the case where X and Y are single multidimensional points (i.e. vectors) and
X is identical to Y, then the expected value of the Gaussian kernel will be 1. As
a result, if we assume in the MMD equation that X is a dataset with more than 1
samples, and Y only contains a single sample (Y = y) [Aytekin et al.Aytekin et al., 20182018], then
MMD becomes

MMD(X, y)2 =
1

m(m− 1)

m∑
i=1

m∑
j 6=i

K(xi, xj) + 1− 2

m

m∑
i=1

K(xi, y)

4This kernel was initially used. Later, the logarithm of this kernel was found to be more
appropriate (see section 2.2.3.12.2.3.1).
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Furthermore, as stated in [Sutherland et al.Sutherland et al., 20162016], there is no need to include the
values of K(xi, xi) in the estimation of the expected value. Regarding the hyper-
parameter (γ) of the Gaussian kernel, [Gretton et al.Gretton et al., 20122012] proposed as a rule of
thumb value, the median of the distances between the random points of the joint
distribution (X ∪Y ). In contrast to this option, in [Sutherland et al.Sutherland et al., 20162016] it was
stated that the optimal hyperparameter, is the one that maximizes the ratio of
MMD divided by its variance. In order to estimate γ this way, for each MMD
computation, it would be essential to try a range of numerous different hyperpa-
rameters and select the one that maximizes the aforementioned ratio. While the
rule of thumb value is clearly not the optimal solution (in terms of finding the best
γ), the latter is extremely time consuming and hence computationally prohibitive.
As a result, for the purpose of our experiments the former method was used to
estimate γ, with the difference that we only use X to estimate the median of the
distances in the kernel space, instead of using both X and Y , since in our case,
Y is a single point. Finally, as was described in section 2.2.3.12.2.3.1, the kernel that
was used in our main experiments was the natural logarithm of the radial basis
function kernel (log rbf i.e. logarithmic Gaussian kernel). As a result, the final
form of the MMD equation that was used in this work is described by:

MMD(X, y)2 =
2

m(m− 1)

m∑
i=1

m∑
j>i

−‖ xi − xj ‖
2

2γ2X
− 2

m

m∑
i=1

−‖ xi − y ‖
2

2γ2X

2.2.3 Phases of the frameworks

1. The precomputation phase
In this phase, all the datasets from Pooli are being analyzed, and necessary
precomputations are made according to each of the two classifiers.

• The log-likelihood framework standardizes each dataset, computes the
eigenvectors and eigenvalues of each dataset through PCA and then
stores the standardization parameters (mean and standard deviation of
each variable) along with the most significant eigenvalues and eigenvec-
tors (those that explain ∼ 50% of the variance of a given dataset), so
that they can be used in the next step.

• The MMD framework standardizes each dataset, estimates the γ hyper-
parameter of the Gaussian kernel, the first term of the MMD equation
(E[K(x, x′)]) as well as an intermediate matrix for the last term of the
MMD equation (E[K(x, y)]), and stores all such values for each dataset,
so that they can be used in the next step.

2. The bootstrap phase

Various errors of earlier versions of those frameworks occurred because some
datasets in Pooli, produced high similarity to many of the samples, regard-
less of each sample’s disease. These datasets produced large likelihood values
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and small MMD distances, even when they were compared to seemingly ran-
dom samples. This indicates that our estimated distances scale differently
among different datasets and studies.
To make our classifiers more robust to such datasets, we estimate whether
the distance between a specific sample from Si and a dataset is, statisti-
cally, similar to distances between samples from the joint distribution and
the dataset. Specifically, for each distance between a sample in Si and a
dataset from Pooli, we test the hypothesis that the sample follows the joint
distribution of all other diseases except for the specific disease of that given
dataset using bootstrap.
For a given dataset in Pooli, we estimate the similarity or dissimilarity dis-
tribution (log-likelihood or MMD), between the dataset and samples from
Pooli, which do not have the same label as the given dataset. We then fit the
Fisher–Tippett distribution [ColesColes, 20012001] (commonly known as Generalized
Extreme Value Distribution (GEV)) on the computations that correspond
to the 25% most similar random samples55. By the end of this bootstrap
phase, we will have estimated the distribution of the distances of the most
similar, but also random samples, to each dataset66.
Figure 2.42.4 depicts an example on how this kind of bootstrapping can help
improve the results. Let A and B be two datasets whose distribution we es-
timated with random samples. Also, let x be a sample which we would like
to classify to one of the two datasets. The difficulty with classifying sample
x in this example is that its distance from both distributions is 2. Boot-
strap allows to see that, for dataset A, distances near 2 are most probably
distances of random samples with regards to that dataset, while for dataset
B, this distance seems to be statistically important (small p-value). This
results in classifying sample x to dataset B.

3. The main phase

In this phase using the precomputations from the previous steps, each frame-
work computes its respective distances, between each sample in Si and each
dataset in Pooli. Using the precomputations for each dataset in Pooli, each
sample from Si is standardized with the standardization parameters that
were used in the current dataset from Pooli, and all the distances between
the samples from Si and the current dataset are computed (As previously
stated, from this list of distances, in order to exclude any bias, we remove the
computations that correspond to the distances between samples and datasets
that originated from the same study).
Then, using the observed distribution that was estimated in the bootstrap

5The GEV is a type of distribution that combines three simpler distributions into a single
form and is often used to model the smallest or largest value among a large set of independent,
identically distributed random values, which exactly fits our case.

6For further elaboration on the bootstrap phase, consult section 2.2.3.12.2.3.1.
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Figure 2.4: Classification example with bootstrapping.

phase, for the current dataset, we can compute how significantly more similar
each sample is to the dataset, than the dataset is to some random samples.
As a result, the output of the main phase is a distance matrix (in the form of
p-values), in which, each row corresponds to a different sample from Si, and
each column corresponds to a computed distance between Si and a dataset
from Pooli.

4. The prediction phase

This phase takes as input the distance matrix that was computed in the
previous phase. The values of each row are sorted in such a way that the
first values will indicate highest similarity. We can then classify each sample
to the disease of the dataset that corresponds to the first value of each such
sorted list.
In order to evaluate how well our frameworks perform, we can consult the
rank of a sample’s disease. For example, if the first dataset that has the
same disease label as a sample that we are classifying, is ranked 1st, then
that sample’s disease was found in rank1. If the fist dataset that has the
same disease as the sample is ranked 2nd, then the sample’s disease was found
in rank2, etc.
Having computed the ranks for all the samples that exist in Si, we can
compute the probability of each rank. For instance, estimating the rank1
probability, would be equivalent to estimating the overall accuracy.
In this phase, if the ratio of datasets per disease was more balanced, it would
also make sense to consult the top-K most similar datasets in order to make
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a prediction of the sample’s disease.

2.2.3.1 Improving the bootstrap phase

In order to make the experiments more robust, we decided to add a bootstrap
step to our frameworks. More specifically for each given dataset in the train set,
we estimated its log-likelihood distribution with random samples from the whole
train population 77. An appropriate theoretical distribution was then fitted, on
the above computations for each dataset. Using the fitted theoretical distribution
of a given dataset, the level of statistical significance of the distance between
each sample and the dataset can be estimated (i.e. how much statistically more
similar a given sample is to a dataset, than a random sample). We employed a
similar approach for the MMD classifier. Finally, using these distributions, the
classification of each sample can be based on the estimated significances, derived
from the aforementioned fitted distributions of each dataset. While this method
has helped improve the results for the log-likelihood classifier, adding a bootstrap
step did not increase the accuracy of the MMD classifier as much. This was
probably due to the fact that the theoretical distribution did not always fit the
empirical MMD distribution accurately enough. This can be seen in figures 2.52.5 and
2.62.6. While the observed log-likelihood distributions are being adequately fitted,
there are cases of some datasets where the MMD computations can not be fitted
correctly. For example in figure 2.62.6 the fitting on the first dataset seems to be
accurate, but the fitted distribution is not very representative of the observed
distribution on the second dataset.

The rbf kernel’s values, which MMD uses at it’s core, are bounded in [0,1]. By
using the logarithm of the rbf’s function we unbounded those results (the kernel’s
values will now lie between −∞ and 0 ). This way we ended up with a distribution
that is easier to be fitted. Further, we figured that it is not necessary to simulate
the whole distribution of the random samples. Only the part of the distribution
that plays the biggest role during the classification phase needs to be accurately
estimated. As a result, we fitted a generalized extreme value distribution on the
25% most significant part of each observed distribution, for both the MMD and
the log-likelihood classifier (i.e. we estimated only the most significant part of each
dataset’s distribution for each algorithm). Figure 2.72.7 shows how well the GEV
can fit the most important part of each distribution for both metrics. The top row
shows the whole random distribution for the MMD metric on a specific dataset,
and the fitting of the GEV on the 25% most important part of that distribution,
while the next row, depicts the equivalent distribution fitting on the same dataset
for the log-likelihood metric.

7With the term random we mean samples that do not share the same distribution as the given
dataset.
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Figure 2.5: Fitting a log-normal distribution on the log-likelihood estimations
The fitting is employed between random samples and a randomly selected dataset.

2.3 T-SNE representation

In order to have a better understanding of what our frameworks ”see” when
we are classifying a sample to a disease, we decided to represent our datasets in a
two-dimensional space. Then, representing a sample in the same two-dimensional
space, would provide visual interpretation of our results, and possibly a better un-
derstanding of what goes wrong when missclassifications happen. We have already
described a way to compute ”distances” between a sample and datasets. To achieve
our desired visualizations we also need a way to compute dataset-to-dataset ”dis-
tances”. The curated Symmetric Kullback–Leibler divergence (cSKL)[Lakiotaki et al.Lakiotaki et al.,
20192019], is a data-driven approach for estimating the distance between two high di-
mensional distributions, from lower space representations. Since log-likelihood’s
math was based on the above work, the cSKL seemed like a fitting approach to
achieve accurate visualizations. The log-likelihood ”distances” are expressed in the
form of statistical significances (p-values). As a result, we created a boostrapping
phase for the cSKL algorithm as well, so that both kinds of distances will be in
the same scale.

To estimate the statistical significance of the computed cSKL between two dif-
ferent statistical distributions, DSX and DSY that correspond to two datasets X
and Y, we estimate the cSKL between DSX and 20 randomly formed datasets
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Figure 2.6: Fitting a GEV distribution on the MMD estimations
The fitting is employed between random samples and two different datasets.

DSX′ with the same sample size as DSX . Then a normal distribution is fitted on
these computed cSKLs. The samples that were randomly drawn to create these
datasets, where samples from Pool1 that do not have the same disease as X. Simi-
larly we compute the cSKL between DSY and 20 randomly formed datasets DSY ′ ,
then the distribution of these computations is estimated.
To get the final significance value of dXY = cSKL(DSX , DSY ), we estimate the
p-value of dXY and DSX , and the p-value of dXY and DSY and the maximum
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Figure 2.7: Improved distribution fitting.

value between the two is used.
As a result, the similarity between each pair of datasets in Pool1 is defined
by a p-value. All these similarities can be represented in the form of a dis-
tance matrix. Each row of this matrix, represents a point (a given dataset)
in multidimensional space. Afterwards with the help of the t-SNE algorithm
[van der Maaten and Hintonvan der Maaten and Hinton, 20082008] which is an algorithm for visualizing multi-
dimensional points in lower dimensions, we can visualize where a specific sample
would be placed in the same two dimensional plane as our datasets.
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Chapter 3

Results

3.1 Early experiments and data setup

In one of our most notable early experiments we used all the datasets from the
initial dataset pool. Let us denote the initial pool of removed samples S0, and the
pool of datasets with the remaining samples as Pool0.
Using these datasets we tried to categorize each sample from S0 to a specific
disease. To implement this, initially, using our algorithms, we assigned the most
similar dataset to each sample, and then labeled (prediction) each sample with the
disease that best describes the dataset that was assigned to it. We then compared
the predicted label of each sample to the label of the dataset from which, each
sample from S0 originated (The label of each dataset was already provided from
Biodataome, which had been automatically extracted using text-mining). While
this tactic produced excellent results (we were almost always able to predict a sam-
ple to the label of the dataset of origin), this method does not necessarily display
how successful we are in finding a given sample’s disease. Instead, it portrays, how
successful we are in finding a given sample’s original dataset.
Figures 3.13.1 and 3.23.2 depict how the disease specific datasets would be classified,

if the original dataset was not removed from each sample’s ranked list. The his-
tograms in figure 3.13.1 depict probability of rank, without the use of bootstrapping,
while figure 3.23.2 shows how the use of bootstrapping affects the accuracy of the re-
sults. While both the algorithms seem to be performing quite well, achieving very
small average rank values and excellent accuracy, we suspect that both algorithms
are managing to correctly identify a sample’s original dataset, instead of correctly
identifying a sample’s disease. In any case, these results are valuable in showing
how accurately our frameworks would function as a dataset retrieval system. A
query that this system would take as input would be a single sample, and it would
return a list of the most similar datasets with regards to that sample.

19
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Figure 3.1: Rank probability for the log-likelihood classifier and the MMD classifier

3.2 Main experiments

In our main results, as was described in section 2.1.32.1.3, instead of using the
dataset of origin for labeling each sample, we decided to manually label them
(This has also made it possible to be more specific with the disease of a sample,
and to label samples to healthy, when no disease is present, or when the tissue
that is sampled is normal). Then, in order to ensure that we have removed the
aforementioned dataset bias, we removed from each ranked list that was produced
for each sample in Si, the computations that refer to datasets from Pooli that
share the same dataset of origin as the sample in question.

3.2.1 Comparing results of the two frameworks

In order to produce accurate estimations, we applied our frameworks multi-
ple times, on the curated dataset pool, while bias removal was employed as well
(described in section 2.1.32.1.3). As described in figure 3.33.3, each curated dataset is
randomly seperated. 90% of each dataset ends up in Pooli and 10% in Si. Fur-
thermore, if a dataset contains less than 20 samples, all it’s samples will be placed
in Si. The precomputation phase and the bootstrapping phase are employed on
the datasets in Pooli. Then, in the main phase all the distances and statistical
significances between datasets in Pooli and samples in Si are computed, while bias
removal is also employed in the current step. Afterwards, in the next step, each
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Figure 3.2: Average ranks and Rank1 probability for various percentages of pre-
dictions

Figure 3.3: Evaluation protocol for main experiments
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Figure 3.4: Rank probability histograms before and after bootstrapping.
Before bootstrapping (left), after bootstrapping (middle), after improved boot-
strapping (right).

sample from Si is categorized to a specific disease, using the distances computed
in the previous step. This process is repeated 30 times, and finally the average
results are presented.

Figures 3.43.4, 3.53.5 and 3.63.6 depict how the overall performance of both algorithms
can be boosted when an appropriate bootstrapping phase is employed. Figure 3.43.4
shows how probable the appearance of each rank would be, even when there is no
use of bootstrapping, for both frameworks. The top row depicts the histograms
before bootstrapping, after initial bootstrapping and after the improved bootstrap-
ping (where the fitting is employed only on the 25% most significant part of the
computations) for the log-likelihood metric while the bottom row depicts the same
histograms for the MMD metric. As it can be observed, the use of bootstrapping
has increased the probability of smaller ranks for both frameworks. The results
have become more accurate and the sorted lists more accurately depict the sim-
ilarity between samples and datasets. Furthermore, the improved bootstrapping
slightly improves the results when compared to the initial bootstrapping, even
when our frameworks make all the predictions. Figures 3.53.5 and 3.63.6, compare the
initial boostrapping and the improved bootstrapping for the MMD metric and
the log-likelihood metric respectively, in terms of accuracy (rank1 probability),
average ranks and percentage of predictions for various strictness levels. The first
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Figure 3.5: Initial vs Improved boostrapping (log-likelihood).

plot in each of the two figures depicts the correlation between different thresholds
and percentage of predictions for both kinds of bootstrapping (i.e. how many
predictions will our frameworks end up making if we decide to not predict the
cases where the significance is above a specific threshold), while the next two plots
show the accuracy and the average ranks of the cases that end up being predicted
for various strictness levels (thresholds) that correspond to specific percentages of
predictions. For the MMD framework, in the case of initial bootstrapping ver-
sus improved bootstrapping, the accuracy of the improved bootstrapping as well
as the average ranks, are superior for every strictness level. In the case of the
log-likelihood framework, the rank1 probability of the improved bootstrapping is
superior for every strictness level, while the average ranks seem to be somewhat
better for the initial bootstrapping when relaxed strictness levels are used, but,
in contrast to the improved bootstrapping, the average ranks do not seem to im-
prove as the thresholds become stricter. When the log-likelihood framework makes
less than ∼ 65% of the total number of predictions, the average ranks of the two
kinds of bootstrapping start to converge, with the average ranks of the improved
bootstrapping being exceedingly better than those of the initial bootstrapping.

Figures 3.73.7, 3.83.8, 3.93.9, 3.103.10 also clearly depict the advantage of the use of boot-
strapping. By allowing our frameworks to only make predictions when we are con-
fident enough about the outcome (the smaller a p-value is between a given sample
and a dataset, the more statistically confident we are that the sample is similar
to a dataset), the predictive performance of the frameworks increases. Figure 3.73.7
compares the two classifiers when improved bootstrapping is employed, in terms of
average ranks and accuracy for various percentages of predictions. Both classifiers
have a starting accuracy near 55% where all the predictions are made, and reach
more than 90% accuracy with an appropriate strictness level. In contrast, the
best possible ”dummy” classifier, that predicts everything to the most probable
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Figure 3.6: Initial vs Improved boostrapping (MMD).

Figure 3.7: Performance comparison between MMD and log-likelihood.
Depiction of how the results improve as we make less predictions based on a sig-
nificance threshold.

disease (breast cancer), would achieve an accuracy of 20.66%. When we allow
for don’t-know-predictions, both frameworks achieve near 85% rank1 probability
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Figure 3.8: Cumulative rank probability for different percentages of predictions.

when approximately 25% of the predictions are made, and 95% rank1 probability
when about 10% of the predictions are made. In addition, the two metrics seem
to be very comparable in terms of performance, with the log-likelihood classifier,
seemingly performing slightly better than the MMD based classifier.

In figure 3.83.8 we investigate how many datasets need to be returned on average
so that at least one dataset from the top-K datasets will be labeled with the target
disease for a specific sample. When we make all the predictions there is ∼ 82%
chance that the relevant disease will be found in the first 10 datasets, while when
we make 25% of the predictions, there is ∼ 90% chance that the relevant disease
will be found in the first 5 returned datasets on average. As shown in Figures
3.93.9, 3.103.10, the predictions that were discarded based on significance thresholds are
mostly erroneous predictions. Another point that these figures seem to suggest is
that, the more samples we have for a given disease, the more probable it is for
samples that actually belong to that disease to be correctly classified.

3.2.2 Don’t-know-predictions

For the purpose of investigating whether not making a prediction based on
significance thresholds helps identify cases that are not possible to predict, or cases
that will not be predicted correctly, we estimated the area under the receiving
operator curves (AUC) [BradleyBradley, 19971997] for two different settings. In the first
setting, we set as case 0 the samples that can be labeled (i.e. their true disease
exists in at least two datasets in Pooli), and case 1 the samples whose disease has
not been previously observed (i.e. these samples are not possible to be correctly
classified). As for the second setting, we set as case 0 the samples that have been
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Figure 3.9: Prediction outcomes per disease for the log-likelihood classifier.

correctly labeled by the classifier, and as case 1 the samples that either have been
incorrectly labeled, or that are not possible to predict. We then estimated the
sensitivity and 1-specificity on both of these settings for various thresholds, and
plotted the resulting curves. The reason we used AUC instead of accuracy for these
experiments, is that in each of the two settings the two classes are unbalanced,
and the AUC outcomes are not biased by unbalanced data, in contrast to the
classic accuracy. Figure 3.113.11 depicts the resulting curves for the two settings (top:
setting 1, bottom: setting 2). On the first setting the log-likelihood classifier
achieves AUC = 0.661 and the MMD classifier achieves AUC = 0.653, while on
the second setting the log-likelihood classifier achieves AUC = 0.716, while the
MMD classifier achieves AUC = 0.723. The first curves, being above the diagonal,
mean that we are truly able to identify to some extent cases that are impossible
to predict (samples whose disease has not been previously seen) with both our
frameworks. In addition, the fact that the curves of the second setting exceed
those from the first setting, implies that through bootstrapping we are also able to
predict cases where our frameworks’ predictions will possibly be incorrect (cases
where our classifiers will fail to find the correct label of a sample). Figures 3.123.12
and 3.133.13, are confusion-matrix like tables from the results of the log-likelihood
classifier, which depict the average probability of predicting a sample of a specific
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Figure 3.10: Prediction outcomes per disease for the MMD classifier.

disease to a specific outcome, when all the predictions are made, and when we
make predictions on approximately 25% of the samples respectively ( 25% of the
predictions corresponds to a pvalue thresholds of 0.0046). The cells that fall on the
diagonal which is signified by a white line, are the cases where correct predictions
are made. The rows that exist below the diagonal refer to diseases which are
present during the classification phase, but have not been previously seen by our
classifier. In an ideal scenario, every cell on the main diagonal would be as bright
as possible, having a value of ’1’, meaning that every prediction has been a correct
one. While our case is not an ideal scenario, by comparing the two figures we can
observe, that many of the incorrect predictions ended up being insignificant. Figure
3.133.13, can be used to examine interesting ”difficult” cases, from the predictions that
remained significant. For example, when 25% of the predictions where made, every
myelodysplasia sample was predicted as acute lymphoblastic leukemia, most of the
samples in the endometrial cancer class where predicted as breast cancer, every
pilocytic astrocytoma sample was predicted as glioma, etc. Furthermore, in the
case of the ”healthy” samples, we can observe that the accuracy dropped when
the most significant predictions were kept. While we speculate that many of these
errors occur due to insufficient sample size on our datasets, there also exist samples
that have been treated which probably affects their gene-expression significantly.
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Figure 3.11: AUC: Predicting incorrect predictions

Finally, it is highly possible that some pathologies are not differentiable through
gene-expression analysis.
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3.2.3 Time-space comparison

In figure 3.143.14 it can be observed that the log-likelihood classifier is somewhat
faster than the MMD classifier in every phase of the frameworks. The precompu-
tation phase times as well as the bootstrap phase times, depend on the number
of datasets that are available (number of datasets in Pooli). The bootstrap phase
times also depend on the number of samples that are randomly selected for each
bootstrap. The main phase times depend on both the number of datasets that
are available, as well as the number of samples that are going to be classified.
On average the log-likelihood classifier needs 0.81 seconds to load a dataset and
make precomputations, while, the same task takes 1.1 seconds for the MMD
classifier. Approximately 1010 seconds are needed for the log-likelihood classi-
fier to randomly sample 10,000 samples, 166 times (once for each different dataset
in Pooli), compute the log-likelihood distances and estimate the distance distri-
bution between each dataset and the random samples, while it takes near 1090
seconds for the MMD classifier to do the same. Finally, loading all the 3735
test samples (all the samples that ended up in Si), the precomputations of each
dataset, computing the sample-dataset distance significances and classifying each
sample takes about 345 seconds for the bootstrap log-likelihood classifier, while
it takes approximately 420 seconds for the bootstrap MMD classifier (note that,
we made a memory efficient implementation, such that, no more than one dataset
is loaded in memory at any given time. This has added some overhead to the
experiment times reported above, due to disk reading and writing). What is more
important is that the log-likelihood classifier can achieve results of the same value
or even better than the MMD classifier, but through the use of PCA, only uses 10%
of the original dataset size. Meaning that for each dataset the information needed
on average to produce our results, is contained on the first 10% most significant
principal components and eigen values.

3.3 Visualizing datasets and samples in reduced space

With the help of t-SNE we can further visually inspect and interpret how
a sample is classified and how the distances between samples and datasets are
used in assigning a sample to a disease. To achieve accurate visualization, we
constructed a dataset-to-dataset distance matrix, containing the distances of all
the pairs of datasets from P1, using the cSKL algorithm (see section 2.32.3). Since
final distances of our framework are expressed in the form of p-values, we designed
a bootstrap step for the cSKL as well, so that we can express the cSKL distances
in a similar manner. Additionally, we added to this matrix sample-to-dataset
distances for a specific sample. This matrix was then passed through Matlab’s
t-SNE implementation, with the following settings: Algorithm: exact (the default:
’barneshut’ would provide a faster but approximate solution), Distance: minkowski
(visually returned better 2d embeddings), NumDimensions: 2 (returns values for
2d representation), Exaggeration: 2 (returned smaller loss than the default which
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Figure 3.14: Computational time and storage capacity needed comparison of the
two classifiers

is 4), LearnRate: 200 (this learning rate helped tSNE to converge to smaller
loss). Loss of the representation is defined by the Kullback-Leibler divergence
between modeled input and output distributions, returned as a nonnegative scalar
(the smaller the better). Furthermore, since the t-SNE algorithm, starts with
a random initialization and iteratively converges to a local minima of the loss,
for each produced figure, we run the algorithm with the above settings 20 times,
and kept the embeddings of the iteration that produced the smallest loss (i.e.
the iteration with the most accurate visualization). Some interesting cases of the
resulting scatter plots can be found in figures 3.153.15, 3.163.16, 3.173.17, 3.183.18. In these
figures, each dot represents a dataset with a specific disease, while the black star
represents a specific sample.

Figure 3.153.15, is an example of a breast cancer sample which got placed near
breast cancer datasets. The classification label was derived from the label of the
nearest dataset to the sample which was a breast cancer label. Figure 3.163.16, depicts
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Figure 3.15: Placing a breast cancer sample in the same space as the datasets that
were used.

the placement of a colorectal cancer sample in the same two-dimensional space as
the datasets that where used. In this example the colorectal cancer sample got
placed near colorectal cancer datatasets and as a result, it was correctly labeled
with a colorectal cancer label. Figure 3.173.17, is a case with a glioma sample which
got placed closer to glioma datasets, than other kind of datasets.

Finally, figure 3.183.18 is a case were a missclassification happened. In this case
a lung cancer sample was placed near lung cancer datasets. However, it also got
placed near a breast cancer dataset. The classification label was derived from the
label of the nearest dataset to the sample which in this case was the breast cancer
dataset, and as a result the sample received incorrect labeling. This figure shows
that using the nearest-K datasets for the classification of each sample, instead of
just using the nearest dataset, would probably improve the results. The difficulty
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Figure 3.16: Placing a colorectal cancer sample in the same space as the datasets
that were used.

with using this method is that the number of datasets per disease is very unbal-
anced. For example there are 46 ”healthy” datasets, while there are just 2 multiple
myeloma datasets.
Another striking observation from the tSNE figures, is that datasets of the same
disease seem to become clustered together. This corroborates to some extent, the
results of [Lakiotaki et al.Lakiotaki et al., 20192019].

3.4 Same tissue experiments

Since the samples in some of the datasets that share the same disease, also
share same types of tissues, one could argue that our algorithms are managing
to identify correct diseases because of their ability to identify the tissue that was
sampled, instead of truly identifying the characteristics of each disease. In order
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Figure 3.17: Placing a glioma sample in the same space as the datasets that were
used.

to test this assumption, we specifically selected some datasets from Biodataome
which contained samples sharing same tissues and different pathologies. We then
employed leave-one-out cross-validation on each dataset separately, to exam-
ine how well our algorithms are managing to differentiate samples of different
pathologies on identical tissues (figure 3.193.19). For the purpose of this experiment
two datasets were selected. The first dataset (GSE15061) contains 870 bone mar-
row samples, spanning three different outcomes; Myelodysplastic syndrome, Acute
myeloid leukemia, ”None-of-the-targets” containing 404, 328 and 138 samples re-
spectively. The second dataset (GSE68848) contains 471 brain tissue samples
spanning four different outcomes; Astrocytoma, Oligodendroglioma, Glioblastoma
and Non-tumor containing 148, 67, 228 and 28 samples respectively. From what
is observed, our algorithms manage to differentiate the possible outcomes in both
cases. While, in the second case, the starting accuracy is not optimal, when we
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Figure 3.18: Placing a lung cancer sample in the same space as the datasets that
were used.

allow for no-prediction cases to occur, the accuracy for both algorithms improves.
These experiments suggest that even if there exists bias originating from the tissue
of each sample, our algorithms still manage to identify disease characteristics and
differentiate between similar diseases of the same tissues.

3.5 Ensembling

An interesting observation occurred in the results of the two frameworks. Both
frameworks manage to find the correct disease mostly on the same samples, and
mostly disagree in the results in cases where misclassifications happen. To test if
the above observation was truly occurring, we employed a classification rule, to
only make a prediction for a sample when both frameworks agree on the label.

In order to create a significance value for the results of the ensemble classifier,
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we normalized the MMD based p-values and the log-likelihood based p-values so
that the smallest p-value is 0 and the largest is 1. This results in a p-value pair
for each separate result, so for each such result we take the maximum p-value as
the p-value of that computation. As observed in figure 3.203.20 the results seem to
be on par with what was previously observed from the log-likelihood classifier,
no improvement seemed to occur. Figure 3.213.21 depicts the average probability of
finding a dataset with the target disease in the first-K results of each ranked list,
for different percentages of predictions. When ∼ 75% of the predictions are made,
we observe that the log-likelihood classifier performs slightly better, with the MMD
classifier and the ensembling classifier being seemingly on par and below the curve
of the log-likelihood classifier. When ∼ 75% of the predictions are made, there is
approximately a 85% probability that the target disease will appear in the top-10
most simillar datasets, with the log-likelihood classifier, while for ∼ 25% of the
predictions there is ∼ 92.5% probability that the target disease will appear in the
top-10 datasets for that classifier. For ∼ 50% and ∼ 25% of the predictions, the
MMD and the log-likelihood classifiers seem to be on par, whereas the ensembling
classifier being always below the curves of the aforementioned classifiers.
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Figure 3.19: Same tissue classification
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Figure 3.20: Making a prediction only when the two frameworks agree on the
result.

Figure 3.21: Comparison of all frameworks on number of returned datasets.
Average probability of finding the target disease in the first-K returned datasets.
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Chapter 4

Discussion

The current work is the first, in the whole scientific community, in which gene-
expression data are modeled in such a way, that any disease could be identified
in a very close to real world scenario, without having to make assumptions about
the number of possible outcomes. Not having to make such assumptions results
in easily salable models on new datasets and diseases. New data and diseases
can easily be included; One must have stored the necessary precomputations and
apply the bootstrap step only on the new data. In contrast, previous works have
to make an assumption on the number of possible outcomes and hence they can
not be employed in real world scenaria, where their assumption does not hold.
Moreover, previous classifiers modeling such problems would have to be retrained
from scratch on all the data, in order for new datasets and diseases to be added.
We observe, based on our results, that while the problem of identifying any given
sample’s disease from gene expression data seems to be very difficult to solve given
our available datasets (very unbalanced, drug treated, very high-dimensional, etc),
our models manage to adequately tackle it when cases with don’t-know-predictions
are allowed, reaching near 72% overall accuracy when about 50% of the predictions
are made, and an expected rank value of 5 when 35% of the predictions are made.
Furthermore, our scrutinous evaluating procedures (we removed from the possible
results of each sample one possible correct outcome (bias removal sec 2.1.32.1.3)), result
in having negative bias in our performance estimation (i.e. underestimation),
meaning that the true performance of our algorithms is probably exceeding what
is reported in this work. While the results of both the log-likelihood and the
MMD classifiers are similar in terms of performance, the log-likelihood classifier
is computationally more efficient than the MMD classifier. The log-likelihood
classifier requires approximately 1/9 of the memory space required by MMD to
achieve results of the same value. There is a range of possible uses for the current
work. For example, by returning a list of the top-k most similar diseases for a given
sample, this work could be used clinically as a recommendation system, for finding
a given patient’s most probable diseases in mere milliseconds. Another clinical use
of this work would be as a quality control tool; The models from this work could
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be used in order to identify whether, a sample of a certain pathology resembles to
other samples of the same pathology, or if the sample seems more like an outlier.
Since our models are in essence dataset classifiers, the framework proposed in
this work could also be employed as a fast and lightweight dataset retrieval system
(sec. 3.13.1). The query that it could take as an input would be a single sample
(i.e. a vector), and it would return the most relevant datasets with regards to that
sample. Furthermore, though our visualization techniques, the output for each
possible use of our classifiers can be visually interpretable. As previously described,
one limitation of our work is that the datasets we used were not disease specific.
In order to set up our experiments, we had to split our datasets of mixed diseases,
into smaller disease specific datasets. To achieve this, more than 19,000 samples
had to be manually evaluated and labeled to a specific disease, which prevented
us from using as many datasets as we had originally planned to use in our final
experiments. Moreover, due to the fact that the datasets we used where created
for specific studies, many of the samples that we had at our disposal where treated
with drugs, which probably affects how these samples will ultimately be classified.
Finally, as it became obvious from the t-SNE figures, having more datasets per
disease, would further improve our results, as it would become relevant to use the
nearest-K datasets in order to classify a sample to a disease, instead of just using
the nearest-1 dataset.
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