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Abstract

This work deals with a suggested technique for the calculation of the complex eigenval-
ues and associated eigenfunctions of the ”depth problem”, associated with the sound
propagation in range-independent shallow water environment over a homogeneous elas-
tic half-space, when the sound speed profile in the water varies with depth. The idea is
that the eigenvalues in such an environment can be estimated by means of an iterative
procedure, initialized by the Effective-Depth method for a constant sound speed profile.
The eigenfunctions are computed numerically by use of the finite-difference approach
and, eventually, the computation of the acoustic pressure field is possible in terms of an
eigenfunction series. The efficiency of the suggested technique is tested by comparing
its results to those obtained by the KRAKEN-C normal mode program.

MepiAndm

Yy mapoloa epyaoior TapoUCIALETOL ULol TEOTEWVOUEYY TEYVIXY| YO TOV UTOAOYLOUO TV
WBLOTWOY XaL WBIocUVIETACEWY Tou TEoPBAAuaTog Bddoug, o onolo oyetileton Ye TNV ox-
ovo Ty dwddooT oe Yohdooto xupatodnyd. Ewdwdtepa, o muduévag tou meQBIAAOVTOC
Yewpeltol w¢ €va eEAAcTIXG NUATELRO UEGO Xt 1) TayOTNTA BLIO0oNE TOL YOU GTO VERO
umopel vo uetaBdAieTon pe to Bddog, eV OAEC oL TaEAUETEOL TOL TEOBAAUNTOC YewpolvTal
aveldptnTee w¢ mpog TNy andotaor. H 1déa elvon otL ot boTiuég oe éva TéTolo TepBdAlov
UToPOUYV Vo UTOAOYIGVOUY W€K EVOC ETAVOANTITIXOU GYHUATOS VLol TO OTOLO Ol PYIXEC EX-
TiNoeg TeoxUTToLY and T uévodo tou Evepyol Bddoug yio otadepd mpopih toybtntag.
O Wocuvapthioeic Tou teolAfuaTog utoloyilovton apriunTixd Ue Evar oY AU TETEQAUTUEVY
OLapop®Y o, TEAXA, 1) oxoucTixt| Tieon unopel vo avoamtuydel oe oelpd LOLOGUVIRTHOEMY.
H amoteheoyatindTnTo TNE TEOTEWOUEVNS TEYVIXNG EAEYYETOL UECL CUYXEICEWY TWV ATOTE-
Aeoudtwy pe ta avtioTolya Ttou Teoxtntouy and to nedyeouus KRAKEN-C.
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1. Introduction

Since the velocity of sound in the water has appeared to be high enough, acoustics
have been proved to be an excellent tool for oceanographic researh. Underwater com-
munication has been achieved by means of acoustic propagation and the localization of
underwater objects, either by passive or active acoustic observation, has become possi-
ble.

Another topic of acoustics could be the study of undersea seismicity. In our work, we
are interested in propagating sound in the water column due to an earthquake, in order
to characterize its acoustic signature. Thus, all considerations that will follow concern
a water layer laying over a semi-infinite, elastic seabed. The problem is governed by the
Helmholtz equation in combination with the appropriate boundary conditions and the
solution can be expressed as an eigenfuction series expansion.

This work deals with an alternative technique for the calculation of the complex eigen-
values and eigenfunctions associated with the acoustic field in range-independent shallow
water environment. In particular, the case of a sound speed profile varying with depth
is studied. A finite-difference scheme is employed for the approximation of the partial
derivatives of the pressure field with respect to depth, leading to a matrix eigenvalue
problem. The eigenvalues are approximated by means of an iterative scheme, based on
Inverse Power Iteration, of which the starting values are the eigenvalues of the same prob-
lem with constant sound velocity and are obtained using the Effective-Depth method.

Results obtained by this technique are compared to those produced by the KRAKEN-C
normal mode program in terms of eigenvalues, eigenfunctions and eventually the acous-
tic field for typical sandy underwater environments. Several test cases are considered
concerning various environmental parameters, including the shear wave speed in the
bottom, the sound speed profile in the water column and the source frequency.



Outline of the thesis

In chapter 2 a description of the undersea environment is given with the characteristic
parameters in the water layer and the seabed. The wave equation for the acoustic pres-
sure field is expressed in linear form and seperation of the spatial variables from time
leads to the Helmholtz equation. Application of the appropriate boundary conditions
results in a well defined problem of which the solution is given in eigenfuction series
expansion. Last the transmission loss, which is of great interest, is defined. In chapter
3 the eigenfunctions, by means of which the pressure field is expressed, are defined in
terms of a boundary value problem called the "depth problem”. The cases of a constant
and a varying with depth sound speed profile are studied seperately. Refering to the
former case the Effective-Depth approach, for the computation of the eigenvalues, is
described in short and the associated eigenfuctions are expressed explicitly. The latter
case is studied in depth. A finite difference scheme is used and discrete values of the
eigenfunctions appear to satisfy a matrix eigenvalue problem. For the estimation of
the associated eigenvalues, an iterative procedure described extensively in chapter 4 is
suggested. Chapter 5 concerns applications and results obtained by both the effective
depth and the suggested iterative scheme. Validity of these results is tested by compar-
ison to the output of the KRAKEN-C program. Eventually, in chapter 6 a summary
of the thesis is presented with the corresponding conclusions and suggestions for future
researh.



2. The problem of sound propagation in
shallow water range-independent
waveguide

In this chapter the problem of underwater sound propagation is formulated under the
consideration of a range-independed environment. The solution is given by means of the
normal mode approximation and the transmission loss, which is the main measurement
in acoustic propagation problems, is defined.

The sea environment is represented in the cylindrical coordinates system (r, ¢, z) with

r
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Figure 2.1.: Schematic representation of the underwater environment with the corre-
sponding parameters

axial symmetry with respect to the z-axis. That is, there is no dependence on the
angle ¢ and the representation can be reduced into two dimensions (r, z). We consider a
water layer laying over an elastic seabed which is represented as a semi-infinite halfspace.
The air-water and water-seabed interfaces are considered plane and horizontal at depths
z =0 and z = D respectively and z-axis is positive downward as shown in figure (2.1).
A monochromatic point source of frequency f is located at the point (0,zy) and the
parameters in the water are the density of the water p(z) and the velocity of sound



propagation ¢(z) which may vary only with depth. The parameters in the seabed are
the density of the seabed ps, the velocity of compessional waves co and the velocity of
shear waves ¢g which are considered constant.

2.1. The acoustic wave equation

We are interested in computing the acoustic pressure governed by the acoustic wave

equation
Lop) oL p o i)
v <p(z) VP) p(Z)c(z)zptt (t) Dy (2.1)

where P indicates the acoustic pressure field and is a function of the spatial coordinates
and time (7, z,t). The right-hand side of eq. 2.1 indicates the presence of the source
within the domain of study and the time dependence of the source is described by the
function s(¢). Having considered a monochromatic point source of unit strength with
angular frequency w = 27 f, we can assume that s(t) = e ! thus we have for the
acoustic pressure

P(r,z,t) = p(r, z)e” ™t

Substituting the above expression into eq. 2.1 we get the well known Helmholtz equation
in cylindrical coordinates with axial symmetry

10 [ dp o ( 1 dp w? o 6(z—20)d(r)
ror (o) + 0905 (s ae) * s = 22

which in combination with the boundary conditions of a pressure release air-water inter-
face, an appropriate impedance condition at the water-seabed interface and a Sommerfeld
radiation condition for the behaviour of the pressure field while r — oo defines a well
posed boundary value problem. The surface and impedance conditions are formulated
as

op(-, D
o D)+ 1 2P g (2.4
0z
where I(\) is called the impedance function and depends on a parameter A which will
be discussed later.

The solution to problem (2.2)-(2.4) can be expressed in eigenfunction series expansion
as

p(r,z) = ZATL(T)Un(z> (2.5)

where the functions A,, indicate the range dependence of the pressure field and u,, are
the eigenfunctions of the "depth problem” defined and studied in depth in chapter 3,



indicating the depth dependence. According to the present bibliography ([1, 4, 5]), the
final expression for the solution is given as

p(r,z) = %Zun(z[))un(z)f[él)()\nr) (2.6)

where the function Hél)(-) is a Hankel function of the first kind of zeroth order. The
argument A, of the Hankel function is directly related to the parameter A above and is
discussed in the next chapter. Since we are interested in sound propagation at a great
distance, the asymptotic expression of the Hankel function is used. That is

2 i r—m
HY (Apr) = Ve O (2.7)

It is noted that a short description of the derivation of expression 2.6 is included in
appendix A.

2.2. Transmission Loss

When doing acoustics, one is actually interested in computing the transmission loss

defined as

lp(r, 2)|
[pol

where pg is a reference pressure defined as the pressure at 1 m distance from a point
source which emits in free space. The reference pressure pg is derived by the solution
Psph of the Helmholtz equation in spherical coordinates with spherical symmetry, under
the condition of a diverging wave. That is,

TL(r,z) = —20log (2.8)

1 e
=—2c¢'c" 2.
psph(r) 47TT‘€ ( 9)
Thus,
1
= 2.1
ool = o (2.10)
and (2.8) becomes
TL(r,z) = —20log |4mp(r, 2)| (2.11)



3. The depth problem

In this chapter the ”depth problem” is defined and solved for two different cases: a) when
the environmental parameters are constant and b) when they vary with depth. In case
a) the effective depth approach will be presented in short. In case b) the only parameter
considered as varying with depth is the sound velocity ¢(z) whereas the density of the
water p(z) will be considered as constant.

The depth problem is defined as follows: Compute pairs (A, u,(2)) such that

z d (L du 22) = M)u, =0, 2

p g (i) + ) = =0, 2 € 0. (3.1)
un,(0) =0 (3.2)
un(D)

where k(z) = CE"—Z) is the wavenumber. The above problem is an eigenvalue/eigenfunction
problem where A, is the eigenvalue associated with the eigenfunction u,, and, since we
are interested in computing the pressure field in the water column, its domain is the
interval [0, D]. Equations (3.2) and (3.3) correspond to a pressure release sea surface and
an appropriate impedance condition respectively. The impedance condition is defined
through the impedance function I(\,) which relates the value of an eigenfunction at
depth z = D to its first derivative at the same depth and includes information about
the influence of the seabed on the pressure field in the water column.

Since in both cases a) and b) the water density is considered constant, problem (3.1)-(3.3)
is reduced to
d?u,,
dz?
under the same boundary conditions.

+ (K*(2) = X2)u, =0, z € [0, D] (3.4)

In order to proceed with giving the solution of the depth problem {(3.4),(3.2),(3.3)} we
need to define the plane wave reflection coefficient between a fluid and a solid medium
R(N).

w4
0N (03— N - (£2%)

R(N)

(3.5)

10



where

v =V =22
2
w
Yo =45 — A2
¢
2
w
_ Y e
b= 1% = A

denote the vertical component of the wavenumbers k(z), ko = o and ks = & of sound

S
waves in the water column, compressional waves in the seabed and shear waves in the
seabed respectively.

3.1. Constant sound speed profile

In case the sound speed profile is constant the wavenumber has no dependence on z,
that is k(z) = k and if one defines v, = \/k? — A2 (n =1,2,...), the general solution of
(3.4) is given in terms of complex exponentials as

Un(2) = Ape’™* 4 Be”n? (3.6)

where the first term indicates waves propagating downward and the second waves prop-
agating upward. The coefficients A,, B, are constant and depend on the eigenpair
(An,urn). Applying boundary condition (3.2) on the solution (3.6) gives
un(0) =0
= A, = -8B, (3.7)

and substituting this result into (3.6) one gets
Un(2) = Ap(em* — e7 %)
= up(z) = 124, sin(yn2) (3.8)

where the coefficient A,, needs to be determined as well as the corresponding eigenvalue
An. Note that close to the seabed the solution (3.6) can be expressed in terms of the
reflection coefficient R(\,) as

Un(2) = Cp(e” P72 4 R(A, )" m(P2)) (3.9)
Now if we apply (3.3) to (3.9) we get an expression for the impedance function, that is

(1+ R(An))

10w = 2 T ROW)

(3.10)

11



and if we apply (3.3) to (3.8) we get a second expression as

sin vy, D
I\) = ——
() Yn €08 YD
_ tany, D
Tn
So from (3.10) and (3.11) we demand
(1+ R(An))
t nD = -
M= 0= ROW))

(3.11)

(3.12)

That is, A\, is an eigenvalue of the depth problem if and only if it satisfies (3.12).
Consequently, for the case with a constant sound speed profile, the eigenvalues can be
computed by solving for the roots of the function corresponding to eq.(3.12) which is a

non-linear and in general complex function.

In previous works several techniques have been applied on solving for the complex roots

of eq. (3.12). Some of these techniques are
e systematic search on the complex plane [8]
e root finder techniques [2]

e effective depth method [4]

D+AD <
lpl'

Figure 3.1.: Geometry of the effective-depth

AD

Since the complex effective depth method will be used as a first step for computing the
eigenvalues in the case of a sound velocity profile varying with depth, a short description
of this method is presented. It has been shown [4] that the reflection of plane waves on
an elastic half-space is equivalent to total reflection (|R(A,| = 1) on an interface at a

12



pseudo-depth D + AD(\,,) where AD()\,) is, in general, complex (figure 3.1). It has
also been shown [3] that solving (3.12) is equivalent to solving
(1 +e?mPR(A,)) =0
=0

o 1+ PmPR(,) (3.13)

With this information in hand we can proceed to introducing the complex effective depth
approach. Let U(\,) be the complex phase of the reflection coefficient defined

U(A,) = —iR(\n) (3.14)
Note that eq.(3.13) is equivalent to
R(\,)e? P = ¢i(2nm—m) (3.15)
and if we apply In(.) in the above equation and multiply by —i we get
U(A\) +2y,D—-1=2(n—1)m (3.16)
Since the shift AD(\,) is defined as [4]

AD(\,) = W (3.17)

we can substitute (3.16) into (3.17) and solve for ~,,, thus we have

nm

=~ DI1ADM) (3.18)

Tn

Eventually the effective depth method can be implented to compute the n—th eigenvalue
of the depth problem iteratively as follows [6]: For some initial value A2 of A,

1. forj=1,2,...
i—1 !
2. AD;(M) = %

nmw

g nm
3 W= 5iAn, 00

4. Ny =\k2 -~
where the superscript j is refered to as the index of iteration. In addition, the initial
value A\ corresponds to a low grazing angle, e.g. § = 0.01.

Thus, for n = 1,2,3,... one obtains the eigenvalues of the problem (3.4),(3.2),(3.3).
The solution is completed with the computation of the coefficients A,, in (3.8) for the
eigenfunctions u,, using the normalization condition as proposed by Bucker [1] and
Westwood et al. [5]. That is

/OD u?(2)dz — 2/1\71 . % (I(l)\)> ‘/\:/\n ~ul(D) =1 (3.19)

13



where the integral can be computed either analytically or numerically using the trape-
zoidal rule and the derivative of the inverse of the impedance function is well approxi-
mated using a finite difference scheme or can be expressed exactly after differentiation.
It is noted that a detailed description of the derivation of the normalization constant is
included in appendix A.

3.2. Sound speed profile varying with depth

If the sound velocity is varying with depth, then the wavenumber k(z) is varying, as
well as the vertical component of the wavenumber defined now as v, (z) = /k?(z) — A\2.
Consequently there is no analytic solution for the differential equation of the depth
problem (3.4),(3.2),(3.3) thus, it has to be solved numerically. The numerical method
used in this work is the finite difference approximation.

Before getting into details it is noted that a varying velocity profile does not affect the
expression for the impedance function (3.10) since without loss of generality it can be
assumed that in an infinitesimally small interval [D — e, D] the sound speed remains
constant. Thus, in this interval, the expression of the solution for eq.(3.4) is in the form
(3.9) which leads to the same expression for the impedance function.

Our purpose is to pose the discrete analogue problem to (3.4),(3.2),(3.3) and formulate
it as a matrix eigenvalue problem. Thus, we devide the interval [0, D] into N intervals
of length h, that is N + 1 points such that

un(25) = ud, , upy =0 (3.21)
k(z)=kj, j=0,1,2,...,N (3.22)

dQ;f using the centred finite difference formula

and approximate

y - . 1
Pul,  ul — 2w+l

a2 12

L j=1,2...,N—1 (3.23)

Substituting this approximation to the differential equation (3.4) and using (3.20)-(3.22)
we get

- , o
wl = 2ul, + uiﬁ

12
o u%_l + (11216]2 — 2)u;71 + uffl = hQA%ugl (3.24)

+ (k=M =0, j=1,2,...,.N—1

where the expression (3.24) indicates a linear system of N — 1 equations with N un-
knowns. These unknowns are the discrete values u, , j = 1,2,..., N of the eigenfunc-
tion u,(z). Note that the value u® = u,(0) is always known and equal to zero. For a
well posed linear system an additional equation is needed and is derived below.

14



We expand in Taylor series the eigenfunction w, about depth D and ignore terms of
third order and beyond, thus we set

un(2) = un(D) + (2 — DYuy(D) + (= — Dyl

n 2
(2=D—h) = up(D — h) = un(D) — hu, (D) + hQUHnQ(D)
2 (R2(D) = \)un(D)

(3.4) = un(D — h) = un(D) — hadl, (D) — -

(3.25)

where the primes imply differentiation with respect to depth z. Eq.(3.3) can be written

as u, (D) = 1}’5)(\?)) and substituting this expression into (3.25), after factorization we
obtain

2
2u, (D — h) + [th:Q(D) —2+ I(Ah)] Un (D) = h®X2u, (D)
which according to (3.20)-(3.22) is equivalent to
N-1 272 2h N _ 7242, N
2u, 4+ |hkY — 2+ u, = h\;u, (3.26)
I(An)

Now expressions (3.24) and (3.26) form a well posed N x N linear system of equations

with unknowns the discrete values u3, , j = 1,2,...,N. This system is expressed in
matrix form as
[h2ki — 2 1 0 0 1T wl ] [ ub
1 h’k3—2 1 . 0 ul uz
i — )2
h2 . . . - 'n .
0 e 1 R%k3% -2 1 uN =1 ul 1
27.2 2
0 0 2 WEY =2+ 5] L oul) |l
(3.27)

where the N x N matrix is denoted by A()\,,) and is a tridiagonal complex matrix depend-
ing on A, through the impedance function. That is, the depth problem (3.4),(3.2),(3.3)
is reduced to a matrix eigenvalue problem and for a non-trivial solution A, must satisfy

det (A(\n) — A1) =0 (3.28)

where [ indicates the identity matrix. An iterative technique based on Inverse Power
Iteration method is presented in chapter 4 for estimating these A,. Given the eigen-
values, uj, can be computed by setting an arbitrary value for u and using backward

computation, that is

uﬁf =1 (3.29)
1 2h
N-1 242 21.2 N
== — +2— .
u,]1 = (h2A%h2k]2<+1 — 2) uﬁL - uﬁL 2 j=N=-2...,21 (3.31)

15



Note that setting an arbitrary value for u2 is permissable since if uy, satisfies an eigen-
value problem then so does cu, with ¢ = constant. Thus u, can always be scaled so
that uflv = 1. In practice, after backward computation a normalization condition as in
(3.19) is applied. Now the integral term can be computed only by means of numerical
integration (e.g. the trapezoidal rule). Eventually discrete values of the eigenfunctions
are obtained and the computation of the pressure field is possible.

In this chapter the depth problem was defined and two cases were studied. These are
the case of constant enviromental parameters and the case of a varying sound velocity.
The influence of the seabed on the acoustic field in the water column was provided by an
appropriate impedance function which was constructed. In the first case analytic expres-
sion for the eigenfunctions where used whereas in the second case the finite difference
approximation was implemented and lead to a linear system of equations. In the case of
a varying with depth sound speed profile the method for estimating the eigenvalues has
not been presented in this chapter since it is described in details in chapter 4.

16



4. Estimation of eigenvalues for a sound
velocity profile varying with depth

In this chapter an alternative method for the calculation of the complex eigenvalues of
the depth problem is presented. Since in the case of a constant sound speed profile the
method for estimating the eigenvalues has been presented in section 3.1, the following
technnique concerns the case of a sound speed profile varying with depth.

It has been shown (section 3.2) that a finite difference approach for the depth problem
in the varying velocity case, leads to a matrix eigenvalue problem (3.27) which is not
a typical one since the matrix depends on the eigenvalue (A = A()\,)). An iterative
procedure based on Inverse Power Iteration is presented for the estimation of the eigen-
values. The starting eigenvalues are those of a constant sound speed profile and are
obtained using the Effective Depth method (section 3.1). Before getting into details for
the iterative scheme a short description of the Inverse Power Iteration is given.

4.1. Inverse Power lteration

Inverse Power Iteration method is a special case of the Power method, so the latter is
presented first. Both methods are iterative and are used to approximate eigenvalues and
eigenvectors [7].

Let A € CNNbe a constant and diagonalizable matrix, X ' AX = diag[\, As, ..., Ay,
X = [z1,29,...,zn] and [A1] > [Xa| >,...,> |An|. If 09 [[v°]]2 = 1 then the sequence
of vectors {v*};, produced by

1. for k=1,2,...
2. ykF=Avk!

3. WP ="/l

converges to a vector v. This vector is an eigenvector of A associated with the eigenvalue
A1 which can be computed by
v Av

A =
vy

where the superscript H indicates the conjugate transpose. That is the Power method
approximates the eigenvector corresponding to the dominant eigenvalue. In order to
approximate eigenvectors associated with eigenvalues Mg, A3, ..., Ay the idea of Power

17



method is extended and forms Inverse Power Iteration usually refered to as Inverse
Iteration. That is,

Let A be a constant matrix and p an approximation to A where A is an eigenvalue of A.
If 09, [[v°||]2 = 1 then the sequence of vectors {v*}; produced by

1. fork=1,2,...
2. solve (A — ul)yk = vF1
3. o =yH/[lyt])

converges to a vector v. This vector is an eigenvector of A associated with the closest
eigenvalue to p and is calculated by formula

vl Av

vy

A=pu+

Note that Inverse Iteration is the same as Power method with matrix A replaced by
(A — pI)~t. Also note that (A — ul) is invertible since p is an approximation to an
eigenvalue.

4.2. Calculation of the eigenvalues by means of an iterative
scheme

With this information in hand one could suppose that provided some initial assumptions,
the complex eigenvalues of problem (3.27) can be determined using Inverse Iteration.
The problem is that in our case the finite difference matrix depends on the eigenvalue
(A = A(M\)). The main idea to overcome this problem is that Inverse Iteration be
used iteratively. That is, after having obtained an approximation A} by Inverse Power
Iteration, to compute a new finite difference matrix A()\.) on which Inverse Iteration is
applied again and then continue consecutively until the sequence {\!}; converges.

A representation of the idea described above in brief is :
1. initial assumption A2
2. apply Inverse Iteration to A(A\0) with = A2 to obtain \}

3. apply Inverse Iteration to A(A\l) with z = AL to obtain \2

continue

Based on this idea an iterative technique was developed. As initial approximations of
the eigenvalues, we have chosen to use the eigenvalues of a constant sound speed profile
close to the actual one, using the effective-depth method. Thus, the suggested iterative
scheme is as follows :

18



3.
4.

. ln = ef fectiveDepth (co, [ENV]) , co = const.

Ay,

until {\L}; converges

AL = InwPowIt (X, A(N,)) , i=0,1,2,...

where the bracket [ENV] implies the environmental parameters.

Having studied the application of the above scheme in waveguides with different sound
speed profiles and environmental parameters, several issues have to be stressed out :

e We apply the Effective Depth scheme for the initial assumption of the eigenvalues

with co = min,c pj{c(z)}. This choice guarantees computation of low order
modes which otherwise could be omitted.

The suggested scheme may generate duplicates due to the fact that some of the
initial assumptions A , n = 1,2,3,... may be close to each other enough and
the iteration leads to the same limit. It is obvious that these duplicates should be

excluded from the computation of the pressure field

It is still possible that the iterative scheme omits some eigenvalues. We overcome
this by applying a high to low reordering of eigenvalues according to their real part
and taking the mean value between two adjacent eigenvalues. This value is then
used as an initial approximation to the suggested iterative scheme

Note that the third issue mentioned above can be applied more than once making the
eigenvalue search more extended. It can also be applied right after having obtained the
initial assumptions by the effective depth yielding more initial approximations. One
could also notice that although the method of Inverse Iteration also provides approxi-
mations to the eigenvectors, that is discrete values of the eigenfunctions, we choose to
calculate these values as described in section 3.2. This choice is made in order not to
save in memory the unwanted duplicates mentioned above, since it is not known a prior:
how many of them will be generated.
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5. Applications - Results

In order to illustrate the effiency of the technique described in chapters 3 and 4, the
eigenvalues and discrete values of the associated eigenfunctions of the depth problem
are approximated for several cases. Results for all interesting measures concerning the
acoustic pressure field are compared to those produced by the KRAKEN-C Normal Mode
Program. These measures are the eigenvalues, the eigenfunctions and the transmission
loss which is calculated at the source depth. Results for both constant and varying
velocity profiles are included. In the case of a constant profile the effective depth method
is implemented for the computation of the eigenvalues, however the eigenfunctions are
obtained by use of the finite difference approach. In cases that the propagated modes
are too many, only a number of the principal ones will be presented.

5.1. Constant sound speed profile

In the first place the efficiency of the effective depth approach is presented. Thus, a
waveguide of constant sound velocity is considered, set at c¢(z) = 1500 m/sec. The
depth of the waveguide is 400 m and the velocities of compressional and shear waves in
the seabed are co = 1700 m/sec and ¢, = 500 m/sec respectively, whereas the density
in the water is p = 1000 kg/m? and py = 1300 kg/m? in the seabed. A monochromatic
point source is located at depth zg = 360 m and the following results concern two
different cases of its frequency, when f =20 Hz and f =40 Hz.

5.1.1. When the source frequency is 20 Hz

In table 5.1 the eigenvalues concerning an environment of constant sound speed profile
are presented as computed by the effective depth method and by KRAKEN-C. It is
obvious that the eigenvalues obtained by both these approaches coincide. The first
ten associated eigenfunctions are shown in figures 5.1 and 5.2 indicating the real and
imaginary parts respectively. The thick black line corresponds to results produced by
KRAKEN-C and the thiner green line to the technique described in a previous chapter.

The measurements for the corresponding transmission loss is presented in figure 5.3
where it is shown that the eigenvalues obtained by the effective depth lead to a good
approximation of the pressure field. Transmission loss was calculated along a 5 km range
in the horizontal direction at the source depth.
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Mode

Effective Depth

KRAKEN-C

© 00 J O O i W N~

—
o

11

8.34416433e-02 + 13.34528906e-06
8.24372080e-02 + 11.20962221e-05
8.07581679¢-02 + i2.20201778e-05
7.84055138e-02 + i2.52802636e-05
7.54330315e-02 + 11.20070710e-05
7.18927897e-02 + 16.93543927¢e-04
6.65430214e-02 + 11.42525034e-03
5.96862684e-02 + 12.10647742e-03
5.07460587e-02 + 12.90121252e-03
3.83550534e-02 + 14.22135860e-03

1.76713446e-02 + 19.72793015e-03

8.34416441e-02 4 13.34525416e-06
8.24372209e-02 + 11.20957776e-05
8.07582328e-02 + i2.20187524e-05
7.84057182e-02 + i2.52789938e-05
7.54335150e-02 + 11.20102943e-05
7.18940917e-02 + 16.93321721e-04
6.65458029e-02 + 11.42505717e-03
5.96917522e-02 + 12.10630781e-03
5.07566119e-02 + 12.90088216e-03
3.83765611e-02 + 14.21964878e-03
1.77259197e-02 + 19.69991435e-03

for test case 5.1.1

FMODE 1 MODE 2

1]

FMODE 3

Table 5.1.: The eigenvalues as computed with the Effective Depth and with KRAKEN-C
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Figure 5.1.: Real part of the first ten eigenfunctions for test case 5.1.1
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Figure 5.2.: Imaginary part of the first ten eigenfunctions for test case 5.1.1
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Figure 5.3.: Transmission loss calculated at the source depth zy = 360 m for test case
5.1.1
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5.1.2. When the source frequency is 40 Hz

For a more integrated testing of the efficiency of the effective depth approach, measure-
ments for a higher source frequency of 40 Hz are also included. In table 5.2 the first ten
eigenvalues of the depth problem, as computed by the effective depth and KRAKEN-C
are presented. The real and imaginary part of the associated eigenfunctions are shown
in figures 5.4 and 5.5 respectively while the comparison for the transmission loss is pre-
sented in figure 5.6. The black thick line corresponds to KRAKEN-C and the green line
to computations based on eigenvalues obtained with the effective depth method. It is

obvious that both techniques yield coinciding results.

Mode

Effective Depth

KRAKEN-C

—_

© 00 O U i W

—
o

1.67376324e-01 + 19.19665756e-07
1.66849787e-01 + 13.59678864e-06
1.65969949¢-01 + i7.77643452e-06
1.64733435e-01 + i1.30033622e-05
1.63135640e-01 + i1.85799558e-05
1.61170950e-01 + i2.35184625e-05
1.58833340e-01 + i2.65094193e-05
1.56118080e-01 + i2.59521954e-05
1.53027714e-01 + 12.01396657e-05

1.49605594e-01 + i7.88388026¢-06

1.67376325e-01 + 19.19655009¢-07
1.66849795e-01 + 13.59662391e-06
1.65969989e-01 + i7.77566455¢e-06
1.64733563e-01 + i1.30012125e-05
1.63135952e-01 + i1.85756080e-05
1.61171601e-01 + i2.35117089e-05
1.58834553e-01 + i2.65016740e-05
1.56120163e-01 + i2.59474833e-05
1.53031064e-01 + 12.01447099e-05
1.49610577e-01 + i7.90487556¢-06

Table 5.2.: The first ten eigenvalues as computed with the Effective Depth and with

KRAKEN-C for test case 5.1.2
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Figure 5.4.: Real part of the first ten eigenfunctions for test case 5.1.2
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Figure 5.5.: Imaginary part of the first ten eigenfunctions for test case 5.1.2

25



Transmission Loss (f=40Hz ,cs=000mssec

I ke

newTechnigue ||

0k ........ ........ ....... ........ ....... .

aof

40

Sof -

TL

B Fooooan

=

7a

aor

30

100 L i i i
500 1000 1500 z000 2500 3000 3500 4000 4500 5000
Range(m)

Figure 5.6.: Transmission loss calculated at the source depth zy = 360 m for test case
5.1.2

26



5.2. Sound speed profile varying with depth

Having tested the efficiency of the effective depth method for the computation of the
eigenvalues of the depth problem with a constant sound velocity profile, we proceed with
presenting the efficiency of the technique suggested in chapter 4 for the estimation of
the eigenvalues in environments with a sound speed profile varying with depth.

Several test cases have been studied for various environmental parameters including dif-
ferent waveguide depths, shear wave speeds in the bottom, sound speed profiles in the
water and of course the cases tested concern various source frequencies. The environ-
mental parameters which are common for all test cases are the densities in the water and
the seabed set at p = 1000 kg/m?3 and ps = 1300 kg/m3 respectively and the velocity of
compressional waves in the seabed set at co = 1700 m/sec.

5.2.1. Linearly increasing sound speed over a soft elastic bottom

In this test case a 500 m deep waveguide is considered and the velocity of shear waves
in the bottom is ¢ = 200 m/sec. The sound speed profile is shown in table 5.3 which
implies linear interpolation between the given values. A monochromatic point source
is located at depth zp = 400 m and emits in frequency f = 20 Hz. In table 5.4, the

z (m) | ¢(z) (m/sec)
0 1490
500 1550

Table 5.3.: The sound speed profile for the test case of subsection 5.2.1

eigenvalues as computed by the suggested iterative technique and by KRAKEN-C are
presented. One can see that results produced by the two programs coincide. As in the
constant sound speed case, the first ten eigenfunctions are presented in figures 5.7 and
5.8. The former corresponds to the real part of the eigenfunctions and the latter to the
imaginary part. Last, in figure 5.9 a comparison of the transmission loss along a 5 km
range is shown. As previously the black line refers to results produced by KRAKEN-C
and the green line to our results.

Note that in figure 5.8, the imaginary part of modes 1-6 is practically zero (10~%) while
modes of higher order are given some rise. This is normal since the imaginary part of a
mode is related to the absorption of acoustic energy and as it is known low order modes
have a greater contribution to the acoustic field than the ones of higher order. As shown
in figures 5.7-5.9 the two programs coincide in the calculation of both the eigenfunctions
and the transmission loss.
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Mode new technique KRAKEN-C
1 8.28284167e-02 + i8.16865720e-10 | 8.28284167e-02 + i8.16865720e-10
2 8.16929949¢-02 + 16.36670471e-08 | 8.16929948e-02 + 16.36669669e-08
3 8.05798842¢-02 + i14.04607133e-07 | 8.05798842e-02 + 14.04606672e-07
4 7.91141190e-02 + i7.51998431e-07 | 7.91141188e-02 + i7.52000104e-07
5 7.71838721e-02 + i7.27565344e-07 | 7.71838816e-02 + i7.27438872e-07
6 7.48125809e-02 + i2.45105588e-07 | 7.48129193e-02 + 12.40958374e-07
7 7.19176653e-02 + i4.42424216e-04 | 7.19173049e-02 + i4.42287613e-04
8 6.79771774e-02 + 18.16790905e-04 | 6.79771960e-02 + i8.16591254e-04
9 6.31712898e-02 + 11.18282953e-03 | 6.31713408e-02 + 11.18238626e-03
10 5.72856763e-02 4 i1.60233840e-03 | 5.72856462e-02 + i1.60227786e-03
11 4.99457086e-02 + 12.15131729¢-03 | 4.99457280e-02 + 12.15127892e-03
12 4.03862396e-02 + 13.01971321e-03 | 4.03862666e-02 + 13.01969738e-03
13 2.64816812e-02 + i5.11551485e-03 | 2.64816592e-02 + i5.11551248e-03

Table 5.4.: The eigenvalues computed with the suggested technique and with KRAKEN-
C for test case 5.2.1
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Figure 5.7.: Real part of the first ten eigenfunctions for test case 5.2.1
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Figure 5.8.: Imaginary part of the first ten eigenfunctions for test case 5.2.1
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Figure 5.9.: Transmission loss calculated for test case 5.2.1
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5.2.2. Linearly increasing sound speed over a hard elastic bottom

This test case is similar to case 5.2.1 with the difference that the waveguide is of depth
800 m and the velocity of shear waves in the bottom is set at c¢s = 500 m/sec, that is
a harder seabed than previously. The source is located at depth zg = 560 m and the
sound speed profile is assumed similar to that of the previous case as shown in table
5.5. Results for three different values of the source frequency are presented. It is noted
that the black thick line refers to results as computed by KRAKEN-C whereas the green
colour corresponds to results obtained by our method.

z (m) | ¢(z) (m/sec)
0 1490
800 1550

Table 5.5.: The sound speed profile for the test case of subsection 5.2.2

When the source frequency is 20 Hz

In such an environment the propagating modes are twenty one. The first ten of these,
as calculated by the suggested technique are shown in table 5.6 in comparison to those
computed by KRAKEN-C. The real and imaginary part of the associated eigenfunctions
are presented in figures 5.10 and 5.11 while the transmission loss is illustrated in figure
5.12. Note that imaginary part of modes 1-9 is in practice null whereas mode 10 is
the first to present a remarkable amplitude. It is obvious that results produced by the
method suggested in this work coincide with those produced by KRAKEN-C.

Mode

new technique

KRAKEN-C

—_

© 00 O U W N

—_
@)

8.32329795¢-02 + 18.03137318e-12
8.24116108e-02 + 15.16675533e-09
8.17377829¢-02 + 12.50989131e-07
8.10864382e-02 + 12.01920560e-06
8.03147602e-02 + 15.41423370e-06
7.93545812e-02 + 18.68231210e-06
7.81998717e-02 + 11.06296775e-05
7.68551776e-02 + 11.02141437e-05
7.53357296e-02 4 16.30198206¢-06
7.37975299e-02 + 19.26801678e-05

8.32329795e-02 + 18.03138015e-12
8.24116108e-02 + 15.16675631e-09
8.17377829e-02 + 12.50989137e-07
8.10864382e-02 + 12.01920571e-06
8.03147601e-02 + 15.41423592¢-06
7.93546005e-02 + 18.68056234e-06
7.81998720e-02 + 11.06295185e-05
7.68553425e-02 + 11.01983692e-05
7.53356914e-02 4 16.30590139¢-06
7.37990339e-02 + 19.46870023e-05

Table 5.6.: The first ten eigenvalues computed with the suggested technique and with

KRAKEN-C for test case 5.2.2 with f =20 Hz
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Figure 5.10.: Real part of the first ten eigenfunctions for test case 5.2.2 with f =20 Hz
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Figure 5.12.: Transmission loss calculated for test case 5.2.2 with f =20 Hz
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When the source frequency is 50 Hz

Having encouraging results for a source of low frequency we have chosen to test our
method also for higher values. Thus, all enviromental parameters are preserved whereas
the source frequency is set at 50 Hz. For this value of frequency we also get results very
close to these of KRAKEN-C’s. Table 5.7 shows a comparison of the first ten eigenvalues
as computed by our iterative scheme and KRAKEN-C. Figure 5.13 shows the real part
of the first ten eigenfunctions whereas the figure with the corresponding imaginary part
has been omitted since it is almost null. Last, in figure 5.14 the comparison for the
transmission loss is presented.

Mode new technique KRAKEN-C
1 2.09342638e-01 + i4.96669270e-22 | 2.09342638e-01 + i-1.74630461e-19
2 2.08222436e-01 + i3.28976348e-21 | 2.08222436e-01 + i-2.72787198e-19
3 2.07308040e-01 + i1.06914108e-17 | 2.07308040e-01 4 i1.07343685e-17
4 2.06501933e-01 + i7.19062751e-15 | 2.06501933e-01 + i7.19081766e-15
5 2.05766721e-01 + i1.55702680e-12 | 2.05766721e-01 + i1.55702766e-12
6 2.05083069e-01 + i1.32232616e-10 | 2.05083069e-01 + i1.32232616e-10
7 2.04439258e-01 + i4.84798755e-09 | 2.04439258e-01 + i4.84798755e-09
8 2.03825856e-01 + i7.77841897e-08 | 2.03825856e-01 + i7.77841900e-08
9 2.03223977e-01 + 15.33289840e-07 | 2.03223977e-01 4+ i5.33289778e-07
10 2.02590524e-01 + i1.71513141e-06 | 2.02590524e-01 + 11.71513158e-06

Table 5.7.: The first ten eigenvalues computed with the suggested technique and with
KRAKEN-C for test case 5.2.2 with f =50 Hz
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Figure 5.13.: Real part of the first ten eigenfunctions for test case 5.2.2 with f =50 Hz
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Figure 5.14.: Transmission loss calculated for test case 5.2.2 with f =50 Hz
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When the source frequency is 80 Hz

The last subcase of the present test case studied, concerns an even higher source fre-
quency. The frequency is now set at 80 H z resulting in a greater number of propagating
modes. The first ten, out of eighty five propagating, are presnted in table 5.8 and the real
part of the corresponding eigenfunctions is shown in figure 5.15 whereas the imaginary
part of these ten eigenfunctions is practically zero and is omitted. The transmission loss
along a 5 km range is illustrated in figure 5.16. It is noted that for a higher value of

frequency our scheme generates the desired results.

Mode

new technique

KRAKEN-C

© 00 O Ui WK

—
o

3.35593916e-01 + 16.67567500e-23
3.34281716e-01 + 13.46836483e-28
3.33209779e-01 + 11.75774728e-27
3.32264172e-01 + 17.10040418e-27
3.31401222e-01 + 11.20229773e-23
3.30598357e-01 + i8.28293205e-21
3.29842005e-01 + 12.71925419e-18
3.29123203e-01 + 14.70545168e-16
3.28435644e-01 + 14.59326788e-14
3.27774674e-01 + 12.63901779e-12

3.35593916e-01 + 14.70836086e-19
3.34281716e-01 + i2.38907283e-19
3.33209779e-01 + 15.29641983e-19
3.32264172e-01 + 17.05521247e-20
3.31401222e-01 + i7.35653681e-19
3.30598357e-01 + 13.33723621e-19
3.29842005e-01 + i2.92573990e-18
3.29123203e-01 + 14.70689375e-16
3.28435644e-01 + 14.59341378e-14
3.27774674e-01 + 12.63901705e-12

Table 5.8.: The first ten eigenvalues computed with the suggested technique and with

KRAKEN-C for test case 5.2.2 with f =80 Hz
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Figure 5.16.: Transmission loss calculated for test case 5.2.2 with f =80 Hz
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5.2.3. Linearly varying sound speed with an alternating monotonicity

In this test case a more complex sound velocity profile is considered. We have chosen a
profile which initially decreases linearly with depth and at some point the monotonicity
changes and the sound speed increases linearly until the maximum depth is reached
(table 5.9). The rest of the environmental parameters are considered as in test case
5.2.2, that is a waveguide of depth D = 800 m, the densities of the two media are
p = 1000 kg/m? and py = 1300 kg/m? and the seabed is considered as a hard elastic
half-space supporting a compressional wave velocity of ¢ = 1700 m/sec and a shear
wave velocity of ¢s = 500 m/sec. For this case the technique suggested in chapter
4 for estimating the eigenvalues and the method of section 3.2 for the computation
of the eigenfunctions are tested for three different values of source frequency, for f =
20,50,80 Hz.

Last, the pressure field calculated in a whole rectangular domain and an extra test of
the suggested algorithm for a 200 Hz source frequency are also presented, indicatively.
It is noted that the black colour in the figures refers to results obtained by KRAKEN-C
and the thin green line to results of our method.

z (m) | ¢(z) (m/sec)
0 1500
200 1490
800 1550

Table 5.9.: The sound speed profile for the test case of subsection 5.2.3

When the source frequency is 20 Hz

For a 20 Hz source frequency results and comparisons are shown in table 5.10 and
figures 5.17 and 5.18. The table includes the first ten eigenvalues, out of twenty one
propagating modes, using our technique and KRAKEN-C while figures 5.17 and 5.18
present a comparison between the two approaches for the real part of the eigenfunctions
and the transmission loss of the acoustic pressure field. One concludes that the method
described in this work provides results with accuracy.
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Mode

new technique

KRAKEN-C

—_

© 00 J O U i W N

—
o

8.37800697e-02 + 14.89634681e-12
8.28821135e-02 + 11.97453303e-09
8.21318187e-02 + 11.04814827e-07
8.14230455e-02 + 11.22384275e-06
8.06400791e-02 + 14.40711188e-06
7.96835980e-02 + 18.12550757e-06
7.85324323e-02 + 11.06417449e-05
7.71924652¢-02 4 i1.08325297e-05
7.56738580e-02 + i7.61659835¢-06
7.40553087e-02 + 11.55907081e-06

8.37800697e-02 + 14.89634533e-12
8.28821135e-02 + i1.97453305e-09
8.21318191e-02 + 11.04786014e-07
8.14230451e-02 + 11.22388877e-06
8.06400790e-02 4 i14.40705172e-06
7.96836115e-02 + i8.12411915e-06
7.85324314e-02 + 11.06418614e-05
7.71924615e-02 4 i1.08328739e-05
7.56738417e-02 + i7.61733769e-06
7.40540533e-02 + 15.94530072e-07

Table 5.10.:

Figure 5.17.: Real part of the first ten eigenfunctions for test case 5.2.3 with f =20 Hz

The first ten eigenvalues computed with the suggested technique and with

KRAKEN-C for test case 5.2.3 with f =20 Hz
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Figure 5.18.: Transmission loss calculated for test case 5.2.3 with f =20 Hz
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When the source frequency is 50 Hz

We proceed with testing the same sound speed profile for a higher source frequency
of 50 Hz. Results are still obtained with great accuracy. In table 5.11 the first ten
eigenvalues, out of fifty three propagating modes, are shown as estimated by our method
and by KRAKEN-C as well. Figures 5.19 and 5.20 present the real part of the associated
eigenfunctions and the transmission loss along a 5 km range in the horizontal direction
respectively.

Mode new technique KRAKEN-C
1 2.10223144e-01 + i6.21749319e-24 | 2.10223144e-01 + i-9.04229241e-19
2 2.09338118e-01 + i4.49041729e-21 | 2.09338118e-01 + 19.64913141e-19
3 2.08529674e-01 + i2.08728984e-18 | 2.08529674e-01 + 11.48127741e-18
4 2.07703700e-01 + i6.22953427e-16 | 2.07703700e-01 + 16.22751765e-16
5 2.06920705e-01 + 19.24544067e-14 | 2.06920705e-01 + 19.24546312¢e-14
6 2.06159864e-01 + 17.80467882¢e-12 | 2.06159864e-01 + 17.80467888e-12
7 2.05424360e-01 + i3.55851942¢-10 | 2.05424360e-01 + 13.55851944e-10
8 2.04718315e-01 + i8.48157026e-09 | 2.04718315e-01 + 18.48157026e-09
9 2.04036830e-01 + i1.03191596e-07 | 2.04036830e-01 + 11.03191596e-07
10 2.03362097e-01 + i6.17017959e-07 | 2.03362097e-01 + i6.17017868e-07
Table 5.11.: The first ten eigenvalues computed with the suggested technique and with

KRAKEN-C for test case 5.2.3 with f =50 Hz

40




MODE 1

N

20n

MODE 2 FMODE 3 MODE 4 MODE S

{200 -

0

200 4200 1200 |

aont-i-ff - {ano - Yk 5400 1400 L1400

goo (- g-ceoo < 4 {eoo - g qeon < Rk {00t

500 — — Mg L
-0.0500.05  -0.0500.05  -0.0500.05  -0.0500.05  -0.0500.05
MODE7  MODES  MODES  MODE 10
200 |- oo | 200 | gt | 200 |- g 1200 | - g {200 }::-r:
BOO |- BOD |- P 60O BO0 |-y 600 <f

oo = —Igon oo — —Igon —&0n
-0.0500.05 -0.0500.05 -0.0500.05 -0.05300.05 -0.05300.05

Figure 5.19.: Real part of the first ten eigenfunctions for test case 5.2.3 with f =50 Hz
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Figure 5.20.: Transmission loss calculated for test case 5.2.3 with f =50 Hz
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When the source frequency is 80 Hz

In correspondence to test case 5.2.2 the scenario of an 80 H z source frequency is included.
Results generated by the suggested scheme are still satisfying according to KRAKEN-C.
Table 5.12 shows the first ten eigenvalues and figures 5.21 and 5.22 correspond to the

real part of the first ten eigenfunctions and the transmission loss respectively.

So far, the calculation of the transmission loss is presented for a specific depth z, that
is the source depth. For completeness, in this case, both the pressure field and the
transmission loss are presented as calculated in the whole rectangular domain [0, r,qz] X
[0, D] with 7, = 5 km. Figure 5.23 represents the absolute value of the pressure field
while figure 5.24 the corresponding transmission loss. The horizontal and vertical axes
indicate the range and depth respectively, while the colour indicates the magnitude of
the measurement. As expected, the acoustic field is appeared noticeably stronger close
to the source location (rg,z0) = (0,560). Furthermore, it is obvious that both figures

follow the same pattern since they represent the same measure in a different scale.

Mode

new technique

KRAKEN-C

© 00 J O U i W N =

—_
@)

3.36634106e-01 + 13.81351852e-28
3.35720869e-01 + 14.50401142¢-24
3.34947409e-01 + 11.84344990e-23
3.34163176e-01 + 11.54641986e-27
3.33342870e-01 + 16.34200193e-25
3.32530212e-01 + 11.65956018e-22
3.31736595e-01 + 13.41833159e-20
3.30951455e-01 + 14.74091728e-18
3.30186725e-01 + 14.35721259¢-16
3.29444393e-01 + 12.67572596e-14

3.36634106e-01 + 12.91663806e-19
3.35720869e-01 + 11.41373053e-19
3.34947409e-01 + 14.18485568e-19
3.34163176e-01 + i7.31282998e-18
3.33342870e-01 + 11.89597338e-20
3.32530212e-01 + 13.36955521e-19
3.31736595e-01 + 12.95045279¢-19
3.30951455e-01 + 14.48511153e-18
3.30186725e-01 + 14.35723924e-16
3.29444393e-01 + 12.67584947e-14

Table 5.12.:

The first ten eigenvalues computed with the suggested technique and with

KRAKEN-C for test case 5.2.3 with f =80 Hz
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Figure 5.21.: Real part of the first ten eigenfunctions for test case 5.2.3 with f =80 Hz
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Figure 5.22.: Transmission loss calculated for test case 5.2.3 with f =80 Hz
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Pressure Field :f=80Hz ,cs=000m/sec
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Figure 5.23.: Pressure field calculated in the whole domain [0, 5000] x [0, 500] for the test
case 5.2.3 with f =80 Hz
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Figure 5.24.: Transmission loss calculated in the whole domain [0, 5000] x [0, 500] for the
test case 5.2.3 with f =80 Hz
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When the source frequency is 200 Hz

Indicatively, the first ten eigenvalues and the transmission loss for a greater frequency
value have been included in this test case. The results, as calculated by our technique
and the KRAKEN-C program, are presented in table 5.13 and figure 5.25. In order to
this coincidence be achieved, in this case a much finer discretization was needed since
the set of propagating modes is dense enough and consists of more than two hundred
eigenvalues.

Mode

new technique

KRAKEN-C

© 00 O O W~

—_
[an}

8.42405903e-01 + 11.98705833e-26
8.41195771e-01 + 18.40194356e-24
8.40292563e-01 + 17.54343700e-38
8.39535101e-01 + 11.04496210e-24
8.38816595e-01 + 11.69237606e-24
8.38117544e-01 + 15.47936890e-36
8.37406925e-01 + 15.82653519e-35
8.36645906e-01 + 19.21599914e-32
8.35871071e-01 + i1.70795662e-25
8.35066890e-01 + 15.73386089e-34

8.42405903e-01 + 12.50362837e-18
8.41195771e-01 + 11.36908267e-18
8.40292563e-01 + 12.55175570e-18
8.39535101e-01 + 11.10057178e-18
8.38816595e-01 + i4.10620865¢-18
8.38117544e-01 + 13.59878015e-19
8.37406925e-01 + i11.07700910e-18
8.36645906e-01 + 15.77774547e-19
8.35871071e-01 + 19.84544820e-19
8.35066890e-01 + 13.32593381e-19

Table 5.13.:

The first ten eigenvalues computed with the suggested technique for test

case 5.2.3 with f =200 Hz
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Figure 5.25.: Transmission loss calculated for test case 5.2.3 with f = 200 Hz
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In this chapter several test cases, for the suggested scheme, have been studied and the
results were presented in comparison to those obtained by KRAKEN-C. The efficiency
of the effective depth approach was presented first and various environmental scenarions
were considered on which our iterative scheme was applied. The scheme was tested for
various depths of the waveguide, sound speed profiles and for various values of the source
frequency. In all cases the scheme appeared to converge with accuracy after less than
ten iterations.
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6. Summary - Conclusion

The problem of acoustic propagation in a shallow water range-independent environment
has been presented. The associated ”depth problem” both for a constant and a varying
with depth velocity profile has been studied and the solution has been given in each case.
A short description of the effective depth method has been presented for the calculation
of the eigenvalues of the depth problem when the sound velocity is constant. In the
case of a velocity profile varying with depth, a finite-difference scheme has been applied
combined with the appropriate impedance function in the water-seabed interface and
the discrete depth problem was formulated as a matrix eigenvalue problem.

An iterative procedure, based on Inverse Iteration method, has been suggested for the
calculation of the eigenvalues in the varying velocity case. Initial assumptions for this
procedure are obtained using the effective depth approach for a constant sound speed
profile, corresponding to the minimum value of the actual profile. Several considerations
have been taken into account to ensure that the scheme converges to the whole set of
propagating modes.

In order to illustrate the efficiency of the suggested technique, several test cases have
been studied and the results were compared to the output of the KRAKEN-C program.
Eventually although we started on the purpose of approximating the eigenvalues, this
technique came out to provide the eigenvalues with accuracy. Thus, it can be viewed as
an alternative way to provide eigenvalues and eigenfunctions, for the series expansion of
the acoustic field in a shallow water waveguide over an elastic homogeneous half-space.

Although our scheme has been shown to be efficient it appeared to be slow, particularly
when the set of propagating modes is wide enough. As an issue of future study, one could
apply parallel processing to minimize the execution time demanded. The estimation
of eigenvalues corresponding to modes of different order, in practice corresponding to
different initial assumptions, could be assigned to different threads leading to a reduced
execution time. Also an issue could be that of implementing the suggested scheme for
a multilayered seabed. Another issue for future research could concern the extention of
the present iterative scheme to a range-dependend environment or an environment with
non-horizontal boundaries. In such a problem further considerations would be needed
in order to study the influence of this dependence on the acoustic field.
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A. Derivation of pressure field and
normalization constant

A.1. Pressure field

The solution to Helmholtz equation, by means of the spectral integral representation, is

expressed as [10]
1 [t

p(r2) = - Gz, 20; N HSY (Ar)AdX (A.1)

where Hél) is the Hankel function of the first kind of zeroth order and G is the Green’s
function which satisfies the inhomogeneous depth problem, for a constant density

d2G 2 2
T2 H(F(2) = NG = —6(z = 20) , z€[0,D]

G(0) =0

G(D) _
(D)~ I(An)

The solution of the above problem is given as [1, 11]

Z(20)V(2)
W (z0; A)
Z(2)V(20)
W (z0; \) ’

G(z;\) = — , 2 €10, 20] (A.2)

G(z;\) = — z € [20, D] (A.3)

where V and Z satisfy the top and bottom boundary conditions respectively and W
denotes the Wronskian of U and V. That is,

W(z\) =V (2)Z'(2) = V'(2)Z(2) (A.4)
and primes denote differentiation with respect to z.

Substitution of solution A.2 into expression A.1 and use of Cauchy’s residue theorem for
the poles A\, of G, yields

(1)
LS O O L o

where V,, and Z,, are associated with \,,. The elimination of the coefficient of the sum
has not been applied on purpose and the branch-line integrals have been neglected since
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they have very small contribution at long ranges. Similar to A.5, substitution of A.3
into A.1, results in

1 5 Viu(20) Zn(2) HSY (Anr) An

p(r, z) = (—i2) 1 W 0N rms , 2 € [20, D]

Note that A\, must satisfy
W(ZO; >\n) =0

thus, V,, and Z,, are linearly dependent and, as such, they can be scaled so that they
are equal. We set U, = V,, = Z,, and putting together the above expressions for the
pressure field, we have

i = Un(20)Un(2)HY (Anr)
4 Z WO ’
n —2\n,

p(r,z) = z €0, D] (A.6)

A=A

where U,, (n = 1,2,3,---) satisfy the homogeneous differential equation of the depth
problem and both the top and bottom boundary conditions. Moreover, U,, are scaled so
that

Un(2) = Npup(2)

where N2 = d_VI;{\dA .
mIA=An

A.2. Normalization constant

We consider V, Z and U, as above. Then V and U, satisfy

Cf;/ + (K(2) =XV =0 (A.T)
d;g” + (K*(2) = AU, = 0 (A.8)

respectively. We multiply A.7 by U, apply the operator fOD -dz and multiply A.8 by V'
and integrate from 0 to D. If we integrate by parts and subtract the resulting expressions
we obtain

VU, — U, V']

D D
, (A% — Ai)/ U, Vdz =0 (A.9)
0

Since the value of V' at depth z = D is not known, further considerations for V(D) and
V'(D) are needed. The derivative of the Wronskian with respect to depth is

W (M) =V'(2)Z'(2) + V(2)Z2"(2) = V"(2)Z(2) = V'(2)Z'(2)
= —V(2)(K*(2) = A)Z(2) + Z(2)(K*(2) = AV (2)
=0
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Thus,

V(D)Z'(D) — W(z0; M)

(D) = - Al
Since U, and Z satisfy U}, (D) = lj’g\f)) and Z'(D) = Zlgf)) respectively, substitution of
A.10 into the first term of A.9 gives
1 1 Un(D)
U,V — V(D)U,(D _ ) — W
VU= 0V] |, = VOWAD) | 7055 5] + G IV i) = W i )

(A.11)
since W (z0; An) = 0. Additionally [VU! — U, V"] ‘0 = 0 since un(0) = V(0) = 0. On
substituting A.11 into A.9, dividing both sides by A — A, and reordering, we obtain

()

-1
A=,

_Un(D) [W(ZO; A) — Wi(z03 An)

D
Z(D) . ]—@Hn) | vwviz—voyuo)

As mentioned before, V' can be scaled so that V' = U, and still satisfy the corresponding
differential equation. Moreover, we recall that both Z and U, satisfy the boundary
condition at z = D. Thus, if we scale V, take the limit as A — A, and then divide by
2\, we have

OW /oA P U2(D) dI7*()\)
2\, )/\=/\n_/0 Undz = 2\,  d\ =, (A-12)

which is desired result.
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