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Περίληψη 

Η συνεργασία στις ασύρματες επικοινωνίες, συμβάλλει στο να αντιμετωπιστούν τα 

προβλήματα της εξασθένισης και των διαλείψεων στο ασύρματο κανάλι. Ο κύριος 

στόχος είναι να αυξηθεί ο ρυθμός διαμεταγωγής σε ένα δίκτυο καθώς και η αξιοπιστία 

των χρονικά μεταβαλλόμενων ζεύξεων. Είναι γνωστό ότι οι ασύρματες επικοινωνίες 

μπορούν να επωφεληθούν από την συνεργασία ανάμεσα στους κόμβους λόγω της φύσης 

της ασύρματης μετάδοσης. Προς το παρόν η πλειοψηφία των τεχνικών συνεργασίας 

περιορίζεται στο φυσικό επίπεδο. Η συνεργασία σε επίπεδο δικτύου ορίζεται ως η απλή 

αναμετάδοση χωρίς καμιά ανάμιξη του φυσικού επιπέδου. Υπάρχουν ενδείξεις ότι η 

συνεργασία σε επίπεδο δικτύου μπορεί να έχει παρόμοια οφέλη με την συνεργασία στο 

φυσικό επίπεδο, ταυτόχρονα όμως είναι πιο απλή στην υλοποίηση.  

Στο πρώτο μέρος της διατριβής, μελετάμε την λειτουργία ενός κόμβου που αναμεταδίδει 

πακέτα από πολλούς χρήστες σε έναν προορισμό. Θεωρήσαμε την περίπτωση όπου ο 

αναμεταδότης δεν έχει δικά του πακέτα και απλά αναμεταδίδει πακέτα από τους χρήστες 

Οι χρήστες έχουν κορεσμένες ουρές, η πρόσβαση στο ασύρματο κανάλι είναι τυχαία ενώ 

επιτρέπεται η ταυτόχρονη μετάδοση πολλαπλών πακέτων. Μελετήσαμε αναλυτικά την 

ευστάθεια στην ουρά του αναμεταδότη (δηλαδή τις συνθήκες για τις οποίες είναι 

φραγμένη). Μελετήσαμε αναλυτικά το ρυθμό διαμεταγωγής ανά χρήστη καθώς και τον 

συνολικό ρυθμό και βρήκαμε τις συνθήκες κάτω από τις οποίες ο αναμεταδότης 

προσφέρει όφελος στο δίκτυο. Ένα επίσης χρήσιμο αποτέλεσμα που προέκυψε από 

αυτήν την μελέτη είναι ο αριθμός των χρηστών που μεγιστοποιεί τον συνολικό ρυθμό 

διαμεταγωγής του δικτύου με τον αναμεταδότη. Το προηγούμενο είναι ένα θεωρητικό 

αποτέλεσμα αλλά με πολλές πρακτικές εφαρμογές, ειδικά για του παρόχους ασύρματης 

πρόσβασης. Μελετήσαμε τις περιπτώσεις όπου ο αναμεταδότης μπορεί να μεταδίδει και 

να λαμβάνει ταυτόχρονα αλλά και την περίπτωση που δεν έχει αυτή την δυνατότητα. 

Στην περίπτωση όπου ο αναμεταδότης μπορεί να λαμβάνει και να στέλνει πακέτα 

ταυτόχρονα προκύπτει το πρόβλημα της αυτό-παρεμβολής (self-interference). 

Λαμβάνοντας υπόψη την αυτό-παρεμβολή μελετήσαμε αναλυτικά την ευστάθεια στην 

ουρά του αναμεταδότη, το ρυθμό διαμεταγωγής ανά χρήστη καθώς και τον συνολικό 



ρυθμό. Ορίσαμε την έννοια της μερικής συνεργασίας (με πιθανοκρατικούς όρους) σε 

επίπεδο δικτύου, δηλαδή όταν ένας κόμβος δεν συνεργάζεται πλήρως αλλά μερικώς με 

τους άλλους κόμβους του δικτύου και, αποδείξαμε ότι υπό συνθήκες η μερική 

συνεργασία είναι η βέλτιστη επιλογή όσον αφορά την περιοχή ευστάθειας και κατά 

συνέπεια την μέγιστη διαμεταγωγή. Η τοπολογία που μελετάμε αποτελείται από έναν 

χρήστη, έναν αναμεταδότη ο οποίος έχει την δική του κίνηση και έναν κοινό δέκτη. Ο 

αναμεταδότης εξαρτώμενος από διάφορες συνθήκες του δικτύου αποφασίζει αν θα 

συνεργαστεί ή όχι την τρέχουσα χρονική στιγμή ώστε να βοηθήσει τον χρήστη να 

μεταδώσει τα πακέτα που δεν φτάνουν απευθείας στον δέκτη. Οι συνθήκες που έχουν 

σημασία είναι η ένταση της κίνησης στους χρήστες καθώς και η ποιότητα των καναλιών 

μεταξύ των χρηστών και του δέκτη. Αποδείξαμε ότι ανάλογα με τις συνθήκες, η βέλτιστη 

στρατηγική συνεργασίας για τον αναμεταδότη είναι η μερική συνεργασία. 

Το δεύτερο μέρος της διατριβής εστιάζει στις ασύρματες επικοινωνίες με ανανεώσιμες 

πηγές ενέργειας (πράσινες επικοινωνίες). Πιο συγκεκριμένα μελετήσαμε την επίδραση 

της συνεργασίας σε επίπεδο δικτύου στην περιοχή ευστάθειας σε δίκτυα με ανανεώσιμες 

πηγές ενέργειας. Επίσης μελετήσαμε την επίδραση των ανανεώσεων πηγών ενέργειας σε 

γνωστικά δίκτυα επικοινωνιών (cognitive networks) (όπου οι κόμβοι έχουν 

διαφορετικούς ενεργειακούς περιορισμούς και μοιράζονται ένα ασύρματο κανάλι). 

Μελετήσαμε ένα δίκτυο αποτελούμενο από δύο ζεύγη πηγής-προορισμού, όπου στο 

πρωτεύον (υψηλής προτεραιότητας) ζευγάρι ο πομπός έχει ενεργειακούς περιορισμούς 

ενώ στο δευτερεύον όχι. Ο πομπός με την χαμηλή προτεραιότητα μεταδίδει όταν ο άλλος 

παραμένει ανενεργός, ενώ όταν είναι ενεργός μεταδίδει με μια δοσμένη πιθανότητα. 

Επιλέγουμε αυτήν την πιθανότητα ώστε να μεγιστοποιηθεί ο ρυθμός διαμεταγωγής του 

δευτερεύοντος ζευγαριού και ταυτόχρονα να παραμένει ευσταθής ο κύριος μεταδότης. 

Επίσης καθορίζουμε πλήρως την περιοχή ευστάθειας του δικτύου. 

Στο τελευταίο μέρος της διατριβής, προτείναμε μία τεχνική δρομολόγησης που 

συνδυάζει την Κωδικοποίηση Δικτύου (ΚΔ) με πλεονασμό σε πολλαπλά μονοπάτια, και 

ερευνήσαμε την απόδοση και την αξιοπιστία που μπορεί να επιτευχθεί με αυτήν την 

τεχνική. Πιο συγκεκριμένα μελετήσαμε το ισοζύγιο ανάμεσα στην καθυστέρηση λήψης 

πακέτου και την ταχύτητα διαμεταγωγής και έγινε σύγκριση με άλλες κλασσικές 



μεθόδους δρομολόγησης όπως: βέλτιστου μονοπατιού, πολλαπλών μονοπατιών, 

πολλαπλών μονοπατιών αλλά με την ίδια πληροφορία σε όλα (μέγιστη δυνατή 

πλεονάζουσα πληροφορία). Η μελέτη έγινε σε ασύρματα δίκτυα με μονοπάτια που δεν 

έχουν ούτε κοινές ζεύξεις αλλά ούτε και κοινούς κόμβους. Επιπλέον η αναμετάδοση των 

εσφαλμένων πακέτων γίνεται από την αρχή του κάθε μονοπατιού. Επίσης, μελετήσαμε 

την ΚΔ με πλεονασμό σε πολλαπλά μονοπάτια και σε πιο ρεαλιστικές τοπολογίες για 

ασύρματα δίκτυα. Πιο συγκεκριμένα στις τοπολογίες αυτές τα πολλαπλά μονοπάτια 

μπορούν να έχουν κοινούς κόμβους, και επιπλέον όταν συμβαίνει σφάλμα στη μετάδοση 

ενός πακέτου σε ένα μονοπάτι τότε η αναμετάδοση λαμβάνει χώρα από τον προηγούμενο 

κόμβο και όχι από τον αρχικό κόμβο του μονοπατιού.  





Abstract

Cooperative communications help overcome fading and attenuation in wireless networks. Its

main target is to increase the communication rates across the network and the reliability of

time-varying links. It is known that wireless communications can benefit from the cooperation

of nodes that overhear the transmissions. Most cooperative techniques studied so far have been

on physical layer cooperation. The Network-Level cooperation is plain relaying without any

physical layer considerations. There is evidence that network-level cooperation can achieve

similar gains with physical-layer cooperation, and at the same time is simpler to implement.

In the first part of the thesis, we study the impact of a relay node to a network with a finite

number of users-sources and one destination node. We assume that the users have saturated

queues and the relay node does not have packets of its own; we have random access of the

medium and the time is slotted. The relay node stores a source packet that it receives success-

fully in its queue when the transmission to the destination node has failed. The relay and the

destination nodes have multi-packet reception capabilities. We obtain analytical equations for

the characteristics of the relays queue such as average queue length, stability conditions etc.

We also study the throughput per user and the aggregate throughput for the network. We study

both the cases of a half and a full-duplex relay. For the full-duplex relay, we also study the

impact of self interference on the stability, the throughput per user-source as well as the aggre-

gate throughput. Furthermore, we evaluate the benefits of using one user of a two-user random

access system to relay traffic of the other user. We introduce the notion of Network-Level Par-

tial Relay Cooperation, and we prove that under certain conditions the optimum cooperation

xii



strategy for the relay is to partially cooperate.

The second part of the thesis is devoted to energy harvesting wireless networks. We study

the impact of energy constraints on a network with a source-user, a relay and a destination.

This part studies the impact of energy harvesting on network-level cooperation. Specifically,

we provide an exact characterization of the stability region. We also consider the concept

of cognitive radio communication (with nodes with different energy constraints) in sharing

a common wireless channel. Specifically, we give high-priority to the energy-constrained

source-destination pair, i.e., primary pair, and low-priority to the pair which is free from such

constraint, i.e., secondary pair. In contrast to the traditional notion of cognitive radio, in which

the secondary transmitter is required to relinquish the channel as soon as the primary is de-

tected, the secondary transmitter not only utilizes the idle slots of the primary pair but also

transmits along with the primary transmitter with a given probability. We choose that proba-

bility to maximize the secondary pairs throughput. We obtain the two-dimensional maximum

stable throughput region. The region is obtained for both cases in which the capacity of the

battery at the primary node is limited or unlimited.

Finally, we investigate the performance that can be achieved by exploiting path diver-

sity through multipath forwarding together with redundancy through linear network coding,

in wireless mesh networks with directional links. We capture the tradeoff between packet

delay and throughput achieved by combining multipath forwarding and network coding, and

compare this tradeoff with that of simple multipath routing where different flows follow differ-

ent paths, the transmission of multiple copies of packets over multiple paths, and single path

routing.
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Chapter 1

Introduction

Traditional analysis of wireless networks still considers the network as a collection of point-

to-point links. However this approach in most cases is not appropriate. In a wireless multiple

access network, the users can share the common medium, overhearing each other’s transmis-

sions and “pushed” to consider cooperating in order to deliver their messages more efficiently.

As a result the study of cooperation techniques such as the classical relay channel or the multi-

access wireless channel is of great importance.

1.1 Cooperative Communications

Cooperative communications help overcome fading and attenuation in wireless networks. Its

main target is to increase the communication rates across the network and to increase the re-

liability of time-varying links. It is known that wireless communications from a source to

a destination can benefit from the cooperation of nodes that overhear the transmission. The

classical relay channel was originally introduced by van der Meulen [1] and exemplifies this

situation. Earlier works on the relay channel were based on information theoretical formula-

tions as in [2], [3] and [4].

Most cooperative techniques studied so far have been on physical layer cooperation, in-
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cluding decode-and-forward (DF), amplify-and-forward (AF) and compress-and-forward (CF).

The physical layer cooperation enables non-trivial benefits. However, there is evidence that

similar gains can be achieved with “network-layer” cooperation (or packet-level cooperation),

that is plain relaying without any physical layer considerations [4] and [5].

Our work in this dissertation focuses at the network-level cooperation, taking into account

the physical layer properties and realizations as well as the MAC layer.

1.1.1 Network-Level Cooperation

The work in [6] investigated the network-level cooperation in a network consisting of a source

and a relay by considering the cases of either full or no cooperation at the relay.

In this part of our work for the network-level cooperation we consider a network with

N users-sources, one pure relay node and a single destination. We assume random access

to the channel, time is considered slotted, and each packet transmission takes one time slot.

The wireless channel between the nodes in the network is modeled by a Rayleigh narrowband

flat-fading channel with additive Gaussian noise. The relay and the destination are equipped

with multiuser detectors, so that they may decode packets successfully from more than one

transmitter at a time (MPR capability). A user’s transmission is successful if the received

signal to interference plus noise ratio (SINR) is above a threshold γ. We also assume that

acknowledgements (ACKs) are instantaneous and error free. The relay does not have packets

of its own and the sources are considered saturated with unlimited amount of traffic. The

sources transmit packets to the destination with the cooperation of the relay. The relay node

stores a source packet that it receives successfully in its queue when the direct transmission

to the destination node has failed signified by the absence of ACK from the destination. The

queue in the relay has infinite capacity. Our study includes both cases for the relay, half and

full duplex (receives and transmits simultaneously).

In wireless networks when a node transmits and receives simultaneously the problem of

self interference arises. Information theoretic aspects of this problem can be found at the
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work of Shannon on [7], although the capacity region of the two-way channel is not known

for the general case [8]. There are some techniques that allow the possibility of perfect self

interference cancelation [8]. In practice though, there are technological limitations [9]- [10]

which can limit the accuracy of the self interference cancelation. Various methods for per-

forming self interference cancelation at the nodes’ receivers can be found in [11] and [12].

The conclusion is that there is a trade off between transceiver complexity and the accuracy of

the self interference cancelation. However in this dissertation we do not consider any specific

self interference cancelation mechanism, because it is out of the scope of this work. The self

interference cancelation at the relay is modeled as a variable power gain.

1.1.2 Network-Level Partial Relay Cooperation

In [6], it was shown that the stability region of full cooperation under random-access does

not always strictly contain the non-cooperative stability region. A major contribution in this

dissertation, is to introduce the notion of partial network-level cooperation (or probabilistic

cooperation). By probabilistic cooperation we mean that under certain conditions in the net-

work, the cooperating node may accept a packet from the source with a certain probability. We

consider the collision channel with erasures and random access of the medium. The network

consists of a source and a relay node. The source and the relay node have external arrivals;

furthermore, the relay is forwarding part of the source node’s traffic to the destination. Unlike

the work in [6], the relay node is equipped with a flow controller that regulates the internal

arrivals from the source based on the conditions in the network to ensure the stability of the

queues. The flow controller regulates the rate of endogenous arrivals by randomly accepting

the incoming packets with a probability; that is, it controls the amount of cooperation that it

is willing to provide. We prove that the system is always better than or at least equal to the

system without the flow controller.

A key difference between physical-layer and network-layer cooperation ideas is that the

objective rate function that is maximized is the so-called stable throughput region which cap-
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tures the bursty nature of traffic from the source. Another major difference is that network-

level cooperation is simple to implement.

1.2 Energy harvesting wireless networks

Exploiting renewable energy resources from the environment (there are various forms of en-

ergy that can be harvested including thermal, vibration, solar, acoustic and wind), often termed

as the energy harvesting, offers unattended operability of infrastructureless wireless networks.

In [13], the capacity of the additive white Gaussian noise channel with stochastic energy

harvesting at the source was shown to be equal to the capacity with an average power constraint

given by the energy harvesting rate. However, like most of information-theoretic research, the

result is obtained for point-to-point communication with an always backlogged source. In [14],

the slotted ALOHA protocol was considered for a network of nodes having energy harvesting

capability and the maximum stable throughput region was obtained for bursty traffic. An

exact characterization of the region was given in the paper for a two-node case over a collision

channel.

1.2.1 The effect of energy harvesting in network-level cooperation

In this dissertation we study among others the impact of energy constraints in a network with

a source-user, a relay and a destination. The source and the relay node have external arrivals;

furthermore, the relay is forwarding part of the source node’s traffic to the destination. The

source and the relay nodes have energy harvesting capability and a battery to store the har-

vested energy.

1.2.2 Cognitive Channel

Cognitive radio communication provides an efficient means of sharing radio spectrum between

users having different priorities [15]. The high-priority user, called primary, is allowed to
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access the channel whenever it needs, while the low-priority user, called secondary, is required

to make a decision on its transmission based on what the primary user does. The system

considered in this part of the dissertation is comprised of nodes that are either subject to energy

availability constraint imposed by the battery status and stochastic recharging process or are

free from such constraint by assuming that they are connected to a constant power source.

We consider the simple cognitive system of two source-destination pairs and derive the

maximum stable throughput region for a cognitive access protocol on the general multipacket

reception channel model1 in which a transmission may succeed even in the presence of in-

terference [16–18]. The secondary node can take advantage of such an additional reception

capability by transmitting simultaneously with the primary. We adopt a similar cognitive ac-

cess protocol proposed in [19], and also studied in [20], in which the secondary node not only

utilizes the idle periods of the primary node, but also competes with the primary by randomly

accessing the channel to increase its own throughput. However, the secondary user is still

required to coordinate its transmission in order not to hamper the required throughput level of

the primary link given the energy harvesting rate and this is done by appropriately choosing

the random access probability.

1.3 Network Coding for Wireless Mesh Networks

The core notion of network coding introduced in [21] is to allow and encourage mixing of

data at intermediate network nodes. Network coding is a generalization of the traditional store

and forward technique. Most of the theoretical results in network coding are for multicast but

the vast majority of Internet traffic is unicast. An application of network coding to wireless

environments has to address multiple unicast flows, if it has any chance of being used. In

particular, with multicast, all receivers want all packets. Thus intermediate nodes can encode

any packets together, without worrying about decoding which will happen eventually at the

1When compared to collision channel model, it better captures the effects of fading, attenuation and interference

at the physical layer.
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destinations.

We consider unicast flows in a multi-hop wireless mesh network with lossy directional

links. In such networks the largest percentage of uplink traffic is destined for or originates

from a gateway interconnecting the mesh network to a wired network. Moreover, a mesh

node can provide access to multiple clients. Hence, the uplink traffic from these clients that

is destined to the same gateway can be coded at the mesh node, and decoded at the gateway.

Similarly, downlink traffic destined for the clients of the same mesh node can be coded at the

gateway and decoded at the mesh node.

In this dissertation we investigate the performance that can be achieved by exploiting path

diversity through multipath forwarding and redundancy through network coding. The ana-

lytical framework presented in this part considers the case of end-to-end and hop-by-hop re-

transmission for achieving reliability, and is generalized for an arbitrary number of paths and

hops. We consider both end-to-end and hop-by-hop coding. The application of linear network

coding results in the considerable reduction of the computational complexity at the nodes.

1.4 Performance Measures

In Chapters 2 and 3, we obtain analytical expressions for the characteristics of the relay’s

queue such as arrival and service rate of the relay’s queue, the stability condition and the

average length of the queue as functions of the probabilities of transmissions and the outage

probabilities of the links. We study the impact of the relay node on the throughput per user-

source and the aggregate throughput. We show that the throughput per user-source does not

depend on the probability of the relay transmissions and that there is an optimum number

of users that maximizes the aggregate throughput. Furthermore, in Chapter 3, we study the

stability condition and the average length of the queue as functions of the self interference

coefficient (because the relay can transmit and receive simultaneously). We study the impact

of the relay node and the self interference coefficient on the throughput per user-source and

6



the aggregate throughput.

In the chapters 4, 5, and 6, the emphasis will be given on the stable throughput region,

also called the stability region. The stability region is a rate measure based on the networking

perspective under bursty arrivals. It quantifies the maximum rates sustainable by the net-

work while ensuring that all queues remain stable. In Chapter 4 we characterize the stable

throughput region under conditions of no cooperation at all, full cooperation, and probabilistic

(opportunistic) cooperation. We prove that the system with the flow controller is always better

than or at least equal to the system without the flow controller.

In Chapter 5 (cooperation and energy harvesting) we provide the stability region of a

cooperative network under energy harvesting capabilities. In Chapter 6, the stability region is

obtained for a cognitive access on the general multipacket reception channel model, and the

nodes have different energy constraints.

In Chapters 7 and 8 we compare the performance and tradeoff in terms of packet delay

and throughput achieved by combining multipath forwarding and network coding, with that

of simple multipath routing of different flows (which achieves the highest throughput), the

transmission of multiple copies of a single flow over multiple paths (which achieves the highest

redundancy and the least delay), and traditional single path routing.

1.5 Outline of the Dissertation

The work we present in this dissertation is organized in three parts. The first part consisting

of the chapters 2, 3 and 4 is about network-level cooperation. In Chapters 2 and 3, we study

the impact of a relay node to a network with a finite number of users-sources and a destination

node. We assume that the users have saturated queues and the relay node does not have packets

of its own; we have random access of the medium and the time is slotted. The relay node

stores a source packet that it receives successfully in its queue when the transmission to the

destination node has failed. The relay and the destination nodes have multi-packet reception
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capabilities. We obtain analytical equations for the characteristics of the relay’s queue such as

average queue length, stability conditions etc. We also study the throughput per user and the

aggregate throughput for the network. In chapter 2 the relay is half-duplex, in 3 the relay can

transmit and receive at the same time, thus in 3, we also study the impact of self interference

on the stability, the throughput per user-source as well as the aggregate throughput. In 4, we

evaluate the benefits of using one user of a two-user random access system to relay traffic of

the other user. Furthermore, we define the notion of Network-Level Partial Relay Cooperation.

The second part consisting of the chapters 5 and 6 is devoted to energy harvesting wire-

less networks. In Chapter 5 we study the impact of energy constraints on a network with a

source-user, a relay and a destination. Specifically, we provide an exact characterization of the

stability region of a network consisting of a source, a relay and a destination node. This chap-

ter studies the impact of energy harvesting on network-level cooperation. In Chapter 6, we

consider two source-destination pairs and apply the concept of cognitive radio communication

in sharing the common channel. Specifically, we give high-priority to the energy-constrained

source-destination pair, i.e., primary pair, and low-priority to the pair which is free from such

constraint, i.e., secondary pair. In contrast to the traditional notion of cognitive radio, in

which the secondary transmitter is required to relinquish the channel as soon as the primary

is detected, the secondary transmitter not only utilizes the idle slots of primary pair but also

transmits along with the primary transmitter with probability p. This is possible because we

consider the general multi-packet reception model. Taking into account the requirement on

the primary pair’s throughput, the probability p is chosen to maximize the secondary pair’s

throughput. To this end, we obtain the two-dimensional maximum stable throughput region

which describes the theoretical limit on rates that we can push into the network while main-

taining the queues in the network to be stable. The result is obtained for both cases in which

the capacity of the battery at the primary node is infinite and also finite.

The last part, including the Chapters 7 and 8, is about network coding and path diversity

in wireless mesh networks. We investigate the performance that can be achieved by exploiting
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path diversity through multipath forwarding together with redundancy through linear network

coding, in wireless mesh networks with directional links. A key contribution of this part is

to capture the tradeoff between packet delay and throughput achieved by combining multi-

path forwarding and network coding, and compare this tradeoff with that of simple multipath

routing where different flows follow different paths, the transmission of multiple copies of

packets over multiple paths, and single path routing. The analytical framework in Chapter 7

considers the case of end to end retransmissions, hop-by-hop case is considered in chapter 8.

Additionally in chapter 8, we consider the case of hop-by-hop coding process.

A summary of our contributions and a description of future work are included in Chap-

ter 9.
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Chapter 2

Stability and Performance Issues of a

Relay Assisted Multiple Access

Scheme with MPR Capabilities

The material in this chapter was presented in [22].

2.1 Introduction

The classical relay channel was originally introduced by van der Meulen [1]. Earlier works

on the relay channel were based on information theoretical formulations as in [2] and [4]. Re-

cently several works have investigated relaying capability at the MAC layer [4], [23], [5], [24].

More specifically, in [4], the authors have studied the impact of cooperative communications at

the multiple-access layer with TDMA. They introduced a new cognitive multiple-access pro-

tocol in the presence of a relay in the network. The relay senses the channel for idle channel

resources and exploits them to cooperate with the terminals in forwarding their packets. Most

cooperative techniques studied so far have been on physical layer cooperation, however there

are evidences (as in [4]) that the same gains can be achieved with network layer cooperation,

10



that is plain relaying without any physical layer considerations.

The classical analysis of random multiple access schemes like slotted ALOHA [25] has

focused on the so called collision model, the collision channel however is not the appropri-

ate for wireless networks. Random access with multi-packet reception (MPR) has attracted

attention recently [26], [27]. The authors in [28] consider the effect of MPR on stability and

delay of slotted ALOHA based random-access system and it is shown that the stability re-

gion undergoes a phase transition from a concave region to a convex polyhedral region as the

MPR capability improves. All these previous approaches come together in the model that we

consider in this work.

In this work we examine the operation of a node relaying packets from a number of users-

sources to a destination node as shown in Fig. 2.1, and is an extension of our work in [29]

(in that work we assumed random access scheme with collision channel model with erasures).

We assume MP) capability for the relay and the destination node.

We assume random access to the channel, time is considered slotted, and each packet

transmission takes one time slot. The wireless channel between the nodes in the network is

modeled by a Rayleigh narrowband flat-fading channel with additive Gaussian noise. The re-

lay and the destination are equipped with multiuser detectors, so that they may decode packets

successfully from more than one transmitter at a time (MPR capability). A user’s transmission

is successful if the received signal to interference plus noise ratio (SINR) is above a thresh-

old γ. We also assume that acknowledgements (ACKs) are instantaneous and error free. The

relay does not have packets of its own and the sources are considered saturated with unlimited

amount of traffic.

We obtain analytical expressions for the characteristics of the relay’s queue such as arrival

and service rate of the relay’s queue, the stability condition and the average length of the queue

as functions of the probabilities of transmissions and the outage probabilities of the links.

We study the impact of the relay node on the throughput per user-source and the aggregate

throughput. We show that the throughput per user-source does not depend on the probability
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of the relay transmissions and that there is an optimum number of users that maximizes the

aggregate throughput.

Section 2.2 describes the system model, in Section 2.3 we study the characteristics of

the relay’s queue and we derive the equations for the throughput per user and the aggregate

throughput. We present the arithmetic and simulation results in Section 2.4 and, finally, our

conclusions are given in Section 2.5.

2.2 System Model

2.2.1 Network Model

We consider a network with N users-sources, one relay node and a single destination node.

The sources transmit packets to the destination with the cooperation of the relay; the case of

N = 2 is depicted in Fig. 2.1. We assume that the queues of the two sources are saturated (i.e.

there are no external arrivals); the relay does not have packets of its own, and just forwards

the packets that it has received from the two users. The relay node stores a source packet

that it receives successfully in its queue when the direct transmission to the destination node

has failed. We assume that we have random access of the medium. Each of the receivers

(relay and destination) is equipped with multiuser detectors, so that they may decode packets

successfully from more than one transmitter at a time. Nodes cannot transmit and receive at

the same time. The queue in the relay has infinite capacity.

It is important to note that the relay node must be easier accessible than the destination,

meaning that the user - relay channel has to be more reliable than the user-destination one. At

the same time the relay - destination channel must be more reliable than the user - destination

channel. Otherwise the presence of the relay degrades the performance of the whole network.

In the following subsection we present all the details about the physical layer model assumed

in this work.
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Figure 2.1: The simple network model

Figure 2.2: Markov Chain model

2.2.2 Physical Layer Model

The MPR channel model used in this work is a generalized form of the packet erasure model.

In the wireless environment, a packet can be decoded correctly by the receiver if the received

SINR exceeds a certain threshold. More precisely, suppose that we are given a set T of nodes

transmitting in the same time slot. Let Prx(i, j) be the signal power received from node i at

node j (when i transmits), and let SINR(i, j) be the SINR determined by node j, i.e.,

SINR(i, j) =
Prx(i, j)

ηj +
∑

k∈T\{i} Prx(k, j)

where ηj denotes the receiver noise power at j. We assume that a packet transmitted

by i is successfully received by j if and only if SINR(i, j) ≥ γj , where γj is a threshold

characteristic of node j. The wireless channel is subject to fading; let Ptx(i) be the transmitting

power at node i and r(i, j) be the distance between i and j. The power received by j when i
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transmits is Prx(i, j) = A(i, j)g(i, j) where A(i, j) is a random variable representing channel

fading. We assume that the fading model is slow, flat fading, constant during a timeslot and

independently varying from timeslot to timeslot. Under Rayleigh fading, it is known [30] that

A(i, j) is exponentially distributed. The received power factor g(i, j) is given by g(i, j) =

Ptx(i)(r(i, j))
−α where α is the path loss exponent with typical values between 2 and 4. The

success probability of link ij when the transmitting nodes are in T is given by

P j
i/T = exp

(
− γjηj
v(i, j)g(i, j)

) ∏
k∈T\{i,j}

(
1 + γj

v(k, j)g(k, j)

v(i, j)g(i, j)

)−1

(2.1)

where v(i, j) is the parameter of the Rayleigh random variable for fading. The analytical

derivation for this success probability can be found in [31].

2.3 Analysis

In this section we will derive the equations for the characteristics of the relay’s queue, such

as the arrival and service rates, the stability conditions, and the average queue length. We

will provide an analysis for two cases: first, when the network consists of two users (non-

symmetric) and the second is for n > 2 symmetric users.

2.3.1 Two-user case

The service rate is given by

μ = q0(1− q1)(1− q2)P
d
0/0 + q0q1(1− q2)P

d
0/0,1 + q0q2(1− q1)P

d
0/0,2 + q0q1q2P

d
0/0,1,2

(2.2)

where q0 is the transmission probability of the relay given that it has packets in its queue,

qi for i �= 0 is the transmission probability for the i-th user.The term P j
i/i,k is the success

probability of link ij when the transmitting nodes are i and k and is given by (2.1). If the

queue of the relay node is empty, the arrival rate is denoted by λ0 and if it is not by λ1; thus
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we have the following equation for the average arrival rate λ (where Q is the size of the relay’s

queue)

λ = P (Q = 0)λ0 + P (Q > 0)λ1 (2.3)

If the queue of the relay is empty then the relay, naturally, does not attempt to transmit,

thus the probability of arrival is λ0 = p01 + 2p02, where p0i is the probability of receiving i

packets given that the queue is empty. The expressions for the p0i are:

p01 = q1(1− q2)(1− P d
1/1)P

0
1/1 + q2(1− q1)(1− P d

2/2)P
0
2/2+

+q1q2(1− P d
1/1,2)P

0
1/1,2

[
P d
2/1,2 + (1− P d

2/1,2)(1− P 0
2/1,2)

]
+

+q1q2(1− P d
2/1,2)P

0
2/1,2

[
P d
1/1,2 + (1− P d

1/1,2)(1− P 0
1/1,2)

] (2.4)

p02 = q1q2(1− P d
1/1,2)(1− P d

2/1,2)P
0
1/1,2P

0
2/1,2 (2.5)

If the queue is not empty then the arrival rate is given by λ1 = p11 + 2p12, where p1i is the

probability of receiving i packets given that the queue is not empty and p1i = (1− q0)p
0
i ; thus

λ1 = (1 − q0)λ0, this is because the relay cannot receive and transmit at the same time. In

Fig. 2.2, we present the discrete time Markov Chain that describes the queue evolution. Each

state, denoted by an integer, represents the queue size at the relay node. The transition matrix

of the above DTMC is a lower Hessenberg matrix and is given by:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 b0 0 0 · · ·
a1 b1 b0 0 · · ·
a2 b2 b1 b0 · · ·
0 b3 b2 b1 · · ·
0 0 b3 b2 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.6)

Where a0 = 1 − p01 − p02, a1 = p01, a2 = p02 and b0 = μ, b1 = 1 − μ − p11 − p12, b2 =
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p11, b3 = p12.

Since the P is an infinite-dimension matrix, we are going to obtain the expression for the

steady-state distribution vector s using difference equation technique. The difference equa-

tions are given by:

Ps = s⇒ si = ais0 +
i+1∑
j=1

bi−j+1sj (2.7)

We apply Z-transform technique to compute the steady-state distribution:

A(z) =

2∑
i=0

aiz
−i, B(z) =

3∑
i=0

biz
−i, S(z) =

∞∑
i=0

siz
−i (2.8)

It is known that [32]:

S(z) = s0
z−1A(z)−B(z)

z−1 −B(z)
(2.9)

The probability that the queue in the relay is empty is given by the following formula [32]:

P (Q = 0) = s0 =
1 +B

′
(1)

1 +B′(1)−A′(1)
(2.10)

Where A
′
(1) = −p01−2p02 and B

′
(1) = μ−p11−2p12−1. Then the probability that the queue

in the relay is empty is given by:

P (Q = 0) =
μ− λ1

μ− λ1 + λ0
(2.11)

From the above equations we can compute the average arrival rate λ:

λ = P (Q = 0)λ0 + P (Q > 0)λ1 =
μλ0

μ− λ1 + λ0
(2.12)

Note that the average arrival rate does not depend on q0 (the proof is straightforward and thus

is omitted). An important tool to determine stability is Loyne’s criterion [33], which states

that if the arrival and service processes of a queue are jointly strictly stationary and ergodic,
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the queue is stable if and only if the average arrival rate is strictly less than the average service

rate. If the queue is stable, the departure rate (throughput) is equal to the arrival rate. The

queue is stable if q0 satisfies q0min < q0 < 1. The expression for q0min is given by (2.13), in

order to obtain q0min we have to solve the inequality λ1 < μ.

q0min =
λ0

λ0 + (1− q1)(1− q2)P d
0/0 + q1(1− q2)P d

0/0,1 + q2(1− q1)P d
0/0,2 + q1q2P d

0/0,1,2
(2.13)

Notice that the conditions λ
μ < 1 and λ1

μ < 1 are equivalent in our model.

λ

μ
< 1⇔ λ < μ⇔ μλ0

μ− λ1 + λ0
< μ⇔ λ0

μ− λ1 + λ0
< 1⇔ λ0 < μ− λ1 + λ0 ⇔ λ1

μ
< 1

It is known [32] that the average queue size is Q = −S′
(1), where S

′
(1) = s0

K
′′
(1)

L
′′
(1)

. The

expression for K(z) is given by

K(z) =
(
−z−2A(z) + z−1A

′
(z)−B

′
(z)
) (

z−1 −B(z)
)−(z−1A(z)−B(z)

) (−z−2 −B
′
(z)
)

(2.14)

and L(z) =
(
z−1 −B(z)

)2
.

After some algebra the average queue size is given by:

Q =
(λ1 − μ)(2p01 + 5p02) + λ0(μ− 2p01 − 5p02)

(μ− λ1 + λ0)(λ1 − μ)
(2.15)

The throughput rate μi for the user i is given by the (2.16) and (2.17).
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μ1 = q0P (Q > 0) q1

(
(1− q2)P

d
1/0,1 + q2P

d
1/0,1,2

)
+

+ [1− q0P (Q > 0)] q1

[
(1− q2)

(
P d
1/1 + (1− P d

1/1)P
0
1/1

)
+ q2

(
P d
1/1,2 + (1− P d

1/1,2)P
0
1/1,2

)]
(2.16)

μ2 = q0P (Q > 0) q2

(
(1− q1)P

d
2/0,2 + q1P

d
2/0,1,2

)
+

+ [1− q0P (Q > 0)] q2

[
(1− q1)

(
P d
2/2 + (1− P d

2/2)P
0
2/2

)
+ q1

(
P d
2/1,2 + (1− P d

2/1,2)P
0
2/1,2

)]
(2.17)

In the (2.16) and (2.17) we assume that the queue is stable, hence the arrival rate from

each user to the queue is the contributed throughput from it. The aggregate throughput is

μtotal = μ1 + μ2. Notice that the throughput per user is independent of q0 as long as it is

in the stability region. This is explained because the product q0P (Q > 0) is constant. If we

consider the previous network without the relay node then the throughput rates for the users

are the following:

μ1 = q1(1− q2)P
d
1/1 + q1q2P

d
1/1,2

μ2 = q2(1− q1)P
d
2/2 + q1q2P

d
2/1,2

2.3.2 N-symmetric users

We now generalize the above for the case of a symmetric n-users network. Each user at-

tempts to transmit in a slot with probability q; the success probability to the relay and the

destination when i nodes transmit are given by P0,i, Pd,i respectively. There are two cases

for the Pd,i, Pd,i,0, Pd,i,1 denoting success probability when relay remains silent or transmits

respectively. Finally P0d,i is the link probability of success from the relay to the destination

when i nodes transmit. The above success probabilities for the symmetric case are given by

P0,i = P0

(
1

1+γ0

)i−1
, Pd,i,j = Pd

(
1

1+γd

)i−1 (
1

1+βγ0

)j
, j = 0, 1 and β = v0dg0d

vdgd
> 1.
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P0d,i = P0d

(
1

1+ 1
β
γd

)i

, P0 = exp
(
−γ0η0

v0g0

)
, Pd = exp

(
−γdηd

vdgd

)
, P0d = exp

(
−γ0η0

v0g0

)
.

The service rate is given by the following equation:

μ =

n∑
k=0

(
n

k

)
q0q

k(1− q)n−kP0d,k (2.18)

The average arrival rate λ of the queue is given by:

λ = P (Q = 0)λ0 + P (Q > 0)λ1 (2.19)

Where λ0 =
∑n

i=0 ip
0
i and λ1 = (1 − q0)λ0. p0i is the probability of receiving i packets

given that the queue is empty, the expression for p0i is given by ( 2.20). p1i is the probability of

receiving i packets given that the queue is not empty and p1k = (1− q0)p
0
k.

p0k =

n∑
i=k

(
n

i

)(
i

k

)
qi(1− q)n−iP k

0,i (1− Pd,i,0)
k [1− P0,i(1− Pd,i,0)]

i−k, 1 ≤ k ≤ n

(2.20)

The elements of the transition matrix are a0 = 1−∑n
i=1 p

0
i , ai = p0i ∀i > 0 and b0 = μ,

b1 = 1− μ−∑n
i=1 p

1
i ,bi+1 = p1i ∀i > 1. The Z-transforms are:

A(z) =
n∑

i=0

aiz
−i, B(z) =

n+1∑
i=0

biz
−i, S(z) =

∞∑
i=0

siz
−i (2.21)

Following the same methodology as in the two-user case and applying the above to (2.10)

we obtain the probability that the queue in the relay is empty is given by:

P (Q = 0) =
μ− λ1

μ− λ1 + λ0
(2.22)

The queue is stable if q0 satisfies q0min < q0 < 1. The expression for q0min is given by

the (2.23).
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q0min =
C

C +

n∑
k=0

(
n

k

)
qk(1− q)n−kP0d,k

(2.23)

where

C =
n∑

k=1

n∑
i=k

k

(
n

i

)(
i

k

)
qi(1− q)n−iP k

0,i (1− Pd,i,0)
k [1− P0,i(1− Pd,i,0)]

i−k

Following the same methodology as in the two-user case, we obtain that the average queue

size is given by:

Q =

(λ1 − μ)

n∑
i=1

i(i+ 3)p0i + λ0

(
2μ−

n∑
i=1

i(i+ 3)p1i

)

2(μ− λ1 + λ0)(λ1 − μ)
(2.24)

The throughput per user for the network without the relay is given by

μ =
n−1∑
k=0

(
n− 1

k

)
qk+1(1− q)n−1−kPd,k+1

The throughput per user for the network with the relay is given by ( 2.25). The aggregate

throughput is μtotal = nμ.

μ = q0P (Q > 0)

n−1∑
k=0

(
n− 1

k

)
qk+1(1− q)n−1−kPd,k+1,1+

+ [1− q0P (Q > 0)]
n−1∑
k=0

(
n− 1

k

)
qk+1(1− q)n−1−k [Pd,k+1,0 + (1− Pd,k+1,0)P0,k+1]

(2.25)

The throughput per user as a function of q is given by (2.26). In order to maximize μ(q),

we need to find q∗ such that μ(q∗) ≥ μ(q) ∀ 0 < q < 1. The analysis for finding the optimum

is straight forward, has some complex calculations and will not add new insights to the results.
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We will present a numerical evaluation of this problem in the next section.

μ(q) = (1− q)nD
n−1∑
k=0

(
n− 1

k

)(
q

1− q

)k+1

Pd,k+1,1+

+(1− q)n(1−D)
n−1∑
k=0

(
n− 1

k

)(
q

1− q

)k+1

[Pd,k+1,0 + (1− Pd,k+1,0)P0,k+1]

(2.26)

where

D =

n∑
k=1

n∑
i=k

Ai,k

(
q

1− q

)i

n∑
k=0

Bk

(
q

1− q

)k

+

n∑
k=1

n∑
i=k

Ai,k

(
q

1− q

)i

where Ai,k = k

(
n

i

)(
i

k

)
P k
0,i (1− Pd,i,0)

k [1− P0,i(1− Pd,i,0)]
i−k and Bk =

(
n

k

)
P0d,k

2.4 Numerical Results

In this section we present numerical results for the analysis presented above. The results pre-

sented below have been verified by simulations which confirmed the accuracy of the analysis

in the previous section. To simplify the presentation we consider the case where all the users

have the same link characteristics and transmission probabilities. The parameters used in the

numerical results are as follows. The distances in meters are given by r(i, d) = rd = 130,

r(i, 0) = r0 = 60 ∀i ≥ 1 and r(0, d) = r0d = 80. The path loss is α = 4 and the receiver

noise power η = 10−11. The transmit power for the relay is Ptx(0) = 10 mW and for the i-th

user Ptx(i) = 1 mW.

2.4.1 Properties of the queue of the relay for the case of n = 2 users

Fig. 2.3(a) and 2.3(b) present the average queue size and the probability of the queue to be

empty as the q0 varies for various values of q and γ. As the relay transmission probability q0

21



increases then the queue is more likely to be empty. Equally expected is the decrease of the

average queue size as q0 increases.

(a) Average Queue Size

(b) Probability of the queue to be empty

Figure 2.3: Properties of the relay’s queue for the case of two-users

2.4.2 The impact of the number of users

Fig. 2.4(a) - 2.4(b) and Fig. 2.5(a) - 2.5(b) show the aggregate throughput versus the number

of users for γ < 1 and γ > 1 respectively. Notice that with small values of γ is more likely

to have more successful simultaneous transmissions comparing to larger γ. For γ < 1 it is

possible for two or more users to transmit successfully at the same time, comparing to γ > 1
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which that probability tends to zero.

The figures show that the relay offers a significant advantage compared to the network

without the relay. When the threshold γ increases the gain in term of percentage it is greater.

Another interesting observation is that given the link characteristics and the transmission prob-

abilities, there is an optimum number of users N∗ that maximizes the aggregate throughput.

This number could be used as a criterion for finding the optimum size of a subset of users that

a relay can serve.

(a) γ = 0.5

(b) γ = 0.8

Figure 2.4: Aggregate throughput vs number of users for γ < 1

Fig. 2.6(a) and 2.6(b) show the aggregate throughput versus the number of the users served
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(a) γ = 1.2

(b) γ = 2.5

Figure 2.5: Aggregate throughput vs number of users for γ > 1

by the relay for several values of q and γ. As γ increases the number of users that achieves the

maximum aggregate throughput is decreasing. The same conclusion comes for the values of

q, as the q increases.

Fig. 2.7(a) and 2.7(b) show the throughput per user versus the user’s transmission probabil-

ity q for several values of n and γ. An intuitive result for the q∗ (the value of q that maximizes

the throughput per user), is that as n increases then the q∗ decreases.

Fig. 2.8(a) and 2.8(b) present the q0min threshold versus the number of users for γ < 1

and γ > 1 respectively.
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(a) γ < 1

(b) γ > 1

Figure 2.6: Aggregate throughput with relay vs number of users

The advantage that the relay offers is more obvious when the number of users is large.

This is expected and feasible because of the MPR capabilities and the capture effect of the

channel comparing to the collision channel in our previous work.

2.5 Conclusions

In this work, we examined the operation of a node relaying packets from a number of users to

a common destination node. We assumed MPR capability for the relay and for the destination
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(a) γ < 1

(b) γ > 1

Figure 2.7: Throughput per user vs q

node. We studied a multiple capture model, where a user’s transmission is successful if the

received SINR is above a threshold γ. We obtained analytical expressions for the relay’s

queue characteristics such as the stability condition, the values of the arrival and service rates,

the average queue size. We showed that the arrival rate at the queue is independent of the

relay probability of transmission, when the queue is stable. We studied the throughput per

user and the aggregate throughput, and found that, under stability conditions, the throughput

per user does not depend on the relay probability of transmission. The analytical results have

been verified with simulations. In Section 2.4 we have given the conditions under which the
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(a) γ < 1

(b) γ > 1

Figure 2.8: q0min vs Number of users

utilization of the relay offers significant advantages. An interesting result is that, given the

link characteristics and the transmission probabilities, there is an optimum number of users

that maximizes the aggregate throughput. These results could be useful in a network with

many users and multiple relays for determining the way to allocate the users among the relays.

With the MPR and the capture effect the advantages from deploying a relay node are more

pronounced.

An extension of the present work is the case of the relay node which is capable of trans-

mitting and receiving packets at the same time (full duplex), the case of multiple relays (with
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possible cooperation among them) it is interesting too. Another possible extension is the case

of dynamic adjustment of the transmission probabilities depending on the network conditions.

Future extensions of this work will include users with non-saturated queues i.e. sources with

external random arrivals, a relay node with its own packets and different priorities for the

users. Another interesting extension of this work concerns the energy consumption in the total

network, and in particular at the relay node.
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Chapter 3

Relay-Assisted Multiple Access with

MPR Capability and Simultaneous

Transmission and Reception

The material in this chapter was presented in [34].

3.1 Introduction

In wireless networks when a node transmits and receives simultaneously the problem of self

interference arises. Information theoretic aspects of this problem can be found at the work

of Shannon on [7], although the capacity region of the two-way channel is not known for the

general case [8]. There are some techniques that allow the possibility of perfect self interfer-

ence cancelation [8]. In practice though, there are technological limitations [9]- [10] which

can limit the accuracy of the self interference cancelation. Various methods for performing

self interference cancelation at the nodes’ receivers can be found in [11] and [12]. The con-

clusion is that there is a trade off between transceiver complexity and the accuracy of the self

interference cancelation.
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In this work we examine the operation of a node relaying packets from a number of users-

sources to a destination node as shown in Fig. 3.1, and is an extension of [29] and [22]. We

assume MPR capability for the relay and the destination node. The relay node can transmit

and receive at the same time. We assume random access to the channel, time is considered

slotted, and each packet transmission takes one time slot. The wireless channel between the

nodes in the network is modeled by a Rayleigh narrowband flat-fading channel with additive

Gaussian noise. A user’s transmission is successful if the received signal to interference plus

noise ratio (SINR) is above a threshold γ. We also assume that acknowledgements (ACKs)

are instantaneous and error free. The relay does not have packets of its own and the sources

are considered saturated with unlimited amount of traffic. We do not consider any specific

self interference cancelation mechanism, because it is out of the scope of this work. The self

interference cancelation at the relay is modeled as a variable power gain.

We obtain analytical expressions for the characteristics of the relay’s queue (such as arrival

and service rates), we study the stability condition and the average length of the queue as

functions of the probabilities of transmission, the self interference coefficient and the outage

probabilities of the links. We study the impact of the relay node and the self interference

coefficient on the throughput per user-source and the aggregate throughput.

Section 3.2 describes the system model, in Section 3.3 we study the characteristics of

the relay’s queue and we derive the equations for the throughput per user and the aggregate

throughout. We present the numerical results in Section 3.4 and, finally, our conclusions are

given in Section 3.5.

3.2 System Model

3.2.1 Network Model

We consider a network with N sources, one relay node and a single destination node. The

sources transmit packets to the destination with the cooperation of the relay; the case of N = 2
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Figure 3.1: The simple network model

Figure 3.2: Markov Chain model for the two-user case

is depicted in Fig. 3.1. We assume that the queues of the two sources are saturated (i.e. there

are no external arrivals but unlimited packet volume in the buffers); the relay does not have

packets of its own, and just forwards the packets that it has received from the two users. The

relay node stores a source packet that it receives successfully in its queue when the direct

transmission to the destination node has failed. We assume random access to the channel.

Each of the receivers (relay and destination) is equipped with multiuser detectors, so that they

may decode packets successfully from more than one transmitter at a time. The relay node can

receive and transmit packets simultaneously.

3.2.2 Physical Layer Model

The MPR channel model used in this work is a generalized form of the packet erasure model.

We assume that a packet transmitted by i is successfully received by j if and only if SINR(i, j) ≥
γj , where γj is a threshold characteristic of node j. The wireless channel is subject to fad-
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ing; let Ptx(i) be the transmitting power at node i and r(i, j) be the distance between i and

j. The received power by j when i transmits is Prx(i, j) = A(i, j)g(i, j) where A(i, j) is

a random variable representing channel fading. Under Rayleigh fading, it is known [30] that

A(i, j) is exponentially distributed. The received power factor g(i, j) is given by g(i, j) =

Ptx(i)(r(i, j))
−α where α is the path loss exponent with typical values between 2 and 4. We

model the self interference by a scalar g ∈ [0, 1]. We refer to the g as the self interference

coefficient. When g = 1, no self interference cancelation technique is used and g = 0 when

there is perfect self interference cancelation. The success probability in the link ij is given by:

P j
i/T = exp

(
− γjηj
v(i, j)g(i, j)

)
(1 + γj(r(i, j))

αg)−m
∏

k∈T\{i,j}

(
1 + γj

v(k, j)g(k, j)

v(i, j)g(i, j)

)−1

(3.1)

where T is the set of transmitting nodes at the same time, v(i, j) is the parameter of the

Rayleigh random variable for fading; m = 1 when j ∈ T and m = 0 else. The analytical

derivation for this success probability can be found in [31] and [35].

3.3 Analysis

In this section we derive the equations for the characteristics of the relay’s queue, such as the

arrival and service rates, the stability conditions, and the average queue length. We will pro-

vide an analysis for two cases: first, when the network consists of two users (non-symmetric)

and the second is for n > 2 symmetric users.
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3.3.1 Two-user case

Computation of the average arrival and service rate

The service rate is given by:

μ = q0(1− q1)(1− q2)P
d
0/0 + q0q1(1− q2)P

d
0/0,1 + q0q2(1− q1)P

d
0/0,2 + q0q1q2P

d
0/0,1,2

(3.2)

where q0 is the transmission probability of the relay given that it has packets in its queue, qi for

i �= 0 is the transmission probability for the i-th user. The term P j
i/i,k is the success probability

of link ij when the transmitting nodes are i and k and can be calculated based on (3.1).

The average arrival rate λ of the queue is given by:

λ = P (Q = 0)λ0 + P (Q > 0)λ1 (3.3)

Where λ0 is the average arrival rate at the relay’s queue when the queue is empty and λ1

when it’s not. λ0 = r01 + 2r02, where r0i is the probability of receiving i packets given that the

queue is empty. The expressions for r0i are given by:

r01 = q1(1− q2)(1− P d
1/1)P

0
1/1 + q2(1− q1)(1− P d

2/2)P
0
2/2 + q1q2(1− P d

1/1,2)P
0
1/1,2P

d
2/1,2+

+q1q2(1− P d
2/1,2)P

0
2/1,2P

d
1/1,2 + q1q2(1− P d

1/1,2)P
0
1/1,2(1− P d

2/1,2)(1− P 0
2/1,2)+

+q1q2(1− P d
2/1,2)P

0
2/1,2(1− P d

1/1,2)(1− P 0
1/1,2)

(3.4)

r02 = q1q2(1− P d
1/1,2)(1− P d

2/1,2)P
0
1/1,2P

0
2/1,2

(3.5)

Accordingly, λ1 = r11 + 2r12, where r1i is the probability of receiving i packets when the

queue is not empty. The expressions for the r1i are lengthy and given by:
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r11 = (1− q0)q1(1− q2)(1− P d
1/1)P

0
1/1 + q0q1(1− q2)(1− P d

1/0,1)P
0
1/0,1 + (1− q0)q2(1− q1)(1− P d

2/2)P
0
2/2+

+q0q2(1− q1)(1− P d
2/0,2)P

0
2/0,2 + (1− q0)q1q2(1− P d

1/1,2)P
0
1/1,2(1− P d

2/1,2)(1− P 0
2/1,2)+

+q0q1q2(1− P d
1/0,1,2)P

0
1/0,1,2(1− P d

2/0,1,2)(1− P 0
2/0,1,2) + (1− q0)q1q2(1− P d

1/1,2)P
0
1/1,2P

d
2/1,2+

+q0q1q2(1− P d
1/0,1,2)P

0
1/0,1,2P

d
2/0,1,2 + (1− q0)q1q2(1− P d

2/1,2)P
0
2/1,2(1− P d

1/1,2)(1− P 0
1/1,2)+

+q0q1q2(1− P d
2/0,1,2)P

0
2/0,1,2(1− P d

1/0,1,2)(1− P 0
1/0,1,2) + (1− q0)q1q2(1− P d

2/1,2)P
0
2/1,2P

d
1/1,2+

+q0q1q2(1− P d
2/0,1,2)P

0
2/0,1,2P

d
1/0,1,2

(3.6)

r12 = (1− q0)q1q2(1−P d
1/1,2)P

0
1/1,2(1−P d

2/1,2)P
0
2/1,2 + q0q1q2(1−P d

1/0,1,2)P
0
1/0,1,2(1−P d

2/0,1,2)P
0
2/0,1,2 (3.7)

In Fig. 3.2 we present the discrete time Markov Chain (DTMC) that describes the queue

evolution. Each state is denoted by an integer and represents the queue size at the relay node.

The transition matrix of the above DTMC is is a lower Hessenberg matrix given by:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 b0 0 0 · · ·
a1 b1 b0 0 · · ·
a2 b2 b1 b0 · · ·
0 b3 b2 b1 · · ·
0 0 b3 b2 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.8)

Where a0 = 1 − p01 − p02, a1 = p01, a2 = p02, b0 = p1−1 and bi+1 = p1i i = 0, 1, 2, 3. The

quantity p0i (p1i ) is the probability that the queue size increases by i packets when the queue

is empty (not empty). Note that p0i = r0i , because when the queue is empty the probability of

i packets arriving is the same with the probability that the queue size increases by i packets;

when the queue is not empty however, this is not true. For example the probability of 2 packets

arriving is not the same with the probability of increasing the queue size by 2; this is because
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both arrivals and departures can occur at the same time. The expressions for the p1i are also

given by lengthy expressions listed below:

p1−1 = q0(1− q1)(1− q2)P
d
0/0 + q0(1− q1)q2P

d
0/0,2P

d
2/0,2 + q0(1− q1)q2P

d
0/0,2(1− P d

2/0,2)(1− P 0
2/0,2)+

q0q1(1− q2)P
d
0/0,1P

d
1/0,1 + q0q1(1− q2)P

d
0/0,1(1− P d

1/0,1)(1− P 0
1/0,1) + q0q1q2P

d
0/0,1,2P

d
1/0,1,2P

d
2/0,1,2+

+q0q1q2P
d
0/0,1,2(1− P d

1/0,1,2)(1− P 0
1/0,1,2)(1− P d

2/0,1,2)(1− P 0
2/0,1,2) + q0q1q2P

d
0/0,1,2P

d
1/0,1,2(1− P d

2/0,1,2)(1− P 0
2/0,1,2)+

q0q1q2P
d
0/0,1,2(1− P d

1/0,1,2)(1− P 0
1/0,1,2)P

d
2/0,1,2

(3.9)

p10 = 1− p1−1 − p11 − p12 (3.10)

p11 = (1− q0)q1(1− q2)(1− P d
1/1)P

0
1/1 + (1− q0)q1q2(1− P d

1/1,2)P
0
1/1,2P

d
2/1,2+

(1− q0)q1q2(1− P d
1/1,2)P

0
1/1,2(1− P d

2/1,2)(1− P 0
2/1,2) + (1− q0)(1− q1)q2(1− P d

2/2)P
0
2/2+

(1− q0)q1q2(1− P d
2/1,2)P

0
2/1,2P

d
1/1,2 + (1− q0)q1q2(1− P d

2/1,2)P
0
2/1,2(1− P d

1/1,2)(1− P 0
1/1,2)+

+q0q1q2P
d
0/0,1,2(1− P d

1/0,1,2)P
0
1/0,1,2(1− P d

2/0,1,2)P
0
2/0,1,2 + q0q1(1− q2)(1− P d

0/0,1)(1− P d
1/0,1)P

0
1/0,1+

+q0q1q2(1− P d
0/0,1,2)(1− P d

1/0,1,2)P
0
1/0,1,2P

d
2/0,1,2 + q0q1q2(1− P d

0/0,1,2)(1− P d
1/0,1,2)P

0
1/0,1,2(1− P d

2/0,1,2)(1− P 0
2/0,1,2)+

+q0q2(1− q1)(1− P d
0/0,2)(1− P d

2/0,2)P
0
2/0,2 + q0q1q2(1− P d

0/0,1,2)(1− P d
2/0,1,2)P

0
2/0,1,2P

d
1/0,1,2+

+q0q1q2(1− P d
0/0,1,2)(1− P d

2/0,1,2)P
0
2/0,1,2(1− P d

1/0,1,2)(1− P 0
1/0,1,2)

(3.11)

p12 = (1− q0)q1q2(1− P d
1/1,2)P

0
1/1,2(1− P d

2/1,2)P
0
2/1,2 + q0q1q2(1− P d

0/0,1,2)(1− P d
1/0,1,2)P

0
1/0,1,2(1− P d

2/0,1,2)P
0
2/0,1,2

(3.12)

The difference equations that govern the evolution of the states are given by:

Ps = s⇒ si = ais0 +
i+1∑
j=1

bi−j+1sj (3.13)
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We apply the Z-transform technique to compute the steady state distribution, i.e. we let

A(z) =
2∑

i=0

aiz
−i, B(z) =

3∑
i=0

biz
−i, S(z) =

∞∑
i=0

siz
−i (3.14)

It is known that [32]:

S(z) = s0
z−1A(z)−B(z)

z−1 −B(z)
(3.15)

It is also known that the probability of the queue in the relay is empty is given by [32]:

P (Q = 0) =
1 +B

′
(1)

1 +B′(1)−A′(1)
(3.16)

The expressions of A
′
(1) and B

′
(1) are:

A
′
(z) =

(
2∑

i=0

aiz
−i

)′

= −
2∑

i=1

iaiz
−(i+1) ⇒ A

′
(1) = −

2∑
i=1

iai ⇒ A
′
(1) = −

2∑
i=1

ip0i = −λ0

(3.17)

B
′
(z) =

(
3∑

i=0

biz
−i

)′

= −
3∑

i=0

ibiz
−(i+1) ⇒ B

′
(1) = −

3∑
i=0

ibi = −b1 − 2b2 − 3b3 = −1 + p1−1 − p11 − 2p12

(3.18)

Then the the probability of the queue in the relay is empty is

P (Q = 0) =
p1−1 − p11 − 2p12

p1−1 − p11 − 2p12 + λ0
(3.19)

So, the average arrival rate λ is given by:

λ =
p1−1 − p11 − 2p12

p1−1 − p11 − 2p12 + λ0
λ0 +

λ0

p1−1 − p11 − 2p12 + λ0
λ1 (3.20)
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Condition for the stability of the queue

An important tool to determine stability is Loyne’s criterion [33], which states that if the arrival

and service processes of a queue are jointly strictly stationary and ergodic, the queue is stable

if and only if the average arrival rate is strictly less than the average service rate. If the queue

is stable, the departure rate (throughput) is equal to the arrival rate. λ1 < μ ⇔ r11 + 2r12 < μ

where r11 = (1− q0)A1 + q0B1, r12 = (1− q0)A2 + q0B2 and μ = q0A. The expressions for

A,Ai, Bi are given by:

A1 = q1(1− q2)(1− P d
1/1)P

0
1/1 + q2(1− q1)(1− P d

2/2)P
0
2/2 + q1q2(1− P d

1/1,2)P
0
1/1,2(1− P d

2/1,2)(1− P 0
2/1,2)+

+q1q2(1− P d
1/1,2)P

0
1/1,2P

d
2/1,2 + q1q2(1− P d

2/1,2)P
0
2/1,2(1− P d

1/1,2)(1− P 0
1/1,2) + q1q2(1− P d

2/1,2)P
0
2/1,2P

d
1/1,2

B1 = q1(1− q2)(1− P d
1/0,1)P

0
1/0,1 + q2(1− q1)(1− P d

2/0,2)P
0
2/0,2 + q1q2(1− P d

1/0,1,2)P
0
1/0,1,2(1− P d

2/0,1,2)(1− P 0
2/0,1,2)+

+q1q2(1− P d
1/0,1,2)P

0
1/0,1,2P

d
2/0,1,2 + q1q2(1− P d

2/0,1,2)P
0
2/0,1,2(1− P d

1/0,1,2)(1− P 0
1/0,1,2)+

+q1q2(1− P d
2/0,1,2)P

0
2/0,1,2P

d
1/0,1,2

(3.21)

A2 = q1q2(1− P d
1/1,2)P

0
1/1,2(1− P d

2/1,2)P
0
2/1,2,

B2 = q1q2(1− P d
1/0,1,2)P

0
1/0,1,2(1− P d

2/0,1,2)P
0
2/0,1,2

(3.22)

A = (1− q1)(1− q2)P
d
0/0 + q1(1− q2)P

d
0/0,1 + q2(1− q1)P

d
0/0,2 + q1q2P

d
0/0,1,2

(3.23)

Then the values of q0 for which the queue is stable is given by q0min < q0 < 1, where:

q0min =
A1 + 2A2

A+A1 + 2A2 −B1 − 2B2
(3.24)

37



Average queue size

The average queue size is given by [32]: Q = −S′
(1) where S

′
(1) = s0

K
′′
(1)

L
′′
(1)

. The expres-

sions for K(z) and L(z) are given by:

K(z) =
(
−z−2A(z) + z−1A

′
(z)−B

′
(z)
) (

z−1 −B(z)
)− (z−1A(z)−B(z)

) (−z−2 −B
′
(z)
)

(3.25)

L(z) =
(
z−1 −B(z)

)2 (3.26)

Then K
′′
(1) and L

′′
(1) are given by:

⇒ K
′′
(1) =

(
2A(1)− 2A

′
(1) +A

′′
(1)−B

′′
(1)
)(
−1−B

′
(1)
)
−
(
2−B

′′
(1)
)(
−A(1) +A

′
(1)−B

′
(1)
)

(3.27)

L
′′
(z) =

[
2
(
z−1 −B(z)

) (−z−2 −B
′
(z)
)]′

⇒ L
′′
(1) = 2

(
−1−B

′
(1)
)2

(3.28)

The values of A
′′
(1) and B

′′
(1) are:

A
′′
(z) =

(
−

2∑
i=1

iaiz
−(i+1)

)′

=

2∑
i=1

i(i+ 1)aiz
−(i+2) ⇒ A

′′
(1) = 2p01 + 6p02 (3.29)

B
′′
(z) =

(
−

3∑
i=1

ibiz
−(i+1)

)′

=
3∑

i=1

i(i+ 1)biz
−(i+2) ⇒ B

′′
(1) = 2− 2p1−1 + 4p11 + 10p12

(3.30)

The average queue size is given by:
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Q =
(p11 + 2p12 − p1−1)(4p

0
1 + 10p02) + λ0(2p

1−1 − 4p11 − 10p12)

2(p11 + 2p12 − p1−1)(p
1−1 − p11 − 2p12 + λ0)

(3.31)

The throughput per user and the aggregate throughput

The throughput rates μ1, μ2 for the users 1, 2 are given by:

μ1 = q0P (Q > 0) q1

{
(1− q2)

[
P d
1/0,1 + (1− P d

1/0,1)P
0
1/0,1

]
+ q2

[
P d
1/0,1,2 + (1− P d

1/0,1,2)P
0
1/0,1,2

]}
+

+ [1− q0P (Q > 0)] q1

{
(1− q2)

[
P d
1/1 + (1− P d

1/1)P
0
1/1

]
+ q2

[
P d
1/1,2 + (1− P d

1/1,2)P
0
1/1,2

]}
(3.32)

μ2 = q0P (Q > 0) q2

{
(1− q1)

[
P d
2/0,2 + (1− P d

2/0,2)P
0
2/0,2

]
+ q1

[
P d
2/0,1,2 + (1− P d

2/0,1,2)P
0
2/0,1,2

]}
+

+ [1− q0P (Q > 0)] q2

{
(1− q1)

[
P d
2/2 + (1− P d

2/2)P
0
2/2

]
+ q1

[
P d
2/1,2 + (1− P d

2/1,2)P
0
2/1,2

]}
(3.33)

In the equations above we assume that the queue is stable, hence the arrival rate from

each user to the queue is a contribution to its overall throughput. The aggregate throughput is

μtotal = μ1 + μ2. Notice that the throughput per user is independent of q0 as long as it is in

the stability region. This is explained because the product q0P (Q > 0) is constant. The proof

is straightforward and thus is omitted.

When the queue is unstable however, the aggregate throughput is the summation of all the

direct throughput between the users and the destination plus the service rate of the relay.

3.3.2 N-symmetric users

We now generalize the above for the case of a symmetric n-users network. Each user at-

tempts to transmit in a slot with probability q; the success probability to the relay and the

destination when i nodes transmit are given by P0,i, Pd,i respectively. There are two cases

for the Pd,i , Pd,i,0, Pd,i,1 denoting success probability when relay remains silent or transmits
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respectively. The above success probabilities for the symmetric case are given by Pd,i,j =

Pd

(
1

1+γd

)i−1 (
1

1+βγ0

)j
, j = 0, 1 and β = v0dg0d

vdgd
> 1. P0d,i = P0d

(
1

1+ 1
β
γd

)i

, P0 =

exp
(
−γ0η0

v0g0

)
, Pd = exp

(
−γdηd

vdgd

)
, P0d = exp

(
−γ0η0

v0g0

)
. There are two cases for the P0,i,

P0,i,0, P0,i,1 denoting success probability when relay remains silent or transmits respectively.

The success probabilities are given by P0,i,0 = P0

(
1

1+γ0

)i−1
and P0,i,1 = P0 (1 + γ0r

α
0 g)

−1
(

1
1+γ0

)i−1

where r0 is the distance between the users and the relay, α is the path loss exponent and g is

the self interference coefficient.

Computation of the average arrival and service rate

The service rate is given by the following equation:

μ =

n∑
k=0

(
n

k

)
q0q

k(1− q)n−kP0d,k (3.34)

The average arrival rate λ of the queue is given by:

λ = P (Q = 0)λ0 + P (Q > 0)λ1 (3.35)

λ0 =
∑n

k=1 kr
0
k where the r0k is the probability that the relay received k packets when the

queue is empty, the expression for r0k is given by:

r0k =

n∑
i=k

(
n

i

)(
i

k

)
qi(1− q)n−iP k

0,i,0 (1− Pd,i,0)
k [1− P0,i,0(1− Pd,i,0)]

i−k, 1 ≤ k ≤ n

(3.36)

λ1 =
∑n

k=1 kr
1
k where the r1k is the probability that the relay received k packets when the
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queue is not empty and is given by:

r1k = (1− q0)

n∑
i=k

(
n

i

)(
i

k

)
qi(1− q)n−iP k

0,i,0 (1− Pd,i,0)
k [1− P0,i,0(1− Pd,i,0)]

i−k+

+q0

n∑
i=k

(
n

i

)(
i

k

)
qi(1− q)n−iP k

0,i,1 (1− Pd,i,1)
k [1− P0,i,1(1− Pd,i,1)]

i−k, 1 ≤ k ≤ n

(3.37)

The elements of the transition matrix are given by: ak = p0k, b0 = p1−1, b1 = p10 and

bk+1 = p1k ∀k > 0 where:

p0k =

n∑
i=k

(
n

i

)(
i

k

)
qi(1− q)n−iP k

0,i,0 (1− Pd,i,0)
k [1− P0,i,0(1− Pd,i,0)]

i−k, 1 ≤ k ≤ n

(3.38)

p1−1 = q0

n∑
k=0

(
n

k

)
qk(1− q)n−kP0d,k [1− P0,k,1(1− Pd,k,1)]

k (3.39)

p1k = (1− q0)

n∑
i=k

(
n

i

)(
i

k

)
qi(1− q)n−iP k

0,i,0 (1− Pd,i,0)
k [1− P0,i,0(1− Pd,i,0)]

i−k+

+q0

n∑
i=k

(
n

i

)(
i

k

)
qi(1− q)n−i(1− P0d,i)P

k
0,i,1 (1− Pd,i,1)

k [1− P0,i,1(1− Pd,i,1)]
i−k+

+q0

n∑
i=k+1

(
n

i

)(
i

k + 1

)
qi(1− q)n−iP0d,iP

k+1
0,i,1 (1− Pd,i,1)

k+1 [1− P0,i,1(1− Pd,i,1)]
i−k−1

(3.40)

p10 = 1− p1−1 −
n∑

i=1

p1i (3.41)

The probability that the queue in the relay is empty is given by (3.16), the expressions for

A
′
(1) and B

′
(1) are:

41



A
′
(z) =

(
n∑

i=0

aiz
−i

)′

= −
n∑

i=1

iaiz
−(i+1) ⇒ A

′
(1) = −

n∑
i=1

iai ⇒ A
′
(1) = −

n∑
i=1

ip0i = −λ0

(3.42)

B
′
(z) =

(
n+1∑
i=0

biz
−i

)′

= −
n+1∑
i=i

ibiz
−(i+1) ⇒ B

′
(1) = −

n+1∑
i=i

ibi = −b1 −
n+1∑
i=2

ibi =

= −1 + p1−1 −
n∑

i=1

ip1i

(3.43)

Then the probability that the queue in the relay is empty is given by:

P (Q = 0) =

p1−1 −
n∑

i=1e

ip1i

p1−1 −
n∑

i=1

ip1i + λ0

(3.44)

Condition for the stability of the queue

λ1 < μ⇔∑n
k=1 kr

1
k < μ where r1k = (1− q0)Ak + q0Bk and μ = q0A. The expressions for

A,Ak, Bk are :

Ak =
n∑

i=k

(
n

i

)(
i

k

)
qi(1− q)n−iP k

0,i,0 (1− Pd,i,0)
k [1− P0,i,0(1− Pd,i,0)]

i−k
(3.45)

Bk =

n∑
i=k

(
n

i

)(
i

k

)
qi(1− q)n−iP k

0,i,1 (1− Pd,i,1)
k [1− P0,i,1(1− Pd,i,1)]

i−k
(3.46)

A =

n∑
k=0

(
n

k

)
qk(1− q)n−kP0d,k (3.47)

42



The values of q0 for which the queue is stable is given by q0min < q0 < 1, where:

q0min =

n∑
k=1

kAk

A+
n∑

k=1

kAk −
n∑

k=1

kBk

(3.48)

Average queue size

As we showed in the Section 3.3.1, the average queue size is given by: Q = −S′
(1) where

S
′
(1) = s0

K
′′
(1)

L
′′
(1)

. The expressions for K
′′
(1) and L

′′
(1) are given by (3.27) and (3.28). The

expressions for A
′′
(1) and B

′′
(1) are:

A
′′
(z) =

(
−

n∑
i=1

iaiz
−(i+1)

)′

=
n∑

i=1

i(i+ 1)aiz
−(i+2) ⇒ A

′′
(1) =

n∑
i=1

i(i+ 1)ai =

=

n∑
i=1

i(i+ 1)p0i

(3.49)

B
′′
(z) =

(
−

n+1∑
i=i

ibiz
−(i+1)

)′

=
n+1∑
i=1

i(i+ 1)biz
−(i+2) ⇒ B

′′
(1) =

n+1∑
i=1

i(i+ 1)bi =

= 2− 2p1−1 +
n∑

i=1

i(i+ 3)p1i

(3.50)

Following the same methodology as in Section 3.3.1 we obtain that the average queue size

is given by:

Q =

(
n∑

i=1

ip1i − p1−1

)
n∑

i=1

i(i+ 3)p0i + λ0

(
2p1−1 −

n∑
i=1

i(i+ 3)p1i

)

2

(
n∑

i=1

ip1i − p1−1

)(
p1−1 −

n∑
i=1

ip1i + λ0

) (3.51)
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The throughput per user and the aggregate throughput

The throughput per user for the network with the relay when the queue is stable is given by:

μ = q0P (Q > 0)

n−1∑
k=0

(
n− 1

k

)
qk+1(1− q)n−1−k [Pd,k+1,1 + (1− Pd,k+1,1)P0,k+1,1]+

+ [1− q0P (Q > 0)]

n−1∑
k=0

(
n− 1

k

)
qk+1(1− q)n−1−k [Pd,k+1,0 + (1− Pd,k+1,0)P0,k+1,0]

(3.52)

When the queue is unstable though, the throughput per user is given by the summation of

the direct to the destination throughput plus the service rate of the relay divided by the number

of the users n. The aggregate throughput is μtotal = nμ.

3.4 Numerical Results

In this section we present numerical results for the analysis presented above. To simplify the

presentation we consider the case where all the users have the same link characteristics and

transmission probabilities. The parameters used in the numerical results are as follows. The

distances in meters are given by rd = 130, r0 = 60 and r0d = 80. The path loss is α = 4 and

the receiver noise power η = 10−11. The transmit power for the relay is Ptx(0) = 10 mW and

for the i-th user Ptx(i) = 1 mW. We used γ < 1 because it is possible for two or more users

to transmit successfully at the same time.

The figures 3.3(a) and 3.5(a) present the throughput per user versus g (the self-interference

coefficient) for various values of q,γ and n. The figures 3.3(b) and 3.5(b) show the aggregate

throughput versus g.

The figures 3.4(a) and 3.6(a) present the throughput per user versus the number of the

users in the network for various values of q,and g for γ = 0.2 and γ = 0.6 respectively.

The figures 3.4(b) and 3.6(b) show the aggregate throughput versus the number of the users.
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(a) Throughput per user vs self interference coefficient

(b) Aggregate throughput vs self interference coefficient

Figure 3.3: Throughput per user and aggregate throughput vs the self interference coefficient

for γ = 0.2

When γ = 0.2 we observe that for g = 10−10 and g = 10−8 (almost perfect self-interference

cancelation) the relay’s queue is unstable for relative small number of users. The previous

result is because the small value of γ is more likely more transmissions from the users to the

relay to be successful, but at the same time the relay can transmit at most one packet per time

slot. For γ = 0.6 the queue is never unstable for the parameters described in the figures, and
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(a) Throughput per user vs the number of the users

(b) Aggregate throughput vs the number of the users

Figure 3.4: Throughput per user and aggregate throughput vs the number of the users for

γ = 0.2

for g = 10−10 and g = 10−8 the advantages in term of throughput are obvious compared to

no self interference cancelation.

The Fig. 3.7(a) and Fig. 3.7(b) show the q0min vs n for γ = 0.2 and γ = 0.6 respectively.

Note that q0min < q < 1, so when q0min ≥ 1 then the queue is unstable as in case of γ = 0.2

for g = 10−10 and g = 10−8.
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(a) Throughput per user vs self interference coefficient

(b) Aggregate throughput vs self interference coefficient

Figure 3.5: Throughput per user and aggregate throughput vs the self interference coefficient

for γ = 0.6

3.5 Conclusions

In this work, we examined the operation of a node relaying packets from a number of users

to a common destination node. We assumed MPR capability for the relay and for the desti-

nation node. We studied a multiple capture model, where a user’s transmission is successful

if the received SINR is above a threshold γ. The relay node can also receive and transmit
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(a) Throughput per user vs the number of the users

(b) Aggregate throughput vs the number of the users

Figure 3.6: Throughput per user and aggregate throughput vs the number of the users for

γ = 0.6

simultaneously, so the problem of self interference arises.

We obtained analytical expressions for the relay’s queue characteristics such as the stabil-

ity condition, the values of the arrival and service rates, the average queue size. We studied

the throughput per user and the aggregate throughput, and found that, under stability condi-

tions, the throughput per user does not depend on the relay probability of transmission. We
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(a) Stability threshold vs the number of the users for γ = 0.2

(b) Stability threshold vs the number of the users for γ = 0.6

Figure 3.7: Stability threshold vs the number of the users

studied the impact of self interference coefficient on the throughput per user and the aggregate

throughput of the network.

We showed that for perfect self-interference cancelation, the advantages are obvious. An-

other interesting result is that the self interference coefficient plays a crucial role when γ is

small (and g tends to zero) because it can easily cause an unstable queue.

Future extensions of this work should include users with non-saturated queues i.e. sources
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with external random arrivals, a relay node with its own packets and different priorities for the

users.
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Chapter 4

Wireless Network-Level Partial Relay

Cooperation

The material in this chapter was presented in [36].

4.1 Introduction

Cooperative communication helps overcome fading and attenuation in wireless networks. Its

main purpose is to increase the communication rates across the network and to increase re-

liability of time-varying links. It is known that wireless communication from a source to a

destination can benefit from the cooperation of nodes that overhear the transmission. The

classical single relay channel [1] exemplifies this situation. Further work on the relay channel

in [2] and [3] has enabled substantial performance improvement.

However, there is evidence that additional gains can be achieved with “network-layer”

cooperation (or packet-level cooperation), that is plain relaying without any physical layer

considerations [4] and [5]. In this work, we focus on this type of cooperation. The work in [6]

investigated the network-level cooperation in a network consisting of a source and a relay by

considering the cases of full or no cooperation at the relay. A key difference between physical-
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layer and network-layer cooperation ideas is that the objective rate function that is maximized

is the so-called stable throughput region which captures the bursty nature of traffic from the

source. In [6], it was shown that the stability region of full cooperation under random-access

does not always strictly contain the non-cooperative stability region.

The main contribution in this work is to introduce the notion of partial network-level co-

operation by adding a flow controller for the traffic coming to the relay from the source. We

prove that the system is always better than or at least equal to the system without the flow con-

troller. Specifically, we provide an exact characterization of the stability region of a network

consisting of a source, a relay and a destination node as shown in Fig. 4.1. We consider the

collision channel with erasures and random access of the medium. The source and the relay

node have external arrivals; furthermore, the relay is forwarding part of the source node’s traf-

fic to the destination. Unlike the work in [6], the relay node is equipped with a flow controller

that regulates the internal arrivals from the source based on the conditions in the network to

ensure the stability of the queues. We characterize the stable throughput region under condi-

tions of no cooperation at all, full cooperation, and probabilistic (opportunistic) cooperation.

By probabilistic cooperation we mean that under certain conditions in the network, the relay

may accept a packet from the source. The characterization of the stability regions is known to

be challenging because the queues of the users are coupled (i.e., the service process of a queue

depends on the status of the other queues). A tool that bypasses this difficulty is the stochastic

dominance technique [37].

4.2 System Model

We consider a time-slotted system in which the nodes are randomly accessing a common

receiver as shown in Fig. 4.1. We denote with S, R, and D the source, the relay and the

destination, respectively. Packet traffic originates from S and R. Because of the wireless

broadcast nature, R may receive some of the packets transmitted from S and then relay those
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Figure 4.1: Network model with regulator at the relay

packets to D. The packets from S which failed to be received by D but were successfully

received by R are relayed by R. As we impose half-duplex constraint, R can overhear S

only when it is idle. Each node has an infinite size buffer for storing incoming packets, and

the transmission of each packet occupies one time slot. Node R has separate queues for the

exogenous arrivals and the endogenous arrivals that are relayed through R. But, we can let

R to maintain a single queue and merge all the arrivals into a single queue as the achievable

stable throughput region is not affected [6]. This is because the link quality between R and D

is independent of which packet is selected for transmission.

The packet arrival processes at S and R are assumed to be Bernoulli with rates λ1 and λ2,

respectively, and are independent of each other. Node R is equipped with a flow controller

that regulates the rate of endogenous arrivals from S by randomly accepting the incoming

packets with probability pa; that is, it controls the amount of cooperation that it is willing to

provide. In each time slot, nodes S and R attempt to transmit with probabilities q1 and q2,

respectively, if their queues are not empty. Decisions on transmission are made independently

among the nodes. We assumed collision channel with erasures in which, if both S and R

transmit in the same time slot, a collision occurs and both transmissions fail. The probability

that a packet transmitted by node i is successfully decoded at node j( �= i) is denoted by pij

which is the probability that the signal-to-noise-ratio (SNR) over the specified link exceeds a
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certain threshold for the successful decoding. These erasure probabilities capture the effect

of random fading at the physical layer. The probabilities p13, p23, and p12 denote the success

probabilities over the link S−R, R−D, and S−R, respectively. Node R has a better channel

to D than S, that is p23 > p13.

The cooperation is performed at the protocol level as follows. When S transmits a packet,

if D decodes the packet successfully, it sends an ACK and the packet exits the network; if D

fails to decode the packet but R does and the flow controller decides to relay the packet, then

R sends an ACK and takes over the responsibility of delivering the packet to D by placing it

in its queue. If neither D nor R decode (or if R does not store the packet), the packet remains

in S’s queue for retransmission. The ACKs are assumed to be error-free, instantaneous and

broadcasted to all relevant nodes.

Denote by Qt
i the length of queue i at the beginning of time slot t. Based on the definition

in [38], the queue is said to be stable if

lim
t→∞Pr[Qt

i < x] = F (x) and lim
x→∞F (x) = 1

Loynes’ theorem [33] states that if the arrival and service processes of a queue are strictly

jointly stationary and the average arrival rate is less than the average service rate, then the

queue is stable. If the average arrival rate is greater than the average service rate, then the

queue is unstable and the value of Qt
i approaches infinity almost surely. The stability region

of the system is defined as the set of arrival rate vectors λ = (λ1, λ2) for which the queues in

the system are stable.

4.3 Main Results

This section describes the stability region for the system presented in the previous section and

depicted in Fig. 4.1. The relay node R is equipped with a flow controller, and the parameter

pa of the flow controller is the probability to accept for the received packet from the source
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S. So, our objective is to find the optimum value of pa denoted by p∗a which maximizes the

stability region. This value reflects the cooperation degree that maximizes the stability region.

Theorem 4.3.1. The stability region of the opportunistic cooperative network depicted in

Fig. 4.1 is described by:

R = R1

⋃
R2 (4.1)

• The subregionR1 is described as follows:

– if q1 <
p23

p13+p23
, then p∗a = 1 and the region is given by Eq.(4.2).

– if q1 ≥ p23
p13+p23

, then p∗a = 0 and the region is given by Eq.(4.3).

• The subregionR2 is described as follows:

– if q2 ≥ p13
p13+p23

, then p∗a = 1 and the region is given by Eq.(4.4).

– if q2 <
p13

p13+p23
, then the subregionR2 isR2 = R′

2

⋃R′′
2 where:

∗ if λ1 < q1(1− q2)p13, then p∗a = 0 and the region is given by Eq.(4.5).

∗ if λ1 ≥ q1(1− q2)p13, then p∗a = λ1−q1(1−q2)p13
q1(1−q2)(1−p13)p12

and the region is given by

Eq.(4.6).

Proof. The proof is given in Section 4.4.

As seen in the theorem, there are three possible optimal values of pa. When p∗a equals to

0 or 1, the relay rejects or accepts all the incoming traffic from the source, respectively. The

more interesting case is when q2 < p13
p13+p23

(the relay transmission probability is less than a

threshold which is a function of the channel success probabilities) and at the same time the

average arrival rate at the source is λ1 ≥ q1(1− q2)p13; in this case the optimum cooperation

strategy is probabilistic routing by the relay. The incoming traffic from the source is relayed

in part, meaning that the relay accepts a packet from the source with probability p∗a, where

p∗a = λ1−q1(1−q2)p13
q1(1−q2)(1−p13)p12

(0 < p∗a < 1). The intuition behind this result is that when the relay
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is not attempting to transmit “very often” and at the same time, the arrival rate at the source is

greater than a certain value, then the relay is cooperating only partially. Thus, p∗a controls the

amount of cooperation.

R1 =

{
(λ1, λ2) :

q1p12(1− p13) + (1− q1)p23
q1[p13 + (1− p13)p12]

λ1 + λ2 < (1− q1)p23,

p12(1− p13)

p12(1− p13) + p13
λ1 + λ2 < q2(1− q1)p23

}
(4.2)

R1 =

{
(λ1, λ2) :

λ1

q1p13
+

λ2

(1− q1)p23
< 1, λ2 < q2(1− q1)p23

}
(4.3)

R2 =

{
(λ1, λ2) :

(1− q2)p12(1− p13) + q2p23
(1− q2) [p13 + (1− p13)p12]

λ1 + λ2 < q2p23,

λ1 < q1(1− q2) [p13 + (1− p13)p12]} (4.4)

R′
2 =

{
(λ1, λ2) :

λ1

(1− q2)p13
+

λ2

q2p23
< 1, λ1 < q1(1− q2)p13

}
(4.5)

R′′
2 = {(λ1, λ2) : λ1 + λ2 < q1(1− q2)p13 + q2p23(1− q1),

q1(1− q2)p13 ≤ λ1 < q1(1− q2)[p13 + (1− p13)p12]} (4.6)
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4.4 Stability Analysis using Stochastic Dominance

The expressions for the average service rates seen by source S and relay R are given by:

μ1 = {(1− q2)Pr(Q2 �= 0) + Pr(Q2 = 0)} q1 (p13 + (1− p13)p12pa) (4.7)

and

μ2 = q2 [1− q1Pr(Q1 �= 0)] p23 (4.8)

Since the average service rate of each queue μ1 and μ2 depends on the queue size of the other

queue, they cannot be computed directly. We bypass this difficulty by utilizing the idea of

stochastic dominance [37]; that is, we first construct hypothetical dominant systems, in which

one of the nodes transmits dummy packets even when its packet queue is empty. Since the

queue sizes in the dominant system are, at all times, at least as large as those of the original

system, the stability region of the dominant system inner-bounds that of the original system. It

turns out, however, that the stability region obtained using this stochastic dominance technique

coincides with that of the original system which will be discussed in detail later in this section.

Thus, the stability regions for both the original and the dominant systems are the same.

4.4.1 The first dominant system: source node transmits dummy packets

In this sub-section we obtain the region R1 of Theorem 4.3.1. We consider the first dominant

system, in which node S transmits dummy packets with probability q1 whenever its queue is

empty, while node R behaves in the same way as in the original system. All other assumptions

remain unaltered in the dominant system. Thus, the service rate at the relay node is given by:

μQ2 = q2 (1− q1) p23 (4.9)

To derive the stability condition for the queue in the relay node, we need to calculate the total

arrival rate. There are two independent arrival processes at the relay: the exogenous traffic
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with arrival rate λ2 and the endogenous traffic from S. In the dominant system, when R

receives a dummy packet from S, it simply discards that packet. When the dominant system

is stable, the queue at S is stable, so the departure rate of the source packets (excluding the

dummy ones) is equal to the arrival rate λ1. Denote by SA the event that S transmits a packet

and the packet leaves the queue, then:

Pr(SA) = [(1− q2)Pr(Q2 �= 0) + Pr(Q2 = 0)] [p13 + (1− p13)p12pa] (4.10)

Among the packets that depart from the queue of S, some will exit the network because

they are decoded by the destination directly, and some will be relayed by R. Denote by SB

the event that the transmitted packet from S will be relayed from R, then:

Pr(SB) = [(1− q2)Pr(Q2 �= 0) + Pr(Q2 = 0)] (1− p13)p12pa (4.11)

The conditional probability that a transmitted packet from S (dummy packets excluded) arrives

at R given that the transmitted packet exits node S’s queue is given by:

Pr(SB|SA) =
(1− p13)p12pa

p13 + (1− p13)p12pa
(4.12)

The total arrival rate at the relay node is:

λQ2 = λ2 +
(1− p13)p12pa

p13 + (1− p13)p12pa
λ1 (4.13)

By Loyne’s Theorem, the stability condition for queue 2 at node R is given by λQ2 < μQ2

and, thus:

λ2 +
(1− p13)p12pa

p13 + (1− p13)p12pa
λ1 < q2 (1− q1) p23 (4.14)

The probability that the queue is not empty can be computed by Little’s theorem and is given
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by:

Pr(Q2 �= 0) =
λQ2

μQ2

=
λ2 +

(1−p13)p12pa
p13+(1−p13)p12pa

λ1

q2 (1− q1) p23
(4.15)

Thus, after substituting Eq.(4.15) into Eq.(4.7), the average service rate seen by S is

μ1 =
q1

(1− q1)p23
{[p12pa(1− p13) + p13] (1− q1)p23

− p12(1− p13)paλ1 − [p12(1− p13)pa + p13]λ2} (4.16)

The stability condition for queue 1 at the source node is λ1 < μ1, and after some algebra, we

obtain:

[
1 +

p12pa(1− p13)q1
(1− q1)p23

]
λ1 +

q1 [p12pa(1− p13) + p13]

(1− q1)p23
λ2

< q1 [(1− p13)p12pa + p13] (4.17)

An important observation made in [37] is that the stability conditions obtained by using

the stochastic dominance technique are not merely sufficient conditions for the stability of the

original system but are sufficient and necessary conditions. The indistinguishability argument

applies to our problem as well. Based on the construction of the dominant system, it is easy to

see that the queues of the dominant system are always larger in size than those of the original

system, provided they are both initialized to the same value. Therefore, given λ2 < μ2, if for

some λ1, the queue at S is stable in the dominant system, then the corresponding queue in the

original system must be stable; conversely, if for some λ1 in the dominant system, the queue

at node S saturates, then it will not transmit dummy packets, and as long as S has a packet

to transmit, the behavior of the dominant system is identical to that of the original system

because the dummy packet transmissions are increasingly rare as we approach the stability

boundary. Therefore, we can conclude that the original system and the dominant system are

indistinguishable at the boundary points.
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Now we will find the value of pa that maximizes λ1. After replacing λ1 with y and λ2

with x we have:

y =
−q1 [p13 + (1− p13)p12pa]

q1p12(1− p13)pa + (1− q1)p23
x+

q1 [p13 + (1− p13)p12pa] (1− q1)p23
q1p12(1− p13)pa + (1− q1)p23

(4.18)

when

0 ≤ x ≤ q2(1− q1)p23 − p12pa(1− p13)

p13 + (1− p13)p12pa
y (4.19)

After differentiating y with respect to pa, we have

dy

dpa
=

(
A

B

)′

=
A

′
B −AB

′

B2
(4.20)

where B = q1p12(1− p13)pa + (1− q1)p23 and

A
′
B −AB

′
= (1− p13)p12q1(x− p23 + p23q1)(p13q1 − p23 + q1p23) (4.21)

From Eq.(4.9), it is obvious that x − p23 + p23q1 < 0. If p13q1 − p23 + p23q1 < 0, then we

have that q1 <
p23

p13+p23
. Then, dy

dpa
> 0 and y is an increasing function of pa and, thus p∗a = 1.

Then, Eq.(4.19) becomes

0 ≤ x ≤ q2(1− q1)p23 − p12(1− p13)

p13 + (1− p13)p12
y (4.22)

and Eq.(4.18) becomes

y =
−q1 [p13 + (1− p13)p12]

q1p12(1− p13) + (1− q1)p23
x+

q1 [p13 + (1− p13)p12] (1− q1)p23
q1p12(1− p13) + (1− q1)p23

(4.23)

The stability region for this case is given by Eq.(4.2). If q1 > p23
p13+p23

, it follows that dy
dpa

< 0
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and, thus, y is a decreasing function of pa and p∗a = 0. Then Eq.(4.19) becomes

0 ≤ x ≤ q2(1− q1)p23 (4.24)

and Eq.(4.18) becomes

y +
q1p13

(1− q1)p23
x = q1p13 (4.25)

The stability region is given by Eq.(4.3).

4.4.2 The second dominant system: relay node transmits dummy packets

In this sub-section we obtain the region R2 of Theorem 4.3.1. We consider the second dom-

inant system, in which node R transmits dummy packets with probability q2 whenever its

queue is empty, while node S behaves in the same way as in the original system. All the other

assumptions remain unaltered in the dominant system. The service rate for the source node is

μ1 = q1(1− q2) [p13 + (1− p13)p12pa] (4.26)

Thus, queue 1 is stable if

λ1 < q1(1− q2) [p13 + (1− p13)p12pa] (4.27)

The probability that the queue is not empty is:

Pr(Q1 �= 0) =
λ1

μ1
=

λ1

q1(1− q2) [p13 + (1− p13)p12pa]
(4.28)

The total arrival rate at the relay node is given by:

λQ2 = λ2 + Pr(SB|SA)λ1 (4.29)
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where SA and SB are defined in the previous sub-section.

Note that Pr(SA) = (1− q2) (p13 + (1− p13)p12pa), Pr(SB) = (1− q2)(1− p13)p12pa

and, thus, we have Pr(SB|SA) = (1−p13)p12pa
p13+(1−p13)p12pa

. From the above it follows that the total

arrival rate at the relay node is:

λQ2 = λ2 +
(1− p13)p12pa

p13 + (1− p13)p12pa
λ1 (4.30)

The service rate for the relay node is:

μQ2 = q2 [1− q1Pr(Q1 �= 0)] p23 (4.31)

Thus, from Loyne’s stability criterion, it follows that the queue is stable if λQ2 < μQ2 and,

thus:

λ2 +
(1− p13)p12pa

p13 + (1− p13)p12pa
λ1 < q2 [1− q1Pr(Q1 �= 0)] p23 (4.32)

After some algebra, we obtain:

λ2 +
(1− q2)(1− p13)p12pa + q2p23
(1− q2) [p13 + (1− p13)p12pa]

λ1 < q2p23 (4.33)

The indistinguishability argument at saturations holds here as well. Next we find the value of

pa that maximizes λ2. After replacing λ1 with x and λ2 with y we have:

y +
(1− q2)p12(1− p13)pa + q2p23
(1− q2) [p13 + (1− p13)p12pa]

x = q2p23 (4.34)

After differentiating y with respect to pa we have

dy

dpa
=

(
A

B

)′

=
A

′
B −AB

′

B2
(4.35)
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where:

A
′
B −AB

′
= xp12(1− p13)(1− q2)(p13q2 − p13 + q2p23) (4.36)

If p13q2 − p13 + q2p23 > 0, it follows that p13
p13+p23

< q2 < 1 and y increases; thus p∗a = 1

and, therefore:

x < q1(1− q2) [p13 + (1− p13)p12] (4.37)

and

y +
(1− q2)p12(1− p13) + q2p23
(1− q2) [p13 + (1− p13)p12]

x = q2p23 (4.38)

The stability region is then given by Eq.(4.4). If q2 < p13
p13+p23

, it follows that y decreases and

thus p∗a = 0, hence:

x < q1(1− q2)p13 (4.39)

and

y +
q2p23

(1− q2)p13
x = q2p23 (4.40)

The stability region is then given by Eq.(4.5).

If x ≥ q1(1−q2)p13 and x ≤ q1(1−q2) [p13 + (1− p13)p12pa], it follows from Eq.(4.27)

that pa ≥ x−q1(1−q2)p13
q1(1−q2)(1−p13)p12

and, thus we obtain that:

p∗a =
x− q1(1− q2)p13

q1(1− q2)(1− p13)p12
(4.41)

and

x+ y = p23q2 + q1(1− q2)p13 − q1q2p23 (4.42)

Finally, since 0 ≤ pa ≤ 1 we have that

x ≤ q1(1− q2) [p13 + (1− p13)p12] (4.43)

and the stability region is given by Eq.(4.6).
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Figure 4.2: Illustration of the stability region (q1 = 0.2, q2 = 0.3, p13 = 0.5, p12 = 0.9 and

p23 = 0.8)

4.5 Numerical Results

In this section, we obtain the stability region for the three cases of no-cooperation, full cooper-

ation and partial cooperation and we compare them in a numerical illustration where pa < 1.

We let q1 = 0.2, q2 = 0.3, p13 = 0.5, p12 = 0.9, and p23 = 0.8. In Fig. 4.2, we show the

stability regions for the three cases. The region of partial cooperation contains the regions of

the other cases. The boundaries of the stability region for the partial cooperation scheme is

described by the line segments ABCD, and contains the region of non-cooperation (ABF )

and the full cooperation (ACD). The triangular area BEC in Fig. 4.2 is achieved only by the

partial cooperation scheme, showing that this scheme is superior compared to the rest schemes.

The line segment AB belongs to the stability region of both no-cooperation and partial
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Table 4.1: The values of p∗a
Line p∗a
AB 0

BF 0

AC 1

CD 1

BC λ1−0.07
0.063

cooperation schemes. It is the boundary when λ1 ≤ 0.07 (which is the average arrival rate at

the source) and, corresponds to the scheme of no-cooperation or when p∗a = 0. The line seg-

ment CD is the boundary for the stability region for full cooperation and partial cooperation

with p∗a = 1 schemes when 0.133 ≤ λ1 < 0.1666. The most interesting case is the BC seg-

ment. This boundary is achieved only by the partial cooperation scheme. The value of p∗a that

achieves the boundary is p∗a = λ1−0.07
0.063 , as 0.07 < λ1 < 0.133. In this case the relay, through

the flow controller, regulates the endogenous traffic from the source by randomly accepting

(with p∗a) the packets from the source. Note that as λ1 increases (in the interval (0.07, 0.133))

so does p∗a. The values of p∗a that achieve the boundaries of the regions are given in Table 4.1.

The intuition behind these results, is that when the traffic level at the source is relatively

low, the optimal scheme for the relay is not to cooperate at all. When the traffic level at

the source is high, the best scheme is to fully cooperate, Finally, when the source has an

intermediate level of traffic, the optimal scheme is to partially offer relay services.

4.6 Conclusion

We introduced the notion of partial network-level cooperation by assuming a flow controller

for the endogenous traffic to the relay from the source node of the network in Fig. 4.1. We

provided an exact characterization of the stability region for this network. We proved that the

system with the flow controller is always better than or at least equal to the system without the

flow controller. The flow controller regulates the degree of cooperation offered by the relay.
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Chapter 5

Wireless Network-Level Cooperation

with Energy Harvesting Capabilities

5.1 Introduction

Exploiting renewable energy resources from the environment, often termed energy harvest-

ing, permits unattended operability of infrastructure-less wireless networks. There are various

forms of energy that can be harvested including thermal, vibration, solar, acoustic, wind, and

even ambient radio power. The additional functionality of harvesting energy, however, permits

our assessment of the system long-term performance such as in terms of the throughput, fair-

ness and stability. In [14], the slotted ALOHA protocol was considered for a network of nodes

having energy harvesting capability and the maximum stable throughput region was obtained

for bursty traffic. An exact characterization of the region was given in the paper for a two-node

case over a collision channel.

In this chapter, we study the impact of energy constraints on a network with a source-user,

a relay and a destination. Specifically, we provide an exact characterization of the stability

region of a network consisting of a source, a relay and a destination node as shown in Fig. 5.1.

We consider the collision channel with erasures and random access of the medium. The source
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and the relay node have external arrivals; furthermore, the relay is forwarding part of the source

node’s traffic to the destination.

The analysis is not trivial even for such a simple network because the service process of a

node not only depends on the status of its battery but also on the idleness or not of the other

node. Note that the reason why the exact region is known only for the two-node and the three-

node cases (even without energy availability constraints) is the interaction between the queues

of the nodes [37–40]. In addition, we use the stochastic dominance technique and Loynes’

theorem [33] for the stability of stationary system to solve the problem. Also, as pointed out

in [14], it is important to note that the ”service process” of the battery, i.e., the use of its energy,

is independent of whether the transmission is successful or not.

The rest of this chapter is organized as follows. In section 5.2, we define the stability

region, describe the channel model, and explain the packet arrival and energy harvesting mod-

els. In 5.3, we present the stability region, the proof of the result is given in 5.4. Finally, we

conclude our work in 5.5.

5.2 System Model

We consider a time-slotted system in which the nodes are randomly accessing a common

receiver as shown in Fig. 5.1, furthermore the nodes are powered from randomly time-varying

renewable energy sources. Each node stores the harvested energy in a battery. We denote with

S, R, and D the source, the relay and the destination, respectively. Packet traffic originates

from S and R. Because of the wireless broadcast nature, R may receive some of the packets

transmitted from S and then relay those packets to D. The packets from S which failed to

be received by D but were successfully received by R are relayed by R. As we impose half-

duplex constraint, R can overhear S only when it is idle.

Each node has an infinite size buffer for storing incoming packets, and the transmission

of each packet occupies one time slot. Node R has separate queues for the exogenous arrivals
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and the endogenous arrivals that are relayed through R. But, we can let R to maintain a single

queue and merge all the arrivals into a single queue as the achievable stable throughput region

is not affected [6]. This is because the link quality between R and D is independent of which

packet is selected for transmission.

The packet arrival and energy harvesting processes at S and R are assumed to be Bernoulli

with rates λS , δS and λR, δR, respectively, and are independent of each other. A node is

called active if both its packet queue and the battery are nonempty at the same time, and

idle otherwise. In each time slot, nodes S and R attempt to transmit with probabilities qS

and qR, respectively, if their are active. Decisions on transmission are made independently

among the nodes. We assumed collision channel with erasures in which, if both S and R

transmit in the same time slot, a collision occurs and both transmissions fail. The probability

that a packet transmitted by node i is successfully decoded at node j( �= i) is denoted by pij

which is the probability that the signal-to-noise-ratio (SNR) over the specified link exceeds a

certain threshold for the successful decoding. These erasure probabilities capture the effect of

random fading at the physical layer. The probabilities pSD, pRD, and pSR denote the success

probabilities over the link S−R, R−D, and S−R, respectively. Node R has a better channel

to D than S, that is pRD > pSD.

The cooperation is performed at the protocol level as follows. When S transmits a packet,

if D decodes the packet successfully, it sends an ACK and the packet exits the network; if D

fails to decode the packet but R does, then R sends an ACK and takes over the responsibility

of delivering the packet to D by placing it in its queue. If neither D nor R decode (or if R

does not store the packet), the packet remains in S’s queue for retransmission. The ACKs are

assumed to be error-free, instantaneous and broadcasted to all relevant nodes.

Denote by Qt
i the length of queue i at the beginning of time slot t. Based on the definition

in [38], the queue is said to be stable if

lim
t→∞Pr[Qt

i < x] = F (x) and lim
x→∞F (x) = 1
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Figure 5.1: System Model

Loynes’ theorem [33] states that if the arrival and service processes of a queue are strictly

jointly stationary and the average arrival rate is less than the average service rate, then the

queue is stable. If the average arrival rate is greater than the average service rate, then the

queue is unstable and the value of Qt
i approaches infinity almost surely. The stability region

of the system is defined as the set of arrival rate vectors λ = (λ1, λ2) for which the queues in

the system are stable.

5.3 Main Results

This section describes the stability region of a network consisting of a source, a relay and a

destination as depicted in Fig. 5.1. Notice that the service process of a queue not only depends

on the status of its associated energy source but also on the status of other node’s queue and

energy source. Denote by Qi and Bi the steady state number of packets and energy units

in the queue and the energy source at node i, respectively. Then, Qis and Bis, form a four
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dimensional Markov chain which makes the analysis daunting.

5.3.1 The stability region

Theorem 5.3.1. The stability region of the network in Fig. 5.1 is described by:

R = R1

⋃
R2 (5.1)

where

R1 =

{
(λ1, λ2) :

[
1 +

min(δS , qS)(1− pSD)pSR
(1−min(δS , qS))pRD

]
λS+

+
min(δS , qS) [pSD + (1− pSD)pSR]

(1−min(δS , qS))pRD
λR < min(δS , qS) [pSD + (1− pSD)pSR] ,

λR +
(1− pSD)pSR

pSD + (1− pSD)pSR
λS < min(δR, qR)(1−min(δS , qS))pRD

}
(5.2)

and

R2 =

{
(λ1, λ2) : λR +

(1−min(δR, qR))(1− pSD)pSR +min(δR, qR)pRD

[1−min(δR, qR)] [pSD + (1− pSD)pSR]
λS < min(δR, qR)pRD,

λS < min(δS , qS)(1−min(δR, qR)) [pSD + (1− pSD)pSR]}
(5.3)

Proof. The proof is given in Section 5.4.

Fig. 5.2 and 5.3 illustrate the subregionsR1 andR2 described in Theorem 5.3.1.

5.4 Analysis using Stochastic Dominance

The stochastic dominant technique is essential in order to decouple the interaction between

the queues, and thus to characterize the stability region. That is we first construct parallel
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Figure 5.2: The stability regionR1

dominant systems in which one of the nodes transmits dummy packets even when its packet

queue is empty. Note, that even in the dominant system, a node cannot transmit it the energy

source is empty (because even the dummy packet consumes one energy unit).

The essence of the dominant system is to make the analysis tractable by decoupling the

interaction between the queues. Since the queue sizes in the dominant system are, at all times,

at least as large as those of the original system, the stability region of the dominant system

inner bounds that of the original system. It turns out however that the stability region obtained

using this stochastic dominance technique coincides with that of the original system which

will be discussed in detail later in this section. Thus, the stability regions for both the original

and the dominant systems are the same.
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Figure 5.3: The stability regionR2

To derive the stability condition for the queue in the relay node, we need to calculate the

total arrival rate. There are two independent arrival processes at the relay: the exogenous

traffic with arrival rate λR and the endogenous traffic from S. Denote by SA the event that S

transmits a packet and the packet leaves the queue, then:

Pr(SA) = [1− qRPr(BR �= 0, QR �= 0)] [pSD + (1− pSD)pSR] (5.4)

Among the packets that depart from the queue of S, some will exit the network because

they are decoded by the destination directly, and some will be relayed by R. Denote by SB
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the event that the transmitted packet from S will be relayed from R, then:

Pr(SB) = [1− qRPr(BR �= 0, QR �= 0)] (1− pSD)pSR (5.5)

The conditional probability that a transmitted packet from S (dummy packets excluded) arrives

at R given that the transmitted packet exits node S’s queue is given by:

Pr(SB|SA) =
(1− pSD)pSR

pSD + (1− pSD)pSR
(5.6)

The arrivals from the source to the relay is

λS→R = Pr(SB|SA)λS (5.7)

The total arrival rate at the relay node is:

λR,total = λR +
(1− pSD)pSR

pSD + (1− pSD)pSR
λS (5.8)

We will begin the analysis with the case when δS < qS and δR < qR, and we will construct

hypothetical dominant systems. In the first dominant system the source node transmits dummy

packets when its queue is empty, and each transmission occupies one energy unit. The service

rate at the relay is:

μR = {qR(1− qS)Pr (BS �= 0, BR �= 0) + qRPr(BS = 0, BR �= 0)} pRD (5.9)

μR = {qR(1− qS)Pr (BS �= 0)Pr (BR �= 0) + qRPr(BS = 0)Pr (BR �= 0)} pRD (5.10)

However, Bi forms a discrete M/M/1 which is decoupled from the remaining system and its
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arrival and service rate is δi and qR respectively. From Little’s theorem we obtain that

Pr(Bi �= 0) =
δi
qi

(5.11)

Thus,

μR = δR(1− δS)pRD (5.12)

From Loyne’s criterion, the relay is stable if λR,total < μR.

λR +
(1− pSD)pSR

pSD + (1− pSD)pSR
λS < δR(1− δS)pRD (5.13)

The average number of packets per active slot for R is (1 − δS)qRpRD The fraction of

active slots is given by

Pr (BR �= 0, QR �= 0) =
λR + (1−pSD)pSR

pSD+(1−pSD)pSR
λS

(1− δS)qRpRD
(5.14)

The service rate of the source is given by

μS = Pr (BS �= 0) {qS(1− qR)Pr (QR �= 0, BR �= 0) + qS [1− Pr (QR �= 0, BR �= 0)]} [pSD + (1− pSD)pSR]

(5.15)

μS = δS [pSD + (1− pSD)pSR]

⎡
⎣1− λR + (1−pSD)pSR

pSD+(1−pSD)pSR
λS

(1− δS)pRD

⎤
⎦ (5.16)

The queue in S is stable if λS < μS then:

λS < δS [pSD + (1− pSD)pSR]

⎡
⎣1− λR + (1−pSD)pSR

pSD+(1−pSD)pSR
λS

(1− δS)pRD

⎤
⎦ (5.17)
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after some manipulations we have

[
1 +

δS(1− pSD)pSR
(1− δS)pRD

]
λS +

δS [pSD + (1− pSD)pSR]

(1− δS)pRD
λR < δS [pSD + (1− pSD)pSR]

(5.18)

An important observation made in [37] is that the stability conditions obtained by using

stochastic dominance technique are not merely sufficient conditions for the stability of the

original system but are sufficient and necessary conditions. The indistinguishability argument

applies to our problem as well. Based on the construction of the dominant system, it is easy to

see that the queues of the dominant system are always larger in size than those of the original

system, provided they are both initialized to the same value.

Therefore, given λR < μR, if for some λS , the queue at S is stable in the dominant system

then the corresponding queue in the original system must be stable; conversely, if for some

λS in the dominant system, the node S saturates, then it will not transmit dummy packets,

and as long as S has a packet to transmit, the behavior of the dominant system is identical

to that of the original system because the action of dummy packet transmissions is employed

increasingly rarely as we approach the stability boundary. Therefore, we can conclude that the

original system and the dominant system are indistinguishable at the boundary points.

In the second dominant system, the relay node transmits dummy packets. The service rate

for the source is

μS = {qS(1− qR)Pr (BS �= 0, BR �= 0) + qSPr(BS �= 0) [1− Pr (BR �= 0)]} [pSD + (1− pSD)pSR]

(5.19)

and

μS = {qS(1− qR)Pr (BR �= 0) + qS [1− Pr (BR �= 0)]}Pr(BS �= 0) [pSD + (1− pSD)pSR]

(5.20)

μS = δS(1− δR) [pSD + (1− pSD)pSR] (5.21)
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Thus from Loynes the queue in source is stable if λS < μS thus

λS < δS(1− δR) [pSD + (1− pSD)pSR] (5.22)

The average number of packets per active slot for S is (1− δR)qS [pSD + (1− pSD)pSR] The

fraction of active slots for the source S is

Pr (BS �= 0, QS �= 0) =
λS

(1− δR)qS [pSD + (1− pSD)pSR]
(5.23)

The service rate for the relay is given by

μR = δR [1− qSPr (BS �= 0, QS �= 0)] pRD (5.24)

μR = δR

[
1− λS

(1− δR) [pSD + (1− pSD)pSR]

]
pRD (5.25)

Thus from Loynes the queue in R is stable if λR,total < μR

λR +
(1− pSD)pSR

pSD + (1− pSD)pSR
λS < δR

[
1− λS

(1− δR) [pSD + (1− pSD)pSR]

]
pRD (5.26)

after some algebra we obtain

λR +
(1− δR)(1− pSD)pSR + δRpRD

(1− δR) [pSD + (1− pSD)pSR]
λS < δRpRD (5.27)

The indistinguishability argument at saturations holds here as well.

The next case that we will consider is where δS > qS and δR < qR. The source operates
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like no having any energy constraints (see [14]). The service rate at the source is

μS = {qS(1− qR)Pr (QR �= 0, BR �= 0) + qS [1− Pr (QR �= 0, BR �= 0)]} [pSD + (1− pSD)pSR]

(5.28)

The service rate at the relay is

μR = {qR(1− qS)Pr (QS �= 0, BR �= 0) + qRPr(BR �= 0)Pr (QS = 0)} pRD (5.29)

As the previous case, we construct the dominant systems. In the first dominant system the

source keeps transmitting dummy packets and we are following the same methodology. Given

that node R is active its probability of success is qR(1− qS)pRD. Thus

Pr (BR �= 0, QR �= 0) =
λR + (1−pSD)pSR

pSD+(1−pSD)pSR
λS

(1− qS)qRpRD
(5.30)

[
1 +

qS(1− pSD)pSR
(1− qS)pRD

]
λS +

qS [pSD + (1− pSD)pSR]

(1− qS)pRD
λR < qS [pSD + (1− pSD)pSR]

(5.31)

when

λR +
(1− pSD)pSR

pSD + (1− pSD)pSR
λS < δR(1− qS)pRD (5.32)

In the second dominant system, the relay transmits dummy packets.

λR +
(1− δR)(1− pSD)pSR + δRpRD

(1− δR) [pSD + (1− pSD)pSR]
λS < δRpRD (5.33)

when

λS < qS(1− δR) [pSD + (1− pSD)pSR] (5.34)

The next case is where δS < qS and δR > qR. The relay operates like no having any
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energy constraints. The service rate at the source is

μS = {qS(1− qR)Pr (BS �= 0, QR �= 0) + qSPr(BS �= 0) [1− Pr (QR �= 0)]} [pSD + (1− pSD)pSR]

(5.35)

The service rate at the relay is

μR = {qR(1− qS)Pr (BS �= 0, QS �= 0) + qR [1− Pr (QS �= 0, BS �= 0)]} pRD (5.36)

In the first dominant system (source transmit dummy packets), we have:

[
1 +

δS(1− pSD)pSR
(1− δS)pRD

]
λS +

δS [pSD + (1− pSD)pSR]

(1− δS)pRD
λR < δS [pSD + (1− pSD)pSR]

(5.37)

when

λR +
(1− pSD)pSR

pSD + (1− pSD)pSR
λS < qR(1− δS)pRD (5.38)

from the second dominant we obtain

λR +
(1− qR)(1− pSD)pSR + qRpRD

(1− qR) [pSD + (1− pSD)pSR]
λS < qRpRD (5.39)

when

λS < δS(1− qR) [pSD + (1− pSD)pSR] (5.40)

The remaining case is when δR > qR and δS > qS . The analysis is the same as the case

without energy harvesting constraints. The stability region is given in [6].

We obtained the stability regions for all possible cases separately and they are summarized

in Theorem 5.3.1.
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5.5 Conclusion

In this chapter, we studied the impact of energy constraints on a network with a source-user, a

relay and a destination. The source and the relay node have external arrivals; furthermore, the

relay is forwarding part of the source node’s traffic to the destination. We provided an exact

characterization of the stability region of the network depicted in Fig. 5.1.
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Chapter 6

Optimal Utilization of a Cognitive

Shared Channel with a Rechargeable

Primary Source Node

The material in this chapter was presented in [41] and [42].

6.1 Introduction

Cognitive radio communication provides an efficient means of sharing radio spectrum between

users having different priority [15]. The high-priority user, called primary, is allowed to ac-

cess the channel whenever it needs, while the low-priority user, called secondary, is required

to make a decision on its transmission based on what the primary user does. The system

considered in this chapter is comprised of nodes that are either subject to energy availability

constraint imposed by the battery status and stochastic recharging process or free from such

constraint by assuming that they are connected to a constant power source.

In this chapter, we consider the simple cognitive system of two source-destination pairs

as shown in Fig. 6.1 and derive the maximum stable throughput region for a cognitive access
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Figure 6.1: An example cognitive communication system

protocol on the general multipacket reception channel model1 in which a transmission may

succeed even in the presence of interference [16–18]. The secondary node can take advantage

of such an additional reception capability by transmitting simultaneously with the primary. We

adopt a similar cognitive access protocol proposed in [19], and also studied in [20], in which

the secondary node not only utilizes the idle periods of the primary node, but also competes

with the primary by randomly accessing the channel to increase its own throughput. However,

the secondary user is still required to coordinate its transmission in order not to hamper the

required throughput level of the primary link given the energy harvesting rate and this is done

by appropriately choosing the random access probability.

To position our contribution with respect to the recent literature, we start a brief back-

ground review. In [13], the capacity of the additive white Gaussian noise channel with stochas-

tic energy harvesting at the source was shown to be equal to the capacity with an average power

constraint given by the energy harvesting rate. However, like most of information-theoretic

research, the result is obtained for point-to-point communication with an always backlogged

source. In [14], the slotted ALOHA protocol was considered for a network of nodes hav-

ing energy harvesting capability and the maximum stable throughput region was obtained for

1When compared to collision channel model, it better captures the effects of fading, attenuation and interference

at the physical layer.
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bursty traffic. An exact characterization of the region was given in the paper for a two-node

case over a collision channel. The analysis is not trivial even for such a simple network be-

cause the service process of a node not only depends on the status of its battery but also on

the idleness or not of the other node. Note that the reason why the exact region is known only

for the two-node and the three-node cases (even without energy availability constraints) is the

interaction between the queues of the nodes [37–40].

The initial study of a simple model involving only two source-destination pairs is not

only instructive but also necessary. The reason is that the interaction between nodes causes

considerable difficulties at the analytical level, and yet, reveals major insights at the conceptual

level. In addition, we use the stochastic dominance technique and Loynes’ theorem [33] for the

stability of stationary system to solve the problem. Also, as pointed out in [14], it is important

to note that the ”service process” of the battery, i.e., the use of its energy, is independent of

whether the transmission is successful or not.

The rest of the chapter is organized as follows. In Section 6.2, we define the stability

region, describe the channel model, and explain the packet arrival and energy harvesting mod-

els. In Section 6.3, we present the conditions for stability of the considered cognitive access

protocol when the capacity of the battery at the primary node is assumed to be infinite. The

proof of the result is given in Section 6.4 which utilizes the stochastic dominance technique

and arguments similar to those used in [14] and [37]. In Section 6.5, we extend the result to

the case when the capacity of battery is finite. As will be shown, the stability region for the

case with finite capacity battery is a subset of that for the case with infinite capacity battery.

For comparison’s sake, in Section 6.6, the result obtained in Section 6.3 is derived again for

the case without multipacket reception capability, i.e., for a collision channel with additional

probabilistic erasures. Finally, we draw some conclusions in Section 6.7.
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6.2 System Model

We consider a time-slotted communication system consisting of two primary and secondary

source-destination pairs of nodes, (s1, d1) and (s2, d2), respectively, as shown in Fig. 6.1.

Each source node has an infinite capacity buffer Qi (i ∈ { 1, 2 }) for storing arriving packets

of fixed length. The secondary node is plugged to a reliable power supply, whereas the primary

node is powered through a random time-varying renewable energy process and has a battery

B for storing energy which is assumed to be harvested in a certain unit from the environments.

The capacity of the battery is denoted by c. We first consider the case with c = ∞ and, after

that, we relax c to take any finite integer value. The slot duration is equal to the transmission

time of a single packet and one unit of energy is consumed in each transmission. The packet

arrival and energy harvesting processes are all modeled as independent Bernoulli processes of

rate λi and δ per slot, respectively2. The primary node is considered active if both Q1 and B1

are nonempty at the same time. Similarly, the secondary is called active if Q2 is nonempty.

Otherwise, they are called idle.

A shared channel is assumed and a transmission is said to be successful if the received

signal-to-interference-plus-noise-ratio (SINR) exceeds a certain threshold which depends on

the modulation scheme, the target bit-error-rate, and the number of bits in the packet (i.e., the

transmission rate for a fixed packet duration). Denote by qi/I the probability that the transmis-

sion by source i succeeds given that the sources in I are transmitting simultaneously. Specif-

ically, in our cognitive communication system in Fig. 6.1, the following success probabilities

are of interest:

q1/1, q2/2, q1/1,2, q2/1,2

and it is assumed that q1/1 ≥ q1/1,2 and q2/2 ≥ q2/1,2. Define Δ1 = q1/1 − q1/1,2 and

Δ2 = q2/2−q2/1,2. In case that the simultaneous transmissions always fail, we have qi/1,2 = 0

2In practice, statistics of the energy harvesting models are time varying. However they can be approximated by

piecewise stationary processes. For example, energy harvesting by solar cells could be taken as being stationary

over one hour periods. Thus, our results could be used over these time periods. See [43]
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for all i.

Denote by Qt
i the length of Qi at the beginning of time slot t, the queue is said to be stable

if

lim
x→∞ lim

t→∞Pr[Qt
i < x] = 1 (6.1)

Loynes’ theorem [33] states that if the arrival and service processes of a queue are strictly

jointly stationary and the average arrival rate is less than the average service rate, then the

queue is stable. If the average arrival rate is greater than the average service rate, then the

queue is unstable and the value of Qt
i approaches to infinity almost surely. The stability region

of the system is defined as the set of arrival rate vectors λ = (λ1, λ2) for which the queues in

the system are stable.

6.3 Main Results

This section describes the cognitive access protocol and presents our main results concerning

its stability. The proofs of the results are presented in the next section.

6.3.1 Description of the cognitive access protocol

The opportunistic cognitive access protocol proposed in [19] and also used in [20] is modified

and studied again in the context of the energy harvesting environment. The energy-constrained

primary node s1 (see Fig. 6.1) transmits a packet whenever it is active. Note that the trans-

mission by the primary node s1 is independent of the secondary node s2. On the other hand,

the transmission by the secondary node s2 must be chosen in a careful manner in order not

to impede the primary’s performance guarantees. Under our cognitive access protocol, node

s2 observes the status of s1 and if s1 is idle, i.e., either Q1 or B1 is empty, it transmits with

probability 1 if its own packet queue Q2 is nonempty. Otherwise, if s1 is active, s2 transmits

with probability p to take advantage of the multipacket reception capability by transmitting

along with the primary node although at the same time it risks impeding the primary node’s
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R′
1 =

{
(λ1, λ2) :

Δ2

q1/1,2q2/2
λ1 +

λ2

q2/2
< 1, 0 ≤ λ1 ≤ δq1/1,2

}
(6.2)

R′′
1=

{
(λ1, λ2) :

q2/1,2λ1 +Δ1λ2

δq1/1q2/1,2 +Δ1q2/2(1− δ)
< 1, δq1/1,2 < λ1 < δq1/1

}
(6.3)

success. The design objective is to choose the transmission probability p such that the sec-

ondary’s throughput is maximized while maintaining the stability of primary’s packet queue

at given packet arrival and energy harvesting rates.

6.3.2 Stability Criteria

Denote by R the stability region of the system by considering all possible values of p and

define η = q1/1q2/1,2 + q2/2q1/1,2 − q2/2q1/1. Note that η reflects the degree of multipacket

reception capability. In the case of a collision channel in which q1/1 = q2/2 = 1 and q1/1,2 =

q2/1,2 = 0, η = −1. It is clear that η increases as the multipacket reception capability

improves.

Theorem 6.3.1. The stability region of the cognitive multiaccess system is described by

R = R1

⋃
R2 (6.5)

where the subregionR1 is described as follows:

• If η > 0,R1 = R′
1

⋃R′′
1 whereR′

1 andR′′
1 are given by (6.2) and (6.3).

• If η ≤ 0,

R1 =

{
(λ1, λ2) :

λ1

q1/1
+

λ2

q2/2
< 1, λ1 < δq1/1

}
(6.6)

R′′
2 =

{
(λ1, λ2) :

q2/1,2λ1 +Δ1λ2

δq1/1q2/1,2 +Δ1q2/2(1− δ)
< 1, (1− δ)q2/2 < λ2 < (1− δ)q2/2 + δq2/1,2

}
(6.4)
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and the subregionR2 is described asR2 = R′
2

⋃R′′
2 with

R′
2 =

{
(λ1, λ2) : λ1 < δq1/1, 0 ≤ λ2 ≤ (1− δ)q2/2

}
(6.7)

andR′′
2 as given by (6.4).

Proof. The proof is given in Section 6.4.

The optimal p∗ achieving the boundary of the stability region is explicitly given in the

following section. The subregion R1 is depicted in Fig. 6.2 with solid line. Specifically, if

η > 0, the line segments AB and BC correspond to the boundaries due to the inequalities

(6.2) and (6.3), respectively. The subregion R2 is also illustrated in the Fig. 6.3 with solid

line. Note that when η > 0, R2 is always contained in R1, i.e., R2 ⊂ R1, which is not

necessarily true if η ≤ 0.
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(a) The case with η > 0

(b) The case with η ≤ 0

Figure 6.2: The subregion R1 with multipacket reception capability (solid and dotted lines

depict the case when the capacity of the primary node is infinite and finite, respectively.)
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Figure 6.3: The subregion R2 with multipacket reception capability (solid and dotted lines

depict the case when the capacity of the primary node is infinite and finite, respectively.)

6.4 Analysis using Stochastic Dominance

Under the cognitive access protocol described in Section 6.3.1, the expressions for the average

service rates seen by s1 and s2 are given by

μ1 = q1/1Pr[B1 �= 0, Q2 = 0]+q1/1,2Pr[B1 �= 0, Q2 �= 0]p+q1/1Pr[B1 �= 0, Q2 �= 0](1−p)
(6.8)

and

μ2 = q2/2(1 − Pr[B1 �= 0, Q1 �= 0]) + q2/1,2Pr[B1 �= 0, Q1 �= 0]p (6.9)

Note that computing the average service rates μ1 and μ2 requires the specifications of a
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joint probability of doublets (B1, Q2) and (B1, Q1), respectively. Since, however, Q1, Q2,

and B1 are all interacting, it is difficult to track them. We bypass this difficulty by utilizing

the idea of stochastic dominance [37]. That is we first construct parallel dominant systems in

which one of the nodes transmits dummy packets even when its packet queue is empty. The

essence of the dominant system is to make the analysis tractable by decoupling the interaction

between the queues. Since the queue sizes in the dominant system are, at all times, at least

as large as those of the original system, the stability region of the dominant system inner

bounds that of the original system. It turns out however that the stability region obtained using

this stochastic dominance technique coincides with that of the original system which will be

discussed in detail later in this section. Thus, the stability regions for both the original and the

dominant systems are the same.

6.4.1 The first dominant system: secondary node transmits dummy packets

Construct a hypothetical system in which the secondary node s2 transmits dummy packets

when its packet queue is empty. Hence s2 transmits with probability 1 whenever s1 is idle and

with probability p if s1 is active. As a result, the average service rate of s1 in (6.8) reduces to

μ1 = q1/1,2Pr[B1 �= 0]p+ q1/1Pr[B1 �= 0](1− p) (6.10)

Since s1 transmits with probability 1 whenever it is active, if Q1 is saturated3, B1 is modeled

as a decoupled discrete-time M/D/1 system with arrival and service rates δ and 1, respec-

tively. It follows from Little’s theorem that B1 is nonempty for a fraction of time δ [44].

Consequently, we have

μ1 = δ(q1/1,2p+ q1/1(1− p)) (6.11)

For λ1 satisfying λ1 < μ1, i.e., when Q1 in this dominant system is stable, we now obtain

3Note that in describing the service rates in (6.8) and (6.9), it is assumed that the corresponding packet queue

is nonempty. This is simply because if the queue is empty, the ”server” becomes idle.
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the average service rate of s2. We note from (6.9) that the probability of s1 being active, i.e.,

Pr[B1 �= 0, Q1 �= 0], needs to be specified beforehand. For this, we take an approach similar

to the one used in [14]. The approach utilizes a simple property of a stable system, that is the

rate of what comes is equal to the rate of what goes out. Given the fact that s1 is active, the

average number of packets out of Q1 is given by q1/1,2p + q1/1(1 − p). Because the average

number of packets into Q1 is λ1 and, because it satisfies λ1 < μ1, the fraction of active slots

must be

Pr[B1 �= 0, Q1 �= 0] =
λ1

q1/1,2p+ q1/1(1− p)
(6.12)

After some manipulation, the average service rate of s2 can be obtained from (6.9) as

μ2 =
q2/1,2p− q2/2

q1/1,2p+ q1/1(1− p)
λ1 + q2/2 (6.13)

By applying Loynes’ theorem, we find that the stability condition for the dominant system is

given by

λ2 <
q2/1,2p− q2/2

q1/1,2p+ q1/1(1− p)
λ1 + q2/2 (6.14)

when

λ1 < δ(q1/1,2p+ q1/1(1− p)) (6.15)

An important observation made in [37] is that the stability conditions obtained by using

stochastic dominance technique are not merely sufficient conditions for the stability of the

original system but are sufficient and necessary conditions. The indistinguishability argument

applies to our problem as well. Based on the construction of the dominant system, it is easy to

see that the queues of the dominant system are always larger in size than those of the original

system, provided they are both initialized to the same value.

Therefore, given λ1 < μ1, if for some λ2, the queue at s2 is stable in the dominant system

then the corresponding queue in the original system must be stable; conversely, if for some

λ2 in the dominant system, the node s2 saturates, then it will not transmit dummy packets,
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and as long as s2 has a packet to transmit, the behavior of the dominant system is identical

to that of the original system because the action of dummy packet transmissions is employed

increasingly rarely as we approach the stability boundary. Therefore, we can conclude that the

original system and the dominant system are indistinguishable at the boundary points.

The portion of the stable throughput region by the first dominant system is given by the

closure of the rate pairs (λ1, λ2) described by (6.14) and (6.15) as p varies over [0, 1]. To

obtain the closure of the rate pair, we first fix λ1 and maximize λ2 as p varies over [0, 1]. By

replacing λ1 by x and λ2 by y, the boundary of the stability region for fixed p can now be

written as

y =
q2/1,2p− q2/2

q1/1,2p+ q1/1(1− p)
x+ q2/2 (6.16)

for 0 ≤ x ≤ δ(q1/1,2p+ q1/1(1− p)). Differentiating y with respect to p yields,

dy

dp
=

ηx(
q1/1 + p(q1/1,2 − q1/1)

)2 (6.17)

where η is defined in Section 6.3.2. It can be observed that the denominator is strictly positive

and the numerator can be positive or negative depending on the value of η.

• If η > 0, the first derivative is strictly positive, and y is an increasing function of p.

Therefore p∗ = 1. However, this is valid only if 0 ≤ x ≤ δ(q1/1,2p + q1/1(1 − p)).

Thus, p∗ can take a value of 1 only if 0 ≤ x ≤ δq1/1,2. Substituting p∗ = 1 into (6.16)

gives the boundary of the subregion characterized by (6.2).

• If η > 0 and x > δq1/1,2, then p∗ =
δq1/1−x

δ(q1/1−q1/1,2)
. By substituting p∗ into (6.16) and

after some simple algebra, we obtain the boundary of the subregion characterized by

(6.3).

• If η ≤ 0, the derivative is non-positive for all feasible p and, thus, y is a decreasing

function of p in the range of all possible values of x. Therefore, p∗ = 0 and the stability

region is given in (6.6).
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Note that for the first dominant system the value of λ1 is upper bounded by the term δq1/1.

6.4.2 The second dominant system: primary node transmits dummy packets

In the previous section, we obtained the stability region of the first dominant system which

yields one part of the stability region of the original system. To finalize the analysis, consider

the complementary dominant system in which the primary node s1 transmits dummy packets

whenever its packet queue is empty, and the secondary node s2 behaves exactly as in the

original system. Even in the dominant system, however, s1 cannot transmit if its battery is

empty. Therefore, the average service rate of s2 in (6.9) reduces to

μ2 = q2/2 (1− Pr[B1 �= 0]) + q2/1,2Pr[B1 �= 0]p (6.18)

Since s1 transmits with probability 1 whenever its battery is nonempty, B1 is modeled as a

decoupled discrete-time M/D/1 system with arrival rate δ and service rate 1. Consequently,

(6.18) becomes

μ2 = q2/2 (1− δ) + q2/1,2δp (6.19)

From Little’s theorem, the probability that Q2 is nonempty for some λ2 < μ2 is given by

Pr[Q2 �= 0] =
λ2

q2/2 (1− δ) + q2/1,2δp
(6.20)

Because in this dominant system B1 is decoupled, i.e., independent, from the rest of the

system, we can rewrite the average service rate of s1 in (6.8) as

μ1 = Pr[B1 �= 0]{q1/1 (1− Pr[Q2 �= 0])

+ q1/1,2Pr[Q2 �= 0]p+ q1/1Pr[Q2 �= 0](1− p)} (6.21)

Plugging (6.20) into (6.21) and, after some manipulations, we find the stability condition for
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this dominant system is given by

λ1 < μ1 =
δp(q1/1,2 − q1/1)

(1− δ)q2/2 + δpq2/1,2
λ2 + δq1/1 (6.22)

for

λ2 < (1− δ) q2/2 + δpq2/1,2 (6.23)

The indistinguishability argument at saturations holds here as well.

To specify the boundary of the stability region which is the closure of the rate pairs (λ1, λ2)

over feasible p, we follow the same methodology as in the previous section. By replacing λ1

and λ2 by y and x, respectively, the boundary for fixed p is written as

y =
δp(q1/1,2 − q1/1)

(1− δ)q2/2 + δpq2/1,2
x+ δq1/1 (6.24)

for 0 ≤ x ≤ (1− δ) q2/2+δpq2/1,2. It is not difficult to see that its first derivative with respect

to p is given as

dy

dp
= − θx(

(1− δ)q2/2 + δpq2/1,2
)2 (6.25)

where θ = δ(1− δ)q2/2(q1/1 − q1/1,2). Since θ is always non-positive under our assumption,

y is a non-increasing function of p. Therefore, the optimal value of p∗ maximizing y is 0 but

this is valid only if the condition 0 ≤ x ≤ (1− δ) q2/2+ δpq2/1,2 is met. At p = 0, it becomes

0 ≤ x ≤ (1− δ) q2/2. Substituting p∗ = 0 into (6.24) yields (6.7). If x > (1− δ) q2/2,

we obtain p∗ =
x−(1−δ)q2/2

δq2/1,2
. By substituting p∗ into (6.24), we obtain (6.4). Note that in

obtaining the stability region for this dominant system, it is assumed that λ2 < μ2. At λ1 = 0,

the optimal transmission probability of the secondary node is p = 1 which gives the upper

bound on λ2 in (6.4).
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R′
1 =

{
(λ1, λ2) :

Δ2

q1/1,2q2/2
λ1 +

λ2

q2/2
< 1, 0 ≤ λ1 ≤ δ(1− δc)

1− δc+1
q1/1,2

}
(6.26)

R′′
1=

{
(λ1, λ2) :

q2/1,2λ1 +Δ1λ2

δ(1−δc)
1−δc+1 q1/1q2/1,2 +Δ1q2/2

1−δ
1−δc+1

< 1,
δ(1− δc)

1− δc+1
q1/1,2 < λ1 <

δ(1− δc)

1− δc+1
q1/1

}

(6.27)

6.5 The Case with Finite Capacity Battery

We now consider a realistic scenario in which the primary node is equipped with a battery

whose capacity is finite. The harvested energy units can be stored only if the battery is not

fully charged.

Theorem 6.5.1. The stability region of the cognitive multiaccess system with finite battery is

described by

R = R1

⋃
R2 (6.29)

where the subregionR1 is described as follows:

• If η > 0,R1 = R′
1

⋃R′′
1 whereR′

1 andR′′
1 are given by (6.26) and (6.27). The optimal

probabilities p∗ achieving the boundaries of the subregionsR′
1 andR′′

1 are obtained as

p∗ = 1 and p∗ =
(
δ(1−δc)
1−δc+1 q1/1 − λ1

)
/
(
δ(1−δc)
1−δc+1 Δ1

)
, respectively.

• If η ≤ 0,

R1 =

{
(λ1, λ2) :

λ1

q1/1
+

λ2

q2/2
< 1, λ1 <

δ(1− δc)

1− δc+1
q1/1

}
(6.30)

R′′
2 =

{
(λ1, λ2) :

q2/1,2λ1 +Δ1λ2

δ(1−δc)
1−δc+1 q1/1q2/1,2 +Δ1q2/2

1−δ
1−δc+1

< 1,

1− δ

1− δc+1
q2/2 < λ2 <

1− δ

1− δc+1
q2/2 +

δ(1− δc)

1− δc+1
q2/1,2

}
(6.28)
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The optimal p∗ achieving the boundary is zero.

The subregionR2 is described asR2 = R′
2

⋃R′′
2 with

R′
2 =

{
(λ1, λ2) : λ1 <

δ(1− δc)

1− δc+1
q1/1, 0 ≤ λ2 ≤ 1− δ

1− δc+1
q2/2

}
(6.31)

andR′′
2 as given by (6.28). The optimal p∗ achieving the boundaries of the subregionsR′

2 and

R′′
2 are obtained as p∗ = 0 and p∗ =

(
λ2 − q2/2

1−δ
1−δc+1

)
/
(
δ(1−δc)
1−δc+1 q2/1,2

)
, respectively.

Proof. In the dominant system in which the primary node transmits dummy packets when its

queue is empty, B is decoupled from the remaining of the system and modeled as a discrete-

time M/D/1/c system with arrival and service rates δ and 1, respectively. We know in that

case that B is always ergodic and nonempty with

Pr[B �= 0] =
δ(1− δc)

1− δc+1
(6.32)

with δ strictly less than 1. If δ = 1, B is nonempty with probability 1 which is not of our

interest since we can rule out the role of the battery in the steady-state. The rest of the proof is

similar to that of Theorem 6.3.1.

The subregion R1 is depicted in Fig. 6.2 with dotted line. Specifically, if η > 0, the line

segments AD and DE correspond to the boundaries due to the inequalities (6.26) and (6.27),

respectively. The subregion R2 is also plotted in Fig. 6.3 with dotted line. One can easily

observe from the figures that the stability region for the case with finite capacity battery is

always a subset of that for the case with infinite capacity battery. Also, note that as c → ∞,

the stability region for the finite battery case approaches to that for the infinite battery case.
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6.6 Collision Channel with Probabilistic Erasures

For the completeness of our discussion, we present the stability conditions for the collision

channel case with probabilistic erasures.

The stability region is given by:

R = R1

⋃
R2 (6.33)

where

R1 =

{
(λ1, λ2) :

λ1

q1/1
+

λ2

q2/2
< 1, 0 ≤ λ1 ≤ δq1/1

}
(6.34)

and

R2 =
{
(λ1, λ2) : λ1 < δq1/1, 0 ≤ λ2 ≤ (1− δ)q2/2

}
(6.35)

The proof is omitted for brevity.

It is trivial to observe that R2 ⊂ R1 and, thus, R = R1. The optimal p∗ achieving the

boundaries is always p∗ = 0. It is intuitive that the well-designed cognitive access protocol

will not allow the secondary node to access the channel when the primary node is transmitting.

This is because such simultaneous transmissions would definitely result in a collision. The

stability region is depicted in the Fig. 6.4. Since the stability region is identical with the

subregion R1 for the case of η ≤ 0 with multipacket reception capability in Fig. 6.2(b),

the stability region for the collision case is a subset of that for the case with the multipacket

reception capability.
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Figure 6.4: The stability region for the case of collision channel with probabilistic erasures

(solid and dotted lines depict the subregionsR1 andR2, respectively.)

6.7 Conclusion

We employed an opportunistic multiple access protocol that observes the priorities among the

users to better utilize the limited energy resources. Owing to the multipacket reception capa-

bility, the secondary node not only utilizes the idle slots but also can take advantage of such

an additional reception by transmitting along with the primary node by randomly accessing

the channel in a way that does not adversely affect the quality of the communication over the

primary link. Consequently, at a given input rate of the primary source, we could choose the

optimal access probability by the secondary transmitter to maximize its own throughput and

this maximum was also identified. The result is obtained for both cases when the capacity of

the battery at the primary node is infinite and also finite. This initial research provides some

insights on how to run such a network of nodes having different energy constraints. The chan-

nel model we assumed in this chapter is time invariant, we plan to study the impact of channel
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state information in future work. Extending the approach proposed here to more realistic en-

vironments with multiple set of source-destination pairs, although highly desirable, presents

serious difficulties due to the interaction between the nodes.
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Chapter 7

Path Diversity Gain with Network

Coding and Multipath Transmission

in Wireless Mesh Networks

The material in this chapter was presented in [45].

7.1 Introduction

The core notion of network coding introduced in [21] is to allow and encourage mixing of

data at intermediate network nodes. Network coding is a generalization of the traditional store

and forward technique. Most of the theoretical results in network coding are for multicast but

the vast majority of Internet traffic is unicast. An application of network coding to wireless

environments has to address multiple unicast flows, if it has any chance of being used. In

particular, with multicast, all receivers want all packets. Thus intermediate nodes can encode

any packets together, without worrying about decoding which will happen eventually at the

destinations.

We consider unicast flows in a multi-hop wireless mesh network with lossy directional
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links. In such networks the largest percentage of uplink traffic is destined for or originates

from a gateway interconnecting the mesh network to a wired network. Moreover, a mesh

node can provide access to multiple clients. Hence, the uplink traffic from these clients that

is destined to the same gateway can be coded at the mesh node, and decoded at the gateway.

Similarly, downlink traffic destined for the clients of the same mesh node can be coded at the

gateway and decoded at the mesh node.

The goal of this work is to investigate the performance that can be achieved by exploiting

path diversity through multipath forwarding and redundancy through network coding. Specif-

ically, we compare the performance and tradeoff in terms of packet delay and throughput

achieved by combining multipath forwarding and network coding, with that of simple mul-

tipath routing of different flows (which achieves the highest throughput), the transmission of

multiple copies of a single flow over multiple paths (which achieves the highest redundancy

and the least delay), and traditional single path routing.

The idea of using redundancy is central in channel coding theory. In this work we use re-

dundant paths to send coded packets in order to recover the loss of information using packets

from another path, thus decreasing the delay. The work in [46] uses path diversity for fast

recovery from link outages. The work in [47] introduces error correcting network coding as a

generalization of classical error correcting codes. The work in [48] studies the coding delay in

packet networks that support network coding. The authors in [49] propose efficient algorithms

for the construction of robust network codes for multicast connections. The goal of this work

is to to provide instantaneous recovery from single edge failures. The work in [50] presents

an approach for designing network codes by considering path failures in the network instead

of edge failures. There is a lot of work for opportunistic routing in wireless mesh networks,

with or without network coding. COPE [51], MORE [52] and MC2 [53] investigate network

coding with opportunistic routing in wireless networks with broadcast transmissions, focusing

exclusively on the throughput improvements. ExOR [54] and ROMER [55] investigate op-

portunistic routing in broadcast wireless networks without network coding. Moreover, these
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works also focus on the throughput improvements, except [55] which also considers the packet

delivery ratio. The work of [56] considers diversity coding, and investigates the allocation of

data to multiple paths that maximizes the probability of successful reception. The work of [57]

extends the previous work, in the case where the failure probabilities are different for different

paths, and when the paths are not necessarily independent.

Our contribution and a key difference with the previous works is that we study the delay

and throughput tradeoff and compare network coding with other transmission schemes such as

single path, multipath and multicopy. We study the average delay per packet and the through-

put achieved, disregarding the queueing delay at the sender, the encoding and decoding delays,

and the ACK transmission delays.

The model we assume is a one-source unicast acyclic network with lossy links. The nodes

inside the network (except the source and the destination) act as relays, do not decode the

information but simply forward coded packets that have been previously received from the

source or the previous node. This allows for uncoordinated, low-complexity processing at the

nodes.

The analytical framework presented in this work considers the case of end-to-end retrans-

mission for achieving reliability, and is generalized for an arbitrary number of paths and hops.

We also derive the minimum and maximum number of coded packets that are needed at the

receiver to retrieve all packets sent by the sender; this can be used to obtain a lower and upper

bound for the delay in the case of linear network coding with multipath forwarding. The ap-

plication of linear network coding results in the considerable reduction of the computational

complexity at the nodes. An interesting conclusion that comes out from this work is that net-

work coding gives us an advantage in terms of delay-throughput trade-off. We will see that

when the number of paths increasing network coding unfolds it advantages comparing to other

routing schemes.

The chapter is organized as follows: Section 7.2 presents the analytical model for the

throughput and delay in the case of end-to-end retransmissions, for three and for 2k − 1 path
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Figure 7.1: Simple three path network

networks. Section 7.3 presents numerical results based on the previous models, and section 7.4

concludes the chapter.

7.2 Analytical Model

In this section we are presenting the analytical model for the throughput and delay in the case

of end-to-end retransmissions. We initially consider the simple model shown in figure 7.1,

which contains three paths from node S to node R, then we extend to 2k − 1 paths.

Recall from the previous section that node S can be a wired network gateway and node R

can be a mesh node connecting multiple wireless clients or vice versa. Each path has n hops.

We consider the following approaches for transmitting packets from S to R: With single

path routing, packets from all flows follow the same single path, leaving the other paths unuti-

lized. With simple multipath routing, all the paths are used to transmit packets from different

flows; the packets belonging to the same flow follow the same path. Another alternative is

to transmit copies of packets belonging to a single flow on all the links; we call this scheme

multicopy.

Finally the last scheme combines multipath with network coding. For the three path net-

work shown in figure 7.1 node S sends three linear combinations xia + yib for i = 1, 2, 3,

of packets a and b along the three paths; the receiver needs to receive at least two linear in-

dependent of these combinations in order to decode the packets, and retrieve the original two
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packets a and b.

We assume that the probability of a packet error on each link is the same, and equal to

e. If a path consists of n hops, then the probability of a packet correctly reaching node R is

Pc = (1− e)n; then Pe = 1− Pc is the probability of a packet error along the whole path.

Next we compute the packet delay and throughput achieved by each of the forwarding

schemes mentioned above. The packet delay D is the delay for transmitting a packet from the

S to R, when the packet is at the head of the transmission queue at S, i.e., we do not include in

D the queuing delay at S, and we assume there is no congestion, hence no queuing delay, in the

intermediate nodes. We also assume that the transmission delay of each hop is one. Moreover,

if a packet is not correctly received by R, it is retransmitted by node S; we disregard the delay

for transmitting ACKs back from R to S.

7.2.1 Analysis for a three-path network with n hops

Single Path

The average delay is given by

Dsp = (1− Pe)n+ Pe(n+Dsp)⇔ Dsp =
n

1− Pe
,

and the throughput is

Thrsp =
1

Dsp
=

1− Pe

n
.

Multipath

Multipath has the same delay as single path

Dmp = Dsp ,
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and its throughput is three times the throughput of single path

Thrmp = 3Thrsp .

Multicopy

The delay and throughput are

Dmcop =
n

1− P 3
e

, Thrmcop =
1

Dmcop
.

Multipath with Network Coding

The delay Dnc is the average delay to receive at least two of the three independent linear

combinations sent by node S:

Dnc = (1− Pe)
3n+ 3Pe(1− Pe)

2n+

+3P 2
e (1− Pe)(n+D1) + P 3

e (n+Dnc)

where

D1 = (1− P 2
e )n+ P 2

e (n+D1) .

The first term in the expression for Dnc corresponds to the case of correct transmission on all

three paths. The second term corresponds to the case of an error in one of the three paths.

The third term corresponds to the case of errors in two of the three paths, hence there is an

additional delay D1 to receive one more linear combination. The last term corresponds to the

case where there were errors on all three paths. Since in the time interval Dnc node R receives

two data packets, the average throughput is given by

Thrnc =
2

Dnc
.
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7.2.2 Generalization for 2k − 1 paths

Here we extend the previous model to the case of 2k − 1 paths,

Single Path

Dsp =
n

1− Pe
, Thrsp =

1

Dsp
.

Multipath

Dmp = Dsp , Thrmp = (2k − 1)Thrsp .

Multicopy

Dmcop =
n

1− P 2k−1
e

, Thrmcop =
1

Dmcop
.

Multipath with Network Coding

We have k packets to transmit through 2k − 1 paths with n hops each. We calculate the delay

for the reception of at least k from a set of 2k − 1 packets. The delay to receive k packets

when we have already received j packets is denoted by Dk,j . The delay we are interested in

is Dnc = Dk,0.

Dk,j =

2k−j−1∑
i=k−j

(
2k − j − 1

i

)
P i
cP

2k−i−j−1
e n+

+

k−j−1∑
i=0

(
2k − j − 1

i

)
P i
cP

2k−i−j−1
e (n+Dk,i) ,

Thrnc =
k

Dnc
.
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7.3 Numerical Experiments

In this section we present arithmetic results based on the models in section 7.2. Figures 7.2(a)

and 7.2(b) show the delay - throughput tradeoff for error probabilities 0.2 and 0.4 respectively

for networks with three paths of one hop each. Multipath with network coding achieves de-

lay which is smaller than single and multipath, but worst than multi-copy forwarding. The

throughput achieved by multipath with network coding is better than that achieved by multi-

copy forwarding.

Error probabilities are assumed to be between 0.1 and 0.8 in the figures shown in current

section. We want to compare the presented routing schemes in environments with heavy noise.

Heavy noise in the wireless medium can be explained by interference, path losses and fading

as it is well known.
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(a) e = 0.2

(b) e = 0.4

Figure 7.2: Delay-throughput tradeoff in the case of three paths with one hop each

Figure 7.3(a) shows that, as expected, the improvement in terms of lower delay which

is achieved by multipath with network coding and multi-copy increases with increasing error

probability. Regarding throughput, observe that a higher loss probability does not significantly

affect the gains of multipath with network coding over single path forwarding, as much as it

does for multicopy forwarding; this is also shown in figure 7.3(b).
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(a) D/Dsp vs error probability

(b) Thr/Thrmp vs error probability

Figure 7.3: Delay and throughput for different errors probabilities, in the case of three paths

with one hop each

108



(a) D/Dsp vs number of hops

(b) Thr/Thrmp vs number of hops

Figure 7.4: Delay and throughput for different number of hops, in the case of three paths and

e = 0.3

Figures 7.4(a) and 7.4(b) show how the number of hops affects the throughput and delay.

In particular, figure 7.4(a) shows that the improvement in terms of lower delay compared to

single path forwarding increases with the number of hops, for both multipath forwarding with

network coding and multicopy forwarding. Moreover, figure 7.4(b) shows that whereas for

multipath forwarding with network coding, the throughput improvement compared to simple

multipath forwarding remains relatively constant as the number of hops increase, for multi-

copy forwarding the throughput gain increases and after some number of hops, the gain with
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multicopy forwarding is higher compared to the gain with multipath forwarding with network

coding. The above results for three paths indicate that the network coding delay gain over

the single path and multipath schemes is about 15 − 20%. On the other hand, multicopy

forwarding is superior when the loss becomes large and for a large number of hops because of

its higher redundancy.

Figures 7.5(a) and 7.5(b) show the delay - throughput tradeoff for error probabilities 0.2

and 0.4 respectively for a network with seven paths, each with one hop. These figures include

two graphs for network coding, one corresponding to the case of decoding after receiving

three linear combinations (which is denoted by NC-L) and one for decoding after receiving

four (which is denoted by NC-U); These numbers represent the lower and upper bound of

the number of coded packets required to retrieve all packets at the receiver, as indicated by

lemma 7.5. Multipath with network coding achieves delay, which is better than single and

multipath, but approaches the delay of multicopy forwarding. Comparison of Figures 7.5(a)

and 7.5(b), with Figures 7.2(a) and 7.2(b) shows that the improvements of network coding

increase as the number of paths increases. Also, the throughput achieved by multipath with

network coding is better than that achieved by multicopy forwarding.
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(a) e = 0.2

(b) e = 0.4

Figure 7.5: Delay-thoughput tradeoff in the case of seven paths

Figure 7.6(a) shows that, as in 7.3(a), the improvement in terms of lower delay which

is achieved by multipath with network coding and multicopy increases with increasing error

probability for the case of seven paths.
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(a) D/Dsp vs error probability

(b) Thr/Thrmp vs error probability

Figure 7.6: Delay and throughput in the case of seven paths with one hop each
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(a) D/Dsp vs number of hops

(b) Thr/Thrmp vs number of hops

Figure 7.7: Delay and throughput for a different number of hops, in the case of seven paths

and e = 0.3

Figures 7.7(a) and 7.7(b) show how the number of hops affects the throughput and delay

for a network with seven paths. In particular, figure 7.7(a) shows that the improvement in terms

of lower delay compared to single path forwarding increases with the number of hops, for both

multipath forwarding with network coding and multicopy forwarding. Moreover, figure 7.7(b)

shows that whereas for multipath forwarding with network coding, the throughput improve-

ment compared to simple multipath forwarding remains relatively constant as the number of

hops increases, for multicopy forwarding the throughput gain increases and after some num-
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ber of hops, the gain with multicopy forwarding is higher compared to the gain with multipath

forwarding with network coding. The above results for seven paths suggest that the network

coding delay gain compare to single path and multipath forwarding is about 20 − 40%. On

the other hand, in the case of seven paths, the delay with network coding is close to the delay

with multicopy forwarding.

7.4 Conclusion

In this chapter we investigated the performance and reliability that can be achieved by ex-

ploiting path diversity through multipath forwarding together with redundancy through net-

work coding, when end-to-end retransmissions are used for achieving reliable packet trans-

mission. The work in this chapter is at very fundamental level and it is not supposed to pro-

vide blueprints for a real network, however it helps understanding about network coding and

its impact on redundancy and the trade-off among other routing schemes. We compared the

performance and tradeoff in terms of packet delay and throughput achieved by combining mul-

tipath forwarding and network coding, with that of simple multipath routing of different flows,

transmission of multiple copies of a single flow over multiple paths, and single path routing.

We saw that network coding decreases the delay that is needed for the transmission of a packet

compared with multipath and traditional single path forwarding, achieving a delay-throughput

balance that lies between the corresponding performance of simple multipath and multicopy

forwarding, which sends the same packet across all available paths. Another important result

is that as the number of available paths increases, the gain from network coding also increases.

Future work will investigate the delay - throughput tradeoffs in the case of hop-by-hop

retransmissions. Another important issue is the correlation of losses among the paths, it is

interesting also the study of paths that contain links with bursty errors. Initial results indicate

that in the case of networks that have paths with common links, the advantages of network

coding are more pronounced. The analysis done in the present chapter will serve as a guideline
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for a more general network model including the previous considerations.

7.5 Lemma

In this appendix we give a Lemma that identifies the minimum and the maximum number of

linear combinations needed in order to retrieve all the packets when we use network coding.

Lemma 7.5.1. Consider a linear n dimensional vector space GF (2)n. We need exactly n

linear independent vectors and at most (2n − 1)/2� = 2n−1 − 1/2� = 2n−1 different

vectors(not independent) (excluding the zero vector) in order to reconstruct the vector space.

Proof. It is obvious that we need exactly n linear independent vectors, but with a random

selection of n linear combinations there is a possibility that the vectors cannot span the space

due to linear dependency. The vectors in GF (2)n have n coordinates and there are 2n − 1

vectors (excluding the zero one). If we choose 2n−1 − 1 we can span an n − 1 dimensional

subspace of GF (2)n space; this means that we have a collection of vectors that in total have

n− 1 coordinates with value 1. So, we need one more coordinate to be different than zero in

the previous collection of 2n−1−1, we choose another one from the pool of the 2n−1 vectors.

Now it is obvious from Pigeonhole principle that we are able to span the n dimensional space.

For example, if n = 3, we need three linear independent vectors in order to construct the

vector space, and any collection of 4 = 23−1 different vectors spans the three dimensional

vector space.

7.6 Generalization for 2k − 1 paths with different error probabil-

ities

In this appendix we extend the model in section 7.2.2 to the case of paths with different error

characteristics. With this extension we are able to encapsulate to our study notions as conges-

115



tion that exist in real networks. We denote Pe,i the probability of a transmission error at path

i.

Single path

Dsp =
n

1−mini Pe,i

Thrsp =
1

Dsp

Multipath

Dmp =
1

2k − 1

2k−1∑
i=1

n

1− Pe,i

Thrmp = 2k − 1−
2k−1∑
i=1

Pe,i

Multicopy

Dmcop = n/(1−
2k−1∏
i=1

Pei)

Thrmc =
1

Dmc

Multipath with Network Coding

If N = 2k − 1 is the number of paths and K is the number of linear combinations necessary

to decode correctly the original k packets, then from lemma 7.5 we must have k ≤ K ≤ 2k−1.
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The delay to receive these K linear combinations is

Dnc =

N∏
i=1

(1− Pe,i)n+

N∑
i=1

Pe,i

N∏
j=1
j �=i

(1− Pe,i)n+

+
N∑
i=1

N∑
j=1
j �=i

Pe,iPe,j

N∏
k=1
k �=i,j

(1− Pe,k)n+ ...

+
N∑

i1=1

...

N∑
iN−K=1

iN−K �=i1,...,iN−K−1

N−K∏
k=1

Pe,ik

N∏
j=1

j �=i1,...,iN−K

(1− Pe,j)n+

+

N∑
i=1

(1− Pe,i)
N∏
j=1
j �=i

Pe,j(n+Di)+

+
N∑
i=1

N∑
j=1
j �=i

(1− Pe,i)(1− Pe,j)
N∏
k=1
k �=i,j

Pe,k(n+Di,j) + ...

+
N∑

i1=1

...
N∑

iK−1=1
iK−1 �=

i1,...,iK−2

K−1∏
k=1

N∏
j=1
j �=

i1,...,iK−1

Pe,j(1− Pe,ik)(n+Di1,...,iK−1)+

+

N∏
i=1

Pe,i(n+Dnc)

where Di1,...,ij is the delay to receive the additional K − j linear combinations after re-

ceiving j linear combinations. The calculation of this delay is similar to the calculations in

the preceding sections. Note that when a packet needs to be retransmitted, it follows the same

path as the path of the initial transmission attempt. An interesting extension is to retransmit

packets using the paths with the smallest error probability. Finally, the throughput is given by

Thrnc =
k

Dnc
.
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Chapter 8

Delay and Throughput of Network

Coding with Path Redundancy for

Wireless Mesh Networks

The material in this chapter was presented in [58].

8.1 Introduction

In this chapter, we extend our work in [45]. In that work we investigated the performance

that can be achieved by exploiting path diversity through multipath forwarding for end to end

retransmissions. We saw that network coding decreases the delay that is needed for the trans-

mission of a packet compared with multipath and traditional single path forwarding, achieving

a delay-throughput balance that lies between the corresponding performance of simple multi-

path and multicopy forwarding, which sends the same packet across all available paths. An-

other result was that as the number of available paths increases, the gain from network coding

also increases.

We consider unicast flows in a multi-hop wireless (mesh) network with lossy directional

118



links. In such networks the largest percentage of uplink traffic is destined for or originates from

a gateway interconnecting the mesh network to a wired network. Moreover, a mesh node can

provide access to multiple clients. Hence, the uplink traffic from these clients that is destined

to the same gateway can be coded at the mesh node, and decoded at the gateway. Similarly,

downlink traffic destined for the clients of the same mesh node can be coded at the gateway and

decoded at the mesh node. In real-world wireless scenarios, end-to-end connectivity is often

intermittent, limiting the performance of end-to-end transport protocols. For this reason hop

by hop retransmission is preferred [59] and this work will focus on hop by hop retransmission

in the presence of link losses with either end to end or hop by hop network coding process.

The goal of this work is to investigate the performance that can be achieved by exploiting

path diversity through multipath forwarding and redundancy through network coding in a mul-

tihop network using hop by hop retransmission. Specifically, we compare the performance and

tradeoff in terms of packet delay and throughput achieved by combining multipath forwarding

and network coding, with that of simple multipath routing of different flows, the transmission

of multiple copies of a single flow over multiple paths (which achieves the least delay due to

the highest redundancy), and traditional single path routing.

The idea of using redundancy is central in channel coding theory. In this work we use

redundant paths to send coded packets in order to recover the loss of information using packets

from another path, thus decreasing the delay. The work in [46] uses path diversity for fast

recovery from link outages. The work in [47] introduces error correcting network coding

as a generalization of classical error correcting codes. The work of [56] considers diversity

coding, and investigates the allocation of data to multiple paths that maximizes the probability

of successful reception. The work of [57] extends the previous work, in the case where the

failure probabilities are different for different paths, and when the paths are not necessarily

independent.

Our contribution and a key difference with the previous works is that we study the delay

and throughput tradeoff and compare network coding with other transmission schemes such as
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single path, multipath and multicopy. We study the average delay per packet and the through-

put achieved, disregarding the queueing delay at the sender, the encoding and decoding delays,

and the ACK transmission delays. The model we assume is a one-source unicast acyclic net-

work with lossy directional links. The analytical framework presented in this work considers

the case of hop by hop retransmission for achieving reliability, and is generalized for an arbi-

trary number of paths and hops. The coding process we study includes end to end and hop by

hop coding.

The rest of the chapter is organized as follows: Section 8.2 presents the network mod-

els assumed in the present work. Sections 8.3 and 8.4 presents the analytical model for the

throughput and delay in the case of hop by hop retransmissions where the coding is end to

end and hop by hop respectively. Section 8.5 presents the case of a network with three paths

and different error probabilities. Section 8.6 presents numerical results based on the previous

models, and finally section 8.7 concludes the chapter.

8.2 The model of the network

The model we assume is a one-source unicast acyclic network with lossy directional links.

We consider the case of hop by hop retransmission. When an error occurs at the transmission

between two nodes for example node i to i + 1, node i re-sends the information to i + 1.

Figure 8.1 shows a network with node-disjoint paths where the coding process is end to end.

Figure 8.2(b) presents a network with paths having nodes in common where the coding process

is hop by hop. When the network has more than one hop, the inner nodes can decode the

information and then re-encode it. In this work we study the average delay per packet and the

throughput achieved, disregarding the queueing delay at the sender, the encoding and decoding

delays, and the ACK transmission delays. For the sake of simplicity we assume that the

number of hops is the same for every path in the network and every link has the same error

probability e. In section 8.5 we relax this assumption and present the analysis of a network
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Figure 8.1: An instance of a network with node-disjoint paths, with n = 3 and m = 3, the

corresponding state is S = (1, 2, 2).

with three paths each with a different error probability.

8.3 Analytical model for node-disjoint paths (End to end coding)

Consider a source s and its receiver d. The network we study here has n paths, each path

having m hops. The original packets are k (where k ≤ n). In order to find the average time

that is needed for d to receive the packets, we model our problem using absorbing Markov

Chains [60]. The chain is absorbed when the receiver d has received k packets. A state of

this chain is denoted by S. S is a n- tuple: S = (s1, s2, ..., sn), where si is the number of

hops traversed by a packet on path i, note that 0 ≤ si ≤ m and 1 ≤ i ≤ n. For example in

Figure 8.1, the nodes with black color are the ones that have received already the packet.

(a) One hop (b) n hops

Figure 8.2: Simple network with three paths having nodes in common

The state space denoted by VS contains all the (m+1)n states of the Markov Chain. VS is

divided into two sub-spaces VT and VA, VS = VT ∪VA. VT and VA are the spaces that contain

the transient and absorbing states respectively. There are |VS | = (m+ 1)n states in total. The

absorbing ones are:

|VA| =
n∑

i=k

(
n

i

)
(8.1)
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The transient states are:

|VT | = (m+ 1)n −
n∑

i=k

(
n

i

)
(8.2)

The transition matrix T of the Markov Chain has the following canonical form [60]:

T =

⎛
⎜⎝ P R

0 I

⎞
⎟⎠ (8.3)

P is an |VT | × |VT | matrix, R is |VT | × |VA| and I is |VA| × |VA| matrix. It is known that

for an absorbing Markov Chain the matrix I − P has an inverse [60]. Also it is known that:

t = (I − P )−11|VT |×1 (8.4)

where t is the expected number of steps before the chain is absorbed and 1|VT |×1 is the

all-ones column vector. The first element of t is the expected time for the chain to be absorbed

starting from the initial state, that is the delay we want to compute. The rest of this section

presents the procedure in order to compute the matrix P . We assign indices for the transient

states, the initial state S0 = (0, 0, ..., 0) being the first one. This indexing facilitates the

computation of the elements of matrix P , for example Pij is the probability of transition from

Si = (si1, ..., s
i
n) to Sj = (sj1, ..., s

j
n). The elements of P can be computed by the following:

Pij =

⎧⎪⎪⎨
⎪⎪⎩
0, if ∃k s.t. sjk < sik or sjk − sik > 1

en−correct−final(1− e)correct, otherwise.

(8.5)

final =

n∑
k=1

�s
i
k

m
� (8.6)

correct =
n∑

k=1

(sjk − sik) (8.7)
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The chain is absorbed when the receiver has received at least k packets, which means final ≥
k.

Next we show how the previous procedure can be applied for the computation of the delay

and throughput for single path, multipath, multicopy and multipath with network coding.

8.3.1 Single Path

For this case, we apply the previous procedure with n := 1 and k := 1, to calculate the delay

Dsp. The throughput is given by Thrsp =
1

Dsp
.

8.3.2 Multipath

The delay for multipath is equal to Dsp. The throughput is given by Thrmp =
n

Dsp
.

8.3.3 Multicopy

Multicopy is the technique for maximum redundancy, we send the same symbol to all paths.

We apply the previous procedure with n := n and k := 1, to calculate the delay for multicopy

Dmcop. The throughput is given by Thrmcop =
1

Dmcop
.

8.3.4 Multipath with Network Coding

There are n paths and we send k original(uncoded) symbols through n linear combinations

(redundancy), the procedure is applied with parameter n := n and k := k, to calculate the

delay for network coding Dnc. The throughput is given by Thrnc =
k

Dnc
.

In section 8.6 we will present the arithmetic results derived from the previous procedure

for various numbers of paths and hops.
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8.4 Analytical model for paths with nodes in common (Hop by hop

coding)

The derivation of the equations in this section is based on [45] section II. There is a small

change for the case of network coding.

8.4.1 Three paths

In this part we will present the equations corresponding to network depicted in Figure 8.2(a).

The probability of error in each path is e.

Single Path

The average delay is given by Dsp =
1

1−e and the throughput is Thrsp =
1

Dsp
= 1− e .

Multipath

Multipath has the same delay as the single path Dmp = Dsp and its throughput is three times

the throughput of single path Thrmp = 3Thrsp .

Multicopy

The delay and throughput are Dmcop =
1

1−e3
and Thrmcop =

1
Dmcop

respectively.

Multipath with Network Coding

The delay Dnc is the average delay to receive at least two of the three independent linear com-

binations sent by node S: Dnc = (1−e)3+3e(1−e)2+3e2(1−e)(1+D1)+e3

1−e3
where D1 = Dmcop =

1
1−e3

. The additional delay D1 is to receive one more linear combination when we have already

received one. Since in the time interval Dnc node R receives two data packets, the average

throughput is given by Thrnc =
2

Dnc
.
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8.4.2 Seven paths

Single Path

The average delay is given by Dsp =
1

1−e and the throughput is Thrsp =
1

Dsp
= 1− e.

Multipath

Multipath has the same delay as the single path Dmp = Dsp and its throughput is seven times

the throughput of the single path Thrmp = 7Thrsp.

Multicopy

The delay and throughput are Dmcop =
1

1−e7
and Thrmcop =

1
Dmcop

respectively.

Multipath with Network Coding

We have 3 packets to transmit through 23 − 1 = 7 paths. According to lemma in appendix A

in [45] we need at least 3 and at most 4 linear packet combinations to be able to decode the

initial packets. The delay for receiving 3 or 4 linear combinations is denoted by Dnc−L,Dnc−U

respectively.

Dnc−L =
1

1− e7
[

7∑
i=3

(
7

i

)
(1− e)ie7−i +

2∑
i=1

(
7

i

)
(1− e)ie7−i(1 +D3,3−i) + e7] ,

where D3,i is the delay to receive i = 1, 2 encoded packets when 3 needed, D3,1 = 1
1−e7

,

D3,2 = 1
1+e7

[1 − e7 + (1 + 1
1−e7

)(e3(1 − e4) + e4(1 − e3)] The average delay to receive 4

linear combinations is given by:

Dnc−U =
1

1− e7
[

7∑
i=4

(
7

i

)
(1− e)ie7−i +

3∑
i=1

(
7

i

)
(1− e)ie7−i(1 +D4,4−i) + e7] ,

where D4,i is the delay to receive i = 1, 2, 3 encoded packets when 4 needed, D4,1 = D3,1,

D4,2 = D3,2, D4,3 = Dnc−L. The throughput is given by: Thrnc =
3

Dnc
.
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Note: If the network topology has n hops as in figure 8.2(b), then in order to find the total

delay with the previous models we just need to add the delays for all the hops. In the case

where all links have the same error probabilities then the total delay is n times the delay for

one hop.

8.5 Analytical model for the network with three paths and one

hop each with different link errors

In this section we will give the equations for the delay and throughput for the above routing

schemes when then paths have different error probabilities. The derivation of the equations

in this section is based on [45] Appendix B. There is a small change for the case of network

coding.

8.5.1 Single Path

The single path routing scheme selects the best available path from the three available. Thus

the delay is Dsp =
1

1−mini ei
and the throughput is Thrsp =

1
Dsp

.

8.5.2 Multipath

In this routing scheme different data flows follow different paths, so the average delay per

packet and the throughput are: Dmp =
1
3

∑3
i=1

1
1−ei

, Thrmp =
3

Dmp
respectively.

8.5.3 Multicopy

The multicopy scheme uses all available paths to forward the same flow, in this way achieves

the maximum redundancy (but wasting resources). The average delay is: Dmcop = 1/(1 −∏3
i=1 ei) and the average throughput is: Thrmc =

1
Dmc

.
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8.5.4 Multipath with Network Coding

Multipath with Network Coding uses all available paths sending linear combinations of initial

packets to each of them. In this case with three paths available, we encode two packets and

there are three linear combinations. In order to decode the initial packets we have to receive

two linear independent combinations. The average delay is given by:

Dnc =
1

1−∏3
i=1 ei

[
3∏

i=1

(1− ei) +
3∑

i=1

ei

3∏
j=1,j �=i

(1− ej)+

+
3∑

i=1

(1− ei)(1 +D1)

3∏
j=1,j �=i

ej +

3∏
i=1

ei]

where D1 =
1

1−∏3
i=1 ei

.

Notice that for the Multipath with Network Coding scheme we are not able to compute

the average delay per packet (because of the linear combinations) thus we calculate the delay

needed to receive at least two linear independent combinations. This means that the above

delay is the delay to receive all the uncoded packets. The throughput is: Thrmc =
2

Dnc
.

8.6 Numerical Experiments

In this section we present arithmetic results based on the models described in the sections 8.3, 8.4

and 8.5.

8.6.1 Results for networks with node disjoint paths (End to end coding)

Table 8.1 shows the delay - throughput tradeoff for networks with node disjoint pats. Multipath

with network coding achieves delay which is smaller than single and multipath, but worst than

multi-copy forwarding. The throughput achieved by multipath with network coding is better

than this achieved by multicopy forwarding. The gain from network coding is not so much,

about 7− 9% in terms of delay for the errors e = 0.2, e = 0.4 and three paths with two hops
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each.
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Scheme Error Paths Hops Delay/DelaySP Thr/ThrSP

NC 0.2 3 2 0.9312 2.148

SP 0.2 3 2 1 1

MP 0.2 3 2 1 3

MCOP 0.2 3 2 0.819 1.221

NC 0.2 3 4 0.967 2.07

SP 0.2 3 4 1 1

MP 0.2 3 4 1 3

MCOP 0.2 3 4 0.845 1.184

NC 0.4 3 2 0.93 2.15

SP 0.4 3 2 1 1

MP 0.4 3 2 1 3

MCOP 0.4 3 2 0.694 1.44

NC 0.4 3 4 0.967 2.07

SP 0.4 3 4 1 1

MP 0.4 3 4 1 3

MCOP 0.4 3 4 0.761 1.31

NC-L 0.2 7 2 0.825 3.64

NC-U 0.2 7 2 0.888 3.38

SP 0.2 7 2 1 1

MP 0.2 7 2 1 7

MCOP 0.2 7 2 0.8 1.25

NC-L 0.4 7 2 0.771 3.89

NC-U 0.4 7 2 0.903 3.32

SP 0.4 7 2 1 1

MP 0.4 7 2 1 7

MCOP 0.4 7 2 0.613 1.63

Table 8.1: Delay-Throughput Tradeoff for node disjoint paths
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Multipath with network coding achieves delay, which is slightly better than single and

multipath (about 4%), but worst than multi-copy forwarding for error probabilities 0.2 and 0.4

for the network with three paths and four hops. In comparing with two hops we observe that

the gain for network coding is decreased. We see that network coding approaches multipath

in term of delay, this is expected because of the relatively small number of paths and packets.

Figures 8.3(a) and 8.3(b) show how the number of hops affects the delay and throughput

compared to delay for single path and throughput for multipath respectively.
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(a) D/Dsp vs number of hops

(b) Thr/Thrmp vs number of hops

Figure 8.3: Delay and throughput for a different number of hops, in the case of three paths and

e = 0.2 (node disjoint paths)

In the following there are plots for the network with seven paths and two hops. Table 8.1
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includes two lines for network coding, one corresponding to the case of decoding after receiv-

ing three linear combinations (which is denoted by NC-L) and one for decoding after receiv-

ing four (which is denoted by NC-U); These number represent the lower and upper bound of

the number of coded packets required to retrieve all packets at the receiver, as indicated by

lemma [45]. Multipath with network coding achieves delay, which is better than single and

multipath (about 20%), but worst than multi-copy forwarding. In term of throughput, network

coding is much better(150%) than multicopy. Multicopy is superior when the loss become

large and for a large number of hops because of its higher redundancy.

Throughput achieved by multipath with network coding is better than that achieved by

multi-copy routing. Figure 8.4(a) shows that, as expected, the improvement in terms of lower

delay which is achieved by multipath with network coding and multi-copy increases not so

much with increasing error probability. Regarding throughput, we observe that a higher loss

probability does affect the gains of multipath with network coding over single-path forwarding,

as much they do in the case of multi-copy transmission; this is also shown in figure 8.4(b).
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(a) D/Dsp vs e

(b) Thr/Thrmp vs e

Figure 8.4: Delay and throughput vs e, in the case of seven paths and two hops each (node

disjoint paths)
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8.6.2 Results for networks with paths having common nodes (hop by hop cod-

ing)

Scheme Error Paths Delay/DelaySP Thr/ThrSP

NC 0.2 3 0.8845 2.261

SP 0.2 3 1 1

MP 0.2 3 1 3

MCOP 0.2 3 0.807 1.24

NC 0.4 3 0.838 2.386

SP 0.4 3 1 1

MP 0.4 3 1 3

MCOP 0.4 3 0.641 1.56

NC-L 0.2 7 0.804 3.733

NC-U 0.2 7 0.827 3.629

SP 0.2 7 1 1

MP 0.2 7 1 7

MCOP 0.2 7 0.8 1.25

NC-L 0.4 7 0.656 4.573

NC-U 0.4 7 0.777 3.862

SP 0.4 7 1 1

MP 0.4 7 1 7

MCOP 0.4 7 0.601 1.664

Table 8.2: Delay-Throughput Tradeoff for paths with node in common

Figures 8.5(a) and 8.5(b) show how the error probability e affects the delay and throughput

compared to delay for single path and throughput for multipath respectively for the network
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with three paths and hop by hop coding process. Figures 8.6(a) and 8.6(b) show how the

error probability e affects the delay and throughput compared to delay for single path and

throughput for multipath respectively for the network with seven paths. In these plots we

see the advantage of network coding as error increases. In heavy noise the network coding

outperforms even multipath in terms of throughput and it has only a fraction of delay of the

singlepath (and multipath) scheme.
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(a) D/Dsp vs e

(b) Thr/Thrmp vs e

Figure 8.5: Delay and throughput vs e, in the case of three paths (paths with common nodes)

Table 8.2 shows the delay - throughput tradeoff the networks with paths having nodes in

common for error probabilities e = 0.2 and e = 0.4. For the case of three paths multipath with

network coding achieves delay, which is better than single and multipath (about 13−18%), but
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worst than multi-copy forwarding. In term of throughput network coding is much better(90%)

than multicopy. For the case of seven paths multipath with network coding achieves delay,

which is better than single and multipath (about 22−40%), but slightly worse than multi-copy

forwarding. In term of throughput network coding is much better(200−350%) than multicopy.
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(a) D/Dsp vs e

(b) Thr/Thrmp vs e

Figure 8.6: Delay and throughput vs e, in the case of seven paths (paths with common nodes)

The above results indicate that the network coding in a network with paths with nodes in

common has profound advantages compared to topologies with node-disjoint paths.

138



8.6.3 Results for Network with three paths with different error probabilities

Table 8.3 shows the delay-throughput trade-off for two different scenarios.

Scheme e1 e2 e2 Delay/DelaySP Thr/ThrSP

NC 0.3 0.4 0.5 0.974 2.053

SP 0.3 0.4 0.5 1 1

MP 0.3 0.4 0.5 1.189 2.523

MCOP 0.3 0.4 0.5 0.745 1.343

NC 0.5 0.6 0.8 1.056 1.894

SP 0.5 0.6 0.8 1 1

MP 0.5 0.6 0.8 1.583 1.895

MCOP 0.5 0.6 0.8 0.658 1.52

Table 8.3: Delay-Throughput Tradeoff for three paths with different error probabilities

In the case of e1 = 0.5, e2 = 0.6 and e2 = 0.8 the multipath with network coding

is the superior routing scheme, has almost the same delay as the singlepath but the double

throughput. Multipath has the same throughput with network coding but 60% more delay than

single path.

Summarizing the above we can state that network coding offers significant advantages

as the number of paths increases, when the nodes inside the network are able to decode and

encode the received packets and finally under heavy noise environments.

8.7 Conclusion

In this chapter we investigated the performance and reliability that can be achieved by exploit-

ing path diversity through multipath forwarding together with redundancy through network

coding, when hop by hop retransmissions are used for achieving reliable packet transmission
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with end to end and hop by hop coding. We compared the performance and tradeoff in terms of

packet delay and throughput achieved by combining multipath forwarding and network cod-

ing, with that of simple multipath routing of different flows, transmission of multiple copies

of a single flow over multiple paths, and single path routing. We saw that network coding

decreases the delay that is needed for the transmission of a packet compared with multipath

and traditional single path forwarding, achieving a delay-throughput balance that lies between

the corresponding performance of simple multipath and multicopy forwarding, which sends

the same packet across all available paths. We saw that as the number of hops increases the

gain for delay decreases for the network with node disjoint paths (end to end coding). Another

important result is that as the number of available paths increases, the gain from network cod-

ing also increases. The significant advantages of network coding with redundancy appeared

when hop by hop coding (paths with nodes in common) applied. Under heavy noise though

the network coding scheme outerforms all the other routing schemes. This is obvious from the

arithmetic results in the network with paths having different error probabilities.

The hop by hop coding process is not computationally expensive due to the linearity of the

network coding technique and for this reason the delay from decoding and encoding is not so

important.

The conclusion is that network coding offers significant advantages as the number of paths

increases, when the nodes inside the network are able to decode and encode the received

packets and finally under heavy noise environments.

Future work will investigate the delay - throughput tradeoff in the presence of bursty errors

for hop by hop retransmissions. Another extension of this work should be the study of net-

works with different error probability for each hop for more complex topologies. Our future

work involves the impact of interference and congestion to schemes described above.
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Chapter 9

Conclusions

9.1 Summary of Contributions

In this dissertation, we focused on the wireless network-level cooperation.

We first examined the operation of a node relaying packets from a number of users to a

common destination node. We assumed MPR capability for the relay and for the destination

node. We studied a multiple capture model, where a user’s transmission is successful if the re-

ceived SINR is above a threshold γ. We obtained analytical expressions for the relay’s queue

characteristics such as the stability condition, the values of the arrival and service rates and the

average queue size. We showed that the arrival rate at the queue is independent of the relay

probability of transmission, when the queue is stable. We studied the throughput per user and

the aggregate throughput, and found that, under stability conditions, the throughput per user

does not depend on the relay probability of transmission. We also have given the conditions

under which the utilization of the relay offers significant advantages. An interesting result

is that, given the link characteristics and the transmission probabilities, there is an optimum

number of users that maximizes the aggregate throughput. These results could be useful in

a network with many users and multiple relays for determining the way to allocate the users

among the relays. With the MPR and the capture effect the advantages from deploying a relay

141



node are more pronounced.

In Chapter 3 we extend the analysis of Chapter 2 by assuming that the relay node is ca-

pable of transmitting and receiving packets at the same time (full duplex) thus, the problem

of self interference arises. We studied the impact of the self interference coefficient on the

throughput per user and the aggregate throughput of the network. We showed that for perfect

self-interference cancelation, the advantages are more pronounced. Another interesting result

is that the self interference coefficient plays a crucial role when γ is small because it can easily

cause an unstable queue at the relay.

In Chapter 4, we introduced the notion of partial network-level cooperation by assuming a

flow controller for the endogenous traffic to the relay from the source node. The flow controller

regulates the degree of cooperation offered by the relay. The network was consisting of a

source, a relay and a destination node. We provided an exact characterization of the stability

region for this network. We proved that the system with the flow controller is always better

than or at least equal to the system without the flow controller.

In Chapter 5, we studied the impact of energy constraints on a network with a source-user,

a relay and a destination. The source and the relay node have external arrivals; furthermore,

the relay is forwarding part of the source node’s traffic to the destination. We provided an

exact characterization of the stability region.

In Chapter 6, we employed an opportunistic multiple access protocol that observes the

priorities among the users to better utilize the limited energy resources. Owing to the mul-

tipacket reception capability, the secondary node not only utilizes the idle slots but also can

take advantage of such an additional reception by transmitting along with the primary node by

randomly accessing the channel in a way that does not adversely affect the quality of the com-

munication over the primary link. Consequently, at a given input rate of the primary source,

we could choose the optimal access probability by the secondary transmitter to maximize its

own throughput and this maximum was also identified. The result is obtained for both cases

when the capacity of the battery at the primary node is infinite and also finite. This initial re-
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search provides some insights on how to run such a network of nodes having different energy

constraints.

In Chapters 7 and 8, we investigated the performance and reliability that can be achieved

by exploiting path diversity through multipath forwarding together with redundancy through

network coding, when end-to-end hop-by-hop retransmissions are used for achieving reliable

packet transmission. The work in these chapters is at a very fundamental level and it is not

supposed to provide blueprints for a real network, however it helps our understanding about

network coding and its impact on redundancy and the trade-off among other routing schemes.

We compared the performance and tradeoff in terms of packet delay and throughput achieved

by combining multipath forwarding and network coding, with that of simple multipath rout-

ing of different flows, transmission of multiple copies of a single flow over multiple paths,

and single path routing. We saw that network coding decreases the delay that is needed for

the transmission of a packet compared with multipath and traditional single path forward-

ing, achieving a delay-throughput balance that lies between the corresponding performance of

simple multipath and multicopy forwarding, which sends the same packet across all available

paths. Another important result is that as the number of available paths increases, the gain from

network coding also increases. The significant advantages of network coding with redundancy

appeared when hop by hop coding (paths with nodes in common) was applied. Under heavy

noise though the network coding scheme outerforms all the other routing schemes. The hop

by hop coding process is not computationally expensive due to the linearity of the network

coding technique and for this reason the delay from decoding and encoding is not so impor-

tant. The conclusion is that network coding offers significant advantages when the number of

paths increases, when the intermediate nodes of the network are able to decode and encode the

received packets and finally when operating in heavy noise environments.
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9.2 Future Work

In Chapters 2 and 3, we assumed saturated queues of the users. A very interesting extension

is to assume sources with external random arrivals (bursty traffic). However, this extension

will present analytical difficulties because of the interactions between the queues. Another

extension could be the application of different priorities for the users in accessing the relay

and the impact on the throughput per user and the aggregate throughput. The case of dynamic

adjustment of the transmission probabilities depending on the network conditions is very in-

teresting.

In Chapter 4, we introduced the notion of partial network-level cooperation in a network

with one relay. Extending this type of cooperation in networks with more users and many

relays with possible cooperation among them would be very interesting.

In Chapter 6, the channel model we assumed is time invariant, a future extension could

study the impact of channel state information. Extending the approach proposed in that chapter

to more realistic environments with multiple set of source-destination pairs, presents serious

difficulties due to the interaction between the nodes.

In Chapters 7 and 8, we investigated the performance and reliability that can be achieved

by exploiting path diversity through multipath forwarding together with redundancy through

network coding. An important issue is the correlation of losses among the paths, it is inter-

esting also the study of paths that contain links with bursty errors. Initial results indicate that

in the case of networks that have paths with common links, the advantages of network cod-

ing are more pronounced. The analysis done in these chapters will serve as a guideline for a

more general network model including the previous considerations. Another extension of this

work should be the study of networks with different error probability for each hop for more

complex topologies. Our future work involves the impact of interference and congestion to

schemes described above.

144



Bibliography

[1] E. C. V. D. Meulen, “Three-terminal communication channels,” Advances in Applied

Probability, vol. 3, no. 1, pp. pp. 120–154, 1971.

[2] T. Cover and A. Gamal, “Capacity theorems for the relay channel,” Information Theory,

IEEE Transactions on, vol. 25, no. 5, pp. 572 – 584, Sep. 1979.

[3] A. Gamal and M. Aref, “The capacity of the semideterministic relay channel (corresp.),”

Information Theory, IEEE Transactions on, vol. 28, no. 3, p. 536, may 1982.

[4] A. Sadek, K. Liu, and A. Ephremides, “Cognitive multiple access via cooperation: Pro-

tocol design and performance analysis,” Information Theory, IEEE Transactions on,

vol. 53, no. 10, pp. 3677 –3696, 2007.

[5] B. Rong and A. Ephremides, “Protocol-level cooperation in wireless networks: Stable

throughput and delay analysis,” in Modeling and Optimization in Mobile, Ad Hoc, and

Wireless Networks, 2009. WiOPT 2009. 7th International Symposium on, 2009, pp. 1

–10.

[6] ——, “On stability and throughput for multiple access with cooperation,” in under Sub-

mission.

[7] C. E. Shannon, “Two-way communication channels,” Proceedings of the 4th Berkeley

Symposium Mathematical Statistics and Probability, 1961.

145



[8] T. M. Cover and J. A. Thomas, Elements of Information Theory 2nd Edition, 2nd ed., ser.

Wiley Series in Telecommunications and Signal Processing. Wiley-Interscience, July

2006.

[9] S. Nikolaou, R. Bairavasubramanian, J. Lugo, C., I. Carrasquillo, D. Thompson, G. Pon-

chak, J. Papapolymerou, and M. Tentzeris, “Pattern and frequency reconfigurable annu-

lar slot antenna using pin diodes,” Antennas and Propagation, IEEE Transactions on,

vol. 54, no. 2, pp. 439 – 448, 2006.

[10] O. Eliezer, R. Staszewski, I. Bashir, S. Bhatara, and P. Balsara, “A phase domain ap-

proach for mitigation of self-interference in wireless transceivers,” Solid-State Circuits,

IEEE Journal of, vol. 44, no. 5, pp. 1436 –1453, May 2009.

[11] H. Suzuki, K. Itoh, Y. Ebine, and M. Sato, “A booster configuration with adaptive reduc-

tion of transmitter-receiver antenna coupling for pager systems,” in Vehicular Technology

Conference, 1999. VTC 1999 - Fall. IEEE VTS 50th, 1999.

[12] D. Halperin, T. Anderson, and D. Wetherall, “Taking the sting out of carrier sense: inter-

ference cancellation for wireless lans,” in In Proceedings of the 14th ACM international

conference on Mobile computing and networking, 2008.

[13] O. Ozel and S. Ulukus, “Information-theoretic analysis of an energy harvesting commu-

nication system,” in Proceedings of IEEE PIMRC, Sep. 2010.

[14] J. Jeon and A. Ephremides, “The stability region of random multiple access under

stochastic energy harvesting,” To appear in the proceedings of IEEE ISIT 2011.

[15] Q. Zhao and B. M. Sadler, “A survey of dynamic spectrum access,” IEEE Signal Pro-

cessing Magazine, vol. 24, no. 3, pp. 79–89, May 2007.

146
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