
University of Crete
School of Sciences and Engineering

Computer Science Department

Design and Implementation of Network
 Packet Classification Engines

Master’s Thesis

Vassilios Papaefstathiou

March 2005
Heraklion, Greece

 ii

 iii

Πανεπιστήµιο Κρήτης
Σχολή Θετικών και Τεχνολογικών Επιστηµών

Τµήµα Επιστήµης Υπολογιστών

Σχεδίαση και Υλοποίηση Μηχανών
Κατηγοριοποίησης Πακέτων ∆ικτύου

Εργασία που υποβλήθηκε από τον
Βασίλειο Παπαευσταθίου

ως µερική εκπλήρωση των απαιτήσεων
για την απόκτηση

Μεταπτυχιακού ∆ιπλώµατος Ειδίκευσης

Συγγραφέας:

Βασίλειος ∆. Παπαευσταθίου
Τµήµα Επιστήµης Υπολογιστών

Εισηγητική Επιτροπή:

Μανόλης Κατεβαίνης
Καθηγητής, Επόπτης

Ευάγγελος Μαρκάτος
Αναπληρωτής Καθηγητής, Μέλος

Απόστολος Τραγανίτης
Καθηγητής, Μέλος

Ιωάννης Παπαευσταθίου
Συνεργαζόµενος Ερευνητής Ινστιτούτου Πληροφορικής ΙΤΕ, Μέλος

∆εκτή:

∆ηµήτριος Πλεξουσάκης, Αναπληρωτής Καθηγητής
Πρόεδρος Επιτροπής Μεταπτυχιακών Σπουδών

Ηράκλειο, Μάρτιος 2005

 iv

 v

Design and Implementation of Network
Packet Classification Engines

by

Vassilios Papaefstathiou

Master’s Thesis

Department of Computer Science
University of Crete

Abstract

Switches and routers are the most important building blocks of today’s

networks and the Internet. The wide spread and growth of the Internet imposes high

performance and efficiency in the network infrastructures in order to support the QoS,

demanded by the state-of-the-art network applications, and the ever increasing

network traffic. This thesis primarily addresses the searching tasks performed by

Internet routers and switches in order to forward packets and provide differentiation

of services to packets belonging to particular traffic flows. Considering that these

searching tasks must be performed in a per packet basis, the speed and effectiveness

of the solutions to these problems determines the efficiency of the overall networks.

We have proposed novel hardware based classification schemes to support QoS

in multiple network layers and meet today’s high speed links’ requirements. Initially,

we propose a Hash Based Classification Engine (HBCE) to address the problem of

classification in the network MAC layer (Data Link Layer). Moving to routers we

developed an innovative scheme, Bitmap Oriented Strides (BOS), which faces the

Longest Prefix Matching problem and supports fast lookups by efficiently managing

the routing tables. Striving to enhance the granularity of service differentiation we

propose a 5-dimentional packet classification scheme that leverages packet fields

from higher network layers. We developed the Bloom Based Packet Classification

(B2PC) scheme which is an innovative approach for decomposed packet classification

that involves Bloom filter data structures.

The proposed implementation of the Hash Based Classification Engine

(HBCE), can support up to 64K MAC address rules at aggregate speeds of more than

 vi

50 Gbps using only 540KB of memory. Moreover, the hardware implementation of

Bitmap Oriented Strides (BOS) can handle more than 90K prefixes while requires

only 600KB of memory and allows routing decisions for more than 240 million

packets per second. Finally, a hardware realization of the Bloom Based Packet

Classification (B2PC) handles more than 4000 rules by involving 530KB of memory

and can classify packets at rates greater than 8Gbps.

Keywords: packet classification, routing lookups, longest prefix matching

Thesis Supervisors: Prof. Manolis Katevenis – Dr. Yiannis Papaefstathiou

 vii

Σχεδίαση και Υλοποίηση Μηχανών
Κατηγοριοποίησης Πακέτων ∆ικτύου

Βασίλειος ∆. Παπαευσταθίου

Μεταπτυχιακή Εργασία

Τµήµα Επιστήµης Υπολογιστών
Πανεπιστήµιο Κρήτης

Περίληψη

Οι µεταγωγείς και οι δροµολογητές είναι τα πιο σηµαντικά δοµικά στοιχεία των

σηµερινών δικτύων και του ∆ιαδικτύου. Η µεγάλη εξάπλωση και ανάπτυξη του

∆ιαδικτύου απαιτεί υψηλές επιδόσεις και ικανότητες από τις δικτυακές υποδοµές

ώστε να υποστηρίξει την ποιότητα των υπηρεσιών, που απαιτείται από τις δικτυακές

εφαρµογές τελευταίας τεχνολογίας, και την συνεχή αύξηση της δικτυακής κίνησης. Η

εργασία αυτή ασχολείται κυρίως µε τις λειτουργίες αναζήτησης που εκτελούνται από

τους δροµολογητές και τους µεταγωγείς του δικτύου µε σκοπό να προωθήσουν

πακέτα και να παρέχουν διαφοροποιηµένες υπηρεσίες στα πακέτα που ανήκουν σε

ιδιαίτερες ροές κίνησης. Θεωρώντας ότι αυτές οι λειτουργίες αναζήτησης πρέπει να

διεκπεραιωθούν για κάθε πακέτο, η ταχύτητα και η αποτελεσµατικότητα των λύσεων

σε αυτά τα προβλήµατα καθορίζει την απόδοση των δικτύων.

Προτείνουµε καινοτόµα σχήµατα κατηγοριοποίησης πακέτων για υλικό τα

οποία υποστηρίζουν ποιότητα υπηρεσίων σε πολλαπλά στρώµατα δικτύου και

ικανοποιούν τις υψηλές ταχύτητες των σηµερινών συνδέσµων. Αρχικά, προτείνουµε

µια Μηχανή Κατηγοριοποίησης Βασισµένη σε ∆ιασπορά (ΜΚΒ∆) για να διεκπεραιώσει

το πρόβληµα της κατηγοριοποίησης στο στρώµα δικτύου MAC (Στρώµα Σύνδεσης

∆ικτύου). Για τους δροµολογητές αναπτύξαµε ένα καινοτόµο σχήµα, ∆ρασκελιές

Προσανατολισµένες σε Bitmaps (∆ΠΒ), το οποίο αντιµετωπίζει το πρόβληµα του

Ταιριάσµατος Μεγίστου Προθέµατος και υποστηρίζει γρήγορες αναζητήσεις,

διαχειριζόµενο αποδοτικά τους πίνακες δροµολόγησης. Προσπαθώντας να πετύχουµε

καλύτερη λεπτοµέρεια στις διαφοροποιηµένες υπηρεσίες προτείνουµε ένα 5-διάστατο

σχήµα κατηγοριοποίησης πακέτων το οποίο χρησιµοποιεί πεδία πακέτων από

 viii

υψηλότερα στρώµατα του δικτύου. Αναπτύξαµε το σχήµα Κατηγοριοποίηση Πακέτων

Βασιζόµενη σε φίλτρα Bloom (ΚΠΒ2) το οποίο είναι µια καινοτόµος προσσέγιση για

αποσυνθετική κατηγοριοποίηση πακέτων η οποία περιλαµβάνει δοµές δεδοµένων

τύπου Bloom φίλτρων.

Η προτεινόµενη υπολοίηση για την Μηχανή Κατηγοριοποίησης Βασισµένη σε

∆ιασπορά (ΜΚΒ∆) µπορεί να υποστηρίξει 64 χιλιάδες κανόνες διευθύνσεων MAC σε

συνολικές ταχύτητες µεγαλύτερες από 50 Gbps χρησιµοποιώντας µόνο 540KB

µνήµης. Επιπλεόν, η υλοποίηση σε υλικό του σχήµατος ∆ρασκελιές

Προσανατολισµένες σε Bitmaps (∆ΠΒ) µπορεί να διαχειριστεί περισσότερα από 90

χιλιάδες προθέµατα χρησιµοποιώντας µόνο 600KB µνήµης και επιτρέπει αποφάσεις

δροµολόγησης για περισσότερα από 240 εκατοµµύρια πακέτα ανα δευτερόλεπτο.

Τέλος, µια υλοποίηση υλικού του σχήµατος Κατηγοριοποίηση Πακέτων Βασιζόµενη

σε φίλτρα Bloom (ΚΠΒ2) διαχειρίζεται περισσότερους από 4000 κανόνες

χρησιµοποιώντας 530KB µνήµης και µπορεί να κατηγοριοποιεί πακέτα σε ρυθµούς

υψηλότερους από 8 Gbps.

Επόπτες Εργασίας: Καθ. Μανόλης Κατεβαίνης – ∆ρ. Ιωάννης Παπαευσταθίου

 ix

Acknowledgments

This work was financially supported by the Institute of Computer Science

(ICS) of the Foundation for Research & Technology - Hellas (FORTH), Heraklion,

Crete, Greece. Besides ICS-FORTH I would also like to thank all those people who

helped me throughout this work. First of all, I would like to thank my supervisors, Dr.

Yiannis Papaefstathiou and Prof. Manolis Katevenis who gave me the opportunity to

work on the subject of packet classification. Our close collaboration, especially with

Dr. Yiannis Papaefstathiou, introduced me to the scientific way of thinking and

offered me a valuable experience on conducting research.

I would also like to thank the rest of the Computer Architecture and VLSI

group at ICS-FORTH for their help. Especially I would like to thank Dr. Christos

Sotiriou for his help and guidance in the back-end tools and flow; Dimitris Simos for

his valuable help in numerous hardware issues and corrections and suggestions for

this report; and Olga Dokianaki and Giorgos Kalokairinos for their valuable support.

Moreover, I want to thank Spyros Lyberis for putting me “deep into hardware” and

Vanessa Evangelatou for her collaboration in many hardware related projects.

Thanks are also due to all my friends: Chariton, Manos, Dimitris, Takis,

Panos, Panos (Castillo), Dimitris (Darth), Lilly, Themis, Vassilis, Ilias, Anestis,

Stamatis and Michalis. Deep thanks also to Litsa who stood by me and really

supported me all this time.

Finally, I would like to thank my brother Meletis, my sister Aggeliki and my

parents Dimitris and Vassiliki for their love and support all these years. All I have

accomplished I owe it to my parents and therefore I dedicate this work to them.

 x

 xi

Contents

1. Introduction..1

1.1 Internet and Networking ..1

1.2 QoS in Ethernet..4

1.3 Longest Prefix Matching..5

1.4 The Packet Classification Problem ..6

1.5 Contributions of this work ...8

1.6 Outline of the thesis ...9

2. Related Work ...11

2.1 Single Field Searching Techniques..11

2.1.1 Exact Matching ..11

2.1.1.1 B-Trees...12

2.1.1.2 Hashing ..12

2.1.1.3 Bloom Filters ...14

2.1.2 Longest Prefix Match...16

2.1.2.1 Linear Search ...17

2.1.2.2 Content Addressable Memory (CAM)...17

2.1.2.3 Trie Based Schemes...17

2.1.2.4 Multiway and Multicolumn Search ...19

2.1.2.5 Binary Search on Prefix Lengths ...20

2.1.3 All Prefix Matching (APM) ...21

2.1.4 Range Matching ...21

2.1.4.1 Interval Tree...22

2.1.4.2 Range to Prefix Conversion ...22

2.2 Multi Field Searching Techniques ...23

2.2.1 Exhaustive Search..23

2.2.1.1 Linear Search ...24

2.2.1.2 Ternary Content Addressable Memory (TCAM)24

2.2.2 Decision Trees ...25

2.2.2.1 Grid of Tries...25

2.2.2.2 Hierarchical Intelligent Cuttings (HiCuts)...27

 xii

2.2.2.3 Fat Inverted Segment (FIS) Trees..29

2.2.3 Decomposition ...31

2.2.3.1 Parallel Bit Vectors (BV)...31

2.2.3.2 Aggregated Bit-Vector (ABV)...33

2.2.3.3 Recursive Flow Classification (RFC) ..34

3. MAC Layer Classification ...37

3.1 Ethernet Switching...37

3.2 Hardware Based Classifiers ...39

3.3 Hash Based Classification Engine ...40

3.3.1 MAC Address Hashing ..41

3.3.2 MAC Vendor Replacement..41

3.3.3 MAC_TBL and Data Structure..42

3.3.4 VLAN and Port Tables ..45

3.3.5 Dynamic Memory Management ..45

3.4 Simulation Results and Performance ...46

3.4.1 Indexing MAC_TBL with a hashing function46

3.4.2 Storage Requirements ..48

3.4.3 Lookup performance..49

4. Hardware Implementation of HBCE ...51

4.1 HBCE Organization ...51

4.2 OPB_INF ...52

4.3 HBCE_MCB..55

4.3.1 MCB_CTRL ..56

4.3.2 MCB_INS ..57

4.3.3 MCB_LUP ...57

4.3.4 MCB_DEL...58

4.3.5 MAC_VID ...59

4.3.6 MAC_HSH ..59

4.4 MEM_HDLR ...59

4.5 MEM_CTRL..60

4.6 Implementation Analysis ...61

4.6.1 Latency Analysis..61

4.6.2 Hardware Cost Analysis ..62

4.6.3 HBCE Hardware Performance...63

 xiii

5. Bitmap Oriented Strides...65

5.1 Analysis and Description of BOS Algorithm ..65

5.1.1 Routing Table Analysis..65

5.1.2 Trie-Based Solutions..67

5.1.3 Memory technologies and wire speed..68

5.1.4 BOS approach ..68

5.2 BOS optimizations ...76

5.2.1 Prefix Node Optimization ..76

5.2.2 Trie Node Optimization ...76

5.2.3 TBL16 Optimization..77

5.2.4 TBL24 and TBL32 Optimization...78

5.2.5 All prefix match ...80

5.3 Simulation Results and Performance ...81

5.3.1 Hashing functions and Indexing ..81

5.3.2 Storage requirements ...83

5.3.3 Lookup Performance..88

6. Bloom Filter Based Packet Classification..91

6.1 Real Filter Sets...91

6.2 B2PC Design and Description ...93

6.2.1 Single Field Operations..93

6.2.2 Internally Represented Filters ..94

6.2.3 Combining Results...95

6.2.4 Set Membership Queries with Bloom Filters.......................................97

6.2.5 Flow ID Resolving...99

6.2.6 Improving the Efficiency of Set Membership Queries99

6.3 Simulation Results and Performance ...103

6.3.1 Analysis of Generated Filter Sets ..103

6.3.2 Hashing Functions and False Positives..104

6.3.3 Storage Requirements ..107

6.3.4 Lookup Performance..108

7. Hardware Implementation of B2PC...113

7.1 B2PC Organization ..113

7.2 B2PC_CTRL Block ...115

7.3 BOS Block ...116

 xiv

7.3.1 BOS_CTRL..119

7.3.2 BOS_INS ...119

7.3.3 TR_INS ..121

7.3.4 BOS_LUP ..122

7.3.5 TR_LUP...123

7.3.6 BOS_DEL..123

7.3.7 TR_DEL...124

7.4 PRO_CTL ..125

7.5 CLPT..126

7.6 BL_CTRL ..126

7.6.1 BL_MAIN..128

7.6.2 BL_INS ..128

7.6.3 BL_LUP...129

7.6.4 BL_DEL...130

7.7 MEM_HDLR and MEM_CTRL..130

7.8 Implementation Analysis ...131

7.8.1 Latency Analysis..131

7.8.2 Hardware Cost Analysis ..132

7.8.3 B2PC Hardware Performance..133

8. Contributions and Future Work ...135

8.1 Summary of Contributions...135

8.2 Future work..136

9. References..137

 xv

List of Figures

Figure 1-1 IP header format ...3

Figure 1-2 Class Based Internet Addressing..4

Figure 1-3 Longest Prefix Match Example..6

Figure 2-1 Example B-Tree data structure...12

Figure 2-2 Hash function example...14

Figure 2-3 Bloom Filter Example ..14

Figure 2-4 Binary Trie example...18

Figure 2-5 Interval Tree example ..22

Figure 2-6 A typical TCAM cell..24

Figure 2-7 Grid of Tries data structure ..26

Figure 2-8 HiCuts geometric representation..28

Figure 2-9 HiCuts Data Structure ..29

Figure 2-10 FIS example ...30

Figure 2-11 Parallel Bit Vectors example..32

Figure 2-12 Aggregated Bit Vector example...34

Figure 2-13 RFC aggregation scheme ...35

Figure 3-1 Ethernet Frame Format ..37

Figure 3-2 VLAN Ethernet Frame...39

Figure 3-3 MAC_TBL entries format..43

Figure 3-4 MAC_TBL Data structure example ...44

Figure 3-5 Data structure example with linked blocks ..46

Figure 4-1 HBCE Internal organization and block diagram.......................................52

Figure 4-2 HBCE_MCB internal organization ..55

Figure 4-3 HBCE Memory Organization ..56

Figure 4-4 Snapshot of dynamic memory management mechanism...........................60

Figure 4-5 Overview of MEM_CTRL...61

Figure 5-1 Routing Table Distribution ..67

Figure 5-2 Prefix trie that supports prefixes up to length 3 ...69

Figure 5-3 Trie partitions ...70

Figure 5-4 Trie data structure example..72

 xvi

Figure 5-5 BOS Tables ..74

Figure 5-6 BOS with BLK256...79

Figure 6-1 Overall view of B2PC components..102

Figure 7-1 B2PC organization and block diagram ..114

Figure 7-2 BOS internal organization..116

Figure 7-3 BOS Memory Organization ...117

Figure 7-4 BOS nodes format ..117

Figure 7-5 BL_CTRL Internal organization ..126

Figure 7-6 Bloom filter memory partitioning ..127

Figure 7-7 Organization of Static Tables...128

 xvii

List of Tables

Table 1-1 Example of a filter set..7

Table 2-1 Example filter set for Grid of Tries ...26

Table 2-2 Example filter set for HiCuts...27

Table 3-1 Indexing simulation results..47

Table 3-2 Real database simulation results..48

Table 3-3 HBCE static tables memory ..48

Table 3-4 HBCE final storage requirements..49

Table 3-5 HBCE total number of memory accesses ..50

Table 3-6 HBCE network performance ...50

Table 4-1 OPB_INF signals with the bus and HBCE..53

Table 4-2 B2PC Blocks Latencies ...61

Table 4-3 Flip-Flop count per block ...62

Table 4-4 Area estimations of HBCE ..63

Table 4-5 FPGA resource allocation...63

Table 5-1 Routing Table Data..66

Table 5-2 Prefix example...72

Table 5-3 Hash functions performance..82

Table 5-4 Performance of BOS indexing functions...82

Table 5-5 Routing Tables Properties ...83

Table 5-6 Static tables memory requirements ...84

Table 5-7 BOS simple storage ...84

Table 5-8 Single Prefix Subtries ..84

Table 5-9 Prefix Node Optimization Storage ..85

Table 5-10 Single prefix roots ...85

Table 5-11 Trie and Prefix Node Optimization Storage..86

Table 5-12 TBL16 Storage Optimization ..86

Table 5-13 Dynamic BLK256 for TBL24 and TBL32..87

Table 5-14 Fully optimized BOS storage ..87

Table 5-15 BOS bytes per prefix ...88

Table 5-16 Memory access performance of BOS..90

 xviii

Table 5-17 Network Performance of BOS in Mpps ..90

Table 5-18 Network Performance of BOS in Gbps ...90

Table 6-1 Filter Set Example ...93

Table 6-2 B2PC internally represented filter set..94

Table 6-3 B2PC incoming packet example ...96

Table 6-4 Collection points contents ...96

Table 6-5 Total possible permutations...97

Table 6-6 Parallel Bloom filter Queries...101

Table 6-7 Unique field values for the generated filter sets ..103

Table 6-8 Number of matched values per field ...104

Table 6-9 Number of references in Bloom Filters ...105

Table 6-10 Observed false positives rate in B2PC ..106

Table 6-11 B2PC hash table collisions ..107

Table 6-12 B2PC components memory requirements ...107

Table 6-13 Sequential Bloom Filter probes ...109

Table 6-14 Average number of memory accesses for B2PC data structures.............110

Table 6-15 Final number of average memory accesses for B2PC.............................110

Table 6-16 Network performance of B2PC in Mpps...111

Table 6-17 Network performance of B2PC in Gbps ...111

Table 6-18 Summary of Classification Schemes ...112

Table 6-19 Schemes efficiency in Mpps per Mbyte ..112

Table 7-1 Command Interface Signals ..115

Table 7-2 B2PC Blocks Latencies ...131

Table 7-3 Flip-Flop count per block ..132

Table 7-4 B2PC area and gate count..132

Table 7-5 FPGA resource allocation..133

 xix

 xx

CHAPTER 1. INTRODUCTION 1

1 Chapter 1

Introduction

Nowadays, the Internet has emerged as a global communications service of

continuously increasing importance. The ever expanding scope of Internet users and

applications require the network infrastructures to exchange large volumes of

information, augmenting the already challenging performance constraints. This thesis

addresses the searching tasks performed by Internet routers in order to forward

packets and apply network services to packets belonging to particular traffic flows.

Considering that these searching tasks must be performed for each packet traversing

the router, the speed and efficiency of the solutions to these problems determines the

performance of the router, and hence the entire Internet.

1.1 Internet and Networking
The building blocks of the Internet are essentially interconnected networks,

each consisting of heterogeneous hosts, links, and routers. Hosts produce and

consume packets, or datagrams, which contain chunks of data - a part of a file,

digitized voice samples, etc. Hosts may be personal computers, workstations, servers

and network enabled electronic appliances such as Personal Digital Assistants (PDAs)

or mobile phones. Packets indicate the sender and receiver of the data similar to a

letter in the postal system. Links connect hosts to routers, and routers to routers. Links

may be twisted-pair copper wire, fiber optic cable or a variety of wireless radio

technologies. The role of routers is to switch packets from incoming links to the

appropriate outgoing links depending on the destination of the packets. Packets may

traverse many links, called hops, in order to reach its destination. Due to the

impermanent nature of network links (failure, congestion, additions, removals),

routing protocols allow the routers to continually exchange information about the state

CHAPTER 1. INTRODUCTION 2

of the network so as to decide the forwarding of packets destined for a particular host,

network, or sub-network.

Ethernet Networks

Ethernet is the dominant networking protocol used in Local Area Networks

(LANs) over the last decades. It is the most widely adopted protocol in the physical

and data link layer of the network. It defines 48-bit addresses, called MAC addresses,

that are unique for each network interface, and uses them in order to manage the

circulation of packets in the physical medium. Ethernet’s speeds started from 10 Mbps

and eventually evolved to 100Mbps, 1Gbps and recently to 10Gbps.

IP and TCP Protocols

The original Internet protocol comprises mainly of two protocols: the Internet

Protocol (IP) and the Transmission Control Protocol (TCP). The primary function of

the Internet Protocol (IP) is to provide an end-to-end packet delivery service. This

task is accomplished by including information regarding the sender and receiver

inside each packet transmitted through the network. IP protocol specifies the format of

this information which is prepended to the content of each packet, namely the packet

header. In order to uniquely identify Internet hosts, each host is assigned an Internet

Protocol (IP) address. Currently, the vast majority of Internet traffic utilizes Internet

Protocol Version 4 (IPv4) [1] which assigns 32-bit addresses to Internet hosts. As

shown in Figure 1-1, the IPv4 header of packets includes the IP address of the source

and destination host and many other important fields such as the protocol which

specifies the type of transport protocol used by the sending application. The type of

transport protocol determines the format of the transport protocol header following the

IP header in the packet.

The second protocol produced by the original Internet Architecture project, the

Transmission Control Protocol (TCP), provides a reliable transmission service for IP

packets. Through the use of small acknowledgment packets transmitted from the

destination host to the source host, TCP detects packet loss and regulates the

transmission of packets in order to adjust to network congestion. When the source

host detects a packet loss, it retransmits the lost packet or packets. At the destination

host, TCP provides in-order delivery of packets to higher level protocols or

applications. After the initial development of TCP, a third protocol, the User

CHAPTER 1. INTRODUCTION 3

Datagram Protocol (UDP), was added to provide additional flexibility. UDP

essentially allows applications or higher level protocols to control the transmission

behaviour. For example, a streaming video application may wish to ignore packet

losses in order to prevent large breaks in the video stream caused by packet

retransmissions. Typically, the TCP and UDP transport protocols identify applications

using 16-bit port numbers carried in the transport header as shown in Figure 1-1.

Figure 1-1 IP header format

Internet Addressing

IPv4 addresses were allocated to organizations in contiguous blocks with the

intention that all hosts in the same network share a common set of initial bits. This

common set of initial bits is referred to as the network address or prefix and the

remaining set of bits is called the host address. This allocation strategy provided

decentralized control of address allocation and each organization was free to make

allocation decisions for the addresses within its assigned block. As shown in Figure

1-2, IPv4 addresses were originally divided into classes, each supporting different

sizes of hosts:

• Class A (16 million hosts),

• Class B (64 thousand hosts), and

• Class C (254 hosts).

• Class D addresses for multicast (one-to-many transmission)

• Class E reserved addresses.

Most organizations which required a larger address space than Class C were

allocated a block of Class B addresses; however their network nodes are assigned only

CHAPTER 1. INTRODUCTION 4

a small portion of the addresses. This waste of available address space combined with

the explosive growth of the Internet resulted in shortage of unassigned IP addresses.

Classless Inter-Domain Routing (CIDR) was introduced in order to prolong the life of

IPv4 [2]. CIDR essentially allows the “network” part of the address to be an arbitrary

length prefix of the IP address, thus a network’s address space may span multiple

Class C networks. CIDR also allows routing protocols to aggregate network addresses

in order to reduce the amount of packet forwarding information stored by each router.

The wide adoption of CIDR by the Internet community has slowed the deployment of

a more permanent solution, Internet Protocol Version 6 (IPv6) [3].

Figure 1-2 Class Based Internet Addressing

1.2 QoS in Ethernet
Ethernet is, by far the most common network, has the highest number of

installed ports and provides great cost-performance ratio and thus it is making a

breakthrough in MAN and WAN networks. The deployment of Gigabit Ethernet

networks and their use beyond the tight borders of LANs motivated the development

of QoS mechanisms in the MAC layer of Ethernet networks such as the VLAN

scheme [4]. These QoS mechanisms require identification of network flows and the

classification of Ethernet packets according to their MAC addresses, VLAN IDs or

port numbers. The length of the MAC addresses, namely 48-bits, is what makes the

decisions more difficult since exact matches in such a big value it not a trivial task.

The advantage of Ethernet networks and equipment is their low cost and thus the

classification solutions should also be cost efficient.

CHAPTER 1. INTRODUCTION 5

1.3 Longest Prefix Matching
The primary task of routers is to forward packets from input links to the

appropriate output links. In order to do this, Internet routers consult a route table

containing a set of network addresses together with the associated output link, or next

hop, for packets destined for each network. Entries in the route tables change

dynamically according to the state of the network and the information exchanged by

routing protocols. The task of resolving the next hop from the destination IP address is

commonly referred to as route lookup or IP lookup. Finding the network address

given a packet’s destination address would not be difficult if the early Internet

Protocol (IP) address hierarchy was kept. A simple lookup in three tables, one for

each Class of networks, would be sufficient. However, the wide adoption of CIDR

allows the network addresses in route tables to have variable lengths (prefixes) and

thus performing a search for every possible network address length is not trivial. If we

store all the variable-length network addresses in a single table, a route lookup

requires finding the longest matching prefix in the table for the given destination

address.

A prefix is a set of leftmost bits of a key value, the IP destination address in the

case of route lookups. The key values that share a common prefix have the same

contiguous set of bits starting at the most significant bit. Given a search key x of size

b bits, Longest Prefix Matching (LPM) is a search technique which selects the prefix

pi in the set of prefixes P, such that pi matches x and pi has the most specified bits.

Prefixes can be represented by simply using the * character to denote the end of the

valid bits in the prefix. An example of Longest Prefix Matching (LPM) for a 10-bit

search key is illustrated in Figure 1-3. The three shaded prefixes match the search key,

but 1000011* is the longest matching prefix. The throughput of an Internet router

essentially depends on the speed that Longest Prefix Matching (LPM) operation can

be performed.

CHAPTER 1. INTRODUCTION 6

Figure 1-3 Longest Prefix Match Example

1.4 The Packet Classification Problem
If an Internet router is to provide more advanced services than packet

forwarding, it must perform more fine grained flow identification. The process of

identifying the packets belonging to a specific application session or group of sessions

between a source and destination host or sub-network is typically referred as the

packet classification problem. The route lookup problem may be also viewed as a sub-

problem of the more general packet classification problem. Applications for Quality

of Service, security, and monitoring typically operate on flows, thus each packet

traversing a router must be classified in order to be assigned a flow identifier, FlowID.

Packet classification requires searching a table of filters for the highest priority

or the most specific filter that matches the packet. Filters correlate a flow or set of

flows to a FlowID. Note that filters are also referred as rules in the packet

classification literature. Filters contain multiple field values that specify an exact

packet header or a set of headers and the associated FlowID for packets matching the

corresponding field values. The type of field values are typically prefixes for IP

address fields, an exact value or wildcard1 for the transport protocol and ranges for

port numbers. An example filter set is shown in Table 1-1. In this simple example,

filters contain field values for four packet header fields: 8-bit source (SA) and

destination addresses (DA), transport protocol (PRO), and a 4-bit destination port

number (PORT). The packet fields most commonly used for packet classification are

1 Wildcards are used when we don’t specify a value and want to represent all the possible values. The
symbol used for wildcards is *.

CHAPTER 1. INTRODUCTION 7

also referred as the IP 5-tuple and include the 8-bit protocol, 32-bit source address,

32-bit destination address from the IPv4 header and the 16-bit source port and 16-bit

destination port from the TCP and UDP transport protocol headers.

SA DA PORT PRO FlowID
11010010 * [3:15] TCP 1
10011100 * [1:1] * 2
101101* 001110* [0:15] * 3
10011100 01101010 [5:5] UDP 4
* * [0:15] ICMP 5
100111* 011010* [3:15] * 6
10010011 * [3:15] TCP 7
* * [3:15] UDP 8
11101100 01111010 [0:15] * 9
111010* 01011000 [6:6] UDP 10
100110* 11011000 [0:15] UDP 11
010110* 11011000 [0:15] UDP 12
01110010 * [3:15] TCP 13
10011100 01101010 [0:1] TCP 14
01110010 * [3:3] * 15
100111* 011010* [1:1] UDP 16

Table 1-1 Example of a filter set

The packet classification problem may be stated formally as follows:

Given a packet P containing fields Pj and a collection of filters F

with each filter Fi containing fields j
iF , select the highest priority or the

most specific filter from the set , where for each filter ∀j : j
iF matches Pj.

Consider the example of searching Table 1-1 for the best matching filter and

for a packet with the following header field values:

• SA: 1001 1100

• DA: 0110 1010

• PORT: 5

• PRO: UDP

The filters with FlowIDs 4, 6 and 8 match the packet, but FlowID 4 is the most

specific filter in all the fields. Hence, the search should return FlowID 4.

CHAPTER 1. INTRODUCTION 8

Packet Classification Challenges

Computational complexity is not the only challenging aspect of the packet

classification problem. The increasing traffic in the Internet backbone travels over

links with transmission rates in excess of one billion bits per second (1 Gb/s). Current

generation fiber optic links can operate at over 40 Gb/s. The combination of

transmission rate and packet size define the throughput, in terms of packets per

second, routers must support. The majority of the Internet traffic utilizes the

Transmission Control Protocol which transmits 40 byte acknowledgment packets. In

the worst case, a router could receive a long sequence of TCP acknowledgments,

therefore conservative router architects set the throughput target based on the input

link rate and 40 byte packet lengths. For example, supporting 10 Gb/s links requires a

throughput of 31 million packets per second per port. Modern Internet routers contain

tens to thousands of ports. In such high-performance routers, route lookup and packet

classification is performed on a per-port basis.

1.5 Contributions of this work
Within this work we have studied the classification tasks required by the

modern networks and proposed several hardware solutions to meet the delay sensitive

searching tasks required by the network infrastructures. We proposed a classification

engine for the MAC layer of the Ethernet networks which uses the techniques of

hashing and internal replacement of MAC Vendor IDs; Hash Based Classification

Engine (HBCE) compacts the MAC address tables and supports high speed decisions

using a modest amount of memory. Moreover we proposed a solution for the Longest

Prefix Matching (LPM) problem and developed an innovative scheme; Bitmap

Oriented Strides (BOS) uses bitmaps to compact the prefixes and reaches routing

decisions in very high speeds. We have also proposed a novel packet classification

scheme for the IP 5-tuple case; Bloom Based Packet Classification (B2PC) uses our

BOS solution to decompose multiple-field packet classification into single fields and

combine them in an efficient way by leveraging Bloom filter data structures.

CHAPTER 1. INTRODUCTION 9

1.6 Outline of the thesis
The remainder of the thesis is organized as follows. Chapter 2 provides an

overview of the existing single field search techniques, including Longest Prefix

Matching (LPM) techniques and a survey of multi field searching solutions that

address the packet classification problem. Chapter 3 presents a classification scheme

targeted to MAC Layer of Ethernet networks while a reference hardware design of

this scheme is described in Chapter 4. In Chapter 5 we present BOS which is a multi-

bit trie algorithmic solution to the Longest Prefix Matching problem. Chapter 6

presents our algorithm for decomposed packet classification, B2PC which utilizes

Bloom filter data structures to achieve efficient packet processing. A reference

hardware implementation of B2PC is described in Chapter 7. Finally, we provide a

summary of the contributions and a discussion of future work in Chapter 8.

CHAPTER 1. INTRODUCTION 10

CHAPTER 2. RELATED WORK 11

2 Chapter 2

Related Work

In this chapter we present the major algorithms and techniques presented in

literature to address the problem of packet classification. We provide an overview of

the single field searching techniques, including the longest prefix matching and other

types of searches dictated by packet classification. Further, we present the most

important algorithms and solutions for multi field searching that are actually used in

packet classification.

2.1 Single Field Searching Techniques
A variety of searching problems naturally arise in packet classification due to

the structure of packet filters. As discussed in Chapter 1, filter fields specify one of

the three different match conditions on the corresponding packet header fields: a fully

specified value or exact matching, partially specified value or prefix matching, a range

of values or range matching. In this subsection, we provide a summary of the existing

algorithmic solutions to these three types of search problems.

2.1.1 Exact Matching

The simplest form of exact matching is the set membership query: determine

whether key x belongs to the set of keys X. Often we wish to store associated

information with each key xi ∈ X such as identifiers or additional information. In such

cases, a search where x ∈ X returns not only a “yes” for the membership query, but

also the information associated with the matching entry. Exact match search problems

naturally arise in packet classification when filters examine packet fields such as the

MAC address in the Data Link Layer. Due to the constraints on exact match searches

in the networking context, namely the size of the key sets and the speed at which the

CHAPTER 2. RELATED WORK 12

search must be performed, non trivial data structures must be used for these

applications.

We describe the two classical data structures that attempt to minimize the

number of memory accesses per search, B-trees and hash tables. Both data structures

are capable of supporting set membership queries as well as storing additional

information with each key. We also provide a brief introduction to Bloom filters, a

data structure designed to efficiently represent a set of keys.

2.1.1.1 B-Trees

B-Trees were originally designed to limit the number of accesses to direct

access storage units such as disks [5]. The reduction in I/O operations is achieved by

organizing keys in a tree data structure where the nodes of the tree may have many

children. The maximum number of children of each node is referred as the degree of

the tree. The number of keys stored in any tree node (except the root node) is bounded

by the minimum degree of the B-Tree. Specifically, each node in the tree must contain

at least (B − 1) keys and at most (2B − 1) keys, where B ≥ 2. An example of a B-Tree

storing the integer multiples of three is shown in Figure 2-1. The keys stored in a node

are arranged in non-decreasing order and each internal node also stores a set of

pointers between the keys. The child nodes that store keys greater than the parent key

are pointed by the parent’s “left” pointer and the children with value less or equal to

the parent key are pointed by the parent’s “right” pointer. Finally, the height h of a B-

Tree containing n keys is bounded by:

2
1log +

≤
nh B

Figure 2-1 Example B-Tree data structure

2.1.1.2 Hashing

Hashing is a technique that can provide excellent average performance when

the number of keys, n, in the set X is much less than the maximum number of possible

CHAPTER 2. RELATED WORK 13

keys K. Assume a set X that contains 100 keys where the keys may take any value in

the range [0 : 65535], i.e. a 16-bit unsigned integer. We could simply allocate a table

with 65,536 entries and use the value of the key x as an index into the table, but

obviously this is very wasteful. This technique, direct addressing, is only efficient

when the number of keys n in the set X approaches the number of possible key values

K.

The classical solution to this problem is to map the key value x to a narrower

range of values that can be used to index a smaller table. In order to perform the

mapping function, a hash function, h(x), is computed on the key value. The resulting

value is used as an index into a hash table of size [0: m − 1] where m<<K. Ideally,

the hash function uniformly distributes all n keys across the m slots in the hash table.

This search method, called hashing, has been extensively studied and is given

thorough treatment by a number of computer science textbooks [5].

There is a variety of methods for constructing hash functions. Often, the low-

order bits of key values are uniform in distribution such that the hash index may be

constructed by selecting the low order bits of the key. Such hash functions are trivial

to construct in hardware. Figure 2-2 illustrates an example of using the four low-order

bits of the key as a hash index for the same integer multiples of three used in the B-

Tree example in Figure 2-1.

Note that when n is greater than m or the distribution of keys across the hash

table is not uniform, then collisions occur. In our example, we use a common collision

resolution technique called chaining, where keys that map to the same hash index

form a linked list. The ratio of keys to hash table slots is referred to as the load factor,

n
ma =

, which specifies the average number of keys in a chain. Thus, the average

number of probes in a hash table where chaining is used for collision resolution is 1 +

α. Moreover, there is a variety of much more sophisticated hash functions and

collision resolution techniques presented literature and in textbooks [5].

CHAPTER 2. RELATED WORK 14

Figure 2-2 Hash function example

2.1.1.3 Bloom Filters

A Bloom filter is a data structure used for efficiently representing a set of

keys. Via implicit representations of the keys in the set, the data structure supports

membership queries but is not capable of storing additional information for each

stored key. This technique was formulated by Burton H. Bloom in 1970 [6], and has

received renewed attention in the research community for various applications such as

web caching, intrusion detection, and content based routing [7].

A Bloom filter is essentially a bit-vector of length m where a key x is

represented by a subset of the m bits. Given a set of keys X with n members, we insert

a key xi ∈ X into the Bloom filter as follows. We compute k hash functions on xi,

producing k values in the range [0 : m−1]. Each of these values addresses a single bit

in the m-bit vector, hence each key xi causes k bits in the m-bit vector to be set to 1.

Figure 2-3 provides an example of inserting two keys into a Bloom filter. Note that if

one of the k hash values specifies a bit that is already set to 1, that bit is not changed.

Figure 2-3 Bloom Filter Example

CHAPTER 2. RELATED WORK 15

Querying the filter in order to determine if a given key x belongs to the set X is

similar to the insertion process. Given key x, we generate k hash indices using the

same hash functions used to insert keys into the filter. We check the bit locations

corresponding to the k hash indices in the m-bit vector. If at least one of the k bits is 0,

then it denotes that the key is not a member of the set. If all the bits are found to be 1,

then we claim that the key belongs to the set with a certain probability. If we find all k

bits to be 1 and x is not a member of X, then it is said to be a false positive match. This

ambiguity in membership comes from the fact that the k bits in the m-bit vector can be

set by any of the n members of X. Thus, finding a bit set to 1 does not necessarily

imply that it was set by the particular key being queried. However, finding a 0 bit

certainly implies that the key does not belong to the set, since if it was a member then

all k-bits would have been set to 1 when the key was inserted into the Bloom filter.

The following is a derivation of the probability of a false positive match, f.

The probability that a random bit of the m-bit vector is set to 1 by a hash function is

simply
m
1 . The probability that it is not set is

m
11− . The probability that it is not set

by any of the n members of X is
nk

m
⎟
⎠
⎞

⎜
⎝
⎛ −

11 . Hence, the probability that this bit is set

is
nk

m
⎟
⎠
⎞

⎜
⎝
⎛ −−

111 . For a key to be declared a possible member of the set, all k bit

locations generated by the hash functions need to be 1. The probability that this

happens, f, is given by
knk

m
f ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−=

111

For large values of m the above equation reduces to
k

m
nk

ef ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−≈

−

1

Since this probability is independent of the input key, it is termed the false positive

probability. The false positive probability can be reduced by choosing appropriate

values for m and k for a given size of the member set, n. For a given ratio of
n
m , the

false positive probability can be reduced by adjusting the number of hash functions, k.

CHAPTER 2. RELATED WORK 16

In the optimal case, when false positive probability is minimized with respect to k, we

get the following relationship:

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎥
⎤

⎢⎢
⎡

⎥⎦
⎥

⎢⎣
⎢= 2ln,2ln

n
m

n
mk

The false positive probability at this optimal point is given by
k

f ⎟
⎠
⎞

⎜
⎝
⎛=

2
1

It should be noted that if the false positive probability is to be tuned, then the size of

the filter, m, needs to scale linearly with the size of the key set, n.

One property of Bloom filters is that it is not possible to delete a key stored in

the filter. Deleting a particular entry requires that the corresponding k hashed bits in

the bit vector be set to zero, which would disturb other keys programmed into the

filter which hash to any of these bits. In order to solve this problem the idea of the

Counting Bloom Filter was proposed by Fan, et.al. [8]. A Counting Bloom Filter

maintains a vector of counters corresponding to each bit in the bit-vector. Whenever a

key is added to or deleted from the filter, the counters corresponding to the k hash

values are incremented or decremented, respectively. When a counter changes from

one to zero, the corresponding bit in the bit-vector is cleared. Note that maintaining

counters significantly increases the storage requirements.

2.1.2 Longest Prefix Match

Longest Prefix Matching (LPM) has received significant attention in the

literature over the past ten years. This is due to the fundamental role it plays in the

performance of Internet routers. Due to the explosive growth of the Internet, Classless

Inter-Domain Routing (CIDR) was widely adopted to prolong the life of Internet

Protocol Version 4 (IPv4) [2]. Use of this protocol requires Internet routers to search

variable-length address prefixes in order to find the longest matching prefix of the IP

destination address and retrieve the corresponding forwarding information, or “next

hop”, for each packet traversing the router. This computationally intensive task,

commonly referred to as IP Lookup, is often the performance bottleneck in high-

performance Internet routers.

CHAPTER 2. RELATED WORK 17

2.1.2.1 Linear Search

If the set of prefixes is small, a linear search through a list of the prefixes

sorted in order of decreasing length is sufficient. The sorting step guarantees that the

first matching prefix in the list is the longest matching prefix for the given search key.

Linear search is the most memory efficient of all LPM techniques and the memory

requirements are O(N) where N is the number of prefixes in the table. Note that the

search time is also O(N), thus linear search is not practical for IP lookup when the set

of prefixes is relatively large.

2.1.2.2 Content Addressable Memory (CAM)

Many commercial router designers have chosen to use Content Addressable

Memory (CAMs) for IP address lookups in order to keep up with the latest optical

link speeds despite their larger size, cost, and power consumption relative to Static

Random Access Memory (SRAM). CAMs minimize the number of memory accesses

required to locate an entry by comparing the input key against all memory words in

parallel; hence, a lookup effectively requires one clock cycle. While binary CAMs

perform well for exact match operations and can be used for route lookups in strictly

hierarchical addressing schemes [9], the wide use of address aggregation techniques

like CIDR requires storing and searching entries with arbitrary prefix lengths. In

response, Ternary Content Addressable Memories (TCAMs) were developed with the

ability to store an additional “Don’t Care” state which allows them to ensure single

clock cycle lookups for arbitrary prefix lengths.

2.1.2.3 Trie Based Schemes

Search techniques which build decision trees use the bits of prefixes to make

branching decisions and allow the worst-case search time to be independent of the

number of prefixes in the set. An example of a binary trie

constructed from a set of

prefixes is shown in Figure 2-4. Shaded nodes denote a stored prefix with the

corresponding next hop shown next to the node. A search is conducted by traversing

the trie using the bits of the address, starting with the most significant bit. Note that

the worst-case search time is now O(W), where W is the length of the address and

maximum prefix size in bits.

CHAPTER 2. RELATED WORK 18

Figure 2-4 Binary Trie example

One of the first IP lookup techniques to employ tries2 is Sklower’s

implementation of a Patricia trie in the BSD kernel [10]. The Patricia trie is a binary

radix tree that compresses paths with one-way branching into a single node. It

assumes contiguous masks and bounds the worst case lookup time to O(W). While

paths may be compressed, only one bit of the address is examined at a time during a

search resulting in search rates that do not meet the needs of high-performance

routers.

In order to speed up the lookup process, multi-bit trie schemes were developed

which perform a search using multiple bits of the address at a time. Srinivasan and

Varghese introduced two important techniques for multi-bit trie searches, Controlled

Prefix Expansion (CPE) and Leaf Pushing [11]. Controlled Prefix Expansion restricts

the set of distinct prefix lengths by “expanding” prefixes shorter than the next distinct

length into multiple prefixes. This allows the lookup to proceed as a direct index

lookup into tables corresponding to the distinct prefix length, or stride length, until the

longest match is found. The technique of Leaf Pushing reduces the amount of

information stored in each table entry by “pushing” information about the best

matching prefix along the paths to leaf nodes. As a result each leaf node needs only to

store a pointer or next hop information. While this technique reduces memory usage,

2 Trie is the term used for trees in information retrieval data structures. It originates from the word
retrieval.

CHAPTER 2. RELATED WORK 19

it also increases incremental update overhead. The authors also discuss variable length

stride lengths, optimal selection of stride lengths, and dynamic programming

techniques.

Gupta, Lin, and McKeown simultaneously developed a special case of CPE

specifically targeted to hardware implementation [12]. Arguing that DRAM is such a

plentiful and inexpensive resource, their technique spends large amounts of memory

in order to limit the number of off-chip memory accesses to two or three. Their basic

scheme is a two level “expanded” trie with an initial stride length of 24 and second

level tables of stride length eight. Given that random accesses to DRAM may require

up to eight clock cycles and current DRAMs operate at less than half the speed of

SRAMs, this technique can be out-performed by techniques utilizing SRAM and

requiring less than 10 memory accesses.

Other techniques such as Lulea [13] and Eatherton and Dittia’s Tree Bitmap

[14] employ multi-bit tries with compressed nodes. The Lulea scheme essentially

compresses an expanded, leaf-pushed trie with stride lengths 16, 8, and 8. In the worst

case, the scheme requires 12 memory accesses; however, the data structure only

requires a few bytes per entry. While extremely compact, the Lulea scheme’s update

performance suffers from its implicit use of leaf pushing. The Tree Bitmap technique

avoids leaf pushing by maintaining compressed representations of the prefixes stored

in each multi-bit node. It also employs a clever indexing scheme to reduce pointer

storage to two pointers per multi-bit node.

2.1.2.4 Multiway and Multicolumn Search

Several other algorithms exist with attractive properties that are not based on

tries. The Multiway and Multicolumn Search techniques presented by Lampson,

Srinivasan, and Varghese are designed to optimize performance for software

implementations on general purpose processors [15]. The primary contribution of this

work is mapping the longest matching prefix problem to a binary search over the

fixed-length endpoints of the ranges defined by the prefixes. By specifying a set of

contiguous initial bits, prefixes define ranges of values. For example, if 10∗ is a

prefix for a four bit field, then it defines the range [1000:1011]. Prefixes never define

overlapping ranges, only nested ranges. For example, [0:3] and [2:4] are overlapping

ranges, whereas [0:3] and [1:2] are nested ranges. The authors use this property to

CHAPTER 2. RELATED WORK 20

develop a binary search technique over the endpoints of the ranges defined by the

prefixes.

2.1.2.5 Binary Search on Prefix Lengths

The most efficient lookup algorithm known, from a theoretical perspective, is

Binary Search on Prefix Lengths which was introduced by Waldvogel, et. al.[16]. The

number of steps required by this algorithm grows logarithmically with the length of

the address, making it particularly attractive for IPv6, where address lengths increase

to 128 bits. However, the algorithm is relatively complex to implement, making it

more suitable for software rather than hardware implementation. It also does not

readily support incremental updates.

This technique bounds the number of memory accesses via significant pre-

computation of the route table. First, the prefixes are sorted into sets based on prefix

length, resulting in a maximum of W sets to examine for the best matching prefix. A

hash table is built for each set, and it is assumed that examination of a set requires one

hash probe. The basic scheme selects the sequence of sets to probe using a binary

search on the sets beginning with the median length set. For example: for an IPv4

database with prefixes of all 32 lengths, the search begins by probing the set with

length 16 prefixes. Prefixes of longer lengths direct the search to its set by placing

“markers” in the shorter sets along the binary search path. Accordingly, a 24-length

prefix would have a “marker” in the length 16 set. Therefore, at each set the search

selects the longer set on the binary search path if there is a matching marker directing

it lower. If there is no matching prefix or marker, then the search continues at the

shorter set on the binary search path.

The use of markers introduces the problem of “backtracking”: having to search

the upper half of the trie because the search followed a marker for which there is no

matching prefix in a longer set for the given address. In order to prevent this, the best-

matching prefix for the marker is computed and stored with the marker. If a search

terminates without finding a match, the best-matching prefix stored with the most

recent marker is used to make the routing decision. The authors also propose methods

of optimizing the data structure based on the statistical characteristics of the route

table. For all versions of the algorithm, the worst case bounds are O(logWdist)time

and O(N×logWdist) space where Wdist is the number of unique prefix lengths.

CHAPTER 2. RELATED WORK 21

Empirical measurements using an IPv4 route table resulted in memory requirement of

about 42 bytes per entry.

2.1.3 All Prefix Matching (APM)

Longest Prefix Matching (LPM) is a special case of the general All Prefix

Matching (APM) problem. Instead of returning just the longest matching prefix, the

APM problem requires that all matching prefixes are returned. This problem arises

when multi-filed search techniques are decomposed into several instances of single-

field search techniques.

Note that most trie-based algorithms easily map to the APM problem. The

algorithm can simply return all matching prefixes along the path to the longest

matching prefix. While the trie-based algorithms easily map to APM, it is important

to note that the Binary Search on Prefix Lengths and Multiway and Multicolumn

Search techniques do not readily support APM. The use of markers in Binary Search

on Prefix Lengths naturally directs searches to longer prefixes before examining

shorter length prefixes. The same consequence is experienced by the Multiway and

Multicolumn Search due to the binary search over range endpoints. In order to support

APM searches using these techniques, we must use a general technique that allows

any LPM algorithm to perform APM.

2.1.4 Range Matching

Range matching problems naturally arise in many searching problems in the

areas of networking and database design, and there are several forms of range

matching problems. In this subsection we describe the most widely used approaches

to address the following problem that arises in packet classification: Given a set X of

closed intervals [i, j] and a point p, find all the intervals in X that contain p. This task

is an essential part of packet classification, as packet filters may specify ranges for the

source and destination port numbers in packet headers in order to identify a set of

applications. Solutions to this problem typically employ a variant of the Interval Tree

[17] or convert each closed interval [i,j] into a set of prefixes and then employ one of

the Longest Prefix Matching (LPM) algorithms.

CHAPTER 2. RELATED WORK 22

2.1.4.1 Interval Tree

An Interval Tree stores a set of closed intervals X using a balanced binary tree

as the underlying data structure [5]. Each node in the Interval Tree stores an interval x

∈ X. The low endpoint of the interval is used as the key for the node in the balanced

binary search tree. In order to facilitate faster searches, tree nodes typically store

additional variables such as the maximum value of all the endpoints of the ranges

stored in their sub-tree. An example of an Interval Tree is shown in Figure 2-5.

Figure 2-5 Interval Tree example

Searching for one matching interval for a given point p is straight-forward, but

returning the set S of all matching intervals for p requires a few extra steps. We first

locate the matching interval for p that is stored at the leftmost node in the tree. From

this node, we perform an in-order walk of the tree nodes, stopping when we arrive at

the last node in the tree or a node whose key is greater than p. An example search for

p =4 is shown in Figure 2-5. Letting S be the number of matching intervals, the search

requires O(logX + S) time.

2.1.4.2 Range to Prefix Conversion

Prefixes define exactly one range on the real numbers. The low and high

endpoints of the range defined by a prefix are the minimum and maximum points

covered by the prefix. For binary numbers, this translates to replacing the masked bits

of the prefix with zeros and ones, respectively. For example, the four bit prefix 11∗

defines the range [1100:1111] or [12:15]. This transform operation is not symmetric,

CHAPTER 2. RELATED WORK 23

as an arbitrary range may specify multiple prefixes. Specifically, a range defined on

the set of b-bit numbers will specify at most [2 × (b − 1)] prefixes.

For a single-field search on a reasonable number of ranges, this expansion

factor is not prohibitive. As a result, several packet classification techniques use the

range to prefix conversion technique to solve the range matching sub-problem [18],

[19]. Finally, we note that Feldman and Muthukrishnan [17] provide a range to prefix

conversion technique for the special case of searching elementary intervals by

converting them into prefixes. They show that a set of (n − 1) elementary intervals

can be converted into a set prefixes containing at most 2n prefixes, where an LPM

search is used to select the elementary interval containing a given point p.

2.2 Multi Field Searching Techniques
In this subsection we provide a summary of the major multiple field search

techniques aimed at packet classification. Due to the complexity of the search, packet

classification is often a performance bottleneck in network infrastructure and thus it

has received significant attention by the research community. Many algorithms and

classification schemes have been proposed with numerous different approaches.

These techniques can be categorized according to the high level approach of the

classification solution. We can consider that there are three main different high-level

approaches:

• Exhaustive Search: examines all entries in the filter set.

• Decision Tree: construct decision trees from the filters in the filter set and

use the packet fields to traverse the decision trees.

• Decomposition: decompose the multiple field search into instances of

single field searches, perform independent searches on each packet field and

then combine the results.

2.2.1 Exhaustive Search

The fundamental solution to any searching problem is simply to search

through all the entries in the set. The two most common exhaustive search approaches

for packet classification are a linear search through a list of filters or a parallel search

over the set assuming that it is divided into a number of subsets. These are extreme

solutions, where the lowest performance option, linear search, does not divide the set

CHAPTER 2. RELATED WORK 24

into subsets and the highest performance option, Ternary Content Addressable

Memory (TCAM), completely divides the set into subsets containing only one entry.

We discuss both of these solutions in detail below.

2.2.1.1 Linear Search

Performing a linear search through a list of filters has O(N) storage

requirements, but it also requires O(N) memory accesses per lookup. Even in the

smaller filter sets, linear search becomes very slow. It is possible to reduce the

number of memory accesses per lookup by partitioning the list into sub-lists and

pipelining the search where each stage searches a sub-list. Note that linear search can

be popular solution for the final stage of a lookup when the set of possible matching

filters has been drastically reduced [19][20][21].

2.2.1.2 Ternary Content Addressable Memory (TCAM)

Alike fully-associative cache memories, Ternary Content Addressable

Memory (TCAM) devices perform a parallel search over all filters in the filter set.

TCAMs were developed with the ability to store a “Don’t Care” state in addition to a

binary digit. A typical TCAM cell is shown in Figure 2-6. Input keys are compared

against every TCAM entry which enables them to ensure single clock cycle lookups

for arbitrary bit mask matches.

Figure 2-6 A typical TCAM cell

Despite their astonishing efficiency, TCAMs have four primary drawbacks:

1. high cost per bit relative to other memory technologies; current TCAMs cost

about 20 times more per bit of storage than DDR SRAMs.

2. storage waste, in addition to the six transistors required for binary digit

storage, a typical TCAM cell requires an additional six transistors to store the

CHAPTER 2. RELATED WORK 25

mask bit and four transistors for the match logic, resulting in a total of 16

transistors; some very efficient solutions use 14 transistors.

3. high power consumption; the massive parallelism in TCAM architectures is

the main source of high power consumption. Each “bit” of TCAM match logic

must drive a match word line which signals a match for the given key. The

extra logic and capacitive loading results in access times approximately three

times longer than SRAM. Specifically, TCAMs consume 150 times more

power per bit than SRAM.

4. limited scalability to long input keys; TCAMs can only match keys of

maximum length equal to the word size.

2.2.2 Decision Trees

Another popular approach to packet classification on multiple fields is to

construct a decision tree where the leaves of the tree contain filters or subsets of

filters. In order to perform a search using a decision tree, we construct a search key

from the packet header fields. We traverse the decision tree by using individual bits or

subsets of bits from the search key to take branching decisions at each node of the

tree. The search continues until we reach a leaf node storing the best matching filter or

subset of filters. Decision tree construction is complicated due to the fact that a filter

may specify several different types of searches. The mix of Longest Prefix Match,

arbitrary range match, and exact match filter fields significantly complicates the

branching decisions at each node of the decision tree. A common solution to this

problem is to convert all the filter fields to a single type of match.

2.2.2.1 Grid of Tries

Srinivasan, Varghese, Suri, and Waldvogel introduced the original Grid-of-

Tries algorithm for packet classification [22]. Grid-of-Tries applies a decision tree

approach to the problem of packet classification on source and destination address

prefixes. For filters defined by source and destination prefixes, Grid-of-Tries

improves the directed acyclic graph (DAG) technique introduced by Decasper, Dittia,

Parulkar, and Plattner [23]. This technique is also called set pruning trees because

redundant sub-trees can be “pruned” from the tree by allowing multiple incoming

edges at a node. While this optimization does eliminate redundant sub-trees, it does

CHAPTER 2. RELATED WORK 26

not completely eliminate replication as filters may be stored at multiple nodes in the

tree. Grid-of-Tries eliminates this replication by storing filters at a single node and

using switch pointers to direct searches to potentially matching filters.

 Consider the filter set shown in Table 2-1 where source and destination

address prefixes for each rule are defined. Moreover, assume we are searching for the

best matching filter for a packet with source and destination addresses equal to 0011.

Filter Source
Address

Destination
Address

F1 0* 10*
F2 0* 01*
F3 0* 1*
F4 00* 1*
F5 00* 11*
F6 10* 1*
F7 * 00*
F8 0* 10*
F9 0* 1*
F10 0* 10*
F11 111* 000*

Table 2-1 Example filter set for Grid of Tries

In the Grid-of-Tries structure shown in Figure 2-7, we find the longest matching

source address prefix 00* and follow the pointer to the destination address tree. Since

there is no 0 branch at the root node, we follow the switch pointer to the 0* node in

the destination address tree for source address prefix 0*. Since there is no branch for

00* in this tree, we follow the switch pointer to the 00* node in the destination

address tree for source address prefix *. Here we find a stored filter F7 which is the

best matching filter for the packet.

Figure 2-7 Grid of Tries data structure

CHAPTER 2. RELATED WORK 27

Grid-of-Tries bounds memory usage to O(NW) while achieving search time of

O(W), where N is the number of filters and W is the maximum number of bits

specified in the source or destination fields. For the case of searching on IPv4 source

and destination address prefixes, the measured implementation uses multi-bit tries

sampling 8 bits at a time for the destination trie; each of the source tries starts with a

12 bit node, followed by 5 bit trie nodes. This yields a worst case of 9 memory

accesses; the authors claim that this could be reduced to 8 with an increase in storage.

2.2.2.2 Hierarchical Intelligent Cuttings (HiCuts)

Gupta and McKeown introduced an innovative technique called Hierarchical

Intelligent Cuttings (Hi-Cuts) [20]. The concept of “cutting” comes from viewing the

packet classification problem geometrically. Each filter in the set defines a d-

dimensional rectangle in d-dimensional space, where d is the number of fields in the

filter. Selecting the decision criteria translates into choosing a partitioning, or

“cutting”, of the space. Consider the example filter set in Table 2-2 consisting of

filters with two fields: a 4-bit address prefix and a port range covering 4-bit port

numbers. This set is shown geometrically in Figure 2-8.

Filter Address Port
a 1010 2
b 1100 5
c 0101 8
d * 6
e 11* 0-15
f 001* 9-15
g 00* 0-4
h 0* 0-3
i 0110 0-15
j 1* 7-15
k 0* 11

Table 2-2 Example filter set for HiCuts

HiCuts pre-processes the filter set in order to build a decision tree with leaves

containing a small number of filters bounded by a threshold. Packet header fields are

used to traverse the decision tree until a leaf is reached. The filters stored in that leaf

are then linearly searched for a match. HiCuts converts all filter fields to arbitrary

ranges, avoiding filter replication. The algorithm uses various heuristics to select

decision criteria at each node that minimizes the depth of the tree while controlling

the amount of memory used.

CHAPTER 2. RELATED WORK 28

Figure 2-8 HiCuts geometric representation

A HiCuts data structure for the example filter set in Table 2-2 is shown in

Figure 2-9. Each tree node covers a portion of the d-dimensional space and the root

node covers the entire space. In order to keep the decisions at each node simple, each

node is cut into equal sized partitions along a single dimension. For example, the root

node in Figure 2-9 is cut into four partitions along the Address dimension. In this

example, we have set the thresholds such that a leaf contains at most two filters and a

node may contain at most four children. The authors describe a number of more

sophisticated heuristics and optimizations for minimizing the depth of the tree and the

memory resource requirement.

Experimental results in the two-dimensional case show that a filter set of 20k

filters requires 1.3MB with a tree depth of 4 in the worst case and 2.3 on average.

Experiments with four-dimensional classifiers used filter sets ranging in size from

approximately 100 to 2000 filters. Memory consumption ranged from less than 10KB

to 1MB, with associated worst case tree depths of 12 (20 memory accesses). Due to

the considerable pre-processing required, this scheme does not readily support

incremental updates.

CHAPTER 2. RELATED WORK 29

Figure 2-9 HiCuts Data Structure

2.2.2.3 Fat Inverted Segment (FIS) Trees

Feldman and Muthukrishnan introduced a scheme for packet classification

using independent field searches on Fat Inverted Segment (FIS) Trees [17]. FIS Trees

utilize a geometric view of the filter set and map filters into d-dimensional space.

Projections from the “edges” of the d-dimensional rectangles specified by the filters

define elementary intervals on the axes. N filters will define a maximum of I =(2N +

1) elementary intervals on each axis. A FIS Tree is a balanced t-ary tree with k levels

that stores a set of segments, or ranges. Note that t=(2I + 1)1/k is the maximum

number of children a node may have. The leaf nodes of the tree correspond to the

elementary intervals on the axis. Each node in the tree stores a canonical set of ranges

such that the union of the canonical sets at the nodes visited on the path from the leaf

node associated with the elementary interval. Covering a point p to the root node is

the set of ranges containing p.

Using the example filter set shown in Table 2-2 we present an overview of FIS

in Figure 2-10. The scheme starts by building an FIS Tree on one axis. For each node

with a non-empty canonical set of filters, we construct an FIS Tree for the elementary

intervals formed by the projections of the filters in the canonical set on the next axis

(filter field) in the search. The authors propose a method of using a Longest Prefix

Matching technique to locate the elementary interval covering a given point. This

method requires at most 2I prefixes.

CHAPTER 2. RELATED WORK 30

Figure 2-10 FIS example

Figure 2-10 also provides an example search for a packet with address 2, and

port number 11. A search begins by locating the elementary interval covering the first

packet field, interval [2:3] on the Address axis in our example. The search proceeds

by following the parent pointers in the FIS Tree from leaf to root node. Along the

path, we follow pointers to the sets of elementary intervals formed by the Port

projections and search for the covering interval. Throughout the search, we remember

the highest priority matching filter. The authors performed simulations with real and

synthetic 78 filter sets containing filters classifying on source and destination address

prefixes. For filter sets ranging in size from 1K to 1M filters, memory requirements

ranged from 100 to 60 bytes per filter. Lookups required between 10 and 21 cache-

line accesses which amounts to 80 to 168 word accesses, assuming 8 words per cache

line.

CHAPTER 2. RELATED WORK 31

2.2.3 Decomposition

Given the option of efficient single field search techniques, decomposing a

multiple field search problem into several instances of a single field search problem is

a practical approach. Employing this high-level approach has several advantages.

First, each single field search engine operates independently, thus we have the

opportunity to exploit the parallelism offered by modern hardware. Performing each

search independently also offers more degrees of freedom in optimizing each type of

search on the packet field.

Despite these advantages, decomposing a multi-field search problem creates

other complicated issues. The primary challenge is to efficiently aggregate and

combine the results of the single field searches. Moreover, the longest matching prefix

for a given filter field is not sufficient as a result from the single field search engines.

The best matching filter may contain a field which is not necessarily the longest

matching prefix relative to other filters; it may be more specific or have higher

priority in other fields. As a result, techniques employing decomposition try to take

advantage of filter set characteristics that allow them to limit the number of

intermediate results. In general, solutions using decomposition provide high

throughput due to their parallel hardware implementations. The high level of lookup

performance often comes at the cost of memory waste.

2.2.3.1 Parallel Bit Vectors (BV)

Lakshman and Stiliadis introduced one of the first multiple field packet

classification algorithms targeted to a hardware implementation. Their technique is

commonly referred to as the Lucent bit-vector scheme or Parallel Bit-Vectors (BV)

[24]. The authors make the initial assumption that the filters are sorted according to

priority. Parallel BV utilizes a geometric view of the filter set and maps filters into d-

dimensional space. As shown in Figure 2-11, projections from the “edges” of the d-

dimensional rectangles specified by the filters define elementary intervals on the axes.

Note that we are using the example filter set shown in Table 2-2 where filters contain

two fields: a 4-bit address prefix and a range covering 4-bit port numbers. N filters

define at maximum (2N+1) elementary intervals on each axis.

CHAPTER 2. RELATED WORK 32

Figure 2-11 Parallel Bit Vectors example

For each elementary interval on each axis an N-bit bit-vector is defined. Each

bit position corresponds to a filter in the filter set, sorted by priority. All bit-vectors

are initialized to all ‘0’s. For each bit-vector, we set the bits corresponding to the

filters that overlap the associated elementary interval. Consider the interval [12:15] on

the Port axis in Figure 2-11. Assume that sorting the filters according to priority

places them in alphabetical order. Filters e, f, i, and j overlap this elementary interval;

therefore, the bit-vector for that elementary interval is 00001100110 where the bits

correspond to filters a through k in alphabetical order. For each dimension d, we

construct an independent data structure that locates the elementary interval covering a

given point, then we return the bit-vector associated with that interval. The authors

utilize binary search, but any range location algorithm is suitable.

Once we compute all the bit-vectors and construct the d data structures,

searches are relatively simple. We search the d data structures with the corresponding

packet fields independently. Once we have all d bit vectors from the field searches,

we simply perform the bit-wise AND of all the vectors. The most significant ‘1’ bit in

the result denotes the highest priority matching filter. Multiple matches are easily

supported by examining the most significant set of bits in the resulting bit vector.

CHAPTER 2. RELATED WORK 33

The authors implemented a five field version with five 128Kbyte SRAMs.

This configuration supports 512 filters and performs one million lookups per second.

Assuming a binary search technique over the elementary intervals, the general

Parallel BV approach has O(lgN) search time and O(N2) memory requirement. The

authors have further proposed an algorithm to reduce the memory requirement to

O(NlogN) using incremental reads.

2.2.3.2 Aggregated Bit-Vector (ABV)

Baboescu and Varghese introduced the Aggregated Bit-Vector (ABV)

algorithm which seeks to improve the performance of the Parallel BV technique by

using statistical observations of real filter sets [25]. Conceptually, ABV starts with d

sets of N-bit vectors constructed in the same manner as in Parallel BV. The authors

leverage the widely known property that the maximum number of filters matching a

packet is inherently limited in real filter sets. This property causes the N-bit vectors to

be sparse. In order to reduce the number of memory accesses, ABV essentially

partitions the N-bit vectors into A chunks and only retrieves chunks containing ‘1’

bits. Each chunk is N / A bits in size and has an associated bit in an A-bit aggregate

bit-vector. If any of the bits in the chunk are set to ‘1’, then the corresponding bit in

the aggregate bit-vector is set to ‘1’. Figure 2-12 provides an example using the filter

set in Table 2-2.

Each independent search on the d packet fields returns an A-bit aggregate bit-

vector. We perform the bit-wise AND on the aggregate bit-vectors. For each ‘1’ bit in

the resulting bit-vector, we retrieve the d chunks of the original N-bit bit-vectors from

memory and perform a bit-wise AND. Each ‘1’ bit in the resulting bit-vector denotes a

matching filter for the packet. ABV also removes the strict priority ordering of filters

by storing each filter’s priority in an array. This allows us to reorder the filter in order

to cluster ‘1’ bits in the bit-vectors. This in turn reduces the number of memory

accesses. Simulations with real filter sets show that ABV reduced the number of

memory accesses relative to Parallel BV by a factor of a four. Simulations with

synthetic filter sets show more dramatic reductions by a factor of 20 or more when the

filters sets do not contain any wildcards. As wildcards increase, the reductions

become much more modest.

CHAPTER 2. RELATED WORK 34

Figure 2-12 Aggregated Bit Vector example

2.2.3.3 Recursive Flow Classification (RFC)

Leveraging observations on real filter sets, Gupta and McKeown introduced

Recursive Flow Classification (RFC) which provides high lookup rates at the cost of

memory inefficiency [26]. The authors introduced a unique high-level view of the

packet classification problem. Essentially, packet classification can be viewed as the

reduction of an m-bit string defined by the packet fields to a k-bit string specifying the

set of matching filters for the packet or action to apply to the packet. For classification

on the IPv4 5-tuple, m is 104 bits and k is typically on the order of 10 bits. The

authors also performed a rather comprehensive and widely cited study of real filter

sets and extracted several useful properties. Specifically, they noted that filter overlap

and the associated number of distinct regions created in multi-dimensional space is

much smaller than the worst case of O(nd). For a filter set with 1734 filters the

number of distinct overlapping regions in four-dimensional space was found to be

4316, as compared to the worst case which is approximately 1013.

RFC performs independent, parallel searches on “chunks” of the packet

header, where “chunks” may or may not correspond to packet header fields. The

results of the “chunk” searches are combined in multiple phases. The result of each

CHAPTER 2. RELATED WORK 35

“chunk” lookup and aggregation step in RFC is an equivalence class identifier

(classID) which represents the set of potentially matching filters for the packet. The

number of classIDs in RFC depends upon the number of distinct sets of filters that can

be matched by a packet. The number of classIDs in an aggregation step scales with

the number of unique overlapping regions formed by filter projections.

RFC lookups in “chunk” and aggregation tables utilize indexing; the address

for the table lookup is formed by concatenating the classIDs from the previous stages

as shown in Figure 2-13. The resulting classID has fewer number of bits than the

address, thus RFC performs a multi-stage reduction to a final classID that specifies

the action to apply to the packet. The use of indexing simplifies the lookup process at

each stage and allows RFC to provide high throughput. This simplicity and

performance comes at the cost of memory inefficiency. The memory usage for less

than 1000 filters ranged from a few hundred kilobytes to over one gigabyte of

memory depending on the number of stages. The authors propose a hardware

architecture using two 64MB SDRAMs and two 4Mb SRAMs that could perform 30

million lookups per second when operating at 125MHz. The index tables used for

aggregation also require significant pre-computation in order to assign the proper

classID for the combination of the classIDs of the previous phases. Such extensive

pre-computation prohibits dynamic updates at high rates.

Figure 2-13 RFC aggregation scheme

CHAPTER 2. RELATED WORK 36

CHAPTER 3. MAC LAYER CLASSIFICATION 37

3 Chapter 3

3
MAC Layer Classification

In this chapter we present our solution for MAC layer switching and

classification in Ethernet networks. We developed a scheme suitable for hardware

implementation that can facilitate the support of forwarding, switching, filtering,

classification and QoS in Layer 2 (Data Link Layer). Our hardware solution aims at

Ethernet switches or Bridges. We design a Hash Based Classification Engine (HBSE)

that can support fast and storage efficient classification of many multi-gigabit links.

3.1 Ethernet Switching
Layer 2 (Data Link Layer) switching allows packets to be switched in the

network based on their Media Access Control (MAC) address. The MAC sub-layer is

part of the Data Link Layer and it is responsible to move the data packets from one

Network Interface Card (NIC) to another across a channel. When a packet arrives at

the switch, the switch checks the packet’s destination MAC address and, if known, it

sends the packet to the output port where the destination MAC is connected. The

format of the Ethernet packets is shown in Figure 3-1.

Figure 3-1 Ethernet Frame Format

CHAPTER 3. MAC LAYER CLASSIFICATION 38

The field lengths are in bytes and are the following:
 PRE = Preamble

 SFD = Start-of-frame delimiter

 DA = Destination Address

 SA = Source Address

 Len/Type = Data Length of frame or frame Type

 FCS = Frame Check Sequence

The three fundamental elements in Ethernet L2 switching are the MAC

addresses, the ports of the switch and the Virtual LANs (VLANs). Since Ethernet

switching is making a breakthrough in MAN and WAN networks, these elements are

critical in mechanisms that provide QoS.

MAC Addresses

The MAC address is a 48-bit(6 bytes) value that uniquely identifies a NIC.

The first 24-bits(3 bytes) of the address identify the vendor of the card and the last 24-

bits identify the card itself. Every NIC has a MAC address that is hardwired and

cannot be changed.

Ports

The ports are the physical interfaces where the NICs are connected to the

switch. Each port can be identified by a number assigned by the manufacturer of the

switch and provides all the communication from and to the attached NIC.

VLANs

VLAN tagging was introduced in IEEE 802.1q [4] and defines how an

Ethernet frame is tagged with a VLAN ID. This tagging is a MAC option that

provides some important capabilities not previously available to Ethernet network

users and network managers. VLANs provide a mechanism to handle time-critical

network traffic by setting transmission priorities to outgoing frames according to

IEEE 802.1p [27]. Moreover VLANs allow network stations to be assigned to logical

groups, and then communicate across multiple LANs as if they were on a single LAN.

Bridges and switches filter destination addresses and forward VLAN frames only to

ports that serve the specific VLAN traffic.

CHAPTER 3. MAC LAYER CLASSIFICATION 39

A VLAN-tagged frame is simply a basic MAC data frame that has a 4-byte

extra header inserted between the SA and Length/Type fields as shown in Figure 3-2.

The VLAN header consists of two fields:
 A reserved 16-bit value to indicate that this is a VLAN frame(0x8100)

 A 16-bit Tag Control Info field:

o The first 3-bits indicate the priority according to

IEEE 802.1p (8 possible)

o The next 1 bit is CFI (Canonical Format Indication)

o The last 12-bits indicate the VLAN Identifier (4096 possible).

Figure 3-2 VLAN Ethernet Frame

Typically, there are two types of VLANs, port-based and MAC address-based.

On port-based VLANs the logical grouping is done by assigning some specific ports

to constitute a VLAN. When a data frame is received on a port, the switch or bridge

determines the associated VLAN based on the port of the reception. Using the

forwarding database information, the data frame is sent to the appropriate port(s). The

other option is to specify VLANs using MAC addresses. MAC-based VLANs can be

created by the MAC addresses of all devices on a network. VLANs of this type

provide better device mobility and privacy for the users.

3.2 Hardware Based Classifiers
L2 switching, forwarding and filtering require the fields of each packet to be

examined and the appropriate action to be performed. For example, given a packet’s

destination MAC address, the packet should be forwarded to the appropriate output

port. Therefore, the switches need to store some information and consult it for their

decisions. The information about the MAC addresses, the VLANs and the Ports is

stored in internal data structures and for each packet a search is conducted using the

packet header fields.

Switches and bridges have integrated hardware solutions for the L2

classification task. They place the MAC address tables in internal or external

memories and all operations access the tables to find the exact match. Today’s

CHAPTER 3. MAC LAYER CLASSIFICATION 40

switches support at most 32K MAC addresses [28] and 4096 VLANs, hence the size

of memories is relatively small.

The nature of L2 classification requires exact matches and many

implementations use CAMs that provide single access matching. CAM solutions are

simple but are expensive and power consuming. Trie based solutions have poor

performance since the 48-bits of the MAC address are relatively long to be resolved

with partial matches in subparts of the address. Moreover, trie based solutions may

require several memory accesses and massive storage in pointers.

Another popular solution is hashing of the MAC address bits [29] and storing

the data in SRAM based lookup tables. The 48-bits are hashed with a specific hashing

function and an index for the lookup table is generated. Possible collisions due to

hashing are usually resolved with linked lists of entries. Hashing 48-bits into a small,

say 16-bit, value requires a good function that generates differentiated values by

taking into account all the information bits. Many solutions use the CRC polynomials

for hashing since they have been proved very efficient [30] or others use direct

mapping by the least significant bits of the MAC address.

3.3 Hash Based Classification Engine
Our solution for L2 classification is based on hashing like many commercial

products but we propose a hashing scheme that exactly matches certain requirements

in terms of both memory accesses and storage. We propose a Hash Based

Classification Engine (HBCE) with internal MAC Vendor replacement. HBCE is

designed to support up to 64K MAC-address rules, 4096 VLANs and 1024 ports.

Every rule in HBCE is uniquely identified by a number that can be called Flow ID, in

our case we consider that 32K Flow IDs would be enough for a LAN.

The most essential part of our scheme is the MAC address table that will hold

the associated information. The length of MAC addresses, namely 48-bits, is what

makes this part the most critical in terms of both speed and storage. VLANs and ports

are relatively small in size and can be directly mapped into tables, as it will be

described in the next sections.

CHAPTER 3. MAC LAYER CLASSIFICATION 41

3.3.1 MAC Address Hashing

We developed a hashing function to map the MAC addresses into a table that

will hold the Flow ID of the associated rule. MAC addresses are stored in a 64K table

called MAC_TBL and the indexes to it are generated by the MAC address bits using

our hashing function. The collisions due to hashing are handled by pointers to variable

size blocks. Handling variable size blocks requires dynamic memory management

implementation and is discussed in subsection 3.3.5. The number of entries of each

variable size block is defined by the number of MACs that collide in a specific entry.

Indexes in MAC_TBL are generated by the use of the XOR function in all the

48-bits of the MAC address and the16-bit address is produced as follows:
MAC_TBLindex = { MAC[47:40] xor MAC[31:24] xor MAC[15:8] ,

 MAC[39:32] xor MAC[23:16] xor MAC[7:0] }

To identify a certain MAC address in the block we also need to save some additional

information so as to be able to distinguish those that collide. Fortunately, we don’t

need to save all 48-bits and we take advantage of the fact that the address has been

produced by the actual MAC-address field. Therefore a MAC located in address A of

MAC_TBL can be reproduced by the 16-bits of A and the last 32-bits (Hval) of the

MAC address as follows:
MAC[47:40] = A[15:8] xor Hval[31:24] xor Hval[15:8]

MAC[39:32] = A[7:0] xor Hval[23:16] xor Hval[7:0]

MAC[31:0] = Hval(31:0)

The bits saved in Hval are unique for every possible MAC address located in address

A and can be used to identify it. If we use CRC-16, like popular schemes, to produce

16-bit indexes then we should store the complete 48-bits of the MAC address because

there is no inverse CRC function. Moreover, CRC polynomials don’t have one-to-one

correspondence between input and generated values. The speed and storage

performance of our hashing function is discussed in section 3.4

3.3.2 MAC Vendor Replacement

The official IEEE OUI and Company ID assignments [31] has published all

the assigned MAC vendor IDs of 24-bits and the associated company names. We

collect them and observe that the 24-bit vendor address space of the MAC addresses

is not fully occupied. The available list shows that fewer than 8000 vendors are active

instead of the 224= 16777216 possible. Therefore we can replace the 24-bit vendor ID

with a 13-bit internally assigned vendor ID; 13 bits are enough for the 8000 vendors.

CHAPTER 3. MAC LAYER CLASSIFICATION 42

The last 24-bits of the MAC address that uniquely identify a device of a vendor can

remain unchanged. We decide to have internally replaced the vendor ID part of a

MAC in order to reduce the storage requirements for each MAC address, at the cost

obviously of the replacement operation. Consequently, every incoming MAC address

need to be translated before the actual processing begins.

We can now consider that each MAC address handled by our system is 37-bits

long. Naturally, this replacement means that we keep a small table with 8192 entries

called VID_RPL that matches the existing 24-bit Vendor ID values with the internally

assigned 13-bit Vendor ID values. This table can be easily constructed since all

Vendor IDs are sequentially assigned by IEEE and a few ‘holes’ that exist in the

address space can be handled by a 24-to-13 decoder. Despite this table is constant and

can be kept in a ROM, we can use a method that learns the connected MAC addresses

and assigns incrementally an internal ID. The first time an unknown MAC vendor ID

appears in the system we can assign it with a new ID.

After this replacement we define a new hashing function on the 37-bits of the

MAC address. Now, the 16-bit indexes in MAC_TBL are generated as follows:
MAC_TBLindex = { MAC[31:24] xor MAC[15:8] ,

 MAC[23:16] xor MAC[7:0] }

Notice that we don’t use the 6 MSB of the replaced Vendor ID in order to have a byte

balanced hashing function. The new Hval is now 21-bits and is defined as follows:
Hval = { MAC[36:24] , MAC[7:0] }

Now, a MAC located in address A of MAC_TBL can be reproduced by the 16-bits of

the address and Hval as follows:
MAC[36:24] = Hval[20:8]

MAC[23:16] = A[15:8] xor Hval[7:0]

MAC[15:8] = A[15:8] xor Hval[15:8]

MAC[7:0] = Hval(7:0)

3.3.3 MAC_TBL and Data Structure

MAC_TBL is a table with 64K entries and stores the Flow ID of each MAC

address. Indexes in MAC_TBL are generated with hashing and therefore collisions

may occur. To support resolving these collisions we define a complex data structure

associated with each entry of the MAC_TBL. Each MAC address stored in an entry of

the table needs 21-bits (Hval) to be fully identified (as described above) and along with

this value we have to store the Flow ID which needs 15-bits. This information sums to

CHAPTER 3. MAC LAYER CLASSIFICATION 43

36-bits and should be stored in the memory. These 36-bits force the memory word to

be at least 36-bits. If we use on-chip memories the word size is not a problem but in

case of off-chip memories we have to find a commercial solution that matches our

requirements. Fortunately, 36-bits is a popular word size of many SRAM vendors.

In the case where only one MAC address is saved in a table entry we can save

the Flow ID in the 15 MSB of the word and Hval in the 21 LSB. However, a table

entry might be empty which means that is not mapped to any MAC address, therefore

we reserve the Flow ID number 0 for this purpose. The 15 MSB of the memory word

should be set to 0 in empty entries. Moreover, a table entry may be mapped to many

MAC addresses. In the latter case, where collisions occur, we have to store a pointer

to the variable size block and the number of MACs that collide. The number of

colliding MACs can also indicates the size of the block. For the cases of collisions we

have reversed the Flow ID number 1 and store it in the 15 MSB of the word. The last

17-bits of the word are used to store the pointer to the block and the remaining 4-bits

are used to keep the number of MACs mapped in this table entry. 4-bits are enough

for the maximum number of collisions of our system as explained in subsection 3.4.1.

The format of the memory words in each case is shown in Figure 3-3.

Figure 3-3 MAC_TBL entries format

The variable size blocks also use 36-bit memory words and the format of their entries

is the same with the normal format of Figure 3-3. An example that shows the form of

the data structure for some hypothetical MAC addresses is depicted in Figure 3-4.

CHAPTER 3. MAC LAYER CLASSIFICATION 44

Figure 3-4 MAC_TBL Data structure example

Insert Operation

 An insert operation in HBCE is a relatively simple task and needs a specific

number of steps. Once a 48-bit MAC address is handled by our scheme we have first

to replace the Vendor value with our internally assigned one by accessing VID_RPL.

Then, the new MAC address of 37-bits is hashed to generate MAC_TBLindex and Hval.

The generated index is used to access MAC_TBL and get the contents of the specific

entry. The next step is to decode the Flow ID field and make the appropriate actions.

Depending on the FlowID we may just insert the MAC address or allocate extra

memory words to host the new MAC address. The complete specification of required

steps is presented in subsection 4.3.2.

Lookup Operation

 The lookup operation requires to examine a specific entry in MAC_TBL and

follow the block pointer, if applicable, to locate the specific MAC address. Locating a

MAC requires to check all the existing Hval fields. Once a 48-bit MAC address should

be looked up by our scheme we have to replace the Vendor value with our internally

assigned one by accessing VID_RPL. Then, the new MAC address of 37-bits is

hashed to generate MAC_TBLindex and Hval. The generated index is used to access

MAC_TBL and get the contents of the specific entry. The next step is to decode the

Flow ID field and make the appropriate actions. Depending on the FlowID we may

CHAPTER 3. MAC LAYER CLASSIFICATION 45

find the MAC address at once or we may follow pointers and sequentially search a

block of colliding MAC addresses. The complete specification of required steps is

presented in subsection 4.3.3.

Delete Operation

Delete operation requires to examine a specific entry in MAC_TBL and

follow the block pointer, if applicable, to locate the MAC address and remove it.

Locating a MAC requires to check all the existing Hval fields. Once a 48-bit MAC

address should be deleted we have to first replace the Vendor value with our

internally assigned one by accessing VID_RPL. Then, the new MAC address of 37-

bits is hashed to generate MAC_TBLindex and Hval. The generated index is used to

access MAC_TBL and get the contents of the specific entry. The next step is to

decode the Flow ID field and make the appropriate actions. Depending on the FlowID

we may delete the MAC address easily or we may follow pointers and remove it from

a block of colliding MAC addresses. The complete specification of required steps is

presented in subsection 4.3.4.

3.3.4 VLAN and Port Tables

Handling VLAN and Port fields is simple and requires storing the associated

15-bit Flow ID for each of the fields. VLAN is defined as a 12-bit identifier and can

be directly mapped in a 4K table called VLAN_TBL. Similartly, the port field is

defined as a 10-bit identifier and is directly mapped in a 1K table called PORT_TBL.

3.3.5 Dynamic Memory Management

Dynamic memory management in our system is needed to support the variable

blocks described when collisions occur. This mechanism handles requests for memory

allocation and deallocation of variable sizes. We have a pool of 64K adjacent memory

words intended to be used for anti-collision purposes. An operation may require

allocation of a certain number of memory words and our mechanism has to provide

the address of the first of these words. The current dynamic memory management

mechanism provides support for 2-word and 4-word blocks and is extensively

described in subsection 4.4.

CHAPTER 3. MAC LAYER CLASSIFICATION 46

In case we need larger blocks, we cannot have adjacent memory words but we

can link internally 2 or 4-word blocks by using the collision format discussed before.

This decision does not significantly degrade the performance of our design because in

both cases of adjacent and linked blocks we need to access all the memory words. The

main disadvantage of this implementation is that if we need block sizes not multiples

of 2 or 4 then we have to pay a small fragmentation overhead. Figure 3-5 depicts how

blocks can be linked together and used in HBCE.

Figure 3-5 Data structure example with linked blocks

3.4 Simulation Results and Performance
In this subsection we discuss simulation results based on synthetic MAC

address tables and present our results on storage and speed complexity. We calculate

and analyze the performance of HBCE and compare it with the traditional CRC-16

and direct mapped solutions. HBCE storage and speed performance is based on

certain assumptions for the underlying hardware and memory architecture.

3.4.1 Indexing MAC_TBL with a hashing function

Indexing MAC_TBL in HBCE is based on the hashing function proposed in

subsection 3.3.2 which hashes the modified MAC address bits. We illustrate the

performance of our function by using synthetic MAC address databases with existing

MAC vendor IDs. We generated 32K, 48K and 64K MAC address databases with

CHAPTER 3. MAC LAYER CLASSIFICATION 47

variable number of active vendor IDs, such as 256, 1500 and 4000, to test the

behaviour of our function. For the generation of the databases we used real MAC

Vendor IDs from the subset provided by OUI and appended random uniformly

distributed 24-bit values that can represent the real network cards’ serial numbers. We

calculate the maximum and average number of collisions for our scheme and compare

it with CRC-16 and direct mapping of the 16 LSBs. The simulation results are

presented in Table 3-1.

Database Size
(Active Vendors)

Index
Function

Maximum
Collisions

Average
Collisions

CRC-16 5 1,495
Direct Mapping 6 1,542 32K (256)

HBCE 6 1,490
CRC-16 6 1,476

Direct Mapping 7 1,527 32K (1500)
HBCE 5 1,483

CRC-16 5 1,482
Direct Mapping 6 1,532 32K (4000)

HBCE 5 1,481
CRC-16 6 1,732

Direct Mapping 8 1,822 48K (256)
HBCE 6 1,737

CRC-16 7 1,730
Direct Mapping 8 1,821 48K (1500)

HBCE 7 1,732
CRC-16 6 1,728

Direct Mapping 8 1,818 48K (4000)
HBCE 7 1,735

CRC-16 8 2,631
Direct Mapping 9 2,792 64K (256)

HBCE 7 2,642
CRC-16 7 2,630

Direct Mapping 8 2,765 64K (1500)
HBCE 7 2,637

CRC-16 7 2,618
Direct Mapping 9 2,771 64K (4000)

HBCE 8 2,642
Table 3-1 Indexing simulation results

 The results show that the HBCE seems a good hash function that approaches

CRC-16 performance and is better that direct mapping. The XOR function used by

both CRC-16 and HBCE provides better collisions results because in generates more

uniformly distributed indexes. The advantage of HBCE is that it requires only a small

portion from the original MAC address to be stored instead of the total 48-bits

CHAPTER 3. MAC LAYER CLASSIFICATION 48

required by CRC. It is also much simpler and less expensive to implement the HBCE

hash function in hardware. The results also show that when the number of MAC

addresses stored in MAC_TBL grows to the limits of the table, namely 64K, the

average number of collisions increases but fortunately it remains in tolerable levels.

The number of active vendors in the dataset seems that it does not influence the

performance. Moreover, the maximum number of collisions appeared during

simulations allows us to assume that 4-bits are enough for the #Collisions field which

currently supports up to 15 collisions.

Additionally to the synthetic MAC databases we use real MAC addresses from

ICS-FORTHs network and Computer Laboratory of University of Cambridge3. We

concatenate these MAC addresses to create a real database and provide the simulation

results in Table 3-2.

Database Size
(Active Vendors)

Index
Function

Maximum
Collisions

Average
Collisions

CRC-16 2 1,023
Direct Mapping 2 1,031 1611 (195)

HBCE 2 1,019
Table 3-2 Real database simulation results

This small sample of real MAC addresses still shows that our hashing function

is performing very well and can be efficiently used on a real system such as a central

L2 switch of a big institution.

3.4.2 Storage Requirements

We calculate the total storage requirements of HBCE for the synthetic

databases based on the collisions produced in each case and assume that all the rules

are stored in 36-bit wide words. The collisions are handled by the dynamic memory

management system described in subsection 3.3.5 and thus apart from the static tables

used we have to calculate the number of 2-word and 4-word blocks required. The size

of the static tables is demonstrated in Table 3-3.

Table Entries Total Bytes
MAC_TBL 65536 294912
VLAN_TBL 4096 18432
PORT_TBL 1024 4608
VID_RPL 8192 36864

Total 78848 354816 (346 Kb)
Table 3-3 HBCE static tables memory

3 We kindly thank the network administrators for providing us with this valuable information.

CHAPTER 3. MAC LAYER CLASSIFICATION 49

In Table 3-4 we present the final storage requirements of HBCE for each database,

and include in our calculations the collision blocks linked in MAC_TBL. We also

present the storage requirements if CRC-16 was the hashing function for the same

databases. Note that in the CRC case we need two memory words for each MAC

address because we need to keep the 37-bit internal MAC address and the

corresponding 15-bit FlowID.

Database Size
(Active Vendors)

Static Tables
(Kbytes)

Collision Blocks
(Kbytes)

HBCE Total
(Kbytes)

CRC Total
(Kbytes)

32K (256) 346 58 404 634
32K (1500) 346 57 403 634
32K (4000) 346 58 404 634
48K (256) 346 120 466 788
48K (1500) 346 120 466 787
48K (4000) 346 120 466 787
64K (256) 346 194 540 947
64K (1500) 346 194 540 948
64K (4000) 346 195 541 946
1611(195) 346 0,1 346,1 360

Table 3-4 HBCE final storage requirements

We can see that half megabyte is enough for HBCE to store 64K MAC

addresses and support QoS. Moreover, we have 36% - 42% better storage

requirements than the equivalent CRC-16 solution. Note also, that although we have

assigned 64K adjacent memory words (288 Kbytes) for collision resolving only 70%

of this space is actually used which means that it is possible for our scheme to support

more than 64K MAC addresses. The cost of supporting even more MAC addresses

would naturally be an increase in the average number of collisions.

3.4.3 Lookup performance

The lookup performance of HBCE is based on the total number of memory

accesses required to find a match in the tables. This a performance metric very

frequently used in such schemes. VLAN_TBL and PORT_TBL are direct mapped and

therefore the Flow ID can be found with a single access in the appropriate table.

MAC_TBL is the most critical table for the performance of HBCE since collisions

may occur and we have to lookup sequentially all the colliding MAC addresses. For

every incoming MAC address we have first to replace the original vendor ID with our

internally assigned one. Therefore we need a single memory access in VID_RPL, then

the MAC_TBL index is generated based on the modified MAC address. The number

CHAPTER 3. MAC LAYER CLASSIFICATION 50

of accesses required to resolve a MAC address also depends on the number of

collisions that have occurred. According to Table 3-1 the worst case number of

memory accesses for 64K MAC addresses is 8 but the average number is 2,64 which

is fairly smaller. In Table 3-5 we present the summary of worst and average case

memory accesses for each case.

Active MAC
Addresses

Average Case Worst Case

32K 2,49 7
48K 2,73 8
64K 3,64 9

Table 3-5 HBCE total number of memory accesses

Supported Link Speeds

According to our lookup performance we can calculate the efficiency of

HBCE as a classification engine in a high speed L2 switch. To calculate the network

performance we have to assume a certain speed for the memory we use and a

pipelined hardware implementation that can provide one memory access per cycle.

The results we present assume 2 possible memory configurations:

• 200Mhz off-chip synchronous SRAM

• 400Mhz on-chip synchronous SRAM

We also assume that the worst case scenario for HBCE is when L2 transports

minimum sized Ethernet packets (64 bytes). The summary of the supported link

speeds are presented in Table 3-6.

Off-chip SRAM 200Mhz On-Chip SRAM 400Mhz Active MAC
Addresses Average

(Gbps)
Worst Case

(Gbps)
Average
(Gbps)

Worst Case
(Gbps)

32K 41,2 14,6 82,2 29,3
48K 37,5 12,8 75,0 25,6
64K 28,13 11,4 56,2 22,8

Table 3-6 HBCE network performance

The network performance presented in Table 3-6 allows HBCE to be used in a

high speed switch that can support many high speed ports. The average case of a 64K

MAC database demonstrates that our scheme can be used in a switch/concentrator

consisting of 36 x 1Gbit ports and 2 x 10Gbit port or other combinations such as 16 x

1Gbit ports and 4 x 10Gbit ports.

CHAPTER 4. HARDWARE IMPLEMENTATION OF HBCE 51

4 Chapter 4

Hardware Implementation of HBCE

In this chapter we present a reference hardware implementation of the HBCE

MAC layer classification scheme that was described in Chapter 3. We provide a

detailed description of all the internal blocks of the system and the hardware resources

utilized. We also present the speed and silicon area estimations of the final design. We

decide to implement the final design in an FPGA platform to prove the feasibility and

scalability of the architecture, even when limited hardware resources are available.

The FPGA platform we use is a Xilinx Virtex II Pro [32] with an external Cypress

NoBL (ZBT) SSRAM [33].

4.1 HBCE Organization
HBCE involves many internal blocks to implement the required functionalities.

Figure 4-1 illustrates the internal organization of HBCE and the external interfaces.

The central operation of the system is handled by a Main Control Block

(HBCE_MCB) which receives commands from the OPB_INF block. OPB_INF is an

implementation of Xilinx OPB Bus slave interface [34]. Upon a reception of a

command HBCE_MCB instructs the MAC_VID block to make the vendor ID

replacement and then provides the modified MAC address to MAC_HSH in order to

perform hashing in the data. When the hashed values are ready then HBCE_MCB

performs the appropriate actions so as to insert, lookup or delete a MAC address or a

VLAN or a Port in the data structure. HBCE_MCB interfaces with the memory

through the memory handler (MEM_HDLR) and the memory controller

(MEM_CTRL). The MEM_HDLR implements the dynamic memory management

scheme described in section 4.4 by employing several free-lists and the MEM_CTRL

is the actual low level memory interface. When the final FlowID is resolved then it is

returned through the OPB_INF block to the instructor of the initial command.

CHAPTER 4. HARDWARE IMPLEMENTATION OF HBCE 52

Figure 4-1 HBCE Internal organization and block diagram

4.2 OPB_INF
OPB_INF has an FSM to implement the OPB Bus slave interface timings in

order to have interconnection with the peripheral Bus that is widely used in Xilinx

FPGA platforms. This interface has a 32-bit address bus and a 32-bit data bus and

supports read and write operations on specific addresses that correspond to actual

block registers. OPB_INF receives read and write commands to internal registers

from four parallel processing units (PPUs) and provides the result to the

corresponding instructor unit through BRAM interfaces. The signals of the interface

and their descriptions are shown in Table 4-1.

Signal Length In/Out Description
i_opb_select 1 I Initiates the transaction.
i_opb_rnw 1 I Indicates read or write.
i_opb_be 4 I Byte enable for the data.
i_opb_seqaddr 1 I Sequential address transactions.
i_opb_abus 32 I Incoming Address
i_opb_dbus 32 I Incoming Data
o_opb_xferack 1 O Transaction acknowledge.

CHAPTER 4. HARDWARE IMPLEMENTATION OF HBCE 53

o_opb_errack 1 O Error acknowledge.
o_opb_toutsup 1 O Timeout suppress.
o_opb_retry 1 O Request retry.
o_opb_dbus 32 O Outgoing Data
o_hbce_req 1 O Request for HBCE operation
o_hbce_opcode 3 O Opcode of operation
o_hbce_addr 48 O MAC address data
o_hbce_flow_id 15 O Flow ID data
o_hbce_vlan 12 O VLAN data
o_hbce_port 10 O Port data
o_hbce_fld_bmp 3 O Bitmap to indicate the valid data

Table 4-1 OPB_INF signals with the bus and HBCE

HBCE needs several data to start working on a MAC address, a VLAN or a Port

and all of them need to pass over the OPB bus. For this purpose, we define some

control registers that each instructor unit should fill before it starts an operation. The

control registers defined are the following:

• ConfReg0 : It contains the PPU number that instructs the commands and the

valid parts of the command. The fields of the register are:

Address: ADDRHI & 0x10000

31:11 10:8 7:2 1:0
Reserved Rule Bitmap Reserved PPU number

PPU number: Is a 2-bit field that indicates which of the 4 PPUs instructed

the command.

Rule Bitmap : Is a 3-bit that indicates which parts of the incoming rule are

valid. Bit(10) indicates that MAC is valid, Bit(9) indicates that VLAN is

valid and Bit(8) indicates that port is valid.

• ConfReg1 : It contains the 32 MSB of the incoming 48-bit MAC Address.

The fields of the register are:

Address: ADDRHI & 0x10001

31:0
MAC Address [47:16]

• ConfReg2 : It contains the 16 LSB of the incoming 48-bit MAC Address. The

fields of the register are:

Address: ADDRHI & 0x10002

31:16 15:0
Reserved MAC Address [15:0]

CHAPTER 4. HARDWARE IMPLEMENTATION OF HBCE 54

• ConfReg3 : It contains the Flow ID of the rule to be inserted. The fields of the

register are:

Address: ADDRHI & 0x10003

31:15 14:0
Reserved Flow ID

• ConfReg4 : It contains the values of the incoming VLAN and Port. The fields

of the register are:

Address: ADDRHI & 0x10004

31:28 27:16 15:10 9:0
Reserved VLAN Reserved Port

Access to these registers is achieved with normal OPB reads or writes to the address

of each register. Using these registers we also define the commands for HBCE that

can be given through the OPB Bus. The commands are the following:

• InsertKey: This command aims to be used for rule insertion in the database

and results in insert operation requests to HBCE. Before this command is

initiated the appropriate configuration registers (ConfReg0-4) should be

written with the desired values.

Address: ADDRHI & 0xA0000

OPB Command: Read

• SearchKey: This command should be used to lookup a given set of MAC,

VLAN, PORT values in the data structure and results in lookup operation

requests to HBCE. Before this command is initiated the appropriate

configuration registers (ConfReg0-4) should be written with the desired

values.

Address: ADDRHI & 0xC0000

OPB Command: Read

• DelKey: This command should be used to delete a rule given the MAC

address, or VLAN or Port of the rule and results in delete operation requests to

HBCE. Before this command is initiated the appropriate configuration

registers (ConfReg0-4) should be written with the desired values.

Address: ADDRHI & 0xC0000

OPB Command: Write

CHAPTER 4. HARDWARE IMPLEMENTATION OF HBCE 55

• WrVendor: This command aims to be used on the initialization of the block

to fill the MAC vendor replacement tables with the appropriate values. The

range of valid addresses is: 0xA0000 - 0xA0EC8

Address: ADDRHI & 0xA0000

OPB Command: Write

4.3 HBCE_MCB
 HBCE_MCB has several internal blocks that handle the operations of the

HBCE scheme as described in Chapter 3. The internal organization of HBCE_MCB is

depicted in Figure 4-2. HBCE_MCB interfaces with OPB_INF block to receive

commands and notifies it when it completes an operation. It also communicates with

MAC_VID to receive the internally modified MAC address and with MAC_HSH to

get the hashed values. Moreover the required memory communication is done over

the MEM_HDLR block where requests for read, write, memory allocation and

deallocation are given.

Figure 4-2 HBCE_MCB internal organization

CHAPTER 4. HARDWARE IMPLEMENTATION OF HBCE 56

Memory Organization and Tables

The current HBCE implementation is based on sequential accesses to

MAC_TBL and follows the pointers to the dynamically allocated nodes. Moreover in

the memory we have stored the VLAN table (VLAN_TBL), the Port table

(PORT_TBL) and the vendor assignment table (VID_RPL). All these tables and the

free memory addresses are stored in the same SSRAM. The memory word we use is

36-bits and we use at most 128K words which have been found enough during the

simulations of subsection 3.4.2. The organization of the tables in the memory and the

pool of free memory words for dynamic memory management is shown in Figure 4-3.

The first 64K words are used for MAC_TBL, the next 8K words are for VID_RPL,

the next 4K words are for VLAN_TBL and the next 1K words are for PORT_TBL.

The remaining 52224 memory words are used by the memory handler (MEM_HDLR)

to provide dynamic allocation and deallocation of memory blocks.

Figure 4-3 HBCE Memory Organization

4.3.1 MCB_CTRL

MCB_CTRL is responsible to manage the block’s operations and involves an

FSM to handle the requests for the insert, lookup and delete defined by the following

opcodes:
 2’b00 : Lookup

 2’b01 : Insert

 2’b10 : Delete

 2’b11 : Reserved

CHAPTER 4. HARDWARE IMPLEMENTATION OF HBCE 57

For each operation there is a sub-block responsible to complete it. MCB_INS is

responsible for the inserts, MCB_LUP for the lookups and MCB_DEL for the deletes.

Upon a reception of a command MCB_CTRL generates a request to MAC_VID block

in order the MAC vendor ID to be replaced and then instructs MAC_HSH to generate

the proper hash values. Then it orders one of the MCB_INS, MCB_LUP and

MCB_DEL blocks to start its operation and sets the MEM_MUX to output the

appropriate block’s requests to the memory handler.

4.3.2 MCB_INS

MCB_INS sub-block handles all the insertions in the appropriate table

depending on whether a MAC address, a VLAN or a Port rule is to be inserted.

VLAN and port insertions require a single memory access and are trivial, however

inserting a MAC address is the most complex operation and has an FSM to handle the

possible cases. After the vendor replacement and the hashing we access MAC_TBL in

the address indicated by Tindex and decode the FlowID field:
 If FlowID field is 0 we write the given Flow ID and the generated Hval.

 If FlowID field has value 1 we proceed to the following steps:

o allocate a memory block of size #Collisions + 1 ,

o we copy the contents of the old block specified by the block

pointer to the newly allocated block,

o add the new entry in the last word of the block by writing the

given FlowID and the generated Hval,

o deallocate the old block,

o update the MAC_TBL entry with the new #Collisions and the new

block pointer.

 If FlowID field has value other than 0 or 1 we do the following:

o allocate a memory block of size 2

o write the data read from MAC_TBL to the first word of the block,

o add the new entry in the second word of the block by writing the

given FlowID and the generated Hval,

o update the MAC_TBL entry by writing the FlowID field with 1, the

#Collisions field with 2 and the Block Pointer field with the

address of the allocated block.

4.3.3 MCB_LUP

MCB_LUP sub-block handles the lookups in the appropriate table depending

on whether a MAC address, a VLAN or a Port rule is to be searched. VLAN and port

lookups require a single memory access and are trivial, however looking for a MAC

CHAPTER 4. HARDWARE IMPLEMENTATION OF HBCE 58

address is a more complex operation and has an FSM to handle the possible cases.

After the vendor replacement and the hashing we access MAC_TBL in the address

indicated by Tindex and decode the FlowID field:
 If the FlowID field is 0 then we have not a match.

 If the FlowID field is has a value 1 we follow the Block Pointer and

read as many words as the #Collisions field says. During each word

access we compare the Hval field of the word with the generated one.

o If we find a match in one of the words then we return associated

the FlowID field,

o Otherwise, when the words finish and we don’t have found a match.

 If the FlowID field has value other than 0 or 1 then we compare the

Hval field of the entry with the generated one.

o If the values match we return the FlowID field of the entry,

o Otherwise we don’t have a match.

4.3.4 MCB_DEL

MCB_DEL sub-block handles the deletions in the appropriate table depending

on whether a MAC address, a VLAN or a Port rule is to be deleted. VLAN and port

deletes require a single memory access and are trivial, however deleting a MAC

address is more a complex operation and has an FSM to handle the possible cases.

After the vendor replacement and the hashing, we access MAC_TBL in the address

indicated by Tindex and decode the FlowID field:
 If the FlowID field has value 0 then delete fails.

 If the FlowID field has a value 1 we check the #Collisions Field

o If it is 2 then we find which word matches, we move the other word

to the specific TBL_MAC entry and deallocate the block. If none of

the words match then delete fails.

o If it is not 2 we follow the Block Pointer and read as many words

as the #Collisions field says. During each word access we compare

the Hval field of the word with the generated one.

• If we find a match in one of the words then we substitute this

word with the last word of the block and remove the last word.

• Otherwise, the words finish and delete fails.

 If the FlowID field has value other than 0 or 1 then we compare the

Hval field of the entry with the generated one.

• If the values match we substitute it with a word of empty

format.

• Otherwise delete fails.

CHAPTER 4. HARDWARE IMPLEMENTATION OF HBCE 59

4.3.5 MAC_VID

This sub-block receives the vendor ID value in 24-bits and finds the

corresponding internally assigned ones in 13-bits. It holds a small number of special

cases into an internal lookup table and consults the VID_RPL table if the vendor ID

does not belong to the special cases. VID_RPL is located inside the external SSRAM

and the final internal ID is found in a defined table offset and in the sub-offset

specified by the last 8-bits of the MAC vendor.

4.3.6 MAC_HSH

This sub-block receives the modified vendor ID value from MAC_VID and

the last 24-bits of the original MAC address and calculates Tindex and Hval as defined

in subsection 3.3.2. This sub-block is of minor complexity since it has only a few

XOR gates and has single cycle latency. It can be easily modified to implement a new

hashing scheme of variable latency without affecting the rest of the system.

4.4 MEM_HDLR
The MEM_HDLR sub-block provides the dynamic memory management in

our system and supports variable size blocks. MEM_HDLR is the intermediate layer

between the blocks and the memory controller MEM_CTRL to support requests for

allocation and deallocation of variable size blocks. Requests for reads or writes in the

memory are immediately forwarded to the memory controller MEM_CTRL.

We have a pool of 64K adjacent memory words intended for dynamic

operations. To support this management we use a head pointer to the pool of these

addresses, a tail pointer to the last address of this pool and a current pointer to keep

the state of the already used words. During allocation from the pool we increment the

current pointer. The deallocated blocks are placed into free-lists where each free-list

holds all the deallocated blocks of a certain size. For every free-list we keep a head,

tail pointer and a counter to keep the number of linked blocks. Linking between

multiple blocks is implemented by writing the address of the next block inside the

data of the previous block. We decide not to support unlimited free-lists for blocks of

different sizes but limit allocation and deallocation into blocks of 2 and 4 words.

During requests for allocation of a specific size block we first check if we have

available blocks in the corresponding free-list and if not then we allocate from the

CHAPTER 4. HARDWARE IMPLEMENTATION OF HBCE 60

pool. Upon deallocation, we add the deallocated block in the tail of the corresponding

free-list and increment the appropriate counter. Figure 4-4 illustrates the mechanism

of memory pool and the free-lists.

Figure 4-4 Snapshot of dynamic memory management mechanism

4.5 MEM_CTRL
The memory controller has an FSM to implement the timing described by the

Cypress ZBT SRAM datasheet [33] and provides an interface to read and write the

memory. Writes are performed in a single cycle but reads have two cycles latency

since the data outputted from the memory need to be registered in order to be safely

returned. Figure 4-5 illustrates the view of the system and highlights the read path.

The memory inserts a single cycle latency and the register another cycle. The input

data are registered because they come from an external memory interface and it is not

safe to use this input in slow logic or long routed paths. Moreover, the valid read data

are given along with an acknowledge signal that exists in the controller interface.

CHAPTER 4. HARDWARE IMPLEMENTATION OF HBCE 61

Figure 4-5 Overview of MEM_CTRL

4.6 Implementation Analysis
In this subsection we provide an analysis of the block latencies and an

estimation of the implementation cost for the reference design.

4.6.1 Latency Analysis

We calculate the minimum and the maximum number of clock cycles required

by each block to complete its operation. Many of the blocks have variable latencies

which depend on the access patterns and the data stored in the data structures.

Moreover, the blocks that access the external SSRAM for the stored data structures

have to also suffer from the latency of our memory controller. In Table 4-2 we

present the latency per block of HBCE.

Block Name Min Latency
(clock cycles)

Max Latency
(clock cycles)

OPB_INF 1 3
MCB_CTRL 1 -
MCB_INS 3 13
MCB_LUP 2 17
MCB_DEL 3 15
MAC_VID 1 3
MAC_HSH 1 1
MEM_HDLR 0 3
MEM_CTRL 1 2

Table 4-2 B2PC Blocks Latencies

CHAPTER 4. HARDWARE IMPLEMENTATION OF HBCE 62

The fact that the memory controller has latency 2 cycles for a read operation in the

external SSRAM significantly affects the performance of the blocks that perform

sequential accesses to the memory. Insert, lookup and delete operations are high

depending on the read data to decide the address of the next memory access and thus

the 2 cycle latency of the memory controller is continuously introduced. Additionally,

for the blocks MCB_INS, MCB_LUP and MCB_DEL we consider that we may have

and support at most 15 collisions and this bounds the maximum latency. According to

the number of memory accesses we calculated in subsection 3.4.3 we need for a

lookup 7,3 clock cycles on average.

4.6.2 Hardware Cost Analysis

We have used VHDL to describe the design and the results presented are the

reports from the synthesis tools. We have synthesized the design using the Synopsys

Design Compiler [35] which is the most widely used synthesis tool. We have used

UMCs 0.13µm technology library to estimate the area and the frequency of the

design. Moreover, we used the XilinX ISE tool to implement and port the design in

the FPGA.

The synthesis tool for the ASIC flow indicates that the maximum working

frequency of our design is 500Mhz.Using the synthesis tool we calculated the number

of flip-flops contained in our design and we present them per high level block in

Table 4-3 and also calculate the total.

Block Block Description Number of Flip-Flops
HBCE_MCB Main Control of HBCE 592
MAC_VID Vendor ID replacement 28
MAC_HSH Hashing the MAC address 38

MEM_HDLR Memory Handler 184
MEM_CTRL Memory Controller 43

OPB_INF OPB Bus Interface 296
Total 1181

Table 4-3 Flip-Flop count per block

The area of the total design and the equivalent gate count is presented in Table 4-4.

The equivalent gate count is calculated by considering how many 2-input NANDs can

be accommodated in this area.

CHAPTER 4. HARDWARE IMPLEMENTATION OF HBCE 63

Block Area
(mm2)

Equivalent
NAND Gates

Combinatorial 0,044 8482
Non-Combinatorial 0,054 10362

Total 0,098 18844
Table 4-4 Area estimations of HBCE

ISE tool of the Xilinx FPGA flow shows that the maximum working frequency

of our design is 100 Mhz. The tool reports the occupied resources after a full back-end

FPGA flow while occupying optimizations to remove redundant logic or replicate

logic to improve speed. The final results are shown in Table 4-5.

Resource Resource count

Used 4 input LUTs 2371

Slice Flip Flops 1060

Table 4-5 FPGA resource allocation

4.6.3 HBCE Hardware Performance

Considering that we have a 100MHz clock, the external memory works on the

same frequency and the average lookup time is 7,3 clock cycles then, the FPGA

prototype design of HBCE supports at worst case 7 Gbps.

CHAPTER 4. HARDWARE IMPLEMENTATION OF HBCE 64

CHAPTER 5. BITMAP ORIENTED STRIDES 65

5 Chapter 5

Bitmap Oriented Strides

 In this chapter we present Bitmap Oriented Strides (BOS), our algorithm for

Longest Prefix Matching (LPM). We developed an algorithm for LPM, suitable for

pipelined hardware implementation which can be used in an environment that prefix

lookups are essential. Applications of this kind are routing lookups, forwarding and

packet classification. BOS is a multi-bit trie algorithm that uses bitmaps across strides

and involves complex data structures and certain optimization techniques so as to

support fast and storage efficient IPv4 prefix lookups. The design of BOS is based on

observations and simulations upon real IPv4 routing prefixes. We also strive after a

scheme that can support incremental updates in modest time and storage.

5.1 Analysis and Description of BOS Algorithm
The BOS algorithm design and analysis is based on some very important

observations that were made after extended literature study and routing tables’

analysis.

5.1.1 Routing Table Analysis

We collected several routing tables from backbone routers of the Internet that

are available in IPMA [36] and analyze them in statistical manner. We counted

lengths of the prefixes included in those routing tables and observe the distribution

shown in Figure 5-1. Table 5-1 shows values collected from the tables’ analysis. It is

clearly shown that more than 99% of the prefixes have lengths in the interval between

16 and 24 and more that half of the total prefixes have length equal to 24. This

distribution has been found to be constant over time and stable between routing tables

of various sizes, hence we can use it as a guide for our algorithm.

CHAPTER 5. BITMAP ORIENTED STRIDES 66

AADS
2000/10

MAE-EAST
2000/01

PAIX
2000/10 Prefix

Length
Prefix Count % Prefix Count % Prefix Count %

0 0 0,00 0 0,00 0 0,00
1 0 0,00 0 0,00 0 0,00
2 0 0,00 0 0,00 0 0,00
3 0 0,00 0 0,00 0 0,00
4 0 0,00 0 0,00 0 0,00
5 0 0,00 0 0,00 0 0,00
6 0 0,00 0 0,00 0 0,00
7 0 0,00 0 0,00 0 0,00
8 14 0,04 28 0,05 25 0,03
9 2 0,01 4 0,01 4 0,00
10 1 0,00 5 0,01 5 0,01
11 0 0,00 9 0,01 9 0,01
12 5 0,01 28 0,05 29 0,03
13 13 0,03 36 0,06 60 0,07
14 49 0,12 130 0,22 174 0,19
15 95 0,24 224 0,37 289 0,32
16 2726 6,84 5610 9,35 6693 7,33
17 450 1,13 625 1,04 933 1,02
18 849 2,13 1284 2,14 1889 2,07
19 2833 7,10 4195 6,99 6023 6,60
20 1670 4,19 2321 3,87 3875 4,25
21 1553 3,89 2671 4,45 3932 4,31
22 2329 5,84 3757 6,26 5900 6,46
23 2984 7,48 5175 8,62 7883 8,64
24 19846 49,77 33691 56,15 52679 57,71
25 428 1,07 28 0,05 258 0,28
26 555 1,39 54 0,09 323 0,35
27 421 1,06 9 0,01 190 0,21
28 625 1,57 13 0,02 54 0,06
29 307 0,77 12 0,02 26 0,03
30 761 1,91 84 0,14 18 0,02
31 25 0,06 0 0,00 0 0,00
32 1335 3,35 11 0,02 7 0,01

Total 39876 60004 91278
Table 5-1 Routing Table Data

It is obvious that we wanted to design an algorithm that takes into

consideration the form of routing tables and exploit these observations. Since most of

the prefixes are in the interval between 16 and 24 we tried to optimize the data

structure so as to handle these prefixes as fast and as efficient as possible. Since we

would like to “make the common case fast” we concentrated our efforts on the

lookups contained in this particular interval.

CHAPTER 5. BITMAP ORIENTED STRIDES 67

Figure 5-1 Routing Table Distribution

5.1.2 Trie-Based Solutions

Many algorithmic solutions on the LPM problem make extended use of tries

and traverse tree data structures to find the matching prefix. Unibit tries check one bit

at a time and follow the nodes until no matching bit is found. Schemes of this type

have a worst case lookup of 32 memory accesses for IPv4 (since the IPv4 address

fields are 32 bits long) and spend also lot of memory to save the pointers for the next

nodes. On the other hand, multi-bit tries traverse several bits at a time and this

provides faster searches. For example if we check 4 bits at a time (4-bit strides) then

the worst case is 8 memory accesses. In these tries, problems arise when the prefixes

are not multiples of the stride length. Solution to this problem is prefix expansion as

described in [11]. CPE generates many prefixes and leads to great memory waste

(especially when the stride length grows) and to non deterministic update times.

Other, LPM schemes from literature like Lulea [13] tried to solve the memory

waste of CPE by using compressed bitmaps to represent strides. They use strides of

16,8 and 8-bits consecutively to represent the 32-bit IPv4 address space. The first

16bits are used as an index to a 64K table and the next 8-bit strides are represented by

their own bitmap algorithm where each stride requires 32 bytes nodes even if only 1

prefix exists in the 256 space. A lookup is performed at worst case with 9 memory

accesses but incremental updates to this scheme are inherently slow. Lulea is the most

storage efficient scheme presented in literature so far.

CHAPTER 5. BITMAP ORIENTED STRIDES 68

5.1.3 Memory technologies and wire speed

The routing lookup operation is very important in the latest switching/routing

equipments and networks. The need for wire-speed means that a routing decision

should be made in time less that 40ns (worst case in 10Gbps) and of course this

cannot be done efficiently in software. Moreover the routing tables’ sizes require the

use of big (dense) and fast memories that can provide high bandwidth.

Today’s memory technology provides fast SRAMs and high-throughput and

large DRAMs but a designer must make the right decision given the requirements of

his system. DRAMs can be big (256Mbytes) and relatively cheap but their access time

is poor (~60ns) when is to be used in routing lookup functions. SRAMs on the other

side are a lot faster with access times smaller than 5ns but large capacity SRAMs cost

a lot. Additionally, SDRAMs are highly suggested for sequential accesses. Under

these conditions they provide high bandwidth but in the case of trie-based algorithms

the use of pointers to random addresses makes this choice not practical. Contrarily

SRAMs give the flexibility of fast random accesses and constant bandwidth.

5.1.4 BOS approach

In our approach to find a solution to the LPM problem we will use all the

above observations to extract an algorithm that will have the following properties:

1. Easily implementable in hardware

2. Moderate algorithmic complexity

3. Fast lookups times for common case

4. Decent storage requirements and affordable for low budget designs

5. Deterministic and bounded incremental update times

In order to cope with the above requirements we ended up with BOS algorithm which:

• Uses strides and multi-bit trie nodes in order to traverse several bits at a time

and produce fast lookups.

• Employs data structures with multi-bit nodes optimized to perform efficiently

in the prefix interval 16 to 24.

 Its nodes are represented with bitmaps that can be processed fast in hardware

and require small storage.

 The updates in the nodes are executed by well defined routines and in

deterministic time.

CHAPTER 5. BITMAP ORIENTED STRIDES 69

BOS Trie Nodes

The key ingredient of BOS is a trie node that can hold prefixes of lengths from 0

to 7 bits. This trie has 8 levels and therefore the total number of possible prefixes that

can be accommodated are 28-1=255. We can use a bitmap to represent all the possible

prefixes and this needs at least 255 bits as presented in Lulea [13]. According to this

representation every prefix is correlated with a specific bit position inside the bitmap.

If a specific bit is set then it is denoted that the corresponding prefix exists.

Consider a trie that can accommodate prefixes with lengths from 0 to 3 bits as

shown in Figure 5-2. The prefix with length 0, namely *, is assigned with number 0,

the prefix with length 1 and the prefix bit set to 0, namely 0*, is assigned with

number 1, the prefix with length 1 and the prefix bit set to 1, namely 1*, is assigned

with number 2 and so on as Figure 5-2 presents. Moreover, the level of the trie where

a specific prefix is located is equal to its length.

Figure 5-2 Prefix trie that supports prefixes up to length 3

We can derive a formula that correlates the length and the decimal value of a prefix

with a number. Prefix with length 0 is assigned number 0 and all the other prefixes

use the following formula:
PrefixNO = PrefixValue + 2

PrefixLength - 1

The assigned prefix number can be used to indicate a specific bit position inside

the bitmap. The bitmap that can accommodate all prefix lengths from 0 to 7 needs 255

bits and this means that even for a single prefix in this range, the trie node needs 32

bytes. We can prevent this memory waste and partition this trie in 17 subtries where

each subtrie can support prefixes with lengths 0 to 3 as shown in Figure 5-3. We store

the prefixes that have length 0 to 3 in the subtrie numbered 0 and the prefixes of

greater length, namely 4 to 7, to an appropriate subtrie. The appropriate subtrie for the

CHAPTER 5. BITMAP ORIENTED STRIDES 70

prefixes that have length 4 to 7 is defined by the 4 MSB of the prefix. The prefixes

that have their 4MSB equal to 0000 are stored in the subtrie numbered 1, the prefixes

that have their 4MSB equal to 0001 are stored in the subtrie numbered 2 and so on as

Figure 5-3 presents.

Figure 5-3 Trie partitions

We can derive a formula that correlates the length and the MSB of a prefix with a

subtrie number. Prefixes with length 0 to 3 are stored in the subtrie 0 and for the

prefixes of lengths from 4 to 7 we use the following formula to find the subtrie

number:
SubtrieNO = PrefixValue[0:3] + 1

BOS, now uses the subtrie partitioning described in the last paragraph and the tries

that support 0 to 3 length prefixes to represent the trie node that can support 0 to 7

length prefixes. To store efficiently the information about the subtries we define a

bitmap (TrieBmp). In TrieBmp we correlate each bit with a specific subtrie according

to the SubtrieNO formula. When a bit inside TrieBmp is set then it means that the

corresponding subtrie has a least 1 prefix active. For every active subtrie we need the

information about the included active prefixes, therefore we define another bitmap

(PrefixBmp). In PrefixBmp we correlate each bit with a specific prefix according to

the PrefixNO formula. When a bit inside PrefixBmp is set then it means that the

corresponding prefix is active.

The partitioning of 8-bit tries into smaller 4-bit subtries gives the flexibility to

save only the necessary prefix bitmaps (active) and not all of them. The trie bitmap

needs 17 bits and each prefix bitmap needs 15 bits. This partitioning can be efficiently

implemented by the dynamic memory management scheme discussed in subsection

CHAPTER 5. BITMAP ORIENTED STRIDES 71

3.3.5 because thevariable number of prefix bitmaps requires pointers to variable size

blocks.

The associated information for each prefix is considered an N-bit quantity (the

data associated with each rule), say 16-bits, and should be stored along with the prefix

bitmap. Since more that one prefixes could be active we also need dynamic pointers

to variable size blocks. So along with the prefix bitmap we save a pointer to the

associated prefix data.

To locate the subtrie of a specific prefix in the trie bitmap we use the subtrie

formula below, where Tindex indicates the bit position of the actual subtrie number.

 If the prefix has length 0-3 then :

Tindex = 0

 If the prefix has length 4-7 then :

Tindex = prefix[0:3] + 1

To locate a specific prefix in the prefix bitmap we present the formula shown

below, where Pindex indicates the bit position of the actual prefix number in a specific

subtrie.

 If Tindex = 0

o If the prefix inside the trie has length 0 then :

Pindex = 0

o If the prefix inside the trie has length 1 then :

Pindex = prefix[0] + 1

o If the prefix inside the trie has length 2 then :

Pindex = prefix[0:1] + 3

o If the prefix inside the trie has length 3 then :

Pindex = prefix[0:2] + 7

 If Tindex != 0

o If the prefix inside the trie has length 0 then :

Pindex = 0

o If the prefix inside the trie has length 1 then :

Pindex = prefix[4] + 1

o If the prefix inside the trie has length 2 then :

Pindex = prefix[4:5] + 3

o If the prefix inside the trie has length 3 then :

Pindex = prefix[4:6] + 7

In order to be able to efficiently search the blocks that are generated by our

dynamic memory management scheme we have to have the prefix bitmaps and the

associated prefix information sorted inside the blocks. The prefix bitmap for the first

CHAPTER 5. BITMAP ORIENTED STRIDES 72

active subtrie should be placed first in the variable size block, the second in the

second position etc. Moreover this indicates that we should know the number of set

bits in the bitmap, fortunately this is a trivial operation for hardware to perform. The

requirement for dynamic memory management generates an additional complexity in

insertions or updates since the variable size blocks need to be resized appropriately

and put sorted. This operation can be handled easily since resizing and sorting is

limited to 17 nodes.

To illustrate the data structures used by BOS we introduce an example with

the prefixes shown in Table 5-2. The two leftmost columns have the actual prefixes

and the associated information and the two rightmost columns show the internally

represented subtrie and prefix number pairs. As calculated, a general view of the data

structure needed to store the prefixes of the example is shown in Figure 5-4.

Prefix
[0:6]

Associated
Info

Subtrie
Number

Prefix
Number

00001* 23 1 2
0000101* 47 1 12
0000110* 7 1 13
01* 15 0 5
100* 121 0 11
1001* 36 10 0
1100* 51 13 0
110011* 3 13 6

Table 5-2 Prefix example

Figure 5-4 Trie data structure example

CHAPTER 5. BITMAP ORIENTED STRIDES 73

For a given 7-bit value, BOS should first find the candidate subtries that could match

a certain prefix and then the candidate prefixes, inside the subtrie, that could also

match. Tracking the longest one is the solution. The candidate subtries are always

two:

 T1index= 0 and

 One of the subtries 1-16 depending on the value

T2index = value[0:3] + 1.

Inside the 2 subtries the candidate prefixes are four:

 for T1index :

o P1index = 0

o P2index = value[0] + 1

o P3index = value[0:1] + 3

o P4index = value[0:2] + 7

 for T2index:

o P1index = 0

o P2index = value[4] + 1

o P3index = value[4:5] + 3

o P4index = value[4:6] + 7

We check the bit positions in TrieBmp for the 2 subtries and if both exist we give

priority to the second subtrie which produces longer prefixes. Inside a matching

subtrie we check all the bit positions in PrefixBmp for the 4 prefixes by giving

priority to the fourth prefix which is the longest. The associated information for a

matched prefix is retrieved by the node indicated by the pointer stored at the node of

the matched prefix.

BOS Tables

BOS scheme uses the trie nodes for all the distinct 7-bit prefix lengths inside the

32-bit address space. BOS in its simplest form (BOS-SIMPLE) has trie nodes for the

following prefix intervals:

i. 0-7,

ii. 8-15,

iii. 16-23,

iv. 24-31 and

v. 32

CHAPTER 5. BITMAP ORIENTED STRIDES 74

To hold the root nodes for the prefixes in each distinct interval, BOS-SIMPLE

uses several tables as shown in Figure 5-5. For the interval 0-7 we have a single entry

for root called TBL0. For interval 8-15 we have 28 possible roots, therefore we use a

256-entry table called TBL8 and the indexing is done with the first 8-bits of the

prefix. For interval 16-23 we use a 216=65536 table called TBL16 and uses the first

16-bits of the prefix as index. For interval 24-31 we don’t use 224 entries because it

would lead to great storage waste since no routing table could have 16777216 prefixes

in this interval. Instead we use 216 entries in table TBL24 and indexing is done by

hashing the first 24-bits of the value. The collisions that occur due to hashing are

handled with pointers to variable size blocks. For the 32 bit prefixes we use only 212

entries in table TBL32, since most routing tables have few entries in this interval, and

addressing is done by hashing. Collisions in this table are also handled with variable

size blocks.

Figure 5-5 BOS Tables

Note that all distinct intervals are independent and this gives us the flexibility

to start searching for a prefix from the middle of the address space. Searching

sequentially would require to lookup all 5 tables but we can use a binary search type

of access and limit the lookups to 3 or less. Furthermore, we can implement parallel

searches in hardware if each table is stored in a separate memory.

CHAPTER 5. BITMAP ORIENTED STRIDES 75

Indexes in TBL24 are generated by the use of the XOR function in the first 24

bits of the prefix and a 16-bit address is produced as follows:
TBL24index = prefix(8:23) xor (0000,prefix(0:7),0000)

Indexes in TBL32 are also generated by XOR function and the 12-bit address is

produced as follows:
TBL32index = prefix(4:15) xor prefix(20:31)

The decision for the hashing functions described above is presented in Section 5.3.

To handle the collisions in TBL24 we use pointers to variable size blocks as

mentioned above. The collision resolving nodes save the number of prefixes that

collide and a pointer to the variable size block, as described in subsection 3.3.3. To

identify a prefix in the block we need to save some information to distinguish between

the prefixes. Fortunately, we don’t need to save all 24-bits and we take advantage of

the fact that the address has been produced by the actual prefix. Therefore a prefix

located address A of TBL24 can be reproduced by the 16-bits of A and the first 8-

bits(value) of the prefix as follows:
 Prefix(0:7) = value(0:7)

 Prefix(8:23) = A(0:15) xor (0000,value(0:7),0000)

It is now clear that to resolve collisions, the quantity that must be kept in the variable

size block is dependent of the hashing scheme, in our case the first 8-bits of the prefix.

Additionally we keep a pointer to the basic trie node starting from this root.

In TBL32 collision handling is done the same way as in TBL24 but the

quantity that must be kept here is 20-bits and there is no need for a pointer to a trie

node (no longer prefixes exist) but only store the associated information itself. A

prefix located in address A of TBL32 can be reproduced by the 12-bits of A and the

first 20-bits(value) of the prefix as follows:
 Prefix(0:19) = value(0:19)

 Prefix(20:31) = A(0:11) xor value(4:15)

BOS-BASIC searches the tables in specific sequence in order to minimize the

number of accesses. Since 99% of the prefixes exist in the intervals 16-23 and 24-31,

it is more likely to find the longest match there by examining the associated tables. At

first we look in TBL16 and if a prefix match occurs then we can search in TBL24 and

TBL32 to find a matching prefix. If lookups in TBL16 or TBL24 or TBL32 cannot

find a match then we proceed to search TBL8 and if there is not any match again we

finally search in TBL0. The sequence of lookups is the following:

CHAPTER 5. BITMAP ORIENTED STRIDES 76

TBL16 → TBL24 → TBL32 → TBL8 → TBL0

If after TBL32 a match was produced then our lookup process does not proceed to the

next tables.

5.2 BOS optimizations
BOS, as described above, has some weaknesses in terms of storage efficiency

since it contains redundant information in some special cases. This section proposes

some optimizations in the basic scheme and explores the trade-off between storage

requirements and the number of memory accesses. Moreover we quote some

modifications that could allow BOS to become the single field solution for the general

decomposed N-dimensional packet classification, described in detail in Chapter 6.

5.2.1 Prefix Node Optimization

We observe an irritating feature of the trie node data structure that keeps the

associated prefix node information. In case only a single prefix is active inside a

subtrie, we need to store a pointer to the prefix information node and then acquire

these data. This waste can be avoided by keeping the associated data in the node itself

instead of the pointer to the data. This modification requires a flag to indicate that

there is only a single prefix. Additionally, instead of keeping the prefix bitmap we can

only keep the prefix number. The prefix number needs 4-bits and the flag 1-bit. In

total, now, we use 5-bits instead of 15 required for the bitmap. By this trick we save

one memory word that would keep the associated data and we also save the extra

memory access to acquire these data.

5.2.2 Trie Node Optimization

In the cases where only one prefix is active inside the entire trie then there is

only one subtrie active. Normally we should store a pointer to the prefix node and

then lookup for the prefix number and the associated data. We can improve this case

and save memory by keeping all the information in the basic trie node, similarly to

5.2.1. Instead of the 17-bit trie bitmap and the prefix node pointer, we keep the subtrie

number in 5-bits, the prefix number in 4-bits and an extra flag to indicate this special

case. Moreover, we don’t save a pointer to prefix node but the actual associated prefix

CHAPTER 5. BITMAP ORIENTED STRIDES 77

data. This optimization saves the memory of the prefix node and the extra memory

access.

5.2.3 TBL16 Optimization

BOS adopted the use of TBL16, which has 64K entries (216), in order to reach

the prefix interval 16 to 23 very fast. This practice is very common in literature

[13][37][38] although it could waste memory since many of the 64K entries could be

empty. To reduce the storage requirements of BOS the large 64K static tables TBL16

and TBL24 should probably be shrinked. At first glance TBL16 is likely the most

underutilized table since not all the entries could be roots of tries. We can save

memory by reducing TBL16 table into a smaller one, say 16K entries, and use

hashing for indexing. For indexing now we need 14-bits and we have to produce each

index by the first 16-bits of the prefix. Hashing the address into 14-bits requires

saving 2-bits in the entries to identify a root of prefixes.

In this hashing we can take advantage of the fact that CIDR [2] aggregates

consecutive routing prefixes from the early class-based addressing and gives us

information about the first 2-bits of each address. When aggregating subnets from the

old Class A addresses then bits(0:1) have the value 00 or 01 but these prefixes would

have length lower that 8, so they don’t affect TBL16. Similarly for aggregation of

Class B subnets, the addresses bits(0:1) have the value 10 but their prefix length is

lower than 16. Aggregation of Class C subnets has value 11 in bits(0:1) of the address

and the prefix lengths exceeds 16. The prefixes from Class C addresses well affect

TBL16 and it is likely that most roots in TBL16 come from these addresses. However,

routing protocols like BGP [39] implement, what is called route aggregations, so as to

be efficient. This route aggregation is generally based on the associated prefix

information (namely NEXT_HOP) and can create prefixes longer than 16 from Class

A and Class B addresses. Because CIDR is widely used we decided to use bits (2:15)

for indexing of the TBL16 table. Therefore we define a new index for TBL16 which

is:
TBL16index = prefix(2:15)

The performance of the above indexing scheme is discussed in Section 1.3.

 In case of collisions inside TBL16 we can use the solution of sorted roots

inside variable size blocks as described for TBL24 and TBL32. In TBL16 the

maximum number of collisions is limited to 4 and 2-bits can identify the root of the

CHAPTER 5. BITMAP ORIENTED STRIDES 78

prefixes. It is obvious that by reducing TBL16 we trade the storage for the number of

memory accesses to locate a specific root for prefixes in the interval 16-23. We make

TBL16 4 times smaller by sacrificing one possible extra memory access and a pointer.

 Reduction of TBL16 is also helpful if BOS is to be used in decomposed N-

dimensional classification. The number of rules-prefixes in classification databases is

notably smaller than in routing tables. In related literature [40][20][26] the number of

rules is lower than 2000 and the number of distinct prefixes is even smaller. This

denotes that smaller TBL16 can produce better memory utilization. If the target

application is packet classification with a small number of rules, we can even shrink

TBL16 to 4K entries.

5.2.4 TBL24 and TBL32 Optimization

BOS assigns a 64K entry table for TBL24 to save the trie nodes for the roots

of prefix lengths equal or longer than 24. In order to avoid underutilization of this

table we propose a more fine-grained approach with dynamic memory management.

We decide to link the entries of TBL16 with the entries that extend further than 24, so

as to share the common 16-bit prefix, by using dynamic pointers to 256 entries’

blocks (BLK256). Every entry of TBL16 has a pointer to the basic trie node for

lengths 16-23 and a pointer to a 256 block that saves roots for lengths 24-31 if

applicable.

For prefixes that have length 24 or more we allocate a BLK256 and link to the

corresponding entry of TBL16. The first 16 bits of the prefix index TBL16 (or the 14

rightmost from that first 16 according to TBL16 optimization) and the next 8 bits

index the corresponding BLK256. When a new prefix of length greater or equal to 24

is inserted we first check the corresponding entry in TBL16 and if a BLK256 is linked

we insert the prefix in the specific BLK256 otherwise we allocate a new block.

There are cases where a BLK256 is underutilized because it contains much

less than 256 entries. To avoid this possible underutilization we can assign the same

BLK256 in more that one entries of TBL16. This means that the prefixes in this block

could have the first 16-bits different, so this should be the information that we save in

BLK256 to distinguish the prefix roots. Roots inside BLK256 are still indexed with

the last 8-bits and every entry has a pointer to the associated trie node. The scheme

assigns a BLK256 to more than one TBL16 entries and has counters to keep the

CHAPTER 5. BITMAP ORIENTED STRIDES 79

utilization of the block. If a BLK256 is highly populated and reaches its limits,

namely 256 roots, then the scheme assigns a new block for the forthcoming 24 length

roots.

When roots with different first 16-bits are inserted in a BLK256 it is possible

that we have collisions since indexing is done only by the last 8-bits. Handling these

collisions is trivial with our variable size blocks but it could lead to extra memory

accesses. We can trade the collision resolving accesses by setting the utilization factor

of BLK256 to lower limits. We can decide not to have fully populated BLK256 but

allocate new block when the number of roots inside a BLK256 is lower than 256.

These limits can be 224 or 192 or 160 or 128 which means that many entries in the

block can be empty. This waste can help us have fewer collisions in the blocks and

therefore fewer memory accesses.

The same strategy is used for TBL32 which is transformed into multiple

blocks of BLK256 linked to the corresponding BLK256 blocks containing the items

with length 24. This multi-linking scheme gives us the flexibility to save the

obligatory memory accesses to TBL24 and TBL32 when no prefix exists. Now

lookups start at TBL16 and if a link to further roots exists then we lookup to the

corresponding BLK256. Further access to 32 length nodes is done only if a link from

a BLK256 that holds 24 length nodes exists. TBL8 and TBL0 are now accessed only

if no entry matches in TBL16 and no block for 24 roots exists. The form of BOS after

the table optimizations is shown in Figure 5-6.

Figure 5-6 BOS with BLK256

CHAPTER 5. BITMAP ORIENTED STRIDES 80

The dynamic management of roots 24 and 32 is also helpful if BOS is to be

used in decomposed N-dimensional classification. The number of rules-prefixes in

classification databases is notably smaller than in routing tables as discussed above.

We have the flexibility to create as many BLK256 as required by the number of 24

and 32 existing roots and we can fine-tune the thresholds, where new BLK256 are

allocated, depending on our memory budget.

5.2.5 All prefix match

BOS is designed to solve the Longest Prefix Matching (LPM) problem but it

can easily adapt to support All Prefix Matching (APM); BOS should return all the

matching prefixes during its way to find the longest one. APM is essential for

decomposed N-dimensional classification where multiple field searches can be

converted into several single field searches, as described in Chapter 6.

 BOS can support APM by searching in parallel or sequentially all of its tables

and blocks to find all the prefixes. BOS simple should search TBL0 then TBL8 and so

on until it finds all prefixes. The sequence of searching in tables for BOS-SIMPLE is:

TBL0→ TBL8 →TBL16 → TBL24 → TBL32

In every table, when an active root exists BOS searches for all the matching prefixes

inside the trie node. Inside the trie node the maximum number of matching prefixes is

8. At first, BOS should lookup in all the candidate subtries; these are subtrie 0 and the

subtrie indicated by the prefix value. Inside every subtrie BOS looks for matches in

all four candidate prefixes. Once a match is found the associated prefix information is

returned.

 If BOS is implemented with the proposed TBL24 and TBL32 optimizations

then the sequence of lookups is the same as BOS-SIMPLE but searches in ranges

further than 23 proceed only is a link from TBL16 exists. Therefore, search in

BLK256s for TBL24 is performed if a link from TBL16 exists. Similarly, searches in

BLK256s for TBL32 are performed only if a block is linked to the corresponding

BLK256 which contains the 24-bit roots.

CHAPTER 5. BITMAP ORIENTED STRIDES 81

5.3 Simulation Results and Performance
In this subsection we present our simulation results based on real routing tables

and details about the storage and speed of the presented scheme. We first analyze the

prefixes of several real world routing tables and count the number of tries nodes that

should be used by our scheme. We present our results before and after the

optimizations proposed in Section 5.2 and illustrate their effectiveness. BOS storage

and speed performance is based on assumptions for the hardware and memory

configurations.

5.3.1 Hashing functions and Indexing

TBL24 and TBL32 Hashing

Indexing in TBL24 and TBL32 is implemented by hashing the most significant

bits of each prefix. The decisions for the hashing functions were taken by comparing

the performance (in terms of collisions) achieved by a large number of them when

applied in real routing tables. The hashing functions we created and tested are

following:
 HSH24_1index = prefix(0:15)

 HSH24_2index = prefix(0:15) xor (0000,prefix(16:23),0000)

 HSH24_3index = prefix(8:23) xor (0000,prefix(0:7),0000)

 CRC-16

The first three functions require 8 additional bits to be saved in the collision resolving

nodes so as to be able to distinguish the collided prefixes and the CRC function

requires all 24-bits to be stored. The maximum and the average number of collisions

produced by each hash function are shown in Table 5-3. The simulation results,

presented in the table, show that the hash functions which use XOR applied in the

first 24-bits of each prefix, generate more uniformly distributed values and therefore

the indexes are better shuffled that just using the 16 most significant bits (HSH24_1).

CRC-16 has the better results in terms of collisions and HSH24_3 is very close.

Despite the fact that CRC-16 is slightly better than HSH24_3, we decide to use

HSH24_3 function because it requires only 8-bits to be saved in the collision nodes

instead of 24-bits that CRC-16 requires.

CHAPTER 5. BITMAP ORIENTED STRIDES 82

Routing Table
(Total Prefixes)

Hash
function

Max
Collisions

Average
Collisions

HSH24_1 209 34,09
HSH24_2 12 3,81
HSH24_3 4 1,30

AADS
10/2000
(39876)

CRC-16 5 1,32
HSH24_1 199 36,98
HSH24_2 16 6,24
HSH24_3 5 1,49

MAE-EAST
01/2000
(60004)

CRC-16 5 1,48
HSH24_1 228 41,83
HSH24_2 20 7,54
HSH24_3 6 1,77

PAIX
10/2000
(91278)

CRC-16 8 1,73
Table 5-3 Hash functions performance

TBL16 Indexing

As discussed in subsection 5.2.3 (TBL16 optimization) we decided to shrink

TBL16 and use the last 14-bits from the 16 leftmost as index to the table. This

decision was guided by the form of the internet addressing but is also confirmed by

simulation results. We test in simulation the following indexing functions:
 IDX16_1index = prefix(0:13)

 IDX16_2index = prefix(1:14)

 IDX16_3index = prefix(2:15)

All functions use a 14-bit portion from the first 16-bits of the prefix and their

performance in presented in Table 5-4.

Routing Table
(Total Prefixes)

Index
function

Max
Collisions

Average
Collisions

IDX16_1 4 2,65
IDX16_2 4 1,62

AADS
10/2000
(39876) IDX16_3 3 1,26

IDX16_1 4 3,12
IDX16_2 4 1,74

MAE-EAST
01/2000
(60004) IDX16_3 3 1,42

IDX16_1 4 3,30
IDX16_2 4 1,87

PAIX
10/2000
(91278) IDX16_3 3 1,52

Table 5-4 Performance of BOS indexing functions

It is clear from these results that the last 14-bits carry the most “important”

information that differentiates prefixes by one other. Indexing scheme IDX16_3 is

suitable to be used for TBL16 since it generates fewer collisions than the others and

thus triggers less memory accesses.

CHAPTER 5. BITMAP ORIENTED STRIDES 83

5.3.2 Storage requirements

This subsection presents the storage requirement of our scheme for several

routing tables. We present the requirements of our scheme before and after the

proposed optimizations. To calculate the total storage for BOS we need to count the

number of the active subtries for the trie nodes and the total number of stored

prefixes. Additionally, we have to calculate the total amount of memory needed for

the static tables. We simulated our scheme and the results are shown in Table 5-5.

On a static table entry we have to fit a 17-bit trie bitmap and a possible 16-bit

pointer to the subtrie nodes; this assumes a memory word equal or larger than 33-bits.

A popular memory word size for commercial off-chip SRAMs is 36-bits and can

match our requirements. Hence, for every memory word on BOS we assume 36-bits

(4,5 bytes).

Routing Table
(Total Prefixes)

Interval Active Roots Active Tries Active Prefixes

0-7 0 0 0
8-15 52 132 179
16-23 5555 10542 15394
24-31 20705 21765 22968

32 1335 1335 1335

AADS
10/2000
(39876)

Total 27647 33774 39876
0-7 0 0 0
8-15 85 315 464
16-23 8587 17180 25638
24-31 33776 33815 33891

32 11 11 11

MAE-EAST
01/2000
(60004)

Total 42459 51321 60004
0-7 0 0 0
8-15 91 377 595
16-23 10248 23193 37128
24-31 53167 53217 53548

32 7 7 7

PAIX
10/2000
(91278)

Total 63513 76794 91278
Table 5-5 Routing Tables Properties

For each active subtrie we have to allocate dynamically a memory word to fit

the 15-bits of the prefix bitmap and the 16-bit pointer to the actual prefix node; those

can fit in one memory word. As a result the memory words for the subtries are equal

to the total number of subtries. For the prefixes we allocate a memory word every two

prefixes since we can fit two associated prefix data in a word. We have assumed 16-

bit data, which is what is basically assumed in the majority of similar studies such as

CHAPTER 5. BITMAP ORIENTED STRIDES 84

[xRef]. Therefore the total number of the bytes for the trie nodes including the

associated prefix information is:

 Totalbytes = (no_active_tries + no_prefixes/2) * 4,5

As far as the static tables are concerned, we calculate the total amount of memory

needed in Table 5-6.

Table Entries Total Bytes
TBL0 1 4,5
TBL8 256 1152
TBL16 65536 294912
TBL24 65536 294912
TBL32 4096 18432
Total 135425 609412,5 (595Kb)
Table 5-6 Static tables memory requirements

In Table 5-7 we present the final storage requirements for the simple BOS scheme

without any optimizations, including the collisions in TBL24 and TBL32.

Routing Table
(Total Prefixes)

Static Tables
(Kbytes)

Collision Nodes
(Kbytes)

Trie Nodes
(Kbytes)

Total
(Kbytes)

AADS 10/2000
(39876)

595 24 236 855

MAE-EAST 01/2000
(60004)

595 59 357 1011

PAIX 10/2000
(91278)

595 128 538 1264

Table 5-7 BOS simple storage
Results show that the static tables consume nearly 50% percent of the total

storage. The collision nodes required are relatively small and require few Kbytes but

the trie nodes possess a respectable part of the overall storage.

Trie Node Optimizations

 By applying the prefix node optimization (subsection 5.2.1) we don’t need an

extra memory word for the prefix information in the case where there is only one

prefix inside a subtrie. We count the number of subtries that have exactly one prefix

and present them in Table 5-8.

Routing Table
(Total Prefixes)

Total Active
Subtries

Single Prefix
Subtries

% of Single
Prefix Subtries

AADS 10/2000
(39876)

33774 28994 85,8%

MAE-EAST 01/2000
(60004)

51321 46745 91%

PAIX 10/2000
(91278)

76794 69562 90,5%

Table 5-8 Single Prefix Subtries

CHAPTER 5. BITMAP ORIENTED STRIDES 85

The results from the routing tables show that more than 85% of the subtries existing

in BOS have exactly one prefix and therefore we don’t need extra memory words to

save them. The number of single prefix subtries gives us the number of prefixes that

we don’t need to save in separate nodes. It is obvious that the prefix node

optimization is significantly effective since it saves many wasted memory words. We

recalculate the required storage for BOS after the prefix node optimization in Table

5-9. We observe that prefix node optimization improved the initial trie node storage

approximately 28% and the total storage requirement by 7% - 12%.

Routing Table
(Total Prefixes)

Static Tables
(Kbytes)

Collision Nodes
(Kbytes)

Trie Nodes
(Kbytes)

Total
(Kbytes)

AADS 10/2000
(39876)

595 24 172 791

MAE-EAST 01/2000
(60004)

595 59 255 909

PAIX 10/2000
(91278)

595 128 385 1108

Table 5-9 Prefix Node Optimization Storage

A further optimization discussed was when a root has just one subtrie and just

one prefix (trie node optimization 5.2.2). In this case all the information for this

subtrie is saved in the corresponding static table. In order to measure this

optimization’s effectiveness we have to calculate the roots that have exactly one

subtrie and exactly one prefix; single prefix roots. Moreover we have to calculate the

new number of single prefix subtries since the single prefix roots are a subset of the

single prefix subtries. Our results are presented in Table 5-10.

Routing Table
(Total Prefixes)

Total
Active

Subtries

Single
Prefix
Roots

% of Single
Prefix
Roots

Single
Prefix

Subtries

% of Single
Prefix

Subtries
AADS 10/2000

(39876)
33774 23398 69,2% 5596 16,6%

MAE-EAST
01/2000
(60004)

51321 39372 76,7% 7373 14,3%

PAIX 10/2000
(91278)

76794 59181 77% 10381 13,5%

Table 5-10 Single prefix roots

Calculations on the routing tables show that more than 70% of the roots

existing in BOS have exactly one prefix and therefore we don’t need allocation of

extra memory words; we can save them in the static table. We can take advantage of

the common case that trie node optimization reveals us and save memory words. We

CHAPTER 5. BITMAP ORIENTED STRIDES 86

recalculate the required storage for BOS after the trie node and prefix node

optimization in Table 5-11.

Routing Table
(Total Prefixes)

Static Tables
(Kbytes)

Collision Nodes
(Kbytes)

Trie Nodes
(Kbytes)

Total
(Kbytes)

AADS 10/2000
(39876)

595 24 69 688

MAE-EAST 01/2000
(60004)

595 59 82 736

PAIX 10/2000
(91278)

595 128 125 848

Table 5-11 Trie and Prefix Node Optimization Storage

Trie node and prefix node optimization together, improved the initial trie node storage

70% – 77% and the total storage requirement 19% - 33%.

Static Table Optimizations

Moving to the optimization of the static tables, as described in subsection

5.2.3, we decided to shrink TBL16 to 16K entries instead of 64K at the cost of an

extra memory access and some extra memory space in the case of the additional

collisions. When we analyze the routing tables in Table 5-5 we see that the active

roots of the interval 16-23 are significantly less than 64K on all the examined routing

tables. We find that in the worst case we have 10248 active roots and a 16K table is

enough for this interval. These results confirm our arguments about few active roots

inside TBL16. We calculate the collisions and the required storage for TBL16 in this

case and present our results in Table 5-12.

Routing Table
(Total Prefixes)

Original
TBL16

(Kbytes)

Optimized
TBL16

(Kbytes)

Collision
Nodes

(Kbytes)

Total
(Kbytes)

AADS 10/2000
(39876)

288 72 6 78

MAE-EAST 01/2000
(60004)

288 72 15 87

PAIX 10/2000
(91278)

288 72 21 93

Table 5-12 TBL16 Storage Optimization

The decision for smaller TBL16 gives us 67% - 73% better storage requirements for

TBL16 by the cost of an extra memory access.

In subsection 5.2.4 we have also proposed the replacement of TBL24 and

TBL32. According to this optimization we replace these tables with dynamic memory

CHAPTER 5. BITMAP ORIENTED STRIDES 87

blocks of 256 entries and link them to TBL16. This means that for the calculation of

storage we have to count the number of BLK256 and the collision nodes inside them.

We simulate our approach and present the results in Table 5-13. We have used a

number of different threshold values for the utilization of BLK256s to illustrate their

effectiveness in terms of collisions. The thresholds clearly show that underutilized

blocks can provide better average access performance at the cost of additional storage.

Routing Table
(Total Prefixes)

Threshold Interval Number of
Blocks

Maximum
Collisions

Average
Collisions

24-31 90 7 2,01 256
32 6 11 2,45

24-31 120 6 1,75 192
32 7 8 2,15

24-31 179 5 1,50

AADS
10/2000
(39876)

128
32 11 7 1,77

24-31 133 7 2,00 256
32 1 1 1,00

24-31 177 6 1,74 192
32 1 1 1,00

24-31 265 6 1,50

MAE-EAST
01/2000
(60004)

128
32 1 1 1,00

24-31 210 8 2,00 256
32 1 2 1,28

24-31 279 6 1,74 192
32 1 2 1,28

24-31 419 6 1,49

PAIX
10/2000
(91278)

128
32 1 2 1,28

Table 5-13 Dynamic BLK256 for TBL24 and TBL32

After the static tables optimizations we recalculate the required storage for BOS in

Table 5-14.

Routing Table
(Total

Prefixes)

Thres.

Trie
Nodes
(Kb)

Modified
Static
Tables
(Kb)

TBL16
Collision

Nodes
(Kb)

Dyn.
Blocks
(Kb)

Dyn.
Collision

Nodes
(Kb)

Total
(Kb)

256 69 73 6 107 64 319
192 69 73 6 143 53 344

AADS 10/2000
(39876)

128 69 73 6 214 40 402
256 82 73 15 150 96 416
192 82 73 15 200 78 448

MAE-EAST
01/2000
(60004) 128 82 73 15 299 59 528

256 125 73 21 237 148 604
192 125 73 21 315 124 658

PAIX
10/2000
(91278) 128 125 73 21 472 92 783

Table 5-14 Fully optimized BOS storage

CHAPTER 5. BITMAP ORIENTED STRIDES 88

We can calculate the overall efficiency of BOS by computing a metric that

indicates the average storage space in terms of bytes per prefix. The absolutely

essential information includes 32 bits for the prefix itself, 6-bits for the length of the

prefix and 16-bits for the associated prefix information. So we need at most 54 bits or

6,75 bytes per prefix. Our scheme requires the values shown in Table 5-15.

Routing Table
(Total Prefixes)

Thres. Total
(Kb)

Bytes/Prefix

256 319 8,19
192 344 8,83

AADS 10/2000
(39876)

128 402 10,32
256 416 7,09
192 448 7,64

MAE-EAST 01/2000
(60004)

128 528 9,01
256 604 6,77
192 658 7,38

PAIX
10/2000
(91278) 128 783 8,78

Table 5-15 BOS bytes per prefix

We can see that as the routing tables grow, BOS is more efficient in terms of

storage and provides lower average bytes per prefix that approximate the “perfect”

reference solution. The overhead of BOS comes from the data structure that we use,

contrarily the perfect approach does not imply any data structure or organization,

neither assumes any lookup mechanisms.

5.3.3 Lookup Performance

In this subsection we analyze the lookup performance of BOS scheme in terms

of memory accesses. BOS lookup performance differs before and after the

optimizations that were proposed. For every interval of the address space we can

compute the worst and average latency of lookups inside a trie node.

BOS Simple

BOS needs one memory access to acquire the data stored in the root node,

then it follows the pointer to the candidate subtrie node and then the pointer to the

prefix node. The normal case requires 3 memory accesses for each interval. The worst

case is when we don’t find a prefix match inside the 1st candidate subtrie, so we seek

in the 2nd subtrie and then to the prefix node, this case requires 4 memory accesses. In

case neither prefixes inside the subtries match, we spend 3 memory accesses and we

CHAPTER 5. BITMAP ORIENTED STRIDES 89

don’t follow any pointer to the prefix node. BOS-SIMPLE has 5 intervals and 5

distinct tables for each prefix interval, therefore in the worst case we need to search

all of them so as to determine if a match exists. We need 3 memory accesses for the

first 4 tables and 4 for the last table. This sums to 16 memory accesses in the worst

case. If the tables are in separate memories we can search all of them in parallel and

then the worst case is 4 memory accesses.

BOS with optimized trie nodes

If we use prefix and trie node optimizations we can achieve better average

number of memory accesses but the worst case will remain the same. According to

the results presented in Table 5-10, nearly 70% of the roots have a single prefix and

nearly 14% have a single subtrie. On single prefix roots we need 1 memory access

and on single subtrie roots we need 2 memory accesses. Hence, the average number of

memory accesses to locate a prefix in an interval is calculated to be 1,62. We see that

the average case after the node optimizations is 60% better. In case we use sequential

accesses to tables we need in total 8,1 memory accesses and in case we use parallel

searches we need on average only 1,62 memory accesses.

BOS with optimized TBL16 and dynamic blocks.

Optimizations in TBL16 are rather helpful in terms of storage but significantly

increase the number of memory accesses to locate a prefix inside an interval. For

every colliding root inside TBL16 we need an extra memory access and due to that

the average lookup latency in TBL16 is measured to be 2,62 memory accesses and the

worst case 5 memory accesses.

By adding the dynamic memory blocks in our scheme may have saved storage

but the average and maximum number of memory accesses is increased. For roots of

prefix lengths 24 or more, we need to locate the block by accessing TBL16, then

locate the specific root between the roots that collide, and then lookup inside the trie

node. This sequence of accesses sums to 4,62 memory accesses on average and 11 on

the worst case.

The summary of lookup performance for BOS with and without optimizations

is presented in Table 5-16 and shows the number of memory accesses per lookup in

every case. These results are an average of all the simulated routing tables.

CHAPTER 5. BITMAP ORIENTED STRIDES 90

Scheme Average Worst Case Parallel
BOS-SIMPLE

No opt.
10,1 16 4

BOS Opt.
Nodes

4,86 16 1,62

BOS Opt.
Tables

12,1 24 4,62

Table 5-16 Memory access performance of BOS

Lookup Perfomance and Link Speeds

According to our lookup performance we can calculate the efficiency of BOS as a

forwarding engine in a high speed router. To calculate the network performance we

assumed a certain speed of the memory and a pipelined hardware implementation that

can provide one memory access per cycle. The results we present assume 2 possible

memory configurations:

• 200Mhz off-chip synchronous SRAM

• 400Mhz on-chip synchronous SRAM

Table 5-17 presents the network performance of BOS counted in millions of packets

per second (Mpps).

Off-chip SRAM 200Mhz On-Chip SRAM 400Mhz
Scheme Average

(Mpps)
Worst Case

(Mpps)
Parallel
(Mpps)

Average
(Mpps)

Worst Case
(Mpps)

Parallel
(Mpps)

BOS-SIMPLE
No opt.

20 12,5 50 40 25 100

BOS Opt.
Nodes

41,2 12,5 123,5 82,3 25 246

BOS Opt.
Tables

16,5 8,3 43,3 33 16,6 86,6

Table 5-17 Network Performance of BOS in Mpps

If we assume the worst case of taking routing decisions for minimum sized IP packets

(40 bytes) then the supported link speeds are shown in Table 5-18.

Off-chip SRAM 200Mhz On-Chip SRAM 400Mhz
Scheme Average

(Gbps)
Worst Case

(Gbps)
Parallel
(Gbps)

Average
(Gbps)

Worst Case
(Gbps)

Parallel
(Gbps)

BOS-SIMPLE
No opt.

6,4 4 16 12,8 8 32

BOS Opt.
Nodes

13,2 4 39,5 26,4 8 79

BOS Opt.
Tables

5,3 2,67 13,8 10,6 5,3 27,7

Table 5-18 Network Performance of BOS in Gbps

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 91

6 Chapter 6

Bloom Filter Based Packet Classification

 In this chapter we present Bloom Based Packet Classification (B2PC), our

scheme for efficient packet classification. We developed a scheme suitable for

pipelined hardware implementation which can be used as a classification engine for

network streams. B2PC comprises of a 5-field search algorithm and decomposes

multi-field classification rules into internal single field rules which are then organized

in Bloom filter sets. The design of B2PC is optimized for the common case based on

analysis of real world filter sets and uses the BOS single field technique which was

described in Chapter 5.

6.1 Real Filter Sets
Researchers’ attempts to discover better classification techniques are mainly

focused in analysis of real world sets of classification rules. Many research groups

have studied real classification data from commercial ISPs and access lists (ACLs)

from enterprise networks to exploit the specific characteristics of these sets. The

results from these surveys provide statistical characteristics of the filter sets and are

valuable as a guide for the classification algorithms’ designers.

The standard packet classifiers are 5-dimensional and their fields come from the

Network Layer (L3) and the Transport Layer (L4) network packet fields. These fields

are the following:

• Source IP address in 32-bits (L3)

• Destination IP address in 32-bits (L3)

• Source Port in 16-bits (L4)

• Destination Port in 16-bits (L4)

• Protocol in 8-bits (L4)

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 92

A filter in a classifier may specify all the fields with prefixes, ranges, exact values or

wildcards4.

There exist several studies of the specific characteristics of the real world

classification rules. Primarily Gupta and McKeown published a number of

observations regarding the characteristics of real filters sets [26], while others have

performed analyses on real filter sets and published their observations [40][41]. The

following key observations are a review of these studies:

I. Current filter sets’ size are small, ranging from tens of filters to less than

5000 filters. However, it is not clear if the size limitation is “natural” or a

result of the limited performance of packet classification solutions.

II. The protocol field is restricted to small set of values. TCP, UDP and

wildcarded are the most common specifications.

III. Filters specify a limited number of unique transport port ranges. The

specifications for port ranges vary and have definitions like ‘greater than

1023’ or ‘20 to 23’.

IV. The number of unique address prefixes matching a given address is typically

five or less.

V. The number of filters matching a given packet is typically five or less.

VI. Different filters often share a number of the same field values.

VII. The number of unique field values is significantly less than the number of

filters.

To evaluate the performance of classification schemes and algorithms it is

important to test it with representative filter sets. The properties of the filter sets and

the query patterns are essential to benchmark classification schemes and thus realistic

filters and test patterns should both be used. D. Taylor has created ClassBench [42] to

address this problem. ClassBench is a suite of tools for performance evaluation of

classification algorithms and is publicly available. ClassBench involves a filter set

generator that uses seeds from real filter sets to provide synthetic filter sets that

accurately model real filters. Moreover, it includes a packet header generator that

produces a sequence of packet headers to exercise a given filter set. This generator

uses the Pareto Distribution[43] that is widely used to model the Internet traffic.

4 Wildcards are used when we don’t specify a value and want to represent all the possible values. The
symbol used for wildcards is *.

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 93

6.2 B2PC Design and Description
B2PC design is driven by the observations presented in the last section. Our

approach for packet classification lays on the idea of decomposition where multiple

field searches are divided into many single field searches. The results of single fields

are then combined to produce the final rule/filter match. We strive to design a packet

classifier that supports 5-dimensional rules and provides the associated FlowID of a

matching rule/filter for a given packet.

The fields we use are the standard supported by all 5D classifiers, namely two

32-bits IP addresses, two 16-bit ports and an 8-bit protocol. We allow the database to

have at most 4096 of such rules, which seems enough according to the referenced

observations. Consequently, each rule/filter of the database can be identified by a 12-

bit FlowID value. An example filter set is shown in Table 6-1.

No Src IP Dest IP Src Port Dest Port Protocol Flow ID
1 139.91.70.* 147.52.16.* * * TCP 10
2 139.91.*.* 147.102.*.* * 21 TCP 14
3 139.91.*.* 147.27.*.* < 1024 * * 17
4 *.*.*.* 139.91.*.* * 80 UDP 26
5 139.91.70.33 147.52.16.33 135 < 1024 TCP 31
6 139.91.70.36 147.27.*.* < 1024 21 * 45
7 *.*.*.* 147.52.*.* * 23 * 47
8 139.91.*.* 147.52.*.* 135 135 TCP 50
9 139.*.*.* 147.*.*.* * 80 TCP 54
10 139.91.*.* 147.52.*.* * 135 TCP 55

Table 6-1 Filter Set Example

6.2.1 Single Field Operations

 Given the fact that we have followed the decomposition path a very efficient

single field engine supporting both exact and prefix matches is essential. Hence, we

decided to use the BOS scheme described in Chapter 5 as our single field engine.

Each field of the rule can be inserted in a single field engine and be identified by the

rule’s FlowID. It should be noted that this single field lookup should not only report

the longest prefix match but, instead all the prefixes that match; as discussed in

subsection 2.2.3. Fortunately BOS has the capability to work as APM engine as

described in subsection 5.2.5.

The rules regarding the IP address fields are specified as prefixes and this

makes BOS an excellent solution. The Port fields are usually specified as ranges but

can be transformed into prefixes with well known formulas [17]. Additionally, the

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 94

BOS engine that keeps the Port Fields should be finetuned since BOS provides all

prefix match (APM) for 32-bit values and we intend to store only 16-bit values.

Protocol field is assigned exact values and since it is 8-bit we can map it into a 256

entry table (PRO_TBL).

6.2.2 Internally Represented Filters

The observation that many rules may share same field values gives us the

opportunity to save storage for rules that have common values. However, a problem

arises due to this value sharing and the fact that BOS and many other APM solutions

support only one Flow ID to be stored and returned during single field searches. To

solve this problem we decide to keep internally represented filters where each field is

assigned an internal ID during insertion. The internal ID of each field is the originally

given Flow ID value. In case the value of a field was previously inserted then its

internal ID is set to be equal to the existing Flow ID value, which is the first inserted.

Table 6-2 illustrates how the rules presented in Table 6-1 are kept internally in B2PC.

Src IP Dest IP Src Port Dest Port ProtocolNo
ID ID ID ID ID

Flow ID

1 10 10 10 10 10 10
2 14 14 10 14 10 14
3 14 17 17 10 17 17
4 26 26 10 26 26 26
5 31 31 31 31 10 31
6 45 17 17 14 17 45
7 26 47 10 47 17 47
8 14 47 31 50 10 50
9 54 54 10 26 10 54
10 14 47 10 50 10 55

Table 6-2 B2PC internally represented filter set

This internal representation of filters requires storing the five 12-bit internal

IDs that belong to a rule so as to be able to identify it. Keeping 4096 rules with their

5- field internal IDs can be stored in a table with 4096 entries (RULES_TBL) where

indexing is done by the 12-bit Flow ID value.

A side-effect of this ID sharing is that a value of a single field cannot be

deleted since many rules may depend on this internal ID. In order to cope with this

problem we keep a reference count for each internal ID of each field. Inherently, we

can have up to 4096 Flow IDs and therefore the same number of distinct internal IDs.

Each internal ID may be referenced from at most 4096 rules and therefore we need

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 95

4096 12-bit counters for each field. In total we need 5 x 4096 12-bit counters to

support incremental updates in our scheme. Accordingly, when a rule upon insertion

references an internal ID, we increment the appropriate counter and when a rule is

deleted we decrement the counter. The original single field value is only deleted when

the related counter reaches to zero.

6.2.3 Combining Results

Given the 5 fields of a packet, B2PC has to find which of the existing rules

best matches them. Single field engines provide a number of matching prefixes and

the associated IDs. The IP address fields, namely Source IP and Destination IP, are

prefix based and may provide at most 33 matches each; 32 possible matches for the

32 possible prefix lengths and 1 for the zero length wildcard. The port fields are also

prefix based and may provide at most 17 matches; 16 possible matches for the 16

possible prefix lengths and 1 for the zero length wildcard. The protocol field is an

exact value so it may provide a match on either the value itself or the wildcard;

therefore we have at most 2 matches.

The internal IDs and the lengths of each matching field are gathered in certain

collection points, one for every field, and they are forwarded to the mechanism that

combines all the single field results. The collection points are taken the matched

prefixes from the BOS modules and keep them in decreasing length order. Each

collection point gives the longest prefix match first and proceeds with the less specific

matches.

The results from every single field should be combined to cover all the

possible permutations and then determine which of these permutations are actually

valid, namely determine if such a multi field rule exists. Although the possible

number of permutations could be large, the published observations indicate that the

maximum number of matches in the fields is typically less than 5 and the rules that

match are usually less than five. The best matching rule is the rule that has the most

specific value. To accomplish this, we first check if the combination of the internal

IDs that come from longest single field matches, as collection points provide it, is

indeed valid and continue on checking the less specific matches. B2PC assigns

priorities to the fields so as to guide the generation of permutations. The permutations

are generated by keeping the current matched value of the most significant field and

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 96

producing the combinations of the values coming from the least significant fields. The

significance of fields in decreasing order is: Source IP, Destination IP, Source Port,

Destination Port and Protocol.

Note that when all the collection points provide the same internal ID, then we

surely know that this permutation belongs to our set. The same value for all the

internal IDs in a permutation denotes that the values in all fields are the initially

inserted ones for this specific FlowID (since that this is the way we keep internally the

rules). The only thing we have to look, in this case, is whether this rule has been

deleted and the values found have only been kept due to references from other rules.

The following example illustrates how the permutations are generated.

Assume an incoming packet with the field values shown in Table 6-3 and the rules of

Table 6-1.

Src IP Dest IP Src Port Dest Port Protocol
139.91.62.39 147.52.17.25 5000 80 TCP

Table 6-3 B2PC incoming packet example

The matching results in every collection point are stored in order from the most

specific to the less specific and are shown in Table 6-4.

Src IP Dest IP Src Port Dest Port Protocol
ID ID ID ID ID
14 47 10 26 10
54 54 - 31 17
26 - - 10 -

Table 6-4 Collection points contents

The total number of possible permutations is equal to the overall product of the

number of matches in every field.

Totalperm = #Src IP IDs * #Dest IP IDs * #Src Port IDs * #Dest Prt IDs * #Proto IDs.

Hence for the matches shown in Table 6-4 the total number of permutations is:

Totalperm = 3 * 2 * 1 * 3 * 2 = 36

These 36 generated permutations are shown in Table 6-5 and the permutation that

corresponds to an existing ruleset entry is shown in bold.

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 97

Src IP Dest IP Src Port Dest Port Protocol Perm No
ID ID ID ID ID

1 14 47 10 26 10
2 14 47 10 26 17
3 14 47 10 31 10
4 14 47 10 31 17
5 14 47 10 10 10
6 14 47 10 10 17
7 14 54 10 26 10
8 14 54 10 26 17
9 14 54 10 31 10
10 14 54 10 31 17
11 14 54 10 10 10
12 14 54 10 10 17
13 54 47 10 26 10
14 54 47 10 26 17
15 54 47 10 31 10
16 54 47 10 31 17
17 54 47 10 10 10
18 54 47 10 10 17
19 54 54 10 26 10
20 54 54 10 26 17
21 54 54 10 31 10
22 54 54 10 31 17
23 54 54 10 10 10
24 54 54 10 10 17
25 26 47 10 26 10
26 26 47 10 26 17
27 26 47 10 31 10
28 26 47 10 31 17
29 26 47 10 10 10
30 26 47 10 10 17
31 26 54 10 26 10
32 26 54 10 26 17
33 26 54 10 31 10
34 26 54 10 31 17
35 26 54 10 10 10
36 26 54 10 10 17

Table 6-5 Total possible permutations

6.2.4 Set Membership Queries with Bloom Filters

We have well studied how the rules can be decomposed into fields, inserted in

the rule database, assigned an internal ID as well as how permutations are generated.

The challenge we have also faced now is how to identify that a permutation belongs

to our set of rules. Sequential accesses to the rule table are very slow since we may

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 98

need to access them all. We need a data structure that can efficiently represent our

ruleset and support quick set membership queries. Hash tables and B-Trees are widely

used for this type of queries but there are also Bloom Filters [6] that have received

renewed attention for network applications according to [7][44]. A Bloom filter is an

efficient data structure that supports set membership queries and has tunable false

positive errors as described in subsection 2.1.1.3.

We represent our rule database with a Bloom Filter that can hold 4096 rules

and we have to tune the parameters of the filter so as to produce tolerable false

positive rate. We have to find the optimal number of bits for the bloom filter bit-

vector and the number of hash functions that set these bits. We choose the size of the

bit vector to be 214 bits wide and then according to the theory presented, the optimal

number of hash functions is #Hash = (214 / 212) * ln2 = 2,76. So by using the optimal

number of 3 hash functions we can expect false positive probability 0,53 = 0,125 . We

decide to use 4 hash functions and further reduce the false positive probability to 0,54

= 0,062 , namely 6,2 %.

The bit-vector of the Bloom filter is relatively large to be kept in registers/flip-

flops, and therefore we need a memory array to hold these bits. Moreover, having 4

hash functions means that we have to set (program) 4 bit positions in the bit vector

and always test 4 bits. Due to the fact that the bit-vector is stored in a memory array

we may require up to 4 memory accesses to locate each bit. Thus, to avoid sequential

accesses and since the array is quite small and can be kept on-chip, we can increase

parallelization and split this bit-vector into 4 equal sub-vectors of 4096 bits each and

assign each hash function to set and test a sub-vector. This allows us to implement the

accesses in parallel and decide in a single parallel memory access if the current

permutation belongs to our set. Additionally, this splitting prevents the hash functions

from setting the same bit.

The bits of the Bloom filter may be shared by many rules in the ruleset and

thus we cannot delete a bit if other rules depend on this. The solution to this problem

is given by [8] which proposes to keep counters for every bit of the Bloom filter.

Hence, for the 16384 bit-vector of our bloom filter we need the same number of

counters. Each counter is at most 12-bits since this is the maximum number of filters

supported. Accordingly, a bit from the vector is deleted only when its counter reaches

zero.

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 99

 The results of the hash functions have to point to only one bit of the 4096

possible in the sub-vector and thus generate a 12-bit value. Moreover these hash

functions have to use all the ID information so as to be efficient and provide discrete

values for each permutation. Inherently, the IDs we use are the actual Source IP (SIP),

Destination IP(DIP), Source Port(SPO), Destination Port (DPO) and Protocol (PRO).

We have defined the hash functions by the use of XOR, SHIFT (>>,<<) and the

reverse (REV) function according to the following formulas:
 BLH1 = (SIP>>4) xor REV(DIP>>2) xor (SPO<<4) xor (DPO>>3) xor (PRO<<3)

 BLH2 = SIP xor (DIP<<6) xor (SPO>>2) xor REV(DPO) xor PRO

 BLH3 = (SIP<<3) xor REV(DIP) xor REV(SPO) xor DPO xor (PRO<<6)

 BLH4 = REV(SIP) xor (DIP<<3) xor (SPO>>3) xor (DPO<<1) xor (PRO>>2)

The performance of these hash functions is studied and analyzed in subsection 6.3.2.

6.2.5 Flow ID Resolving

Once we have a match in a set membership query we have to determine

whether it is a false positive match or in case it is not, to return the corresponding

FlowID. To locate the FlowID we use a hash table of 16K entries (HSH_TBL) that

shall give us the matched FlowID. Once we have the FlowID we visit RULES_TBL

(subsection 6.2.2) and compare the stored IDs with the IDs of the current permutation.

In case the IDs match we have found the final result, otherwise this match is a false

positive and we continue with the generation and testing of the permutations.

Indexing the HSH_TBL requires a hash function and obviously this hash

function may produce collisions. Resolving these collisions is trivial by using variable

size blocks that hold the colliding FlowIDs. If more than one FlowIDs are stored in a

specific HSH_TBL entry then we have to check the currently matched IDs with the

corresponding IDs of each FlowID. The hash function uses the already hashed values

of the BLH1, BLH2, BLH3 and BLH4 to indicate an entry in HSH_TBL. Its 14-bit

value is defined as follows:
HSH_TBLindex = (BLH1,00) xor (00,BLH2>>4) xor (00,BLH3) xor (00,REV(BLH4))

The performance of this hash function is studied and analyzed in subsection 6.3.2.

6.2.6 Improving the Efficiency of Set Membership Queries

According to the generation of permutations we have to query every

permutation in the Bloom filter despite the fact that a pair of source-destination

prefixes or a pair of source-destination ports may not be part of the ruleset. To avoid

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 100

these useless queries we can represent these pairs with additional Bloom Filters and

split the membership queries problem into two sub-problems. This proposed splitting

is compatible with the guidelines that were proposed in [40] and indicate that the IP

address pair characterizes the actual network paths and the Port pairs characterize the

network applications.

Now, we have to query the additional Bloom filters with the IP pair

permutations and the Port pair permutations and if both match then we query the

Bloom filter that holds the actual rules. For the Bloom filters of each pair we define

two smaller bit-vectors of size 8192 with two hash functions for each one. We also

split each bit-vector into two equal sub-vectors and store them is separate tables to

exploit parallelism since they can also be placed on-chip. Moreover, accessing the

Bloom filters of the IP pair and Port pair can be done in parallel and simultaneously

perform accesses in the Rule Bloom Filter.

We have defined the hash functions for the IP and Port pairs by the use of XOR

and the reverse (REV) function according to the following formulas:
 IP_BLH1 = { SIP(6:11) xor DIP(0:5) , SIP(0:5) xor DIP(6:11) }

 IP_BLH2 = { SIP(0:5) xor DIP(6:11) , SIP(6:11) xor DIP(0:5) }

 PR_BLH1 = SPO xor (DPO<<2)

 PR_BLH2 = (SPO<<2) xor REV(DPO)

The performance of these hash functions is studied and analyzed in subsection 6.3.2.

The number of generated permutations for IP and Port pairs now is

significantly smaller compared to the total number of permutations and can be

checked in a parallel fashion. When both queries for pairs are successful then, these

pairs along with the 2 possible Protocol matches are queried in the Bloom filter that

handles the actual rules. Using the example of Table 6-3 and the data shown in Table

6-4 we illustrate in Table 6-6 which queries are performed in parallel in the three

Bloom filters. Queries in both IP and Port pair Bloom Filters are started together.

Once matches in both pairs occur then queries in the Rule Bloom filter start, if a pair

matches and the other has not yet found a match then it pauses. For the matches of

pairs and rules we should consult Table 6-2. We continue by keeping the IP pair

stable we test all the Port pairs given by the corresponding collection points until they

finish. The queries in bold indicate the paused and stable condition of the matched

permutations. The bold underlined is the matched query.

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 101

IP Pair
Perm.

Port Pair
Perm.

Rule Permutation

Src
IP

Dest
IP

Src
Port

Dest
Port

Src
IP

Dest
IP

Src
Port

Dest
Port

ProtoQuery
Number

ID ID ID ID ID ID ID ID ID
1 14 47 10 26 - - - - -
2 14 47 10 31 14 47 10 26 10
3 14 47 10 10 14 47 10 26 17
4 14 54 10 26 14 47 10 10 10
5 54 47 10 26 14 47 10 10 17
6 54 54 10 26 - - - - -
7 54 54 10 31 54 54 10 26 10
8 54 54 10 10 54 54 10 26 17
9 26 47 10 26 54 54 10 10 10
10 26 47 10 26 54 54 10 10 17
11 26 47 10 31 26 47 10 26 10
12 26 47 10 10 26 47 10 26 17
13 26 54 10 26 26 47 10 10 10
14 - - - - 26 47 10 10 17

Table 6-6 Parallel Bloom filter Queries

Breaking the problem into two gives us the opportunity to better handle the

required membership tests. The IP pair first determines existing network paths in the

ruleset and then the port pair determines existing network configurations. The final

rule membership query then tests if those pairs match together in a rule. Searching

these pairs independently distributes the queries in a more efficient manner and

provides faster matches.

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 102

A general overview of the final B2PC form is presented in Figure 6-1 where all the

components of the scheme are shown.

Figure 6-1 Overall view of B2PC components

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 103

6.3 Simulation Results and Performance
In this subsection we discuss simulation results based on synthetic filter sets and

present our results on storage and speed. We generate 12 synthetic filter sets of

various sizes with the ClassBench [42] tool and corresponding packet filter headers to

test the efficiency of B2PC. We also analyze the properties of the generated filter sets

and compare them with the observations found in literature. Moreover, we illustrate

the efficiency of the hashing functions used by the Bloom filters and perform analysis

on the observed false positives.

6.3.1 Analysis of Generated Filter Sets

 We use the ClassBench tool and the seeds from real filter sets that are

provided by this tool to generate sets that represent the most common filter formats:

Access Control Lists (ACL), Firewall (FW) and IP Chain (IPC). We use all the real

filter seeds and generate 12 synthetic filter sets of various sizes and formats. The

generated filter sets and an analysis on the unique number of field values produced is

shown in Table 6-7. We present the unique Source IP Addresses (SA), Destination IP

Addresses (DA), Source Ports (SP), Destination Ports (DP) and the Protocols (PRO).

Filter Set
Name

Set
Size

Unique
SA

Unique
DA

Unique
SP

Unique
DP

Unique
PRO

ACL1 712 25 316 1 96 4
ACL2 615 172 378 1 24 5
ACL3 2348 403 188 2 154 4
ACL4 2974 271 329 1 204 6
ACL5 3343 297 502 1 39 4
FW1 282 50 74 12 32 5
FW2 68 34 26 7 1 5
FW3 178 36 43 8 33 4
FW4 263 33 56 25 39 7
FW5 156 39 55 9 28 4
IPC1 1687 123 607 29 50 7
IPC2 169 24 19 3 3 4

Table 6-7 Unique field values for the generated filter sets

The filter set sizes that were generated by the tool range from 68 to 3343 and

this fact is in line with observation I (section 6.1) , namely that the filter set sizes are

smaller than 5000. Moreover, observation VII is also confirmed by the results of

Table 6-7 since we can see that the number of unique field values found is relatively

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 104

small compared to the database size. The fact that we have few unique values means

that many filters share the same data as stated by observation VI. Additionally, the

number of unique protocol values is ranging from 4 to 7 and is in line with the

restriction professed by observation II. The port range specifications are also limited

something also stated in observation III.

 ClassBench provides us with a very useful packet header generator which we

used to take several measurements. We generated large packet header traces and

simulated B2PC in order to count the number of matches for every field. These results

are shown in Table 6-8.

Set
Name

Set
Size

Max
SA

Avg
SA

Max
DA

Avg
DA

Max
SP

Avg
SP

Max
DP

Avg
DP

Max
PRO

Avg
PRO

ACL1 712 4 3,98 4 3,87 1 1 5 3,05 2 1,91
ACL2 615 5 4,92 7 5,20 1 1 4 2,36 2 1,63
ACL3 2348 6 5,92 5 4,00 2 1,00 5 2,56 2 1,95
ACL4 2974 7 6,93 7 5,30 2 1,00 6 3,02 2 1,98
ACL5 3343 3 2,99 3 1,99 1 1 4 2,01 1 1
FW1 282 4 3,75 5 4,08 3 1,63 3 1,90 2 1,91
FW2 68 3 2,76 2 1,93 2 1,75 1 1 2 1,76
FW3 178 4 3,81 4 3,00 3 1,79 3 1,96 2 1,99
FW4 263 3 2,88 4 3,90 4 2,94 3 2,61 2 1,90
FW5 156 5 4,18 4 3,82 3 1,71 3 2,04 2 1,98
IPC1 1687 4 3,99 7 5,85 4 1,20 5 2,05 2 1,89
IPC2 169 2 1,86 2 2 2 1,14 2 1,14 2 1,46

Table 6-8 Number of matched values per field

A careful look in the results reveals us that observation IV is also valid. The

maximum number of either SA or DA matching a given packet ranges from 2 to 7

while the average is smaller and ranges from 1,86 to 6,93. As far as the port fields are

concerned we can also see that observation IV is also valid. The maximum number of

protocol field matches is bound by 2 which naturally come from the fact that we can

only have an exact value or the wildcard.

6.3.2 Hashing Functions and False Positives

We incorporate many hash functions in B2PC in order to index specific bits

inside the Bloom filters and to resolve the final FlowID. The most important property

of a hash function used to index the Bloom filter bits is to produce several distinct

values and minimize the number of different rules referencing the same bit. These

hash functions are described in subsections 6.2.4 and 6.2.6. We provide an analysis of

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 105

the number of bits set in each of the Bloom filters and the number of rules that

reference these bits. The results are shown in Table 6-9.

IP Bloom Filter
(8192 bits)

Port Bloom Filter
(8192 bits)

Rule Bloom Filter
(16384 bits) Filter

Set
Set
Size # set

bits
Max
Refs

Avg
refs

set
Bits

Max
Refs

Avg
Refs

set
bits

Max
refs

Avg
refs

ACL1 712 911 21 1,56 192 189 7,41 2242 9 1,27
ACL2 615 1071 4 1,14 48 406 25,62 2153 5 1,14
ACL3 2348 2651 29 1,77 305 321 15,39 6566 16 1,43
ACL4 2974 2912 32 2,04 396 336 15,02 7847 10 1,51
ACL5 3343 2985 40 2,23 78 708 85,71 8468 9 1,57
FW1 282 418 8 1,34 107 47 5,27 1023 4 1,10
FW2 68 126 3 1,07 14 19 9,71 251 3 1,08
FW3 178 233 7 1,52 88 16 4,04 629 7 1,13
FW4 263 355 13 1,48 219 29 2,40 958 4 1,09
FW5 156 228 7 1,36 78 29 4,00 568 3 1,09
IPC1 1687 2406 10 1,40 164 650 20,5 5251 5 1,28
IPC2 169 202 8 1,67 18 111 18,77 503 7 1,34

Table 6-9 Number of references in Bloom Filters

The results show that our hashing functions behave quite efficiently and set

many different distinct bits in the Bloom filters. As far as the Port Bloom filter is

concerned, the high rate of references comes from the fact that we have a limited

number of common specifications as we have observed in Table 6-7 . The Rule

Bloom Filter has many bits set with a small average number of references to each bit

due to the diversity of the used ID values in each rule. However, the average number

of references in IP Bloom filter is a little higher than in Rule Bloom filter as an effect

of the small number of unique field values compared to the size of the set

(observation VII). This means that many rules in the same set share the same Source

and Destination IP address specifications.

 The hash functions used to index the Bloom filters and are also responsible for

the number of false positives that occur. Additionally the bit-vector size of the Bloom

filters influences that false positive rate. We simulate B2PC with the generated filter

sets and the corresponding packet headers and we counted the false positives. The rate

of observed false positives for every Bloom filter is shown in Table 6-10.

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 106

Filter Set
Name

Set
Size

IP Bloom
False Positives

(%)

Port Bloom
False Positives

(%)

Rule Bloom
False Positives

(%)
ACL1 712 0 0 0,02
ACL2 615 7,7 0 0,01
ACL3 2348 3,2 0 5,1
ACL4 2974 8,4 0 8,3
ACL5 3343 0,005 0 0,01
FW1 282 3,7 0 0
FW2 68 0 0 0
FW3 178 0 0 0
FW4 263 1,5 0 0
FW5 156 2,0 0,7 0,2
IPC1 1687 0,3 0 0,5
IPC2 169 0,1 0 0

Table 6-10 Observed false positives rate in B2PC

The observed false positives rate in B2PC is close to the theoretical 6,2% for

4096 active rules and it is very low for small filter sets. The high rate of false

positives in IP and Rule Bloom filters for ACL3 and ACL4 filter sets can be justified

by the fact that our hashing functions have produced higher maximum and average

reference counts as shown in Table 6-9. Moreover these filter sets have an increased

number of matched values per field as shown Table 6-8 and thus produce more

permutations that are probed in the Bloom filters. On the other hand, ACL5, which is

the largest database we generated, has a very low rate of false positives despite the

fact that we observe the highest maximum and average reference counts. However,

this is due to the fact that we have a small number of matched values in the all the

fields as shown in Table 6-8 and therefore fewer permutations are generated and

probed in the Bloom filters.

B2PC also uses a hash function to resolve the final FlowID of the matching

permutation as described in subsection 6.2.5. We illustrate the collisions produced by

this hash function in Table 6-11. We see that this hash function produces very few

collisions and is certainly satisfactory for our scheme.

Filter Set
Name

Set
Size

Max
Collisions

Average
Collisions

ACL1 712 2 1,09
ACL2 615 2 1,03
ACL3 2348 3 1,17
ACL4 2974 3 1,19
ACL5 3343 3 1,21
FW1 282 2 1,02

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 107

FW2 68 1 1
FW3 178 1 1
FW4 263 2 1,07
FW5 156 1 1
IPC1 1687 2 1,10
IPC2 169 3 1,29

Table 6-11 B2PC hash table collisions

6.3.3 Storage Requirements

This subsection presents the storage requirements of B2PC for all the

generated filter sets. To calculate the total storage for B2PC we need the storage

requirements of the B2PC tables and the storage of every included BOS engine.

During simulations we find that each BOS engine has very few unique values

as shown before in Table 6-7 for all the generated databases and additionally to the

included static tables the memory requirements for the dynamic part of the algorithm

are between 2 and 5 Kbytes. Therefore every BOS engine needs 73Kbytes for its

static tables as discussed in subsection 5.3.2 and along with the included trie nodes

and dynamic blocks it needs at most 78Kbytes.

For the storage requirements of B2PC we have to calculate the size of the

Bloom filters, the associated counters, the counters for the IDs of each BOS engine,

the protocol table (PRO_TBL), the hash table (HSH_TBL) and the rules table

(RULES_TBL). For our calculations we keep the same memory configuration as in

BOS, namely 36-bit wide memory words. We also assume that two counters can fit in

a 36-bit word and each rule entry needs 2 memory words. Accordingly, the storage

requirements for the B2PC components which are independent of the size of database

are calculated in Table 6-12.

Component Memory
Words Total Bytes

BOS ID counters 10240 46080
Bloom Filters counters 16384 73728

HSH_TBL 16384 73728
RULES_TBL 8192 36864

PRO_TBL 256 1152
Total 51456 231552 (226Kb)

Table 6-12 B2PC components memory requirements

In total we need 4 BOS engines and therefore 78 x 4 = 312 Kbytes and 226 Kbytes for

B2PC components, so we finally require 538 Kbytes. These requirements are

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 108

approximately the same for the entire generated filter sets since all the BOS tables are

underutilized.

6.3.4 Lookup Performance

In this subsection we analyze the lookup performance of the B2PC scheme in

terms of memory accesses. B2PC lookup performance is highly dependant on the

APM lookup time of each BOS and on the set membership queries in the Bloom

filters.

BOS supporting APM

The BOS scheme was introduced and analyzed in Chapter 5 and here we only

discuss how it is used to provide matches for many prefixes so as to be used in B2PC.

BOS needs several memory accesses to provide all the matches in an interval of the

32-bit address space. In every interval we check the two candidate subtries and in

every matching subtrie we check all the four possible prefixes. Therefore at worst

case we require one memory access to acquire the node, then another access for every

subtrie node and one more memory access for every prefix. This worst case sums to

11 memory accesses and provides the FlowIDs for 8 prefixes. For the cases of single

prefix subtries and single prefix roots according to the optimizations of BOS the

required memory accesses are 3 and 1 respectively.

 When all BOS intervals are accessed in parallel then we have the final results

when lookups in the most populated interval finish, thus the number of memory

accesses of the slowest trie lookup. If lookups are performed sequentially in every

interval then the total number of memory accesses is equal to the sum of accesses.

Note that for BOS engines that are used for the port specification we have only 3

intervals and for the IP specifications we have 5.

 We simulate BOS with the generated filter sets and the packets headers and

count the average and the worst case of memory accesses in every interval. We have

found that the number of matching prefixes inside an interval is typically 1 and the

average number of memory accessed needed to obtain the FlowID is 2,2 while the

worst case observed is 6 memory accesses despite the theoretical number of 11

accesses. Therefore if we lookup the intervals in parallel we have a complete match

operation every 2,2 memory accesses on average and every 6 memory accesses on the

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 109

worst case. When we lookup the intervals sequentially we need 9,2 accesses on

average and 25 on the worst case.

B2PC Bloom Filter Probes

The other essential factor of performance for B2PC besides the BOS matches

is the number of sequential probes in the Bloom filters. We query the IP and Port pair

Bloom filters in parallel and simultaneously probe the rule Bloom filter for the

matched IP and Port pairs. We simulate each filter set with the corresponding packets

headers and calculate the average and worst case of the sequential Bloom filter

probes. The results are shown in Table 6-13.

Filter Set
Name

Set
Size

Max
Probes

Average
Probes

ACL1 712 10 2,21
ACL2 615 21 2,91
ACL3 2348 17 2,68
ACL4 2974 29 4,03
ACL5 3343 6 2,01
FW1 282 22 4,74
FW2 68 5 2,64
FW3 178 14 3,63
FW4 263 18 3,18
FW5 156 34 5,34
IPC1 1687 16 2,16
IPC2 169 4 2,07

Table 6-13 Sequential Bloom Filter probes

In the number of sequential accesses we have to add the average number of accesses

in the hash table (HSH_TBL) that are equal to the collisions presented in Table 6-11

and two memory accesses to acquire the final rule from RULES_TBL. Now, the total

number of memory accesses is presented in Table 6-14.

Filter Set
Name

Set
Size

Hash Table
Accesses

Bloom Filter
Accesses

Total
Accesses

ACL1 712 1,09 2,21 5,30
ACL2 615 1,03 2,91 5,94
ACL3 2348 1,17 2,68 5,85
ACL4 2974 1,19 4,03 7,22
ACL5 3343 1,21 2,01 5,22
FW1 282 1,02 4,74 7,76
FW2 68 1 2,64 5,64
FW3 178 1 3,63 6,63
FW4 263 1,07 3,18 6,25
FW5 156 1 5,34 8,34

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 110

IPC1 1687 1,10 2,16 5,26
IPC2 169 1,29 2,07 5,36

Table 6-14 Average number of memory accesses for B2PC data structures

To calculate the total average number of memory accesses for B2PC we have to

include the BOS lookup times. We perform parallel accesses in all the BOS engines

and collect simultaneously all the results in the collection points. Each BOS engine

may perform parallel or sequential accesses in its intevals. In Table 6-15 we present

the final number of memory accesses needed for B2PC to produce a result.

Filter Set
Name

Set
Size

BOS
Parallel

BOS
Sequential

B2PC
Accesses

B2PC with
Seq. BOS

B2PC with
Par. BOS

ACL1 712 2,20 9,20 5,30 14,50 7,50
ACL2 615 2,20 9,20 5,94 15,14 8,14
ACL3 2348 2,20 9,20 5,85 15,05 8,05
ACL4 2974 2,20 9,20 7,22 16,42 9,42
ACL5 3343 2,20 9,20 5,22 14,42 7,42
FW1 282 2,20 9,20 7,76 16,96 9,96
FW2 68 2,20 9,20 5,64 14,84 7,84
FW3 178 2,20 9,20 6,63 15,83 8,83
FW4 263 2,20 9,20 6,25 15,45 8,45
FW5 156 2,20 9,20 8,34 17,54 10,54
IPC1 1687 2,20 9,20 5,26 14,46 7,46
IPC2 169 2,20 9,20 5,36 14,56 7,56

Table 6-15 Final number of average memory accesses for B2PC

Lookup Perfomance and Link Speeds

According to our lookup performance we can calculate the efficiency of B2PC as

a classification engine in a high speed router. To calculate the network performance

we have to assumed a certain speed of the memory and a pipelined hardware

implementation that can provide one memory access per cycle. The results we present

assume 2 possible memory configurations:

• 200Mhz off-chip synchronous SRAM

• 400Mhz on-chip synchronous SRAM

Table 6-16 presents the network performance of B2PC counted in millions of packets

per second (Mpps).

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 111

Off-chip SRAM 200Mhz On-Chip SRAM 400Mhz
Filter Set

Name
Set
Size

B2PC with
Seq. BOS
(Mpps)

B2PC with
Par. BOS
(Mpps)

B2PC with
Seq. BOS
(Mpps)

B2PC with
Par. BOS
(Mpps)

ACL1 712 13,79 26,66 27,58 53,33
ACL2 615 13,21 24,57 26,42 49,14
ACL3 2348 13,28 24,84 26,57 49,68
ACL4 2974 12,18 21,23 24,36 42,46
ACL5 3343 13,86 26,95 27,73 53,90
FW1 282 11,79 20,08 23,58 40,16
FW2 68 13,47 25,51 26,95 51,02
FW3 178 12,63 22,65 25,26 45,30
FW4 263 12,94 23,66 25,88 47,33
FW5 156 11,40 18,97 22,80 37,95
IPC1 1687 13,81 26,80 27,66 53,61
IPC2 169 13,73 26,45 27,47 52,91

Table 6-16 Network performance of B2PC in Mpps

If we assume the worst case of classifying minimum sized IP packets (40 bytes) then

the supported link speeds are shown in Table 6-17.

Off-chip SRAM 200Mhz On-Chip SRAM 400Mhz
Filter Set

Name
Set
Size

B2PC with
Seq. BOS

(Gbps)

B2PC with
Par. BOS
(Gbps)

B2PC with
Seq. BOS

(Gbps)

B2PC with
Par. BOS
(Gbps)

ACL1 712 4,41 8,53 8,83 17,07
ACL2 615 4,23 7,86 8,45 15,72
ACL3 2348 4,25 7,95 8,50 15,90
ACL4 2974 3,90 6,79 7,80 13,59
ACL5 3343 4,44 8,63 8,88 17,25
FW1 282 3,77 6,43 7,55 12,85
FW2 68 4,31 8,16 8,63 16,33
FW3 178 4,04 7,25 8,09 14,50
FW4 263 4,14 7,57 8,28 15,15
FW5 156 3,65 6,07 7,30 12,14
IPC1 1687 4,43 8,58 8,85 17,16
IPC2 169 4,40 8,47 8,79 16,93

Table 6-17 Network performance of B2PC in Gbps

We can compare the performance of B2PC with other similar classification

schemes presented in literature in terms of supported rules, storage requirements,

throughput and working frequency. Our comparison is based on the results presented

in the corresponding papers, where hardware implementations without TCAMs are

described, and are shown in Table 6-18.

CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 112

Scheme
Working

Frequency
(MHz)

Number of
Rules

Storage
Requirements

(Number of memories)

Throughput
(Mpps)

BV [24] 33 512 640Kb (5) 1
RFC [25] 125 1700 976 Kb (2) + 15,6 Mb (2) 30

B2PC 200 3300 540 Kb (4) 4,5
Table 6-18 Summary of Classification Schemes

Further, we introduce the metric of Mpps per Mbyte to illustrate the efficiency

of classification schemes. This metric has been calculated for all the schemes of Table

6-18 by considering that all schemes work in 200MHz and extrapolating the

throughput. The values of this metric for every scheme are shown in Table 6-19. We

see that BV seems to be the most efficient but it only supports 512 rules. Despite RFC

has the best throughput, its performance is based on greedy memory consumption as

our metric shows, moreover it supports at most 1700 rules. Our scheme is very close

to BV and supports more than 3300 rules with dandy efficiency.

Scheme Efficiency
(Mpps/Mbytes)

BV [24] 9,6
RFC [26] 2,9

B2PC 8,65
Table 6-19 Schemes efficiency in Mpps per Mbyte

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 113

7 Chapter 7

Hardware Implementation of B2PC

In this chapter we present a reference hardware implementation of the B2PC

classification scheme that was described in Chapter 6. We provide a detailed

description of all the internal blocks of the system and the hardware resources

utilized. We also present the speed and silicon area estimations of the final design. We

decided to implement the final design in an FPGA platform so as to prove the

feasibility and scalability of the architecture, even when limited hardware resources

are available. The FPGA platform we use is a Xilinx Virtex II Pro [32] with external

Cypress ZBT SSRAMs [33].

7.1 B2PC Organization
B2PC consists of many internal blocks which are shown in Figure 7-1. The

operation of the system is coordinated by the B2PC_CTRL block which receives

commands and data from an external command interface (CMD_INF). Upon a

reception of a command, B2PC_CTRL orders all the BOS blocks and PRO_CTRL to

start in parallel their operation and feeds them with the appropriate values. The BOS

blocks are responsible to work on the prefix based values and PRO_CTRL to control

the protocol related table. The data structures handled by each BOS are stored in an

external SSRAM and each BOS communicates with the memory handler

(MEM_HDLR) and the memory controller (MEM_CTRL). The MEM_HDLR

implements the dynamic memory management scheme described in section 4.4 by

employing several free-lists and the MEM_CTRL is the actual low level memory

interface. PRO_CTRL works on the protocol field of the network packets and stores

its data on PRO_TBL which is a Single Port Block RAM (SPBRAM) of size 256x12

which is kept inside the FPGA. The results of all the BOS blocks and PRO_CTRL are

given and kept to the collection points (CLPT). When all BOS operations finish then

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 114

Figure 7-1 B2PC organization and block diagram

the Bloom filter control block (BL_CTRL) is instructed by B2PC_CTRL to handle all

the intermediate results provided by the CLPTs. BL_CTRL generates the

permutations and operates on the Bloom Filters which are stored in four on-chip Dual

Port Block RAMs (DPBRAM) of size 256x32. When BL_CTRL completes the

specific operation then the final result is forwarded to B2PC_CTRL and is fed to the

CMD_INF. More detailed descriptions of the internal blocks are provided in the next

sections.

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 115

7.2 B2PC_CTRL Block
B2PC_CTRL is the coordinator and controls all the operations that are

requested by the command interface CMD_INF. This interface provides B2PC with

the incoming data and also the exact operation that must be executed. The signals of

the interface and their descriptions are shown in Table 7-1. This is a rather simple

interface that provides all the incoming data fields together so as to be given in a

single cycle to all the functional blocks in parallel.

Signal Length In/Out Description
i_req 1 I Request signal
i_opcode 2 I Opcode for insert, lookup and delete
i_pfx1_data 32 I Data for 1st 32-bit prefix
i_pfx1_len 5 I Length of the 1st 32-bit prefix
i_pfx2_data 32 I Data for 2nd 32-bit prefix
i_pfx2_len 5 I Length of the 2nd 32-bit prefix
i_pfx3_data 16 I Data for 1st 16-bit prefix
i_pfx3_len 4 I Length of the 1st 16-bit prefix
i_pfx4_data 16 I Data for 2nd 16-bit prefix
i_pfx4_len 4 I Length of the 2nd 16-bit prefix
i_pfx5_data 8 I Data for the protocol exact value
i_pfx5_wc 1 I Protocol wildcarded or not
o_ack 1 O Acknowledgement
o_flow_id 12 O The returned flow ID

Table 7-1 Command Interface Signals

B2PC_CTRL involves a finite state machine (FSM) to handle all the possible

cases and generates request signals to all the other blocks. The block receives a

request for a command defined by i_opcode and latches all the incoming data to

registers. The following opcodes are defined:
 2’b00 : Lookup

 2’b01 : Insert

 2’b10 : Delete

 2’b11 : Reserved

Request signals are generated to all BOS and PRO_CTRL blocks with the incoming

opcode and the appropriate data and lengths. When all these sub-blocks finish then it

sends a request to BL_CTRL so as to start the generation of permutations and operate

on the Bloom filters. When BL_CTRL finishes it returns the concluding FlowID

which is then returned to CMD_INF along with the o_ack signal.

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 116

7.3 BOS Block
BOS needs several internal blocks so as to handle the operations of the BOS

scheme as described in Chapter 5. The internal organization of BOS is depicted in

Figure 7-2. The BOS block receives commands from B2PC_CTRL and informs it

when it completes an operation. It also provides the CLPT with the matched prefixes

information, namely the FlowID and the length of each matched prefix. Moreover the

required memory communication is done over the MEM_HDLR block where requests

for read, write, memory allocation and deallocation are given.

Figure 7-2 BOS internal organization

Memory Organization and Nodes

The current BOS implementation is based on sequential accesses to the BOS

tables TBL0, TBL8 and TBL16 because we prefer for cost purposes not to have

separate memories and all the tables of the same BOS engine are stored in the same

SSRAM. The memory word we have is 36-bits and we use at most 32K words which

are sufficient as presented in subsection 6.3.3. The organization of the tables in the

memory and the pool of free addresses for the dynamic memory management scheme

is shown in Figure 7-3. The first 16K words are used for TBL16, the next 256 words

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 117

are for TBL8 and a single memory word for TBL0. The remaining 16127 memory

words are used by the memory handler (MEM_HDLR) to provide dynamic allocation

and deallocation of the required memory blocks.

Figure 7-3 BOS Memory Organization

BOS internally defines some data structures for the nodes that are used,

namely the basic nodes, the root nodes, the trie nodes and the prefix nodes. The

formats of the nodes we defined for BOS are shown in Figure 7-4.

Figure 7-4 BOS nodes format

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 118

The basic nodes are stored in TBL16 or within BLK256s and provide the linking

from 16 length nodes to 24 and 32 length nodes according to the TBL24 and TBL32

optimization discussed in subsection 5.2.4. The fields of the basic nodes are the

following:
 BLK256 Valid : Indicates whether there is a link in the next stride

 and if the data contained in the BLK256 Pointer field

 are valid (1-bit).

 Root Node Valid : Indicates whether the data contained in the Root

 Node Pointer field are valid (1-bit).

 BLK256 Pointer : The address of the linked BLK256 (17-bits).

 Root Node Pointer : The address of the root node (17-bits).

The root nodes are stored in TBL0 and TBL8 and are linked in the Root Node

Pointer fields of the basic nodes existing in TBL16 and BLK256s. There are 2 types

of root nodes, the normal and the optimized node that implements the trie node

optimization discussed in subsection 5.2.2. The fields of the normal root nodes are the

following:
 RDesc : Root descriptor that indicates if this is a normal or an

optimized node. The value 1 indicates optimized node. Two

values are reserved for future use (2-bits).

 Trie Bitmap : The bitmap that indicates which subtries are active

(17-bits).

 Trie Node Pointer : The address of the trie node (17-bits).

The fields of the optimized root nodes are the following:
 RDesc : Root descriptor that indicates if this is a normal or an

optimized node. The value 0 indicates an empty node, value 1

indicates an optimized node and value 2 indicates a normal

node (2-bits).

 Subtrie Number : The number of the single active subtrie (5-bits).

 Prefix Number : The number of the active prefix (4-bits).

 Prefix Flow ID : The corresponding FlowID of the prefix (17-bits).

The trie nodes are used to keep the prefix bitmap and the pointer to the associated

data. There are two formats for the trie nodes, the normal and the optimized that

exploits the prefix node optimization discussed in subsection 5.2.1. The fields of the

normal trie nodes are the following:
 TDesc : Trie descriptor that indicates if this is a normal or an

optimized node. The value 1 indicates optimized node (1-bit).

 Prefix Bitmap : The bitmap that indicates which prefixes are active

 (15-bits).

 Prefix Node Pointer : The address of the prefix node (17-bits).

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 119

The fields of the optimized trie nodes are the following:
 TDesc : Trie descriptor that indicates if this is a normal or an

optimized node. The value 1 indicates optimized node (1-bit).

 Prefix Number : The number of the active prefix (4-bits).

 Prefix Flow ID : The corresponding FlowID of the prefix (17-bits).

Note that a single root may have many trie nodes depending on the number of active

subtries. When there is more than one subtrie then these trie nodes are kept in blocks

of adjacent memory words in sorted order. Sorting is performed by putting a given

subtrie node in the position of the block which is equal to the number of set bits in the

Trie Bitmap before the correlated subtrie bit, namely by counting the number of active

subtries that have number smaller than the current subtrie.

The prefix nodes are used to keep the associated prefix data for subtrie nodes that

have more than one active prefixes. They have two fields that keep the Flow IDs in

sorted order. The fields of the prefix nodes are the following :
 Prefix Flow ID #1 : The FlowID of the 1st saved prefix (17-bits).

 Prefix Flow ID #2 : The FlowID of the 2nd saved prefix (17-bits).

Also, note that a single trie may have many prefix nodes depending on the number of

active prefixes. When there is more than one prefix then these prefix nodes are kept in

blocks of adjacent memory words in sorted order. Sorting is performed the same way

as in subtrie nodes but now the Prefix Bitmap is used.

7.3.1 BOS_CTRL

BOS_CTRL is responsible for managing the operations of the block and

involves an FSM to handle the requests for the insert, lookup and delete operations.

For each operation there is a sub-block responsible to complete it. BOS_INS is

responsible for the inserts, BOS_LUP for the lookups and BOS_DEL for the deletes.

Upon a reception of a command BOS_CTRL generates a request to the appropriate

block and sets the appropriate select value in MEM_MUX so as to output a specific

block’s requests to the memory handler.

7.3.2 BOS_INS

BOS_INS sub-block handles all the prefix insertions in the appropriate table

or BLK256 together with TR_INS. This block also provides the final internal ID for

B2PC by checking if the prefix already exists. The functional aim of this sub-block

inside BOS is to provide the suitable root node pointer to TR_INS which implements

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 120

the final insertion in the trie data structures. Depending on the incoming prefix length

BOS_INS accesses the tables and reads the root node pointer. The insert procedure

has an FSM to handle the following series of actions:
 If the incoming prefix length is shorter that 8 then it provides

TR_INS with the address of the single memory word TBL0.

 If the incoming prefix length is shorter that 16 then it provides

TR_INS with the address of the memory word inside TBL8 that is defined

by the first 8-bits of the prefix.

 If the incoming prefix length is shorter that 24 then it accesses the

memory word of TBL16 defined by the first 16-bits of the prefix and

the checks the Root Node Valid flag (Basic Node Format).

o If this flag is set then gives the Root Node Pointer address to

TR_INS

o Otherwise, it requests allocation of a single word from MEM_HDLR

and sets the Root Node Valid bit and the Root Node Pointer with

the allocated address. Moreover, the allocated address in

forwarded to TR_INS.

 If the incoming prefix length is shorter that 32 then it accesses the

memory word of TBL16 defined by the first 16-bits of the prefix and

the checks the BLK256 Valid flag (Basic Node Format).

o If this flag is set then it accesses the address shown by BLK256

Pointer in the offset defined by the active 8 LSB of the prefix

and checks the Root Node Valid flag.

• If this flag is set then gives the Root Node Pointer address to

TR_INS

• Otherwise, it requests allocation of a single word from

MEM_HDLR and sets the Root Node Valid bit and the Root Node

Pointer with the allocated address. Moreover, the allocated

address in forwarded to TR_INS.

o If the BLK256 Valid flag is not set then it requests allocation of

a 256 word block and a single memory word. The BLK256 Valid flag

and the BLK256 Pointer are set in the TBL16 entry and the Root

Node Valid flag and Root Node Pointer are set inside the newly

allocated block in the address defined by the active 8 LSB of the

prefix. The address of the single memory word is given to TR_INS.

 If the incoming prefix has length 32 then it accesses the memory word

of TBL16 defined by the first 16-bits of the prefix and the checks the

BLK256 Valid flag (Basic Node Format).

o If this flag is set then it accesses the address shown by BLK256

Pointer in the offset defined by the bits 16-23 of the prefix and

checks the new BLK256 Valid flag. If this flag is set then it

accesses the address shown by BLK256 Pointer in the offset defined

by the active 8 LSB of the prefix and checks the Root Node Valid

flag.

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 121

• If this flag is set then we have found the FlowID of the prefix

and get it from the root node pointer field.

• If this is not set then we set it and put the incoming FlowID

in the Root Node Pointer field.

o If the BLK256 valid flag is not set then it requests allocation of

two 256 word blocks. The BLK256 Valid flag and the BLK256 Pointer

are set in the TBL16 entry and next the BLK256 Valid flag and

BLK256 Pointer are set inside the newly allocated block in the

address defined by the bits 16-23 of the prefix. Inside the second

BLK256 in the offset defined by the 8 LSB of the prefix it sets

the Root Node Valid flag and puts the FlowID in the Root Node

Pointer field.

7.3.3 TR_INS

TR_INS sub-block handles the actual prefix insertions in the appropriate root

nodes. This sub-block also provides the final internal ID for B2PC by checking if the

prefix already exists. The aim of this sub-block is to generate or update the existing

root nodes in order to incorporate the incoming prefix. TR_INS works on root nodes,

trie nodes and prefix nodes.

For the prefix to be inserted, TR_INS has first to find the subtrie number and

the prefix number in order to work on the bitmaps. The formulas for generating these

numbers have been discussed in subsection 5.1.4. Once these numbers have been

generated then an FSM examines the contents of the root node and follows the steps

shown below:
 If the RDesc field is 0 we have an empty node and we proceed to create

and node with optimized format. Hence, we set RDesc to 1, set the

Subtrie Number and the Prefix number with the generated values and put

the incoming FlowID in the Prefix Flow ID field.

 If the RDesc field is 1 we have an optimized node and have to proceed

to generate further nodes.

o If the existing Subtrie number matches with the generated one then

we allocate memory for a trie node and a prefix node. We generate

a Trie Bitmap with the appropriate bit set, link the trie node in

the Trie Node Pointer field and write it as a new root node, then

we generate a Prefix Bitmap and link the prefix node in the Prefix

Node Pointer of the trie node and finally put the Prefix Flow IDs

inside the prefix node in ascending order.

o If the existing Subtrie Number does not match with the generated

one then we allocate memory for two trie nodes of optimized

format. We generate a Trie Bitmap with the appropriate bits set,

link the trie nodes in the Trie node Pointer field and write it as

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 122

a new root node, then we write in each trie node TDesc with 1 and

fill the Prefix Number and Prefix Flow ID fields.

 If the RDesc field is 2 we have a normal node and have to examine if

the bit number indicated by the generated subtrie number is set in the

existing Trie Bitmap.

o If this specific bit is set then we follow the Trie Node Pointer.

If it has normal format, namely TDesc is 0, then we check the

Prefix Bitmap.

• If the bit indicated by prefix number is set the we read the

Prefix Node Pointer in the appropriate offset and return the

new internal Flow ID.

• Otherwise, we set the specific bit in the Prefix Bitmap,

allocate space for the new prefix node and write the final

Prefix Flow ID in the proper position.

o If TDesc is 1 then we have an optimized prefix node and we

allocate memory for the prefix node, generate the Prefix Bitmap,

link the prefix node and write the Prefix Flow IDs sorted in the

node.

o If the bit is not set in the Subtrie Bitmap then we set it and

allocate space for the new trie node that has optimized format. We

place the trie node in the proper position so as the trie nodes to

be sorted and write the appropriate data. We write TDesc with 1,

write the Prefix Number and the Prefix Flow ID.

7.3.4 BOS_LUP

BOS_LUP sub-block handles the prefix lookups and implements the All

Prefix Match (APM) algorithm. For cost purposes we have implemented BOS with

sequential accesses in the tables and this sub-block visits all the tables one by one and

follows the links to BLK256 to find valid root pointers. Once BOS_LUP finds an

active root node then it provides the address of the root node to TR_LUP which

makes the actual lookup inside the trie nodes. The insert procedure has an FSM to

handle the following steps:
 Provide TR_LUP with the address of TBL0.

 Provides TR_INS with the address of the memory word inside TBL8 that

is defined by the first 8-bits of the prefix.

 Access TBL16 and

o if the Root Valid flag if set then it gives the Root Node Pointer

to TR_LUP.

o If the BLK256 Valid flag is set we follow the BLK256 Pointer and

access in the offset specified by the bits 16-23 of the prefix. If

Root Valid is set there we provide TR_LUP with the existing Root

Node Pointer. If BLK256 Valid flag is also set then we follow the

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 123

BLK256 Pointer and access in the offset specified by the 8 LSB of

the prefix. If Root Valid is set there then we return the Flow ID

stored in the Root Node Pointer.

7.3.5 TR_LUP

TR_LUP sub-block handles the actual prefix lookups in the appropriate root

nodes. This sub-block provides the matching IDs for B2PC by checking if the prefixes

match. TR_LUP works on root nodes, trie nodes and prefix nodes. For a given value

to be matched, TR_INS has first to find the candidate subtries and the prefixes

numbers in order to work on the bitmaps. The formulas for producing these numbers

have been discussed in subsection 5.1.4. Once these numbers have been produced

then an FSM examines the contents of the root node and follows the steps shown

below:
 If the RDesc field is 0 we have an empty node and therefore no

matches.

 If the RDesc field is 1 we have an optimized root node and have to

check if the Subtrie Number matches with one of the generated.

o If it matches then we check the Prefix Number with the four

candidate generated prefixes.

• If it matches then we return the Prefix Flow ID.

• Otherwise, we have no match.

o Otherwise, we have no match.

 If the RDesc field is 2 we have a normal root node and have to examine

the Subtrie Bitmap for the two specific bits set.

o For those subtries that the bit in the Subtrie Bitmap is set we

follow the Trie Node Pointer.

• If TDesc is 1 the we check the Prefix Number with the four

candidate and if one matches then we return the Prefix Flow ID.

o If TDesc is 0 then we examine the Prefix Bitmap for the

four specific bits indicated by the candidate prefix

numbers.

o For every specific bit that is set the we follow the

Prefix Node Pointer in the appropriate offset and return

the Prefix Flow ID.

o If neither bits are set we have no match.

7.3.6 BOS_DEL

BOS_DEL sub-block handles all the prefix deletions in the appropriate tables

or BLK256 together with TR_DEL. In terms of functionallity this sub-block provides

the suitable root node pointer to TR_DEL which handles the final deletion in the trie

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 124

data structures. Depending on the incoming prefix length BOS_DEL accesses the

tables and reads the root node pointer. The delete procedure has an FSM to handle the

following series of actions:
 If the incoming prefix length is shorter that 8 then it provides

TR_DEL with the address of the single memory word TBL0.

 If the incoming prefix length is shorter that 16 then it provides

TR_DEL with the address of the memory word inside TBL8 that is defined

by the first 8-bits of the prefix.

 If the incoming prefix length is shorter that 24 then it accesses the

memory word of TBL16 defined by the first 16-bits of the prefix and

the checks the Root Node Valid flag (Basic Node Format).

o If this flag is set then gives the Root Node Pointer address to

TR_DEL.

o Otherwise, delete fails.

 If the incoming prefix length is shorter that 32 then it accesses the

memory word of TBL16 defined by the first 16-bits of the prefix and

the checks the BLK256 Valid flag (Basic Node Format).

o If this flag is set then it accesses the address shown by BLK256

Pointer in the offset defined by the active 8 LSB of the prefix

and checks the Root Node Valid flag.

• If this flag is set then it gives the Root Node Pointer address

to TR_DEL

• If the flag is zero, delete fails.

 If the incoming prefix has length 32 then it accesses the memory word

of TBL16 defined by the first 16-bits of the prefix and the checks the

BLK256 Valid flag (Basic Node Format).

o If this flag is set then it accesses the address shown by BLK256

Pointer in the offset defined by the bits 16-23 of the prefix and

checks the new BLK256 Valid flag.

• If this flag is set then it accesses the address shown by

BLK256 Pointer in the offset defined by the active 8 LSB of the

prefix and checks the Root Node Valid flag. If this flag is set

then we have to reset the Root Node Valid flag and set the

contents of the Root Node Pointer field to zero. Otherwise,

delete fails.

• Otherwise, delete fails.

o If the flag is zero, delete fails.

7.3.7 TR_DEL

TR_DEL sub-block handles the actual prefix deletions in the appropriate root

nodes. The aim of this sub-block is to deallocate or update the existing root nodes in

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 125

order to remove the given prefix. TR_DEL works on root nodes, trie nodes and prefix

nodes.

For the prefix to be deleted, TR_DEL has first to find the subtrie number and

the prefix number in order to work on the bitmaps. The formulas for generating these

numbers have been discussed in subsection 5.1.4. Once these numbers have been

generated then an FSM examines the contents of the root node and follows the steps

shown below:
 If the RDesc field is 0 we have an empty node and delete fails.

 If the RDesc field is 1 we have an optimized node and have to examine

the fields.

o If both the existing Subtrie number and the Prefix Number match

then we put zeros in the word.

o Otherwise, delete fails.

 If the RDesc field is 2 we have a normal node and have to examine if

the bit number indicated by the generated subtrie number is set in the

existing Trie Bitmap.

o If this specific bit is set then we follow the Trie Node Pointer.

If it has normal format, namely TDesc is 0, then we check the

Prefix Bitmap.

• If the bit indicated by prefix number is set, we reset it

and deallocate its space for the memory of the Prefix Node

Pointer by keeping the sorted order.

• If TDesc is 1 and Prefix Number matches then we deallocate

the trie node, rearrange the trie nodes and reset the bit in

the Trie Bitmap of the root node.

• Otherwise, delete fails.

o Otherwise, delete fails.

7.4 PRO_CTL
PRO_CTL block is responsible to insert, delete and find the two possible

matches of the protocol field. When instructed, its FSM accesses PRO_TBL in the

memory address 0 to find a match for the wildcard specification and the memory

address defined by the incoming 8-bit protocol field value. The matches are sent to

the appropriate collection point (CLPT) and a finish signal is asserted to B2PC_CTL.

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 126

7.5 CLPT
CLPT is the implementation of the collection point and gathers the results from

every single field search. CLPT keeps at most 33 FlowIDs (subsection 6.2.3)

internally in a memory, sorted in descending order and provides them to BL_CTRL. It

provides the matching IDs in a show-ahead fashion and signals BL_CTRL when all of

them have been read. CLPT does not dequeue the IDs upon reading and when all of

them have been read, it starts providing them from the beginning. Basically, CLPT is

a show-ahead circular buffer.

7.6 BL_CTRL
BL_CTRL handles all the Bloom Filters, generates the permutations to be tested

and provides the final filter match. It performs the set membership queries and

resolves the FlowID by visiting the hash and rule tables. BL_CTRL involves many

sub-blocks to accomplish several operations and its internal organization is depicted

in Figure 7-5. It reads the matched IDs from the 5 collections points with the proper

sequence in order to generate the permutations based on the descriptions of

subsections 6.2.3 and 6.2.6.

Figure 7-5 BL_CTRL Internal organization

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 127

Memory organization of Bloom Filters and Static Tables

 The implementation of B2PC requires the Bloom Filters of the IP pair, the

Port pair and the Rules to be stored in memories inside the FPGA. According to the

design of the Bloom filters we partition the bit-vector of Rule Bloom filter into four

equal parts to access them in parallel. Moreover, the bit-vectors of IP and Port Bloom

filters are also split into two equal parts. Additionally all the existing bit-subvectors

need to be accessed in parallel. To achieve this parallelization and store these Bloom

Filters we keep on-chip four Dual Port Block RAMs (DPBRAM) of size 256x32.

Figure 7-6 illustrates how the bit-vectors of the Bloom filters are organized inside the

memories.

Figure 7-6 Bloom filter memory partitioning

All the memories are split into two parts and thus we have 128x32 = 4096 bits

for every bit-vector of the Bloom filters as it is required. The first part of each

memory is accessed by the first port and the second by the second port so as to have

parallel accesses. The hash functions provide a 12-bit value to indicate a specific bit

inside the bit-vector. The first 7-bits of the value can be used to identify one of the

128 memory words of each bit-vector and the last 5-bits define a specific bit from the

32 of each word.

B2PC has also some static tables to hold the internally represented rules

(RULES_TBL) , a hash table (HSH_TBL) to resolve the matched permutations and

several tables with counters to keep the reference counts of the BOS IDs and the

Bloom filters bit references. This kind of information is only known to BL_CTRL

block which knows the final internal IDs, the Bloom filter bits and calculates their

reference counts. This information is stored in the first external SSRAM and

BL_CTRL has an interface with the related memory handler. The first 32K memory

words of the first SSRAM are allocated for BOS #1 and therefore BL_CTRL is

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 128

assigned addresses below 32K. The additional memory words used by B2PC have

been discussed in subsections 6.2.2 and 6.2.4 and their organization inside the

SSRAM is shown in Figure 7-7.

Figure 7-7 Organization of Static Tables

7.6.1 BL_MAIN

BL_MAIN sub-block responsible for the central operation of BL_CTRL and

involves an FSM to handle the requests for the insert, lookup and delete operations

defined by the same opcodes as in B2PC. For each operation there is a sub-block

responsible to complete it. BL_INS is responsible for the inserts, BL_LUP for the

lookups and BL_DEL for the deletes. Upon a reception of a command BL_MAIN

generates a request to the appropriate block and sets the BL_MUX and MEM_MUX

to output a specific block’s requests to the Bloom filters’ memory and the memory

handler.

7.6.2 BL_INS

BL_INS sub-block has an FSM to handle all the programming of the Bloom

filters, save the internal rule representation in the RULES_TBL, set HSH_TBL values

and update the reference counters. When all single field values are inserted in BOS

engines and protocol table then BL_INS calculates the hashing functions on the IDs

and the following steps are performed:

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 129

 the IDs of each field of the rule are then inserted in the RULES_TBL,

 the appropriate ID counters are incremented,

 HSH_TBL values are set,

 Bloom Filters’ bits are set,

 Bloom Filters’ counters are incremented.

7.6.3 BL_LUP

BL_LUP sub-block performs all the set membership queries in the Bloom

Filters and generates all the permutations. BL_LUP involves four FSM’s to achieve

the parallel accesses in the Bloom Filters. We have one FSM for the IP pair queries,

one for the Port pair queries, one for the Rule queries and the main FSM that resolves

the final FlowID.

The first FSM performs the queries in the IP pair Bloom filter. The

permutations are generated by reading the Source IP ID from the appropriate

collection point and while keeping this value steady, we read sequentially all the

values from the Destination IP collection point. When these finish then we read the

next value from the Source IP collection point and start from the beginning of

Destination IP IDs. For every permutation the IP pair Bloom filter is probed and when

a match occurs then the couple of IDs is sent to the FSM that handles the Rule Bloom

filter queries. The Port pair Bloom filter queries and permutations are performed in

the same way as the IP pair but now the Source and Destination Port collection points

are read.

The FSM that handles the Rule Bloom Filter queries waits for matches from

both IP and Port pair FSM’s and when both provide values then these values along

with the two possible IDs of the Protocol field are probed in the Rule Bloom Filter. If

a query is successful then the 5 IDs are sent to the main FSM to resolve the final

FlowID or indicate a false positive.

The main FSM uses the 5 ID values that matched and visits the hash table to

get the possible Rule FlowID. The values that are found in the specific memory word

of HSH_TBL indicate the possible FlowIDs. For the found FlowIDs then this FSM

visits RULES_TBL and checks if the IDs values located there match with the 5

provided IDs. If all match then we have finally found a match and return this FlowID,

otherwise if we have no match then it is a false positive and the FSMs that probe the

Bloom Filters continue looking for matches.

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 130

7.6.4 BL_DEL

BL_DEL sub-block has an FSM to handle the updates of the Bloom filters, to

remove rules from RULES_TBL, to reset HSH_TBL values and to update the

reference counters. When a FlowID is to be deleted, all the IDs from RULES_TBL

are read, the Bloom hashing functions are calculated and the following steps are

performed:
 all the IDs counters are decremented and if a counter is decremented

to zero then a delete command is sent to the appropriate BOS engine to

be removed.

 all the Bloom Filters’ bit counters are decremented and if a counter

is decremented to zero then the corresponding Bloom bit is cleared.

 the related HSH_TBL value is cleared.

 the entry in RULES_TBL is cleared.

7.7 MEM_HDLR and MEM_CTRL
The MEM_HDLR sub-block provides the dynamic memory management in

our system and supports the variable size blocks. MEM_HDLR is the intermediate

layer between the sub-blocks and the memory controller (MEM_CTRL) and supports

requests for allocation and deallocation of variable size blocks. Requests for reads or

writes in the memory are immediately forwarded to the memory controller

MEM_CTRL.

The design of MEM_HDLR is already described in section 4.4 and here we

have the same configuration but we support many different sizes of memory word

blocks. We support blocks of 1,2,4,8 and 18 words. Moreover we provide the ability

to allocate the big 256-word memory blocks. The design of MEM_CTRL is already

described in subsection 4.5 and here we use the same design.

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 131

7.8 Implementation Analysis
In this subsection we provide an analysis of the block latencies and an

estimation of the implementation cost for the reference design.

7.8.1 Latency Analysis

We calculate the minimum and the maximum number of clock cycles required

by each block to complete its operation. Many of the blocks have variable latencies

which depend on the access patterns and the data stored in the data structures.

Moreover, the blocks that access the external SSRAMs for the stored data structures

have to also suffer the latency of our memory controller. In Table 4-2 we present the

latency per block of B2PC.

Block Name Min Latency
(clock cycles)

Max Latency
(clock cycles)

B2PC_CTRL 1 -
BOS_CTRL 1 -
BOS_INS 1 7
BOS_LUP 4 8
BOS_DEL 1 7
TR_INS 3 23
TR_LUP 2 22
TR_DEL 3 22
PRO_CTL 2 2
CLPT 0 0
BL_MAIN 1 -
BL_INS 38 38
BL_LUP 8 -
BL_DEL 35 35
MEM_HDLR 0 3
MEM_CTRL 1 2

Table 7-2 B2PC Blocks Latencies

The fact that the memory controller has latency 2 cycles (section 4.5) for a read

operation in the external SSRAM significantly affects the performance of the blocks

that perform sequential accesses to the memory. Insert, lookup and delete operations

are high depending on the read data to decide the address of the next memory access

and thus the 2 cycle latency of the memory controller is continuously introduced.

Additionally, some blocks like BL_LUP have unspecified maximum latency since

they perform iterative operations on the collected data and depend on every case

specifically. Note also that BOS_LUP occupies TR_LUP at most 4 times therefore the

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 132

total latency of a BOS lookup requires at minimum 6 clock cycles and at maximum

92 clock cycles. According to the number of memory accesses we calculated in

subsection 6.3.4 we need for a BOS lookup 18,4 clock cycles on average and for a

Bloom lookup (BL_LUP) 9,4 clock cycles. In total the average lookup time is

approximately 28 clock cycles.

7.8.2 Hardware Cost Analysis

We have used VHDL to describe the design and the results presented are the

reports from the synthesis tools. We have synthesized the design using the Synopsys

Design Compiler[35] which is the most widely used synthesis tool. We have used

UMCs 0.13µm technology library to estimate the area and the frequency of the

design. Moreover, we used the XilinX ISE tool to implement and port the design in

the FPGA.

The synthesis tool for the ASIC flow indicates that the maximum working

frequency of our design is 200Mhz.Using the synthesis tool we calculated the number

of flip-flops contained in our design and we present them per high level block in

Table 7-3. Since the final design has many instances of the same blocks, we also

calculate the total number of flip-flops.

Block Block Description Number of Flip-Flops
BOS BOS engine 624
PRO_CTL Control of Protocol Table 14
CLPT Collection Point 19
BL_CTRL Bloom Control 191
MEM_HDLR Memory Handler 662
MEM_CTRL Memory Controller 43
B2PC_CTRL Control Block of B2PC 219
Total 5835

Table 7-3 Flip-Flop count per block

The area of the total design and the equivalent gate count is presented in Table 7-4.

The equivalent gate count is calculated by considering how many 2-input NANDs can

be accommodated in this area.

Components Area
(mm2)

Equivalent
NAND Gates

Combinatorial 0,595 115K
Non-Combinatorial 0,250 48K
Memories 0,456 88K
Total 251K

Table 7-4 B2PC area and gate count

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 133

The ISE tool of the Xilinx FPGA flow shows that the maximum working

frequency of our design is 75Mhz. The tool reports the occupied resources after a full

back-end FPGA flow while occupying optimizations to remove redundant logic or

replicate logic to improve speed. The final results are shown in Table 7-5.

Resource Resource count

Used 4 input LUTs 30867

Slice Flip Flops 5390

Table 7-5 FPGA resource allocation

7.8.3 B2PC Hardware Performance

Considering that we have a 75MHz clock, the external memories work on the

same frequency and the average lookup time is 28 clock cycles then, the FPGA

prototype design of B2PC supports 2,7 Mpps.

CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 134

CHAPTER 8. CONTRIBUTIONS AND FUTURE WORK 135

8 Chapter 8

Contributions and Future Work

8.1 Summary of Contributions
We have extensively studied packet classification, the longest prefix matching

problem and the related literature and worked on several issues of them. We designed,

simulated and proposed classification solutions that exploit the most important

information existing in the packet headers. We have designed and implemented

hardware schemes that can support high speed packet classification based on the

packet’s headers of network layers 2, 3 and 4.

In Chapter 3 we propose a classification solution for the MAC layer of the

Ethernet networks. We used a hashing scheme and an internal replacement of MAC

Vendor IDs to compact the MAC address tables and support high speed decisions.

The proposed hardware scheme, Hash Based Classification Engine (HBCE), uses

modest amount of memory and a single memory to store and retrieve its data

structures. When HBCE is implemented with on-chip memories it can support

aggregate speeds of more than 50 Gbps. In Chapter 4 we fully describe a reference

hardware implementation of HBCE that can be implemented in FPGAs.

Chapter 5 presents our solution for the Longest Prefix Matching (LPM) problem

that mainly applies in route lookups. We developed an innovative data structure that

uses bitmaps to compact the prefixes and retrieve them in relatively high speed. When

the proposed solution, Bitmap Oriented Strides (BOS) is implemented on-chip with

parallel memory arrays it can support destination route lookups of more than 240

Million packets per second, translated into 80Gbps.

This thesis also proposes a novel packet classification scheme for the IP 5-tuple

in Chapter 6. The proposed solution, Bloom Based Packet Classification (B2PC),

approaches the packet classification problem in a decomposed manner, where single

field matches of each packet field are combined to identify the matching rule. B2PC

CHAPTER 8. CONTRIBUTIONS AND FUTURE WORK 136

uses the BOS solution for LPM to provide efficient single field independent matches

of 5D classification rules. Moreover, it represents internally the 5D classification rules

and stores them in Bloom filter data structures so as to provide fast and efficient set

membership queries. On-chip implementation of B2PC with parallel BOS engines

provides classification of packets at rates greater than 8Gbps for more than 4000

rules. In Chapter 7 we fully describe a reference hardware implementation of B2PC

that can be implemented in FPGAs.

8.2 Future work
Our solution to the Longest Prefix Matching, BOS, is strictly restricted to find

prefix matches for IPv4 addresses. It will be rather useful to examine whether the data

structures involved in BOS could be used to support IPv6 [3] routing lookups. The

IPv4 addresses are 32-bits long and the IPv6 addresses are defined to be 128-bit.

These 128-bit addresses could be possibly split into 32-bit segments and follow a

decomposition solution similar to that proposed for B2PC. Hence, we may use 4

parallel 32-bit BOS engines to examine each segment independently and combine all

the intermediate results. Moreover, another interesting point is how the BOS hardware

implementation can scale in respect of state-of-the-art deep submicron chip

technologies.

On the other hand, our packet classification solution (B2PC), was designed to

support a few thousand rules and this restricts its scalability. However, the arrival of

new network protocols for dynamic resource reservation, like RSVP [45], can

increase the number of rules to hundreds of thousands. Hosting such a large number

of rules demands altering many parameters of the scheme, like the Bloom filters’ sizes

and the associated memory sizes and this should be extensively studied. Moreover, we

can study how B2PC could support additional packet header fields beyond the

standard IP 5-tuple. Adding more fields in B2PC requires more parallel single field

searches which would naturally increase the number of intermediate results. Handling

and combining an increased number of intermediate results can become a serious

threat to the performance our scheme. The possible number of single field

permutations could be a serious bottleneck and may require more sophisticated

combination techniques.

REFERENCES 137

References

[1] “Internet Protocol”, RFC 791, September 1981.

[2] S. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless inter-domain routing

(CIDR): an address assignment and aggregation strategy”, RFC 1519,

September 1993.

[3] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification”,

RFC 2460, December 1998.

[4] IEEE 802.1q Standard, “Virtual Bridged Local Area Networks”,
http://standards.ieee.org/getieee802/download/802.1Q-2003.pdf

[5] D. E. Knuth, “Sorting and Searching, vol. 3 of The Art of Computer

Programming”, Addison- Wesley, 1973.

[6] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Error”,

Communications of the ACM, vol. 13, pp. 422–426, July 1970.

[7] Broder and M. Mitzenmacher, “Network applications of bloom filters: A

survey”, in Proceedings of 40th Annual Allerton Conference, October 2002.

[8] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scalable

wide-area web cache sharing protocol”, IEEE/ACM Transactions on

Networking, vol. 8, pp. 281–293, June 2000.

[9] J. McAulay and P. Francis, “Fast Routing Table Lookup Using CAMs”, in

IEEE Infocom, 1993.

[10] K. Sklower, “A tree-based routing table for Berkeley Unix”, Tech. Rep.,

University of California, Berkeley, 1993.

[11] V. Srinivasan and G. Varghese, “Faster IP Lookups using Controlled Prefix

Expansion”, in IEEE Sigmetrics, 1998.

[12] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in Hardware at Memory

Access Speeds”, in IEEE Infocom, 1998.

[13] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small Forwarding Tables

for Fast Routing Lookups”, in ACM SIGCOMM, 1997.

REFERENCES 138

[14] W. N. Eatherton, “Hardware-Based Internet Protocol Prefix Lookups”, MSc

thesis, Washington University in St. Louis, 1998.

[15] B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups Using Multiway and

Multicolumn Search”, IEEE/ACM Transactions on Networking, vol. 7, no. 3,

pp. 324–334, 1999.

[16] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high speed IP

routing table lookups”, in Proceedings of ACM SIGCOMM ’97, pp. 25–36,

September 1997

[17] Feldmann and S. Muthukrishnan, “Tradeoffs for Packet Classification”, in

IEEE Infocom, March 2000.

[18] J. van Lunteren and T. Engbersen, “Fast and scalable packet classification”,

IEEE Journal on Selected Areas in Communications, vol. 21, pp. 560–571, May

2003.

[19] T. Y. C. Woo, “A Modular Approach to Packet Classification: Algorithms and

Results”, in IEEE Infocom, March 2000.

[20] P. Gupta and N. McKeown, “Packet Classification using Hierarchical

Intelligent Cuttings”, in Hot Interconnects VII, August 1999.

[21] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet Classification Using

Multidimensional Cutting”, in Proceedings of ACM SIGCOMM’03, August

2003. Karlsruhe, Germany.

[22] V. Srinivasan, S. Suri, G. Varghese, and M.Waldvogel, “Fast and Scalable

Layer Four Switching”, in ACM SIGCOMM, June 1998.

[23] D. Decasper, G. Parulkar, Z. Dittia, and B. Plattner, “Router Plugins: A

Software Architecture for Next Generation Routers”, in Proceedings of ACM

SIGCOMM, September 1998.

[24] T. V. Lakshman and D. Stiliadis, “High-Speed Policy-based Packet Forwarding

Using Efficient Multi-dimensional Range Matching”, in ACM SIGCOMM,

September 1998.

[25] F. Baboescu and G. Varghese, “Scalable Packet Classification”, in ACM

SIGCOMM, August 2001.

[26] P. Gupta and N. McKeown, “Packet Classification on Multiple Fields”, in

ACM SIGCOMM, August 1999.

[27] IEEE 802.1p Standard, “LAN Layer 2 QoS/CoS Protocol for Traffic
Prioritization”.

REFERENCES 139

[28] http://www.ncasia.com/rfq/24port_0303.cfm?rfq=Enterprise_24-port_rack-

mount_switch

[29] N. McKeown, B. Prabhakar, “Lectures on Packet Switch Architectures II –

Address Lookup and Classification”,

http://www.stanford.edu/class/ee384y/Handouts/EE384y_lookups_1.pdf

[30] R. Jain, "A Comparison of Hashing Schemes for Address Lookup in Computer

Networks", IEEE Transactions on Communications, Vol. 40, No. 3, October

1992, pp. 1570-1573

[31] IEEE OUI and Company_id Assignments,

http://standards.ieee.org/regauth/oui/index.shtml

[32] XilinxVirtex II Pro FPGA Platform,

http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Virtex-

II+Pro+FPGAs

[33] Cypress CY7C1371C, “512K x 36 Flow-Through SRAM with NoBL™

Architecture”.

[34] Xilinx Tutorial, “Designing Custom OPB Slave Peripherals for MicroBlaze”.

[35] Synopsys Corporation, “Design Compiler”,

http://www.synopsys.com/products/logic/design_compiler.html

[36] Internet Performance Measurement and Analysis (IPMA) project,

http://www.merit.edu/~ipma/

[37] Nen-Fu Huang, Shi-Ming Zhao, “A novel IP-routing lookup scheme and

hardware architecture for multigigabit switching routers.” IEEE Journal on

Selected Areas in Communications June 1999: 1093 -1104

[38] J. van Lunteren - IBM Zurich , “Searching very large routing tables in fast

SRAM”, in Proceedings of 10th International Conference on Computer

Communications and Networks, 2001 : 4-11

[39] Y. Rekhter, T. Li, “A Border Gateway Protocol 4 (BGP-4)” , RFC1771, March
1995

[40] M. Kounavis, A. Kumar, H. Vin, R. Yavatkar and A.Campbell. “Directions in

Packet Classification for Network Processors”. 9th International Symposium on

High-Performance Computer Architecture, February 2003.

[41] F. Baboescu, S. Singh, and G. Varghese, "Packet classification for core routers:

Is there an alternative to CAMS?" in INFOCOM, 2003.

REFERENCES 140

[42] David Taylor and Jonathan Turner , “ClassBench: A Packet Classification

Benchmark”, Proceedings of Infocom, March 2005.

[43] Pareto Distribution , http://en.wikipedia.org/wiki/Pareto_distribution

[44] Sarang Dharmapurikar, Praveen Krishnamurthy, Todd S. Sproull, John W.

Lockwood, “Deep Packet Inspection using Parallel Bloom Filters”, IEEE

Micro, January 2004

[45] Lixia Zhang, Stephen Deering, and Deborah Estrin, “RSVP: A New Resource

ReSerVation Protocol”, IEEE network, 7, September 1993.

