
University of Crete

Computer Science Department

Indexing Views to Route and Plan Queries in

a Peer Data Management System

Lefteris E. Sidirourgos

Master of Science Thesis

Heraklion, November 2005

Indexing Views to Route and Plan Queries in a Peer

Data Management System

Lefteris E. Sidirourgos

Master of Science Thesis

Computer Science Department, University of Crete

Abstract

P2P computing gains increasing attention lately, since it provides the means

for realizing computing systems that scale to very large numbers of par-

ticipating peers, while ensuring high autonomy and fault-tolerance. Peer

Data Management Systems (PDMS) have been proposed to support sophis-

ticated facilities in exchanging, querying and integrating (semi-)structured

data hosted by peers. In this thesis, we are interested in routing and plan-

ning graph queries in a PDMS, where peers advertise their local bases using

fragments of community RDF/S schemas (i.e., views). We introduce an orig-

inal encoding for these fragments, in order to efficiently check whether a

peer view is subsumed by a query. We rely on this encoding to design an

RDF/S view lookup service featuring a stateless and a statefull execution over

a DHT-based P2P infrastructure. We design and implement a mechanism

based on an interleaved execution of the routing and planning activities in

order to distribute the processing of a query. We finally evaluate experimen-

tally our system (a) to demonstrate its scalability for large P2P networks and

arbitrary RDF/S schema fragments, (b) to estimate the number of routing

hops required by the two versions of our lookup service and (c) to demon-

strate the degree of distribution achieved by the interleaved query routing

and planning. To the best of our knowledge this is the first system offering

the aforementioned functionality and performance.

���������
	��
	��������������������! ��#"%$�&�	
'(�)�*+ ,�����-�
".�
$/�0'1�2	.3�&4 5��"768)�9:�0���%;<�
�=&:�<>@?��,�����A�,�B��'�*�>:�#'�"

CD3��E>F?0'�"G>�"7$H�#"0I1�F��&G�J����KL$��=�4	
'�MN�����

O=PRQTSVUXWZY\[^]`_�O+acb+[�dfegYf]hSiYkjml`_
noQTpZqirRpfSgsm[�qVtvu1O@YkjmqiwXxyq

z�{Rug{Rq1O=rh[^w|pfug{Reg_�}�r`]VPR]Vj~[�w�pk���h�~��q\�iQ�rh[^w|pfug{`[�]���Yfuipfeg_

6��=&G�2)��0���

z�q�dfSg]`{Rlip\[�{Rq��
Peer-to-Peer

u�rh[^],qVrRPR�
P2P � b�Siw�pfui{Rqip�q(WZs�]`SV�(j~x �VQ�[~[�d\[�qRx pfQZYfqdfeg{R]`�X[yPRu�pZ]V�1pfQTPRQTSip�qgx^]�thqR[yY\lm��d\QTdf]`{RW��V]`S�lVp\[Xr`qgYfWTs�]`SV�
p�q�{RWTwcq1j~[�q�pfeV�
q\�i�Vri�

pfSi�\e�w~Sgw�pfei{R�ipT���:Sir`]VPR]\j~[^w~{R]`��qVr`]ipfQ�PR]`�g{RQ��Vq�qir`l.W��iq�{RQ�jm�iPR]�qgY\[�UX{Rl.]h{RlVp\[�{g���
thl`{V�`���h��QT�\qiwc�cqiP`xy�\]\�\p�qg_�pZqgSipflis�Yf]V�Vq�Sg�ceiPRu�qgSipZ]V�V]`{`x�q�thqR[@qV�V]is�u<w|p�q�w~�X�iP\�
{RqVp�q�a,z�qE�0{Rlip\[y{RqEb4Sgw�pfui{Rqip�q¡
[�qgs�QZx�Y\[^w~eg_� 1QZdf]`{RW��\���¢�£��b� 1 � WZs�]`SV�¡r`Yf]i�pZqVUXQ�x�j~[�q5�Vqor`Y\]`w~�cWZYf]`SV�oQT�\Q�P`[jm{RW��iQT_�SVr`egYfQZwcx�QT_,w|pfeV�5q\�VpZqiPgPRqVjmu���Q�r`QTYf�=pfeiwce
thqR[F]VPR]Rt`PRugYk��w~e¤�£ei{hx�� � df]`{Reg{RW��\����dfQTdf]`{`W��\����r`]`S��hY\x^wmth]V�\p�qR[Fw|p\[^_��h�gw~Q�[�_�d\Q¥�df]`{RW��V���<pT����tvl`{V�`���<r`]`S¢p�q¢qir`qgYkp\x��f]`SV�ha¦b4pfeV��rhqiYf]h�iwcq¢QTYfj�qgwcx�q���d\[�qir`Yfqijv�
{RqVpfQZSgl`{Rqgw|pfQ��feipfui{Rqip�q�dfYf]h{R]VPglVjmegw~eg_�thqR[~d\ei{`[^]`SgYkj~x�qi_.rRPg�V�\����jm[�q�Q�r`QTYf�=pfuiwcQ¥�
[�_,w~Q1W��VqE��b� 1 ��§l`r`]`SE]h[§thl`{V�h]h[¨d\ei{R]hwc[�QT�g]`SV�¡p\[^_
p�]Rrh[ythWT_
�`�gw~Q�[�_�dfQTdf]h{RW��\���
pZ]hSi_5s�Y\eiwX[y{R]`r`]h[y���\p�qi_5lh�cQZ[^_

RDF/S
w~s�ei{`�VpZ���ha©��qiY\]`SiwX[��i�f]hSi{RQ¡{`x�q�r`Yk�=pfli�

pfSVr`eªt`��d\[yth]Rr`]vx«egw~e¬jm[�q¬qiSipfWT_­p\[�_�l`�cQ�[�_V�0e®]Rr`]vxyq©{Rqi_�QTrh[pfYfWTr`QZ[+�Vq®qir`]`�cqgwcx^�
�f]`Sg{RQ(qVr`]hdf]Vp\[yth��QT�V��e�lh�ce�pfeg_.�`�gw~eg_(dfQZdf]`{RW��\����Q��il`_�thl`{V�h]`S¡qir`qV�\pf��w~Q({`xyq
Q�r`QTYf�=pfeiwceva�b4pfegY\[��fl`{RQ��i]h[Rw~QFqgSVpfuV�:pfeV�:t`��d\[yth]`r`]hxyegw~e0wcs�QZd\[��gw~qg{RQ�W��Vq�{Regs�qV�i[�w��
{Rl.j~[�q0pfe\��dfYf]`{R]VPRlVjmegw~e

RDF/S
QTr`QTYk�=pfugw~QT���h�gr`]`S�SiPg]`r`]h[�u\U�eVtvQ4r`�\�V��qir`l(W��Vq

df]`{Reg{RW��V]¡dfSg]`{Rlip\[�{R]¡w~�gw|pfeg{Rq(�hqgwc[^w~{RW��V]�w~Q0thqip�q\�VQZ{Reg{RW��V]`Sg_.rhx �VqithQT_
tvqVp�qithQZY��
{RqVp\[^w~{R]`�(�

DHTs � a�b�s�QZd\[��gw~qg{RQ=thqR[VSiPg]Rrh]h[�uiwcqi{RQ�W��VqG{Regs�q\�g[�w~{Rl�r`]`S�Q��iqVPgPR�gw~w~Q�[

pfeV�odfY\]`{R]VPRlVj�egw~e­tvqg[=pfeV�odfeg{`[^]`SgYkj~xyq�rRPR�\�V���o{`x�qg_�Q�r`QZYk�=pfegw~eg_,WTpfwc[¨��w|pfQ
�Vq
thqip�qV�VQZx�{R]`Sg{RQ�pfeV�oQ�r`QT�\QTYkjmqgwcx�qEpfeg_,w�p�]`Sg_�tvl`{V�h]`Sg_�r`]`S�qVrhqiYkp\x��f]hS\�op�]¢��b� (�
 �a§z�WTPg]h_\�@d\[�QT�fqijm�Vjmqg{RQ�{`x�qEw~QZ[�Yf�Eqir`l�r`QZ[�Yf�g{RqipZq5j~[�qo�Vq�� q � tvqVp�qgdfQZx��f]hSi{RQ�lip\[p�]�wc�iw�pfei{Rq1{Rqg_�{gr`]`Y\QZx~�Vq
t`P`[y{Rqit`��U�QZxXw~Q0W��Vq�{RQ�jm�iPR]�qgY\[�UX{Rl�qir`l�thl`{V�h]`Sg_.thqR[
{RQ�jmW�UX]`Sg_1l`�cQ�[�_

RDF/S
�@� � � jm[�q��iq¡qir`]ip\[y{Rugw~]hSi{RQ(p�]V��qgY\[�UX{RlopT����{ReV�VSg{R�ipZ���r`]`S�qVr`]hw|pfW�PgPR]V�\pZqR[hthqipf�.pfeV�.dfYf]`{`]\PRlVjmegw~e({`x�qg_GQTr`QTYk�=pfegw~eg_�thqR[N��j � j~[yq
�Vq(Q�rh[^�dfQ�xy�\]`Sg{RQ�p�]V�
�hqVUX{Rl
pfeg_�thqip�q\�V]h{Rui_�w|p�],�cl`Ykp�]�QTYkjmqgwcx�qg_�r`]`S
QTrh[pfSijms��\�iQ�pfQ�qir`l

pfeV��Q��VqiPiPRqgw~w~l`{`Q��Ve,Q�t`pfWTPgQZw~e,pfei_�dfYf]`{R]VPRlVjmeiwcei_�thqg[dfeg{`[�]hSiYfjmx�qg_(r`Pg�V�\���,{`x�qi_
Q�r`QZYk�=pfegw~eg_\a¬b��g{R�~���iq�{RQ�l`wcq­j��\��YVxy�\]`Sg{RQf�4p�] w~�gw|pfeg{Rqor`]hS�r`qgYf]`Sgwc[��g�f]`Sg{RQ
QZx �VqR[hp�]�r`Yk�=p�]�r`]`S
r`Yf]`w~�XWTYfQ�[vqgSVpfu.pfe\��PgQ�[p�]`SgYkj~[ythlipfeVp�q({RQ�qgSipfWT_�p\[�_GQTrh[yd\l`w~QZ[^_\a

���������
	��
�������������

���������
	���
������

b4p�]®wcei{RQ�x�]®qgSipfl UXq u\U�Q�PRq��Vq QTSgs�qgY\[^w|pfugwm� p�]\�¢QTr`lRrRpfe {R]hS¢t~a��4qgwcxyPRe
��Y\[^w|p�]`��xyd\e:j~[�q:pfeV�+�g�X]Vj�eGwcS\�iQTYkjmqgwcx�q:{Rqi_�p�q�pfQ�PRQZSVp�qRx�q�s�YflV�i[�q�a=��[fj��\��w~Q�[�_@r`]`S
qVr`WTt`pfegw~q,{RWTwm�¤pfeg_
j�lV�i[�{Reg_�QTYkjmqgwcx�qi_(d\xyrRPRq,p�]`S,qir`]ipfQ�PR]`�V��wcei{RqV�\p\[yth�,QT�Xl`d\[�q�a
����Y\x^_
pfe\�
w|pfugY\[��fu
p�]`S�thqR[cpfeV�
w~SV�VQTs�u��h]`uVUXQZ[�q�r`]`S�r`�V�\p�q�uipZqV�
d\[�q\UXQTpfQZ[�{RW��V]`_
�Vq�r`Y\]`w~�cWZYfQZ[�~e1r`qgYf]`�gw~q1QZYkjmqiwXxyq
dfQ���UXq1{gr`]`Yf]h�iwcQG�Vq
]VPR]Rt`PRegYk��UXQZx a

O=rhx^w~eg_V��UXqEuVUXQTPgq5�Vq­QTSgs�qiYV[�w|pfugwm�¦p�]\�othqVUXeij�eipfuE{R]`SEthqR[�{RWTPR]`_,pfeg_,QT�\Q¥�
pZqgw|p\[ythug_�QTrh[pfY\]Rr`ug_�tca���[y��Ykjm]��|QT��YkjmqVtvlRr`]`SiPR]<{RQ1pZ]V�5]`r`]hx�]¢QZx^s�qopfeV�¡p\[�{Ru��Vq
w~SV�VQTYkjmqgw|pk�¬ugdfe1qir`l,p\[�_0r`Y\]RrRpfSgs�[�qithWZ_.{R]`S
wmr`]`SgdfWZ_\a@O�rh[«rRPRWZ]\�h�~�Vq1QZSgs�qgY\[^w|pfu\�
wm�®p�]V��thqVUXeijmeipfu�thqR[c{RW�PR]`_0pfeg_0QTrh[pfY\]Rr`ug_0tca@ 1eg{RuVpfY\e��GPRQT�f]hSiwc�Vtveva

� thl`{Rq���U�q�uVUXQ�PRq��Vq5QTSgs�qiYV[�w|pfugwm� p�]­�GqV�VQTrh[�w|pfug{`[^]E�.Yfuipfei_1thqR[|p�]��2�Vw|p\[^�
pZ]h�Vp�]��GPgegYf]`�X]`Y\[ythug_0p�]`S���dfY\�i{Rqip�]`_�z�QZsv�V]VPR]Vjmx�qg_�thqR[�� O�YfQZS\�Vqg_�j~[�q�p\[�_�j��\��w~QZ[^_
thqR[mp\[^_�QT{gr`Q�[yYVxyQZ_�r`]`S
{R]`S1r`Yf]hw~WT�XQTYfqV��lVPRq
qiSipf��p�q1s�Yfl\�g[yq�a

� O=�Vq<{RQTj��iPR] QTSgs�qgY\[�w�pk� qV�VuithQZ[Fw~Q�lVPR]`Sg_¡p�]`Sg_�w~Sg{R�c]h[�pfeipfWT_¡{R]`S�thqR[�p�]`Sg_
w~SV�VqgdfW�PR�c]hSi_�{RQ§p�]`Sg_=]Rr`]vx�]`Sg_@w~SV�VQZYkjm�iw�pfeithq4thqVU ��lVPRe+pfeV�4dV[y�gYkthQ�[�q�pT����w~r`]`Sgdk���
{R]`S�a � [�wmUX�V�V]`{RqR[�pfSgs�QTY\l`_�r`]`S­{RQTY\[ythWZ_,qir`l�qgSVpfWZ_
p\[^_,w~SV�VQTYkjmqgwcx�QT_�thqipfW�PReg�fq\�
w~Q+r`Y\qVjm{Rqip\[ythWT_���[yPRx�QZ_\a@O�Sgs�qgY\[^w|pk��Pg]v[«r`lV�(pZ]hSi_!��[y��Ykjm]m����qV�Vqijm[y�=pfe��� 1eg{RuipfYfe��
":P`x�q���nE[^s��iPRe�thqR[h�hQ¥�hqRx«��_�pZ]V�����gw~]V�Vq(j~[�q�lVPRQT_�p\[^_�QT{gr`QZ[�Y\x�QZ_�r`]`S�{R]h[�Yfqgw|pfuithqg{RQ
thqR[vr`]`S.U�q�UXSg{Rl`{Rqgw|pfQ�j~[�q(lVPRe({Rqg_:pfeV�.�k��u�a=��SgY\xy��_Glh{g��_�UXWTPg�<�Vq(QZSgs�qgY\[^w|pfu\�
wm��pfeV� � �iqiw�p�qiwXxyq­jm[�q�pfeV�­w~Sg{gr`qgYf�gw|p�qiw~uothqR[�pfeV�Ew�pfuiYV[y�\e­r`]`S�{R]`S�r`qgYfQ�x�s�Q
lVPg]V�1qgSipfl\��p�]V��thqR[�Yflm�~thqVUc��_0thqR[~jm[�q1pfeV��r`�V�\p�q1QTSgQTYkjmQTp\[«tvu1r`qgYf]`Sgwcx�q�pfeg_Va

z�QTPgQZSipZqRx^] qiPgPg��{RQ�jmqiPR�ipfQTYf] QTSgs�qiYV[�w|pk� l`{g��_�qg�\x��fQZ[Fw|pfeV�­]h[yth]VjmW��iQZ[�� {R]`S
thqR[�rh[yl,wcSVj�thQTthY\[�{RW��Vq1w�pZ]hSi_�jm]V�VQZx^_�{R]`S��#��qVj�jmW�PRe�thqR[~b�]`��x�qv�~w|pfeV�.j~[�qij~[y�
{R]`S��
$4�=pfQZ[�iuv�|thqR[w�p�]\���fqgdfQZYf�clo{R]`S��|���gY\[a��GqgYflVPR]5r`]hS,�hY\x^wmth]V�\pZqV��{RqithY\[���r`�V�\p�q
uVp�qV�(d\xyrRPgq�{R]hS�thqR[m{RQGw|pfugY\[��fqV�(w~QGlVPRQT_�p\[�_�d\Siw~th]VP`xyQZ_\a%" QZYkjmqiwXxyq�qgSipfu(QTPgrhxy�f�
�Vq0qir`]VpfQTPgWZw~QZ[g{`[�q0{`[ythY\u0qV�\p�qg{R]h[^�hu�j~[�q0p\[�_4UXSgwcx�QT_4thqR[gp\[�_�r`Yf]`wmr`�VUXQ�[�WT_4p�]`Sg_+lVPg]V�
qiSipflV��pZ]V��thqR[yY\lma

Contents

1 Introduction 1

2 RDF/S based PDMS 7

2.1 RDF/S schemas . 8

2.2 RDF/S peer base advertisements and queries 10

2.3 RDF/S query and view subsumption 14

3 An Encoding for RDF/S Schema Graph Fragments 17

4 A DHT-Framework for RDF/S Queries 25

4.1 Peer joins, departures and updates 27

4.2 Lookup Service . 31

5 Interleaved Query Routing and Planning 39

5.1 Query Fragmentation and Planning 41

5.2 Statefull Query Routing and Planning 46

5.3 Stateless Query Routing and Planning 50

6 Experimental Evaluation 55

6.1 DHT-based Schema Index and Lookup Service 56

6.2 Interleaved Query Routing and Planning 60

i

ii CONTENTS

7 Related Work 67

8 Conclusion and Future Work 73

Bibliography 75

List of Tables

2.1 Class and property query/view patterns 12

2.2 Graph fragments specified by query/view patterns 13

4.1 AdjSub Cube traversal for RDF/S schema fragments. 32

iii

iv LIST OF TABLES

List of Figures

2.1 An RDF/S schema graph . 8

2.2 Peers belonging to the same SON and their views 10

2.3 Two cases of view subsumption. 15

3.1 Class and Property subsumption hierarchies 18

3.2 AdjSub Cube for an RDF/S schema 19

3.3 Encoding Algorithm for view V 21

4.1 A Chord ring with eight peers. 26

4.2 Peer pr3 joins the network. It advertise its view V 0 and the

vertically subsuming views . 28

4.3 Algorithm to compute all vertically subsuming views 29

4.4 Distributed sublookup algorithm 35

4.5 Routing hops on the Chord ring for the statefull and stateless

version of the sublookup algorithm 36

5.1 All possible fragmentations of query Q 42

5.2 Plans for the query fragmentations depicted in Figure 5.1 . . . 43

5.3 Subplan 1.1 optimized by applying the algebraic equivalence . 44

5.4 Statefull execution of the interleaved routing and planning . . 47

5.5 Steps taken by the coordinator peer during the statefull planning 49

v

vi LIST OF FIGURES

5.6 Statefull planning algorithm at peer p 49

5.7 Stateless execution of the interleaved routing and planning . . 51

5.8 Algorithm of the stateless execution policy 52

6.1 Distribution of views over peers in networks of different size. . 56

6.2 Number of routing hops for networks of different size. 58

6.3 Number of routing hops for queries of different size 59

6.4 Dynamic Programming . 60

6.5 Iterative Dynamic Programming 61

6.6 Distribution of peer vies over the network. 62

6.7 Planning Time per Round . 63

6.8 Distribution of the total workload over peers 64

Chapter 1

Introduction

Scientific or educational communities are striving nowadays for highly au-

tonomous infrastructures enabling to integrate structured or semi-structured

data hosted by peers. In this context, we essentially need a P2P data

management system (PDMS), capable of supporting loosely coupled com-

munities of databases in which each peer base can join and leave the net-

work at free will, while groups of peers can collaborate on the fly to pro-

cess queries and provide advanced data management services on a very

large scale (i.e., thousands of peers, massive data). A number of recent

PDMSs [BGK+02, CGM03, HIMT03, NWS+03] recognize the importance of

intensional information (i.e., descriptions about peer contents) for support-

ing such services. Capturing explicitly the semantics of databases available

in a P2P network using a schema enables us to (a) support expressive queries

on (semi-)structured data, (b) deploy effective methods for locating remote

peers that can answer these queries and (c) build efficient distributed query

processing mechanisms.

In this thesis, we are interested in routing and planning graph queries

addressed to an RDF/S based PDMS. More precisely, we consider that peers

1

2 CHAPTER 1. INTRODUCTION

advertise their local bases using fragments of community RDF/S schemas

(e.g., for e-learning, e-science, etc.). These advertisements are specified by

appropriate RDF/S views and they are employed during query routing to

discover the partitioning (either horizontal, vertical or mixed) of data in

remote peer bases. Moreover, peers should share computational power in

order to evaluate queries in a distributed manner. The main challenges in this

setting is (a) to build an effective and efficient lookup service for identifying,

in a decentralized fashion, which peer views can fully or partially contribute

to the answer of a specific query; and (b) to design a query planning execution

policy that distributes the workload over the peers obtained by the lookup

service. Our work is motivated by the fact that a sequential execution of the

routing and planning phases for a specific query is not feasible solution in a

PDMS context. As a matter of fact, due to the very large number of peers

that can actually contribute to the answer of a query, an interleaved query

routing and planning will enable us to obtain as fast as possible the first

answers from the most relevant peers while the query is further processed by

others. More precisely, we make the following contributions:

• we introduce an original encoding of arbitrary RDF/S schema graph

fragments for checking whether a peer view is subsumed by a query;

• we design and implement a DHT-based schema index to smoothly dis-

tribute view advertisements over peers;

• we design and implement an RDF/S view lookup service that identifies

which peers can fully or partially contribute to the answer of a graph

query;

• we design and implement an interleaved query routing and planning

execution policy that distributes the planning workload over peers and

3

obtain as fast as possible the first answers from the most relevant peers

while the query is further processed by others;

• we experimentally demonstrate the scalability of our DHT-based schema

index for networks of different sizes, as well as, estimate the number

of routing hops required by a centralized and a distributed execution

of the proposed lookup service. Finally, we demonstrate the benefits

from the interleaved query routing and planning execution in terms of

the degree of distribution.

Part of the work presented in this thesis has been published in [KSC05,

SKD05, KSDC05].

To the best of our knowledge no other PDMS offers the aforementioned

functionality. Compared to the data indexes maintained by data-driven

PDMSs that publish directly peer bases on the network [TP03, GWJD03,

BT03, CF04, ACMHP04, HHK05], the distributed index on peer views main-

tained in our system is smaller in size. In fact, it is equal to the num-

ber of fragments (e.g., subgraphs) that can be extracted from the RDF/S

schemas. Also, it requires a considerably smaller number of messages to be

exchanged when peers join or leave the network. Finally, since schema frag-

ments advertised by peers evolve less frequently than their actual bases,

such an index does not need frequent updates. As a result, in our ap-

proach index maintenance costs are reduced. Unlike other schema-driven

PDMSs [NWS+03, ETB+03] which maintain a simple inverted list of the

RDF/S classes (or properties) actually populated in peer bases, our frame-

work is capable of routing in one step complex graph queries. The proposed

lookup service is able to immediately identify peers matching an RDF/S

schema graph fragment without the need to decompose queries. Last but

not least, our framework exploits the computing power of the P2P network

4 CHAPTER 1. INTRODUCTION

for fairly distributing in different peers the routing, planning and execution

load of queries. It is also worth noticing that PDMSs like Piazza [HIMT03]

rely on the mappings established between the individual peer schemas to

route queries on semantically related peers rather than on a distributed in-

dex. We consider that schema heterogeneity is an orthogonal issue, although

our system can be easily extended to also address query reformulation is-

sues [CKK+03].

We believe that our framework is particularly suited for supporting large

scale autonomous organizations for which neither a centralized warehouse

nor an unlimited data migration from one peer to another are feasible so-

lutions due to societal or technical restrictions. As a matter of fact, many

applications (such as networks of institutes sharing scientific knowledge) re-

quire data to remain to their natural habitants rather than flowing around

the P2P network. However, in our context, peers agree to publish and query

their bases according to a number of globally known schemas (e.g., defined

by various standardisation bodies). As stated in [SRvdWB05, HHL+03],

in a large scale P2P network involving thousands of peers, obtaining the

complete answer of a query is infeasible due to network bandwidth limita-

tions and computational cost. For this reason, a mechanism that allows to

predefine the amount of data returned or the number of peers contacted is

mandatory. Finally, although we rely on RDF/S schemas and Chord for de-

ploying a structured P2P infrastructure, the results presented in this work

can be easily adjusted to other data models, like XML, and DHT protocols,

like CAN [RFH+01].

The rest of this thesis is organized as follows. In Chapter 2, we overview

the proposed framework by focusing on how expressive RDF/S queries em-

ployed to retrieve data from the P2P network are matched against the views

5

published by the peers to advertise their bases. In Chapter 3, we introduce

our encoding of arbitrary RDF/S schema fragments. In Chapter 4, we detail

how this encoding can be employed to build a DHT-based schema index sup-

porting effective and efficient lookup of intensional peer base advertisements.

In Chapter 5 we detail the interleaved query routing and planning execu-

tion. In Chapter 6, we analyse experimentally the performance figures of our

framework. Finally, Chapter 7 position our work w.r.t. related systems and

Chapter 8 summarizes our contributions and future work.

6 CHAPTER 1. INTRODUCTION

Chapter 2

RDF/S based PDMS

In our framework, we consider that every peer provides descriptions about

information resources available in a P2P network that conform to a number

of community schemas (e.g., for e-learning, e-services, etc.). Peers employing

the same schema to construct such descriptions in their local base belong

essentially to the same Semantic Overlay Network (SON) [CGM03]. The

notion of SONs appears to be an intuitive way to cluster together peers

sharing the same model for a particular domain or application for expressing

useful queries and exchange information with others. Of course, a peer may

belong to more than one SON, depending on the semantics of its base while

it may host only a part of the semi-structured descriptions available in the

network. In our context, a PDMS is the union of a number of SONs where

queries are answered with data residing at peer bases belonging to the same

SON as the query. Moreover, if there exist semantic mappings between the

SONs of a PDMS, queries are answered with data residing at peer bases that

are reached through the paths of those mappings.

In order to design an effective and efficient P2P query routing mechanism

we need to address the following issues: (a) how can a SON be defined? (b)

7

8 CHAPTER 2. RDF/S BASED PDMS

C2 C3 C4C1

C5 C6
C8C7

p7

p8

p4p3p1

p6

p2

p5

subsumption

RDF/S Schema Graph

Figure 2.1: An RDF/S schema graph

how do peers advertise their bases in a SON? (c) how do peers formulate

queries in a SON and finally (d) how do peers decide which views of a SON

match their queries? In the following sections, we will present the main

design choices of our framework in response to the above issues.

2.1 RDF/S schemas

A natural candidate for representing descriptive data (ranging from sim-

ple structured vocabularies to complex reference models [MACP02]) about

various information resources available in a SON is the Resource Descrip-

tion Framework and Schema Language (RDF/S) [RDF]. The core primitives

of RDF/S schemas are classes and properties. Classes describe general con-

cepts or entities. Properties describe characteristics of classes or relationships

between classes. Both classes and properties may be related through sub-

sumption. Every property defined in an RDF/S schema has a domain class

(i.e., the class that has this property) and a range class (i.e., the value of this

property). A property and its domain and range classes form a schema triple,

denoted by (domain(p), p, range(p)). An RDF/S schema is a set of schema

2.1. RDF/S SCHEMAS 9

triples forming a directed labelled (multi)graph, called in the sequel RDF/S

schema graph. For example, consider the RDF/S schema graph shown in

Figure 2.1. The circular nodes are labeled with class names (e.g., C2, C3),

while the solid edges with property names (e.g., p3). The dashed edges rep-

resent the subsumption relationships of classes (e.g., between C7 and C2) or

properties (e.g., between p7 and p3). Formally, an RDF/S schema graph is

defined as follows.

Definition 2.1 An RDF/S schema graph is a directed multigraph R = ({C∪

L}, P,≺c,≺p), where:

1. C is a set of nodes labelled with an RDF/S class name.

2. L is a set of nodes labelled with a data type (RDF/S literals).

3. P is a set of edges (c1, p, c2) from a node c1 to a c2 labelled with a

property p, where domain(p) = c1 with c1 ∈ C and range(p) = c2 with

c2 ∈ C ∪ L.

4. ≺c is a partial order imposed on nodes in C (RDF/S class subsump-

tion).

5. ≺p is a partial order imposed on edges in P (RDF/S property subsump-

tion).

The framework presented in this thesis can be applied to a wide-range

of application needs: from one SON defined by a unique RDF/S schema, to

a SON defined by several interconnected RDF/S schemas, to several SONs

defined by different RDF/S schemas. This is due to the expressiveness of

the RDF/S data model which (a) allows easy reuse or refinement of descrip-

tive schemas employed by peers through subsumption of both classes and

10 CHAPTER 2. RDF/S BASED PDMS

C1 C3C2
p1 p3

peer1 base

peer1 view

peer3 view

peer3 base

C4C2

C6

C3
p4p3

p5
C7 C8

p7

p8

peer2 view

peer2 base

Peers and fragments of the RDF/S graph specified by their views

Semantic Overlay Network

Figure 2.2: Peers belonging to the same SON and their views

properties; (b) permits irregular heterogeneous descriptions in the sense that

a resource may be multiply classified under several classes from one or sev-

eral peer schemas (identified by appropriate namespaces) and (c) extends the

scope of a resource description beyond the physical boundaries of an XML

file hosted by a peer.

2.2 RDF/S peer base advertisements and que-

ries

Each peer should be able to advertise the content of its local base to others

with respect to the RDF/S schemas of the SONs they belong to. Using these

advertisements a peer can become aware of the data hosted in remote peer

bases. However, since an RDF/S schema may contain numerous classes and

2.2. RDF/S PEER BASE ADVERTISEMENTS AND QUERIES 11

properties not necessarily populated in a peer base, we need a fine-grained

definition of schema-based advertisements. To this end, we employ views to

specify the fragment of an RDF/S schema graph for which all classes and

properties are populated in a peer local base. Figure 2.2 illustrate three peers

belonging to the SON defined by the RDF/S schema graph of Figure 2.1, and

their views. Each view specifies a different fragment of the RDF/S schema

graph which are used by the peers to advertise their bases. In a similar way,

peers can retrieve data from the PDMS by issuing queries, which also specify

a particular RDF/S schema fragment of interest.

Queries in our framework are formulated in RQL [KAC+02], a full-fledged

RDF query language which provides sophisticated pattern matching facilities

against RDF/S schema and data graphs. RQL queries allow us to retrieve

the contents of any peer base, namely resources classified under classes or

associated to other resources using properties defined in the RDF/S schema.

It is worth noticing that RQL queries incur both intensional (i.e., schema)

and extensional (i.e., data) filtering conditions. Additionally, peers employ

RVL [MTCP03], an extension of RQL, for defining views to specify the frag-

ments of an RDF/S schema for which all classes and properties are populated

in a peer base. Both languages employ patterns to extract the RDF/S schema

graph fragments which are relevant to the data requested by a query/view.

Table 2.1 summarizes the basic class and property path patterns, which can

be employed in order to formulate complex RQL/RVL query/view patterns

(capital letters denote variables, and small letters denote constants). With

the exception of the RQL/RVL distinction between exact (denoted with)̂

and extended pattern matching for class (̂ c{X} and c{X}) and property

({X }̂ p{Y } and {X}p{Y }) instances, all the other patterns are encountered

in the majority of the RDF/S query languages. In the rest of this thesis we

12 CHAPTER 2. RDF/S BASED PDMS

Path Patterns Interpretation

Class Path Patterns

$C {c | c is a schema class}

c{X} {[c, x] | c a schema class, x in the interpretation

of class c}

ĉ{X} {[c, x] | c a schema class, x in the exact

interpretation of class c}

Property Path Patterns

@P {p | p is a schema property}

{X}p{Y } {[x, p, y] | p is a schema property, [x, y] in the

interpretation of property p}

{X }̂ p{Y } { [x, p, y] | p is a schema property, [x, y] in the

exact interpretation of property p}

{X; [̂]c}[̂]p{Y ; [̂]d} {[x, c, p, y, d] | p is a schema property, c, d are schema

classes, c is a subclass of p’s domain, d is a subclass

of p’s range, x is in the (exact) interpretation of c,

y is in the (exact) interpretation of d, [x, y] is in the

(exact) interpretation of p}

{X; [̂]c}@P{Y ; [̂]d} {[x, c, p, y, d] | p is a schema property, c, d are schema

classes, x is in the (exact) interpretation of c,

y is in the (exact) interpretation of d, [x, y] is in the

interpretation of p}

Table 2.1: Class and property query/view patterns

2.2. RDF/S PEER BASE ADVERTISEMENTS AND QUERIES 13

Pattern Graph Fragment Pattern Graph Fragment

c{X}

c

ĉ{X}
c

{X}p{Y }

p
range(p)domain(p)

{X }̂ p{Y }

p
range(p)domain(p)

{X; c}p{Y ; d}

c d
p

{X; c}@P{Y ; d}

c d

@P

Table 2.2: Graph fragments specified by query/view patterns

stick on the notion of RDF/S schema fragments specified by these patterns,

rather than their syntax on RQL or RVL.

Definition 2.2 Given an RDF/S schema graph R = ({C ∪ L}, P,≺c,≺p),

a fragment specified by a query or view pattern over R is a subgraph R′ =

(C ′, P ′) such that C ′ ⊆ C and P ′ ⊆ P .

Table 2.2 illustrates the fragments of the SON RDF/S schema graph spec-

ified by the patterns of Table 2.1. More precisely, the pattern c{X} can be

used to retrieve all classes that are instances of class c or any class subsumed

by c, while ĉ{X} consider only classes that are in the exact interpretation of

class c (no subsumed classes are considered). The pattern {X}p{Y } can be

used to retrieve all the instances (X,Y) of the domain and range classes of

property p. Note that this pattern takes also into account the class and prop-

erty subsumption relationships (denoted by the dashed triangles) to include

in the result transitive instances of domain/range classes. Pattern {X }̂ p{Y }

14 CHAPTER 2. RDF/S BASED PDMS

is similar to the previous, with the exception of considering only the exact in-

terpretation of property p (i.e., no properties subsumed by p will be included

in the result). The next pattern, {X; c}p{Y ; d}, retrieves all the instances

(X,Y) of the class c and d, where c and d are subclasses of the domain and

range class of property p respectively. Note that c, p or d can appear with

a leading ˆ donating the exact interpretation, and if so, the dashed triangle

will be omitted in each of the corresponding class or property. Finally, the

pattern {X; c}@P{Y ; d} will return all the properties relating instances of

the classes c and d, respectively. These properties can be either defined to

have c and d as domain and range classes respectively but also any of the

classes subsuming them. Again, the classes can appear in the pattern with

a leading .̂

We can easily observe the similarity in the intensional representation

of both peer base advertisements and query requests as RDF/S schema

graph fragments. By representing in the same logical framework what data

are requested by a SON (i.e., queries) and what data are actually hosted

in each peer base of the SON (i.e., views), we can easily understand the

data partitioning (horizontal, vertical, mixed) in remote peers relative to

a query. Moreover, this framework can be easily extended to reformulate

queries expressed against a SON RDF/S schema in terms of the heteroge-

neous schemas or data models (e.g., relational, XML) employed locally by

the peer bases [CKK+03].

2.3 RDF/S query and view subsumption

In order to decide which peer advertisements match a SON query, we need

to check whether the classes and properties of the RDF/S schema fragments

2.3. RDF/S QUERY AND VIEW SUBSUMPTION 15

C2 C3
p3

Q

C8V2 C7
p7

C2 C3
p3

C1 C2 C3
p1 p3

V1

Q

Vertical subsumption: Q subsumes V1 Horizontal subsumption: Q subsumes V2

Figure 2.3: Two cases of view subsumption.

specified by the corresponding peer views are subsumed by those of the query.

As studied in [SKCT05] checking containment of conjunctive RVL views and

RQL queries involving arbitrary RDF/S schema and data patters is an NP-

complete problem. For this reason we restrict our framework to the patterns

illustrated in the previous section that return data according to a known

schema fragment. We define subsumption between RDF/S schema graph

fragments as follows:

Definition 2.3 Let the RDF/S schema graph R = (C,L, P,≺c,≺p). Let

also R′ = (C1, P1) and R′′ = (C2, P2) be two fragments of R, specified by a

query pattern Q and a view pattern V , respectively (C1, C2 ⊆ C and P1, P2 ⊆

P). Q subsumes V (or V is subsumed by Q) if:

1. ∀c1 ∈ C1, ∃c2 ∈ C2, c1 = c2 or c2 ≺
c c1, and

2. ∀p1 ∈ P1, ∃p2 ∈ P2, p1 = p2 or p2 ≺
p p1.

Notice that in the above definition, all classes/properties in Q must be

present or subsume a class/property in V . However, V may have additional

classes and properties. Figure 2.3 illustrates two different subsumption cases.

In the left part of Figure 2.3, query Q vertically subsumes view V 1 in the

sense that V 1 has property p1 with domain class C1 that are not present in

16 CHAPTER 2. RDF/S BASED PDMS

Q. However V 1 is subsumed by Q since it contains a fragment that matches

Q. On the right part of Figure 2.3, Q horizontally subsumes V 2 since all

classes and properties in V 2 are subsumed by the classes and properties

of Q. A query may subsume a view in either the above two ways or in

any combination of them. Therefore, we need efficient support to decide

subsumption of RDF/S schema graph fragments. For this purpose, we will

present in the next chapter an encoding allowing to check whether an RDF/S

schema fragment is subsumed by another, in linear time to the number of

schema triples of the fragments.

Chapter 3

An Encoding for RDF/S

Schema Graph Fragments

This chapter introduces a succinct representation of RDF/S schema graphs,

based on a structure called Adjacency and Subsumption Cube (in short Adj-

Sub Cube) allowing to encode fragments of arbitrary size and structural form

(i.e., linear, tree or graph) of the original RDF/S schema graph. The Adj-

Sub Cube is a structure that does not need to be implemented by any peer.

Instead, it’s used to derive an encoding function for RDF/S schema graph

fragments involved in a SON. An AdjSub Cube provides (a) adjacency infor-

mation for nodes (i.e., whether a class is related to another one via a certain

property) and (b) subsumption information for classes and properties (i.e.,

whether a class/property subsumes another).

An adjacency matrix of a graph G = (V,E) is a n×n matrix A, such that

A(i, j) = 1 if (i, j) ∈ E or 0 otherwise. Such a structure is not suitable for

representing an RDF/S schema graph because there may be more than one

edges connecting the same vertices (provided that these edges are of different

labels) and there may exist self-loops. For example, properties p3 and p6 in

17

18CHAPTER 3. AN ENCODING FOR RDF/S SCHEMA GRAPH FRAGMENTS

p2 p7

p1 p3 p5 p6 p8p4

Top Property

[1,1] [3,3]

[1,2] [3,4] [5,5] [6,6] [7,7] [8,8]

C1 C2 C3 C4 C6

C5 C7 C8

Top Class

[5,6][3,4][1,2] [7,7] [8,8]

[1,1] [3,3] [5,5]

Figure 3.1: Class and Property subsumption hierarchies

Figure 2.1 are both adjacent to classes C2 and C3, while property p8 is

a self-loop. The AdjSub Cube extends the concept of adjacency matrix by

adding a third dimension to map labeled edges (i.e., the properties). The first

dimension (vertical) represents the nodes that appear as the domain classes

of a property, the second (horizontal) the nodes that appear as the range

classes of a property and the third the labels of the properties. Moreover, it

imposes an ordering of classes and properties on each dimension based on an

interval encoding of the RDF/S class and property subsumption hierarchies.

In general, an interval encoding over a subsumption hierarchy is main-

tained using labels of the form [start, end] such that every interval of a child

node is contained in the interval of its parent. In this paper we employ the

encoding of [ABJ89] where a tree node u is labeled with [index (u), post(u)]:

post(u) is the number assigned to u when a postorder tree traversal is con-

sidered, while index (u) is the lowest of the post numbers assigned to u’s

descendants. Note that index(u) ≤ post(u) and that u ≺c v (or u ≺p v) iff

index(u) ≥ index(v)∧post(u) < post(v). In addition, the number of nodes of a

sub-tree rooted at node u is equal to post(u)− index(u). Figure 3.1 illustrates

19

C5

C6

C4

C3

C8

C2
C7

C1

C6 C4 C3 C8 C2 C7 C1 C5

p8
p6 p5

p4 p3 p7
p1

p2

Domain

Range

Property

Figure 3.2: AdjSub Cube for an RDF/S schema

the interval encoding of the class and property subsumption hierarchies given

in the SON RDF/S schema of Figure 2.1. An AdjSub Cube exploits the post

numbers of the classes and properties to arrange them in each dimension. It

follows that if we organize classes (properties) in the inverse order from the

one obtained in the postorder, subsumed classes (properties) will succeed the

subsuming classes (properties).

For simplicity, we consider only tree shaped subsumption hierarchies al-

though this work can be extended to DAGs [CPST03]. Such an extension

would be to organize classes and properties in the reverse order of that ob-

tained by a Depth First Search (DFS) of the DAG hierarchy. However, in this

case the above mentioned properties of the interval encodings are not valid

and more, and more checking must be done to ensure that a class (or a prop-

erty) is subsumed by another. This checking consist of a simple comparison

between the additional interval labels employed in case of DAGs [CPST03].

Given an RDF/S schema graph R, we define the corresponding AdjSub

Cube AS as follows: for every schema triple (d, p, r) of R, where p is the

20CHAPTER 3. AN ENCODING FOR RDF/S SCHEMA GRAPH FRAGMENTS

property, d the domain class and r the range class of the property, we set cell

ASijk = 1, where i = |C| − post(d), j = |C| − post(r) and k = |P | − post(p).

The remaining cells in the AdjSub Cube are set to 0. Figure 3.2 illustrates an

example of the AdjSub Cube that corresponds to the RDF/S schema graph

presented in Figure 2.1. We next define formally the AdjSub Cube.

Definition 3.1 Let an RDF/S schema graph R = (C,L, P,≺c,≺p), and

d, r ∈ C, p ∈ P . An AdjSub Cube AS for R is an |C| × |C| × |P | bitmap

such that:

AS(i, j, k) =







1 if domain(p) = d and range(p) = r

0 otherwise

where i = |C| − post(d), j = |C| − post(r) and k = |P | − post(p).

Any fragment of the original RDF/S schema graph, can be represented in

the same AdjSub Cube created for this schema, by setting to 1 only those cells

of the cube that correspond to the schema triples of the fragment. We can

enumerate all cells in the AdjSub Cube based on their position through the

function pos(ASijk) = k×|C|2 + i×|C|+ j, where i, j = 0, 1, . . . , |C| − 1 and

k = 0, 1, . . . , |P | − 1. Based on this enumeration, every fragment is encoded

by assigning a unique number N as defined below:

Definition 3.2 Let an RDF/S schema graph R = (C,L, P,≺c,≺p) and the

corresponding AdjSub Cube AS. Every fragment of R represented in AS, is

encoded by assigning a unique number N , such that

N = aL−12
L−1 + . . . + a12

1 + a02
0 and an = ASijk,

where n = pos(ASijk), and L = |C| × |C| × |P | the size of the AdjSub Cube

AS.

21

encode(view V)

input: a view V
output: an encoding for view V

1: C ← number of classes in the RDF/S schema

2: P ← number of properties in the RDF/S schema

3: encode = 0

4: for every schema triple t in V

5: pos = (P − post(t.prop))× C2 + (C − post(t.domain))× C+

(C − post(t.range))

6: encode = encode + 2pos

7: end for

8: return encode

Figure 3.3: Encoding Algorithm for view V

The unique number N that encodes an RDF/S schema graph fragment is

a number, where the coefficient an of the factor 2n is set to 0 or 1 depending on

the value of the cell, whose position is pos(ASijk) = n. One may compute N

if for every schema triple (d, p, r) of the fragment computes its corresponding

position in the AdjSub Cube. The complete algorithm is given in Figure 3.3.

Since N may be a fairly large number, a simple way to store N is with

a set of integers {n1, n2, n3, . . .} such that each ni is the pos(ASijk) of each

schema triple in the fragment. For example, consider view V 1 of Figure 2.3

composed of the schema triples t1 = (C1, p1, C2) and t2 = (C2, p3, C3).

For the first schema triple t1 we have: i = |C| − post(C1) = 8 − 2 = 6,

j = |C| − post(C2) = 8 − 4 = 4, k = |P | − post(p1) = 8 − 2 = 6 and

pos(t1) = k · 82 + i · 8 + j = 6 · 64 + 6 · 8 + 4 = 436. Consequently, for the

schema triple t2, pos(t2) = k ·82 + i ·8+ j = 4 ·64+4 ·8+2 = 290. Thus, the

unique number of view V 1 is N(V 1) = 2436 + 2290 ≡ {436, 290}. Likewise,

22CHAPTER 3. AN ENCODING FOR RDF/S SCHEMA GRAPH FRAGMENTS

the unique number of view V 2 and query Q of Figure 2.3 is N(V 2) = 2363

and N(Q) = 2290, respectively. We can observe that if a view is subsumed

(horizontally or vertically) by another then it holds that the unique number

of the subsumed view is greater than the unique number of the subsuming

view. For example, query Q subsumes vertically view V 1 and horizontally

view V 2. For both cases of subsumption it holds that N(V 1) > N(Q) and

N(V 2) > N(Q).

Given the above encoding, we can decide if a fragment of an RDF/S

schema graph is subsumed by another in linear time to the size of the frag-

ments.

Theorem 3.1 Given two connected fragments R′,R′′ of an RDF/S schema

graph R and their unique numbers defined by the above encoding N(R′) =

2n1 + 2n2 + . . . + 2nk ≡ {n1, n2, · · · , nk} and N(R′′) = 2n′

1 + 2n′

2 + . . . + 2n′

l ≡

{n′

1, n
′

2, · · · , n
′

l}, respectively, it holds that:

1. if R′ subsumes R′′ ⇒ N(R′′) > N(R′).

2. if ∀ni ∈ {n1, n2, . . .},∃n
′′

i = n′

j, n
′

j ∈ {n
′

1, n
′

2, . . .} \ {n
′′

1, . . . , n
′′

i−1} :

n′

j ∈
⋃

δ

⋃

λ[ni + λ|C| + δ|C|2, ni + λ|C| + δ|C|2 + κ] ⇒ R′ subsumes

R′′,

where:

δ = post(prop(t))− index(prop(t)),

λ = post(domain(t))− index(domain(t)),

κ = post(range(t))− index(range(t))

and t is the schema triple corresponding to the cell with pos(AS)=ni.

Proof. If R′ subsumes R′′ then from the construction of the AdjSub Cube

it holds that N(R′′) > N(R′). Given two fragments R′,R′′, in order for

23

R′ to subsume R′′, we need to check whether for every schema triple in R′

(∀ni), there exists a subsumed schema triple in R′′ (∃n′

j). Given that the

schema triple corresponding to the cell n′

j is subsumed by the schema triple

corresponding to the cell ni, n′

j is positioned somewhere in a sub-cube of

the AdjSub Cube. This sub-cube is confined by the subsumed triples of ni,

which are represented in the cells of the sub-cube that spans post(range(t))−

index(range(t)) on the range dimension, post(domain(t))− index(domain(t))

on the domain dimension and post(prop(t))− index(prop(t)) on the property

dimension.

2

The complexity to decide if two views are subsumed given their unique

numbers is O(nk) where n and k is the number of schema triples of the views,

respectively. This is due to the fact that for every schema triple in R′ (n

schema triples) we must search k schema triples of R′′ to find a match.

24CHAPTER 3. AN ENCODING FOR RDF/S SCHEMA GRAPH FRAGMENTS

Chapter 4

A DHT-Framework for RDF/S

Queries

Structured P2P systems based on Distributed Hash Tables (DHTs) can sup-

port large, highly distributed networks while ensuring a fair load distribution

among peers at the cost of an extra message overhead when peers join or leave

the network. A popular DHT-based protocol for storing and retrieving pairs

of (key, data) is Chord [SMK+01]. More precisely, the main service supported

by Chord is lookup(key), which returns in at most O(log n) routing hops (i.e.,

network messages) the peer’s address that is responsible for storing the pair

(key, data). Peers are associated with keys through their identifiers. A peer’s

identifier is chosen by hashing the peer’s IP address, while a key identifier is

produced by hashing the key. Identifiers are ordered on an identifier circle

modulo 2m, called the Chord ring. Key k is assigned to the first peer whose

identifier is equal to or follows the identifier of k in the identifier circle. This

peer is called the successor peer of key k, denoted by successor(k). To locate

a key in the Chord ring, each peer maintains a routing table, called the finger

table, where the ith entry contains the identifier of the first peer that succeeds

25

26 CHAPTER 4. A DHT-FRAMEWORK FOR RDF/S QUERIES

Chord Ring

H(N(V1))

H(N(V2))

+1+2

+4

Chord Finger Table

...

N(V1)
N(V2)

{pr1,pr3,pr6,pr7}
{pr2,pr4,pr5,pr8}

Key peers

pr2+1

...
pr2+4
pr2+2

pr3
pr3
pr4

pr1

pr3

pr4

pr5

pr6

pr7

pr8

pr2

Figure 4.1: A Chord ring with eight peers.

its identifier by at least 2i−1.

In our context, we build a DHT-based schema index where a key is the

unique number of the RDF/S fragment specified by the view of a peer. Rather

than data objects a key designates peer IPs populating the corresponding

fragment. To produce a key identifier and place it on the Chord ring, an order

preserving hash function is used to maintain the ordering over subsumed

views given by the AdjSub Cube. For example, if N = {n1, n2, n3} a simple

order preserving hash function is H(N) = (n1 · n2 · n3) mod 2m. Figure 4.1

illustrates eight peers (pr1, pr2, . . . , pr8) that have published views of the

same SON RDF/S schema and thus sharing the same Chord ring. Peer pr2

is the successor peer of views V 1 and V 2 since the hash values of the unique

number of the views are between the identifiers of peers pr1 and pr2. Peer

pr2 maintains a table that associates the unique numbers of views V 1 and

V 2 with peers whose bases populate these views. Moreover, peer pr2 route

requests according to the finger table as specified by the Chord protocol.

To summarize, each peer stores pairs of the form (view, {peers}) and

4.1. PEER JOINS, DEPARTURES AND UPDATES 27

replies to a lookup(view) request with the set of peers that had advertised

the specific view. However, there might be views hashing to the same key

identifier or the same keys may correspond to views that are defined over

different SONs. The first problem can be easily bypassed by sending along

with the lookup request, the unique number of the encoded view. The sec-

ond problem can be addressed by distinguishing the lookup requests via

the unique namespace of the RDF/S schema defining a SON. When SONs

are interconnected, the AdjSub Cube is defined using the class and property

hierarchies of all involved RDF/S schemas. Next, we describe how our DHT-

based infrastructure evolves when peers join or leave the network or even

update their views.

4.1 Peer joins, departures and updates

Each peer joining the network advertises through a view the fragment of the

RDF/S schema which is actually populated in its local base. Recall that a

peer is able to not only answer queries that match exactly its view, but also

any of its fragments (i.e., views that vertically subsume its view). When the

joining peer wishes to inform about its capability to answer queries related

to a vertically subsuming view, it issues lookup(view) requests to identify the

successors responsible for the subsuming views accompanied by a store(view,

IP) request. Moreover, Chord provides a mechanism for key reallocation for

inserting the newly added peer to the DHT index. The predecessor of this

new peer sends the (view, {peers}) pairs for which it will be responsible from

now on. For example, Figure 4.2 illustrates peer pr3 that has view V 0 and all

views that vertically subsume V 0, namely V 1 to V 6. The upper right part

of Figure 4.2 illustrates the peers that are contacted on the Chord ring when

28 CHAPTER 4. A DHT-FRAMEWORK FOR RDF/S QUERIES

Chord Ring

store(V4,pr5)

store(V0,pr8) store(V3,pr2)
store(V2,pr2)

store(V1,pr2)

store(V5,pr6)
store(V6,pr6)

C2 C3
p3

C4C3
p4

C3 C6
p5

C2 C4C3
p3 p4

C3 C6C2
p3 p5 C6

C4C3

p5

p4

V1: V2: V3:

V4:

V5:

V6:

Views that vertically subsume V0:

C2

C6

C4C3

p5

p4p3

Peer pr3 has view V0:

join

pr1

pr3

pr4

pr5

pr6

pr7

pr8

pr2

Figure 4.2: Peer pr3 joins the network. It advertise its view V 0 and the

vertically subsuming views

peer pr3 joins the network. Since peer pr2 is the successor peer of the key

identifiers H(N(V 1)), H(N(V 2)) and H(N(V 3)) it receives a request from

peer pr3 to advertise the views V 1, V 2 and V 3 and stores the IP address of

peer pr3 to the set of peers associated with the views V 1, V 2 and V 3.

Figure 4.3 outlines an algorithm that computes all the views that ver-

tically subsume a given view. The algorithm takes as input a view V and

decompose it into its constituent schema triples (line 2). Next it creates the

next set of subsuming views by adding to the previous created views a new

schema triple from the initial view. More precisely, starting from a set T of

4.1. PEER JOINS, DEPARTURES AND UPDATES 29

VSubViews(view V)

input: a view V

output: all views that vertically subsume view V

1: E = ∅
2: S = {the schema triples of view V }
3: E = E ∪ S, T = S, L = ∅
4: while T 6= ∅
5: for every view Vt in T

6: for every schema triple st in S

7: if st joins with Vt

8: create new view Vn = Vt ./ st

9: L = L ∪ {Vn}
10: end if
11: end for
12: end for
13: E = E ∪ L, T = L, L = ∅
14: end while
15: return E

Figure 4.3: Algorithm to compute all vertically subsuming views

views with 1 schema triple (line 3), it creates all views with 2 schema triples

and stores them to set L (lines 5-9). Next, the newly created views are added

to E, while T is set to be equal with L (line 13). The algorithm continues

with T now containing all subsuming views consistent of 2 schema triples and

thus producing views with 3 schema triple. This procedure is repeated until

no new views are created (line 4). We should point out that this algorithm

may produce the same view more than ones (e.g., in the presence of cycles

in the original view) but with an appropriate data structure, such as a hash

table and the unique number of the view used as key, it is easy to identify

these duplicates. In general, from our experience while implementing the

above algorithm (as well as the others presented in the sequel) we conclude

that the most suitable data structure for storing views are hash sets where

the hash key is the unique number of the view.

30 CHAPTER 4. A DHT-FRAMEWORK FOR RDF/S QUERIES

The number of subsuming views for a view consistent of n schema triples

varies from (n+1)·n
2

in case of a linear view, until (n
1) + (n

2) + · · ·+ (n
n) = 2n in

case of a star shaped view where all schema triples are joined together in a

single class. The algorithm presented in Figure 4.3 runs in O(N) time, where

N is the number of vertical subsuming views, since lines 8 and 9 are both

implemented in constant time.

It should be stressed that a joining peer should advertise only the verti-

cally and not the horizontally subsuming views. Advertising the horizontally

subsuming views too, implies that queries are systematically extended to in-

clude peer data classified under subsumed classes and properties. However,

this functionality is specified by the peer queries and not the peer views (i.e.,

denoted by the ˆ symbol in the query patterns, see Table 2.2). On the other

hand, if vertically subsuming views were not explicitly advertised but con-

sidered during query processing, the lookup service would have to search a

larger portion of the P2P network and thus incurs an increased cost in rout-

ing hops (i.e., to discover all keys that are a multiplier of the key associated

with the requested view). It’s clear that the cost of advertising those views

is significantly less than trying to explicitly locate them each time a new

lookup request is issued.

To ensure consistency of the DHT-index when a peer leaves the system, it

must pass the key identifiers that holds to its successor peer. This operation

is supported by the Chord protocol. Moreover, Chord provides services like

stabilize() and fix fingers() to support peers departure without any prior no-

tification. Finally, the leaving peer must notify through appropriate messages

all peers that have indexed its views to modify their stores.

The most frequent updates in such a system are the updates of the data

of a peer base. However, such updates do not have any impact on the DHT-

4.2. LOOKUP SERVICE 31

based schema index, thus they do not cost nothing. The next most frequent

type of updates are those done in a peer view. There two ways to deal with

such updates. The simplest way is to consider an update as a departure

followed by a join. Another solution for trivial updates (such as adding or

removing a schema triple from a view) is to let the peer to decide what

changes must be performed to the DHT-based schema index to reflect the

update effect. Consider for example that pr3’s view V 0 has been updated

by adding the (C1, p1, C2) schema triple. Then, the DHT-based schema in-

dex can be updated incrementally by advertising only the additional views

subsuming the newly created one, since V 0, V 1, . . . , V 6 are still valid.

Finally, the most rare kind of updates are those done to the globally

known schema. Such an update is handled as if it was a creation of a new

SON. Peers that are aware of the updates may republish their views in the

updated SON by leaving and rejoining the network according to the new

schema. This implies that for a period of time there will be two SONs (i.e.,

for the old and the updated schema) and peers should gradually pass from

one to another.

4.2 Lookup Service

In this section we present the lookup service which identifies all peers whose

views are horizontally (or vertically) subsumed by a query. The first step is

to lookup the view that specifies exactly the same fragment of the RDF/S

schema graph as the one requested by the input query. This view is called the

strict view and the peer that stores the (strict view, {peers}) pair, the initial

peer. The initial peer is identified through the lookup(strict view) service

of the original Chord protocol. The next step is to locate all other views

32 CHAPTER 4. A DHT-FRAMEWORK FOR RDF/S QUERIES

Pattern Graph Fragment AdjSub Cube Regions

{X}p{Y }

p
range(p)domain(p) p

p’

c

d(p)

r(p) d
p’ subproperty of p

d(p) = domain(p)
c subclass of d(p)
r(p) = range(p)
d subclass of r(p)

{X }̂ p{Y }

p
range(p)domain(p)

p

c

c’

d(p)

r(p) d d’

d(p) = domain(p)
c,c’ subclasses of d(p)
r(p) = range(p)
d,d’ subclasses of r(p)

{X; c}p{Y ; d}

c d
p p

p’

p’ subproperty of p
d

c

c’
d’

c,c’ subclasasses of
domain(p)

d,d’ subclasses of
range(p)

{X; c}@P{Y ; d}

c d

@P

...
p

p’
p’’

...

d d’
c’

c

pr
op

ert
ies

Table 4.1: AdjSub Cube traversal for RDF/S schema fragments.

that are horizontally subsumed by the strict view through the invocation of

a sublookup() service issuing a sequence of lookup requests. The sequence

in which these lookup requests are performed is very important since there

must be no lookups that address preceding peers. The encoding and the

order preserving hash function guarantees that the key identifiers of all the

subsumed views will be greater than than the key identifier of the strict view.

As a result, all peers storing pairs of horizontally subsumed views will succeed

the initial peer in the Chord ring. Thus we avoid to travel all over the Chord

ring to reach the destination peer. It should be stressed that the answer

to a specific lookup request contains the peers whose views not only match

strictly but also vertically subsume by the original query (see Section 4.1).

4.2. LOOKUP SERVICE 33

The main intuition for the sublookup() algorithm is that the sequence in

which the views are looked up is given by the AdjSub Cube (introduced in

Chapter 3). Different regions of the AdjSub Cube define different sequences

of lookups that must be issued in order to discover the views which are

horizontally subsumed by an input query. Table 4.1 illustrates four regions

of the AdjSub Cube corresponding to the RDF/S schema graph fragments

of the four basic patterns depicted in the left column of the table. The

fragments represented by solid edges and nodes are essentially the views

matching strictly patterns while the dashed triangles represent subsumed

views.

For the first pattern ({X}p{Y }), the strict view to look up corresponds

to the RDF/S schema fragment which comprises the default domain and

range of property p. The corresponding region of the AdjSub Cube starts at

the cell representing the (d(p), p, r(p)) schema triple and expands to all cells

that represent a subsumed schema triple. The second pattern has the same

strict view. However, since no subproperties are considered the region of the

AdjSub Cube does not have to expand to the dimension of subproperties. The

third pattern is similar to the first one, but instead of considering the default

domain and range classes of property p, the traversal of the cube begins at the

cell that has as domain the class c and as range the class d. The fourth row

of Table 4.1 ({X; c}@P{Y ; d}) illustrates a pattern ({X; c}@P{Y ; d}) that

requests all views that may have the class c (and all subclasses) as domain

and the class d (and all subclasses) as range. In this case, the strict view is

the one that has the top property (not visible in the AdjSub Cube), since we

need to check all the properties defined in the corresponding RDF/S schema

of the SON.

Starting from the cell that corresponds to the schema triple of the strict

34 CHAPTER 4. A DHT-FRAMEWORK FOR RDF/S QUERIES

view, the arrows on each AdjSub Cube region designate the sequence in which

the next subsumed view is chosen from the AdjSub Cube. In order to always

choose the view that has the immediate larger key identifier, we traverse the

AdjSub Cube by first moving to the right (substituting the range class of

the triple), then down (substituting the domain class) and finally inwards

(substituting the property). In more complex patterns, for each substitution

of either the domain, range or property of each schema triple we substitute

recursively the domain, range and property of all of its remaining schema

triples. We next describe two versions of the sublookup() algorithm suitable

for a stateless and a statefull execution in a DHT-based network. The main

difference is that in the case of the stateless execution multiple sublookup

requests are issued simultaneous and autonomously from a set of peers while

in the statefull case a single peer handles all the sublookup requests thus it

keeps “state” information about the progress of the requests.

Figure 4.4 gives the pseudocode for the stateless version of the sublookup()

algorithm. When a query is issued, the initial peer is identified through a

lookup(strict view) request. Next, sublookup(strict view, strict view, initial

peer) is invoked. In order to guarantee that no view is looked up twice,

a substit() function checks if the given domain or range class has already

been substituted. For every substitution done to either the domain, range

or property of a schema triple, a new view V is created and looked up. The

peer that stores the new view V creates a new instance of the sublookup()

function and continues its execution until all schema triples of the view are

marked. The statefull sublookup() algorithm is a simplified version of the

stateless one. The initial peer instead of passing the execution of sublookup()

to the succeeding peers, it computes all the horizontally subsumed views and

issues series of lookup requests for each view. As we can see in Figure 4.5, an

4.2. LOOKUP SERVICE 35

sublookup(strict view Vstrict, current view V , peer pr)

1: for all triples t in V that are not marked and the corresponding triple t′ in Vstrict

2: r′ ← low≺c(t′.range, t.prop.default range)
3: d′ ← low≺c(t′.domain, t.prop.default domain)
4: r ← next class of t.range on the AdjSub Cube
5: d← next class of t.domain on the AdjSub Cube
6: p← next property of t.prop on the AdjSub Cube
7: if substit(t.range) && (r ≺c r′)
8: t.range← r

9: else if substit(t.domain) && (d ≺c d′)
10: if substit(t.range)
11: t.range← r′

end if
12: t.domain← d

13: else if (p ≺p t′.prop)
14: if (t.range ¹c p.default range || substit(t.range)) &&

(t.domain ¹c p.default domain || substit(t.domain))
15: r′′ ← min≺c(t′.range, p.default range)
16: d′′ ← min≺c(t′.domain, p.default domain)
17: if substit(t.range)
18: t.range← r′′

end if
19: if substit(t.domain)
20: t.domain← d′′

end if
21: t.prop← p

22: else
23: mark t and continue

end if
24: else
25: mark t and continue

end if
26: pr ← lookup(V)
27: sublookup(Vstrict, V, pr)
28: mark t

end for

Figure 4.4: Distributed sublookup algorithm

36 CHAPTER 4. A DHT-FRAMEWORK FOR RDF/S QUERIES

1

3

2

initial peer

2.1
2.0

3.0
3.1
3.2

initial peer

1

Stateless version of sublookup()

Statefull version of sublookup()

Figure 4.5: Routing hops on the Chord ring for the statefull and stateless

version of the sublookup algorithm

advantage of the statefull version is that the whole execution is monitored

by the initial peer. Thus, in the case where a succeeding peer stores more

than one subsumed views, the statefull version will retrieve all views at once,

in opposite to the stateless one contacting the same peer as many times as

the number of subsumed views it stores. However, in the statefull version

each new lookup request requires in principle more routing hops, since the

next subsumed view will succeed the previous one in the Chord ring. It is

worth noticing that the stateless lookup service scans the Chord ring in a

highly parallel way in order to process a query. We believe that for queries

involving a large number of peers the most important factor is the degree

of parallelization of the lookup requests rather than the absolute number

of routing hops. Moreover, such a parallelization reveals in a natural way

the design choices that must be taken when an interleaved execution of the

routing and planning phases is considered.

To conclude, in a network of N peers, each lookup requires O(log N)

routing hops. Therefore, the total number of routing hops required to locate

4.2. LOOKUP SERVICE 37

all peer bases that can contribute to the evaluation of a query is: O(log N)

to locate the initial peer plus S ×O(log N) to locate the S subsumed views,

where S depends on the size of the involved subsumption hierarchy. However,

especially for views with a small number of schema triples, the subsumed

views are located in peers that are close to each other in the Chord ring,

thus as we will see in Chapter 6 much less than O(log N) routing hops are

required in practice for each lookup.

38 CHAPTER 4. A DHT-FRAMEWORK FOR RDF/S QUERIES

Chapter 5

Interleaved Query Routing and

Planning

Query planning in a PDMS is responsible for generating a query plan accord-

ing to the localization information about the relevant peer bases returned by

the underlying lookup service. In addition, it is responsible for computing

the cost of alternative operator order (e.g., join reordering) and execution

policies (e.g., query or data shipping) for these plans. A PDMS exploits

the data storage capabilities of peers but it should also exploit the available

computation resources. Since query planning is a costly task, it is beneficial

to consider a query planning strategy that assigns portions of a query plan

to arbitrary peers. Moreover, in order to achieve autonomy in the computa-

tions undertaken by each peer, the generated subplans should be complete

(i.e., in the sense that produce valid results) and their physical optimiza-

tion should be decoupled from the enumeration of the possible logical query

plans [DH02].

In our context, since the proposed lookup service identifies peer views

that can actually answer an entire (sub)query pattern, we are interested in

39

40 CHAPTER 5. INTERLEAVED QUERY ROUTING AND PLANNING

an interleaved execution of query routing and planning activities in several

iteration rounds. This interleaved execution leads to the creation and ex-

ecution of multiple query plans that when “unioned” offer completeness in

the results. Note that the generated plans at each round can be actually

executed by the involved peers in order to obtain the first parts of the final

query answer as fast as possible. Starting with the original query pattern,

at each round smaller fragments are considered in order to find the relevant

peers (routing activity) that can actually answer them. These fragments (an-

notated with the relevant peers) are “joined” (planning activity) to produce

valid answers. In this context, the interleaved query processing terminates

when the initial query is decomposed into its primary components (i.e., its

schema triples). It should be also stressed that the interleaved execution

favours intra-site joins (i.e., joins that take place in the same peer), since

each query fragment is looked up as a whole and only peers that can fully

answer it are contacted. Our approach of decomposing the initial query to

smaller fragments is actually a top-down plan construction activity which is

distributed over peers. In contrast to centralized approaches where all plans

are created and executed by only one peer [ETB+03, NWS+03], our approach

distributes the execution of a subplan to several peers. As a result, we achieve

a workload balance over the peers during the costly phases of query planning

and execution. As a matter of fact, the number of peers contributing to the

processing of a query is increased as the complexity of a query is increased

(i.e., as the number of subplans increases).

Since our approach favours peers that can answer the whole query, one

may claim that the answers returned during the first rounds are more relevant

and pertinent than those returned by the last rounds. In this context, a user

may predefine the number of results to be returned (similar to a first-rows

5.1. QUERY FRAGMENTATION AND PLANNING 41

optimization [AZ96]) and thus forces the PDMS to execute only few of the

rounds involved in the interleaved execution. As we will see in Chapter 6,

the user needs in this way to wait only few seconds until the first results

are returned given that the first rounds of the interleaved execution involve

less peers with a smaller cost to plan and execute subqueries than the next

rounds. Such a mechanism allows to fix in advance the amount of resources

that will be consumed (e.g., number of peers contacted, execution time, or

even amount of results returned). Obtaining the complete query results in

a PDMS of thousands of peers may be unrealistic in terms of time and

resource consumption (network bandwidth, peer computation power, etc.).

As a matter of fact, several recent works point out the need of a best-effort

approach in evaluating a query over a P2P system in contrast to demanding

a priori the complete answer [SRvdWB05, HHL+03].

5.1 Query Fragmentation and Planning

The interleaved query routing and planning involves a query fragmentation

phase where the query is split into distinguished fragments. A component,

called fragmentor, is involved in order to produce all possible fragmentations

of the query. The fragmentor takes as input the number of joins which are

required between the produced fragments in order to evaluate the original

query. The output is all the possible fragmentations of the query for a spe-

cific number of joins. The fragmentor is a slight variation of the algorithm

presented in Chapter 4 which computes all vertically subsuming views (Fig-

ure 4.3). At each iteration round of the interleaved routing and planning,

the number of joins is increased by 1, starting from 0 joins, until the query is

decomposed to its primitive components (i.e., schema triples). For example,

42 CHAPTER 5. INTERLEAVED QUERY ROUTING AND PLANNING

C4C2

C6

C3
p4p3

p5

C4

C6

C3
p4

p5

C2

C6

C3
p3

p5

C2 C4C3
p3 p4

C2 C3
p3

C4C3
p4

C6

C3

p5

C2 C3
p3

C4C3
p4

C6

C3

p5

V1 V2

V5

V3

V4V1

V6 V2

Q or V0

V3

Round 1

Round 0

Round 2

frag. 1.1

frag. 1.3 frag. 1.2

Figure 5.1: All possible fragmentations of query Q

if the query has n schema triples, the fragmentor starts from 0 joins (the

whole query) until n−1 joins. As a result, the first rounds of the interleaved

execution will consider peers that can answer the whole or at least a big por-

tion of the initial query. Figure 5.1 illustrates the possible fragmentations of

a query Q with 3 schema triples: (C2, p3, C3), (C3, p4, C4) and (C3, p5, C6).

Round 0 considers the whole query Q. Round 1 considers all possible frag-

mentations of Q with 1 join, namely V 1 1 V 4, V 5 1 V 3 and V 6 1 V 2.

Finally, round 2 considers only one fragmentation, which is essentially the

decomposition of Q to its schema triples (2 joins).

Figure 5.2 illustrates how the fragmentations depicted in Figure 5.1 can be

5.1. QUERY FRAGMENTATION AND PLANNING 43

...

U

V0@prKV0@pr1

subplan 0

...

U

V4@pr1V1@pr1 ...

U

V1@prL V4@prS

subplan 1.1

...

U

V5@pr1 ...

U

V3@pr1 V3@prMV5@prT

subplan 1.2

V1@pr1 ...

U

...

U

V2@pr1 ...

U

V3@pr1V1@prL V3@prMV2@prN

subplan 2

Round 1

Round 0

Round 2

...

U

V6@pr1 ...

U

V2@prNV2@pr1V6@prF

subplan 1.3

Figure 5.2: Plans for the query fragmentations depicted in Figure 5.1

planned. In this example, we assume that peers pr1 . . . prK have advertised

view V 0 and all vertically subsuming views (including views V 1, V 2, . . . V 6).

Moreover, each of the views V 1, V 2, . . . V 6 may be advertised by additional

peers, depicted with different letters (e.g., S, T, . . .) in Figure 5.2. The par-

tial results concerning a specific view that are obtained from these peers are

“unioned” (horizontal distribution) and each of the unions are “joined” (ver-

tical distribution) resulting to the subplans 0, 1.1, 1.2, 1.3, 2. The union

of all subplans produce the final plan. We can easily observe from our ex-

ample that taking into account the vertical distribution ensures correctness

of query results (i.e., produce a valid answer), while horizontal distribution

44 CHAPTER 5. INTERLEAVED QUERY ROUTING AND PLANNING

V1@pr1 V4@pr1 V1@prL V4@prS

...

V1@prL’ V4@prS’V1@prK V4@prK

V0@pr1 V0@prK

U

Figure 5.3: Subplan 1.1 optimized by applying the algebraic equivalence

in query plans favours completeness of query results (i.e., produce more and

more valid answers).

It is worth noticing that the produced query subplans contain unions only

at the bottom of the plan tree. We can push unions at the top and conse-

quently move joins closer to the leaves. The following algebraic equivalence

is applied over the subplans to distribute joins and unions over peers:

1 (∪(V11, . . . V1n),∪(V21, . . . , V2m)) ≡

≡ ∪(1 (V11, V21),1 (V11, V22), . . . ,1 (V1n, V2m)) [OV99]

This algebraic equivalence make possible (a) to identify entire joins at a single

peer, and (b) to parallelize the execution of the union in several peers (when

duplicate elimination is not considered). The latter, as we will detail in the

sequel, is achieved by allowing entire subplans to be autonomously processed

and executed by different peers. The former is crucial to eliminate redundant

plans in a round since such joins have been already considered in a previous

round of the interleaved routing and planning. If a peer had advertised both

views V 1 and V 4 then it had also advertised view V 0 (since V 0 is vertically

subsumed by V 1 and V 4) and thus it would have been contacted at the

first round of the interleaved execution. For example, the subplan 1.1 of

Figure 5.2 is transformed into the equivalent plan of Figure 5.3. One can

easily observe that subplan 1.1 does not take into account the fact that one

5.1. QUERY FRAGMENTATION AND PLANNING 45

peer (e.g., pr1) can answer more than one views and thus the results of this

join have already been computed in a previous round. The plan of Figure 5.3

identify those joins (depicted with dashed rectangles) and can prune the

corresponding subtrees from the plan, thus eliminating any redundancy in

the results generated by the advertisement of the vertical subsuming views

of a peer.

The proposed DHT-based schema index and the sublookup service makes

it possible to employ the above heuristic without any additional planning cost

and thus generate in a natural way logical (sub)plans that (a) can be dis-

tributed over peers, (b) are redundant free while (c) minimizes the number

of routing messages send through the network. Finally, since peers receiv-

ing already constructed logical (sub)plans they only undertake the task of

transforming them into physical ones by deciding operators’ ordering as well

appropriate query or data shipping, according to a predefined cost model and

statistics that may gather from the involved peers. In [Kok05] such a cost-

based optimization is presented along with the classic dynamic programming

algorithm [SAC+79] used for enumerating alternative physical plans.

In the following sections, we describe two different execution policies for

interleaving the query routing and planning activities. Section 5.2 describes a

statefull execution of the interleaved routing and planning, which relays on a

coordinator peer to memorize already computed plans. Section 5.3 describes

a stateless execution policy in which there is no coordination between peers

and thus does not introduce a single point of failure, however it comes with

the cost of some redundant invocations of the lookup service.

46 CHAPTER 5. INTERLEAVED QUERY ROUTING AND PLANNING

5.2 Statefull Query Routing and Planning

In this section, we describe a statefull execution of the interleaved query

routing and planning. In this policy, through a coordinator peer, peers are

assigned a specific query subplan and issue sublookup requests to obtain the

relevant localization information. In addition, they report back to the coor-

dinator peer the localization information obtained for this subplan. Such a

scenario favours the implementation of advanced query processing techniques

such as caching, as well as, the ability to choose peers with low workload for

undertaking planning tasks. However, it introduces a single point of fail-

ure. In case the coordinator peer fails or leaves the network unexpectedly, a

stateless execution or a choice of another coordinator peer may take place.

Figure 5.4 illustrates the statefull routing and planning of the query Q

depicted in Figure 5.1. When a user formulates a query to the network, a

coordinator peer is chosen. This can be either the peer where the query was

originally issued or any other peer with low workload. During the first iter-

ation, the coordinator peer issues a sublookup request to retrieve all peers

that had advertised a view that is horizontally subsumed by query Q. The

data obtained from the bases of those peers are returned to the user. Next, if

the results returned so far are not sufficient w.r.t. to the user’s need, the next

round of the interleaved execution is performed. For each of the 3 possible

fragmentations of round 1 (Figure 5.1), the initial peers of the larger frag-

ments, called the dominant fragments, are located through a lookup request

issued by the coordinator peer 1. In this example, peer pr4 is the initial peer

of the dominant fragment (view V 4) of the fragmentation 1.1 (Figure 5.1).

Respectively, pr3 is the initial peer for view V 5 (the dominant fragment of

1If there are more than one fragments of the same size, one is picked randomly to be

the dominant fragment.

5.2. STATEFULL QUERY ROUTING AND PLANNING 47

Initial peer
of V0

Initial peer
of V6

Initial peer
of V5

return info
obtained from
sublookup(V3)

return info
obtained from
sublookup(V2)

Coordinator
peer

Initial peer
of V4

return info
obtained from
sublookup(V1)

Initial peer
of V1

info about
V2 and V3

lookup(V4) lookup(V5)

lookup(V6)

sublookup(V1),(V4)

sublookup(V3),(V5)

sublookup(V2),(V6)

pr1

pr2

pr3
pr4

pr5

sublookup(V0)

round 0

round 1

round 2

subplan 1.1 subplan 1.2

subplan 1.3

subplan 2

subplan 0

Figure 5.4: Statefull execution of the interleaved routing and planning

fragmentation 1.2) and pr2 for V 6 (the dominant fragment of fragmentation

1.3). The coordinator peer assigns to each of the initial peers the respon-

sibility to route and plan the corresponding fragmentation. For example,

peer pr4 is responsible to locate all peers that have advertised views that are

horizontally subsumed by V 1 or V 4, and to deploy the plan for V 1 1 V 4

(subplan 1.1 of Figure 5.2). Respectively, peer pr3 issues sublookup requests

for views V 5 and V 3 and peer pr2 for views V 6 and V 2.

At this point, the initial peers may inform the coordinator peer about the

localization information obtained by the sublookup requests of the fragments

having a smaller size than the dominant one. The coordinator peer caches

48 CHAPTER 5. INTERLEAVED QUERY ROUTING AND PLANNING

then this information since in the next iteration rounds of the interleaved

routing and planning this information will be needed again. The localization

information obtained by a sublookup requests could be either the peer IPs

that actually populate a specific fragment or the actual data that populate

those bases2. The capabilities of both the P2P network and the coordinator

peer are the factors that define what is actually cached. Clearly, caching

the results obtained by a sublookup request minimize the number of lookup

requests but increases the memory demands on behalf of the coordinator peer.

When all localization information of the sublookup requests are gathered

at the initial peers, the planning algorithm begins. The plans that are cre-

ated are the unions of all joins that can be done between different peers

as discussed previously. Moreover, during the creation of the plan at each

initial peer, the cost of alternative execution policies (query shipping, data

shipping) and join ordering (recall that the round determines the number of

joins) is computed and the less costly is chosen.

Figure 5.5 outlines the algorithm executed at the coordinator peer when

it receives a query Q. For each round of the interleaved query routing and

planning (line 1) it invokes the fragmentor to obtain the fragmentations

of query Q for a given number of joins (line 2). For each fragmentation

it identifies the dominating fragment and after locating the initial peer p it

delegates to p the responsibility of planning the specified fragmentation (lines

3-6). Moreover, if there are cached results from a sublookup request issued in

a previous round for any of the fragments of the specific fragmentation, the

coordinator peer sends these results to peer p (line 7). Before the coordinator

peer continues to the next round of the interleaved execution it waits for

2In a data-driven PDMS the lookup service retrieves the data itself rather than the

peer bases that store those data.

5.2. STATEFULL QUERY ROUTING AND PLANNING 49

Statefull routing and planning (Coordinator peer)

coord(Q):
input: a query Q with n schema triples

1: for i from 0 until n− 1
2: Fi ← fragmentor(Q, i)
3: for each fragmentation f ∈ Fi

4: d← dominating fragment of f

5: p← lookup(d)
6: plan fragmentation(f) at peer p

7: send at peer p any sublookup results obtained from previous rounds
8: end for
9: wait for any sublookup results from the initial peers of this round
10: end for

Figure 5.5: Steps taken by the coordinator peer during the statefull planning

Statefull routing and planning (at peer p)

plan fragmentation(f):
input: a fragmentation f

1: wait for any sublookup results send from the coordinator peer
2: for all fragments qi of f not cached by the coordinator peer
3: sublookup(qi)
4: send results of sublookup(qi) back to the coordinator peer
5: end for
6: cost computation and physical plan creation for f

Figure 5.6: Statefull planning algorithm at peer p

50 CHAPTER 5. INTERLEAVED QUERY ROUTING AND PLANNING

sublookup results returned by the initial peers of this round in order to

cache them and re-send them in the next round (line 9).

Figure 5.6 outlines the algorithm executed when a peer p receives the

sub(plan) for fragmentation f from the coordinator peer. After gathering

any sublookup results cached by the coordinator peer (line 1), it issues new

sublookup requests for all unknown fragments of the fragmentation f and

send the results back to the coordinator peer (lines 2-5). Finally, it creates a

physical plan based on the cost model of [KSC05] in order to decide in which

peers and in what order the execution of the plan will take place (line 6).

5.3 Stateless Query Routing and Planning

In this section we describe a stateless execution of the interleaved query

routing and planning activities. The stateless policy does not require any

peer to coordinate the entire execution and thus it does not introduce a single

point of failure. As in the statefull policy, multiple subplans of the same

query Q travel through the network and when a peer receives a request to

process a subplan it issues sublookup requests to locate peers populating the

involved fragments. However, the next rounds of the interleaved execution

are not computed by a single peer, instead each peer computes the next

fragmentation of the query Q by adding one extra join to the fragmentation

that already have been assigned to. Finally, it forwards the newly created

subplans to the initial peers of the dominant fragments (as in the case of

the statefull policy). Given that the results of sublookup requests in this

policy cannot be cached and that no peer knows the state or the progress

of the interleaved execution, some peers may produce the same subplans for

the next iteration rounds. However, since the new subplans are forward to

5.3. STATELESS QUERY ROUTING AND PLANNING 51

Initial peer
of V5

Initial peer
of V4

Initial peer
of V1

Initial peer
of V0

V6 V2

V5 V3

V1 V4

V1 V2 V3

V1 V2 V3

V1 V2 V3

Initial peer
of V6

subplan 1.3
subplan 1.1

subplan 2

pr1
pr2 pr3 pr4

pr5

Q
subplan 1.2

subplan 0

sublookup(V2),(V6)

sublookup(V1),(V4)
sublookup(V1),(V2),(V3)

sublookup(V3),(V5)

Figure 5.7: Stateless execution of the interleaved routing and planning

the same peer (i.e., the initial peer of the dominant fragment), the initial

peer (given that memorize old requests) can identify multiple requests for

the same subplan and ignore them.

Figure 5.7 illustrates the stateless routing and planning of the query Q

depicted in Figure 5.1. Peer pr1 receives the query Q since it is the initial peer

of view V 0. It process the subplan 0 of Figure 5.2. Then, pr1 computes the

next round of the interleaved execution by running the fragmentor algorithm

with one join as a parameter. It creates the three fragmentations V 1 1 V 4,

V 5 1 V 3 and V 6 1 V 2 (Figure 5.1) and forwards the execution of the

interleaved query routing and planning to the initial peers of views V 4, V 5

and V 6, namely peers pr4, pr3 and pr2. Peer pr2 issues two sublookup

requests for the two fragments of the subplan 1.3, namely, views V 2 and V 6.

Accordingly, peer pr3 issues sublookup requests for views V 3 and V 5, and

peer pr4 for views V 1 and V 4. Finally, pr3 and pr4 process the subplans 1.2

and 1.3 respectively.

52 CHAPTER 5. INTERLEAVED QUERY ROUTING AND PLANNING

Stateless routing and planning

plan fragmentation(Q, f):
input: a query Q and a fragmentation f with i fragments

1: for all fragments ri ∈ f

2: sublookup(ri)
3: end for
4: cost computation and physical plan creation for f

5: F ←fragmentor(Q, i + 1)
6: for each fragmentation f ′ ∈ Fi

7: d← dominant fragment of f ′

5: p← lookup(d)
6: plan fragmentation(Q, f ′) at peer p

8: end for

Figure 5.8: Algorithm of the stateless execution policy

Each of the peers pr2, pr3 and pr4 independently continue to the next

round of the interleaved query routing and planning. They launch the next

round by adding one more join to the fragmentation received from peer pr1

and thus they consider fragmentations with two joins. Since the query Q has

three schema triples the resulting fragmentations are all the same, namely

V 1 1 V 2 1 V 3. Peer pr5 receives from three different peers the same

fragmentation to plan. However, it process the subplan 2 of Figure 5.2 only

ones while ignoring the rest of the requests. In order to process subplan 2,

peer pr5 issues sublookup requests for views V 1, V 2 and V 3 although this

information was obtained in a previous round of the interleaved execution.

Figure 5.8 outlines the algorithm of the stateless execution policy. When

a peer receives a request to plan a given fragmentation f of the query Q,

it issues the appropriate sublookup requests to identify the peers that had

advertised the corresponding fragments of f (lines 1-3). Next, it process

the plan for fragmentation f (line 4). Finally, it invokes the fragmentor

component to obtain the fragmentations of query Q with one added join and

5.3. STATELESS QUERY ROUTING AND PLANNING 53

forwards the execution of the interleaved query routing and planning to the

initial peers of the dominant fragment of each fragmentation f ′ (lines 5-8).

Both execution policies presented in this chapter succeed to distribute

the workload of query planning over the peers which are relevant to the

original query. The statefull execution policy relies on a coordinator peer for

caching intermediate localization information obtained by sublookup requests

and assigning to each peer a different (sub)plan. Hence, the coordinator peer

offers resources (mainly memory), while the rest of the peers offer CPU cycles

to facilitate query planning. On the other hand, the statefull policy blocks

the interleaved execution to cache intermediate results (line 9 of Figure 5.5

and line 1 of Figure 5.6). In contrast, the stateless policy does not block

the execution of the interleaved routing and planning nor requires a peer

to coordinate the interleaved rounds. However, more lookup and sublookup

requests are issued since there is no state information kept anywhere. In

addition, the stateless policy requires from all peers to remember the plans

created in the near past since they must identify redundant requests.

Finally, the number of peers that are contacted and essentially undertake

the responsibility to plan a fragmentation is the same as the number of the

dominant fragments at each round3. These peers are the initial peers in

the case of the stateless policy, while in the statefull one the coordinator

peer may arbitrary choose between those peers. Since, at each round the

dominant fragments are disjoint the initial peers will be distinct, provided

that each peer is responsible for only one fragment. For a linear query with

n schema triples, the number of different fragmentations created at the first

round are (n
1), while in the second round there are (n

2) fragmentations, until

(n
n) fragmentations in the last round. Therefore, the total fragmentations

3Across rounds the same fragment may be the dominant fragment.

54 CHAPTER 5. INTERLEAVED QUERY ROUTING AND PLANNING

considered during the interleaved execution are 2n. In the extreme case of a

star shaped query with n schema triples, the total number of fragmentations

considered in all rounds are n!
2n (2n

n) [cXB05]. In Section 6.1 we detail the

factors that guarantee that only one fragment is assigned to each peer. In

Section 6.2, we prove that we achieve a fair workload balance where each

peer undertakes the responsibility of planning only one fragmentation at

each round.

Chapter 6

Experimental Evaluation

The goal of the first set of experimental results presented in this chapter is

to demonstrate the scalability of the DHT-based schema index with respect

to the distribution of the keys for the encoded peer views, as well as to

estimate the number of routing hops required to locate peer views that are

subsumed by an input query. We conducted our experiments for different

sizes of peer networks and views with varying number of schema triples and

structural form (linear, tree or graph form). The RDF/S schema that was

used in our experiments was created synthetically based on real application

examples [MACP02].

In the next set of experiments, we demonstrate the benefits of distributing

the planning tasks over peers, as defined in the interleaved query routing

and planning. We conducted experiments for estimating the planning time

required by the interleaved execution. We considered the evaluation of a

query involving the entire RDF/S schema in a predefined network setting. We

conclude our experiments by comparing our results with an ideal execution

in which the execution time is uniformly distributed to all peers.

55

56 CHAPTER 6. EXPERIMENTAL EVALUATION

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 5 10 15 25 30 35 40 45

10000 Peers

 20
 0

 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 10 20 30 40 50 60 70 80 90 100

2000 Peers

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 50 100 150 200 250 300 350

nu
m

be
r

of
 p

ee
rs

500 Peers

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100 120 140 160 180

nu
m

be
r

of
 p

ee
rs

number of views per peer

1000 Peers

 0
 200
 400
 600
 800

 1000
 1200

 0 10 20 30 40 50 60 70
number of views per peer

5000 Peers

 0
 2000
 4000
 6000
 8000

 0 5 10 15 20 25
number of views per peer

20000 Peers 10000
 12000

Figure 6.1: Distribution of views over peers in networks of different size.

6.1 DHT-based Schema Index and Lookup

Service

Our experiments rely on the original Chord protocol simulator [Cho], modi-

fied to support the distributed index of RDF/S fragments, as well as to im-

plement both the two versions of the lookup service presented in Section 4.2.

The stabilization algorithm of the Chord protocol and the key reallocation al-

gorithms when peers join, leave or die unexpectedly, were kept intact. Thus,

we considered that the system was formed and stabilized before any view

was stored or looked up.

An important characteristic of the proposed encoding function (based on

the AdjSub Cube) is related to the uniform distribution of the views (keys)

over the DHT nodes. As a matter of fact, as the network grows the keys are

equally distributed in an increasing number of peers and thus the number of

views stored in each peer is constantly decreased. For large scale networks

(i.e., 5000 to 20000 peers), this behaviour is confirmed by the experiments

reported in Figure 6.1 where we stored approximately 2000 views in networks

of varying size. Given that the discriminating factor in our experiments is

6.1. DHT-BASED SCHEMA INDEX AND LOOKUP SERVICE 57

the ratio of views per peers, we keep constant the number of views stored

in each network. Since our query patterns capture only the structure and

the semantics of an RDF/S schema (and not arbitrary joins on property val-

ues) the views considered here correspond to distinct fragments of a specific

RDF/S schema. For networks of small size (i.e., 500, 1000 and 2000 peers)

where the ratio of views per peer is above 1, the views exhibit a skewed dis-

tribution (i.e. a small number of peers indexing a large number of views).

This is due to the fact that the unique identifiers of the views comprising only

one schema triple, have small hash values thus they are stored exclusively

on the peers placed at the beginning of the Chord ring. To overcome this

problem one can force some peers to hash their identifier in the beginning

of the Chord ring, and thus make more peers responsible for views with few

schema triples. Alternatively, a simpler solution for small networks will be to

consider a smaller identifier circle (i.e., by decreasing m of modulo 2m) and

thus place peers closer to each other.

The four graphs of Figure 6.2 illustrate the total number of routing hops

per number of subsumed views involved in the evaluation of a query pattern,

for both the statefull and stateless versions of the lookup algorithm. In

addition, in each graph we illustrate both the theoretical (S × log n) and

experimental (S× 1
2
× log n) number of routing hops required by the original

Chord [SMK+01] protocol. Clearly, the two versions of the lookup service

decrease the number of routing hops up to 50% than those required by Chord.

For networks of small size, we can observe that the statefull lookup service

outperforms the stateless one since it requires less than half routing hops for

large views. This can be easily justified since the stateless algorithm fails to

identify the peers that can answer more than one subsumed view at once,

and therefore it contacts the same peers over and over. This is not the case

58 CHAPTER 6. EXPERIMENTAL EVALUATION

 4000

 6000

 8000

 10000

 12000

 2000

 4000

 6000

 8000

 10000

 12000

 2000

 0 100 200 300 400 500 600 700 800

 0

 100 200 300 400 500 600 700 800 0

500 Peers 2000 Peers

5000 Peers 20000 Peers

nu
m

be
r

of
 r

ou
tin

g
ho

ps

number of views (S) that are horizontal subsumed by a query

S*log500

S*1/2*log500

S*log2000

S*1/2*log2000

S*log20000

S*1/2*log20000

S*log5000

S*1/2*log5000

v/p=4

v/p=0.1

v/p=1

v/p=0.4

Statefull lookup service
Stateless lookup service

Statefull lookup service
Stateless lookup service

Statefull lookup service
Stateless lookup service

Statefull lookup service
Stateless lookup service

Figure 6.2: Number of routing hops for networks of different size.

of the statefull lookup since the initial peer gathers all views from a peer

and never contacts the same peer twice. However, when the network grows,

the statefull version exhibits poor performance. As a matter of fact, as the

network grows it becomes more unlikely to find peers storing more than

one view, hence the advantages of the statefull approach fade out. On the

other hand, the number of hops required by the stateless version only slightly

increases when the size of the network doubles and clearly outperforms the

statefull one when the ratio views per peer falls bellow 1.

The left graph of Figure 6.3 illustrates the number of routing hops re-

quired by the stateless version of the lookup algorithm, while the right graph

by the statefull one. In particular, in networks of different size, each bar

indicates the average number of routing hops required to locate views ac-

cording to a set of 200 queries. In the boxes next to each bar we give the

6.1. DHT-BASED SCHEMA INDEX AND LOOKUP SERVICE 59

10

21

60

252

806

10

21

60

252

806

10000 Peers
20000 Peers

1000 Peers
2000 Peers
5000 Peers

500 Peers #avg. number of subviews

10000 Peers
20000 Peers

1000 Peers
2000 Peers
5000 Peers

500 Peers #avg. number of subviews

 1

 10

 100

 1000

 1 2 3 4 5

nu
m

be
r

of
 r

ou
tin

g
ho

ps
 (

lo
g

sc
al

e)

number of schema triples in view

 1

 10

 100

 1000

 1 2 3 4 5
number of schema triples in view

Stateless Lookup Service Statefull Lookup Service

Figure 6.3: Number of routing hops for queries of different size

average number of the views that are horizontally subsumed by these queries.

In both cases, as the number of schema triples in the strict view increases,

the average number of routing hops increases too. This is due to the fact

that there exist more subsumed views, since more RDF/S schema classes

and properties are glued together. Another reason is that for large views,

the distance between their unique identifiers is greater than the distance be-

tween small views, thus more routing hops are required to locate the next

view subsumed by the query.

The main conclusions drawn from the above set of experiments are: (a) as

the network grows, the DHT-based schema index succeeds to distribute the

encoded views in a uniform manner and (b) the proposed lookup algorithms

outperform the lookup service of the original Chord. Moreover, the stateless

version of the lookup algorithm is more suitable for large networks as it

scales gracefully, compared to the statefull one that is more beneficial for

small networks. One can then decide, depending of the size of the network

which lookup version to use.

60 CHAPTER 6. EXPERIMENTAL EVALUATION

0

100000

200000

300000

400000

500000

600000

700000

0 2000 4000 6000 8000 10000

0 join
1 join
2 join
3 join
4 join
5 join
6 join
7 join
8 join
9 join

Linear Query − DP Algorithm

Pl
an

ni
ng

 T
im

e

0.1

1

10

100

1000

10000

100000

1e+06

0 2000 4000 6000 8000 10000

0 join
1 join
2 join
3 join
4 join
5 join
6 join
7 join
8 join
9 join

Linear Query − DP Algorithm

Number of Plans

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

0 2000 4000 6000 8000 10000

0 join
1 join
2 join
3 join
4 join
5 join
6 join
7 join
8 join
9 join

Graph Query − DP Algorithm

Pl
an

ni
ng

 T
im

e

Number of Plans
0.1

1

10

100

1000

10000

100000

1e+06

1e+07

0 2000 4000 6000 8000 10000

0 join
1 join
2 join
3 join
4 join
5 join
6 join
7 join
8 join
9 join

Number of Plans

Graph Query − DP Algorithm

Number of Plans

Figure 6.4: Dynamic Programming

6.2 Interleaved Query Routing and Planning

A set of experiments were conducted considering a linear query of 10 schema

triples. Apart from their variations in planning time, graph queries or queries

of different size demonstrate the same degree of distribution. This is due

to the fact that both the lookup service and the interleaved routing and

planning are independent of the form and size of the query (w.r.t. the degree

of distribution).

First, we employ the dynamic programming algorithm to compute the

planning time required to optimize a particular query plan. We have con-

sidered query plans that involve up to 9 joins. From the graphs presented

in Figure 6.4, we can easily observe that the planning time is linear to the

number of the considered query plans. Additionally, the planning time in-

creases exponentially to the number of joins involved in each plan. The

6.2. INTERLEAVED QUERY ROUTING AND PLANNING 61

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 2000 4000 6000 8000 10000

0 join
1 join
2 join
3 join
4 join
5 join
6 join
7 join
8 join
9 join

Pl
an

ni
ng

 T
im

e
Linear Query − IDP Algorithm

Number of Plans

0.1

1

10

100

1000

10000

100000

0 2000 4000 6000 8000 10000

0 join
1 join
2 join
3 join
4 join
5 join
6 join
7 join
8 join
9 join

Linear Query − IDP Algorithm

Number of Plans

0.1

1

10

100

1000

10000

100000

1e+06

0 2000 4000 6000 8000 10000

0 join
1 join
2 join
3 join
4 join
5 join
6 join
7 join
8 join
9 join

Number of Plans

Graph Query − IDP Algorithm

0

50000

100000

150000

200000

250000

300000

0 2000 4000 6000 8000 10000

0 join
1 join
2 join
3 join
4 join
5 join
6 join
7 join
8 join
9 join

Graph Query − IDP Algorithm

Pl
an

ni
ng

 T
im

e

Number of Plans

Figure 6.5: Iterative Dynamic Programming

above two observations stress the need for a planing algorithm which avoids

as much as possible the concurrent optimization of a large amount of plans

and that should consider the fact that when more joins are involved, more

optimization time is required.

Next, in order to avoid the exponential time of the dynamic programming

algorithm, we conducted experiments with the use of an iterative dynamic

programming approach [KS00]. For our experiments we considered the input

value k of the algorithm to be equal to 4 (i.e., at each round 4-way join

plans are generated). Although it is shown that the planning time is greatly

reduced, still for a great number of plans this time becomes prohibitive. More

precisely, for a large number of plans that consider a great number of joins

the planning time is significant for a centralized planning approach.

In order to illustrate the performance gains of the interleaved query rout-

62 CHAPTER 6. EXPERIMENTAL EVALUATION

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 P

ee
rs

Peer View Size

Zipfian Peer Distribution
Peers per Fragment

Figure 6.6: Distribution of peer vies over the network.

ing and planning, in the upper curve of Figure 6.6 we depict a zipf distribution

of available peer views in a network of 10000 nodes. We additionally con-

sider an RDF/S schema, whose size is 10 (i.e., contains 10 properties linked

together in a linear way). This distribution mode dictates that more peers

are capable of answering smaller fragments in contrast to a small number of

peers that can answer larger ones. For example, approximately 3300 peers

provide data for fragments of size 1, while only 330 provide data for the whole

RDF/S schema. The lower curve in Figure 6.6 depicts the number of peers

capable of answering each fragment of the RDF/S schema. The distribution

we considered for fragments of the same size is a uniform one.

We conducted experiments for estimating the planning time required by

the interleaved execution. We considered the evaluation of a query involving

the entire RDF/S schema in a network setting as previously described. In

Figure 6.7 the planning time needed for each round of the interleaved exe-

6.2. INTERLEAVED QUERY ROUTING AND PLANNING 63

1

9

36

9
1

126

126

84

36

84

1e−05

1

100000

1e+10

1e+15

1e+20

1e+25

1e+30

0 1 2 3 4 5 6 7 8 9

Pl
an

ni
ng

 T
im

e

Number of Joins / Rounds

Figure 6.7: Planning Time per Round

cution is shown. At each round the joins considered in the query plan are

increased up to a maximum number, which is required to obtain data from

the entire schema. As the join number increases, so is the number of plans

considered, since both the possible fragmentations and the combination of

answering peers increase. For each round, we also show the number of dif-

ferent fragmentations that are possible for each given number of joins (in

small boxes on top of each bar). We should point out that each round is

independent from the other rounds since all query plans that involve intra-

peer processing are ignored by appropriate pruning (Section 5.1) and each

round is independently executed by different peers, as described in Chap-

ter 5. Moreover, to obtain a complete answer we have to wait as much as

the planning time required by the last round of the interleaved execution.

If we ignore communication delays of the routing, all rounds start simulta-

neous but will finish before the last round does. It should be stressed that

64 CHAPTER 6. EXPERIMENTAL EVALUATION

interleaved routing and planning

50%

0
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10%

20%

30%

40%

60%

70%

80%

90%

100%

cu
m

ul
at

iv
e

pe
rc

en
ta

ge
 o

f
pl

an
ni

ng
 ti

m
e

cumulative percentage of peers

line of uniformity

Figure 6.8: Distribution of the total workload over peers

this is not possible in a sequential scenario were each round starts when the

previous has finished.

According to the planning times depicted in Figure 6.7, we compute the

distribution of the overall planning activity time over the total number of

peers involved in the evaluation of the query. The line of uniformity in Fig-

ure 6.8 depicts the case in which the total planning time is evenly distributed

among all peers. The curve of Figure 6.8 depicts the distribution of the plan-

ning time achieved by the interleaved query routing and planning. We can

observe that the 10% of the total time is distributed over the 10% of the total

peers. This is actually the planning time of the first two rounds. This obser-

vation proves our claim that the first rounds of the interleaved execution will

finish fast, while the data returned will be from peer bases that populate the

entire query. As the number of joins increase, the planning time increases to

and so does the peers that are involved in the query processing. However,

6.2. INTERLEAVED QUERY ROUTING AND PLANNING 65

this is true only until the round that 4 joins are considered. After that,

although the planning time is increased, the fragmentations are decreased

and so does the peers that are involved (Figure 6.7). Due to this effect,

the distance between the line of uniformity and the curve of the interleaved

routing and planning of Figure 6.8 increases beyond the 50% of peers. To

illustrate the most extreme case, consider the last round (9 joins), where the

planning time is the highest of all other rounds, but only 1 peer undertakes

the responsibility of this fragmentation.

The main observation of this set of experiments is that the interleaved

query routing and planning achieves a fair load distribution that is closer

to the line of uniformity at the first rounds. The first answers are obtained

fast, while the complete evaluation of the query is more time consuming and

overloads some peers.

66 CHAPTER 6. EXPERIMENTAL EVALUATION

Chapter 7

Related Work

Closely related to our work are DHT-based PDMS addressing routing and

planning issues for queries over RDF, XML and relational databases.

RDFPeers [CF04] is a distributed RDF repository based on an extension

of Chord, namely MAAN, that stores each triple at three places in the net-

work by applying a globally known hash function to its subject, predicate

and object (i.e., data triple). A DHT index is built over RDF triples which

ignores the semantics of the RDF/S schema during query routing. Such an

extensional index extremely increases the total amount of data stored on

the network and comes with a significant message overhead when triples are

likely to frequently change. Given that at least one from the subject, pred-

icate or object value is known, RDFPeer can locate the data triples with

the known value, using the Chord lookup service, in O(log N) hops. Multi-

predicate and range queries over arithmetic properties can be evaluated in

O(
∑k

i=1(log N + N × si)) routing hops by decomposing the query to the k

triples of which is consist of, and visit each time si peers, where si is the

selectivity of the triple on predicate pi. Finally, to overcome the increased

workload of peers storing triples with subject popular URIs, RDFPeers con-

67

68 CHAPTER 7. RELATED WORK

sider a threshold after which it refuses to store any triples. In contrast, our

framework favours the scalability, thus there will be no increased workload

in a single peer and no data will be lost.

In [HHK05], the authors present a query evaluation algorithm which al-

lows to express RDF/S queries in a structured P2P network by taking into

account subsumption relationship between classes and properties defined in

an RDF/S schema. Although the authors argue that a global knowledge of

an RDF/S schema is needed in order to reason about queries regardless the

heterogeneity of the underlying peers, they do not employ schema informa-

tion to index data or route queries. Instead, they use a similar to RDFPeers

idea, where each data triple is stored in three places according to the hash

value of the subject, predicate and object. In addition, in order to facili-

tate horizontal subsumption each data triple is stored in several peers (i.e.,

peers that are responsible for horizontal subsuming schema triples). The

authors do not consider vertical subsumption, thus to evaluate an RDF/S

graph query they have to gather all involved data triples to a single peer

in order to process locally the query. This policy significantly increases the

data amount stored in the network and makes data updates more costly while

peers’ advertisements are much more costly in terms of exchanged messages.

In order to evaluate a query, each triple of the query graph is independently

looked up and candidate sets (i.e., set of data that may contribute to the

final evaluation of the query) are determined. A single peer gathers locally

all candidate sets and uses refinement procedures to remove data from this

sets that are not suitable. This refinement procedures are based on the bind-

ings between the triples that contain the variables and the data triples from

the candidate sets. Only data triples that match with the triples where the

variable occurs are kept. For the final evaluation of the query, all remaining

69

data triples are tested locally in several combinations to reveal the matches.

Since there are exponentially many combinations, every time a candidate for

a variable is picked, the refinement procedure is again employed in order to

reduces the number of possible combinations. The proposed query evalua-

tion algorithm is similar to the last round of the interleaved query routing

and planning. In contrast to our system where data do not travel through

the network until the physical plan is determined, they first retrieve all data

in a single peer (including data that may not contribute to the final evalua-

tion) and afterwards employ techniques to optimize the query planning and

execution.

In [GWJD03], a distributed catalog for XML data is proposed along with

appropriate load balancing techniques to fairly distribute the catalog service

and adapt the system’s behaviour to the query workload. In the DHT-

based catalog keys are XML fragments associated with a set of structural

summaries (i.e., the XPaths leading to these fragments). A B+-tree is used

by each peer to match a given XPath query against the stored summaries.

The leaf nodes of the B+-tree point to a set of peers that can answer the

matched XPath query. Given a simple XPath (linear path), in the case of

Chord, we need O(log N) routing hops to find the peer responsible for the

leaf XPath node and a search over the B+-tree to locate the peers that can

actually answer the full XPath. In the case of an XPath query of the form

p = /a1[b1]/ . . . /an[bn]op value where each bi is in turn a path, the system

must first extract all k linear paths and invoke the lookup service for each

of them. In contrast to this system we do not distinguish between linear,

tree or graph queries and thus in either cases the lookup service is invoked

only once and O(log N) hops are required (without considering subsumed

view) to locate peers that can answer the query. Also, there is no need for

70 CHAPTER 7. RELATED WORK

a search over a secondary index structure since our index is build directly

on the RDF/S schema fragments. For load balancing, the authors propose

techniques of splitting and replicating the catalog, while in our framework

these are done a priory. Our framework can be easily adapted to build a

DHT for XML instead of RDF/S schema fragments and unlike this system,

it ensures that the same number of routing hops are required for both linear

and tree shaped queries.

A unifying framework for relational query processing over structured P2P

networks has been proposed in [TP03]. Each tuple of a relation R(DA1, . . . , DAk)

is stored k + 1 times over the network: one copy of the tuple with consistent

hashing over it’s primary key, and k replicas distributed in the peers according

to an order-preserving hash function based on its k attributes. The authors

also introduce the notion of Range Guards, i.e., a number of peers which

keep additional replicas of all tuples whose values for a specific attribute fall

in a specific range. They are used to evaluate range queries over relational

data by avoiding costly traversals of the entire Chord ring. The two major

drawbacks of this system are a) the need to replicate data several times and

thus increasing the maintaining cost, and b) multi-relation/attribute or range

queries are costly to route (in some cases needing O(N) hops). For example,

to evaluate multi-relation and multi-attribute queries with joins they always

need to scan the entire network since there is no way to know in advance

which peers have those tuple values that actually join. In our framework,

range queries over schema triples are efficiently evaluated since the proposed

RDF/S fragment encoding ensures that they will be indexed closed to each

other on the Chord ring, without the need of replication and range guards.

PIER [HHL+03] is a massively distributed query engine based on overlay

networks. It is built on top of DHTs and runs relational queries. Each tu-

71

ple indexed in the DHT has a namespace, resourceID and instanceID. The

namespace identifies the application or group a tuple belongs to. The re-

sourceID is generally intended to be a value that caries some semantic about

the tuple (e.g., the name of the relation that the tuple belongs to). The

namespace and the resourceID are used to calculate the DHT key, via a

hash function. The PIER Query processor is a dataflow engine support-

ing the simultaneous execution of multiple operators that can be pipelined

together to form traditional query plans. The authors detail four join strate-

gies that are adaptations of the join algorithms designed for parallel and

distributes schemes, which leverage DHTs whenever possible. In general,

the DHT is used to re-hash (re-index) data according to the value of the

joining attributes. If there is more than one join that must be performed in

order to evaluate a query, intermediate results are stored in a newly created

DHT, identified by a new namespace. In this way, the functionality of a

“distributed hash table” is used to implement hash-joins in a distributed en-

vironment. The authors argue for a relaxation of certain traditional database

research goals in the pursuit of scalability and widespread adoption. More

precisely, they argue that in order to cope with the dynamic large scale en-

vironment imposed by the Internet we should provide “best-effort” results

rather than trying to obtain the complete answers. Moreover, they argue

that data should remain in their natural habitats (e.g., a file system or a

database of the peer) rather than flowing around the network. Finally, they

argue that requiring from thousands of users to design and integrate their

disparate schemas incur daunting semantic problems and could easily pre-

vent average users from adopting these technologies. Instead, it is preferable

to adopt standard schemas and that there is a natural pathway for this: the

information produced by popular software (e.g., ID3 tags). We share the

72 CHAPTER 7. RELATED WORK

same ideas with the authors of PIER and our system is designed partially

based on these observations.

Chapter 8

Conclusion and Future Work

In this thesis, we presented a DHT-based framework to efficiently route and

process plans for expressive RDF/S queries.

We introduced a succinct representation of RDF/S schema graphs, called

AdjSub Cube, for encoding arbitrary RDF/S schema fragments. This encod-

ing ensures a fast view/query subsumption checking in order to understand

the partitioning of data in remote peer bases. Based on this encoding, we

designed a DHT-based schema index to uniformly distribute view advertise-

ments over peers. Additionally, we implemented a lookup service for identi-

fying which peers can completely or partially contribute to the answer of a

graph query. Finally, we designed an interleaved query routing and planning

allowing to obtain as fast as possible the first results of a query available in

peer bases while distributing the planning load of the next rounds to arbi-

trary peers. We experimentally demonstrated that the proposed DHT-based

schema index scales gracefully for very large number of peers. Moreover, we

compared the routing hops required by a stateless and a statefull version of

our lookup service versus the routing hops required by the original Chord

protocol. Finally, we experimentally illustrate the degree of distribution of

73

74 CHAPTER 8. CONCLUSION AND FUTURE WORK

the planning workload achieved by the proposed interleaved query routing

and planning execution. The main conclusion drawn from our experiments

is that our lookup service requires less than half of the routing hops required

by the original Chord protocol. Moreover, the interleaved query routing and

planning distributes the first 10% of the planning workload to the 10% of the

total peers contributing to the evaluation of a query. This observation proves

that the first answers will be returned as fast as possible. For the remaining

results, more time will be required since the planning activity is increased

and the peers that undertake planning tasks are decreased.

The results presented in this paper can be easily adjusted to other DHT-

based protocols and schema formalisms defining SONs. For example, we can

build an AdjSub Cube for encoding fragments of an XML schema tree.

We intend to investigate the potential of a P2P infrastructure based on

distributed trees [CLGS04, Abe01, JOV05], for implementing the AdjSub

Cube, in order to further reduce the number of hops required by our lookup

service and distribute even fairly the planning workload. In addition, we

intend to extend our system with (a) a pruning strategy based on the quality

of information returned by a peer base and (d) adaptive planning algorithms

that consider the workload of peers and the network capabilities each time a

query is processed [AH00, UF93].

Bibliography

[Abe01] Karl Aberer. P-Grid: A Self-Organizing Access Structure

for P2P Information Systems. In Proceedings of the 9th In-

ternational Conference on Cooperative Information Systems,

Trento, Italy, 2001.

[ABJ89] Rakesh Agrawal, Alexander Borgida, and H. V. Jagadish. Effi-

cient management of transitive relationships in large data and

knowledge bases. In Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data, Oregon, USA,

1989.

[ACMHP04] Karl Aberer, Philippe Cudre-Mauroux, Manfred Hauswirth,

and Tim Van Pelt. GridVine: Building Internet-Scale Seman-

tic Overlay Networks. In Proceedings of the 3rd International

Semantic Web Conference (ISWC04), Hiroshima, Japan, 2004.

[AH00] R. Avnur and J.M. Hellerstein. Eddies:Continuously Adaptive

Query Processing. In Proceedings of the 2000 ACM SIGMOD

International Conference on Management of Data, Dallas, TX,

USA, 2000.

75

76 BIBLIOGRAPHY

[AZ96] Gennady Antoshenkov and Mohamed Ziauddin. Query pro-

cessing and optimization in Oracle Rdb. The VLDB Journal

— The International Journal on Very Large Data Bases, 5(4),

1996.

[BGK+02] Philip A. Bernstein, Fausto Giunchiglia, Anastasios Kementsi-

etsidis, John Mylopoulos, Luciano Serafini, and Ilya Zaihrayeu.

Data Management for Peer-to-Peer Computing: A Vision. In

Proceedings of the 5th International Workshop on the Web and

Databases (WebDB), Madison, Wisconsin, 2002.

[BT03] Peter Boncz and Caspar Treijtel. AmbientDB: Relational

Query Processing in a P2P Network. In Databases, Infor-

mation Systems, and Peer-to-Peer Computing: First Interna-

tional Workshop, DBISP2P, Berlin, Germany, 2003.

[CF04] Min Cai and Martin Frank. RDFPeers: A Scalable Distributed

RDF Repository based on A Structured Peer-to-Peer Network.

In Proceedings of the 13th International Conference on World

Wide Web (WWW), New York, USA, 2004.

[CGM03] Arturo Crespo and Hector Garcia-Molina. Semantic Overlay

Networks for P2P Systems. Technical report, Computer Sci-

ence Department, Stanford University, 2003.

[Cho] The Chord Project. http://pdos.csail.mit.edu/chord/.

[CKK+03] Vassilis Christophides, Gregory Karvounarakis, Ioanna Kof-

fina, George Kokkinidis, Aimilia Magkanaraki, Dimitris Plex-

ousakis, George Serfiotis, and Val Tannen. The ICS-FORTH

SWIM: A Powerful Semantic Web Integration Middleware. In

BIBLIOGRAPHY 77

Proceedings of the First International Workshop on Semantic

Web and Databases (SWDB), Berlin, Germany, 2003.

[CLGS04] Adina Crainiceanu, Prakash Linga, Johannes Gehrke, and

Jayavel Shanmugasundaram. Querying peer-to-peer networks

using P-trees. In Proceedings of the 7th International Work-

shop on the Web and Databases, Paris, France, 2004.

[CPST03] Vassilis Christophides, Dimitris Plexousakis, Michel Scholl,

and Sotiris Tourtounis. On Labeling Schemes for the Semantic

Web. In Proceedings of the 12th International Conference on

World Wide Web (WWW), Budapest, Hungary, 2003.

[cXB05] Cong cong Xing and Bill P. Buckles. On the size of the search

space of join optimization. Journal of Computing Sciences in

College, 20(6), 2005.

[DH02] Amol Deshpande and Joseph M. Hellerstein. Decoupled Query

Optimization for Federated Database Systems. In Proceedings

of the 18th International Conference on Data Engineering, San

Jose, CA, USA, 2002.

[ETB+03] Marc Ehrig, Christoph Tempich, Jeen Broekstra, Frank van

Harmelen, Marta Sabou, Ronny Siebes, Steffen Staab, and

Heiner Stuckenschmidt. SWAP - Ontology-based Knowledge

Management with Peer-to-Peer Technology. In Proceedings of

the 1st National “Workshop Ontologie-basiertes Wissensman-

agemen” (WOW), Lucerne, Switzerland, 2003.

[GWJD03] Leonidas Galanis, Yuan Wang, Shawn R. Jeffery, and David J.

DeWitt. Locating Data Sources in Large Distributed Systems.

78 BIBLIOGRAPHY

In Proceedings of the 29th Very Large Data Bases (VLDB)

Conference, Berlin, Germany, 2003.

[HHK05] Felix Heine, Matthias Hovestadt, and Odej Kao. Processing

Complex RDF Queries over P2P Networks. In Proceedings of

the 2005 ACM Workshop on Information Retrieval in Peer-to-

Peer Networks (P2PIR 2005), Bremen, Germany, 2005.

[HHL+03] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham,

Boon Thau Loo, Scott Shenker, and Ion Stoica. Querying

the Internet with PIER. In Proceedings of the 29th Interna-

tional Conference on Very Large Databases (VLDB), Berlin,

Germany, 2003.

[HIMT03] Alon Halevy, Zachary Ives, Peter Mork, and Igor Tatarinov.

Piazza: Data Management Infrastructure for Semantic Web

Applications. In Proceedings of the 12th Conference on World

Wide Web (WWW), Budapest, Hungary, 2003.

[JOV05] H.V. Jagadish, B. C. Ooi, and Q.H. Vu. BATON: A Balanced

Tree Structure for Peer-to-Peer Networks. In Proceedings of

the 31st International Conference on Very Large Data Bases

(VLDB), Trondheim, Norway, 2005.

[KAC+02] Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides,

Dimitris Plexousakis, and Michel Scholl. RQL: A Declarative

Query Language for RDF. In Proceedings of the 11th Inter-

national Conference on World Wide Web (WWW), Honolulu,

Hawaii, USA, 2002.

BIBLIOGRAPHY 79

[Kok05] George Kokkinidis. Semantic Query Routing and Planning

in Peer-to-Peer Database Systems: The SQPeer Middleware.

Master’s thesis, University of Crete, Department of Computer

Science, Crete, Greece, July 2005.

[KS00] Donald Kossmann and Konrad Stocker. Iterative dynamic pro-

gramming: a new class of query optimization algorithms. ACM

Transactions on Database Systems (TODS), 25(1), 2000.

[KSC05] George Kokkinidis, Lefteris Sidirourgos, and Vassilis

Christophides. Semantic Web and Peer-to-Peer, S. Staab,

H. Stuckenschmidt (eds.), chapter Query Processing in

RDF/S-based P2P Database Systems. Springer-Verlag, 2005.

[KSDC05] George Kokkinidis, Lefteris Sidirourgos, Theodore Dalamagas,

and Vassilis Christophides. Semantic Query Routing and Pro-

cessing in P2P Digital Libraries. In Proceedings of the 8th

International Workshop of the DELOS Network of Excellence

on Digital Libraries on Future Digital Library Management

Systems (System Architecture & Information Access), Schloss

Dagstuhl, Germany, 2005.

[MACP02] Aimilia Magkanaraki, Sofia Alexaki, Vassilis Christophides,

and Dimitris Plexousakis. Benchmarking RDF Schemas for

the Semantic Web. In Proceedings of the First International

Semantic Web Conference (ISWC), Sardinia, Italy, 2002.

[MTCP03] Aimilia Magkanaraki, Val Tannen, Vassilis Christophides, and

Dimitris Plexousakis. Viewing the Semantic Web Through

80 BIBLIOGRAPHY

RVL Lenses. In Proceedings of the 2nd International Semantic

Web Conference (ISWC), 2003.

[NWS+03] Wolfgang Nejdl, Martin Wolpers, Wolf Siberski, Christoph

Schmitz, Mario Schlosser, Ingo Brunkhorst, and Alexander

Loser. Super-Peer-Based Routing and Clustering Strategies

for RDF-Based Peer-To-Peer Networks. In Proceedings of the

12th International Conference on World Wide Web (WWW),

Budapest, Hungary, 2003.

[OV99] M. Tamer Ozsu and Patrick Valduriez. Principles of Dis-

tributed Database Systems, Second Edition. Prentice Hall,

1999.

[RDF] Resource Description Framework (RDF).

http://www.w3.org/RDF/.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,

and Scott Shenker. A Scalable Content Addressable Network.

In Proceedings of the ACM SIGCOMM International Confer-

ence on Data Communications, San Diego, CA, USA, 2001.

[SAC+79] Patricia G. Selinger, Morton M. Astrahan, Donald D. Cham-

berlin, Raymond A. Lorie, and Thomas G. Price. Access Path

Selection in a Relational Database Management System. In

Proceedings of the 1979 ACM SIGMOD International Confer-

ence on Management of Data, Boston, Massachusetts, USA,

1979.

[SKCT05] George Serfiotis, Ioanna Koffina, Vassilis Christophides, and

Val Tannen. Containment and Minimization of RDF/S Query

BIBLIOGRAPHY 81

Patterns. In Proceedings of the 4th International Semantic

Web Conference (ISWC), Galway, Ireland, 2005.

[SKD05] Lefteris Sidirourgos, George Kokkinidis, and Theodore Dala-

magas. Efficient Query Routing in RDF/S schema-based P2P

Systems. In Fourth Hellenic Data Management Symposium

(HDMS’05), Athens, Greece, 2005.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek,

and Hari Balakrishnan. Chord: A Scalable Peer-to-peer

Lookup Service for Internet Applications. In Proceedings of

the ACM SIGCOMM International Conference on Data Com-

munications, San Deigo, CA, USA, 2001.

[SRvdWB05] Kai-Uwe Sattler, Philipp Roumlsch, Christian von der Weth,

and Erik Buchmann. Best Effort Query Processing in DHT-

based P2P Systems. In Proceedings of the 1st IEEE Inter-

national Workshop on Networking Meets Databases (NetDB),

Tokyo, Japan, 2005.

[TP03] Peter Triantafillou and Theoni Pitoura. Towards a Unify-

ing Framework for Complex Query Processing over Structured

Peer-to-Peer Data Networks. In Databases, Information Sys-

tems, and Peer-to-Peer Computing: First International Work-

shop, DBISP2P, Berlin, Germany, 2003.

[UF93] Tolga Urhan and Michael J. Franklin. XJoin: A Reactively-

Scheduled Pipelined Join Operator. Special issue on Adaptive

Query Processing, 23(2), 1993.

