
ARTEMISONOS: SDN-based Real-Time

Detection and Automatic Mitigation of

BGP Prefix Hijacking

Dimitrios Mavrommatis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Assistant Prof. Xenofontas Dimitropoulos

This work has been performed at the University of Crete, School of Sciences and
Engineering, Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

University of Crete
Computer Science Department

ARTEMISONOS: SDN-based Real-Time Detection and
Automatic Mitigation of BGP Prefix Hijacking

Thesis submitted by
Dimitrios Mavrommatis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Dimitrios Mavrommatis

Committee approvals:
Xenofontas Dimitropoulos
Assistant Professor, Thesis Supervisor

Maria Papadopouli
Professor, Committee Member

Sotiris Ioannidis
Research Director, Committee Member

Departmental approval:
Antonios Argyros
Professor, Director of Graduate Studies

Heraklion, June 2018

ARTEMISONOS: SDN-based Real-Time Detection
and Automatic Mitigation of BGP Prefix

Hijacking

Abstract

Prefix hijacking is a persistent and serious threat for the Internet’s routing
system, having a technical and financial impact on a global scale. On the
one hand, the research community has developed several sophisticated prefix
hijacking detection techniques, which nevertheless lack wide adoption. On
the other hand, network operators usually follow simple, tested practices,
albeit with their own limitations (e.g., slow mitigation speed).

In the current work, we present a Software Defined Networking (SDN)
application which is built upon the principles of the prototype ARTEMIS,
such as self-monitoring, and utilizes ONOS, a carrier-grade SDN Operating
System. The application is called ARTEMISONOS; it uses modern, publicly
available streaming services to monitor the BGP control plane in real-time,
and accurately detects different types of hijacks. Moreover, it reacts auto-
matically with a configurable mitigation countermeasure.

ARTEMISONOS is an official application of ONOS, and leverages sev-
eral advantages of SDN. In particular, it provides the following features.
ARTEMISONOS is developed as a modular application on top of the OSGi
framework, containing a monitoring, a detection and a mitigation module. It
achieves high availability and scalability through the distributed architecture
of the network control plane, and is agnostic to the network infrastructure
(BGP speakers, data-plane devices, etc) that it operates on, allowing for easy
deployment and reduced operational complexity. Although ARTEMISONOS

is an SDN application, it is fully compatible with BGP, and is thus ready
to be used in operational environments.

We evaluate our work by implementing a framework that emulates pre-
fix hijacks. We show that ARTEMISONOS detects the hijack and starts
the mitigation process within milliseconds. On the contrary, mitigation is
achieved in seconds; the time required for BGP to fully converge. Despite
ARTEMISONOS being –in principle– a reactive application, in some cases it
is faster than the propagation of the actual hijack event, protecting some
networks (the ones “close” to the victim) almost proactively.

ARTEMISONOS: Εφαρμογή SDN για ανίχνευση
και αυτόματη αντιμετώπιση επιθέσεων BGP

Prefix Hijacking σε πραγματικό χρόνο

Περίληψη

Το BGP Prefix Hijacking είναι μια συνεχής απειλή για το σύστημα δρομο-
λόγησης του Διαδικτύου, έχοντας σημαντικές τεχνολογικές και οικονομικές

επιπτώσεις παγκοσμίως. Η ερευνητική κοινότητα έχει απαντήσει με εξειδικευ-

μένες τεχνικές ανίχνευσης και αντιμετώπισης, οι οποίες δεν έχουν τύχει ευρείας

αποδοχής. Αντιθέτως, οι μηχανικοί δικτύων συνήθως ακολουθούν απλές, δο-

κιμασμένες πρακτικές, που όμως έχουν περιορισμούς (π.χ. ταχύτητα).

Σε αυτή την εργασία, δημιουργούμε μια SDN εφαρμογή που βασίζεται
στο πρωτότυπο ARTEMIS και αξιοποιεί το ONOS, ένα δικτυακό λειτουργι-
κό σύστημα τεχνολογικής αιχμής. Η εφαρμογή ονομάζεται ARTEMISONOS

και χρησιμοποιεί σύγχρονες, κοινώς διαθέσιμες υπηρεσίες BGP streaming και
ανιχνεύει με ακρίβεια διαφορετικούς τύπους hijack. Επιπλέον, αντιδρά αυτόμα-
τα με τα κατάλληλα αντίμετρα.

Το ARTEMISONOS είναι μια επίσημη εφαρμογή του ONOS και αξιοποιεί
όλα τα οφέλη που προσφέρουν τα δίκτυα SDN. Συγκεκριμένα, τοARTEMISONOS

είναι υλοποιημένο ως αρθρωτή εφαρμογή πάνω στο OSGi framework, και χω-
ρίζεται σε ξεχωριστά modules για την ανίχνευση και την επίλυση των επιθέσε-
ων. Επιτυγχάνει υψηλή διαθεσιμότητα και κλιμάκωση μέσω της κατανεμημένης

αρχιτεκτονικής του επιπέδου ελέγχου του δικτύου. Επίσης, λειτουργεί ανεξαρ-

τήτως την διαδικτυακής του υποδομής (π.χ. συσκευές δικτύωσης), επιτρέπο-

ντας να έχει εύκολη ανάπτυξη αλλά και μειωμένη πολυπλοκότητα. Επιπλέον, αν

και η εφαρμογή είναι βασισμένη σε SDN, είναι συμβατή με το BGP, συνεπώς
έτοιμη να χρησιμοποιηθεί σε επιχειρησιακό επίπεδο.

Αξιολογούμε την εργασία μας υλοποιώντας μια πλατφόρμα που εξομοιώνει

τις επιθέσεις BGP Prefix Hijacking. Το ARTEMISONOS ανιχνεύει την ε-

πίθεση και εκκινεί την διαδικασία αντιμετώπισης εντός μερικών χιλιοστών του

δευτερολέπτου. Αντιθέτως, η πλήρης αντιμετώπιση της επίθεσης επιτυγχάνεται

σε δευτερόλεπτα, το χρόνο που απαιτείται από το BGP για να συγκλίνει. Πα-
ρόλο που το ARTEMISONOS είναι μια εφαρμογή που αντιδρά μετά τη εκκίνηση

της επίθεσης, η αντιμετώπιση της σε ορισμένες περιπτώσεις είναι ταχύτερη από

τη διάδοση της, προστατεύοντας ορισμένα δίκτυα σχεδόν προληπτικά.

Acknowledgements

I would like to take this opportunity to thank the following people for
help and support:

• My supervisor Professor Xenofontas Dimitropoulos for letting me be
part of his team, INSPIRE group, and also participate as a teaching
assistant in his courses that helped me a lot to develop as an individual.

• The members of my dissertation committee, Professors Maria Pa-
padopouli and Sotiris Ioannidis.

• The group members Dr. Vasileios Kotronis and Lefteris Manassakis
for the continuous support and contributions on my work but also my
other colleagues like Michalis, Alex, Manos and Petros for the helpful
advices.

• The Institute of Computer Science (FORTH-ICS) and Telecommuni-
cations and Networks Laboratory which provided the means to carry
on with my work.

• Last, but definitely not least, I would like to devote this work to all
my family for their support and belief during these years.

The project leading to this application has received funding from the EU
Research Council Grant Agreement no. 338402

Contents

Table of Contents i

List of Tables iii

List of Figures v

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

2 Background 5

2.1 Internet Routing . 5

2.1.1 BGP . 6

2.1.1.1 BGP Selection Algorithm 6

2.1.1.2 AS Relationships 7

2.1.1.3 BGP Message Types 8

2.1.1.4 Prefix Hijacking 9

2.2 Control Plane Monitoring . 11

2.3 Software Defined Networking 12

2.3.1 Ethernet Switching . 12

2.3.2 Network Abstraction with SDN and Applications . . . 14

2.3.3 OpenFlow . 16

2.3.4 Open vSwitch . 19

2.3.5 The SDN Controller 20

2.3.5.1 Open Networking Operating System 20

2.4 Quagga . 24

2.5 Network Emulation . 24

2.5.1 Graphical Network Simulator 3 25

2.5.2 Docker . 25

2.5.3 Mininet . 26

3 Related Work 29

3.1 Detection of BGP Hijacks . 29

3.2 Mitigation of BGP Hijacks . 31

i

3.3 SDN on Internet Routing . 31

4 ARTEMIS over SDN 33

4.1 Methodology . 33

4.1.1 Open Networking Operating System (ONOS) 33

4.1.1.1 SDN-IP and Reactive-Routing 34

4.1.2 ARTEMIS’sONOS Services 35

4.1.2.1 Monitoring 35

4.1.2.2 Detection . 35

4.1.2.3 Mitigation 36

4.2 Implementation . 37

4.2.1 Open Networking Operating System (ONOS) 37

4.2.1.1 SDN-IP and Reactive-Routing 37

4.2.2 ARTEMISONOS’s Services 38

4.2.2.1 Monitoring 38

4.2.2.2 Detection . 40

4.2.2.3 Mitigation 40

5 Evaluation Framework 43

5.1 Overview . 43

5.2 De-aggregation Scenario . 46

5.2.1 Experiment Setup . 46

5.2.2 Results . 49

5.3 Outsourcing Mitigation Scenario 51

5.3.1 Experiment Setup . 52

5.3.2 Results . 53

6 Conclusions and Future Work 55

6.1 Conclusions . 55

6.2 Future Work . 55

6.2.1 AS Graph Discovery 56

6.2.2 Dynamic Router Configuration 56

6.2.3 PEERING Testbed . 56

A Network Configurations 57

A.1 ARTEMISONOS Configuration 57

A.2 Reactive-Routing Configuration 59

A.3 SDN-IP Configuration . 60

A.4 ExaBGP control-plane monitor 61

B ONF Internship 63

B.1 M-CORD . 63

B.1.1 eXtensible Radio Access Networks (xRAN) 63

B.1.2 ONOS in-between Control and User plane of vEPC . . 63

ii

B.2 ONOS . 64
B.2.1 ISSU . 64
B.2.2 Other Bugs & Futures 64

Bibliography 65

iii

iv

List of Tables

2.1 BGP message OPEN fields . 8
2.2 BGP message UPDATE fields 8
2.3 BGP message Notification fields 9
2.4 Flow Entry Match Fields . 18
2.5 Flow Entry Actions . 19

5.1 Packet delay difference when going through a MOAS tunnel. . . . 54

v

vi

List of Figures

2.1 Internet Topology with 4 ASes 6
2.2 Subprefix hijack . 10
2.3 Comparison between conventional networks and SDN [72] 14
2.4 SDN Architecture [25] . 15
2.5 OpenFlow architecture [72] . 18
2.6 Forwarding plane of an OpenFlow Switch [71] 20
2.7 ONOS Architecture [26] . 22
2.8 SDN-IP Architecture . 23
2.9 Container vs Virtual Machines [9] 26

4.1 SDN-IP and Reactive Routing initialization 34
4.2 Services lifecycle . 37
4.3 MOAS handshake . 41
4.4 Traffic after MOAS mitigation approach 42

5.1 GNS3 Demo Topology . 46
5.2 Abstracted demo topology of 4 ASes 47
5.3 Hijacker announces illegitimate sub-prefix 48
5.4 Successful mitigation through de-aggregation 49
5.5 Bar plot of all BGP hijacking stages 50
5.6 Stacked plot of all BGP hijacking stages 51
5.7 Zoomed-in Figure 5.3 to show ARTEMISONOS’s time 51
5.8 MOAS Helper Demo Topology 52

vii

viii

Chapter 1

Introduction

1.1 Motivation

The Border Gateway Protocol (BGP) [61] governs inter-domain routing on
the level of Autonomous Systems (ASes), and enables approx. 60k ASes
to exchange routing information and follow inter-domain paths according
to their desired policies [8]. Due to its distributed architecture and lack of
security and authorization, BGP has proven very hard to debug and pro-
tect; e.g., control-plane mechanisms can be exploited by malicious users to
“hijack” traffic destined to a legitimate AS and consequently intercept it,
blackhole it or otherwise manipulate it. Such attacks can last for multi-
ple hours or even days, sometimes without the affected AS even noticing,
especially in cases of Man-in-the-Middle (MitM) incidents.

In this thesis we focus on BGP prefix hijacking which is the act of ma-
nipulating BGP via the announcement of prefixes that do not belong to the
hijacker. By broadcasting fraudulent prefix announcements, the hijacker
poisons the Routing Information Base (RIB) of its peers, which in turn
spread the (fake) news all over the Internet. Sometimes this incident may
be due to simple misconfigurations (e.g., the infamous “route leaks” [28, 7]).
The usual result is a division of the Internet in two AS-level sets: one that
routes traffic to the prefix through the hijacker, and the other routing as
expected through the legitimate AS. The larger the hijacked (“polluted”)
set, the greater the impact.

Several methodologies have been proposed for detecting and mitigating
prefix hijacking incidents [44, 45, 48, 50]. However, none of them are con-
sidered production-ready or easily applicable to the current structure and
operational practices of an ISP.

In this work, we build upon the methodology and early encouraging
results of legacy ARTEMIS [33], which proposed a systematic approach
for detecting and mitigating prefix hijacking in real-time, starting with an
automatic prefix de-aggregation counter-measure. The main idea behind

1

2 CHAPTER 1. INTRODUCTION

ARTEMIS is to provide a self-operated application that detects and miti-
gates BGP prefix hijack attacks without the need to share internal network
information to other third party companies. The application has three ser-
vices that follow a modular design pattern. These services can run inde-
pendently and be extended to support any additional need of the network
operator. They are: (i) a monitoring service, that is responsible for receiving
control-plane information, (ii) a detection service, that can identify hijacks
given the control-plane information and lastly (iii) a mitigation service, that
can connect to any BGP network device on the network and mitigate the
attack.

In fact, we implement and refine ARTEMIS concepts on top of ONOS [19];
a popular, production-grade network operating system (cf. Section 2.3.5.1)
that follows the SDN principles. We chose ONOS because it is a globally-
contributed open-source project that offers applications and abstracted in-
terfaces, such as SDN-IP or Reactive-Routing, that were useful and were
eventually employed in our implementation. We describe this implementa-
tion as a dynamic application in Section 4.

We next evaluate the application using multiple virtualized network em-
ulation environments, generated with Mininet [15] and GNS3 [12] (cf. Sec-
tion 5) automation scripts that we implemented. We show that our applica-
tion is highly scalable, easy-to-deploy (and configure), and provides all the
benefits of the systematic approach of legacy ARTEMIS while remaining
portable and adjustable to the requirements of the ISP operator.

1.2 Contributions

We implemented an open-source SDN application, called ARTEMISONOS;
this application detects and mitigates BGP hijacks inside an SDN-enabled
AS in a matter of milliseconds. This application was accepted by the ONOS
technical steering team and is now bundled and deployed with ONOS as a
default application. Also, this work was presented during the ONOS Build
2017 conference in Seoul, Korea. We also created a wiki page that explains
this application [3] and a corresponding demo [2].

Our second contribution is an open-source ExaBGP control-plane mon-
itor which is easily deployed with Docker. It is a light-weight BGP speaker
that can connect with iBGP to any other BGP router within the oper-
ator’s network and provide a Northbound Interface that will forward the
control plane information through the data plane to a set of subscribers.
This control-plane monitor was used by ARTEMISONOS in our evaluation
framework to learn about observed BGP updates in an emulated topology.

Our third contribution is an automated AS topology generator for GNS3.
In this generator you can specify if an AS is SDN-enabled or not; it will
then create the topology based on the links and AS relationships the user is

1.2. CONTRIBUTIONS 3

providing. It can be used by other researchers to create topologies quickly,
when Mininet is not a viable approach, and evaluate their work.

Lastly, we were contributors on the open-source ONOS project. We
patched bugs and extended features to applications that were eventually
used by ARTEMISONOS. These applications were responsible for enabling
Software Define Networks to talk BGP and making them co-exist with to-
day’s Internet.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter we focus on the background of this thesis. We first give a
brief explanation of Internet Routing with emphasis on the Border Gateway
Protocol (BGP), and how we monitor it through the help of control-plane
monitors. Then, we introduce the reader to Software-Defined Networks and
Network Operating Systems such as ONOS, and end with some information
about tools we used for our evaluation framework (ExaBGP, Quagga, GNS3,
Mininet and Docker).

2.1 Internet Routing

The Internet today is sometimes considered as a single network, but in reality
it is divided in multiple networks called Autonomous Systems (ASes). To
identify the Autonomous Systems, the Internet Assigned Numbers Authority
(IANA) allocates unique AS Numbers (ASN) to Regional Internet Registries
(RIRs) for each AS (e.g. Google [AS 15169], Comcast [AS 7922]). Each AS
has internal and external routers where they use Internal Gateway Protocols
(IGP) to route intra-domain traffic and External Gateway Protocols (EGP)
to route inter-domain traffic.

Communication between hosts is achieved by sending packets from one
router to another, repeatedly until they reach their final destination. Each
AS has hosts that are identified by their unique IP address in order to
communicate with other hosts. An IP address is a numerical label that is
assigned to network devices that communicate in the Internet through the
IP protocol, and is used to identify the device and address the location. An
IP address might be PUBLIC where it is reachable from the whole Internet,
or PRIVATE where it is only routable inside a private network.

These individual IP addresses are grouped together into prefixes which
are originated, or owned, by the AS. Prefixes are a logical subdivision of an
IP network and can be expressed in Classless Inter-Domain Routing (CIDR)

5

6 CHAPTER 2. BACKGROUND

notation written as the first address of a network, followed by a slash charac-
ter (/), and ending with the bit-length of the prefix. For example in Figure
2.1, if the network prefix 192.0.2.0/24 is originating from AS numbered 65000
or else ASN 65000, then the host will have an IP addresses inside that pre-
fix (e.g. 192.0.2.100) and Border Gateway Protocol will propagate to other
connected ASes the information that this prefix originates from ASN 65000.

Figure 2.1: Internet Topology with 4 ASes

2.1.1 BGP

In this thesis we explore a security vulnerability that exists in the Border
Gateway Protocol. For this reason we will provide an extensive description
of BGP, how it works and why it has this security issue.

The Border Gateway Protocol version 4 [61] (BGPv4) is a standard-
ized External Gateway Protocol designed to exchange routing information
between ASes in order to handle intra-domain and inter-domain traffic.

2.1.1.1 BGP Selection Algorithm

BGP is classified as a path vector protocol and makes routing decisions based
on the BGP Best Path Selection Algorithm. A list of best path selection
criteria is listed below, sorted in order of preference:

1. Weight

2. Local Preference

3. Network or Aggregate

2.1. INTERNET ROUTING 7

4. Shortest AS PATH

5. Lowest origin type

6. Lowest multi-exit discriminator (MED)

7. eBGP over iBGP

8. Lowest IGP metric

9. Multiple paths

10. External paths

11. Lowest router ID

12. Minimum cluster list

13. Lowest neighbor address

From these criteria we will focus on the shortest AS PATH crite-
rion. When the BGP routing mechanism cannot decide on adopting a route
based on weight, local preference and the route does not originate from a
local or aggregated network, then BGP decides which route is best based
on the lowest number of ASes it needs to go through. For example, if a
BGP speaker receives multiple routes for an IP prefix; (a) AS1,AS2,AS3
and (b) AS1,AS4,AS2,AS3 and they do not have any other higher criterion
to discriminate, then route (a) will always be chosen for having only 3 ASes
in-between opposed to the 4 ASes of route (b).

It is important here to note that routers always use the longest prefix
match to select an entry from the routing table. Considering that a forward-
ing table has the entries (i) 192.168.20.16/28 and (ii) 192.168.0.0/16, then if
address 192.168.20.19 needs to be looked up because it matches with both
entries, routers will prefer the most specific /28 prefix always, irrespective
of the other tie-braking attributes.

2.1.1.2 AS Relationships

AS relationships can be divided in two major categories, (i) customer-
provider relationship and (ii) peer-to-peer relationship. Forwarding traffic
through an AS has a price that varies based on this relationship, where in
case (i) the customer pays the provider to send and receive traffic and in
case (ii) both exchange each other’s traffic for free (typically this is called
“settlement-free” peering). In general, the route with the lowest cost or the
highest pay-off is always preferred.

8 CHAPTER 2. BACKGROUND

2.1.1.3 BGP Message Types

BGPv4 [61] as a protocol, runs its functions through the exchange of mes-
sages. It uses four types of messages:

1. OPEN - Messages used to initiate a session between Routers. An
OPEN message is always send when the TCP session is established
and includes the following fields:

Version Autonomous
System

Hold-
Time

BGP
Identifier

Optional
Param-
eters
Length

Optional
Parame-
ters

Table 2.1: BGP message OPEN fields

• Version - Specifies BGP version, default 4.

• Autonomous System - Provides the AS number of the sender.
If the AS number of the receiver and sender is the same then the
session is iBGP, else is eBGP.

• Hold-Time - This is a timeout timer that indicates the maxi-
mum amount of time that can elapse before the transmitter is
assumed to be offline. If two neighbors have different timers the
minimum timer is accepted as the hold time.

• BGP Identifier - Provides the BGP Identifier of the sender
which is an IP address.

• Optional Parameters Length - Indicates the length of the
next field, Optional Parameters or zero if not present.

• Optional Parameters - A list of optional parameters, like au-
thentication or support for other protocols.

2. KEEPALIVE - A heartbeat message that keeps the session alive. It
is usually equal to 1/3 of the specified hold time.

3. UPDATE - Messages used to advertise and/or withdraw routes. The
fields of these messages in more detail:

Unfeasible
Routes
Length

Withdrawn
Routes

Total Path
Attribute
Length

Path At-
tributes

Network
Layer
Reachability
Information

Table 2.2: BGP message UPDATE fields

2.1. INTERNET ROUTING 9

• Unfeasible Routes Length - Indicates the length of the with-
drawn routes field or zero if is not present.

• Withdrawn Routes - A list of IP address prefixes that became
unreachable and will be withdrawn.

• Total Path Attribute Length - Indicates the length of the
path attributes field or zero if is not present.

• Path Attributes - Attributes of the advertised path. Some
possible attributes for a path are; (i) Origin: attribute that de-
scribes the origin of the advertisement, (ii) AS PATH: a list of
AS numbers that describes the sequence path to the origin AS
that announces the prefix, (iii) Next Hop: an IP address that
specifies the next IP address to be used as a next hop for packets
destined to advertised prefix, and multiple others like Mult Exit
Disc, Local Preference, Atomic Aggregate, etc.

• Network Layer Reachability Information - A list of IP ad-
dress prefixes for the advertised routes.

4. NOTIFICATION - A notification message that is generated when
an error is detected. A BGP notification message consists of:

Error Code Error Subcode Error Data

Table 2.3: BGP message Notification fields

• Error Code - A code that corresponds to the type of the error
that occurred. Sample errors can be a message header error, an
open message error, etc.

• Error Subcode - A more specific error code that describes better
the reported error.

• Error Data - Additional data that help diagnose the reason of
the notification message.

2.1.1.4 Prefix Hijacking

To configure BGP the network operator provides a configuration, which is
usually manually generated, where it defines the BGP neighbors, originated
AS prefixes and other routing policies. Unfortunately, manual configuration
is prone to human errors, which can cause problems to BGP operation. Also,
BGP routers accept any BGP message without any origin authentication
by default. This, in a trusted environment, allows for fully decentralized
routing. In a real-world scenario though we cannot trust all BGP peers
due to the presence of potentially vulnerable security holes. One of these
security issues that we are going to focus on is BGP prefix hijacking.

10 CHAPTER 2. BACKGROUND

BGP prefix hijacking is the illegitimate takeover of IP prefixes by cor-
rupting Internet routing tables maintained using the Border Gateway Proto-
col (BGP). As mentioned before, the route selection is based on the shortest
AS PATH and the longest prefix is always preferred (assuming no differenti-
ation of routes based on policies). If the routing table has a routing rule for
a /23 prefix, a hijack can be achieved by announcing two /24 sub-prefixes
of the previous prefix, which will cause all the traffic to go to the hijacker
due to longest prefix match rule. On the other hand, if hijacker decides to
announce the same /24 prefix, the traffic will be divided in two; based on
the shortest AS PATH on each router the traffic will either go to the original
AS or to the hijacker AS. These attacks are viable because there is no ori-
gin authentication and all BGP updates are accepted as legitimate causing
traffic to be redirected to the malicious AS as depicted in Figure.2.2.

Figure 2.2: Subprefix hijack

This type of attack, as mentioned before, can be accidentally caused
from misconfiguration or for profit by malicious ASes. For example, a prefix
hijack attack can redirect and steal sensitive traffic [13] or even black-hole
the traffic to cause Denial of Service (DoS).

Prefix hijack attacks can be divided to several different types but we
are going to focus on (a) Type-0 hijacks where the hijacker pretends to be
the legal origin of the prefix and announces either the same prefix or sub-
prefixes and (b) Type-1 hijacks where a false AS PATH is constructed with
the hijacker inside the AS PATH in order to execute a Man-in-the-Middle
attack to the traffic that will eventually pass through it. Examples of hijacks:

• An AS announces that it originates a prefix that it does not actually
originate (Type-0).

• An AS announces a more specific prefix than what may be announced

2.2. CONTROL PLANE MONITORING 11

by the true originating AS (Type-0).

• An AS announces that it can route traffic to the hijacked AS through
a shorter route (Type-1).

There are multiple solutions proposed to solve these issues (e.g. Resource
Public Key Infrastructure) that we are going to analyze more in chapter 3.

2.2 Control Plane Monitoring

In this thesis, control-plane monitoring plays a major role, as it is one of the
three components used to create ARTEMISONOS. In routing, the control-
plane carries the control information with control packets that originate
from or are destined for a router. Multiple protocols that are used for
control plane management exist. Unfortunately, there is no easy way to
monitor this type of traffic when having multiple devices. For this reason,
people tried to find a way to monitor the already existing protocols without
changing them, by introducing devices that trick the network to send the
control-plane traffic to them through data-plane to be easier to monitor
them.

Specifically, for BGPv4 one can create an emulated BGP router that
connects with a BGP speaker and is configured as an internal neighbor
that speaks iBGP. This way, any BGP message that is received on the
BGP speaker will be forwarded to the emulated BGP router. By doing
this for all BGP speakers, we have a centralized BGP monitor that we can
access, retrieving all the logged BGP traffic, or even stream it in real time
through the data-plane. Many different implementations of these control
plane monitors exists with some of them being:

BGPMON

BGP monitoring system [4] is a control plane monitor implemented by Col-
orado State University. It provides live BGP feeds from several BGP routers
hosted in RouteViews [24] sites, and other peers worldwide. Unfortunately,
it was not available at the time of writing this thesis and was not used.

RIPE RIS

RIPE’s Routing Information System (RIS) [23] has 21 route collectors (RCs)
spread globally. These route collectors collect BGP updates from more than
300 peering ASes. RIPE RIS provides an API that lets users to subscribe
easily to BGP live feeds for specific prefixes. We ended up using RIPE RIS
control-plane monitors as our default monitors because of their responsive-
ness and easy to use interface.

12 CHAPTER 2. BACKGROUND

Looking-Glass Servers

Looking-Glass servers are a real-time source of routing and BGP related in-
formation for network administrators. Looking Glass servers are deployed in
different parts of the Internet and allow on-line checking of prefixes, collected
from the BGP speaking routers. These Looking-Glass servers do not have
a standardized API which makes it very difficult to implement a universal
interface to parse them. Periscope [14] provided an API for a plethora of
Looking-Glass servers but because of the big delay and the query limitation
that they have it was not optimal for this thesis.

Custom Monitor - ExaBGP

This is a control-plane monitor that we implemented and used to evaluate
our work because we needed a control-plane monitor that works in an emu-
lated environment. ExaBGP [11] is an open-source BGP router implemented
in Python, which provides a convenient way of adding new script-like control
functions on top of it. We transformed ExaBGP to a control plane monitor
by parsing BGP messages into json format and implementing a socket.io

service that lets clients request prefix-specific BGP traffic.

2.3 Software Defined Networking

In this section we will give a brief description of Software Defined Network-
ing because ARTEMISONOS is build to work on a SDN environment. First,
we focus on the current state of Ethernet switching in subsection 2.3.1 and
then introduce the concepts of Software Defined Networking (SDN) in sub-
section 2.3.2. Then we focus on explaining; (i) OpenFlow [71] as the commu-
nication protocol that enables SDN concepts in Ethernet networks in sub-
section 2.3.3, (ii) Open vSwitch [20] as an open-source virtual switch imple-
mentation that speaks OpenFlow and is used as the data-plane OpenFlow-
enabled switch to evaluate our methodology with in subsection 2.3.4 and
lastly, (iii) the purpose of the SDN controller and more specifically Open
Networking Operating System (ONOS) and its services that we used in
this thesis (Intent Framework, SDN-IP and Reactive-Routing) in subsec-
tion 2.3.5.

2.3.1 Ethernet Switching

Today’s Ethernet switches are often quite static, slow to change and ded-
icated to single services. They follow a packet-switched model having in-
formation only about their neighbors. The main purpose of the Ethernet
switches is to interconnect nodes, while exchanging Internet Protocol [56]
(IP) data-packets. When an Ethernet switch receives a data-packet it goes

2.3. SOFTWARE DEFINED NETWORKING 13

through a method that decides what action should be applied to this packet.
The actions are decided based on the Forwarding Table of the device, which
contains a list of MAC addresses that map incoming traffic and destination
address to an outgoing port, but in case that there is no match found then
the packet is flooded over all ports. In more detail the main functions of an
Ethernet switch are:

• Populate Forwarding Table - The most basic function of the Eth-
ernet switch is to learn the MAC addresses that corresponds to each
port. Whenever the Ethernet switch receives a data-packet, an Eth-
ernet frame exists which contains both the source and the destination
addresses. When the source address is not present in the Forwarding
Table, it is added to the corresponding port. When the destination ad-
dress is not present, the Ethernet switch generates an ARP [55] request
on all ports except the incoming port asking about the destination ad-
dress. If the destination address is connected to the Ethernet switch,
it will receive an ARP reply having the answer it needs to update the
Forwarding Table and then forward the data-packet.

• Forward data-packets - The main function for an Ethernet switch is
to forward traffic to the correct outgoing port. As explained before, the
data-packet is forwarded if it has a positive match in the Forwarding
Table. This tells us that an Ethernet switch has only visibility of its
neighbors and cannot have a global view to further optimize traffic
flow selections.

• Spanning Tree Protocol - When an entry is missing from the For-
warding Table the traffic is flooded over the network until it reaches
the destination. This flooding technique can cause routing loops in the
network and in order to prevent them switches employ the Spanning
Tree Protocol [34] (STP), standardized in IEEE 802.1D.

• Data-plane Separation - In a computer network we usually have
multiple groups and users. For this reason, data plane traffic should
be easily separated or partitioned between these different groups. Vir-
tual Local Area Network [32] (VLAN) is used to separate data traffic
between different applications. Each Ethernet switch can have multi-
ple virtual networks that follow different forwarding policies and can
be indicated with a VLAN identifier that comes with the data-packet.
In this manner, an Ethernet switch that supports VLANs can be used
for multiple groups, removing the need of having higher complexity
networks with additional switches.

Besides the functions described above, we notice a trend of managing
the flows of the data-packets over the network. For this reason other pro-
tocols, such as Simple Network Monitor Protocol [63] (SNMP), are used

14 CHAPTER 2. BACKGROUND

for management purposes. On manageability level, configuring each switch
independently is unwanted and inflexible because small errors can cause big
network failures.

2.3.2 Network Abstraction with SDN and Applications

The SDN philosophy evolves around having different switch configurations
based on the network services that are run and the QoS needs that need to
be met. To embrace this philosophy, a centralized entity must perform the
configuration changes on all of the switches through a management plane
and have an abstracted interface that translates the network state based on
the network services. c With SDN one can create a network that handles
many services in a dynamic fashion, allowing to consolidate multiple ser-
vices into one common infrastructure. A comparison is depicted in Figure
2.3. Software-Defined Networking (SDN) is an open vendor-neutral network
architecture approach that enables the network to be centrally controlled by
decoupling the control plane from the data plane and offloading all control
functions to a logically centralized entity, the SDN Controller [72].

Figure 2.3: Comparison between conventional networks and SDN [72]

The SDN concept is divided in three layers. A short description of the
planes is given below in relation to Figure 2.4:

• Infrastructure Layer - This is the bottom layer, contained in the
data plane with the network forwarding equipment. Unlike todays
architecture, that forwarding architecture relies on a new layer, the
control layer where the SDN Controller resides. The network forward-
ing equipment are simple packet forwarding devices that are controlled
through the Control Layer and have no innate decision-making capa-
bilities.

• Control Layer - Middle layer responsible for configuring the infras-
tructure layer; it does that by receiving service requests from the top

2.3. SOFTWARE DEFINED NETWORKING 15

layer, i.e., the application layer. It involves the controller who is in
charge of configuring the forwarding plane based on the network ser-
vices needs. The control layer and infrastructure layer communicate
with each other, usually with OpenFlow, although other protocols ex-
ist. OpenFlow will be explained further in subsection 2.3.3.

• Application Layer - The top layer, i.e., the application layer, is
where management, cloud and/or business applications place their de-
mands on the network through the control layer, through an API the
controller provides. The advantage over legacy networks is the ability
to dynamically allocate resources and handle application needs.

Figure 2.4: SDN Architecture [25]

By centralizing the control logic to the controller, not only is the man-
agement of the switches simplified but also the need of reconfiguring the
switches manually and locally by hand is removed. Also, it offers the possi-
bility of optimizing traffic, increasing robustness and enhancing security by
having a global view of the network. Where Ethernet switches usually act
on a local level and have information only for its neighbors, a central control
logic acts on a global level. Besides that, having the option to implement all
the existing routing or security protocols on a central control logic removes
the need of having expensive middle boxes, such as routers, firewalls and
load balancers. All these advantages come at a cost; centralizing all the
decision-making to a single unit might cause an unwanted additional delay
in packet forwarding and in an extreme scenario cause a Denial of Service
on itself. Multiple controller implementations fixed this issue by introducing
the idea of clusters of controllers, opposed to the solution of only one con-
troller, to distribute the work, provide high-availability, better performance,

16 CHAPTER 2. BACKGROUND

fault-tolerance and remove the potential overhead due to overloading.

The authors of [54] discuss about resource allocation and policy enforce-
ment concerning security on enterprise networks, where SDN can control
resources based on the network requirements without the need for specific
hardware. As mentioned before, SDN can substitute the functionality of
different middle boxes, making them obsolete. The centralized and unified
control authority yields considerable improvements for enterprise networks
enabling them to control and manage the network. Now, policies and config-
uration do not need to be applied locally, but are instead assigned globally
through the controller.

Another application discussed in [54] focused on energy consumption in
data centers where additional physical hardware are needed for the pro-
vided network services. By moving from using additional physical hardware
to implementing the network services on the SDN network, the operator
achieves much lower energy consumption and lower operating costs for the
data centers. It is important to mention here that there have been multiple
projects around SDN’izing data centers, with one of them being CORD [10],
which combines NFV and SDN to provide network operators a platform to
manage their Central Offices using declarative modeling languages for agile,
real-time configuration of new customer services.

The SDN concept is expandable also to wireless access networks. For
WLAN it can provide the possibility of seamlessly roaming over multiple
wireless infrastructures without the user noticing. Besides WLAN, there
have been works like xRAN [27] which aims to introduce SDN into the mo-
bile infrastructure and standardize an open alternative to the traditionally
closed, hardware-based Radio Access Network architecture.

Home and small business networks can use SDN as well as explained
in [54]. Logging the network activity and using additional security modules
is not an easy task and that is where SDN shines. Modules with user friendly
interfaces can be installed on the application plane and logging becomes
much easier because of having everything going through the central control
logic.

The SDN philosophy is not here to create new protocols and re-define
standards, but to improve the networks by providing a framework that can
co-exist with existing networks. Unfortunately, SDN are not yet widely
accepted and deployed due to the complexity of SDN’izing existing networks.

2.3.3 OpenFlow

OpenFlow [71] is an open protocol, created by Open Networking Foundation,
and is used to configure forwarding devices inside the infrastructure layer
by an SDN Controller. OpenFlow offers a plethora of capabilities making it
ideal to researchers wanting to experiment with novel ideas and innovations.

2.3. SOFTWARE DEFINED NETWORKING 17

A wide collection of open-source software is available in the form of Open-
Flow controllers (like ONOS which will be discussed in subsection 2.3.5.1),
as well as physical and virtual switch implementations (Open vSwitch will
be discussed further in subsection 2.3.4.

The control plane and forwarding plane communicate in three different
ways [71]:

1. Controller-to-Switch - These messages are sent by the controller for
initialization or configuration purposes. There are seven different type
of messages: (1) Handshake, (2) Switch Configuration, (3) Modify
State, (4) Queue Configuration, (5) Read State, (6) Send Packet and
(7) Barrier.

2. Asynchronous - usually intended to update the controller w.r.t. net-
work events or changes of state. There are four type of events that can
trigger an asynchronous message from the switch to the controller; (1)
Flow removal, (2) Port status, (3) Packet-In message and (4) Error
messages.

3. Symmetric - Can be sent from both entities without solicitation and
can be Hello, Echo Request/Reply, and Vendor messages.

In a simple SDN network scenario the forwarding devices start with some
empty routing tables, called Flow Tables. Each row of a Flow Table is a
Flow Entry. These tables can be populated by flow entries either proactively
or reactively. Whenever a switch receives a packet, a meta data is created
containing an Action List, Action Set or both. When a packet matches
a flow rule inside a flow table, an action is added to the list or set and
execution moves to the next Flow Table. Example of Actions are “forward
the packet to port X”, “drop the packet”, “go to Group Table A” or even
“modify the headers”. In case a packet does not match any entry that exists
inside the Flow Table, the switch will send an asynchronous message to the
controller to ask what to do with this packet (Figure 2.5).

18 CHAPTER 2. BACKGROUND

Figure 2.5: OpenFlow architecture [72]

On the other hand, the SDN Controller, based on the current active
policies and services responds back to the switch with a message that will
add a new entry to the Flow Table of the device so that the packet can match
and processed. Flow Tables contain Flow Entries with six parameters [71]:

• Match Fields - The criteria which the packets match against. Crite-
ria include parameters from data-packet headers and meta data from
previous tables. Some of the criteria which are used to match incoming
packets are depicted in Table 2.4.

Match Field Layer Description

Ingress Port Physical Incoming ports
IP Network IPv4/IPv6 source and

destination addresses
MPLS Network MPLS label

Table 2.4: Flow Entry Match Fields

• Priority - If a packet matches multiple Flow Entries, the one with
the highest priority is selected.

• Counters - Whenever a packet matches this flow Entry the counter
increments. This way, the controller can keep track of the traffic going
through to determine network policies or for network monitoring.

• Instructions - If the packet matches, instructions are added to add
Actions to the List or Set or change the Pipeline processing. Some
actions can be seen in Table 2.5.

• Timeouts - A hard timeout after which this flow will be removed and
an idle timeout that removes this flow if it does not get any packet
match within that interval.

2.3. SOFTWARE DEFINED NETWORKING 19

Action Associated Data Description

Push VLAN header Ethertype Push a new VLAN
header onto the
packet.

Push MPLS header Ethertype Push a new MPLS
header onto the
packet.

Output - If not group action,
then forward the
packet to specified
port.

Drop - Drop all packets that
match this flow.

Table 2.5: Flow Entry Actions

• Cookie - Random cookie chosen by the controller to filter flow statis-
tics, flow modification and flow deletion.

2.3.4 Open vSwitch

The Open Virtual Switch [20] (OVS) is a virtualized OpenFlow switch which
was not specifically designed to enable the SDN philosophy, but is widely
used to test OpenFlow implementations and benefit from flexible SDN con-
figurations. OVS can be configured as a normal Layer-2 switch or a Layer-2
switch controlled by a local OpenFlow controller. Configuration can be sup-
plied by the OpenFlow controller; alternatively, Flow Rules can be supplied
manually by hand. Open vSwitch is composed of three different modules,
two user-space modules and one kernel-space:

1. ovsdb-server - A database server which keeps the configuration per-
sistent through the system.

2. ovs-vswitchd - The core component of the device which establishes
the communication with the controller.

3. openvswitch mod.ko - A kernel module that manages forwarding
and tunneling.

Rules associated with each flow entry either contain actions or modify
the processing of the pipeline (jumping from one flow table to another, in
sequence). When the processing pipeline does not specify any next table,
the packet is usually modified and forwarded, as shown in Figure 2.6.

20 CHAPTER 2. BACKGROUND

Figure 2.6: Forwarding plane of an OpenFlow Switch [71]

2.3.5 The SDN Controller

As mentioned before, the SDN controller is a centralized, software-based en-
tity that controls the network devices that exist in the infrastructure layer.
It takes advantage of the global view it has over the network for running
network services and applications. As it is shown if Figure 2.7, the SDN con-
troller is located in the Control Plane which sits between the Data Plane and
Application Plane. However, in order to communicate with the controller,
proper interfaces must be defined on both sides. Between the Application
and Control plane the controller usually employs a Northbound Interface
(NBI), while between the Data and Control plane another interface, called
Southbound Interface (SBI), is used. Both of these interfaces can be de-
signed to use any available communication protocol, for example on the SBI
side it can be OpenFlow and on the NBI side it can be a REST framework.
For this thesis, we decided to use the Open Networking Operating System
as our SDN controller and we explain further why this was our choice.

2.3.5.1 Open Networking Operating System

The Open Network Operating System [19, 30] (ONOS) is a Software- De-
fined Networking (SDN) OS, built for service providers, offering scalability,
high availability, and performance. Following the SDN mantra, ONOS uti-
lizes high-level abstractions to make it easy for developers to create appli-
cations and services over its distributed core. It is based on a well-defined
architecture and has quickly matured to be feature-rich over the years (in-
terfacing with classic IP routing is one of these features). Moreover, multiple
real-world deployments [16] exist, validating ONOS as a production-ready,
high-quality platform, suitable for demanding network environments.

Figure 2.7 shows the architecture of ONOS, where we can distinguish
the “distributed” nature of the controller. ONOS is a collection of different
services which can be split in three different categories; northbound applica-
tions, core applications and southbound protocols. Let us look each category
in detail:

• Northbound Applications - ONOS is an open-source controller and
supports various application categories such as control, configuration

2.3. SOFTWARE DEFINED NETWORKING 21

and management applications. Software contributors globally partic-
ipate in ONOS development; anyone can propose a new application
that can be packaged with ONOS after it passes through a Technical
Steering Team meeting. Among the applications that are published,
some of them are Reactive-Routing, SDN-IP and ARTEMISONOS (which
we analyze and evaluate in the current thesis).

ONOS applications work based on information present at the core-
layer - via sending and receiving command requests and responses,
and event-handling. The core-layer exposes a service interface for each
application, which can be used by applications to exchange information
between them, such as flow rules, application state, intents and also
to add listeners to specific events.

• Distributed Core - ONOS’s distributed core is built to offer scalabil-
ity, high availability and performance. To achieve this, ONOS includes
(i) a gossip-based protocol and a RAFT implementation to synchro-
nize multiple instances of the controller, (ii) a state of the process’s
logical clock to have partial ordering, (iii) usage of distributed queues
and, (iv) Atomix for cluster membership management.

• Southbound Protocols - ONOS supports multiple southbound pro-
tocols like OpenFlow, NETCONF, OVSDB, etc. It uses the concept
of providers to hide the complexity of each protocol on the controller’s
side. Anybody can develop a protocol and register it to the core.
Following the registration, the communication between devices and
providers is done by either (a) event notifications or (b) issuing com-
mands from the core itself.

22 CHAPTER 2. BACKGROUND

Figure 2.7: ONOS Architecture [26]

Next, we will give brief explanations of all the applications and features
that ONOS is packaged with and were used in ARTEMISONOS.

ONOS Clustering

ONOS, unlike multiple other controllers, follows a distributed (by design)
architecture and thus, it can be deployed as a collection of controllers that
coordinate with each other and provide fault-tolerance, data-integrity and
better load management. The Cluster Coordination of ONOS is achieved
by using a consensus algorithm called RAFT.

SDN-IP Application

Connection between ASes (Autonomous Systems) in the Internet today is
universally done via the Border Gateway Protocol version 4 [61] (BGPv4),
as explained previously in Section 2.1. Since SDN does not talk to BGP
by default, an ONOS application called SDN-IP [51] was introduced for an
SDN AS to communicate with other legacy ASes via BGP.

SDN-IP [51] enables an SDN controller to speak BGP by giving the
controller the ability to talk and understand iBGP, enabling communication
with a BGP speaker. By adding the ONOS controller as an iBGP peer to the
BGP speaker’s configuration, the speaker is going to forward all the control
plane messages that it receives to the SDN-IP application, if so configured.
Since the external ASes are not directly connected to the BGP speakers
but to OpenFlow switches, the SDN-IP application preemptively installs

2.3. SOFTWARE DEFINED NETWORKING 23

flow rules to route the BGP traffic to the BGP speakers. In Figure 2.8 we
see that the external networks are each connected to an OpenFlow switch
that forwards the traffic to the (closest) BGP speaker, which afterwards
communicates with the SDN-IP application.

The SDN-IP application keeps all the BGP routes information to a local
RIB (Route Information Base) and installs the needed flows and intents so it
can route inter-domain traffic but also intra-domain traffic through another
application called Reactive-Routing.

External ASes see the SDN AS as a simple BGP speaker but in reality
the SDN network may contain multiple BGP speakers, and several SDN
controllers or else a cluster. This architecture provides high availability and
scalability; where the BGP speakers are decentralized.

Figure 2.8: SDN-IP Architecture

Reactive-Routing

Reactive Routing is a complimentary application to SDN-IP. It is used to
install reactively all the rules needed to route traffic from within the network
to the Internet and the other way around when a new BGP routing entry is
added on the SDN-IP routing table.

Also, reactive-routing is responsible for routing traffic between hosts that
both reside in the SDN network.

Intent Framework

The Intent Framework [18], implemented in ONOS, allows applications to
specify their network control desires in form of a policy. These policies
follow some specifications which are eventually translated, into flow rules in

24 CHAPTER 2. BACKGROUND

the data plane. These actions may result in changes in the infrastructure
layer, such as setting up new tunnel links, installing flow rules on a switch,
etc.

Some of the important intent types are:

• Host Intent - creates bi-directional connectivity between hosts.

• Tunnel Intent - creates tunnels of any type (MPLS, GRE, etc) be-
tween two connect-points, which can either be a host or a switching
device.

• Point Intent - Installs forwarding flows that connects two points
(point-to-point).

• Multi-to-Single Intent - Maps and installs flows for multiple sources
to a single connection-point. For example a /24 prefix destined to a
specific port of an SDN switch.

• Single-to-Multi Intent - Single source, multiple destination connec-
tivity intent.

2.4 Quagga

The evaluation of our tool is in a virtual environment, so Quagga was se-
lected as the best solution, providing the best emulated normal router func-
tionality as a BGP speaker.

Quagga [22] is a network routing software suite that implements multiple
routing protocols like OSPF, RIP and BGP, built on Unix platforms. There
is a zebra daemon that through an API communicates with Quagga to form
the required architecture, but also to run other daemons for the routing
protocols that are enabled by the user. Quagga offers a vty shell, which
can be used to configure each protocol daemon that is running. The CLI
configuration is similar to a traditional router.

2.5 Network Emulation

Network emulation is the act of replicating every aspect of the device’s be-
havior in test environments. Emulation enables us to have complex topology
testing without the need to wire up a physical network. Moreover, it can
support multiple concurrent developers to work independently on the same
topology.

With network emulation we can setup different network topologies to
evaluate our tool’s performance by creating a Internet graph with multiple
ASes, and setting up the routing protocols/policies for each of them in order
to emulate a BGP hijack event.

2.5. NETWORK EMULATION 25

The tools that we used to emulate a network topology and run ARTEMISONOS

were GNS3, Docker and Mininet. To give the reader the needed background
to understand the use of these tools, we

2.5.1 Graphical Network Simulator 3

Graphical Network Simulator 3 [12] (GNS3) is a network emulator that is
used by many big companies and allows the combination of virtual and real
devices. It is open-source with a graphic front-end and can co-exist with
other emulation programs, like Qemu, VMware, VirtualBox and Docker.

GNS3 offers a wide range of network devices and tools for emulating
network devices, simulating different scenarios. Something important to
note is that GNS3 is emulating and not simulating; meaning that the devices
act the same as if it was a physical device. For this thesis we build the
wanted topologies in GNS3 using Docker containers and evaluate our tool
on different scenarios. To build these topologies we used the Python API
that is provided by GNS3, in order to automate the topology generation and
configuration of all the devices.

2.5.2 Docker

Container virtualization (known as containerization) uses Linux’s kernel
functionality to isolate processes and their resources from each other. These
isolated environments are called containers. The difference with classic (e.g.,
hypervisor-based) virtualization is that it shares the same OS kernel by com-
bining kernel features, such as Kernel Namespaces and Control Groups, so
there is no need of a hypervisor. In Figure 2.9 the hypervisor virtualiza-
tion is compared to containerization, and we give a short description of
their biggest differences; (i) a container has smaller footprints of applica-
tions since there is no additional OS in-between, (ii) smaller footprint can
be translated to better scalability and, (iii) a container offers better per-
formance and start-up times because it runs directly on the kernel, and is
preferred when performance is a critical requirement.

26 CHAPTER 2. BACKGROUND

Figure 2.9: Container vs Virtual Machines [9]

Regarding Kernel Namespaces and Control Groups, the following are
worth mentioning. Kernel Namespaces provide isolation between different
groups of processes by dividing their kernel space into multiple environ-
ments, while Control Groups (or cgroups) are used to limit hardware re-
sources like CPU usage, disk performance and memory.

Docker is an open-source platform which allows applications to be de-
ployed inside software containers that utilize the core concepts of container
virtualization that we described above. With Docker, you can manage in-
frastructure like you manage applications. Moreover, it offers easy shipping,
testing and code deployment which can lower the delay between development
and release.

For the implementation of this thesis, we used Docker because we wanted
to build a ”mini”-Internet that has multiple ASes. The small footprint that
Docker containers have solve any scalability issues that we might have come
across if we used hypervisor virtualization.

2.5.3 Mininet

Existing OpenFlow-supported devices are expensive, as it is not profitable
for the vendors to mass-produce them because of the low demand; this dis-
incentivizes companies from investing to SDN. Also, high-cost devices make
experiments very difficult to implement and test new ideas. To combat this
limitation, a virtualized approach was proposed. The most known SDN em-
ulator is called Mininet. Mininet [15] is a network emulator like GNS3 but
was firstly introduced to support SDN environments. It uses a container ap-
proach like Docker to create the nodes and enables SDN development on any
laptop or PC. Nodes can be any linked set of virtual hosts, switches, con-
trollers. Mininet hosts run standard Linux network software and ultimately,
provide an environment for research, rapid prototyping of software-defined

2.5. NETWORK EMULATION 27

networks, testing, and debugging. Some of the key aspects of Mininet are:

• Simple and inexpensive network testbed for developing and testing
OpenFlow applications.

• Provides a framework that enables multiple developers to work con-
currently on the same topology.

• Supports regression tests, that are repeatable and easily deployed.

• Generates complex topologies, without the need of wiring up physical
devices.

• Provides a command line interface that is topology-aware.

• Provides out-of-the-box topologies, that can be parameterized to fit
any need without additional programming.

• Offers a Python API and documentation to experiment and automate
the network creation.

In summary, Mininet is a useful tool for SDN emulating purposes. It
offers an easy way to build topologies programmatically and guarantees ap-
plicability of tested applications that will perform the same in a real world
scenario. Also, it allows large-scale network emulation because it virtualizes
less and shares more. Mininet is used in this thesis to build our topology
and evaluate the performance of our tool in cases where GNS3 and Docker
were not efficient.

28 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

In the following, we summarize works on detection and mitigation techniques
on BGP (sub-)prefix hijacking and also other SDN approaches that aim to
improve Internet routing.

3.1 Detection of BGP Hijacks

The purpose of the detection techniques are to discover any suspicious ac-
tivity in Internet routing and raise alarms. These methods can be classified
based on the type of information they monitor as: (i) control plane, (ii) data
plane, and (iii) combination of both (hybrid).

Control plane approaches primarily collect BGP updates or routing
tables from BGP monitors and inform the origin-AS of a prefix, if a malicious
intent is recognized. These approaches are lightweight because they receive
BGP feeds passively.

An early work by [31] focused on detecting (sub-)prefix hijacks with
the use of a static prefix ownership map or taking advantage of optional
BGP message attributes. Another research by Qiu et al. [58] suggested
a protocol that is used between ASes and can alert an origin AS when a
prefix suspiciously originates by multiple ASes. A prefix hijack real-time
alert system was presented by Lad et al. [48] which ASes can use to register
their prefixes and get alerted if a different AS origin is detected in a BGP
update message. Simirarly to [48], Qiu et al. [57] used instead historical
routing data and prefix ownerships with validation through various heuris-
tics. Siganos and Faloutsos [68] collected information from the Regional
Internet Registries and the Internet Routing Registry to correlate with data
announced in the BGP update messages. Other approaches [40, 42] intro-
duced a distributed architecture using Chord-based DHTs [69] that needed
ASes to participate and build the ground truth. Heaberlen et al. [39] use
trusted sources for relationships between ASes and proposes a solution where

29

30 CHAPTER 3. RELATED WORK

all BGP update messages and routing policies are logged and shared be-
tween the neighboring ASes. To avoid revealing this –sensitive– information,
other approaches [38, 53, 75] were presented, where they used cryptography.
However, in contrast to ARTEMIS, most of the approaches use third-party
databases to build the ground truth, which may not always represent the
reality, thus resulting if false-positive hijacks. Furthermore, ARTEMIS does
not need additional protocols [58] or support from neighboring ASes in order
to run [39, 38, 53, 75]. Lastly, ARTEMIS can spot advanced type-N (N > 1)
hijack events that are harder to detect.

Data plane approaches typically depend on active measurements of
the Internet, e.g., using pings/traceroutes, to detect changes on AS paths
and reachability of a prefix. Zhang et al. [74] presented iSPY, a system
that monitors the connectivity of a prefix and alerts the AS if there is a
reachability issue. Following a same method, Zheng et al. [76] detect prefix
hijacks by observing paths and discover whether a significant variation is
detected. Both [74, 76] employ vantage points outside of the target prefix but
close to the AS. To compensate the overhead of permanent active probing,
Quan et al. [60] following the same methods, applied Bayesian inference on
the probing data. Hiran et al. [29] collected passively RTT by end-users and
use them to identify routing anomalies when an outlier RTT was present.
Balu et al. [41], complimentary to [29], took into account the number of
intermediate hops to reduce the quantity of false positives. While some
of these approaches [74] can run without the need of third-party entities
and be deployed by the network operator itself, they are not capable of
detecting reliably prefix hijacks. In cases of link failures or prefix hijacks on
sub-prefixes where a probe is not present, these systems will report falsely
that there is a hijack, or even miss it completely (false negative). Finally,
being active measurement approaches, they are more heavyweight than the
control plane approaches.

Hybrid approaches such as HEAP [62], Argus [66], and Hu et al. [43]
combine control and data plane to overcome limitations that are introduced
when used separately. HEAP [62] and Hu et al. [43] are detecting sub-
prefix hijack attacks that blackhole or imposture the data plane traffic, thus
missing Man-in-the-Middle (MitM) attacks. On the other hand, Argus [66]
considers only blackholing and not imposture or MitM hijack events. BGP-
mon [5] is the most popular commercial detection tool that combines infor-
mation on both planes; however, being offered as a third-party service, each
alert needs to be handled manually by each AS network operator. In con-
trast, ARTEMIS introduces an approach that handles all three categories of
prefix hijacking.

3.2. MITIGATION OF BGP HIJACKS 31

3.2 Mitigation of BGP Hijacks

Mitigation techniques aim to defend the victim against the ongoing prefix
hijack attack. Prototype ARTEMIS [65] that our SDN application imple-
ments uses prefix-deaggregation –when feasible– or outsources the mitigation
to helper ASes that will act as Multi-origin ASes.

Early studies focused on introducing cryptography to BGP, such as S-
BGP [45], RPKI [49], BGPSEC [50], and Whisper and Listen [70]. Karlin
et al. [44] proposed pretty good BGP (pgBGP) which adds a verification
process for any suspicious route that is observed. Qiu et al. [59] followed a
similar outsourcing approach to ARTEMIS [65], which selects ASes to use as
relays when a hijack is present. As shown in [65], ARTEMIS does not require
any large-scale coordination and can achieve a highly impactful outsourced
mitigation using a small number of carefully selected helper ASes, in contrast
to other approaches. Also, cryptographic approaches require changes on
the existing protocols and require global adoption, which is proven to be
infeasible due to technological, political and economic factors.

3.3 SDN on Internet Routing

Many researchers tried to introduce SDN in order to solve known security
and performance issues in Internet routing [37, 52, 47, 46, 6, 36].

Kotronis et al. [46] proposed SIREN, a BGP-SDN emulation framework
that can evolve BGP by providing a birds-eye view over several different
networks. A proof of concept was also demonstrated that aimed to improve
the slow convergence time of BGP. An evaluation methodology regarding
acceleration of BGP convergence on SDN was carried out by Sermpezis and
Dimitropoulos [6] where they analyze the effects of centralization on inter-
domain routing. Gupta et al. [37] created SDX, an SDN-enabled Internet
eXchange Point (IXP). Authors believed that SDN could revolutionize wide-
area traffic delivery and solve known inter-domain routing problems by in-
troducing a new wider range of policies, simplifying network management
and enabling new networked services without the need of changing the cur-
rent technology. Similarly, an IXP-based system that establishes QoS route
paths through path stitching is described in [47]. In [51], the authors discuss
a solution for incremental deployment of SDN networks and how they can
seamlessly peer with IP networks.

On the security side, Wang et al. [73] implement FloodGuard, a Denial
of Service (DoS) attack prevention extension in SDN. Similar work was
presented by Gkounis et al. [36], where they show an SDN-based approach
to mitigate different types of DDoS attacks, called Crossfire attacks. A
survey on SDN security is presented by Shin et al. [67] that provide insights
for future research in this area.

32 CHAPTER 3. RELATED WORK

Chapter 4

ARTEMIS over SDN

ARTEMISONOS follows the same principles as legacy ARTEMIS [33] which
consists of three components: a monitoring, a detection and a mitigation ser-
vice. In our implementation we follow the same methodology and implement
these three services while taking advantage of Software Defined Networking
principles, mechanisms and applications.

4.1 Methodology

In this section we explain our methodology and why we decided to move
legacy ARTEMIS concepts to a Software Defined Networking solution, how
we took advantage of ONOS applications and abstractions it offers and fi-
nally, the three services of ARTEMIS.

4.1.1 Open Networking Operating System (ONOS)

Legacy ARTEMIS [33] was implemented over python and was deployed as a
package of scripts. We decided to introduce ARTEMIS into Software Defined
Networks to overcome any automation limitation that the legacy approach
had. ONOS was chosen as the best choice to implement ARTEMISONOS

as it provides applications and abstractions that would greatly enhance
ARTEMIS’s features.

We wanted ARTEMISONOS to be a modular application and because
ONOS runs over Apache Karaf [1] it offers a modular runtime environment
where all the applications can co-exist with each other and exchange infor-
mation between them when needed.

Also, as mentioned in section 2.1.1.4 because each device in the network
needs to be configured manually in a decentralized manner, it is very prone
to misconfigurations. ONOS offers a bird’s eye view of the network and lets
the operator control the configuration of the devices through an abstraction
layer that is agnostic to the underlaying protocols, eventually configuring

33

34 CHAPTER 4. ARTEMIS OVER SDN

the devices through a logically centralized entity, the controller. Except for
the configuration of the devices, configuration of the applications is loaded
through a core application that is packaged with ONOS, making it easy to
spot any misconfiguration or update an application with new variables.

Apart from the advantages on the modularity and the centralized view
and configuration of the network, ONOS is packaged with some applications
that are globally-contributed and open-source that let Software Defined Net-
works co-exist with the legacy networks. The applications that we used from
ONOS are SDN-IP and Reactive-Routing, detailed in the following,

4.1.1.1 SDN-IP and Reactive-Routing

In the background section, in subsection 2.3.5.1 we explained that SDN-IP
enables an SDN AS to connect with legacy ASes through BGP. For our
work, we used SDN-IP to keep track of the connected BGP speakers and
peers but also the routing tables. This information was very important and
was used by the detection service to see if there is a hijack incoming to the
routing table and by the mitigation service to select which BGP speaker to
use to mitigate the hijack.

Reactive-Routing is a required application for the SDN-IP application to
work. It installs all the flow rules proactively so the BGP peers can commu-
nicate with the internal BGP speakers but also installs flows re-actively to
provide reachability for the hosts inside the AS to the hosts in the Internet.
In Figure 4.1 we show how these applications interact when the network is
initialized.

Figure 4.1: SDN-IP and Reactive Routing initialization

4.1. METHODOLOGY 35

4.1.2 ARTEMIS’sONOS Services

4.1.2.1 Monitoring

ARTEMIS’sONOS monitoring service is run locally and its purpose is to
subscribe to multiple control plane monitors for the prefixes it owns. By
having multiple control plane monitors that are spread across the globe we
have visibility to cover a big percentage of the Internet.

A network operator needs to provide a configuration file to the monitor-
ing service that lists all the control plane monitors that will be used by the
service and as the output of the service, all BGP Update messages for the
prefixes specified in the configuration will be forwarded to all of its listeners.

4.1.2.2 Detection

The detection service receives two inputs and has one output. As inputs
it has (a) a configuration file that includes information about the prefixes
owned by the operator, such as the Origin AS and the first-hop neighbors of
the AS, and (b) the output of the Monitoring Service, which are the BGP
Update messages received from the control-plane monitors.

Having these two inputs, the service can compare the AS PATH fields of
the BGP Update messages with the ones provided in the configuration and
detect, if present, a hijack attempt. This event will be the output of this
service and be forwarded to the subscribers of the detection service.

As we explained in subsection 2.1.1.4 a hijacker can either do an attack on
the same prefix or take advantage of the longest prefix matching algorithm
and attack a sub-prefix. A sub-prefix hijack is the most dangerous type of
an attack because it can potentially pollute the whole Internet. Also, it is
the most problematic because whenever an AS needs to announce a longer
prefix or de-aggregate it will trigger a false positive hijack alert.

ARTEMISONOS, due its nature of being self-operated, returns 0 false
positives and 0 false negatives for type-0 and type-1 hijacks. For hijacks
of type-N (where N > 1), because the network operators do not always
know the second (or longer)-hop neighbors on their AS PATH (plus this
path may be frequently updated), the approach requires a special handling
detection-wise, which will not be covered by this thesis.

For the basic sub-prefix, type-0 and type-1 hijacks accuracy is very high
because the tool runs based on the provided configuration which includes an
up-to-date list of all owned prefixes and their AS neighbors. When a prefix
hijack takes place ARTEMISONOS will detect it through a control-plane
monitor. Our approach however can detect hijacks where attackers announce
an illegitimate AS PATH so it can carry the attack on the data plane by
being a Man-in-the-middle (Type-1). Furthermore, we will illustrate how
ARTEMISONOS detects these different types of exact prefix hijacks.

36 CHAPTER 4. ARTEMIS OVER SDN

The configuration file that we mentioned has the following information
per prefix:

• Origin AS - the AS that the prefix originates from.

• Neighbor ASes - the ASes that are direct neighbors of the origin AS.

For every BGP update message it receives from the monitor service,
ARTEMISONOS extracts the AS PATH field and compares the announced
prefix as well as the first and second AS in the AS PATH. This way,
ARTEMISONOS can detect all Type-0 and Type-1 hijacks for the prefixes
that are specified inside the configuration file and are visible to the control-
plane monitors.

If there is an update message for an owned prefix which is not matched
within the configuration then we have a hijack with 0% of it being a false
positive. A new event will be generated that includes information about
the type of the hijack, the prefix that is hijacked, a timestamp and the
fraudulent AS PATH, which is the output of this service.

4.1.2.3 Mitigation

After the detection service detects a hijack event, we need to quickly mitigate
the hijack. Since we have as an input the hijack events generated from the
detection service, which follow a specific structure, we can extract from it
the type of the hijack.

In the mitigation service we can define actions in order to mitigate each
event automatically based on different factors. Sermpezis et al. [64] con-
ducted a survey which asked operators how they mitigate ongoing hijacks;
they answered that either they contact other networks (88%) and/or the
engage in prefix de-aggregation (%68). ARTEMISONOS’s aim is to remove
the need of manual contact with other networks or manually changing the
configurations to do a de-aggregation. Instead, it proposes an automated
approach.

Prefix de-aggregation is the act of inserting more-specific prefixes into
the BGP table of a router (to have them advertised to its peers) in order
to do traffic engineering, which in our case, is to re-claim the traffic stolen
by the hijacker. This way polluted ASes that have wrong routes for the
hijacked prefix in their BGP routing table will re-establish legitimate routes
since longest prefix matches are always preferred by BGP.

The de-aggregation approach is very simple and can be operated by
the network itself without any additional cost. The problem arises when a
hijack event involves a /24 prefix which cannot be de-aggregated because
operators usually filter prefixes that are more specific than /24. To mitigate
these hijacks we can employ additional networks that run ARTEMISONOS

4.2. IMPLEMENTATION 37

or an agent that supports ARTEMISONOS’s communication scheme, and
outsource the mitigation to them.

Outsourcing BGP announcements follows similar principles as the DDoS
protection security model. The main idea is that the victim AS, when it
gets hijacked, communicates with a friendly AS and asks for help. The
friendly AS then announces the hijacked prefix on the victim’s behalf. Then
the friendly AS will attract the hijacked data-plane traffic and redirect it
through an out-of-band tunnel to the victim AS.

4.2 Implementation

In this section we explain in detail the general work-flow and the third party
applications of ONOS we used. Then we will focus more on the three services
of ARTEMISONOS application; the monitoring, the detection, and the miti-
gation service and how they communicate with each other (Figure 4.2). We
will extensively describe the design pattern that we used on the services and
the interfaces that are reachable by other applications. Following the event-
listener design pattern allows for other services to use the ARTEMISONOS’s
services and/or extend the capabilities of the application. This approach is
spread through all three services; so we can have a modular design.

Figure 4.2: Services lifecycle

4.2.1 Open Networking Operating System (ONOS)

4.2.1.1 SDN-IP and Reactive-Routing

As we explained in the methodology, Reactive-Routing is a complemen-
tary application to SDN-IP. When we start these two applications Reactive-
Routing and SDN-IP:

• Install rules pro-actively to handle transit traffic between the BGP
peers,

38 CHAPTER 4. ARTEMIS OVER SDN

• Install rules pro-actively to handle traffic coming from the Internet
to talk to a host that is part of the SDN network,

• Install rules re-actively for communication between two hosts, and

• Install rules re-actively when an internal host wants to talk to the
Internet.

For the Reactive-Routing application the network operator needs to pro-
vide a configuration file that specifies the following (sample configuration can
be found in Appendix A.2):

• PUBLIC and PRIVATE prefixes used inside the SDN network.
PUBLIC prefixes are the ones announced by the BGP speakers and
are reachable from the Internet, where PRIVATE are local prefixes
which are only used inside the SDN network.

• the ports of the SDN switches that will act as gateways for each prefix,
and

• a MAC address that will be used as a Virtual Gateway address. Virtual
Gateway is needed because we do not have layer-3 routers on the SDN
data plane; therefore, the switches need to reply to the ARP requests
of the hosts asking about their next hop to the gateway.

On the other hand, in the configuration of the SDN-IP application we
provide the ports of the switches that the BGP speakers and BGP peers
are attached to. By doing this, Point-to-Point intents will be installed be-
tween the speakers and the peers for the BGP traffic which will enable the
communication between them through eBGP. Now whenever a new BGP up-
date message reaches the BGP speakers it will be forwarded to the SDN-IP
application through iBGP.

4.2.2 ARTEMISONOS’s Services

4.2.2.1 Monitoring

ARTEMISONOS’s monitoring service can connect to any BGP route collector
(e.g., based on exaBGP [11]), the streaming service of RIPE RIS [23],
and any additional source required by the network operator, as long as the
monitor interface is implemented inside the application.

These route collectors provide real-time BGP update messages for the
specified prefixes, that the application needs to monitor. The monitoring
service can be parameterized via a straightforward network configuration
file, where the network operator provides the prefixes under protection, as
well as the monitors to connect to. Additionally, the configuration includes

4.2. IMPLEMENTATION 39

the inferred neighbors of the ASN in order to detect (sub-/exact-prefix)
hijacks of type 0, 1 and N (N > 1).

When receiving a BGP Update message from a monitor, the service will
generate a BGP UPDATE EVENT and will notify all listeners about the
message. In a default scenario where the network operator runs ARTEMISONOS

with all of its services, this means that the Detection’s service listener will
receive the BGP UPDATE EVENT and process it accordingly.

Monitors Interface. ARTEMISONOS natively supports exaBGP-based
and RIPE RIS control-plane monitors. However, the monitoring service
provides a Java interface (Monitors.java) that can be implemented to sup-
port any control-plane monitor. To introduce a new control-plane monitor
the developer needs to provide the following methods:

• startMonitor: a method that connects and subscribes to a control
plane monitor based on the given prefixes. For example, the implemen-
tation for RIPE RIS monitors uses a socket.IO client and a special
crafted message to subscribe.

• stopMonitor: a method that gracefully stops the monitor.

• {set/get}Prefix: a setter/getter method for the IP prefix that will
be monitored.

• {set/get}Host: a setter/getter method for the IP of the monitor to
connect to.

• isRunning: a method that checks the state of the monitor to see if
it running. It can be used as a health check method for the monitor.

Event Dispatcher. ONOS has an event delivery service that ARTEMISONOS

uses to dispatch its events. Whenever a control-plane message is received
on a monitor, a new BGP UPDATE EVENT is generated that includes the
BGP update message. Another service can attach listeners to these types
of events and use them accordingly. For example, the detection service
handles these events by registering an ARTEMISONOS event listener. The
BGP UPDATE EVENT message fields are:

• path: A list of ASes, known as AS PATH.

• prefix: The announced IP prefix that this BGP update corresponds
to.

• timestamp: Timestamp of this BGP update message.

40 CHAPTER 4. ARTEMIS OVER SDN

4.2.2.2 Detection

The detection service has a listener that tracks new BGP UPDATE EVENT
messages. When a BGP UPDATE EVENT is received, the service checks
the AS PATH attribute to verify that the origin AS and the neighbors are
legitimate as per configuration. When an unknown AS is listed as origin
in the AS PATH, or there is an unknown neighbor, we safely assume that
we have a BGP hijack and generate a BGP HIJACK EVENT to notify the
mitigation service.

For example, the configuration might have a prefix of A.B.C.D/8 and as
a legitimate AS origin, AS1, with first neighbor AS2 and second neighbor
AS3. This means that if it receives a BGP update message for this prefix (or
sub-prefixes of it) but has as origin some other ASX, the detection service
will trigger the mitigation service because there is a Type 0 BGP Hijack.
This approach is effective for type-0/1 and any sub-prefix hijacks. Type-Ns
(N > 1) require explicit care but we do not focus on them here.

4.2.2.3 Mitigation

The mitigation service is triggered when the listener receives a BGP HIJACK EVENT.
This event includes the hijacked prefix which, based on the prefix length,
decides to either change the BGP configuration of the BGP speakers to de-
aggregate (see subsection 4.2.2.3) or outsource the mitigation by using a
MOAS setup (see subsection 4.2.2.3).

De-aggregation The SDN-IP application provides an interface that en-
lists all the active BGP speakers that are connected to the SDN network. By
iterating over this list ARTEMISONOS chooses the supported BGP speakers
and connects to them. Then it changes the BGP configuration of the BGP
speaker to announce the new sub-prefixes and initiate the de-aggregation.

Mitigation Interface Following the same design as the detection ser-
vice, we have a Java interface (BgpSpeakers.java) that can be implemented
to support any BGP speaker. This interface only has one method that
needs to implemented called announceSubPrefixes. The parameters of
this method are the two sub-prefixes that the BGP speaker will use for
deaggregation-based mitigation. The implementation includes the functions
needed to connect to the speaker and announce them.

Currently, we support Quagga routers as BGP speakers for the de-
aggregation phase. The Quagga router offers a CLI that is reachable over
telnet. The mitigation service will connect to the desired BGP speaker
through telnet and update the BGP configuration to announce the new
sub-prefixes. However, dynamic configuration of different devices (including

4.2. IMPLEMENTATION 41

BGP speakers) is under development in the ONOS project; therefore there
is no actual limitation of the approach with respect to the speaker’s type.

Outsourcing to MOAS When the hijacker announces a /24 prefix the
mitigation service cannot de-aggregate to two /25 sub-prefixes because net-
work operators usually filter prefixes more specific than /24. To bypass this
filtering we implemented an east-west protocol where the hijacked AS can
connect to other ARTEMISONOS’s instances or ARTEMISONOS’s agents and
request help in a form of a service from them, labeling them as multi-origin
AS (MOAS) helper.

After a handshake with the MOAS helper (Figure 4.3), the victim AS will
send information regarding the prefix that is hijacked to the MOAS helper,
which in turn updates the BGP configuration of the BGP speakers in order
to announce the hijacked prefix itself. We decided that the handshake should
be as fast as possible so we would avoid any additional delays that a longer
one might have added. The victim AS will also announce the same prefix
so it can attract all the traffic that is closer to it than the hijacker.

In order for this solution to work, the MOAS helper should have a tunnel
installed beforehand, connecting the MOAS helper with the victim AS on
the data plane. This tunnel will be used when the MOAS helper attracts
the hijacked traffic that was originally destined to the victim AS. Then,
MOAS helper ARTEMISONOS will install a Multi-to-Single point intent that
encapsulates the packets to go through the tunnel and then eventually get
routed to the original destination.

Figure 4.3: MOAS handshake

It is important to note here, that only the forward path traffic goes
through the tunnel in order to reach the victim AS. Optimally, this defense
mechanism provides a BGP hijack solution where the only additional cost
is the delay that the packet needs to go through the MOAS helper on the
forward path, Figure 4.4.

42 CHAPTER 4. ARTEMIS OVER SDN

Figure 4.4: Traffic after MOAS mitigation approach

Chapter 5

Evaluation Framework

5.1 Overview

In this chapter we explain the methodology that we used to evaluate our tool
and the results we observed. We wanted to emulate realistic hijack attempts
and to evaluate the two mitigation scenarios which are: (a) de-aggregating
from within the AS and (b) outsourcing the BGP announcements to another
AS (MOAS). For (a) we used Mininet in order to emulate the topologies and
test the tool’s behavior, and for (b) we used GNS3, because we needed to
achieve the same goal while having multiple ONOS instances. The lat-
ter is not supported by Mininet; also, GNS3’s graphical interface makes it
easier to setup multiple topologies and debug them. The emulated nodes
inside GNS3 are docker containers that include Quagga BGP routers, Open
vSwitch switches, hosts, normal switches, ExaBGP control plane monitors
and lastly the ONOS controllers.

There were many implications that did not let us run our experiments in
the real Internet. We did not have access to an AS to attach our controller
to their BGP speaker and it would have been impossible to do a legitimate
hijack without polluting the whole Internet. PEERING [21] offers a testbed
that let researchers access and interact with the BGP routing system and
gives us the theoretical ability to produce a hijack, but due to the inability
to test the outsourcing mitigation technique we did not choose it as our
evaluation method.

We chose to emulate Internet topologies and then do the hijack events
there. Because the experiments were setup and run in an emulated envi-
ronment and we did not have access to external control plane monitors that
are deployed on the real Internet, we implemented our own control plane
monitor on top of an ExaBGP router. This control plane monitor offers
a Socket.IO Northbound Interface that clients can subscribe to and ask
for the control plane traffic that corresponds to a specific prefix. When an

43

44 CHAPTER 5. EVALUATION FRAMEWORK

ExaBGP control plane monitor is specified in the ARTEMISONOS’s con-
figuration, ARTEMISONOS sends a subscribe request to the control plane
monitor for each owned prefix; afterwards, it will receive any BGP update
message corresponding to them.

For the topologies that we generated, we employed two types of ASes;
(a) a normal AS that contains a BGP speaker and a simple host; these ASes
could be either intermediate ASes or hijackers, and (b) a SDN-enabled AS
that contains a BGP speaker, an OpenVSwitch, an ONOS controller, an
ExaBGP monitor and a simple host. More specifically, the SDN-enabled
AS has (i) a Quagga BGP speaker that connects with the ExaBGP monitor
to forward the control plane traffic through iBGP, (ii) the OpenVSwitch
that interconnects the AS with the rest of the Internet and (iii) the ONOS
controller which uses ARTEMISONOS, Reactive-Routing and SDN-IP appli-
cations to coordinate all these network devices. These types and associated
devices are sufficient to illustrate the concept of ARTEMISONOS.

Note that the ONOS controller must have access to the BGP speaker,
to the control plane monitors and to any other ONOS controller that will
communicate with it. For simplification, we used a global switch in our
topologies through which the ONOS controllers and the control plane mon-
itors communicate. These connections, in the real Internet, are meant to be
out-of-band connections. Through these connections, control plane monitors
connect to the controllers to transfer the control plane information. More-
over, ARTEMISONOS’s instances talk with each other in case an outsourcing
mitigation is needed.

Before we explain independently each attack and mitigation scenario, we
will analyze the steps that are the same in both cases.

When we start the emulation, all of the ASes have a BGP speaker with a
BGP configuration that specifies the prefixes that they own and the neigh-
bors that they have. So, in the beginning, BGP will converge and the ASes
will populate their local routing tables. The protected SDN-enabled AS will
not be visible to the outer Internet because when initialized, ONOS only
runs the core applications, so we need to activate reactive-routing, SDN-IP
and ARTEMISONOS.

By activating these applications and providing the network configuration
for each of them we trigger the following actions inside the SDN network:

• The SDN-IP will connect with the BGP speaker through iBGP and
wait for any BGP update that it receives.

• A point-to-point intent will be installed to forward all the BGP traffic
from the outside BGP peers to the BGP speaker of the SDN network.
This means that the BGP speaker of the SDN network will announce
through eBGP the prefix that it owns, but also receive all the routing
information concerning the other connected ASes; this information will

5.1. OVERVIEW 45

be then forwarded to the SDN-IP application. So, after this step the
protected SDN-enabled AS will be reachable from the Internet and
BGP will converge.

• A Multi-to-Single intent will be installed to route any traffic coming
from the Internet destined to the internal hosts and a Point-to-Multi
intent for the other way around, and

• ARTEMISONOS’s detection service will subscribe to all the control
plane monitors specified in the configuration.

Now the protected SDN-enabled AS is connected to the legacy ASes and
has exchanged all the routing information through BGP. Also, all hosts are
now reachable and can exchange data plane traffic between them.

The configuration files that we provide to these applications and their
fields are:

SDN-IP Configuration (Appendix A.3)

• The ports on the OpenVSwitch that the BGP speakers are attached
to.

• The IPs of the BGP peers that are connected to this AS.

Reactive-Routing Configuration (Appendix A.2)

• The PUBLIC and PRIVATE IP prefixes with their gateway IP.

• A virtual gateway MAC address.

ARTEMISONOS Configuration (Appendix A.1)

• The prefixes that the protected AS owns and we want to monitor for
BGP prefix hijacks.

• The AS paths that are legitimate for each prefix.

• A list of all control plane monitors to use, as well as their interface
type (RIPE RIS, ExaBGP, etc).

To make it easier for the reader to understand which network entity
is which, we are going to label them with the following subscripts (note
that: R →router, H →host, EXA →ExaBGP monitor, ONOS →ONOS,
AS →AS):

• ASp, Rp, Hp, ONOSp - We label with the letter ’p’ the network devices
that are inside the protected SDN-enabled AS that runs ARTEMISONOS.

46 CHAPTER 5. EVALUATION FRAMEWORK

• ASh, Rh, Hh - Letter ’h’ will correspond to devices that are inside the
hijackers AS.

• ASt, EXAt, Ht - Network entities labeled with letter ’t’ will corre-
spond to the devices that are inside the AS that generates the traffic
to the protected AS.

• ASm, EXAm, ONOSm - Letter ’m’ corresponds to the friendly Multi-
Origin AS (MOAS).

• default - No letter means that this is an intermediate AS, with the
purpose of adding additional nodes on the AS graph (e.g., for large-
scale experiments).

5.2 De-aggregation Scenario

For this test scenario we wanted to have an AS with a control plane mon-
itor, a protected SDN-enabled AS that runs ARTEMISONOS, SDN-IP and
Reactive-routing, a random number of intermediate ASes to test the differ-
ence of the BGP convergence when the AS graph changes, and the hijacker
AS. The hijacker AS is always positioned closer to the AS that the traffic
will originate from, so it can hijack traffic based on the shortest path to
reach it. Lastly, all the links between the network devices for this type of
experiment have only 1ms delay.

5.2.1 Experiment Setup

Figure 5.1: GNS3 Demo Topology

5.2. DE-AGGREGATION SCENARIO 47

Figure 5.2: Abstracted demo topology of 4 ASes

A simple topology that can be used to test the de-aggregation approach is
depicted in Figure 5.1 and abstracted in Figure 5.2. In this topology we have
4 ASes; three of them are normal ASes and the other one is the SDN-enabled
AS. They are connected like this: AS1p - AS2 - AS3t - AS4h. The protected
AS in this topology is AS1p, the intermediate AS is AS2, the intermediate
AS with the control plane monitor and the traffic generator is AS3t, and
the hijacker is AS4h.

Also, each AS has a prefix that it originates based on their AS number.
For an AS with number X the prefix that will originate from them will be
10.x.0.0/22 and the –single– host of each AS always has IP 10.x.0.100.

After routes towards the prefixes of all ASes, including the SDN ASes,
have converged in BGP, we are going to start sending data plane traffic from
H3t to H1p. When a data plane packet reaches the OpenVSwitch (OV S1p)
the packet will be forwarded to the port where H1p is, because OV S1p
already has rules to route this traffic; the latter rules were pro-actively
installed by the reactive-routing application.

While the traffic is exchanged, the hijacker AS4h will announce a sub-
prefix of AS1p. In this case, a sub-prefix of 10.1.0.0/22 would be 10.1.0.0/23.
We also change the IP of H4h to be 10.1.0.100 so that it receives the traffic
that was originally destined to H1p.

When we change the BGP configuration of R4h to announce the 10.1.0.0/23
prefix we keep a timestamp th which signals the start of the hijack. This
BGP update message will eventually pollute all BGP routing tables of other
ASes into thinking that 10.1.0.0/23 prefix originates now from AS4h and
not from AS1p. The data plane traffic will get redirected from H1p to H4h,
which signals a successful hijack. We will denote this event with timestamp
ts. In Figure 5.3 we see a simple representation of a successful hijack.

48 CHAPTER 5. EVALUATION FRAMEWORK

Figure 5.3: Hijacker announces illegitimate sub-prefix

When the illegitimate BGP update message reaches BGP speaker R3t,
it is also going to be forwarded through iBGP to the ExaBGP monitor,
EXA3t. The ExaBGP monitor will then send this message to the sub-
scribers of that prefix. Because the protected AS1p had subscribed for prefix
10.1.0.0/22 which includes (i.e., is a super-prefix of) 10.1.0.0/23, the monitor
will forward the BGP update message to the subscribed ARTEMISp.

The monitor service of ARTEMISp will receive the BGP update mes-
sage and add it to a queue of the detection service. Because the BGP up-
date message will have an illegitimate origin AS of AS3h, this will generate
a BGP HIJACK EVENT that will be sent to the mitigation service.

The mitigation service will inspect the hijacked prefix that is /23 and will
decide to follow the de-aggregation approach by announcing through R1p
two /24 prefixes. When the announcement is done, we keep a timestamp
denoted as tm. After some time td, the BGP update message will reach R3t
and converge, and the data plane traffic will return back to the destined
H1h. When BGP converges on AS4h which started the hijack we also keep
a final timestamp te.

As seen in Figure 5.4 the de-aggregation approach results in retrieving
back all the stolen traffic from the hijacker.

5.2. DE-AGGREGATION SCENARIO 49

Figure 5.4: Successful mitigation through de-aggregation

5.2.2 Results

After experimenting with different topologies, we gather the timestamps
mentioned before and split them in four stages:

1. Stage 1 - is the time difference between th and ts, which translates to
the time the hijack needs to reach a control plane monitor.

2. Stage 2 - is the time between ts and tm and indicates the ARTEMISONOS’s
reaction speed from detecting to mitigating.

3. Stage 3 - represents the BGP convergence time for the de-aggregated
prefixes to reach the control plane AS that detected the hijack (tm to
td).

4. Stage 4 - this is the time needed for the legitimate BGP update to
reach the hijacker (td to te).

For the sample topology that was described in subsection 5.2.1, we run
our ARTEMISONOS setup 10 times and gather the timestamps to calculate
each stage which are listed in Figure 5.5.

By calculating the averages we form a stacked bar plot in Figure 5.6
with which we compare the time of each stage so that we can evaluate
the performance of our tool and what can be considered the overhead of our
methodology. We can see that when a control plane monitor is one hop away
from the hijacker, it takes around 4 seconds to receive the polluted BGP
update. Then, the control plane monitor sends the polluted BGP update
which will be handled by the ARTEMISONOS application and eventually
mitigate the hijack through announcing the more specific prefixes. The

50 CHAPTER 5. EVALUATION FRAMEWORK

average time that ARTEMISONOS takes to detect and mitigate is in the
order of milliseconds (1-2ms), which is not visible in the original Figure 5.6,
but you can see it if we zoom in at Figure 5.7. Then, the BGP convergence
time for the de-aggregated prefixes that signs the end of the mitigation, is
shown as the overhead, with an average time of 45 seconds. For the last
stage, the BGP update message reaches the source of the hijack from the
control plane monitor, after 5 seconds.

With these results, we can see that the ARTEMISONOS application reacts
almost instantaneously when a control plane monitor receives the hijack in
a matter of milliseconds, and the only large and unavoidable delay is the
BGP convergence of the de-aggregated prefixes.

We also run our methodology with other topologies that followed the
sample one but with adding additional intermediate ASes between the ASp

and ASt. When we have a huge topology with multiple intermediate ASes,
thanks to ARTEMISONOS’s fast reaction speed and mitigation, the BGP
updates of the de-aggregated prefixes sometimes reach ASes closer to ASp

faster than the polluted BGP updates. Typically, ASes that are closer to
ASp than ASh will not prefer routing to the hijacker as they have already a
longer prefix to match upon (generated during the mitigation process) but
also a shorter AS PATH.

1 2 3 4 5 6 7 8 9 10

Experiment Performance

0

10

20

30

40

50

60

T
im

e
 (

m
s
)

Stage 1

Stage 2

Stage 3

Stage 4

Figure 5.5: Bar plot of all BGP hijacking stages

5.3. OUTSOURCING MITIGATION SCENARIO 51

1 2

Experiment Performance

0

10

20

30

40

50

60

T
im

e
 (

m
s
)

Stage 1

Stage 2

Stage 3

Stage 4

Figure 5.6: Stacked plot of all BGP hijacking stages

Experiment Performance

3.55

3.6

3.65

3.7

3.75

3.8

3.85

3.9

3.95

T
im

e
 (

m
s
)

Stage 1

Stage 2

Stage 3

Stage 4

Figure 5.7: Zoomed-in Figure 5.3 to show ARTEMISONOS’s time

5.3 Outsourcing Mitigation Scenario

More specific prefixes than /24 tend to be filtered from the network operators
to avoid having huge BGP routing tables, which can affect the speed but also
need more memory. Therefor, in this test scenario, the main difference is
that the hijacker announces a more specific prefix /24 and the protected AS
needs not only to announce the /24 prefix, but also to outsource the BGP
announcements in order to get back the data plane traffic that is closer to
the hijacker through tunneling. Also, for the emulation platform we used
GNS3 instead of Mininet because Mininet cannot support multiple instances

52 CHAPTER 5. EVALUATION FRAMEWORK

of ONOS running simultaneously. The links between the ASes have now a
fixed delay of 10ms, while the links between the network devices inside an
AS a delay of 1ms. We decided to have different delays so we can measure
the difference when a packet is routed through another path, or in this case
through the MOAS helper, ASm.

5.3.1 Experiment Setup

Figure 5.8: MOAS Helper Demo Topology

The simplest topology to test the outsourcing approach and introduce the
Multi-Origin ASm, is depicted in Figure 5.8. Before we move on with the
hijack experiment, we need to state that a tunnel is setup upfront between
AS6p and AS1m, and is going to be used to route the data plane traffic to
the legitimate prefix owner after the hijack.

Also, another difference from the previous scenarios is that the hijacker
and the protected AS have the same neighboring AS, AS4. This neighboring
AS has BGP policies for the protected AS and the hijacker AS so it will
always prefer the hijacker when the AS PATH length is the same. To achieve
this in practice, the hijacker AS is set as a CUSTOMER to the intermediate
AS where the protected AS is set as a PROVIDER.

Here, the hijacker AS5h is going to hijack a /24 sub-prefix of AS6p.
When AS5h announces the /24 sub-prefix at th, and after BGP converges
with the illegitimate route, H3t which is the traffic origin will talk with
H5h instead of H6p; this event is timestamped as ts. The illegitimate BGP
update message will also reach AS1m which in our case is a friendly AS that
runs ARTEMISONOS as well and communicates with the ARTEMISONOS

instance of AS6p. R1m will send the BGP update message to EXA1m and
through the out-of-band link to ONOS6p.

5.3. OUTSOURCING MITIGATION SCENARIO 53

ARTEMISONOS in AS6p will now receive the BGP update message on
the monitoring service and fire up a BGP UPDATE EVENT for the detec-
tion service. The detection service will see that the origin AS on the BGP
update message do not match the legitimate ASes and because now a /24
prefix is hijacked, it will use the outsourcing method by contacting a MOAS
helper and also update its BGP configuration to announce the /24 prefix as
well.

Through ARTEMISONOS, ONOS6p will talk with ONOS1m and request
help for the /24 prefix, timestamped as tm. Then, ONOS6p, will announce
the attacked /24 prefix which will cause the AS3t to update the BGP routes
to forward traffic to the AS1m instead of the hijacker AS, timestamped as
td.

AS1m will install flow rules that will redirect through the mentioned pre-
installed tunnel all incoming traffic of the attacked prefix to the protected
AS6p.

5.3.2 Results

The stages that we used for the previous mitigation technique are still the
same, except for adding an intermediate Stage 2.5 which is the time the
MOAS helper needs to announce the prefix. This stage’s execution time
varies according to the delay that exists between the two ASes (the protected
AS and the MOAS helper). Because they exchange only one message, in
order to start the mitigation, we only need to measure the forward path
delay. For the sample topology that is shown in Figure 5.8, during Stage
2.5 it takes 20ms for the request to reach the MOAS helper through the
out-of-band link and 1ms to announce and install the flows to redirect the
tunneled traffic.

When BGP converges, we have two possible ways for the hijacked traffic
to return back to the protected AS6p. If the traffic (a) is closer to the MOAS
helper it will go through it as a relay and then be forwarded to the protected
AS, or (b) if it is closer to the protected AS it will route to it directly.

In the sample topology the hijacked traffic that is closer to AS1m will
go through it and then will be sent through the tunnel. If we check the
forward path of a data plane packet from AS3t, we will see that it goes like
this: AS3t - AS2 - AS1m - AS2 - AS4 - AS6p and when it returns: AS6p
- AS4 - AS2 - AS3t. This means that because the packet goes through the
MOAS helper and then tunneled to the AS6p it adds an additional delay
on the forward path of the data plane packet but not on the return path,
eventually acting as a relay AS only for the one-way traffic.

As seen in Table 5.1, we observe the difference of the packet delays before
and after the MOAS mitigation. The additional delay that is added is the
cost of the packet going through AS1m as a relay only for traffic that is
closer to the MOAS helper. In our sample topology the additional delay is

54 CHAPTER 5. EVALUATION FRAMEWORK

the delay of adding two additional AS hops only for the forward path, which
is around 20ms. Mitigating the hijack for the cost of some milliseconds can
be considered acceptable.

Forward Path Forward Path Delay (ms)

Before AS3 - AS2 - AS4 - AS6 32ms

After AS3 - AS2 - Tunnel(AS1 - AS2
- AS4) - AS6

54ms

Return Path Return Path Delay (ms)

Before AS6 - AS4 - AS2 - AS3 32ms

After AS6 - AS4 - AS2 - AS3 32ms

Table 5.1: Packet delay difference when going through a MOAS tunnel.

Chapter 6

Conclusions and Future
Work

6.1 Conclusions

We implemented ARTEMISONOS as a modular application that has three
services that can be run independently and uses two pre-existing applica-
tions of ONOS, SDN-IP and Reactive-Routing. We show that it successfully
detects and mitigates BGP prefix hijacks of any prefix length for type-0 and
type-1 hijacks.

The application was accepted by the ONOS technical steering team and
is now already packaged and released on-par with ONOS. It is the first SDN
application that battles with BGP hijacks and has received feedback by
many researchers. A short introduction and demo was presented in ONOS
Build 2017 in Seoul, Korea and a demo video is released that explains how
it works [2].

With the results we gathered from our evaluation framework we showed
that the application takes milliseconds to detect and initiate mitigation of
the BGP hijack attack, while the overhead is the BGP convergence which
has three times higher order of magnitude.

Also, using an SDN-enabled network instead of a legacy one, automates
the traffic rerouting by using the intent framework and also significantly
decreases the time it takes to (re-)configure the network devices.

6.2 Future Work

Despite the fact that legacy ARTEMIS was first tested on a real-world, non-
SDN environment with the basic mitigation strategy of prefix de-aggregation
in mind, our application can support several extensions related to its moni-
toring, detection and mitigation modules due to its highly modular design.

55

56 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

These extensions can be served as extra services built over the ONOS plat-
form. We intend to implement the following extensions:

6.2.1 AS Graph Discovery

We intend to automate the network configuration generation, where the tool
is set to an idle discovery state and instead of searching for BGP Hijacks,
it discovers the AS-level topology for the specified prefixes. Also, it will be
possible to populate this topology through BGP control-plane archives to
speed-up the AS discovery. This will allow the simplification of the config-
uration process and the detection of advanced hijacks.

6.2.2 Dynamic Router Configuration

NETCONF[35] is a network management protocol that provides mechanisms
to install, manipulate, and delete the configuration of network devices.

Support for dynamic configuration of devices (in our application the
BGP speakers) is a new feature currently under development by the ONOS’s
Dynamic Configuration Brigade [17]. This will potentially support a large
number of available routers and will enhance the capabilities of ARTEMISONOS’s
mitigation service.

6.2.3 PEERING Testbed

Following the footsteps of the initial ARTEMIS approach, we plan to employ
the PEERING testbed [21] to announce prefixes on the real Internet using
hybrid real-world and virtualized SDN setups.

The challenge with this approach is that we cannot install SDN software
on PEERING Points of Presence (PoP). This means that we will need to
have a local SDN setup that monitors the real Internet and outsources, if a
hijack is detected, the mitigation to a PEERING PoP.

Appendix A

Network Configurations

A.1 ARTEMISONOS Configuration

This is a sample network configuration file for ONOS’s ARTEMISONOS ap-
plication.

"org.onosproject.artemis" : {

"artemis": {

"prefixes": [

{

"moas": [],

"paths": [

{

"neighbor": [

{

"asn": 65002,

"neighbor": [

65001

]

}

],

"origin": 65004

}

],

"prefix": "40.0.0.0/8"

}

]

},

"moas": { },

"monitors": {

"exabgp": [

"192.168.1.2:5000"

57

58 APPENDIX A. NETWORK CONFIGURATIONS

],

"ripe": []

}

}

}

Explanation of Fields

• prefixes: List consisting of prefixes with their AS-PATH information
and (optionally) legitimate MOAS ASes.

– moas: List of IPs that will be used to request help when an
outsourced mitigation is required.

– prefix: A CIDR representation of the prefix that is monitored/protected.

– paths: List of dictionaries that contain the ASN of the protected
AS (origin), along with a list of dictionaries for the neighbors.

– neighbor: List of dictionaries that contain each neighbor’s ASN
and a list of ASNs for the neighbor’s neighbor. For example,
in the demo topology, the protected (origin) AS65004 sees the
AS65002 as a first-hop neighbor, and AS65001 as a second-hop
neighbor (resulting in the legitimate announced path AS65004 -
AS65002 - AS65001).

Note: While the operator can supply the origin and first-hop
neighbor ASNs as ground-truth in the configuration, the N-hop
(N > 1) neighbor information is planned to be generated auto-
matically by ARTEMISONOS in future versions of the tool, based
on the received BGP updates.

• moas: List of IPs that this service will accept outsourced mitigation
requests from. It is used as a security check to validate the source
of the mitigation request. In future work this will be changed to use
asymmetric cryptography instead, to avoid IP spoofing attacks.

• monitors: List of the route collectors that ARTEMISONOS is using for
monitoring. Currently it supports RIPE and ExaBGP route collectors
through the socket-io interface, and is extendable to include more
monitoring services/APIs.

RIPE Route Collectors have specific identifiers (”rrc18”, ”rrc19”, ”rrc20”,
”rrc21”). You can configure them following this example:
”ripe” : [”rrc18”, ”rrc19”].

An ExaBGP Route Collector (RC) is implemented inside the tuto-
rial folder (/onos/tools/tutorials/artemis/). You can host such an
RC locally by running an ExaBGP instance with the exabgp.conf and

A.2. REACTIVE-ROUTING CONFIGURATION 59

server.py files provided (the latter will require modifications in di-
rectory paths). In the demo topology we have an ExaBGP speaker
running on 192.168.1.2:5000, monitoring the BGP control plane from
the perspective of AS65001.

A.2 Reactive-Routing Configuration

This is a sample network configuration file for ONOS’s Reactive-Routing
application.

{

"ports" : {

"of:00000000000000a1/4" : {

"interfaces" : [

{

"ips" : ["201.0.0.254/24"],

"mac" : "00:00:00:00:00:01"

}

]

},

"of:0000000000000a13/4" : {

"interfaces" : [

{

"ips" : ["213.0.0.200/24"],

"mac" : "00:00:00:00:00:01"

}

]

}

},

"apps" : {

"org.onosproject.reactive.routing" : {

"reactiveRouting" : {

"ip4LocalPrefixes" : [

{

"ipPrefix" : "201.0.0.0/24",

"type" : "PUBLIC",

"gatewayIp" : "201.0.0.254"

}

{

"ipPrefix" : "213.0.0.0/24",

"type" : "PRIVATE",

"gatewayIp" : "213.0.0.254"

}

],

60 APPENDIX A. NETWORK CONFIGURATIONS

"ip6LocalPrefixes" : [

],

"virtualGatewayMacAddress" : "00:00:00:00:00:01"

}

}

}

}

Explanation of Fields

• ports: Include configuration to match switch ports with an IP and a
MAC address. Each port is identified with the OpenFlow ID of the
switch and the port number.

• apps/reactiveRouting/ip{4/6}LocalPrefixes: List of all prefixes
that exist inside our AS.

– ipPrefix: A CIDR notation of the prefix owned.

– type: Type of prefix, it can either be PUBLIC if it is reachable
from the outside or PRIVATE if it is not.

– gatewayIP: An IP that is the gateway IP of this specific prefix.

• apps/reactiveRouting/virtualGatewayMacAddress: A MAC ad-
dress that is used to answer all ARP requests about gateway IPs of all
IP prefixes.

A.3 SDN-IP Configuration

This is a sample network configuration file for ONOS’s SDN-IP application.

"org.onosproject.router": {

"bgp": {

"bgpSpeakers" : [

{

"name" : "speaker1",

"connectPoint" : "of:00002a45d713e141/4",

"peers" : [

"150.1.3.1"

]

}

]

}

}

A.4. EXABGP CONTROL-PLANE MONITOR 61

Explanation of Fields

• bgp/bgpSpeakers: List of structures that correspond to each BGP
speaker

– name: An alias for the specific BGP speaker.

– connectPoint: The Openflow ID of the switch and the port that
this BGP speaker is connected to.

– peers: List of IPs that this BGP speaker is peering with.

A.4 ExaBGP control-plane monitor

We implemented a lightweight docker container that contains an EXABGP
control-plane monitor which connects with a BGP Speaker and has a Socket.IO
interface to propagate all control-plane messages.

The operator may initialize the monitor by providing the local IP ad-
dress, the IP address of the BGP Speaker and the AS Number through
environment variables. Then he can subscribe to the monitor by connecting
on port 5000 as a socket.IO client and send a subscribe message.

To Subscribe to the ExaBGP monitor:

Event: exa_subscribe

Message: prefix as string (e.g. ’10.0.0.0/8’)

Messages sent from ExaBGP monitor to the subscriber:

Event: exa_message

Message:

’type’: Type of the BGP message (Now it only sends BGP Update messages;

you can change server.py to send also withdraw messages)

’timestamp’: Timestamp

’peer’: Peer of the BGP message

’host’: String identifier of the monitor (default ’exabgp’)

’path’: BGP Update AS Path

’prefix’: Prefix that corresponds to the BGP Upate message

62 APPENDIX A. NETWORK CONFIGURATIONS

Appendix B

ONF Internship

As a part of my internship at Open Networking Foundation, except the work
on ARTEMISONOS, I was a member of multiple brigades focusing on ONOS
and M-CORD.

B.1 M-CORD

M-CORD is an open source reference solution for carriers deploying mobile
wireless networks. It is built on SDN and NFV technologies while it includes
both virtualization of RAN functions and a virtualized mobile core (vEPC).

B.1.1 eXtensible Radio Access Networks (xRAN)

I was the lead developer and brigade lead for the xRAN project (as ONOS
community continued to grow over time, ONOS formed brigades which are
teams that coordinate to achieve a shared goal). xRAN organization stan-
dardized southbound and northbound interfaces in order to SDN’ize the
RAN architectures. I designed and implemented these interfaces on top of
ONOS but also the controller logic. The end-product demo was presented
in MWC Americas 2017 in San Francisco with a custom eNB developed by
Radisys.

B.1.2 ONOS in-between Control and User plane of vEPC

INTEL implemented a VNF that merges Service Gateway and Packet Gate-
way of RAN while decoupling the control plane and user plane. I introduced
an SDN application that lays in-between the two planes which provides an
API to control and monitor each plane but also add any other implemen-
tation for the data-plane. We presented at MWC 2018 in Barcelona where
we replaced the data plane implementation of INTEL with a P4-based pro-
grammable fabric and open source EPC.

63

64 APPENDIX B. ONF INTERNSHIP

B.2 ONOS

On the side of ONOS, I implemented ARTEMISONOS but also was part of
other brigades and contributed fixes and patches to some bugs.

B.2.1 ISSU

I was a member and contributor of In-Service Software Upgrade brigade
for ONOS. We implemented a new protocol, following the same logic as
CISCO routers, that would support an in-service upgrade. I focused primar-
ily on patching primary-backup and RAFT protocols that were implemented
through atomix library.

B.2.2 Other Bugs & Futures

Finding bugs was a daily event and with the help of the brigades we fixed/patched
a lot of them. Most of them that I came across and resolved were in services
such as REST, RESTCONF, SDN-IP, Reactive-Routing, BGP-Router, etc.

Bibliography

[1] Apache karaf. https://karaf.apache.org/.

[2] ARTEMIS ONOS Demo. https://www.youtube.com/watch?v=

UouzKz8sUFw.

[3] ARTEMIS ONOS Wiki. https://wiki.onosproject.org/display/

ONOS/ARTEMIS%3A+an+Automated+System+against+BGP+Prefix+

Hijacking.

[4] BGPmon (Colorado State University). http://www.bgpmon.io.

[5] BGPmon (commercial). http://www.bgpmon.net.

[6] Can SDN accelerate BGP convergence? a performance analysis of
inter-domain routing centralization, author=Sermpezis, Pavlos and
Dimitropoulos, Xenofontas, journal=arXiv preprint arXiv:1702.00188,
year=2017.

[7] Chinese isp hijacks the internet. http://www.bgpmon.net/

chinese-isp-hijacked-10-of-the-internet/.

[8] CIDR REPORT for 18 Jun 18. http://www.cidr-report.org/as2.

0/.

[9] Containers vs VMs: Which is better for cloud deployments?
https://www.sdxcentral.com/cloud/containers/definitions/

containers-vs-vms/.

[10] CORD (Central Office Re-architected as a Datacenter): reinventing
central offices for efficiency and agility. http://opencord.org/.

[11] exabgp: The BGP swiss army knife of networking. https://github.

com/Exa-Networks/exabgp.

[12] GNS3. https://gns3.com/.

[13] Hacker Redirects Traffic from 19 Internet providers to steal Bitcoins.
https://www.wired.com/2014/08/isp-bitcoin-theft/.

65

66 BIBLIOGRAPHY

[14] Looking Glass API documentation. http://www.caida.org/tools/

utilities/looking-glass-api/.

[15] Mininet. http://mininet.org/.

[16] ONOS Deployments. https://wiki.onosproject.org/display/

ONOS/Deployments/.

[17] ONOS: Dynamic Configuration Brigade. https://wiki.onosproject.
org/display/ONOS/Dynamic+configuration+brigade/.

[18] ONOS Intent Framework. https://wiki.onosproject.org/display/
ONOS/Intent+Framework.

[19] Open Networking Operating System (ONOS). http://onosproject.

org/.

[20] Open vSwitch. http://openvswitch.org/.

[21] The PEERING testbed. https://peering.usc.edu.

[22] Quagga. http://www.nongnu.org/quagga/.

[23] RIPE RIS. http://www.ris.ripe.net/.

[24] The Route Views Project. http://www.routeviews.org/.

[25] SDN Resources: Understanding the SDN Architecture and SDN
Control Plane. https://www.sdxcentral.com/sdn/definitions/

inside-sdn-architecture/.

[26] SDN series part seven: ONOS. https://thenewstack.io/

open-source-sdn-controllers-part-vii-onos/.

[27] xRAN.org. http://www.xran.org/.

[28] Youtube hijacking: A ripe ncc ris case study. https:

//www.ripe.net/publications/news/industry-developments/

youtube-hijacking-a-ripe-ncc-ris-case-study.

[29] Karan Balu, Miguel L Pardal, and Miguel Correia. DARSHANA: De-
tecting route hijacking for communication confidentiality. In Network
Computing and Applications (NCA), 2016 IEEE 15th International
Symposium on, pages 52–59. IEEE, 2016.

[30] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi
Kobayashi, Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Ra-
doslavov, William Snow, et al. Onos: towards an open, distributed
sdn os. In Proceedings of the third workshop on Hot topics in software
defined networking, pages 1–6. ACM, 2014.

BIBLIOGRAPHY 67

[31] Kevin Butler, Toni R Farley, Patrick McDaniel, and Jennifer Rexford.
A survey of BGP security issues and solutions. Proceedings of the IEEE,
98(1):100–122, 2010.

[32] Kenneth K Chan, Philip W Hartmann, Scott P Lamons, Terry G Lyons,
and Argyrios C Milonas. Virtual local area network, April 18 1989. US
Patent 4,823,338.

[33] Gavriil Chaviaras, Petros Gigis, Pavlos Sermpezis, and Xenofontas
Dimitropoulos. ARTEMIS: Real-time Detection and Automatic Miti-
gation for BGP Prefix Hijacking. In Proceedings of the 2016 conference
on ACM SIGCOMM 2016 Conference, pages 625–626. ACM, 2016.

[34] Alan Elder and Jonathan Harrison. Spanning tree protocol, October 1
2015. US Patent App. 14/673,652.

[35] R Enns, M Bjorklund, J Schoenwaelder, et al. IETF RFC 6241: Net-
work Configuration Protocol (NETCONF).

[36] Dimitrios Gkounis, Vasileios Kotronis, and Xenofontas Dimitropou-
los. Towards defeating the crossfire attack using sdn. arXiv preprint
arXiv:1412.2013, 2014.

[37] Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean P Dono-
van, Brandon Schlinker, Nick Feamster, Jennifer Rexford, Scott
Shenker, Russ Clark, and Ethan Katz-Bassett. SDX: A software de-
fined internet exchange. ACM SIGCOMM Computer Communication
Review, 44(4):551–562, 2015.

[38] Alexander JT Gurney, Andreas Haeberlen, Wenchao Zhou, Micah
Sherr, and Boon Thau Loo. Having your cake and eating it too: Rout-
ing security with privacy protections. In Proceedings of the 10th ACM
workshop on hot topics in networks, page 15. ACM, 2011.

[39] Andreas Haeberlen, Ioannis C Avramopoulos, Jennifer Rexford, and
Peter Druschel. Netreview: Detecting when interdomain routing goes
wrong. In NSDI, volume 2009, pages 437–452, 2009.

[40] Rahul Hiran, Niklas Carlsson, and Nahid Shahmehri. PrefiSec: A
distributed alliance framework for collaborative BGP monitoring and
prefix-based security. In Proceedings of the 2014 ACM Workshop on
Information Sharing & Collaborative Security, pages 3–12. ACM, 2014.

[41] Rahul Hiran, Niklas Carlsson, and Nahid Shahmehri. Crowd-based
detection of routing anomalies on the internet. In Communications and
Network Security (CNS), 2015 IEEE Conference on, pages 388–396.
IEEE, 2015.

68 BIBLIOGRAPHY

[42] Rahul Hiran, Niklas Carlsson, and Nahid Shahmehri. Collaborative
framework for protection against attacks targeting BGP and edge net-
works. Computer Networks, 122:120–137, 2017.

[43] Xin Hu and Z Morley Mao. Accurate real-time identification of ip prefix
hijacking. In Security and Privacy, 2007. SP’07. IEEE Symposium on,
pages 3–17. IEEE, 2007.

[44] Josh Karlin, Stephanie Forrest, and Jennifer Rexford. Pretty good
BGP: Improving BGP by cautiously adopting routes. In Network Pro-
tocols, 2006. ICNP’06. Proceedings of the 2006 14th IEEE International
Conference on, pages 290–299. IEEE, 2006.

[45] Stephen Kent, Charles Lynn, and Karen Seo. Secure border gateway
protocol (s-bgp). IEEE Journal on Selected Areas in Communications,
18(4):582–592, 2000.

[46] Vasileios Kotronis, Adrian Gämperli, and Xenofontas Dimitropoulos.
Routing centralization across domains via SDN: A model and emulation
framework for BGP evolution. Computer Networks, 92:227–239, 2015.

[47] Vasileios Kotronis, Rowan Klöti, Matthias Rost, Panagiotis Georgopou-
los, Bernhard Ager, Stefan Schmid, and Xenofontas Dimitropoulos.
Stitching inter-domain paths over IXPs. In Proceedings of the Sym-
posium on SDN Research, page 17. ACM, 2016.

[48] Mohit Lad, Daniel Massey, Dan Pei, Yiguo Wu, Beichuan Zhang, and
Lixia Zhang. PHAS: A Prefix Hijack Alert System. In Usenix Security,
2006.

[49] Matt Lepinski, Richard Barnes, and Stephen Kent. An infrastructure
to support secure internet routing. 2012.

[50] Matt Lepinski and K Sriram. BGPSEC protocol specification. Technical
report, 2017.

[51] Pingping Lin, Jonathan Hart, Umesh Krishnaswamy, Tetsuya Mu-
rakami, Masayoshi Kobayashi, Ali Al-Shabibi, Kuang-Ching Wang, and
Jun Bi. Seamless interworking of SDN and IP. page 2.

[52] Pingping Lin, Jonathan Hart, Umesh Krishnaswamy, Tetsuya Mu-
rakami, Masayoshi Kobayashi, Ali Al-Shabibi, Kuang-Ching Wang,
and Jun Bi. Seamless interworking of SDN and IP. In ACM SIG-
COMM computer communication review, volume 43, pages 475–476.
ACM, 2013.

[53] Shishir Nagaraja, Virajith Jalaparti, Matthew Caesar, and Nikita
Borisov. P3CA: Private anomaly detection across ISP networks. In

BIBLIOGRAPHY 69

International Symposium on Privacy Enhancing Technologies Sympo-
sium, pages 38–56. Springer, 2011.

[54] Bruno Astuto A Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia
Obraczka, and Thierry Turletti. A survey of software-defined network-
ing: Past, present, and future of programmable networks. IEEE Com-
munications Surveys & Tutorials, 16(3):1617–1634, 2014.

[55] David Plummer et al. An Ethernet address resolution protocol (RFC
826). Network Working Group, 1982.

[56] Jon Postel et al. RFC 791: Internet protocol, 1981.

[57] Jian Qiu, Lixin Gao, Supranamaya Ranjan, and Antonio Nucci. De-
tecting bogus BGP route information: Going beyond prefix hijacking.
In Security and Privacy in Communications Networks and the Work-
shops, 2007. SecureComm 2007. Third International Conference on,
pages 381–390. IEEE, 2007.

[58] Sophie Y Qiu, Fabian Monrose, Andreas Terzis, and Patrick D Mc-
Daniel. Efficient techniques for detecting false origin advertisements in
inter-domain routing. In Secure Network Protocols, 2006. 2nd IEEE
Workshop on, pages 12–19. IEEE, 2006.

[59] Tongqing Qiu, Lusheng Ji, Dan Pei, Jia Wang, and Jun Xu. Towerde-
fense: Deployment strategies for battling against ip prefix hijacking. In
Proc. IEEE ICNP, pages 134–143, 2010.

[60] Lin Quan, John Heidemann, and Yuri Pradkin. Trinocular: Under-
standing internet reliability through adaptive probing. In ACM SIG-
COMM Computer Communication Review, volume 43, pages 255–266.
ACM, 2013.

[61] Y Rekhter, T Li, and S Hares. IETF RFC 4271: A Border Gateway
Protocol 4 (BGP-4). Reston: Internet Society, 2006.

[62] Johann Schlamp, Ralph Holz, Quentin Jacquemart, Georg Carle, and
Ernst Biersack. HEAP: Reliable Assessment of BGP Hijacking Attacks.
IEEE JSAC, 34(06):1849–1861, 2016.

[63] JD Case M Fedor ML Schoffstall and C Davin. RFC 1157: Simple
network management protocol (SNMP). IETF, April, 1990.

[64] Pavlos Sermpezis, Vasileios Kotronis, Alberto Dainotti, and Xenofontas
Dimitropoulos. A Survey among Network Operators on BGP Prefix
Hijacking. arXiv preprint arXiv:1801.02918, 2018.

70 BIBLIOGRAPHY

[65] Pavlos Sermpezis, Vasileios Kotronis, Petros Gigis, Xenofontas Dim-
itropoulos, Danilo Cicalese, Alistair King, and Alberto Dainotti.
ARTEMIS: Neutralizing BGP Hijacking within a Minute. arXiv
preprint arXiv:1801.01085, 2018.

[66] Xingang Shi, Yang Xiang, Zhiliang Wang, Xia Yin, and Jianping Wu.
Detecting prefix hijackings in the Internet with Argus. In Proc. ACM
IMC, 2012.

[67] Seungwon Shin, Lei Xu, Sungmin Hong, and Guofei Gu. Enhancing
network security through software defined networking (SDN). In Com-
puter Communication and Networks (ICCCN), 2016 25th International
Conference on, pages 1–9. IEEE, 2016.

[68] Georgos Siganos and Michalis Faloutsos. Neighborhood watch for inter-
net routing: Can we improve the robustness of internet routing today?
In INFOCOM 2007. 26th IEEE International Conference on Computer
Communications. IEEE, pages 1271–1279. IEEE, 2007.

[69] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger,
M Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord:
a scalable peer-to-peer lookup protocol for internet applications.
IEEE/ACM Transactions on Networking (TON), 11(1):17–32, 2003.

[70] Lakshminarayanan Subramanian, Volker Roth, Ion Stoica, Scott
Shenker, and Randy Katz. Listen and whisper: Security mechanisms
for bgp. In Proc. NSDI, 2004.

[71] ONF TS. OpenFlow switch specification. page 206.

[72] Ángel Leonardo Valdivieso Caraguay, Alberto Benito Peral, Lorena Is-
abel Barona López, and Luis Javier Garćıa Villalba. SDN: Evolution
and opportunities in the development IoT applications. 10(5):735142.

[73] Haopei Wang, Lei Xu, and Guofei Gu. Floodguard: A dos attack
prevention extension in software-defined networks. In Dependable Sys-
tems and Networks (DSN), 2015 45th Annual IEEE/IFIP International
Conference on, pages 239–250. IEEE, 2015.

[74] Zheng Zhang, Ying Zhang, Y Charlie Hu, Z Morley Mao, and Randy
Bush. iSPY: detecting ip prefix hijacking on my own. In ACM SIG-
COMM CCR, volume 38, pages 327–338, 2008.

[75] Mingchen Zhao, Wenchao Zhou, Alexander JT Gurney, Andreas Hae-
berlen, Micah Sherr, and Boon Thau Loo. Private and verifiable inter-
domain routing decisions. ACM SIGCOMM Computer Communication
Review, 42(4):383–394, 2012.

BIBLIOGRAPHY 71

[76] Changxi Zheng, Lusheng Ji, Dan Pei, Jia Wang, and Paul Francis.
A light-weight distributed scheme for detecting ip prefix hijacks in
real-time. In ACM SIGCOMM Computer Communication Review, vol-
ume 37, pages 277–288, 2007.

