
Study and implementation of clustering

algorithms in time series.

Application and testing of methods on

economic data.

University of Crete

Department of Applied Mathematics

Author : Aikaterini Lefkaditi

Supervisor : Ioannis Pantazis

1



July 23, 2021

Abstract

The spread of devices that produce large amounts of data requires new
improved clustering algorithms by Computer Science. This data needs to
be organized into compact structures, so that it is easy to use and requires
less storage space. An approach to the solution of this classification and
optimization problem is the Warped K-Means (WKM) method, a clus-
tering algorithm of sequentially-distributed data, which is based on the
well-known K-Means Algorithm and is focused on solving its sequential
originated problem. The main objective of this project is to extend WKM,
in order to include piecewise linear functions as clusters.
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1 Introduction

Clustering is the task of grouping a set of objects in such a way that objects
in the same group, which is called cluster, are more similar to each other, than
to those in other clusters. It is an important technique for statistical data anal-
ysis, used in many fields such as pattern recognition, information retrieval and
machine learning. Cluster analysis is an iterative multi-objective optimization.
This is the reason that clustering techniques continue to evolve.

Warped K-Means [1] is applied on sequentially-distributed data, time series,
tracking subtrajectories within a single trajectory, aiming to get a simplified
data structure, while preserving the data sequetentiality. This algorithm uses
a closed-form solution having a low computational cost, which provides really
fast convergence times and high accuracy.

As we noticed while applying WKM source code on sequentially-distributed
time series , WKM creates straight horizontal lines to describe every cluster.
Nevertheless, the residual error can be even more reduced, if it could use a linear
form instead of these lines, in cases that it is considered beneficial. Therefore,
the main purpose of this project is to create an extended version of the algorithm
in order to attain that.

During the first months, it was necessary to fully comprehend the method
and how it works. For this reason, a few simple examples were created and then
their results were optimized. Subsequently, we applied the same method on real
time series.

This paper is organized as follows. First, we describe the clustering method
of the original WKM and the mathematical background that it is used for.
Secondly, we demonstrate the new extended version of WKM and the final
algorithm in the form of pseudocode and we highlight the changes that we
made. In the end, we apply the two methods to a few simple examples that we
created in order to test them and finally to real data, economic time series, and
compare them to summarise and demonstrate the results.

2 WKM - Original Version

In this section, we initialize the equations that are used by the algorithm
and explain in detail how they are combined in order to minimize the Sum
of Quadratic Error. After that, we explain the methodology and present the
algorithm in pseudocode.

2.1 Background

Partitional clustering divides a dataset X = {x1, ...,xn} of a n-dimensional
features vectors into a set Π = {c1, ..., ck} of k disjoint homogeneous classes
with 1 < k � n. One way to tackle this problem is to define a criterion function
that measures the quality of the clustering partition and then find a partition Π
that optimizes such a criterion function. For finding the partition WKM tries
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to minimize the Sum Of Quadratic Error(SQE), denoted simple as J:

J =

k∑
j=1

Hj (1)

where

Hj =

bj+1−1∑
i=bj

‖xi − µj‖2 (2)

represents the heterogeneity (or distortion) of cluster cj , and

µj =
1

nj

bj+1−1∑
i=bj

xi (3)

is the cluster mean, with nj = ‖cj‖ being the number of samples in cluster j
and having a dataset X sequentially distributed:

X = x1, ...,xn (4)

Defined a sequential clustering into k classes as the mapping:

b : {1, ..., k} ↪→ {1, ..., n}

Then

cj = {xbj , ...,xbj+nj−1} (5)

and

nj = bj+1 − bj (6)

It also counted the variation in the SQE produced when moving a sample x
from cluster j to cluster j’ as:

∆J(x, i, j, j′) =
nj

nj + 1
‖x− µj‖2 −

nj′

nj′ − 1
‖x− µj′‖2 (7)

If this increment is negative, the new means, µ
(new)
j , µ

(new)
j′ and the SQE, J’,

can then be incrementally computed as follows:

µ
(new)
j = µj +

x− µj

nj + 1
(8)

µ
(new)
j′ = µj′ −

x− µj′

nj′ − 1
(9)

J ′ = J + ∆J(x, j, j′) (10)
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2.2 Methodology

First of all, we use Trace Segmentation (TS), a boundary initialization algo-
rithm, which uses the trajectory of data and a number of clusters as input and
defines an initial partition. By this technique, each boundary is evenly allocated
according to a piecewise linear interpolation on accumulated distances, resulting
in a non-linearly distributed boundary allocation.

Following this, we use these boundaries in the second algorithm, Warped
K-Means (WKM), which is the main algorithm. The first half of samples in
cluster j are only allowed to move to cluster j - 1 and the last half of samples are
only allowed to move to cluster j + 1. These reallocations are happening only
in case SQE has a negative increment and the process is done when no more
transfers are performed.

As a result, only the samples close to the cluster boundaries get reallocated,
the sequentiality of the clustering procedure is preserved and there is no need
to check every sample of each cluster. The computational cost of the algorithm
is O(nd), where n is the number of the samples and d is the sample vector
dimension. On the following page, we present the complete form of the two
algorithms in pseudocode.
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Algorithm1.Algorithm1.Algorithm1. TS Boundary Initialization Algorithm

Input :Input :Input : Trajectory X = x1, .....xn; No.Clustersk ≥ 2
Output :Output :Output : Boundaries b1, ....bk
L1 = 0
for i = 2 to n do
Li = Li−1 + ||xi − xi−1||

λ = Ln

k
i = 1
for j = 1 to k do
while λ(j − 1) ≥ Li do
i+ +

bj = i

Algorithm2.Algorithm2.Algorithm2. Warped K −Means (Original)

Input :Input :Input : Trajectory X; No. Clusters k ≥ 2
Onput :Onput :Onput : Boundaries b1, ....bk; Centroids µ1, ..., µk; Distortion J
Initialize Boundaries b1, ...bk
for j = 1 to k do
Compute µj , nj , J
repeatrepeatrepeat
transfer = false
for j = 1 to k do
if j > 1 then
first = bj ; last = first+

nj

2 (1− δ)
for i = first to last do
if nj > 1 and ∆J(xi, j, j − 1) < 0 then
transfers = true
bj+ = 1; nj− = 1; nj−1+ = 1
Update µj , µj−1, J

else
breakbreakbreak

if j < k then
last = bj+1 − 1; first = last− nj

2 (1− δ)
for i = last to first do
if nj > 1 and ∆J(xi, j, j + 1) < 0 then
transfers = true
bj+1− = 1; nj− = 1; nj+1+ = 1
Update µj , µj+1, J

else
breakbreakbreak

until ¬transfers
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3 WKM - Extended Version

In order to include piecewise linear functions as clusters, it was necessary to
solve the new differential equations which were involved in the slopes. Having
checked one by one the equations, it was decided which of them should be
changed. The next step was to check them by using a few simple examples to
confirm that everything was right and insert all these equations in the algorithm.
Once again, using a few simple examples confirmed that the new equations took
into account the slopes and the results were verified as expected.

3.1 New equations

According to the previous equations the SQE counted as:

J =

k∑
j=1

Hj (11)

where

Hj =

bj+1−1∑
i=bj

‖xi − µj −αj(i−mj)‖2 (12)

µj =
1

nj

bj+1−1∑
i=bj

xi (13)

aj =
12

nj(nj − 1)(nj + 1)

bj+1−1∑
i=bj

(i−mj)xi (14)

mj =
1

nj

bj+1−1∑
i=bj

i (15)

nj = bj+1 − bj (16)

Finally, Mean Squared Error (MSE) measures the average of the squares of
errors, it is used to emphasize the error regardless of the sample’s length and it
is counted as :

Ĵ =
J

n
(17)

As before µj is the cluster mean, aj is the slope and mj is the center of the
points’ location inside the cluster.

The new variation in the SQE is:

∆J(x, j, j′) = H
(new)
j +H

(new)
j′ −H(old)

j −H(old)
j′ (18)
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Where J (new) is the SQE in case we make a transfer. At first, we update

the boundaries b
(new)
j , b

(new)
j′ and the length of the clusters n

(new)
j , n

(new)
j′ and

then compute µ
(new)
j , µ

(new)
j′ , m

(new)
j ,m

(new)
j′ ,a

(new)
j ,a

(new)
j′ in this order and the

J (new), can then be incrementally computed as follows:

b
(new)
j = bj − 1 (19)

b
(new)
j′ = bj′ + 1 (20)

n
(new)
j = nj − 1 (21)

n
(new)
j′ = nj′ + 1 (22)

µ
(new)
j = µ

(old)
j −

x− µ(old)
j

n
(new)
j

(23)

µ
(new)
j′ = µ

(old)
j′ +

x− µ(old)
j′

n
(new)
j′

(24)

m
(new)
j =

1

n
(new)
j

b
(new)
j+1 −1∑
i=bj

i

=
n
(new)
j + 1

n
(new)
j

m
(old)
j − bj+1

n
(new)
j

(25)

m
(new)
j′ =

1

n
(new)
j

b
(new)

j′+1
−1∑

i=bj′

i

=
n
(new)
j′ − 1

n
(new)
j′

m
(old)
j′ +

bj′

n
(new)
j′

(26)

α
(new)
j =

12

n
(new)
j (n

(new)
j + 1)(n

(new)
j + 2)

b
(new)
j+1 −1∑
i=b

(new)
j

(i−m(new)
j )xi (27)

α
(new)
j′ =

12

n
(new)
j′ (n

(new)
j′ + 1)(n

(new)
j′ + 2)

b
(new)

j′+1
−1∑

i=b
(new)

j′

(i−m(new)
j′ )xi (28)

J (new) = J + ∆J(x, j, j′) (29)
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3.2 The New Algorithm

The following part is the extended version of the Warped K-Means algorithm,
in the form of pseudocode. There are a few changes in both Algorithm 1 and
2 (for example the existence of the parameters α and m), based on the new
equations. In this project, we use the parameter δ as 0.
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Algorithm1.Algorithm1.Algorithm1. TS Boundary Initialization Algorithm

Input :Input :Input : Trajectory X = x1, .....xn; No.Clustersk ≥ 2
Output :Output :Output : Boundaries b1, ....bk
L1 = 0
for i = 2 to n do
Li = Li−1 + ||xi + xi−2 − 2xi−1||

λ = Ln

k
i = 1
for j = 1 to k do
while λ(j − 1) ≥ Li do
i+ +

bj = i

Algorithm2.Algorithm2.Algorithm2. Warped K −Means (Extended)

Input :Input :Input : Trajectory X; No. Clusters k ≥ 2
Onput :Onput :Onput : Boundaries b1, ....bk; Centroids µ1, ..., µk; Distortion J
Initialize Boundaries b1, ...bk
for j = 1 to k do
Compute µj , nj , J , mj , aj
repeatrepeatrepeat
transfer = false
for j = 1 to k do
if j > 1 then
first = bj ; last = first+

nj

2 (1− δ)
for i = first to last do
if nj > 1 and ∆J(xi, j, j − 1) < 0 then
transfers = true
bj+ = 1; nj− = 1; nj−1+ = 1
Update µj , µj−1, J , αj , αj−1, mj , mj−1

else
breakbreakbreak

if j < k then
last = bj+1 − 1; first = last− nj

2 (1− δ)
for i = last to first do
if nj > 1 and ∆J(xi, j, j + 1) < 0 then
transfers = true
bj+1− = 1; nj− = 1; nj+1+ = 1
Update µj , µj+1, J, αj , αj+1, mj , mj+1

else
breakbreakbreak

until ¬transfers
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4 Examples - Results

4.1 Synthetic time series

Both the Original and the Extended algorithm of WKM were executed (in
Python) by using simple examples to confirm that they are correct. The follow-
ing part of this subsection is a presentation of these examples. Moreover, under
every figure, the Sum of Quadratic Error (SQE) and the Mean Squared Error
(MSE) are noted, in order to compare the efficiency of the algorithm. The
colorful lines symbolize the samples of each cluster and the red dashed lines
symbolize the mean value of it. In this way, we observe how far the elements
are from the cluster’s mean value, which also creates the error.

Figure 1: Piecewise constant time series consists of 3 different parts. Applying
the Original WKM with 2 clusters, the results were SQE = 40.0 and MSE =
2.22 . An important observation is that the first cluster consists of samples that
have the same value, which is also the mean value, therefore the lines are mixed.

Figure 2: Applying the Extended WKM with 2 clusters on piecewise constant
time series, the results were SQE = 9.69 and MSE = 0.55 . In the second
cluster, we notice that the mean value appears with slope, in contrast with the
first cluster, where the slope is equal to 0 and the lines are mixed once again.
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Figure 3: Piecewise linear time series consists of 3 linear parts. Applying the
Original WKM with 2 clusters, the results were SQE = 3.71 and MSE = 0.37 .

Figure 4: Applying the Extended WKM with 2 clusters on the piecewise linear
time series, the results were SQE = 0.41 and MSE = 0.04 and the second
cluster’s mean value follows the line of the samples as they are increasing at a
steady rate.
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Figure 5: In contrast with Figure 1, applying the Original WKM using 3 clusters,
on the piecewise constant time series, which consists of 3 parts, the results were
SQE = 0, MSE = 0.

Figure 6: Applying the Extended WKM using 3 clusters, on the piecewise con-
stant time series, which consists of 3 parts, the results were SQE = 0, MSE =
0, similar to the previous figure.

In Figures 1 and 2 we noticed that the intervals are the same, although
the SQE and MSE are significantly reduced in the case of the extended WKM.
After that, according to the Figures 3 and 4, the two algorithms create different
intervals, and once more the extended version is more effective in minimizing
the errors. The last two Figures (7 and 8) present the best case, where the
samples follow precisely the mean value’s line.
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4.2 Economic time series

The same process was used for real data, economic series. In Figures 7
and 8 we present the Effective Federal Funds Rate (FEDFUNDS)1,which is
the interest rate at which depository institutions trade federal funds with each
other. Afterwards, we present the 10-Year Treasury Constant Maturity Rate
(DGS10)2.

Similar to the figures of the previous paragraph, the colorful lines symbolize
the samples of each cluster and the red dashed lines symbolize the mean values.
As expected, the extended version minimizes error more effectively than the
original version.

Figure 7: Applying the Original WKM using 14 clusters on FEDFUNDS, the
results were SQE = 116.88 and MSE = 0.27 .

Figure 8: Applying the Extended WKM using 14 clusters on FEDFUNDS, the
results were SQE = 10.23 and MSE = 0.02 .

1https://fred.stlouisfed.org/series/FEDFUNDS
2https://fred.stlouisfed.org/series/DGS10
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Figure 9: Applying the Original WKM using 4 clusters on DGS, the results
were SQE = 4679.64 and MSE = 0.5 .

Figure 10: Applying the Extended WKM using 4 clusters on DGS, the results
were with SQE = 2765.65 and MSE = 0.29 .

4.3 Comparison between initial and final clustering

As it is explained in the previous paragraphs, WKM uses Trace Segmenta-
tion Algorithm (TS), to initialize the clusters’ boundaries. The following graphs
emphasize the effectiveness of WKM, compared to TS, as clustering methods.
According to the examples, TS works sufficiently as there is a simple case (Fig-
ures 11a and 11b) where the clusters’ boundaries remained the same after the
application of WKM and there was no need of transferring samples between
the clusters. Contrariwise, as we can see in the rest of the Figures (12a, 12b,
13a, 13b), where the time series are larger and in a linear form, there are many
changes between the final clusters.
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(a) Piecewise constant time series plotted in two clusters according to the
extended version of WKM.

(b) Piecewise constant time series plotted in two clusters according to the
(Extended) TS Boundary Initialization Algorithm.

(a) Piecewise linear time series plotted in two clusters according to the ex-
tended version of WKM.

(b) Piecewise linear time series plotted in two clusters according to the (Ex-
tended) TS Boundary Initialization Algorithm.
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(a) FEDFUNDS plotted in 14 clusters according to the extended version of
WKM.

(b) FEDFUNDS plotted in 14 clusters according to the (Extended) TS Bound-
ary Initialization Algorithm.
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5 Conclusion

Warped K-Means is a significant algorithm between other clustering methods
on sequentially distributed data. As it was proved through various examples,
adding slopes to the Warped K-Means method was constructive, as the linear
cases were successfully organized in clusters, while the Sum of Quadratic Error
was notably reduced, which was the aim of this project.
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