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Abstract

Medical imaging is the process of creating visual representations of the interior of our
body for clinical analysis and medical intervention. Medical imaging reveals the internal
structures hidden by the skin and it is a powerful tool for population screening and
efficient patient management. Thirty years ago, Magnetic Resonance Imaging (MRI)
was introduced in clinical practice and was progressively established among the most
frequently used medical imaging modalities. Apart from conventional MR imaging,
more advanced techniques were arisen such as spectroscopy, diffusion and perfusion
MRI.

The main subject of this work is Diffusion Weighted Imaging (DWI) and is focused on
obtaining diffusion parameters from the Intravoxel Incoherent Motion (IVIM) model
which gives information about water diffusivity and tissue vascularity. In order to
extract the aforementioned parameters from the IVIM model, non-linear least squares
are used. As an iterative process, non-linear least squares need a starting point (initial
guess), a lower and an upper bound. The initial point is of crucial significance for
the convergence of the algorithm. Due to the complexity of the IVIM function (many
local minima), standard non-linear least squares fail to produce clinically reliable results
inside the natural bounds.

To this end, we present a novel mathematical framework which exploits the charac-
teristics of the Diffusion Weighted (DW) signal curve in order to find the appropriate
initial starting points and bounds for the non-linear least squares. Comparisons be-
tween results obtained by the proposed and those of the standard initialization, for
the non-linear least squares, results in clinically relevant and reliable results with our
method, in contrast to the standard initialization which suffers from reproducibility of
the results.



Περίληψη

Ιατρική απεικόνιση είναι η διαδικασία της δημιουργίας οπτικής αναπαραστάσης του
εσωτερικού του σώματος μας για κλινική ανάλυση και ιατρική παρέμβαση. Η ιατρική
απεικόνιση αποκαλύπτει τις εσωτερικές δομές, κρυμμένες από το δέρμα και αποτελεί
ισχυρό εργαλείο για τον έλεγχο του πληθυσμού και την αποτελεσματική διαχείριση των
ασθενών. Τριάντα χρόνια πριν, η μαγνητική τομογραφία (MRI) εισήχθη στην κλινική
πρακτική και σταδιακά καθιερώθηκε ως μία από τις πιο συχνά χρησιμοποιούμενες
ιατρικές μεθόδους απεικόνισης. Εκτός από τη συμβατική απεικόνιση MR, έχουν
προκύψει και άλλες προηγμένες τεχνικές, όπως η φασματοσκοπία, MRI διάχυσης και
αιμάτωσης.

Το κύριο αντικείμενο της εργασίας αυτής είναι το MRI διάχυσης, και επικεντρώθηκε
στην απόκτηση των παραμέτρων διάχυσης από το μοντέλο Intravoxel Incoherent Mo-
tion (IVIM), το οποίο παρέχει πληροφορία σχετικά με διαχυτότητα του νερού και την
αγγείωση στους ιστούς. Προκειμένου να εξαχθούν οι προαναφερθείσες παράμετροι
από το IVIM μοντέλο, χρησιμοποιούνται τα μη-γραμμικά ελάχιστα τετράγωνα. Ως
επαναληπτική διαδικασία, τα μη-γραμμικά ελάχιστα τετράγωνα χρειάζονται ένα ση-
μείο εκκίνησης, (αρχική εκτίμηση) ένα κάτω και ένα άνω φράγμα. Η αρχική συνθήκη
είναι υψίστης σημασίας για τη σύγκλιση του αλγορίθμου. Λόγω της πολυπλοκότητας
της συνάρτησης IVIM, (πολλά τοπικά ελάχιστα) τα μη-γραμμικά ελάχιστα τετράγωνα
αποτυγχάνουν στο να παράγουν κλινικά αξιόπιστα αποτελέσματα εντός των φυσικών
ορίων.

Με σκοπό αυτό, παρουσιάζουμε ένα νέο μαθηματικό πλαίσιο, το οποίο εκμεταλλεύεται
τα χαρακτηριστικά της καμπύλης του σήματος διάχυσης, προκειμένου να βρεθούν οι
κατάλληλες αρχικές συνθήκες και τα όρια για το αντίστροφο πρόβλημα. Συγκρίσεις
μεταξύ των αποτελεσμάτων της προτεινόμενης και αυτών της καθιερωμένης αρχικο-
ποίησης των μη-γραμμικών ελαχίστων τετραγώνων, οδηγούν σε κλινικά σημαντικά
και αξιόπιστα αποτελέσματα με τη μέθοδο μας, σε αντίθεση με την καθιερωμένη
αρχικοποίηση που υποφέρει από την επαναληψημότητα των αποτελεσμάτων.
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1
Introduction

Throughout the years we "struggled" to understand important organs in our body. In
the last decades our kind has come to a new era in investigating the mysteries of our
body with revolutionary techniques. The following chapters, are focused on Magnetic
Resonance Imaging (MRI) and precisely in Diffusion Weighted MRI (DWI), a fast and
non-invasive technique in which, no-contrast media or ionizing radiation are required.

DWI is a technique that can give qualitative information about the anatomy and it is
possible to characterize tissues and diseases [2]. The Apparent Diffusion Coefficient.
(ADC), is a significant bio-marker that is derived from the DWI data and it can provide
a quantitative measure of water diffusivity, which mirrors tissue cellularity and tissue
organization. Furthermore, DWI has been used for the assessment of abdominal ma-
lignancies and it is capable to characterize tumours in organs such as, the kidneys, the
liver and the pancreas [3].

Abdominal lesions of liver or pancreas have high occurrence and thus the differentiation
between benign or malignant nature of the lesion depends highly on MR findings. DWI
techniques will be applied to the diffusion MRI data coming from regions of the liver
and pancreas, thus a short description of their anatomy and structure is essential for
this work.

In the next pages, the MRI principles and the basic diffusion concepts are described,
along with a detailed description concerning the theoretical background of DWI. The
Intravoxel Incoherent Motion (IVIM) model is applied in the abdominal area in order
to give clinically parameters for diffusion. IVIM is a more advanced model that exploits
the effect on the DW signal due to the micro-circulation of blood. These parameters
are a result of non-linear regression. Therefore one of the following chapters will cover
the mathematical background of the non-lineal least squares theory along with our
modifications in order to provide optimized results from the DWI analysis.

1.1 The Human Brain

The brain is part of the central nervous system (C.N.S.) where all organs and properties
of the human body are controlled, but also where perception of sensory input and
higher conscious and mental processes take place. So, the brain is the root of what
makes us human.

Brain tissue structure is formed by different types of neuronal and glial cells. Neurons
are the most important components because of their ability of receiving and integrat-
ing information, data processing and transmission through their axonal projections and

8



synaptic junctions (the contact points between neurons) to other cells. A typical neu-
ronal cell consists of: the cellular body, which is the main part of the cell, the dendrites,
the signal receiver and the axon, the signal transmitter. A tract is a large number of
afferent or efferent, myelinated or not, axons that defines a path and wires brain regions.

Figure 1.1: Gray and white matter of the brain

Axons, these cellular protrusions that
help signal transduction between cells,
are either sheathed with myelin or
non-myelinated. Myelin layer enables
more efficient signalling when needed
in the neural network. Myelin is con-
structed by glial cells and insulation of
electrical conductivity is one of their
main roles in C.N.S. apart from main-
taining brain homeostasis, mechanical
and trophic support, protection from
pathogens and others [4].

A worth mentioning property when
brain slices are histologically described
is that in regions rich in cellular bodies, the dominant color is grey, while white regions
are those where myelinated axonal tracts are concentrated. Thus, brain tissue differ-
entiates into interchangeable grey and white matter (figure 1.1). Regions between gray
and white matter communicate via clusters of axons, called tracts. Those tracts are able
to be depicted through imaging modalities, as presented in the next chapter.

1.1.1 Anatomy

Figure 1.2: Planes of the brain. Figure taken by: pixgood.com

Macroscopically, the brain is not a homogeneously structured organ, but can be divided
into three anatomical sections. Firstly, the cerebrum (forebrain) is composed by the
cerebral hemispheres, which are furthermore divided into the four lobes (frontal, pari-
etal, occipital, temporal), and also contains the diencephalon, where the thalamus lies
in. Also, the cerebellum (hindbrain), which is also called the small brain. Finally, the
brainstem which is subdivided into the midbrain, the pons and the medulla, which is
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the bridge between the brain and the spinal cord. All these regions are functionally
related to a uniform network, where every area is responsible for a set of functions. A
brief generalized description is shown in (figure 1.3).

Driven by the three axes that may be established for the organ, the brain sections are
three mutually perpendicular planes, either sagittal, axial (transverse) or coronal
(figure 1.2 ). As it can be seen in the next pages, MR images follow the same rules.

Figure 1.3: Gross anatomical brain structures. Figure taken by: University Hospital Newark,
NJ.

1.1.2 Cerebrospinal fluid (CSF)

Within the brain mass, there is the ventricles' system (Figure 1.4) where the CSF is
contained. The ventricles are spaces insulated from the brain tissue dedicated to the
production of the CSF. The role of the CSF is twofold: it is involved in the metabolism
of the cells of the C.N.S. and it functions as a protector of the brain from the external
vibrations [4].

Figure 1.4: Ventricles' system.
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The largest amount of water in the brain mass is located in the ventricles' system.
However, CSF differs from blood in its content though, both of them obviously have
water as the main component.

1.2 The Liver

Figure 1.5: Abdominal organs. Liver and Pan-
creas

The liver (figure 1.5) is a vital organ and
it is located in the upper right quadrant of
the abdomen, below the diaphragm. The
liver has a wide range of functions, in-
cluding detoxification of various metabo-
lites, protein synthesis, and the produc-
tion of biochemicals necessary for diges-
tion. The liver is a gland and plays a
major role in metabolism with numerous
functions in the human body, including
decomposition of red blood cells, plasma
protein synthesis, and hormone produc-
tion. Also it is highly vascularized organ
with dense capillary system.

1.3 The Pancreas

The pancreas (figure 1.5) is a glandu-
lar organ in the digestive system and en-
docrine system of vertebrates. In humans,
it is located in the abdominal cavity be-
hind the stomach. It is an endocrine
gland producing several important hormones, including insulin, glucagon, somatostatin,
and pancreatic polypeptide which circulate in the blood. The pancreas is also a diges-
tive organ, secreting pancreatic juice containing digestive enzymes that assist digestion
and absorption of nutrients in the small intestine. These enzymes help to further break
down the carbohydrates, proteins, and lipids in the chyme.
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2
Magnetic Resonance Imaging

As pathology is not uncommon for the aforementioned specific organs, anatomical and
functional imaging is of paramount importance. Apart from conventional, functional
information, is necessary in order to aid diagnosis. MRI is the modality of choice, as
multi parametric MR acquisition can give an insight into tissue integrity, cellularity and
vascularization.

In order to analyse the water diffusion in the human body and brain through Magnetic
Resonance Imaging (MRI), we have to understand the basic physics behind MRI. To
begin with, we have to determine the terms "z-direction" and "xy-plane" that are fre-
quently used in this chapter. In all figures, the main magnetic field, B0, is represented
from bottom to top and its direction is designated by z. The other two dimensions of
the magnetic field are denoted by x and y. The xy-plane is perpendicular to the z-axis
and is represented horizontally in figure 2.1.

Figure 2.1: Magnetization Directions: z-axis ,xy-plane

2.1 Spin and the Nuclear Magnetic Resonance Phenomenon

The exact description of what happens when a magnetic field is applied on human
tissue, relies on quantum mechanics. All the theory necessary for MRI can be based on
a simple and precise model in which the protons can be considered as small magnets.
MRI uses the signal from the nuclei of hydrogen atoms (1H) to generate an image,
utilizing the fact that living tissue consists of 60-80 % water in which macromolecules
are contained [5]. The nucleus of a hydrogen atom consists of a single proton having
positive charge. Also, a single electron with negative charge orbits the nucleus, making
the whole atom electrically neutral.

An intrinsic property of nearly all elementary particles that proton, also, possesses is
the spin. A proton, as a rotating mass, has angular momentum. Furthermore, taking

12



into account its electrical charge, proton has magnetic moment B and behaves like a
small magnet. So, it is affected by external magnetic fields and when it moves induces a
voltage in a receiver coil. Due to the size of the proton, we cannot look into hydrogen's
nucleus thus we cannot see its intrinsic angular momentum or its spin. When we
describe the rotation of a proton we are not referring to its angular momentum but
to the visible motion of its magnetic axis B, which has the orientation of the proton's
rotation axis.

When we expose our hydrogen nuclei to an external magnetic field, B0, the nuclei
undergoes the process of precession, where the external forces try to alter the orientation
of its rotational axis, something commonly referred as wobble. This means, that our
nuclei does not align with the field ,just, instantly, but undergoes precession, which
happens at a characteristic frequency, which is proportional to the strength of the applied
magnetic field and is called Larmor frequency (ω0).

During this process the nuclei will gradually lose the energy stored as "wobbling" and
eventually align with the applied magnetic field. The time needed for the nuclei to
align depends on the decaying rate of the wobble phenomenon. Therefore, Larmor
frequency is fundamentally important in our concept and of crucial significance to
Magnetic resonance imaging.

The Larmor or precession frequency is the rate at which spins wobble when placed
in a magnetic field [6].

ω0 = γ0B0

where,

• ω0 is the Larmor frequency in (MHz)

• γ0 is the gyromagnetic ratio, is the ratio of a particle's magnetic moment to its
angular momentum in (MHz/Tesla)

• B0, is the strength of the magnetic field in (Tesla)

• and γ0 = 42.58 (MHz/Tesla) which is the value for protons when exposed to a
magnetic field at 1.5 T

But, what events take place in the prior process? Well, when the system has reached
a stable state and the wobbling phenomenon has wore off, the longitudinal magneti-
zation Mz vectors representing the individual magnetic moments in the z-direction are
summarized. However, the nuclei , depending on their prior alignment, tend to align
with the magnetic field parallel or anti-parallel. The direction of the alignment resides
on which energy state is more favourable for the nuclei.

Under a steady-state condition, a slightly larger fraction aligns parallel to the Magnetic
field. This slight difference is the one actually measured and is represented by the
net magnetization vector. Due to the nature of this weak magnetization difference, the
external magnetic field must be strong enough in order to obtain a detectable signal.

13



In order to induce energy to our stable spin system, we apply an electromagnetic wave
(E/M) of the same frequency as the Larmor frequency. This is called resonance condi-
tion. We produce this E/M wave in a powerful radio transmitter and apply it on the
object to be imaged by means of an antenna coil. This process is known as excitation
of the spin system and during this process the axis is gradually tipped away from the
z-axis to the x-y plane perpendicular to the direction of the main magnetic field.

The E/M wave is generated through a radio frequency (RF) pulse in order to be strong
enough and is applied and sustained long enough, to tip the magnetization by exactly
90o. This gives us a magnetization that is now denoted by Mxy. However, whenever
a transverse magnetization rotates or precesses about the z-axis, it has the same effect
of an electrical generator and induces an alternating voltage with the same frequency
as the Larmor frequency: our MR signal. This particular signal is collected with high
sensitivity sensors and processed via a computer to generate the MR Image. The whole
procedure is graphically shown in (figure 2.2).

Figure 2.2: (a) Stable state of spin system, absence of magnetic field. (b) Production of lon-
gitudinal Mz magnetization on a magnetic field B0. (c) Applying RF pulse. (d)
From Mz longitudinal magnetization to transverse Mxy.

2.2 T1 and T2 Relaxation times

What is the process, though, to accumulate the MR signal?

Immediately after the excitation of the spins, the magnetization vector rotates to the
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xy-plane and is now transverse magnetization (Mxy) just as we described previously. It
is important to understand that the rotating transverse magnetization is what gives rise
to the MR signal in the sensor coil. However, there are two independent phenomena
that occur after excitation which affect the MR signal and force it to rapidly fade. The
reason is, that they reduce the transverse magnetization and as a result they cause a
return to the stable state present before excitation. These independent phenomena are
called spin-lattice interaction and spin-spin interaction and they cause T1 relaxation
and T2 relaxation, respectively.

• T1: Longitudinal Relaxation

As we mentioned above the transverse magnetization (Mxy) slowly decays and the
magnetization vector and the magnetic moments gradually realign with the z-axis, which
is the axis of the main magnetic field B0. In this process the transverse magnetization
slowly diminishes and while the projection of the magnetization vector onto the xy-
plane (figure 2.3) decreases, the longitudinal magnetization, Mz , and its corresponding
projection on the z axis, increase until the steady state conditions are restored [6].
Therefore, this process is known as longitudinal relaxation or T1 "recovery"

As it was stated before, during the process of excitation we have given an amount of
energy to the nuclei to rotate its magnetization vector to the x-y plane, which means
for the nuclei to undergo longitudinal relaxation it has to dissipate this excess energy to
the environment. The time taken for T1 relaxation to occur vary and is dependant on
the strength of the external magnetic field B0 and the internal motion of the molecules.
For example, biological tissues have T1 values between half to several seconds at 1.5
Tesla.

Figure 2.3: T1 Relaxation. Decay of Mxy and regrowth of Mz

• T2/T2*: Transverse Relaxation

To explain transverse relaxation, it is first necessary to explain the meaning of the
"phase". Here, phase is represented as the angular difference of a magnetic moment's
circular orbit. Think of two different and at this stage, independent nuclei A and B,
that spin around the x-y plane with the same speed. If A began spinning before B did,
then the A will be ahead of B for, let's say, 25 degrees. This means that the phase of A
relative to B is +25 degrees and vice versa the phase of B relative to B is -25 degrees.

Immediately after the excitation process, part of the spins begin to spin simultaneously,
meaning they have a phase of 0 degrees, or most commonly, they are in phase. This
state is called phase coherence.
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However, phase coherence is gradually lost, due to the fact that some spins speed up
and some others slow down during their rotational movement, a phenomenon that we
will soon explain. This, however, results in the decay of transverse magnetization Mxy ,
due to the fact that the individual magnetization vectors begin to cancel each other
instead of adding together and the resulting sum becomes smaller and smaller until it
diminishes and so does the MR signal (figure 2.4).

Simply put, transverse relaxation is the decay of transverse magnetization because the
spins go out of phase. In contrast to longitudinal relaxation, transverse relaxation does
not emit energy to the environment, instead the spins exchange this energy with each
other.

Coherence is lost in two ways:

Energy transfer between spins as a result of local changes in the magnetic field. Such
fluctuations are due to the fact that the spins are associated with small magnetic fields
that randomly interact with each other. Spins precess faster or slower according to
the magnetic field variations they experience. The overall result is a cumulative loss of
phase. This is a purely spin to spin interaction and is bound to happen within a time
constant T2 which is mostly independent of the strength of the external magnetic field
B0 or the focusing pulse we have emitted.

Time-independent inhomogeneities of the external magnetic field B0. These are intrinsic
inhomogeneities that are caused by the magnetic field generator itself and by the very
person being imaged. They contribute to de-phasing, resulting in an overall signal
decay that is even faster than described by T2. This phenomenon happens at the time
constant of T2* which is always shorter that T2. The T2 effect is mostly a product
of inhomogeneities at tissue borders , especially at air/tissue interfaces or are induced
by local magnetic fields. The loss of the MR signal due to T2* effects is called free
induction decay (FID). T2* effects can be concealed by using spin echo sequences.

Figure 2.4: T2 Relaxation. Loss of phase coherence, loss of Mxy.

T2 denotes the process of energy transfer between spins, while T2* refers to the effects
of additional field inhomogeneities contributing to de-phasing [6].

As we mentioned T1 and T2 relaxation processes are totally independent but they tend
to occur simultaneously. It is worth noting that the MR signal has lost its power in the

16



first 100-300 ms due to T2 relaxation, which is long before T1 relaxation has completely
restored the magnetization vector to the z axis.

2.3 Bloch Equations

Prior to water diffusion models it is reasonable to mention the mathematical form of the
magnetic resonance phenomenon. The motion of the magnetization vector is described
by Bloch in [7] using the equation.

dM
dt

= γ0M×B− Mxy

T2
− Mz −M0

T1
(2.1)

where γ0 is the gyromagnetic ratio, B the effective magnetic field, M0 the equilibrium
magnetization, T1 and T2 the relaxation times for the longitudinal and transverse mag-
netization, respectively.

We can write equation 2.1 after algebraic manipulations for the three spatial components
as:

Ṁx = ω0My −Mx/T2 (2.2)

Ṁy = −ω0Mx −My/T2 (2.3)

Ṁz = (M0 −Mz)/T1 (2.4)

By representing the transverse magnetization equations (2.2) and (2.3), can be expressed
in compact form as

Mxy(t) = Mx + iMy and (2.5)

Ṁxy(t) = Mxy(iω0 − 1/T2) (2.6)

Thus, after integrating and imposing the initial condition Mxy(0) = M0 we have:

Mxy(t) = M0e
iω0te−t/T2 (2.7)

Similarly, after integrating the longitudinal magnetization equation 2.4 we have:

Mz(t) = M0 + (Mz(0)−M0)e
−t/T1 (2.8)
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The solutions of Bloch equation with respect to the direction of the magnetization vector
are presented graphically in the (figure 2.5).

Figure 2.5: (a),(b) Damped sine and cosine for the imaginary and real components (Mx,My)
respectively.(c) Free induction decay signal Mxy with a time constant T2, (d) Ex-
ponential recovery of the longitudinal magnetization toward its equilibrium value
with a time constant T1.

2.4 Image Contrast

Now, we will explain, briefly, what determines the contrast of an MR image and what
we can do to manipulate it. There are three intrinsic features of a biological tissue that
affect the image contrast. The proton density, T1 time and T2 time [6].

Proton density is the sum of the excitable spins per unit volume and it determines
the maximum signal strength we can extract from the given tissue. We can choose
the appropriate signal acquisition parameters to accentuate proton density contrast and
minimize the effect of T1/T2 induced signal changes. By doing that we will take a
proton-density weighted image, or simply proton density image.

T1 time, as we explained, is the time it takes for the excited spins to recover a certain
percentage of their initial longitudinal magnetization. A safe 5×T1 time has passed
can a tissue be available for a next excitation. Images with contrast that is mainly
determined by T1 relaxation processes are called T1-weighted images (T1w).

T2 time generally represents how quickly or how much time we have before we receive
the MR signal. It is the time we have before the MR signal decays. The T2 contrast of
an MR image can be controlled and when the contrast is mainly influenced by spin-spin
interaction then we have a T2-weighted image (T2w).

It is really important to mention that these intrinsic features vary widely from tissue to
tissue. So does the image's contrast we can take from the very same tissue depending
on which of these parameters we emphasize in the MR sequence. This provides the
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basis for the exquisite soft-tissue discrimination and diagnostic potential of MR imaging.
While, on a computed tomography (CT scan) this discrimination is virtually indistinct,
MRI can distinguish them without the administration of a contrast medium.

Previously, it was mentioned that the main intrinsic features affecting the image contrast
are the proton density and T1 and T2 times. Despite that, image contrast can be
controlled by extrinsic contrast parameters, such as, Repetition time (TR) and Echo
time (TE) that we will explain briefly in the next sections. Moreover, differences between
water and fat will be analysed.

To examine the differences between fat and water, we have to proceed in molecular
level. Molecular motion consists of rotational and transitional movements. Generally,
when the molecular motion is fast, it is very difficult for a substance to release energy
to its surroundings.

Fat consists of hydrogen atoms linked to carbon that make up large molecules. This
fact results in a slow rate of molecular motion. Furthermore, fat molecules having low
inherent energy, they are able to absorb energy efficiently.

In contrast, hydrogen atoms of water linked to oxygen, resulting in small and mobile
molecules that have a high rate of molecular movement. Thus, water molecules have a
high inherent energy and they are not able to absorb energy efficiently.

The differences between tissues that contain fat or water described above, are responsible
for changes in image contrast. The reason why, arises from the different relaxation rates
in each tissue.

• Repetition Time (TR) and T1 Weighting

Figure 2.6: (a) Repetition time (TR). (b) Echo
time (TE) [1].

For the formation of a successful MR
image, tissue that is scanned must un-
dergo several excitations and the re-
sulting signals must be sampled many
times. Repetition time (TR) is the time
from the application of one RF pulse
to the application of the next (figure
2.6(a)). TR is measured in (ms) and is
crucial for the image contrast because it
affects the length of a relaxation period
after the application of one RF pulse to
the beginning of the next [1].
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Figure 2.7: Differences of water and fat in T1 [1].

Having a long TR results in more
excited spins rotating back to the
z-plane and contributing to the
regrowth of longitudinal magne-
tization, which means that the
more longitudinal magnetization
can be excited by the next pulse,
the stronger the MR signal will
be emitted. On the other hand,
choosing a short repetition time
(approximately 600 ms), gives
images where T1 effects are dom-
inant. So, tissues with a short
T1 relax quickly and hence give
a strong signal after the next pulse and appear brighter on the image, while tissues with
a long T1 receive only a little relaxation between two pulses and give less longitudi-
nal magnetization on the next consecutive pulse, giving a weaker signal, and therefore
appear darker. An example of two different tissue types (water and fat) is shown in
(figure 2.7).

Figure 2.8: Sagittal T1 weighted im-
age of spine. Intraspinal
lipoma is bright as it con-
tains fat. [1]

Choosing a fairly long repetition time, (which is
approximately over 1500 ms) the majority of tis-
sues, including those with long T1, return to equi-
librium since they have enough time to relax and
as a result they give similar signal strengths, which
means that the effect of T1 on image contrast is
minimal. With the above, we have shown that we
can control the quality of T1 weighting of an MR
image by choosing the repetition time.

The relationship between the MR signal of a tissue
and its appearance on T1-weighted images is as
follows: Tissues with a short T1 appear bright be-
cause they regain most of their longitudinal mag-
netization during the TR interval and thus pro-
duce a stronger MR signal (high signal intensity
in T1-weighted images). Tissues with a long T1
appear dark because they do not regain much of
their longitudinal magnetization during the TR in-
terval and thus produce a weaker MR signal (low
signal intensity in T1-weighted images). This de-
pendence in TR is clearly shown in (figure 2.8) in
which a lipoma in the spinal is depicted .
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• Echo Time (TE) and T2 Weighting

The echo time dictates the degree of T2 relaxation time dependence on image contrast.
Echo time, is the time between an Rf excitation pulse and the collection of the signal
(figure 2.6 (b)). The TE affects the length of the relaxation period after the end of
the RF excitation pulse and the amount of available MR signal to be collected by the
receiver coil [1].

Figure 2.9: Differences of water and fat in T2 [1].

We have to point out here, that
T2 relaxation time has the or-
der of magnitude of hundreds
milliseconds and is therefore far
shorter than T1. The choice of
TE is of high significance to the
contrast of the image. If a short
echo time is chosen, there are
only small differences between
different tissues, because T2 re-
laxation has only just began and
there has been little difference in
the time of the echo collection,
giving us an image with a low
T2 contrast.

On the other hand, if a longer
echo time is chosen, the resulting
image accentuates differences between tissues of different T2 times. Tissues that have
a short T2, lose most of their signal intensity and appear dark on the images while
tissues that have a longer T2 haven't retained their magnetization and therefore appear
brighter (figure 2.9).

Figure 2.10: CSF appears bright in a T2-
weighted image

For instance, cerebrospinal fluid (CSF) is
brighter compared with brain tissue , in T2
weighted images, due to the fact that CSF
is mostly water and water has a longer T2.
Thus, with the selection of an appropriate
echo time TE, we can manipulate the de-
gree of T2 weighting of the MR image (figure
2.10).

As a conclusion, tissues with a short T2 ap-
pear dark on T2-weighted images, while, tis-
sues with a long T2 appear bright on T2-
weighted images!
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2.5 The Diffusion of water

The main target of diffusion weighted imaging (DWI) is to give insight into the diffusion
of water molecules, a complex process in many biological and physical systems. DWI has
significant clinical applications. Specifically, it offers high sensitivity of detecting acute
ischaemic damage in the brain and supports clinical faculty in stroke management.
In this chapter basic diffusion concepts such as magnetic resonance measurement of
diffusion and anisotropic diffusion will be discussed in order to present the IVIM model.

2.5.1 Isotropic Diffusion - Basic Diffusion Concepts

The mobility of the molecules (molecular diffusion or Brownian motion) in their micro
environment in a fluid, is reflected by a characteristic self-diffusion constant D [8]. This
motion was described by Einstein in 1905 for pollen on water surface. From one hand
(Fick 1855) for the quantitatively description of the diffusion process, asserted that the
rate of flow of the diffusive substance in a particular direction would be proportional
to the concentration gradient in that direction. Fick's first law of diffusion states that
the diffusive process spontaneously drives the diffusive substance from areas of higher
concentration to areas of lower concentration and expressed as:

F = −D∂C

∂x
(2.9)

where F is the rate of transfer of the diffusing substance through the unit area of each
section of the sample, C is the concentration of the diffusing substance, x is the space
coordinate and D is the diffusion coefficient.

Fick's second law of diffusion is derived from 2.9 using a conservation of tracer equation
∂C/∂t = −∂F/∂x which states that the local rate of increase in tracer concentration
equals to the rate at which the flow decreases with distance. Thus, Fick's second law
describes the diffusion process in one dimension in terms of the temporal and spatial
partial derivatives of C:

∂C

∂t
= D

(∂2C

∂x2

)
(2.10)

By generalizing 2.10 in three spatial coordinates the global behaviour of isotropic dif-
fusion can be expressed as:

∂C

∂t
= D

(∂2C

∂x2
+

∂2C

∂y2
+

∂2C

∂z2

)
= D∇2C (2.11)

The term "isotropic" premises unrestricted molecule motion with no preferential direc-
tion for the diffusive motion.
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Instead of describing self-diffusion (random walk) process in a homogeneous medium
in terms of the concentration C, we introduce a function that describes the probability
P of finding a particle in position x at time t. For instance, we want to follow the
displacements of a molecule positioned at X = A at time t0 = 0 and want to compute the
probability of finding it at X = B at time t. Thus we want to find P (X = xB|X = xA, t)

but in our case, the self-diffusion, the probability is independent of the starting point.
Consequently, we define a vector for the relative dynamic displacement, X = (xB − xA)

to formally describe the process with P (X, t). According to Fick's second law, the
self-diffusion mechanism can be expressed as:

∂P

∂t
= D∇2P. (2.12)

Figure 2.11: Random Walk of a particle

In a time scale of few milliseconds, water
molecules are displaced between 10−8 and
10−4 m when exposed in a magnetic field.
To visualize the displacement of molecules
in a voxel we define the displacement dis-
tribution which describes the proportion
of molecules that undergo displacement
in a specific direction and distance. Most
water molecules are assumed to travel
short distances within a voxel, while, a
few of them travel farther. This fact lead
us to assume a Gaussian distribution.

P (X, t) =
1√
4πDt

e
−X2

4Dt . (2.13)

The spread of the Gaussian is characterized by the variance (σ2 = 2Dt) and the mean
square dynamic displacement for the net vector of distance ⟨X2⟩ travelled by a molecule
in time t is:

⟨X2⟩ =
∫ +∞

−∞
X2P (X, t)dX = 6Dt (2.14)

At 37oC (which is the normal body temperature) the diffusion coefficient of water is ap-
proximately D = 3·10−9mm2/sec [9]. From the other hand one can model self-diffusion
as random walk (fig 2.11) starting from point A to B with X the net displacement vector
.
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2.5.2 MR Measurement of diffusion

This section is focused on how can MRI signal be sensitized to water diffusion. In
the previous chapter we described that, MRI image is created by magnetic properties
of protons. Supposing that we have a spin, that travels along an arbitrary path r(t),
through a gradient field by the waveform, G(t), this leads to phase accumulation, ϕ [2].

ϕ(t) = −γ0
∫ t

0

−→
G(t′) · −→r (t′)dt′ (2.15)

In a medium, with a large number of molecules and consequently, spins, it is logical to
foresee there are many different magnetic moments; either positive or negative. Thus,
the net phase shift tends to zero. Generally, the directional motion of spins through a
gradient field results in a measurable phase. In contrast, a great percentage of randomly
travelling spins provides no net phase shift, but they contribute to dephasing as signal
attenuation. In addition, the degree of signal attenuation increases along with the
increment of the variance of the phase shifts distribution. So, from 2.15 we conclude to
phase shift increment, as the time interval, the gradient strength and arbitrary traveling
path are increasing. This phenomenon was formally described and proved by Torrey
in 1956 [10] to modify the Bloch equation with diffusion terms by adding the term
∇D∇(Mz −M0). The solution of the Bloch-Torrey equation then is:

S(t) = S0e
−D

∫ t

0

−→
k (t′) ·

−→
k (t′)dt′

(2.16)

where: S(t) is the diffusion signal from the MRI scanner, S0 is the signal without
diffusion gradient, D is the diffusion coefficient and k(t) relates to the time integral of
the gradient waveform which is:

−→
k (t) = γ0

∫ t

0

−→
G(t′)dt′. (2.17)

Figure 2.12: Standard pulsed field gradi-
ent waveform.

Equations 2.16 and 2.17 are written for the
general case of an arbitrary gradient waveform
G. Usually the most used sequence in practice,
is the Stejskal-Tanner pulsed field gradient se-
quence (PFG), (figure 2.12). The integral in
2.16 is refereed in bibliography as the b-value
or b-factor as introduced by Le Bihan in [11].
By applying the waveform in (figure 2.12) to

(2.17) and the integral in (2.16), we have:

b =

∫ TE

0

−→
k (t′) ·

−→
k (t′)dt′ = (γ0Gδ)2[∆− δ

3
] (2.18)
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In practice, altering the amplitude or duration of the gradient (and, thus, the b-value) in
a diffusion imaging sequence, results in a change of signal as a function of the b-value,
under the rule

S(b) = S0e
−bD. (2.19)

In figure (2.13), the signal (MR image) as a function of b-value is shown. It is clear
that, when b-value increases, leads to signal loss, unrestricted molecules (CSF) loose
MR signal faster than molecules in restrictive environment (brain parenchyma). As
mentioned previously this is result of spin dephasing.

Figure 2.13: Signal as a function of the b-value

In order to calculate the diffusion coefficient D from (2.19), we need at least a diffusion
sequence with two different b-values. This procedure is repeated for every pixel on a
Diffusion MR image. When there is no diffusion gradient (b = 0), the signal is indicated
as S(b) = S0, meaning no signal loss and no diffusion sensitivity of the acquisition. So,
in the simplest case of determining D with 2 b-values (b1, b2), we have:

S(b1) = S0e
−b1D (2.20)

and
S(b2) = S0e

−b2D. (2.21)

By taking the ratio of both sides of the previous equations and after that, the logarithm
of both sides we conclude that:

25



D =
1

(b2 − b1)
ln

[
S(b1)

S(b2)

]
. (2.22)

Due to the fact that D is dependent on the direction of diffusion and the b-value, the
physical diffusion coefficient is replaced by the apparent diffusion coefficient (ADC). On
the other hand, in clinical practice, more than two b-values are acquired for assessing in
a more accurate way the exponentially decay of the diffusion signal. This fact leads to
non-linear fitting to calculate the diffusion coefficient. In section 3.1, Non-Linear Least
Squares are presented for the calculation of ADC.

2.5.3 Anisotropic Diffusion

In the previous section, we modelled the process of diffusion of molecules as a Gaussian
(isotropic) distribution, meaning that spins have no preference in direction as they travel
through a medium or tissue in one dimension. Mobility of water molecules in brain
white matter is mostly anisotropic as water preferentially moves along white matter
fibers than across them as myelin inhibits free diffusion [12].

Diffusion Tensor Imaging is a novel technique based on diffusion theory that can repre-
sent 3D anatomical structures in the human brain, and specifically white matter tracts
[8]. It has been used for pre-operative brain MRI in order to assert integrity of tracts in
the vicinity of the tumour size as well as for other brain pathologies such as, multiple
sclerosis, dyslexia and schizophrenia.

Figure 2.14: MR scanner x, y, z co-ordinate
system. Figure taken from:
Gardner Lab. Neurosciences In-
stitute, Stanford University

The diffusion tensor (D) consists of nine
elements (see 2.23). The diagonal ele-
ments Dxx, Dyy, and Dzz define the dif-
fusion coefficients along the main system
of axons xyz of the MRI scanner. Non-
diagonal terms of (2.23) represent the off-
set of principal direction of diffusivity from
the reference frame (fig 2.14). In case
the reference frame coincides with the self-
direction of diffusion, non-diagonal terms
are equal to zero. Furthermore, for un-
charged molecules, tensor D is symmetric.
Thus, only six elements are required.

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.23)
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2.5.4 Calculation of Diffusion Tensor

The tensor basis solution to Bloch equations with diffusion terms, with respect to the
Stejskal-Tanner pulsed field gradient sequence for (DTI) is [13]:

Si = S0 e
−b gTi Dgi (2.24)

where: D is the diffusion tensor and gi = [GxiGyiGzi]
T , i = 1, ..., N are the gradient

direction pulses. For the directional sampling, usually N = 6, N = 12, and N = 42

uniformly distributed directions of measurements, are used. In order to succeed better
accuracy on the direction of molecules, we set N = 162 or N = 642 but it is time
consuming especially for the object to be imaged. So, in order to find D, from 2.24
we conclude that, the minimum images required are seven (six images along different
directions and one with no diffusion gradient).

After a series of algebraic manipulations on 2.24 we have:

−
ln

(
Si

S0

)
b

= G2
xiDxx +G2

yiDyy +G2
ziDzz + 2GxiGyiDxy + 2GxiGziDxz + 2GyiGziDyz

(2.25)

In the process of finding the elements of the tensor, we write D as a column vector
d = [DxxDyy Dzz Dxy Dxz Dyz]

T , we introduce the H matrix and the right hand side F.

H =



G2
x1 G2

y1 G2
z1 2Gx1Gy1 2Gx1Gz1 2Gy1Gz1

G2
x2 G2

y2 G2
z2 2Gx2Gy2 2Gx2Gz2 2Gy2Gz2

G2
x3 G2

y3 G2
z3 2Gx3Gy3 2Gx3Gz3 2Gy3Gz3

...
G2

xN G2
yN G2

zN 2GxNGyN 2GxNGzN 2GyNGzN


(2.26)

F = −

 ln

(
S1

S0

)
b

,

ln

(
S2

S0

)
b

, . . . ,

ln

(
SN

S0

)
b


T

(2.27)

Hence, the diffusion tensor is computed by solving the linear system,

Hd = F. (2.28)

In order to present the Diffusion Tensor, a healthy patient's axial slice of the brain
with N = 12 uniformly distributed gradient directions has been used (figure 2.15).
The images below, were obtained from an 1.5 Tesla Siemens MR scanner of University
General Hospital of Heraklion "PAGNI".

27



Figure 2.15: DTI Data: 13 diffusion weighted images: one with no diffusion gradient (b = 0)
and 12 images with uniformly distributed gradient directions with (b = 1000).

Hence, by solving the linear system 2.28 for every pixel on the image, the Diffusion
Tensor is presented in figure 2.16 . Every image, represents the corresponding element
of the tensor.
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Figure 2.16: Calculation of the diffusion tensor. On the diagonal images that represent the
diffusion through the xx, yy, and zz axons respectively, high diffusion coefficient
in xx (yellow box) is observed, which is in contrast to the case of diffusivity along
yy and zz. That happens due to the alignment of callosal fibers with the direction
of diffusivity along xx.

2.5.5 Visualization of the Diffusion Tensor

After calculating the diffusion tensor, it is possible to visualize the direction of water dif-
fusion through a medium (brain tissue). The eigenvalues (λ1, λ2, λ3) and eigenvectors
(e1, e2, e3) of the tensor D are of great interest, which describe the apparent diffusivities
and the directions along the axes of principle diffusion [14] .

The diffusion tensor can be visualized using an ellipsoid with the eigenvectors defining
the directions of the principle axes and the ellipsoidal radii defined by the eigenvalues
(figure 2.17). In the present work, considering the eigenvalues in descending order, λ1

represents the direction with the highest diffusion coefficient.
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Figure 2.17: Diffusion ellipsoids. Figure by [15]

The diffusion ellipsoids are of the form:

x2

2λ1
+

y2

2λ2
+

z2

2λ3
= 1 (2.29)

The visualization of the diffusion tensor with the diffusion ellipsoids is shown in (figure
2.18).
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Figure 2.18: Diffusion ellipsoids map. Black box: both anisotropy in diffusion in the genu of
corpus callosum and isotropy in CSF are clearly shown.

Since the interpretation of the DT is a hard and time consuming procedure, a simplifica-
tion of the data would be necessary. Hence, it is reasonable to search for other measures
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(bio-markers) that can produce information to radiologists or doctors. Other measures
that derived from DTI are: Fractional Anisotropy (FA), Mean Diffusivity (MD), Radial
Diffusivity (RD) and Volume Ratio (VR).

Firstly, for an overview of diffusion in a voxel, the most commonly used bio-marker,
Mean Diffusivity, is proposed. MD characterizes the mean-squared movements of
molecules and diffusion restrictions in tissue (2.30). Radial diffusivity is calculated
by averaging the orthogonal components of the principal eigenvector. RD is associated
with loss of myelination and cross-sectional axonal injuries (2.31). Also it witnesses
changes related to the aging process.

Fractional Anisotropy and Volume ratio are two scalars that define the diffusion aniso-
tropy. FA measures the fraction of diffusion that is anisotropic by looking at the nor-
malized variance of the eigenvalues in the tensor (2.32). FA = 0 indicates isotropic
diffusion while FA = 1 fully anisotropic. VR stands for the ratio of the ellipsoid volume
to the volume of a sphere of radius ⟨λ⟩ (2.33). As FA, V R′s range is [0, 1] but, V R = 0

stands for anisotropy while V R = 1 isotropy.

MD = ⟨λ⟩ = λ1 + λ2 + λ3

3
(2.30)

RD =
λ2 + λ3

2
(2.31)

FA =

√
3

2

√
(λ1 − ⟨λ⟩)2 + (λ2 − ⟨λ⟩)2 + (λ3 − ⟨λ⟩)2

λ2
1 + λ2

2 + λ2
3

(2.32)

V R =
λ1λ2λ3

⟨λ⟩3
(2.33)

In (figure 2.19), scalar measures of diffusion anisotropy are presented (FA, VR) as well
as measures (MD, RD) that give information about mean diffusivity and changes to
myelination.
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Figure 2.19: Fractional Anisotropy, Mean Diffusivity, Radial Diffusivity, and Volume Ratio maps

2.5.6 Intravoxel Incoherent Motion (IVIM)

Figure 2.20: Capillary network in a voxel.

The above DTI scalar measures, have been
used to characterize abnormalities and dis-
eases in the human brain. To examine wa-
ter diffusivity in other anatomical areas, the
simple ADC model (2.19) is proposed. From
this mono-exponential decay, the apparent
diffusion coefficient (ADC) could be calculated
quantitatively by linear fitting to the logarith-
mic scale of the signal intensities, using only
two b-values.

Practically, by the use of several b-values, many studies have experimentally concluded
that DWI signal cannot be well described by the mono-exponential model (2.19), es-
pecially on highly vascularized organs like the liver and the pancreas [16]. The DWI
signal on these well perfused organs, is also influenced by the tissue micro-structure,
hence the microcirculation of blood in the capillary network (figure 2.21).
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Intravoxel Incoherent Motion (IVIM) imaging method was developed for the visual-
ization of microscopic translations of water. The main idea in [17] was that the signal
in a diffusion MR image could be contaminated by the microcirculation of blood (per-
fusion) in the capillary network in a voxel. This method is capable of indicating the
contribution of perfusion to the diffusion coefficient D and permits separate evaluation
of parametric maps related to the aforementioned phenomena.

Due to the pseudo-random organization and the high quantity of capillaries (5700 per
cubic millimeter) of the capillary network in a voxel, microcirculation of blood was
considered as an incoherent motion (figure 2.20). The model that proposed for IVIM
is:

Sb

S0
= (1− f)e−bD + fe−bD∗ (2.34)

where: f is the micro-perfusion factor, f ∈ [0, 1]. It denotes the ratio of water flowing
in capillaries to the total water contained in the voxel. D is the diffusion coefficient and
D∗ is the pseudo-diffusion coefficient.

Expected values of D∗ coefficient are approximately one order of magnitude greater
than D [18]. Further analysis, of this model is presented in the next chapter.

Figure 2.21: A signal decay in semi-logarithmic scale as a function of the b-values. Circles
correspond to the semi-logarithmic transformed DWI signal intensities. The bold
solid line is the IVIM fitted curve providing D, D* and f. Light solid lines represent
D and D* decay curves respectively. The dashed line is the mono-exponential fit
providing ADC [16]
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3
Diffusion Weighted Imaging - IVIM Analysis

This section is focused on the materials and methods of the presented DWI analysis as
well as, on the technical aspects required for providing the diffusion parameters from
the IVIM model.

3.1 Mathematical Framework of IVIM Computation

The aforementioned DWI parameters (f,D,D∗) from the IVIM model in the previous
chapter, are estimated by the non-linear inverse problems theory. One of the most
preferred techniques of this theory is, the non-linear least squares. Suppose we have
data points (b1, y1), (b2, y2), ..., (bn, yn) and a given model function G(x, b) (figure 3.1).
For the parameters x = [x1, x2, ..., xm] we want to find a local minimizer x* for

F (x) =
1

2

n∑
i=1

r2i (x) =
1

2
∥ r(x) ∥2= 1

2
r(x)T r(x), (3.1)

known as objective function. Firstly we assume that there exists a x′ such that yi =
G(x′, b)+ϵi, where, {ϵi} are the errors of the measurements yi and for any x the residuals
ri : Rm → R with ri (x) = yi −G(x, b) i = 1, ...n n ≥ m.

Figure 3.1: Data points marked by (*) and model G(x, b) by full line.

• Definitions and Notation

In order to comprehend the methods of finding a minimizer for (3.1), some useful
definitions and theorems are presented. In general, the main problem is to find a global
minimizer as stated below.

Definition 1 (Global minimizer) Given F: Rm → R, find x+ = minx∈RmF (x).
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Finding a global minimizer is a very difficult procedure hence, a simplification of the
problem is to search for a local minimizer (x∗) in a neighbourhood of x with radius δ
in definition 2.

Definition 2 (Local minimizer) Given F: Rm → R, find x∗ such that F (x∗) < F (x) for
∥ x− x∗ ∥2< δ, δ > 0 .

Assuming that the objective function F is differentiable and smooth, the truncated Taylor
expansion of F (x) = Ln(h) +O(hn+1), n = 1, 2, ... around x is:

F (x+ h) = L2(h) = F (x) + hT g +
1

2
hTHh+O(∥ h ∥3) (3.2)

where g is the gradient and H is the Hessian,

g = F ′(x) =


∂F
∂x1

(x)
...

∂F
∂xm

(x)

 , H = F ′′(x) =

[
∂2F

∂xi∂xj
(x)

]
. (3.3)

For simplification, we need formulas for the derivatives of F . Supposing that r has
continuous second partial derivatives, the truncated Taylor expansion of r is:

r(x+ h) = l1(h) = r(x) + J(x)h+O(∥ h ∥2), (3.4)

with, J ∈ Rn×m to be the Jacobian matrix.

(J(x))i,j =
∂ri
∂xj

(x), i = 1, ..., n, j = 1, ...,m. (3.5)

Moreover, from 3.1 the gradient of F : Rm → R is:

F ′(x) =
∂F

∂xj
(x) =

n∑
i=1

ri(x)
∂ri
∂xj

(x) = J(x)T r(x). (3.6)

Finally, from 3.6, the element of the Hessian of F at position (j, k) is:

∂2F

∂xj∂xk
(x) =

n∑
i=1

(
∂ri
∂xj

(x)
∂ri
∂xk

(x) + ri(x)
∂2ri

∂xj∂xk
(x)

)
. (3.7)

In matrix form, one can see that, the Hessian is:

F ′′(x) = J(x)TJ(x) +
n∑

i=1

ri(x)r
′′(x). (3.8)

Usually, when the residuals are significantly smaller than the first term of the Hessian,
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the Gauss-Newton approximation of the Hessian (HGN) is used:

F ′′(x) = HGN = J(x)TJ(x). (3.9)

A necessary condition for a local minimizer, x∗, is :

g∗ = F ′(x∗) = 0. (3.10)

A point (xs) that satisfies the necessary condition is called stationary. So, a stationary
point may be a local minimizer or a local maximizer. The next theorem ensures that
xs is a local minimizer.

Theorem 1 (Sufficient condition for a local minimizer) Assume that xs is a stationary
point and F ′′(xs) is positive definite. Then, xs is a local minimizer.

Non linear optimization methods are iterative. Given a starting point (x0) methods
produce a sequence of vectors x1, x2, ... which converges to x∗ (the local minimizer).
The choice of the starting point (x0) is critical and may affect the result, specially when
the objective function has many minimizers.

To be sure that the methods are going to converge in a local minimum (x∗) and not in
a local maximum, the descending condition must be satisfied:

F (xk+1) < F (xk). (3.11)

Also, the error sequence {ek} that is produced by the iterative method, must be de-
creasing, eventually, i.e.

∥ ek+1 ∥<∥ ek ∥, k > K ∈ N. (3.12)

In every iteration, the next direction (h) that leads us to the closest minimizer x∗ must
be calculated. By taking the Taylor around x and with direction h, we have:

F (x+ αh) = F (x) + αhTF ′(x) +O(α2) (3.13)

≃ F (x) + αhTF ′(x) (3.14)

If F (x+ αh) is a decreasing function of α, then, h said to be the descent direction and
concludes to definition 3.

Definition 3 (Descent Direction) h is a descent direction for F at x if hTF ′(x) < 0 .

3.1.1 The steepest Descent method

The Steepest Descent method or gradient method arises from 3.14 and satisfies:

37



lim
α→0

F (x)− F (x+ αh)

α ∥ h ∥
= − 1

∥ h ∥
hTF ′(x) = − ∥ F ′(x) ∥ cos θ, (3.15)

where θ is the angle between h and F ′. It has been proven that the highest gain rate is
succeeded when θ = π. Thus, the steepest descent direction is given by:

hsd = −F ′(x). (3.16)

Supposing that we have a descent direction h, we want to move to a local minimum
with step αh. But we need to know how far we should go. Thus, two methods of
finding the appropriate α are presented in next sections (Line search and Trust Region
methods).

3.1.2 Line Search

Assume that we are in a point x and we want to move from x to x′ in direction h. To
find how far we should go, we study the variation of the objective function as a function
of (α).

ϕ(α) = F (x+ αh) (3.17)

Knowing that h is a descent direction we have, ϕ′(0) = hTF ′(x) < 0 and equivalently
ϕ(α) < ϕ(0). When α is very small, F (x) − F (x + αh) is small too. Thus, α must be
increased. If α is too large then ϕ(α) ≥ ϕ(0). Hence we have to decrease α for the
descent condition to be satisfied. Finally, if α is close to the minimizer we accept the
current α.

The stopping criterion for the line search at kth iterate is: |ϕ′(αk)| ≤ τ |ϕ′(0)|, where τ is a
small positive number. As an iterative process, line search, can be very computationally
expensive. So, a stricter version of the descending condition is used. For example:

ϕ(αk) ≤ ϕ(0) + γ1ϕ
′(0)α, 0 < γ1 < 1. (3.18)

This, prevents α from being too large. Moreover, another control for avoiding α be-
coming too small is:

ϕ′(αk) ≥ γ2ϕ
′(0), 0 < γ1 < γ2 < 1. (3.19)

If α satisfies both these criteria then we accept it. Otherwise, other techniques are used
[19].
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3.1.3 Trust Region Methods

Suppose that we have the truncated Taylor expansion l1(h) of r, in a neighbourhood of
x,

r(x+ h) ≃ l1(h) = r(x) + J(x)h. (3.20)

Then, by (3.1) the objective function becomes,

F (x+ h) ≃ L2(h) =
1

2
l1(h)

T l1(h) (3.21)

=
1

2
rT r + hTJT r +

1

2
hTJTJh (3.22)

= F (x) + hTJT r +
1

2
hTJTJh (3.23)

where: r = r(x) and J = J(x). The gradient and the Hessian of L are:

L′(h) = JT r + JTJh, L′′(h) = JTJ. (3.24)

In a trust region method, we suppose that L(h) is sufficiently accurate inside a ball with
radius ∆. Thus, our problem takes the form:

h = htr = min∥h∥≤∆{L(h)} (3.25)

If the descending condition (F (x + h) < F (x)) is satisfied , then, the current approxi-
mation of the minimizer becomes x = x+ h. Otherwise, due to the fact that h was too
large and should be reduced we update ∆ analogously. To handle ∆, the gain ratio the
following selection for ρ is proposed:

ρ =
F (x)− F (x+ h)

L(0)− L(h)
. (3.26)

It is the ratio between the actual and the predicted decrease in function value. A good
strategy to update ∆ is that if ρ < 1

4 we decide to use smaller steps, while ρ > 3
4 we

may need larger steps [19].

In the sequel, three other efficient methods for problem (3.1) are presented (Gauss-
Newton, Levenberg-Marquardt and Powell's Dog leg methods.)

The Gauss-Newton Method

The Gauss-Newton method is the basis of the methods that are going to be further
analysed in next sections. All these methods are based on a linear approximation of
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the objective function. So, for small ∥ h ∥ let (l1(h)) be the truncated Taylor expansion
of r around x (3.20). By the definition of F in(3.1),

F (x+ h) ≃ L2(h) = F (x) + hTJT r +
1

2
hTJTJh. (3.27)

The problem is to find the minimum of L2(h) which is much easier than (3.1). By
setting (3.24) equal to zero, the Gauss-Newton step (hgn) can be found by solving the
system:

(JTJ)hgn = −JT r. (3.28)

Moreover, (hgn) is a descent direction for F . From definition 3 we have:

hTgnF
′(x) = hTgn(J

T r) = −hgn(JTJ)hgn < 0. (3.29)

Hence, since (hgn) is a direction, the next step is computed by:

x := x+ αhgn (3.30)

and α is found by line search. Usually, in the classical Gauss-Newton method α = 1 is
used in all steps. The method with the line search can be shown to have guaranteed
convergence [19] and [20].

The Levenberg-Marquardt Method

Levenberg [21] and Marquardt [22] proposed the use of a damped version of the
Gauss-Newton method. According to (3.28) the new direction (hlm) is computed by
the adjustment on the system:

(JTJ + µI)hlm = −JT r, µ ≥ 0. (3.31)

The damping parameter µ has been proposed because,

• For µ > 0, the matrix (JTJ+µI) is positive definite, ensuring that hlm is a descent
direction.

• When µ is large then from 3.16:

hlm ≃ −
1

µ
F ′(x), (3.32)

meaning a short step in the descent direction and it is good when the current
iterate is far from the solution.
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• If µ is small then hlm ≃ hgn which is a good step in the final stages of the iteration
(x is close to x∗).

Hence, µ is responsible for the direction and the size of the step. The first choice of
µ is related to the size of the diagonal elements of the Hessian (3.9). For example,
µ0 = maxi{HGN ii}. To update µ we look at the gain ratio, ρ (3.26) . If ρ is large then,
L(hlm) behaves like F (x + hlm) and we can decrease µ so that the next step is closer
to the Gauss-Newton step. Otherwise, if ρ is small then µ should be increased and
hopefully get closer to the steepest descent direction. More details for the parameter µ
can be found in [20].

Powell's Dog Leg Method

Figure 3.2: Trust region and Dog Leg step

This trust region method, exploits the
directions of the Gauss-Newton and the
steepest descend methods. Powell pro-
posed a way of finding an approximation
to the trust region direction htr. As shown
previously, the Gauss-Newton step (hgn)
is obtained by solving the system in 3.28
and the steepest descent direction, (hsd)
is calculated from (3.16). Due to the fact
that hsd is a direction and not a step, to
see how far we should move, we look at
the linear model:

r(x+ αh) ≃ r(x) + αJ(x)h (3.33)

⇓ (3.34)

F (x+ αh) ≃ 1

2
∥ r(x) + αJ(x)h ∥2 (3.35)

= F (x) + αhTJT (x) +
1

2
α2 ∥ J(x)h ∥2 (3.36)

It is clearly that F (x+ αh) has minimum for

α = −hTJ(x)T r(x)

∥ J(x)h ∥2
=

∥ g ∥2

∥ J(x)g ∥2
, g = JT (x)r (3.37)

By calculating hgn and hsd and supposing that we are in the current point x, we define
the candidates z = αhsd and w = hgn for the next iteration. In this trust region method
of radius ∆, Powell suggested the strategy in (Algorithm 1) and the last case is shown
in (figure 3.2).
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if ∥ hgn ∥≤ ∆ then
hdl = hgn

else if ∥ αhsd ∥≥ ∆ then
hdl = (∆/ ∥ hsd ∥)hsd

else
hdl = αhsd + β(hgn − αhsd)

with β chosen so that ∥ hdl ∥= ∆

end
Algorithm 1: Powell's Dog Leg strategy

In order to find β so that ∥ hdl ∥= ∆ and with y = zT (w − z), we define the second
degree polynomial p(β) :

p(β) =∥ z + β(w − z) ∥2 −∆2 =∥ w − z ∥2 β2 + 2yβ+ ∥ z ∥2 −∆2 (3.38)

In the interval [−∞, 0] exists at least one root because when β → −∞ then p(β) → ∞
and p(0) = ∥ z ∥2 −∆2 < 0. Furthermore in [0, 1] exists another root because p(1) =

∥ hgn ∥2 −∆2 > 0. Due to the fact that the degree of the polynomial is two, we conclude
that it has exactly two roots and we need the positive one, which can be calculated with
basic algebra.

k ← 0; x← x0; ∆← ∆0; g ← J(x)r(x);

stop←∥ r(x) ∥∞≤ ϵ2 or ∥ g(x) ∥∞≤ ϵ1

while not stop and k < kmax do
k ← k + 1; Obtain α from (3.37)
hsd ← −αg; Solve J(x)hgn = −r(x)
Obtain hdl from (algorithm 1)
if ∥ hdl ∥≤ ϵ2(∥ x ∥ +ϵ2) then

stop← true

else
xnew ← x+ hdl

ρ = F (x)−F (xnew)
L(0)−L(hdl)

if ρ > 0 then
x← xnew; g ← J(x)r(x)

stop←∥ r(x) ∥∞≤ ϵ2 or ∥ g(x) ∥∞≤ ϵ1
if ρ > 0.75 then

∆← max{∆, 3∗ ∥ hdl ∥}
else if ρ < 0.25 then

∆← ∆/2; stop← ∆ ≤ ϵ1(∥ x ∥ +ϵ1)

end
end

Algorithm 2: Powell's Dog Leg Method

Again, Powell's method as a trust region method is controlled by the gain ratio ρ at
(3.26). In the previous method, (L-M) we used the gain ratio to control the damping
parameter µ. In Powell's method we use ρ to control the radius ∆ of the trust region.
Generally, if ρ is large then the linear approximation of the objective function is good.
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In this case, we can increase ∆ and make larger steps that behave like Gauss-Newton
direction. In contrast, when ρ is small, we reduce the radius ∆ and making smaller
steps that behave like the steepest descent method. Typical ρ threshold values can be
found in ([19], [20], [23]).

With ϵ1, ϵ2 sufficiently small, a starting point x0, an initial trust region radius ∆0 and
a control kmax for the iterations, a pseudo-algorithm of Powell's Dog leg Method is
presented above in (algorithm 2).

Trust region algorithms have as a stopping criterion, F ′(x∗) = g(x∗) = 0. Equivalently,
for ϵ > 0 and small, the stopping criterion is ∥ F ′(x) ∥∞≤ ϵ.

3.1.4 Constrained Optimization

In the previous section, methods for the non-linear least squares problem were analysed
in order to optimize the given parameters. However, in practice many parameters have
natural bounds that limit their values. In the current section, the adjustment of a trust
region method for use on bound-constrained problems will be discussed [24]. The
dominant trust region method that will be adjusted, with the Active Set strategy in [25],
is Powell's Dog Leg method. For that purpose, some preliminary tools are needed.

• Preliminaries

Given the lower (l) and upper (u) bounds, with l, u ∈ Rm, the projection of x ∈ Rm

onto the feasible set X is:

PX(x) = min
v∈X
∥ v − x ∥= max{min{x, u}, l} (3.39)

The constrained set X is defined by:

X = {x ∈ Rm|li ≤ xi ≤ ui, i = 1, ...,m} (3.40)

A set A for a vector x is called active and is given by:

A(x) = {i|xi = li or xi = ui} (3.41)

The inactive set, I(x), is the complementary set of A(x). Thus for the index i ∈ I(x),
xi are the inactive variables. In analogy with the theory of the non-linear least squares,
the gradient of a vector must be defined. Therefore, in the constrained settings, the
projected gradient of a function r(x) at x ∈ X , is defined by:

r′(x) =

{
∂r(x)
∂xi

if i ∈ I(x) or (i ∈ A(x) and ∂r(x)
∂xi

< 0)

0 otherwise
(3.42)

Additionally, the reduced Hessian (HR
i,j) cannot be passed over.
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HR
i,j =

{
∂2r(x)
∂xi∂xj

if i ∈ I(x) or j ∈ I(x)
δij otherwise

(3.43)

3.1.5 The Modified Dog Leg Algorithm (MDL)

In order to make the Dog Leg algorithm more robust we introduce the Active Set
strategy. That is, the linear model L1(h) of the objective function, the term JTJ must
be replaced with HR

i,j = DI(xk)J
TJDI(xk) +DA(xk).

Where, DI is the diagonal matrix with,

[DI(x)]jj

{
1, j ∈ I(x)
0, j ∈ A(x)

and DA(x) = I −DI(x) (3.44)

As a further improvement, we replace the gradient of r in (3.37) with the constrained
version (3.42). Finally, at kth iteration, if xk is outside of the constraints after the k− th

Dog-Leg solution, we project the new step xk onto the constrained set X as:

xk = PX (xk + h)− h (3.45)

In the sequel, examples for the applications of the (MDL) algorithm for the estimation
of the IVIM parameters are shown.

3.2 Results - Limitations

3.2.1 Data Description

To begin with, for the needs of our study, two middle-aged patients (P1 and P2) with no
organ relevant pathology were selected. For each patient, an expert radiologist selected
regions of interest (ROIS) on well perfused pancreatic and liver tissues, avoiding areas of
severe contamination of motion artifacts. Diffusion weighted images are obtained from
a 1.5 Tesla Siemens MR scanner with b-values of [ 0 50 100 150 200 500 1000 1500
2000 3000 ]. The exponentially decaying signal intensities of the diffusion weighted
images as a function of the b-values for each patient and for each anatomical area, are
shown in the following figures. ROIS are marked with red color.
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Figure 3.3: Selected ROIS for patient P1

Figure 3.4: Selected ROIS for patient P2
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3.2.2 Stating the optimization problem

The main goal of the DWI analysis and specifically of the studied IVIM model (section
2.5.6), is to produce parametric maps (bio-markers) of the examined area of an organ
that highlight water diffusivity and micro-perfusion activity. These maps are mainly
calculated from the non-linear least squares theory as it is described in section 3.1.

Technically speaking, for each pixel in a ROI of a specific anatomical area the main goal
is to determine the values (D,D∗, f) from the IVIM model as given by (2.34). Non-
linear least squares are applied to the exponentially decaying signal intensity curve of
each pixel. As defined by the IVIM model, the decaying curve is fitted to the DWI data
and the IVIM parameters are calculated.

As can be seen in figure 3.5, for each DW-image in respect to its b-value, a point inside
a ROI is selected and an indicative exponentially decaying curve of a pixel in the ROI
as a function of the b-value is depicted in figure 3.6. (Signal intensities are presented
with (∗) )

Figure 3.5: Signal intensities for a pixel from multiple b-values inside a ROI

Figure 3.6: Signal intensities for a pixel in b-value space

The main aim of this process is to fit the DWI data (bi, yi) i = 1, ..., 10 to the model
function G. To be more comprehensive, the model function according to the IVIM
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theory is given by:

G(x, b) = S0((1− x1)e
−bx2 + x1e

−bx3)− Sb (3.46)

For each pixel in the ROI, S0 stands for the the signal intensity with no diffusion gradient
(b − value = 0). The vector x = [x1, x2, x3] = [f,D,D∗] of (2.34) and is calculated via
the optimization procedure of the non-linear least squares. Thus, the objective function
F to minimize is:

F (x) =
1

2

n∑
i=1

r2i (x) with ri (x) = yi −G(x, b), i = 1, ..., 10 (3.47)

In bibliography, the estimated IVIM parameters lie on the following ranges: the perfu-
sion fraction f ∈ [0, 1], the diffusion coefficient D ∈ [0.2, 3] × 10−3 [9] and the pseudo-
diffusion coefficient D∗ ≃ 10 ×D [18]. This fact led us to use the modified version of
Dog-Leg algorithm presented in section 3.1.5.

By using the constrained version of the Dog-Leg algorithm, for a random pixel inside
the ROI, with initial guess x0 = [0.1, 10−3, 30 × 10−3], tolerance ϵ = 10−9, kmax = 100

iterations, the lower l = [0.01, 0.2×10−3, 10×10−3] and the upper u = [0.9, 4×10−3, 300×
10−3] bounds, algorithm converged to: x = [0.475, 1.18 × 10−3, 2.96 × 10−2] a clinically
relevant result. The fitted model function can be seen in (figure 3.7 ).

Figure 3.7: Fitted data on the objective function

The above fitting procedure is repeated for every pixel inside the selected ROI. Before
presenting the results for each anatomical area and for each patient, a metric for the
validity of our results is needed.

In statistics, the parameter R-squared (R2) is commonly used as a measure of similarity
between the data and the model function G. R2 ≡ 1− SSres

SStot
where: SSres is the sum

of squares of residuals, also called the residual sum of squares SSres =
∑

i(yi − Gi)
2

and SStot the total sum of squares (proportional to the variance of the data), SStot =∑
i(yi − ȳ)2 where ȳ is the mean of the observed data: ȳ = 1

n

∑n
i=1 yi. (R2) ∈ [0, 1]
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and 1 stands for perfect similarity, while 0 for dissimilarity. This measure is suitable
for models that have only one variable that needs optimization. In this work, three
variables needed to be optimized and a proposed measure for similarity is the adjusted
R-squared (R

2
) [26]. In analogy with R-squared, the adjusted R-squared takes values

from -1 to 1 where 1 is the indicator of perfect similarity. R2
= 1− (1−R2) n−1

n−p−1 where
p is the total number of the optimized variables in the model function, and n is the
sample size.

3.2.3 Limitations

This sections's purpose is to present the results (when the IVIM model is applied to the
liver and the pancreas) of using the non-linear least squares.

To begin with, the modified Dog Leg algorithm with initial guess x0 = [0.1, 10−3, 30 ×
10−3], lower l = [0.01, 0.2 × 10−3, 10 × 10−3] and upper u = [0.9, 4 × 10−3, 300 × 10−3]

bounds, is used to depict the IVIM parameters. First, f,D,D∗ and R
2 maps are pre-

sented for patient's P1 liver (figure 3.8 and pancreas 3.9). After that, the same maps
are presented for patient's P2 liver and pancreas in figures 3.10 and 3.11 respectively.

Also, for every pixel in the selected ROI after each minimization, the adjusted-R-square
is calculated. Hence, an (R

2
) map is produced to describe how accurately the model

function is fitted to the data. Furthermore for every map, the histogram of each pa-
rameter is calculated and shown in the following figures.
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Figure 3.8: Patient: P1, liver Maps and histogram of values for each map
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Figure 3.9: Patient: P1, Pancreas Maps and histogram of values for each map
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Figure 3.10: Patient: P2, liver Maps and histogram of values for each map
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Figure 3.11: Patient: P2, Pancreas Maps and histogram of values for each map

Previously, the derived from the IVIM model parameters, f , D, D∗ and (R
2
) maps

have been presented. The (R
2
) was big enough in every case, ensuring that the fitting

of the DWI data was accurate. From the statistical point of view the fitting process
seemed to have worked properly and accurately. In practice, a duo tone in all D∗ maps
has been observed. In every D∗ map, a great percentage of the parameter was on the
initial upper bound (0.3) (figure 3.12). The reason why that happens is, because being
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in exponential form and being one order of magnitude bigger than D, eD∗ is affected
significantly. Thus, changes in D∗ take us out of bounds and from the active sets
strategy (3.45) the projection of the last step solution, onto the constrained set (3.40)
take us to the nearest bound.

Figure 3.12: The problem with D* parameter
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4
Proposed Method

Non-linear least squares, as an iterative process, are highly dependant on the initial
starting point. By altering the initial point, the algorithm may take us to different result.
Thus, reliability is not succeeded. Data fitting is a complex procedure, especially when
more than one variable need to be optimized. The more the optimization parameters, the
most local minima and maxima, thus the decision of which solution is accepted, becomes
more difficult. In order to control the result, constrained optimization techniques are
used with strict constraints. If the result is out of the preferred bounds then the final
result is projected to the nearest bound.

In order to simplify the objective function, many published research works, propose
partial fitting [27], [28]: the diffusion coefficient (D) is obtained after regression to the
simple ADC model 2.19. After that, with D known, the IVIM model is fitted to data
with unknown parameters only D∗ and f .

To resolve this problem, an automated way of finding suitable initial guesses for our
fitting algorithm is proposed. Hence, for every pixel in the selected ROI, the optimization
is performed by using three variables f,D and D∗. In the following paragraphs, the
way of finding these initial guesses will be analysed.

Figure 4.1: Purple dots represent the MR signal. Blue line stands for the mono-exponential
diffusion signal and red line for the pseudo-diffusion signal. Green line is the
critical b-value

First of all, it is known that for b-values greater than 200 sec/mm2, the micro-perfusion
effect is eliminated [28]. Therefore, this critical value will be referred as b-threshold.
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Thus, the contributed to the IVIM micro-perfusion effect signal
SbD∗

Sb0
= fe−bD∗ fades out

quickly before the b-threshold value. Furthermore, the primal signal Sb becomes equal
to the mono- exponential signal of diffusion SbD

Sb0
= (1 − f)e−bD after the b-threshold

value. The signals above are presented in (figure 4.1 ).

Having only the signal from the MR scanner Sb, the procedure of calculating the initial
guesses before the fitting algorithm is described below.

Calculation of initial D (D0)

For b-values bi > b-threshold, the mono-exponential diffusion model is used to deter-
mine D, taking into account all possible combinations {i, j} of b-values concluding to
the median of D.

D =
1

(bi − bj)
ln

(
Sbj
Sbi

)
(4.1)

Calculation of initial f (f0)

For the combinations of bi previously described, is assumed that the micro-perfusion
effect is eliminated, thus Sb = SbD. So, with known D, f is a result of :

Sb

Sb0
= (1− f)e−bD (4.2)

Calculation of initial D∗ (D∗
0)

Now we have D and f known. For b-values bi < b-threshold the micro-perfusion effect
is present. In order to calculate D∗ we simulate SbD∗ as: SbiD∗ = Sbi −SbiD. Finally D∗

is calculated from:

SibD∗

Sb0
= fe−biD

∗
i for all i (4.3)

and by taking the median of D∗ we conclude to the final initial value from the IVIM
model.

Finally, by this initialization we have, [ initial_f, initial_D, initial_D∗ ]. In order to fit the
IVIM function to the data with the constrained version of Dog-Leg algorithm, the lower
and upper bounds are needed. To define the bounds, we reasonably set the lower bound
l to z percent lower than the initial _values ( l = initial_values - z % initial_values ) and
the upper bound u to be z percent higher than the initial_values ( u = initial_values +
z % initial_values ) .

Thus, a self adjusted initialization as a pre-phase of the fitting algorithm have been
proposed. In the next chapter, the comparisons between results obtained by the pro-
posed method with the self adjusted initialization and those of the standard method,
for the estimation of the IVIM parameters is presented.

55



4.1 Results

With our initial_values, b-threshold = 200 and z = 30, the derived from the IVIM
model maps for patient's P1 liver and pancreas are shown in (figures 4.2 and 4.3)
respectively. Moreover the same maps are shown for patient's P2 liver (figure 4.4) and
pancreas (figure 4.5).

Figure 4.2: Patient: P1, liver Maps and histogram of values for each map
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Figure 4.3: Patient: P1, Pancreas Maps and histogram of values for each map
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Figure 4.4: Patient: P2, liver Maps and histogram of values for each map

58



Figure 4.5: Patient: P2, Pancreas Maps and histogram of values for each map
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4.2 Comparison-Discussion

To sum up, data fitting is a complex procedure, especially when more than one variables
need to be optimized. The more the optimization parameters, the most local minima
and maxima, thus the decision of which solution is accepted, becomes more difficult.
In this work, the results after fitting were clinically irrelevant, since the D∗ parameter
was in the upper bound in a great percentage.

To resolve this problem, suitable initial guesses and personalized bounds, for our fitting
algorithm, were built according to the IVIM theory. Thus, the optimization is succeeded
by the use of three variables (f , D and D∗). The IVIM parametric maps were presented
as well as , the histogram of the values of each parameter. For each parameter, the
histogram tends to take the shape of the Gaussian distribution. Our similarity measure
adjusted R-squared (R

2
) has indicated that the fitting was accurate with values greater

than 0.91 approximately. Hence, the problem with the upper bound is overtaken by
our initialization.

A comparison of the D∗ maps before and after the personalized bounds is shown in
(figure 4.6) for patient P1 and in (figure 4.7) for patient P2.

Figure 4.6: Comparison between D* values from two different methods of patient: P1.
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Figure 4.7: Comparison between D* values from two different methods of patient: P2.
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5
Conclusion

In this master thesis, the basic physics behind MRI is introduced and a thorough study
of the diffusion analysis is given in order to depict parametric maps through the the
DWI. These maps, give quantitative information about the tissue water diffusivity, as-
sisting doctors and radiologists in giving clinical answers about several pathologies to
anatomical areas of the human body.

Intravoxel Incoherent Motion (IVIM) model and its provided parametric maps, produce
information about water diffusivity and tissue vascularity in organs such as the liver and
the pancreas. The dominant tool for the construction of the maps, is non-linear least
squares. The result of the non-linear least squares, as an iterative process, is unreliable
because the method is highly dependant on the initial starting point.

However, a mathematical framework as a pre-processing phase of the fitting process
has been developed. After comparison between the standard fitting procedure and
the self adjusted initialization method, more accurate and clinically accepted quantita-
tive parametric maps for (f,D and D∗) have been obtained with the proposed method
introduced in this thesis.

5.1 Future Work

To examine how reliable the proposed method is, further analysis on altering the z
percentage of initial values that affect the bounds as proposed in chapter 4 must be
done. Furthermore, the optimal selection of the critical b-threshold value must be
further studied. Also, a statistical analysis of the proposed method to a great number
of data, could ensure the reliability of the method.

From another perspective, with the advances in the MR hardware technology, it is
possible to acquire higher b-values (greater than 1000 s/mm2) and thus it is possible to
observe deviation from the Gaussian approximation of the diffusion process (kurtosis
phenomenon). More complex models are necessary in order to optimize fitting when
MR acquisition includes higher b-values. In that case, equations will be adjusted to
account for both micro-circulation of blood in the capillary network and kurtosis. The
proposed model for IVIM-kurtosis would demand accurate fitting of four parameters
rather than three in the present study. Thus, a similar approach as in the IVIM model
will be considered to the IVIM-kurtosis model.
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