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Abstract

Switches and routers are the most important building blocks of today’s
networks and the Internet. The wide spread and growth of the Internet imposes high
performance and efficiency in the network infrastructures in order to support the QoS,
demanded by the state-of-the-art network applications, and the ever increasing
network traffic. This thesis primarily addresses the searching tasks performed by
Internet routers and switches in order to forward packets and provide differentiation
of services to packets belonging to particular traffic flows. Considering that these
searching tasks must be performed in a per packet basis, the speed and effectiveness
of the solutions to these problems determines the efficiency of the overall networks.

We have proposed novel hardware based classification schemes to support QoS
in multiple network layers and meet today’s high speed links’ requirements. Initially,
we propose a Hash Based Classification Engine (HBCE) to address the problem of
classification in the network MAC layer (Data Link Layer). Moving to routers we
developed an innovative scheme, Bitmap Oriented Strides (BOS), which faces the
Longest Prefix Matching problem and supports fast lookups by efficiently managing
the routing tables. Striving to enhance the granularity of service differentiation we
propose a 5-dimentional packet classification scheme that leverages packet fields
from higher network layers. We developed the Bloom Based Packet Classification
(B2PC) scheme which is an innovative approach for decomposed packet classification
that involves Bloom filter data structures.

The proposed implementation of the Hash Based Classification Engine

(HBCE), can support up to 64K MAC address rules at aggregate speeds of more than



50 Gbps using only 540KB of memory. Moreover, the hardware implementation of
Bitmap Oriented Strides (BOS) can handle more than 90K prefixes while requires
only 600KB of memory and allows routing decisions for more than 240 million
packets per second. Finally, a hardware realization of the Bloom Based Packet
Classification (B2PC) handles more than 4000 rules by involving 530KB of memory

and can classify packets at rates greater than 8Gbps.
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Hepidnyn

Ot petaymyelg Kot 01 SPOLOAOYNTES Elval TOL TO OMUAVTIKG dOUIKE oTOotYElN TV
oNUEPVOV SIKTO®V Kot Tov Atadiktoov. H peyddn eEdmimon kor avantuén tov
Awd1KTOOV Omontel LVYNAES EMBO0ELS KOl TKOVOTNTEG OMO TIG OIKTLOKEG VITOOOWES
MOTE VO VTOGTNPIEEL TNV TOOTNTO TOV VANPECIDOV, TOV OTOLTEITAL OO TIC OIKTLOKES
EQUPUOYEG TEAEVTOLOG TEYVOAOYING, Ko TNV cuveyn avénon g dkTvakng Kivnong. H
gpyocio avt acyoieitor Kupimg pe TIg Agttovpyieg avalnTnong mov eKteAoVVTOL amd
TOUG OPOUOAOYNTEG KOl TOLG HETOY®MYEIS TOL OIKTOOVL HE OKOMO VO, TPOWONGOoLV
TOKETO, KO VO TAPEYOLV OLOUPOPOTOMUEVES VIINPECIEG GTO TOKETO TTOV OVI|KOVV GE
waitepeg poég kivnone. Osmpmdvtag 0Tt avTéG o1 Asttovpyieg avalTnong mpEmel vo
dtekmepatmBovv Yo KaOe mokéTo, N ToHTNTA KoL 1] ATOTELECUATIKOTNTO TOV AVCEDV
o€ avTd To TpoPAnpata kabopilel TV amdd0on TOV SIKTOWV.

[Tpoteivoupe KouvotOHO GYNUOTO KATNYOPLOTOINGONG TOKET®MV Yol VAIKO TO
omoio. vootnpilovy TOOTNTA VANPECIOV CE TOALATAG OTPMOUATO OIKTVOVL KO
KOVOTTOOUV T1G VYNAES TAYDTNTEG TV CNUEPVOV GLVIECUW®V. Apyikd, TPoTEiVOLLLE
o Myyovy Katnyopioroinons Baoiouevy ae Aioomopo. (MKBA) y10. va S1EKTEPALDCEL
T0 TPOPANUA ™S Kot yoplomoinong oto otpopa 0tktvov MAC ( Ztpopoa ZOvoeong
AwtHov). T'a tovg dpoporoyntég avamtuape €vo KOWVOTOUO GYNUW, ApaokeAlés
Ilpocavarolicuéves oe Bitmaps (AIIB), 10 omoio avtipetonilelt 10 mpoOPAnua Tov
Taprdopatog Meyiotov TlpoBépatog war vmoomnpiler ypryopes avalntnoel,
orayeptlopevo amodotikd Toug mivakeg dpopordynone. Ilposmadmvrag va metdyovpe
KOADTEPT AETTOUEPELN OTIC SLOPOPOTOINUEVES VIINPETiEG TpoTeivove Eva 5-0146T0TO

CYNUO KATNYoplomoinong mokEéT®v To omoio ypnoiponotel medio mokétwv omd
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VYNAOTEPA GTPOUATA TOV d1kTOOV. Avartdéape to oynpa Katyyopioroinon Iloxétwv
Baoilouevny oe piltpa Bloom (KIIB2) 10 omoio ivol pio KovoTOUOG TPOCGEYIOT] Yo
ATOGUVOETIKN KATNYOPlomoinoT mokETmv 1 omoio mePAapPavel SoUEC deOOUEVMV
tonov Bloom ¢@iktpwv.

H mpotewvdpevn vroroinom yw v Muyyovy Katnyopiomoinons Baoiouévy oe
Maomopa (MKBA) pnopel va vmootnpi&el 64 yihidoeg kavoveg dievbBovoewv MAC og
OUVOMKEG TayOTNTeEG peyohvtepeg amd S50 Gbps ypnowomowwvrog poévo 540KB
pviung.  Emumieév, 1m  vAomoinom oe vAkd TOL  oyNfuUotog  Adpackeiiés
Ipooavarolicuéves oe Bitmaps (AIIB) pmopel va dwyelprotel mepiocdtepa and 90
YAbdeg mpobépata ypnoporordvtog poévo 600KB pviung kot emitpénel amopacels
dpopordynong v mepiocdtepa amd 240 eKATOUUVPLO TOKETO OV OELTEPOAETTO.
Téhog, pia vAomoinomn VAKov Tov oynuatog Katnyopromoinon Ioxétwv Baoilouevn
oe @iltpa. Bloom (KIIB2) O&wyepiletonr mepiocotepovg amd 4000 kovoveg
ypnowonowwvtog S30KB pviung kou pmopel vo katnyoplomotel maxkéto og puOPovg

vymAdtepovg and 8 Gbps.

Enénteg Epyaciog: Kab. Mavoing Katefaivng — Ap. Imdvvng Iarmacvotabiov

viii



Acknowledgments

This work was financially supported by the Institute of Computer Science
(ICS) of the Foundation for Research & Technology - Hellas (FORTH), Heraklion,
Crete, Greece. Besides ICS-FORTH I would also like to thank all those people who
helped me throughout this work. First of all, I would like to thank my supervisors, Dr.
Yiannis Papaefstathiou and Prof. Manolis Katevenis who gave me the opportunity to
work on the subject of packet classification. Our close collaboration, especially with
Dr. Yiannis Papaefstathiou, introduced me to the scientific way of thinking and
offered me a valuable experience on conducting research.

I would also like to thank the rest of the Computer Architecture and VLSI
group at ICS-FORTH for their help. Especially I would like to thank Dr. Christos
Sotiriou for his help and guidance in the back-end tools and flow; Dimitris Simos for
his valuable help in numerous hardware issues and corrections and suggestions for
this report; and Olga Dokianaki and Giorgos Kalokairinos for their valuable support.
Moreover, I want to thank Spyros Lyberis for putting me “deep into hardware” and
Vanessa Evangelatou for her collaboration in many hardware related projects.

Thanks are also due to all my friends: Chariton, Manos, Dimitris, Takis,
Panos, Panos (Castillo), Dimitris (Darth), Lilly, Themis, Vassilis, Ilias, Anestis,
Stamatis and Michalis. Deep thanks also to Litsa who stood by me and really
supported me all this time.

Finally, I would like to thank my brother Meletis, my sister Aggeliki and my
parents Dimitris and Vassiliki for their love and support all these years. All I have

accomplished I owe it to my parents and therefore I dedicate this work to them.

X






Contents

Lo INEEOAUCTION . ..ttt et ettt e bt e e 1
1.1 Internet and NetWorkKing ..........ccooiiiiiiiiiiiiiiiee e 1
1.2 QOS 1N EthernNet....c..voiiiiiicieeceeeeeeeeee e e 4
1.3 Longest Prefix MatChing..........cceeecvieriiiiiiiiiecieeiieeie et 5
1.4  The Packet Classification Problem ...........cc.ccooiiiiiiiiniiiiiceeee, 6
1.5 Contributions of this WOTK .......cc.coiiiiiiiiiiiiiiiieee e 8
1.6 Outline of the thesiS .......c.eviiiiiiiiieieee e 9

2. Related WOTK ...co.eoiiiieieee e 11
2.1 Single Field Searching Techniques..........cccccvveeviiiiiiiiieriie e 11

2.1.1 Exact MatChing .........cooouiiiiiiiieie e 11
2.1 1T BoTICES et 12
2.1.1.2 HASRING ..ttt ettt et e et 12
2.1.1.3 Bloom Filters .......ccooiuiiiiiiiiiiiiieeee e 14

2.1.2 Longest Prefix Match.........oociiiiiiiiiiii e, 16
2.1.2.1 LiNEAr S€AICH .....cc.eevuiiiiriiiieeiesieeieee sttt 17
2.1.2.2 Content Addressable Memory (CAM)........cccvevieerieenieenieenieeree e 17
2.1.2.3 Trie Based SChemES.........coverieriiniieiieiesieeeee e 17
2.1.2.4 Multiway and Multicolumn Search ...........ccccccovveeiiiieeiiieeieecee e, 19
2.1.2.5 Binary Search on Prefix Lengths ........cccccoeeviniiiniininiiniincnicnccee 20

2.1.3 All Prefix Matching (APM) ......cccooviiiiieiiieiieeeeee e 21

2.14 Range MatChing ..........coovveeiiieiiiiiciccee e 21
2.1.4. 1 INterval TTEC...c..eiiiieiieiiiee e 22
2.1.4.2 Range to Prefix Conversion.........c.ceceeveenerieneenienieneeieneeneeeeeeenes 22

2.2 Multi Field Searching Techniques ...........ccccocveeieerieeiiienieeiieeieesee e 23

22.1 EXhaustive SEarch.........coceeiiieiieiiiieseeeee e 23
2.2.1.1 Linear S€arch .........coocuiiiiiiiiiiieieeee e 24
2.2.1.2 Ternary Content Addressable Memory (TCAM) ......ccccocvevervinecnncnnee 24

222 DECISION TTEES ...veenvieniiiieriieieeitesitee ettt s 25
2.2.2.1 GIId OF TTIES veeuteeiieiietieieesteete ettt et sttt 25
2.2.2.2 Hierarchical Intelligent Cuttings (HiCuts).........cccoevveevvieerieeecreeennenn 27

Xi



2.2.2.3 Fat Inverted Segment (FIS) Trees.......cccceeuvevieriienieniieieeieeeeeeene 29

223 DECOMPOSTEION ..ottt eaee e e eeaee s 31
2.2.3.1 Parallel Bit Vectors (BV).....coocuiieiiieeiee et 31
2.2.3.2 Aggregated Bit-Vector (ABV)....c.cooiiiiiiiiieieieeeeeeee e 33
2.2.3.3 Recursive Flow Classification (RFC) ........c.cccoovieviiiiiiiieecieeecieeee. 34

3. MAC Layer ClassSifiCation .........ccceeeuieriieriiieniieeieenieeeieeieeereeieesereeseesneeseeseneenne 37
3.1 Ethernet SWItChING.......c.oviviiiiiiiieee et 37
3.2 Hardware Based Classifiers .........cccceeiieiiiiiiieiiieiieie e 39
3.3 Hash Based Classification ENgine ............cccccoeviieiiienieeiiienieeiieieeeee 40

3.3.1 MAC Address Hashing..........c.cccveviieiieniiniieiecieeeece e 41

3.3.2 MAC Vendor Replacement...........ccceeviiieiiieeiiieeiiieciee e 41

333 MAC TBL and Data Structure.........c.cccoeevuereeneniieneenenieneeeeeenens 42

334 VLAN and Port Tables .......ccceceriireeiiinieniiienieeeeseeeee e 45

3.3.5 Dynamic Memory Management .............coccvveeeieeeniieeenieeenieeenneeeenennn 45

34 Simulation Results and Performance.............cccocceeiiiiiiiiiiiniiniiinccecee 46

3.4.1 Indexing MAC_TBL with a hashing function...........c..ccccceeenienenenn. 46

342 Storage REQUITEMENTS .......oouvieiieriiieiieeieeieeee et 48

343 LoOKUD PEIfOrMANCE.......ccuvieerieiieeiieiie ettt eas 49

4. Hardware Implementation of HBCE ...........ccooiiiiiiiiiiieeeee e 51
4.1 HBCE Organization ...........cc.ceecueeeeiieeeiiieesieeeeieeesveeesveeesaeeeseveeessseesnsseeenns 51
4.2 OPB INF oottt sttt ne s 52
4.3 HBCE MOCBi....ooiiiiieeeeet ettt st s 55

4.3.1 MOCB_CTRL ..ottt 56

432 MOEOB INS Lttt et et et ae et e neenneens 57

433 MOB _LUP ..ottt s 57

434 MOECB _DEL ..ottt s 58

4.3.5 MAC _VID .ottt sttt 59

4.3.6 MAC HSH ettt 59

44  MEM HDLR .....oooiiiiieeeee ettt 59
4.5 MEM CTRL. ..ottt e 60
4.6 Implementation ANALYSIS .....c.ccccvierireiiierieeieeiie et 61

4.6.1 LatenCy ANALYSIS.......ceeiiieeiiiieeiieeeie et e 61

4.6.2 Hardware Cost ANalySis .....ccccevveriiriiriiiniiniiicneesieeeceeeeee e 62

4.6.3 HBCE Hardware Performance..........c..coceeveviinienenienieenenieneeenne 63

Xii



5. Bitmap Oriented SrideS........cccuieiieriiiiiiiiieeieeeie ettt 65

5.1 Analysis and Description of BOS Algorithm ...........cccoocvveviiiiviiniiiiee, 65
5.1.1 Routing Table ANalysiS......cccccceiieriiireriiieriie et 65
5.1.2 Trie-Based SOIUtIONS.......ccueeiiiiiieiiieiieee e 67
5.1.3 Memory technologies and wire speed..........ccoeeveriierieniieniienieeieeeee. 68
5.14 BOS approach .......cccveeeiiiiiiiecceceeeeeee e 68

5.2 BOS OptIMIZAtIONS .....ccuvvieeeiieeeiiieecieeeeiee ettt e e tee e saee e e e saaee e 76
5.2.1 Prefix Node OptimizZation .........ccceeeeriinieriineenieeieneenieeeeseeesie e 76
52.2 Trie Node OptimiZation ..........cccueeruieriieniieeiienie e eieeseee e seneeeeeas 76
523 TBL16 OptimiZation........c.ceeveevieriieereenieeieeneeeereensaeeseesseeesneessnesnnens 77
5.2.4 TBL24 and TBL32 Optimization............cccouveeeueeeniieerieeenieeesveeenenens 78
525 AL prefix MatCh ......oc.ooiiiiiii e 80

53 Simulation Results and Performance............ccccoeceeniininieninninieniencneen 81
53.1 Hashing functions and INdeXing ............ccccceevveeeieniienienieeieeneeereeeen. 81
5.3.2 StOTage TEQUITEIMENTS ....ccvveeeiieeeiiieeiieeeieeeeieeeeteeesseeesaeeessreeessseeeenes 83
533 Lookup Performance.............ccooveeiiieniieiiieiiiieeeee e 88

6. Bloom Filter Based Packet Classification.............cccoceeveriienienieniienienieienienceens 91

6.1 Real FIlter Sets ...c..eiiiiiiiiiiieiieeeeeeee et 91

6.2  B2PC Design and DesCription ..........ccc.eecueerueeeiienieeiieniieeieeseeeereeseeesveenens 93
6.2.1 Single Field Operations............ccccvveeeuieeriieeeeiieeeiee e eeeeeeevee e 93
6.2.2 Internally Represented Filters.........coocoeviiiiiiiiiiniiiiieiieeeeeeen 94
6.2.3 Combining RESUILS........eoiviiiiiieiieiieeiieeeee et 95
6.2.4 Set Membership Queries with Bloom Filters...........cccooeveeiiienninnnnne. 97
6.2.5 FIOW ID ReESOIVING ....cccuiiiiiiiieiiieeiieeeeeee et 99
6.2.6 Improving the Efficiency of Set Membership Queries.........cc.cccocuee. 99

6.3 Simulation Results and Performance............cocceeevieniinininiencneneeen 103
6.3.1 Analysis of Generated Filter Sets .........ccccceviieiiieniieiienieecieeie e 103
6.3.2 Hashing Functions and False Positives.........ccccceeeviiirciieincieeeeiee e, 104
6.3.3 Storage Requirements ..........ccceecvereereriienieneeicneeneecseesie e 107
6.3.4 Lookup Performance.............ccoeeueeriieiiieniieiiecieciieee e 108

7. Hardware Implementation of B2PC..........ccccovviiiiiiiiiiieiecieceeeeee e 113

7.1 B2PC Organization ..........cccveeeciieeeiiieeeiieeeieeeeieeesieeesaeeesveeessseeessseesnsneens 113

7.2 B2PC _CTRL BIOCK ...eieuiiiieiieieceetee et e 115

7.3 BOS BIOCK ..ttt 116



7.3.1 BOS CTRL ..ot 119

7.3.2 BOS INS e e 119
7.3.3 TR NS et 121
7.3.4 BOS LUP .ottt 122
7.3.5 TRULUP .t 123
7.3.6 BOS DEL ...t e 123
7.3.7 TR UDEL ... 124
T4 PRO _CTL oottt ettt ae s 125
7.5 CLPT ettt sttt 126
7.6 BL CTRL .ottt st s 126
7.6.1 BL MAIN ..ottt et eeeas 128
7.6.2 BL UINS et 128
7.6.3 BL ULUP .ottt 129
7.6.4 BL DEL...oieee e 130
7.7  MEM_HDLR and MEM_ CTRL......cccccciiiiiiiiiieieieeeeeee e 130
7.8  Implementation ANALYSIS .....ccceeviiiiiiiriieiieeieeee e 131
7.8.1 LatenCy ANALYSIS....cc.eeviieiieeiieiie ettt ettt ere e et ees 131
7.8.2 Hardware Cost ANALYSIS ......c.ceevuiieviiieeniieeeiie e 132
7.8.3 B2PC Hardware Performance...........cccceeveenieriiinicineeniceieenieeeens 133

8. Contributions and Future Work ............coooiiiiiiiiiiieeeeee 135
8.1 Summary of CoONtribULIONS.......c.eeieriirriiriinieieeiee et 135
8.2 FUtUIE WOTK ..ottt 136
9. RETETEINCES ......eiiiiiiiiiiee et 137

Xiv



List of Figures

Figure 1-1 IP header format...........ccoooviieiiieeiieceeceeee e e 3
Figure 1-2 Class Based Internet Addressing...........coeeeverienerienieneniineeneeieseeneeeene 4
Figure 1-3 Longest Prefix Match Example.........ccccoooiiiiiiiiiiiiiiniiiieeeeeeeee 6
Figure 2-1 Example B-Tree data Structure............ceeeveeciienieeniienieeiieeie e sveeeee e 12
Figure 2-2 Hash function eXample..........cccoueeiiiiiriiiieeiieeeiieceiee et e 14
Figure 2-3 Bloom Filter EXample ..........ccccooiiiiiiiiiiiiieee e 14
Figure 2-4 Binary Trie €Xample.........cccoeiiiiiiiiiieiieiieeeeeie e 18
Figure 2-5 Interval Tree eXample .......cccocveeiiiiiieiieiiieiecie e 22
Figure 2-6 A typical TCAM Cell.......cccuiiiiiiieiiieeee et 24
Figure 2-7 Grid of Tries data StrUCTUTE ........cocueviiniieiirienieieeee e 26
Figure 2-8 HiCuts geometric representation............ccveecueerieerieenieeniienieeniiesneeneneennens 28
Figure 2-9 HiCuts Data StrUCtUIE ..........cccveeiiiiiiieiiecieeieeeie ettt 29
Figure 2-10 FIS eXamPIe .....ccoouiieeiiieiiecee ettt e eeae e 30
Figure 2-11 Parallel Bit Vectors example.........ccooeeriieiiiiiienieiieeiecieeee e 32
Figure 2-12 Aggregated Bit Vector eXxample..........ccccevvienieniieniieiiieieeie e 34
Figure 2-13 RFC aggregation SCheME ..........coocviieiiiieiiieeieeciie e e 35
Figure 3-1 Ethernet Frame FOrmat ............cccooviiiiiiiiiiiiiicicccecee e 37
Figure 3-2 VLAN Ethernet Frame........cccocceeiiiiiiiie i 39
Figure 3-3 MAC_TBL entries format..........cccccoeevierieneininieneeiencseeeeeeesieee e 43
Figure 3-4 MAC TBL Data structure eXxample...........cccveviieriieniienienieenieeieeee e 44
Figure 3-5 Data structure example with linked blocks ..........ccceecvieiieiviiiniiiniiieieen. 46
Figure 4-1 HBCE Internal organization and block diagram.............ccccoccvveeiieennennnns 52
Figure 4-2 HBCE MCB internal organization ...........c..cceceeveriereenienicneenienieneenneenn 55
Figure 4-3 HBCE Memory Organization .............ccceecveerieerieenieenieesiiesieenieesveenseesnnens 56
Figure 4-4 Snapshot of dynamic memory management mechanism...............cccc....... 60
Figure 4-5 Overview of MEM_ CTRL.........coccuiiiiiiiiiieeeeeece e 61
Figure 5-1 Routing Table DiStribution ..........ccccceevieriiiiiiiiiiieiieie e 67
Figure 5-2 Prefix trie that supports prefixes up to length 3 ..., 69
Figure 5-3 TT1€ PATtItIONS ....vveeeeiieiiiieeiiee ettt eiee st eesteeesetee e ebaeesaeeenaeeennneean 70
Figure 5-4 Trie data structure eXample.........occveeeeiieeiireniieeciie e e 72

XV



Figure 5-5 BOS TabIeS ...ccvieiuiiiiieiieeieeciie ettt st et s 74

Figure 5-6 BOS with BLK256 ......cccuiiiiiiiiiiieieieeeeeee e 79
Figure 6-1 Overall view of B2PC components...........cccceevveeeeiieeciiesiieeeieeeevee e 102
Figure 7-1 B2PC organization and block diagram ........c...ccccceceeveniininiiniinenncnnn. 114
Figure 7-2 BOS internal 0rganization.............ceoeevuereenieeienieneenienieniceie e seeesie e 116
Figure 7-3 BOS Memory Organization ............c.cecueeveeeeieeneeeiieeneesieeneeesseesseesneenns 117
Figure 7-4 BOS nodes fOrmat...........occviiiiiieiiiiieciieeeiie et 117
Figure 7-5 BL_CTRL Internal organization ...........cc.ccoceeverieneenennieneenenieneeneennene 126
Figure 7-6 Bloom filter memory partitioning .............ceccveevueeeiiienieeiieenieeieesee e 127
Figure 7-7 Organization of Static Tables.........ccccoceviiiiriienieieiiereeeeeeeee e 128

Xvi



List of Tables

Table 1-1 Example of @ filter Set.......ccceiiviiieiiiiiiieceece e 7
Table 2-1 Example filter set for Grid of TTies .......coceveeviriieniiniiiiiicneeeeececeee, 26
Table 2-2 Example filter set for HICUtS........ccocuiiiiiiiiieiieiecieieecee e 27
Table 3-1 Indexing Simulation reSUILS.........c.ceviirriiirieeiiieie ettt 47
Table 3-2 Real database simulation reSults............cooeeriieniiiiiiniiiieeeeeeeee e 48
Table 3-3 HBCE static tables MEeMOTY .......cccccoieviiriirieiieiienieieeiececie e 48
Table 3-4 HBCE final Storage reqUIrements............ccueerveeeieenuienieenieeeieenieesseeneneeneens 49
Table 3-5 HBCE total number of Memory aCCESSES.......eevuvirrvieriieriierireereeneeeieennens 50
Table 3-6 HBCE network performance ...........ccoeceeeeiieeeciieeniiie e eevee e 50
Table 4-1 OPB_INF signals with the bus and HBCE ...........ccccoccooiiiiiiininiiniicns 53
Table 4-2 B2PC Blocks LatenCIes .......ccueeuerieriiiiiiierieeieeiesiteieeie st 61
Table 4-3 Flip-Flop count per BloCK .........ccooviiiiiiiiieiieiicice e 62
Table 4-4 Area estimations of HBCE ..., 63
Table 4-5 FPGA resource allocation............ceocuieruieriieniieniieniieeieesee e 63
Table 5-1 Routing Table Data...........cccoeiiiiiiiiiiieciieeeeee e 66
Table 5-2 Prefix eXamPle......c.occieiiiiiieiieeiieeie ettt et eveeseaeebeeeaneens 72
Table 5-3 Hash functions performance............ccoeoveeieerieieiienieeieenieeieeeee e e e 82
Table 5-4 Performance of BOS indexing functions...........ccceccueeeviiieriieeenieeeniee e 82
Table 5-5 Routing Tables Properties ..........cccoveeriieiieniienieeieeiieeeee e 83
Table 5-6 Static tables MemMOry reqUIrEMENtS ..........ceevveerieerieeiieenieeieenieeiee e eeeens 84
Table 5-7 BOS SIMPIE STOTAZE ....ccvveeiieiieeiieitieeieeiee e eiee et eteeeveeaeeeveesseesnseeseeens 84
Table 5-8 Single Prefix SUBLIIES ......ccccuiiieiiieeiiiece et 84
Table 5-9 Prefix Node Optimization StOrage ........c..ceceeeeveevienieneenienieneeieneeneenens 85
Table 5-10 Single PrefixX TOOLS ...viiiiiiiieeiieie ettt ettt ee b e sereeee s 85
Table 5-11 Trie and Prefix Node Optimization Storage..........cccceevveeeveereeeireenveennens 86
Table 5-12 TBL16 Storage OptimiZation ...........cccueeeeuieeriiireniiieesiieesieeesaeeesreeeseneeenns 86
Table 5-13 Dynamic BLK256 for TBL24 and TBL32........ccccoeiiiiiiiiiieieieeeee 87
Table 5-14 Fully optimized BOS StOrage ........cceoveeiieriieiiienieeieecie e sve e 87
Table 5-15 BOS bytes per PrefiX ....ooccieieeiieiieiieeiieeie ettt et 88
Table 5-16 Memory access performance of BOS............cccoooiiiiiiiiiniiieeeeeee s 90

xvii



Table 5-17 Network Performance of BOS in MPPS ...coovveeiieniieiiiiiieeieeieeie e 90

Table 5-18 Network Performance of BOS in GbPS ......ccccccvveviieiiiiiieeiieiecieciees 90
Table 6-1 Filter Set EXamPIe ......ccccveeiiiiiiiieiiiieee et 93
Table 6-2 B2PC internally represented filter Set...........cooeeviiriininiiiniininicnicneieees 94
Table 6-3 B2PC incoming packet eXample ...........oeceerieeiiienieeiiienie e see e 96
Table 6-4 Collection POINES CONLENLS .......eeevierureeireriieeiieriieeieeseieereeseeeereesseesneesaeeens 96
Table 6-5 Total possible PermMULAtIONS..........cccueeeriieriiieeiieeerie et aee e 97
Table 6-6 Parallel Bloom filter QUETIeS.........ccueeeivieiiiieeiieeeieeeiee e 101
Table 6-7 Unique field values for the generated filter sets..........cocevieveiiiiniencnnene. 103
Table 6-8 Number of matched values per field ..........cccceevieeiiieiiieiiieeee 104
Table 6-9 Number of references in Bloom Filters..........cccccovviiiiiiiiiiiiiniiee, 105
Table 6-10 Observed false positives rate in B2PC ........c..cccooviiiiniiniininiinicncne 106
Table 6-11 B2PC hash table COllISIONS .......cccueevierieriirieiienieieeieeeeeeeeee e 107
Table 6-12 B2PC components memory reqUIrements ...........ccveeeveerveerreerveerneesneennns 107
Table 6-13 Sequential Bloom Filter probes...........ccecvveveiiieiciieiiiecee e 109
Table 6-14 Average number of memory accesses for B2PC data structures............. 110
Table 6-15 Final number of average memory accesses for B2PC............c..ccceeneeee. 110
Table 6-16 Network performance of B2PC in MPpS......c.coovvevviierieeciienieeiiecie e 111
Table 6-17 Network performance of B2PC in GbPS .....c.coocveviienieeiiiiiiciieeieeene 111
Table 6-18 Summary of Classification Schemes...........cccccceeeeiieriiiercieesie e, 112
Table 6-19 Schemes efficiency in Mpps per Mbyte .........cccceevverieneniiniineniienieneene 112
Table 7-1 Command Interface Signals ..........cccoeeieriieiiiniieiiee e 115
Table 7-2 B2PC BloCKS LatenCies .......ccverueeriieieniieiieiesieeieeie st 131
Table 7-3 Flip-Flop count per blOCK .........c.coovviiiiiiiiiiieeieeeeeee e 132
Table 7-4 B2PC area and gate COUNL...........cccueriiiriiniiiiinienieeieneese et 132
Table 7-5 FPGA resource allocation...........cccceveevierieniieniinienieienieneeeee e 133

xviii



Xix



XX



CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Nowadays, the Internet has emerged as a global communications service of
continuously increasing importance. The ever expanding scope of Internet users and
applications require the network infrastructures to exchange large volumes of
information, augmenting the already challenging performance constraints. This thesis
addresses the searching tasks performed by Internet routers in order to forward
packets and apply network services to packets belonging to particular traffic flows.
Considering that these searching tasks must be performed for each packet traversing
the router, the speed and efficiency of the solutions to these problems determines the

performance of the router, and hence the entire Internet.

1.1 Internet and Networking

The building blocks of the Internet are essentially interconnected networks,
each consisting of heterogeneous hosts, links, and routers. Hosts produce and
consume packets, or datagrams, which contain chunks of data - a part of a file,
digitized voice samples, etc. Hosts may be personal computers, workstations, servers
and network enabled electronic appliances such as Personal Digital Assistants (PDAs)
or mobile phones. Packets indicate the sender and receiver of the data similar to a
letter in the postal system. Links connect hosts to routers, and routers to routers. Links
may be twisted-pair copper wire, fiber optic cable or a variety of wireless radio
technologies. The role of routers is to switch packets from incoming links to the
appropriate outgoing links depending on the destination of the packets. Packets may
traverse many links, called hops, in order to reach its destination. Due to the
impermanent nature of network links (failure, congestion, additions, removals),

routing protocols allow the routers to continually exchange information about the state
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of the network so as to decide the forwarding of packets destined for a particular host,

network, or sub-network.
Ethernet Networks

Ethernet is the dominant networking protocol used in Local Area Networks
(LANSs) over the last decades. It is the most widely adopted protocol in the physical
and data link layer of the network. It defines 48-bit addresses, called MAC addresses,
that are unique for each network interface, and uses them in order to manage the
circulation of packets in the physical medium. Ethernet’s speeds started from 10 Mbps
and eventually evolved to 100Mbps, 1Gbps and recently to 10Gbps.

IP and TCP Protocols

The original Internet protocol comprises mainly of two protocols: the Internet
Protocol (IP) and the Transmission Control Protocol (TCP). The primary function of
the Internet Protocol (IP) is to provide an end-to-end packet delivery service. This
task is accomplished by including information regarding the sender and receiver
inside each packet transmitted through the network. IP protocol specifies the format of
this information which is prepended to the content of each packet, namely the packet
header. In order to uniquely identify Internet hosts, each host is assigned an Internet
Protocol (IP) address. Currently, the vast majority of Internet traffic utilizes Internet
Protocol Version 4 (IPv4) [1] which assigns 32-bit addresses to Internet hosts. As
shown in Figure 1-1, the IPv4 header of packets includes the IP address of the source
and destination host and many other important fields such as the protocol which
specifies the type of transport protocol used by the sending application. The type of
transport protocol determines the format of the transport protocol header following the
IP header in the packet.

The second protocol produced by the original Internet Architecture project, the
Transmission Control Protocol (TCP), provides a reliable transmission service for IP
packets. Through the use of small acknowledgment packets transmitted from the
destination host to the source host, TCP detects packet loss and regulates the
transmission of packets in order to adjust to network congestion. When the source
host detects a packet loss, it retransmits the lost packet or packets. At the destination
host, TCP provides in-order delivery of packets to higher level protocols or

applications. After the initial development of TCP, a third protocol, the User
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Datagram Protocol (UDP), was added to provide additional flexibility. UDP
essentially allows applications or higher level protocols to control the transmission
behaviour. For example, a streaming video application may wish to ignore packet
losses in order to prevent large breaks in the video stream caused by packet
retransmissions. Typically, the TCP and UDP transport protocols identify applications

using 16-bit port numbers carried in the transport header as shown in Figure 1-1.

3130293827 26 25 24 23 22 M1 201918 IT 16151413 421110 9 B 7 & & 4 3 2 1 O
Version | H—lenzth TOS Total length
||||||||||||||||||||n|gt||||||IPHE“dE:
Identification flags Fragment Offset
Y Y e e I
TTL Protocoel Header checksum
T Y 1 Y Y
Source address
1 Y [ e e e e e [ M
Destinaticn address
I S e e e N S e o
IP Options
IF Options (if present)
T Y Y Y Y Y Y
Source Port Destmation Port Transport Ports
Y Y Y Y Y Y Y
{(Pemammg Transport Header Fields)
I S e S A o o
Payload

Figure 1-1 IP header format
Internet Addressing

IPv4 addresses were allocated to organizations in contiguous blocks with the
intention that all hosts in the same network share a common set of initial bits. This
common set of initial bits is referred to as the network address or prefix and the
remaining set of bits is called the host address. This allocation strategy provided
decentralized control of address allocation and each organization was free to make
allocation decisions for the addresses within its assigned block. As shown in Figure
1-2, IPv4 addresses were originally divided into classes, each supporting different
sizes of hosts:

e C(lass A (16 million hosts),

e C(lass B (64 thousand hosts), and

e C(Class C (254 hosts).

e C(Class D addresses for multicast (one-to-many transmission)

e C(lass E reserved addresses.

Most organizations which required a larger address space than Class C were

allocated a block of Class B addresses; however their network nodes are assigned only
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a small portion of the addresses. This waste of available address space combined with
the explosive growth of the Internet resulted in shortage of unassigned IP addresses.
Classless Inter-Domain Routing (CIDR) was introduced in order to prolong the life of
IPv4 [2]. CIDR essentially allows the “network” part of the address to be an arbitrary
length prefix of the IP address, thus a network’s address space may span multiple
Class C networks. CIDR also allows routing protocols to aggregate network addresses
in order to reduce the amount of packet forwarding information stored by each router.
The wide adoption of CIDR by the Internet community has slowed the deployment of

a more permanent solution, Internet Protocol Version 6 (IPv6) [3].

Class 3130202327 262524232221 20190181716 151413 121110 8 8 7 8 5 4 3 2 1 0O
A 0 Network Host
Y O A O I |

B 10 Network Host

| A | I ) I I
C 110 Network Host

[ | I )y ) I I
D 1110 Multicast Address

[ 11 A ) A I O
E 11110 Reserved

[ I e e

Figure 1-2 Class Based Internet Addressing

1.2 QoS in Ethernet

Ethernet is, by far the most common network, has the highest number of
installed ports and provides great cost-performance ratio and thus it is making a
breakthrough in MAN and WAN networks. The deployment of Gigabit Ethernet
networks and their use beyond the tight borders of LANs motivated the development
of QoS mechanisms in the MAC layer of Ethernet networks such as the VLAN
scheme [4]. These QoS mechanisms require identification of network flows and the
classification of Ethernet packets according to their MAC addresses, VLAN IDs or
port numbers. The length of the MAC addresses, namely 48-bits, is what makes the
decisions more difficult since exact matches in such a big value it not a trivial task.
The advantage of Ethernet networks and equipment is their low cost and thus the

classification solutions should also be cost efficient.
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1.3 Longest Prefix Matching

The primary task of routers is to forward packets from input links to the
appropriate output links. In order to do this, Internet routers consult a route table
containing a set of network addresses together with the associated output link, or next
hop, for packets destined for each network. Entries in the route tables change
dynamically according to the state of the network and the information exchanged by
routing protocols. The task of resolving the next hop from the destination IP address is
commonly referred to as route lookup or IP lookup. Finding the network address
given a packet’s destination address would not be difficult if the early Internet
Protocol (IP) address hierarchy was kept. A simple lookup in three tables, one for
each Class of networks, would be sufficient. However, the wide adoption of CIDR
allows the network addresses in route tables to have variable lengths (prefixes) and
thus performing a search for every possible network address length is not trivial. If we
store all the variable-length network addresses in a single table, a route lookup
requires finding the longest matching prefix in the table for the given destination
address.

A prefix is a set of leftmost bits of a key value, the IP destination address in the
case of route lookups. The key values that share a common prefix have the same
contiguous set of bits starting at the most significant bit. Given a search key x of size
b bits, Longest Prefix Matching (LPM) is a search technique which selects the prefix
pi in the set of prefixes P, such that p; matches x and p; has the most specified bits.
Prefixes can be represented by simply using the * character to denote the end of the
valid bits in the prefix. An example of Longest Prefix Matching (LPM) for a 10-bit
search key is illustrated in Figure 1-3. The three shaded prefixes match the search key,
but 7000011%* is the longest matching prefix. The throughput of an Internet router
essentially depends on the speed that Longest Prefix Matching (LPM) operation can

be performed.
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Prefixes
- 10000*
010*
\*7.
10* |

Lookup Key " 1010000*
100001101 - |
. 01001*

100010+
1000011*
001%
- 0001*

Longest Match

Figure 1-3 Longest Prefix Match Example

1.4 The Packet Classification Problem

If an Internet router is to provide more advanced services than packet
forwarding, it must perform more fine grained flow identification. The process of
identifying the packets belonging to a specific application session or group of sessions
between a source and destination host or sub-network is typically referred as the
packet classification problem. The route lookup problem may be also viewed as a sub-
problem of the more general packet classification problem. Applications for Quality
of Service, security, and monitoring typically operate on flows, thus each packet
traversing a router must be classified in order to be assigned a flow identifier, FlowID.

Packet classification requires searching a table of filters for the highest priority
or the most specific filter that matches the packet. Filters correlate a flow or set of
flows to a FlowID. Note that filters are also referred as rules in the packet
classification literature. Filters contain multiple field values that specify an exact
packet header or a set of headers and the associated FlowlD for packets matching the
corresponding field values. The type of field values are typically prefixes for IP
address fields, an exact value or wildcard' for the transport protocol and ranges for
port numbers. An example filter set is shown in Table 1-1. In this simple example,
filters contain field values for four packet header fields: 8-bit source (SA) and
destination addresses (DA), transport protocol (PRO), and a 4-bit destination port

number (PORT). The packet fields most commonly used for packet classification are

! Wildcards are used when we don’t specify a value and want to represent all the possible values. The
symbol used for wildcards is *.
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also referred as the IP 5-tuple and include the 8-bit protocol, 32-bit source address,
32-bit destination address from the [Pv4 header and the 16-bit source port and 16-bit
destination port from the TCP and UDP transport protocol headers.

SA DA PORT | PRO | FlowID
11010010 | * [3:15] | TCP 1
10011100 | * [1:1] | * 2
101101* | 001110* |[0:15] | * 3
10011100 | 01101010 | [5:5] | UDP 4
* * [0:15] |ICMP| 5
100111* | 011010* | [3:15] | * 6
10010011 | * [3:15] | TCP 7
* * [3:15] | UDP 8
11101100 | 01111010 | [0:15] | * 9

111010* | 01011000 | [6:6] | UDP 10
100110* | 11011000 | [0:15] | UDP 11
010110* | 11011000 | [0:15] | UDP 12

01110010 | * [3:15] | TCP 13
10011100 | 01101010 | [0:1] | TCP 14
01110010 | * [3:3] * 15

100111* | 011010* | [1:1] UDP 16
Table 1-1 Example of a filter set

The packet classification problem may be stated formally as follows:

Given a packet P containing fields 2 and a collection of filters #

with each filter #; containing fields F/, select the highest priority or the

most specific filter from the set , where for each filter Vj : F/ matches 2.

Consider the example of searching Table 1-1 for the best matching filter and

for a packet with the following header field values:

e SA: 1001 1100

e DA:01101010

e PORT:5

e PRO: UDP
The filters with FlowIDs 4, 6 and 8 match the packet, but FlowID 4 is the most
specific filter in all the fields. Hence, the search should return FlowID 4.
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Packet Classification Challenges

Computational complexity is not the only challenging aspect of the packet
classification problem. The increasing traffic in the Internet backbone travels over
links with transmission rates in excess of one billion bits per second (1 Gb/s). Current
generation fiber optic links can operate at over 40 Gb/s. The combination of
transmission rate and packet size define the throughput, in terms of packets per
second, routers must support. The majority of the Internet traffic utilizes the
Transmission Control Protocol which transmits 40 byte acknowledgment packets. In
the worst case, a router could receive a long sequence of TCP acknowledgments,
therefore conservative router architects set the throughput target based on the input
link rate and 40 byte packet lengths. For example, supporting 10 Gb/s links requires a
throughput of 31 million packets per second per port. Modern Internet routers contain
tens to thousands of ports. In such high-performance routers, route lookup and packet

classification is performed on a per-port basis.

1.5 Contributions of this work

Within this work we have studied the classification tasks required by the
modern networks and proposed several hardware solutions to meet the delay sensitive
searching tasks required by the network infrastructures. We proposed a classification
engine for the MAC layer of the Ethernet networks which uses the techniques of
hashing and internal replacement of MAC Vendor IDs; Hash Based Classification
Engine (HBCE) compacts the MAC address tables and supports high speed decisions
using a modest amount of memory. Moreover we proposed a solution for the Longest
Prefix Matching (LPM) problem and developed an innovative scheme; Bitmap
Oriented Strides (BOS) uses bitmaps to compact the prefixes and reaches routing
decisions in very high speeds. We have also proposed a novel packet classification
scheme for the IP 5-tuple case; Bloom Based Packet Classification (B2PC) uses our
BOS solution to decompose multiple-field packet classification into single fields and

combine them in an efficient way by leveraging Bloom filter data structures.
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1.6 QOutline of the thesis

The remainder of the thesis is organized as follows. Chapter 2 provides an
overview of the existing single field search techniques, including Longest Prefix
Matching (LPM) techniques and a survey of multi field searching solutions that
address the packet classification problem. Chapter 3 presents a classification scheme
targeted to MAC Layer of Ethernet networks while a reference hardware design of
this scheme is described in Chapter 4. In Chapter 5 we present BOS which is a multi-
bit trie algorithmic solution to the Longest Prefix Matching problem. Chapter 6
presents our algorithm for decomposed packet classification, B2PC which utilizes
Bloom filter data structures to achieve efficient packet processing. A reference
hardware implementation of B2PC is described in Chapter 7. Finally, we provide a

summary of the contributions and a discussion of future work in Chapter 8.
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Chapter 2

Related Work

In this chapter we present the major algorithms and techniques presented in
literature to address the problem of packet classification. We provide an overview of
the single field searching techniques, including the longest prefix matching and other
types of searches dictated by packet classification. Further, we present the most
important algorithms and solutions for multi field searching that are actually used in

packet classification.

2.1 Single Field Searching Techniques

A variety of searching problems naturally arise in packet classification due to
the structure of packet filters. As discussed in Chapter 1, filter fields specify one of
the three different match conditions on the corresponding packet header fields: a fully
specified value or exact matching, partially specified value or prefix matching, a range
of values or range matching. In this subsection, we provide a summary of the existing

algorithmic solutions to these three types of search problems.

2.1.1 Exact Matching

The simplest form of exact matching is the set membership query: determine
whether key x belongs to the set of keys X. Often we wish to store associated
information with each key x; € X such as identifiers or additional information. In such
cases, a search where x € X returns not only a “yes” for the membership query, but
also the information associated with the matching entry. Exact match search problems
naturally arise in packet classification when filters examine packet fields such as the
MAC address in the Data Link Layer. Due to the constraints on exact match searches

in the networking context, namely the size of the key sets and the speed at which the
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search must be performed, non trivial data structures must be used for these
applications.

We describe the two classical data structures that attempt to minimize the
number of memory accesses per search, B-trees and hash tables. Both data structures
are capable of supporting set membership queries as well as storing additional
information with each key. We also provide a brief introduction to Bloom filters, a

data structure designed to efficiently represent a set of keys.

2.1.1.1 B-Trees

B-Trees were originally designed to limit the number of accesses to direct
access storage units such as disks [5]. The reduction in I/O operations is achieved by
organizing keys in a tree data structure where the nodes of the tree may have many
children. The maximum number of children of each node is referred as the degree of
the tree. The number of keys stored in any tree node (except the root node) is bounded
by the minimum degree of the B-Tree. Specifically, each node in the tree must contain
at least (B — 1) keys and at most (2B — 1) keys, where B > 2. An example of a B-Tree
storing the integer multiples of three is shown in Figure 2-1. The keys stored in a node
are arranged in non-decreasing order and each internal node also stores a set of
pointers between the keys. The child nodes that store keys greater than the parent key
are pointed by the parent’s “left” pointer and the children with value less or equal to
the parent key are pointed by the parent’s “right” pointer. Finally, the height / of a B-
Tree containing » keys is bounded by:

n+1

h<log,

39,48 .57

|36||1215|

Figure 2-1 Example B-Tree data structure

2.1.1.2 Hashing

Hashing is a technique that can provide excellent average performance when

the number of keys, #, in the set X is much less than the maximum number of possible
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keys K. Assume a set X that contains 100 keys where the keys may take any value in
the range [0 : 65535], i.e. a 16-bit unsigned integer. We could simply allocate a table
with 65,536 entries and use the value of the key x as an index into the table, but
obviously this is very wasteful. This technique, direct addressing, is only efficient
when the number of keys 7 in the set X approaches the number of possible key values
K.

The classical solution to this problem is to map the key value x to a narrower
range of values that can be used to index a smaller table. In order to perform the
mapping function, a hash function, h(x), is computed on the key value. The resulting
value is used as an index into a hash table of size [0: m — 1] where m<<K. Ideally,
the hash function uniformly distributes all n keys across the m slots in the hash table.
This search method, called hashing, has been extensively studied and is given
thorough treatment by a number of computer science textbooks [5].

There is a variety of methods for constructing hash functions. Often, the low-
order bits of key values are uniform in distribution such that the hash index may be
constructed by selecting the low order bits of the key. Such hash functions are trivial
to construct in hardware. Figure 2-2 illustrates an example of using the four low-order
bits of the key as a hash index for the same integer multiples of three used in the B-
Tree example in Figure 2-1.

Note that when #n is greater than m or the distribution of keys across the hash
table is not uniform, then collisions occur. In our example, we use a common collision
resolution technique called chaining, where keys that map to the same hash index

form a linked list. The ratio of keys to hash table slots is referred to as the load factor,
a=" , which specifies the average number of keys in a chain. Thus, the average
n

number of probes in a hash table where chaining is used for collision resolution is / +
o. Moreover, there is a variety of much more sophisticated hash functions and

collision resolution techniques presented literature and in textbooks [5].
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1100] 12 -p
1101 45
1110] 30
1111?_;»

Figure 2-2 Hash function example

2.1.1.3 Bloom Filters

A Bloom filter is a data structure used for efficiently representing a set of
keys. Via implicit representations of the keys in the set, the data structure supports
membership queries but is not capable of storing additional information for each
stored key. This technique was formulated by Burton H. Bloom in 1970 [6], and has
received renewed attention in the research community for various applications such as
web caching, intrusion detection, and content based routing [7].

A Bloom filter is essentially a bit-vector of length m where a key x is
represented by a subset of the m bits. Given a set of keys X with » members, we insert
a key x; € X into the Bloom filter as follows. We compute k£ hash functions on x;,
producing k values in the range /0 : m—1]. Each of these values addresses a single bit
in the m-bit vector, hence each key x; causes k bits in the m-bit vector to be set to 1.
Figure 2-3 provides an example of inserting two keys into a Bloom filter. Note that if

one of the k hash values specifies a bit that is already set to 1, that bit is not changed.

mnsert

k hash fimctions

Bloom Filter
[o[oTo]o o e e 0] [0 Tolo] [+ e [oe o o] 1]

Figure 2-3 Bloom Filter Example
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Querying the filter in order to determine if a given key x belongs to the set X is
similar to the insertion process. Given key x, we generate £ hash indices using the
same hash functions used to insert keys into the filter. We check the bit locations
corresponding to the & hash indices in the m-bit vector. If at least one of the £ bits is 0,
then it denotes that the key is not a member of the set. If all the bits are found to be 1,
then we claim that the key belongs to the set with a certain probability. If we find all £
bits to be 1 and x is not a member of X, then it is said to be a false positive match. This
ambiguity in membership comes from the fact that the & bits in the m-bit vector can be
set by any of the » members of X. Thus, finding a bit set to 1 does not necessarily
imply that it was set by the particular key being queried. However, finding a 0 bit
certainly implies that the key does not belong to the set, since if it was a member then
all k-bits would have been set to 1 when the key was inserted into the Bloom filter.

The following is a derivation of the probability of a false positive match, f.

The probability that a random bit of the m-bit vector is set to 1 by a hash function is

simply % . The probability that it is not set is 1 —% . The probability that it is not set

nk
. 1 o C
by any of the » members of X is [1 ——j . Hence, the probability that this bit is set

m

. 1Y" . .
1s1—(1——j . For a key to be declared a possible member of the set, all k£ bit
m

locations generated by the hash functions need to be 1. The probability that this

aa

For large values of m the above equation reduces to

e

Since this probability is independent of the input key, it is termed the false positive

happens, f, is given by

probability. The false positive probability can be reduced by choosing appropriate

values for m and k for a given size of the member set, n. For a given ratio of —, the
n

false positive probability can be reduced by adjusting the number of hash functions, £.



CHAPTER 2. RELATED WORK 16

In the optimal case, when false positive probability is minimized with respect to k, we

get the following relationship:

e

The false positive probability at this optimal point is given by

It should be noted that if the false positive probability is to be tuned, then the size of
the filter, m, needs to scale linearly with the size of the key set, 7.

One property of Bloom filters is that it is not possible to delete a key stored in
the filter. Deleting a particular entry requires that the corresponding & hashed bits in
the bit vector be set to zero, which would disturb other keys programmed into the
filter which hash to any of these bits. In order to solve this problem the idea of the
Counting Bloom Filter was proposed by Fan, et.al. [8]. A Counting Bloom Filter
maintains a vector of counters corresponding to each bit in the bit-vector. Whenever a
key is added to or deleted from the filter, the counters corresponding to the £ hash
values are incremented or decremented, respectively. When a counter changes from
one to zero, the corresponding bit in the bit-vector is cleared. Note that maintaining

counters significantly increases the storage requirements.

2.1.2 Longest Prefix Match

Longest Prefix Matching (LPM) has received significant attention in the
literature over the past ten years. This is due to the fundamental role it plays in the
performance of Internet routers. Due to the explosive growth of the Internet, Classless
Inter-Domain Routing (CIDR) was widely adopted to prolong the life of Internet
Protocol Version 4 (IPv4) [2]. Use of this protocol requires Internet routers to search
variable-length address prefixes in order to find the longest matching prefix of the IP
destination address and retrieve the corresponding forwarding information, or “next
hop”, for each packet traversing the router. This computationally intensive task,
commonly referred to as IP Lookup, is often the performance bottleneck in high-

performance Internet routers.
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2.1.2.1 Linear Search

If the set of prefixes is small, a linear search through a list of the prefixes
sorted in order of decreasing length is sufficient. The sorting step guarantees that the
first matching prefix in the list is the longest matching prefix for the given search key.
Linear search is the most memory efficient of all LPM techniques and the memory
requirements are O(N) where N is the number of prefixes in the table. Note that the
search time is also O(N), thus linear search is not practical for IP lookup when the set

of prefixes is relatively large.

2.1.2.2 Content Addressable Memory (CAM)

Many commercial router designers have chosen to use Content Addressable
Memory (CAMs) for IP address lookups in order to keep up with the latest optical
link speeds despite their larger size, cost, and power consumption relative to Static
Random Access Memory (SRAM). CAMs minimize the number of memory accesses
required to locate an entry by comparing the input key against all memory words in
parallel; hence, a lookup effectively requires one clock cycle. While binary CAMs
perform well for exact match operations and can be used for route lookups in strictly
hierarchical addressing schemes [9], the wide use of address aggregation techniques
like CIDR requires storing and searching entries with arbitrary prefix lengths. In
response, Ternary Content Addressable Memories (TCAMs) were developed with the
ability to store an additional “Don’t Care” state which allows them to ensure single

clock cycle lookups for arbitrary prefix lengths.

2.1.2.3 Trie Based Schemes

Search techniques which build decision trees use the bits of prefixes to make
branching decisions and allow the worst-case search time to be independent of the
number of prefixes in the set. An example of a binary trie constructed from a set of
prefixes is shown in Figure 2-4. Shaded nodes denote a stored prefix with the
corresponding next hop shown next to the node. A search is conducted by traversing
the trie using the bits of the address, starting with the most significant bit. Note that
the worst-case search time is now O(W), where W is the length of the address and

maximum prefix size in bits.
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Figure 2-4 Binary Trie example

One of the first IP lookup techniques to employ fries’ is Sklower’s
implementation of a Patricia trie in the BSD kernel [10]. The Patricia trie is a binary
radix tree that compresses paths with one-way branching into a single node. It
assumes contiguous masks and bounds the worst case lookup time to O(W). While
paths may be compressed, only one bit of the address is examined at a time during a
search resulting in search rates that do not meet the needs of high-performance
routers.

In order to speed up the lookup process, multi-bit trie schemes were developed
which perform a search using multiple bits of the address at a time. Srinivasan and
Varghese introduced two important techniques for multi-bit trie searches, Controlled
Prefix Expansion (CPE) and Leaf Pushing [11]. Controlled Prefix Expansion restricts
the set of distinct prefix lengths by “expanding” prefixes shorter than the next distinct
length into multiple prefixes. This allows the lookup to proceed as a direct index
lookup into tables corresponding to the distinct prefix length, or stride length, until the
longest match is found. The technique of Leaf Pushing reduces the amount of
information stored in each table entry by “pushing” information about the best
matching prefix along the paths to leaf nodes. As a result each leaf node needs only to

store a pointer or next hop information. While this technique reduces memory usage,

? Trie is the term used for trees in information retrieval data structures. It originates from the word
retrieval.
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it also increases incremental update overhead. The authors also discuss variable length
stride lengths, optimal selection of stride lengths, and dynamic programming
techniques.

Gupta, Lin, and McKeown simultaneously developed a special case of CPE
specifically targeted to hardware implementation [12]. Arguing that DRAM is such a
plentiful and inexpensive resource, their technique spends large amounts of memory
in order to limit the number of off-chip memory accesses to two or three. Their basic
scheme is a two level “expanded” trie with an initial stride length of 24 and second
level tables of stride length eight. Given that random accesses to DRAM may require
up to eight clock cycles and current DRAMs operate at less than half the speed of
SRAMs, this technique can be out-performed by techniques utilizing SRAM and
requiring less than 10 memory accesses.

Other techniques such as Lulea [13] and Eatherton and Dittia’s Tree Bitmap
[14] employ multi-bit tries with compressed nodes. The Lulea scheme essentially
compresses an expanded, leaf-pushed trie with stride lengths 16, 8, and 8. In the worst
case, the scheme requires 12 memory accesses; however, the data structure only
requires a few bytes per entry. While extremely compact, the Lulea scheme’s update
performance suffers from its implicit use of leaf pushing. The Tree Bitmap technique
avoids leaf pushing by maintaining compressed representations of the prefixes stored
in each multi-bit node. It also employs a clever indexing scheme to reduce pointer

storage to two pointers per multi-bit node.

2.1.2.4 Multiway and Multicolumn Search

Several other algorithms exist with attractive properties that are not based on
tries. The Multiway and Multicolumn Search techniques presented by Lampson,
Srinivasan, and Varghese are designed to optimize performance for software
implementations on general purpose processors [15]. The primary contribution of this
work is mapping the longest matching prefix problem to a binary search over the

fixed-length endpoints of the ranges defined by the prefixes. By specifying a set of

contiguous initial bits, prefixes define ranges of values. For example, if /0 is a

prefix for a four bit field, then it defines the range [1000:1011]. Prefixes never define
overlapping ranges, only nested ranges. For example, [0:3] and [2:4] are overlapping

ranges, whereas [0:3] and [1:2] are nested ranges. The authors use this property to
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develop a binary search technique over the endpoints of the ranges defined by the

prefixes.

2.1.2.5 Binary Search on Prefix Lengths

The most efficient lookup algorithm known, from a theoretical perspective, is
Binary Search on Prefix Lengths which was introduced by Waldvogel, et. al.[16]. The
number of steps required by this algorithm grows logarithmically with the length of
the address, making it particularly attractive for IPv6, where address lengths increase
to 128 bits. However, the algorithm is relatively complex to implement, making it
more suitable for software rather than hardware implementation. It also does not
readily support incremental updates.

This technique bounds the number of memory accesses via significant pre-
computation of the route table. First, the prefixes are sorted into sets based on prefix
length, resulting in a maximum of W sets to examine for the best matching prefix. A
hash table is built for each set, and it is assumed that examination of a set requires one
hash probe. The basic scheme selects the sequence of sets to probe using a binary
search on the sets beginning with the median length set. For example: for an IPv4
database with prefixes of all 32 lengths, the search begins by probing the set with
length 16 prefixes. Prefixes of longer lengths direct the search to its set by placing
“markers” in the shorter sets along the binary search path. Accordingly, a 24-length
prefix would have a “marker” in the length 16 set. Therefore, at each set the search
selects the longer set on the binary search path if there is a matching marker directing
it lower. If there is no matching prefix or marker, then the search continues at the
shorter set on the binary search path.

The use of markers introduces the problem of “backtracking”: having to search
the upper half of the trie because the search followed a marker for which there is no
matching prefix in a longer set for the given address. In order to prevent this, the best-
matching prefix for the marker is computed and stored with the marker. If a search
terminates without finding a match, the best-matching prefix stored with the most
recent marker is used to make the routing decision. The authors also propose methods
of optimizing the data structure based on the statistical characteristics of the route
table. For all versions of the algorithm, the worst case bounds are O(logWdist)time

and O(NxlogWdist) space where Wdist is the number of unique prefix lengths.
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Empirical measurements using an IPv4 route table resulted in memory requirement of

about 42 bytes per entry.

2.1.3 All Prefix Matching (APM)

Longest Prefix Matching (LPM) is a special case of the general All Prefix
Matching (APM) problem. Instead of returning just the longest matching prefix, the
APM problem requires that all matching prefixes are returned. This problem arises
when multi-filed search techniques are decomposed into several instances of single-
field search techniques.

Note that most trie-based algorithms easily map to the APM problem. The
algorithm can simply return all matching prefixes along the path to the longest
matching prefix. While the trie-based algorithms easily map to APM, it is important
to note that the Binary Search on Prefix Lengths and Multiway and Multicolumn
Search techniques do not readily support APM. The use of markers in Binary Search
on Prefix Lengths naturally directs searches to longer prefixes before examining
shorter length prefixes. The same consequence is experienced by the Multiway and
Multicolumn Search due to the binary search over range endpoints. In order to support
APM searches using these techniques, we must use a general technique that allows

any LPM algorithm to perform APM.

2.1.4 Range Matching

Range matching problems naturally arise in many searching problems in the
areas of networking and database design, and there are several forms of range
matching problems. In this subsection we describe the most widely used approaches
to address the following problem that arises in packet classification: Given a set X of
closed intervals /7, j/ and a point p, find all the intervals in X that contain p. This task
is an essential part of packet classification, as packet filters may specify ranges for the
source and destination port numbers in packet headers in order to identify a set of
applications. Solutions to this problem typically employ a variant of the Interval Tree
[17] or convert each closed interval /i,j/ into a set of prefixes and then employ one of

the Longest Prefix Matching (LPM) algorithms.
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2.1.4.1 Interval Tree

An Interval Tree stores a set of closed intervals X using a balanced binary tree
as the underlying data structure [5]. Each node in the Interval Tree stores an interval x
€ X. The low endpoint of the interval is used as the key for the node in the balanced
binary search tree. In order to facilitate faster searches, tree nodes typically store
additional variables such as the maximum value of all the endpoints of the ranges

stored in their sub-tree. An example of an Interval Tree is shown in Figure 2-5.

P=4
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Figure 2-5 Interval Tree example

Searching for one matching interval for a given point p is straight-forward, but
returning the set S of all matching intervals for p requires a few extra steps. We first
locate the matching interval for p that is stored at the leftmost node in the tree. From
this node, we perform an in-order walk of the tree nodes, stopping when we arrive at
the last node in the tree or a node whose key is greater than p. An example search for
p =4 is shown in Figure 2-5. Letting S be the number of matching intervals, the search

requires O(logX + S) time.

2.1.4.2 Range to Prefix Conversion

Prefixes define exactly one range on the real numbers. The low and high
endpoints of the range defined by a prefix are the minimum and maximum points
covered by the prefix. For binary numbers, this translates to replacing the masked bits
of the prefix with zeros and ones, respectively. For example, the four bit prefix /7 *

defines the range [1100:1111] or [12:15]. This transform operation is not symmetric,
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as an arbitrary range may specify multiple prefixes. Specifically, a range defined on
the set of b-bit numbers will specify at most /2 % (b — 1)] prefixes.

For a single-field search on a reasonable number of ranges, this expansion
factor is not prohibitive. As a result, several packet classification techniques use the
range to prefix conversion technique to solve the range matching sub-problem [18],
[19]. Finally, we note that Feldman and Muthukrishnan [17] provide a range to prefix
conversion technique for the special case of searching elementary intervals by
converting them into prefixes. They show that a set of (n — 1) elementary intervals
can be converted into a set prefixes containing at most 2n prefixes, where an LPM

search is used to select the elementary interval containing a given point p.

2.2 Multi Field Searching Techniques

In this subsection we provide a summary of the major multiple field search
techniques aimed at packet classification. Due to the complexity of the search, packet
classification is often a performance bottleneck in network infrastructure and thus it
has received significant attention by the research community. Many algorithms and
classification schemes have been proposed with numerous different approaches.
These techniques can be categorized according to the high level approach of the
classification solution. We can consider that there are three main different high-level
approaches:

e Exhaustive Search: examines all entries in the filter set.

e Decision Tree: construct decision trees from the filters in the filter set and

use the packet fields to traverse the decision trees.

e Decomposition: decompose the multiple field search into instances of

single field searches, perform independent searches on each packet field and

then combine the results.

2.2.1 Exhaustive Search

The fundamental solution to any searching problem is simply to search
through all the entries in the set. The two most common exhaustive search approaches
for packet classification are a linear search through a list of filters or a parallel search
over the set assuming that it is divided into a number of subsets. These are extreme

solutions, where the lowest performance option, linear search, does not divide the set



CHAPTER 2. RELATED WORK 24

into subsets and the highest performance option, Ternary Content Addressable
Memory (TCAM), completely divides the set into subsets containing only one entry.

We discuss both of these solutions in detail below.

2.2.1.1 Linear Search

Performing a linear search through a list of filters has O(N) storage
requirements, but it also requires O(N) memory accesses per lookup. Even in the
smaller filter sets, linear search becomes very slow. It is possible to reduce the
number of memory accesses per lookup by partitioning the list into sub-lists and
pipelining the search where each stage searches a sub-list. Note that linear search can
be popular solution for the final stage of a lookup when the set of possible matching

filters has been drastically reduced [19][20][21].

2.2.1.2 Ternary Content Addressable Memory (TCAM)

Alike fully-associative cache memories, Ternary Content Addressable
Memory (TCAM) devices perform a parallel search over all filters in the filter set.
TCAMs were developed with the ability to store a “Don’t Care” state in addition to a
binary digit. A typical TCAM cell is shown in Figure 2-6. Input keys are compared
against every TCAM entry which enables them to ensure single clock cycle lookups

for arbitrary bit mask matches.
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Figure 2-6 A typical TCAM cell

Despite their astonishing efficiency, TCAMs have four primary drawbacks:
1. high cost per bit relative to other memory technologies; current TCAMs cost
about 20 times more per bit of storage than DDR SRAMs.
2. storage waste, in addition to the six transistors required for binary digit

storage, a typical TCAM cell requires an additional six transistors to store the
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mask bit and four transistors for the match logic, resulting in a total of 16
transistors; some very efficient solutions use 14 transistors.

3. high power consumption; the massive parallelism in TCAM architectures is
the main source of high power consumption. Each “bit” of TCAM match logic
must drive a match word line which signals a match for the given key. The
extra logic and capacitive loading results in access times approximately three
times longer than SRAM. Specifically, TCAMs consume 150 times more
power per bit than SRAM.

4. limited scalability to long input keys; TCAMs can only match keys of

maximum length equal to the word size.

2.2.2 Decision Trees

Another popular approach to packet classification on multiple fields is to
construct a decision tree where the leaves of the tree contain filters or subsets of
filters. In order to perform a search using a decision tree, we construct a search key
from the packet header fields. We traverse the decision tree by using individual bits or
subsets of bits from the search key to take branching decisions at each node of the
tree. The search continues until we reach a leaf node storing the best matching filter or
subset of filters. Decision tree construction is complicated due to the fact that a filter
may specify several different types of searches. The mix of Longest Prefix Match,
arbitrary range match, and exact match filter fields significantly complicates the
branching decisions at each node of the decision tree. A common solution to this

problem is to convert all the filter fields to a single type of match.

2.2.2.1 Grid of Tries

Srinivasan, Varghese, Suri, and Waldvogel introduced the original Grid-of-
Tries algorithm for packet classification [22]. Grid-of-Tries applies a decision tree
approach to the problem of packet classification on source and destination address
prefixes. For filters defined by source and destination prefixes, Grid-of-Tries
improves the directed acyclic graph (DAG) technique introduced by Decasper, Dittia,
Parulkar, and Plattner [23]. This technique is also called set pruning trees because
redundant sub-trees can be “pruned” from the tree by allowing multiple incoming

edges at a node. While this optimization does eliminate redundant sub-trees, it does
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not completely eliminate replication as filters may be stored at multiple nodes in the
tree. Grid-of-Tries eliminates this replication by storing filters at a single node and
using switch pointers to direct searches to potentially matching filters.

Consider the filter set shown in Table 2-1 where source and destination
address prefixes for each rule are defined. Moreover, assume we are searching for the

best matching filter for a packet with source and destination addresses equal to 0011.

Filter Source | Destination
Address Address
F1 0* 10*
F2 0* 01%*
F3 0* 1*
F4 00* 1*
F5 00* 11*
F6 10* 1*
F7 * 00*
F8 0* 10*
F9 0* 1*
F10 0* 10*
F11 111* 000*

Table 2-1 Example filter set for Grid of Tries

In the Grid-of-Tries structure shown in Figure 2-7, we find the longest matching
source address prefix 00* and follow the pointer to the destination address tree. Since
there is no 0 branch at the root node, we follow the switch pointer to the 0* node in
the destination address tree for source address prefix 0*. Since there is no branch for
00* in this tree, we follow the switch pointer to the 00* node in the destination
address tree for source address prefix *. Here we find a stored filter F7 which is the

best matching filter for the packet.
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Figure 2-7 Grid of Tries data structure
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Grid-of-Tries bounds memory usage to O(NW) while achieving search time of
O(W), where N is the number of filters and W is the maximum number of bits
specified in the source or destination fields. For the case of searching on IPv4 source
and destination address prefixes, the measured implementation uses multi-bit tries
sampling 8 bits at a time for the destination trie; each of the source tries starts with a
12 bit node, followed by 5 bit triec nodes. This yields a worst case of 9 memory

accesses; the authors claim that this could be reduced to 8 with an increase in storage.

2.2.2.2 Hierarchical Intelligent Cuttings (HiCuts)

Gupta and McKeown introduced an innovative technique called Hierarchical
Intelligent Cuttings (Hi-Cuts) [20]. The concept of “cutting” comes from viewing the
packet classification problem geometrically. Each filter in the set defines a d-
dimensional rectangle in d-dimensional space, where d is the number of fields in the
filter. Selecting the decision criteria translates into choosing a partitioning, or
“cutting”, of the space. Consider the example filter set in Table 2-2 consisting of
filters with two fields: a 4-bit address prefix and a port range covering 4-bit port

numbers. This set is shown geometrically in Figure 2-8.

Filter | Address | Port
a 1010 2
b 1100 5
c 0101 8
d * 6
e 11* 0-15
f 001* 9-15
g 00* 0-4
h 0* 0-3
1 0110 0-15
] 1* 7-15
k 0* 11

Table 2-2 Example filter set for HiCuts

HiCuts pre-processes the filter set in order to build a decision tree with leaves
containing a small number of filters bounded by a threshold. Packet header fields are
used to traverse the decision tree until a leaf is reached. The filters stored in that leaf
are then linearly searched for a match. HiCuts converts all filter fields to arbitrary
ranges, avoiding filter replication. The algorithm uses various heuristics to select
decision criteria at each node that minimizes the depth of the tree while controlling

the amount of memory used.
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Figure 2-8 HiCuts geometric representation

A HiCuts data structure for the example filter set in Table 2-2 is shown in
Figure 2-9. Each tree node covers a portion of the d-dimensional space and the root
node covers the entire space. In order to keep the decisions at each node simple, each
node is cut into equal sized partitions along a single dimension. For example, the root
node in Figure 2-9 is cut into four partitions along the Address dimension. In this
example, we have set the thresholds such that a leaf contains at most two filters and a
node may contain at most four children. The authors describe a number of more
sophisticated heuristics and optimizations for minimizing the depth of the tree and the
memory resource requirement.

Experimental results in the two-dimensional case show that a filter set of 20k
filters requires 1.3MB with a tree depth of 4 in the worst case and 2.3 on average.
Experiments with four-dimensional classifiers used filter sets ranging in size from
approximately 100 to 2000 filters. Memory consumption ranged from less than 10KB
to 1MB, with associated worst case tree depths of 12 (20 memory accesses). Due to
the considerable pre-processing required, this scheme does not readily support

incremental updates.
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Figure 2-9 HiCuts Data Structure

2.2.2.3 Fat Inverted Segment (FIS) Trees

Feldman and Muthukrishnan introduced a scheme for packet classification
using independent field searches on Fat Inverted Segment (FIS) Trees [17]. FIS Trees
utilize a geometric view of the filter set and map filters into d-dimensional space.
Projections from the “edges” of the d-dimensional rectangles specified by the filters
define elementary intervals on the axes. N filters will define a maximum of / =(2N +
1) elementary intervals on each axis. A FIS Tree is a balanced #-ary tree with & levels
that stores a set of segments, or ranges. Note that t=(2/ + [ )I/k i1s the maximum
number of children a node may have. The leaf nodes of the tree correspond to the
elementary intervals on the axis. Each node in the tree stores a canonical set of ranges
such that the union of the canonical sets at the nodes visited on the path from the leaf
node associated with the elementary interval. Covering a point p to the root node is
the set of ranges containing p.

Using the example filter set shown in Table 2-2 we present an overview of FIS
in Figure 2-10. The scheme starts by building an FIS Tree on one axis. For each node
with a non-empty canonical set of filters, we construct an FIS Tree for the elementary
intervals formed by the projections of the filters in the canonical set on the next axis
(filter field) in the search. The authors propose a method of using a Longest Prefix
Matching technique to locate the elementary interval covering a given point. This

method requires at most 2/ prefixes.
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Figure 2-10 FIS example

Figure 2-10 also provides an example search for a packet with address 2, and
port number 11. A search begins by locating the elementary interval covering the first
packet field, interval [2:3] on the Address axis in our example. The search proceeds
by following the parent pointers in the FIS Tree from leaf to root node. Along the
path, we follow pointers to the sets of elementary intervals formed by the Port
projections and search for the covering interval. Throughout the search, we remember
the highest priority matching filter. The authors performed simulations with real and
synthetic 78 filter sets containing filters classifying on source and destination address
prefixes. For filter sets ranging in size from 1K to 1M filters, memory requirements
ranged from 100 to 60 bytes per filter. Lookups required between 10 and 21 cache-
line accesses which amounts to 80 to 168 word accesses, assuming 8 words per cache

line.
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2.2.3 Decomposition

Given the option of efficient single field search techniques, decomposing a
multiple field search problem into several instances of a single field search problem is
a practical approach. Employing this high-level approach has several advantages.
First, each single field search engine operates independently, thus we have the
opportunity to exploit the parallelism offered by modern hardware. Performing each
search independently also offers more degrees of freedom in optimizing each type of
search on the packet field.

Despite these advantages, decomposing a multi-field search problem creates
other complicated issues. The primary challenge is to efficiently aggregate and
combine the results of the single field searches. Moreover, the longest matching prefix
for a given filter field is not sufficient as a result from the single field search engines.
The best matching filter may contain a field which is not necessarily the longest
matching prefix relative to other filters; it may be more specific or have higher
priority in other fields. As a result, techniques employing decomposition try to take
advantage of filter set characteristics that allow them to limit the number of
intermediate results. In general, solutions using decomposition provide high
throughput due to their parallel hardware implementations. The high level of lookup

performance often comes at the cost of memory waste.

2.2.3.1 Parallel Bit Vectors (BV)

Lakshman and Stiliadis introduced one of the first multiple field packet
classification algorithms targeted to a hardware implementation. Their technique is
commonly referred to as the Lucent bit-vector scheme or Parallel Bit-Vectors (BV)
[24]. The authors make the initial assumption that the filters are sorted according to
priority. Parallel BV utilizes a geometric view of the filter set and maps filters into d-
dimensional space. As shown in Figure 2-11, projections from the “edges” of the d-
dimensional rectangles specified by the filters define elementary intervals on the axes.
Note that we are using the example filter set shown in Table 2-2 where filters contain
two fields: a 4-bit address prefix and a range covering 4-bit port numbers. N filters

define at maximum (2N+/) elementary intervals on each axis.
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Figure 2-11 Parallel Bit Vectors example

For each elementary interval on each axis an N-bit bit-vector is defined. Each
bit position corresponds to a filter in the filter set, sorted by priority. All bit-vectors
are initialized to all ‘0’s. For each bit-vector, we set the bits corresponding to the
filters that overlap the associated elementary interval. Consider the interval [12:15] on
the Port axis in Figure 2-11. Assume that sorting the filters according to priority
places them in alphabetical order. Filters e, f, i, and j overlap this elementary interval;
therefore, the bit-vector for that elementary interval is 00001100110 where the bits
correspond to filters a through k in alphabetical order. For each dimension d, we
construct an independent data structure that locates the elementary interval covering a
given point, then we return the bit-vector associated with that interval. The authors
utilize binary search, but any range location algorithm is suitable.

Once we compute all the bit-vectors and construct the d data structures,
searches are relatively simple. We search the d data structures with the corresponding
packet fields independently. Once we have all d bit vectors from the field searches,
we simply perform the bit-wise AND of all the vectors. The most significant ‘1’ bit in
the result denotes the highest priority matching filter. Multiple matches are easily

supported by examining the most significant set of bits in the resulting bit vector.
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The authors implemented a five field version with five 128Kbyte SRAMs.
This configuration supports 512 filters and performs one million lookups per second.
Assuming a binary search technique over the elementary intervals, the general
Parallel BV approach has O(IgN) search time and O(N?) memory requirement. The
authors have further proposed an algorithm to reduce the memory requirement to

O(NlogN) using incremental reads.

2.2.3.2 Aggregated Bit-Vector (ABV)
Baboescu and Varghese introduced the Aggregated Bit-Vector (ABV)

algorithm which seeks to improve the performance of the Parallel BV technique by
using statistical observations of real filter sets [25]. Conceptually, ABV starts with d
sets of N-bit vectors constructed in the same manner as in Parallel BV. The authors
leverage the widely known property that the maximum number of filters matching a
packet is inherently limited in real filter sets. This property causes the N-bit vectors to
be sparse. In order to reduce the number of memory accesses, ABV essentially
partitions the N-bit vectors into 4 chunks and only retrieves chunks containing ‘1’
bits. Each chunk is N / A4 bits in size and has an associated bit in an A-bit aggregate
bit-vector. If any of the bits in the chunk are set to ‘1°, then the corresponding bit in
the aggregate bit-vector is set to ‘1°. Figure 2-12 provides an example using the filter
set in Table 2-2.

Each independent search on the d packet fields returns an A-bit aggregate bit-
vector. We perform the bit-wise AND on the aggregate bit-vectors. For each ‘1’ bit in
the resulting bit-vector, we retrieve the d chunks of the original N-bit bit-vectors from
memory and perform a bit-wise AND. Each ‘1’ bit in the resulting bit-vector denotes a
matching filter for the packet. ABV also removes the strict priority ordering of filters
by storing each filter’s priority in an array. This allows us to reorder the filter in order
to cluster ‘1’ bits in the bit-vectors. This in turn reduces the number of memory
accesses. Simulations with real filter sets show that ABV reduced the number of
memory accesses relative to Parallel BV by a factor of a four. Simulations with
synthetic filter sets show more dramatic reductions by a factor of 20 or more when the
filters sets do not contain any wildcards. As wildcards increase, the reductions

become much more modest.
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Figure 2-12 Aggregated Bit Vector example

2.2.3.3 Recursive Flow Classification (RFC)

Leveraging observations on real filter sets, Gupta and McKeown introduced
Recursive Flow Classification (RFC) which provides high lookup rates at the cost of
memory inefficiency [26]. The authors introduced a unique high-level view of the
packet classification problem. Essentially, packet classification can be viewed as the
reduction of an m-bit string defined by the packet fields to a k-bit string specifying the
set of matching filters for the packet or action to apply to the packet. For classification
on the IPv4 5-tuple, m is 104 bits and k is typically on the order of 10 bits. The
authors also performed a rather comprehensive and widely cited study of real filter
sets and extracted several useful properties. Specifically, they noted that filter overlap
and the associated number of distinct regions created in multi-dimensional space is
much smaller than the worst case of O(n%). For a filter set with 1734 filters the
number of distinct overlapping regions in four-dimensional space was found to be
4316, as compared to the worst case which is approximately 10"

RFC performs independent, parallel searches on ‘“chunks” of the packet
header, where “chunks” may or may not correspond to packet header fields. The

results of the “chunk” searches are combined in multiple phases. The result of each
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“chunk” lookup and aggregation step in RFC is an equivalence class identifier
(classID) which represents the set of potentially matching filters for the packet. The
number of classIDs in RFC depends upon the number of distinct sets of filters that can
be matched by a packet. The number of classIDs in an aggregation step scales with
the number of unique overlapping regions formed by filter projections.

RFC lookups in “chunk” and aggregation tables utilize indexing; the address
for the table lookup is formed by concatenating the classIDs from the previous stages
as shown in Figure 2-13. The resulting classID has fewer number of bits than the
address, thus RFC performs a multi-stage reduction to a final classID that specifies
the action to apply to the packet. The use of indexing simplifies the lookup process at
each stage and allows RFC to provide high throughput. This simplicity and
performance comes at the cost of memory inefficiency. The memory usage for less
than 1000 filters ranged from a few hundred kilobytes to over one gigabyte of
memory depending on the number of stages. The authors propose a hardware
architecture using two 64MB SDRAMs and two 4Mb SRAMs that could perform 30
million lookups per second when operating at 125MHz. The index tables used for
aggregation also require significant pre-computation in order to assign the proper
classID for the combination of the classIDs of the previous phases. Such extensive

pre-computation prohibits dynamic updates at high rates.

Preprocessed
bles

classID

Phase 0 Phase | Phase 2  Phase 3

Figure 2-13 RFC aggregation scheme
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Chapter 3

MAC Layer Classification

In this chapter we present our solution for MAC layer switching and
classification in Ethernet networks. We developed a scheme suitable for hardware
implementation that can facilitate the support of forwarding, switching, filtering,
classification and QoS in Layer 2 (Data Link Layer). Our hardware solution aims at
Ethernet switches or Bridges. We design a Hash Based Classification Engine (HBSE)

that can support fast and storage efficient classification of many multi-gigabit links.

3.1 Ethernet Switching

Layer 2 (Data Link Layer) switching allows packets to be switched in the
network based on their Media Access Control (MAC) address. The MAC sub-layer is
part of the Data Link Layer and it is responsible to move the data packets from one
Network Interface Card (NIC) to another across a channel. When a packet arrives at
the switch, the switch checks the packet’s destination MAC address and, if known, it
sends the packet to the output port where the destination MAC is connected. The

format of the Ethernet packets is shown in Figure 3-1.

Transmission Order

PRE| SFD|DA | SA| Len/Type Data | FCS

7 1 6 6 4 46-1500 4

Figure 3-1 Ethernet Frame Format
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The field lengths are in bytes and are the following:

= PRE = Preamble
= SFD

Start-of-frame delimiter

= DA = Destination Address

= SA = Source Address

= Len/Type = Data Length of frame or frame Type

= FCS = Frame Check Sequence

The three fundamental elements in Ethernet L2 switching are the MAC
addresses, the ports of the switch and the Virtual LANs (VLANSs). Since Ethernet
switching is making a breakthrough in MAN and WAN networks, these elements are

critical in mechanisms that provide QoS.
MAC Addresses

The MAC address is a 48-bit(6 bytes) value that uniquely identifies a NIC.
The first 24-bits(3 bytes) of the address identify the vendor of the card and the last 24-
bits identify the card itself. Every NIC has a MAC address that is hardwired and

cannot be changed.
Ports

The ports are the physical interfaces where the NICs are connected to the
switch. Each port can be identified by a number assigned by the manufacturer of the

switch and provides all the communication from and to the attached NIC.
VLANSs

VLAN tagging was introduced in IEEE 802.1q [4] and defines how an
Ethernet frame is tagged with a VLAN ID. This tagging is a MAC option that
provides some important capabilities not previously available to Ethernet network
users and network managers. VLANs provide a mechanism to handle time-critical
network traffic by setting transmission priorities to outgoing frames according to
IEEE 802.1p [27]. Moreover VLANSs allow network stations to be assigned to logical
groups, and then communicate across multiple LANS as if they were on a single LAN.
Bridges and switches filter destination addresses and forward VLAN frames only to

ports that serve the specific VLAN traffic.
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A VLAN-tagged frame is simply a basic MAC data frame that has a 4-byte
extra header inserted between the SA and Length/Type fields as shown in Figure 3-2.
The VLAN header consists of two fields:

= A reserved 16-bit value to indicate that this is a VLAN frame(0x8100)
= A 16-bit Tag Control Info field:
o0 The first 3-bits indicate the priority according to
IEEE 802.1p (8 possible)
0 The next 1 bit is CFl (Canonical Format Indication)
o The last 12-bits indicate the VLAN ldentifier (4096 possible).

2 3-bits 1-bit 12-bits
VLAN[, .. . VLAN
Tag Priority| CFI D

™~

~.

VLANT, .
PRE | SFD DA | SA Header Len/Type Data FCS

7 1 6 6 4 4 46-1500 4

Figure 3-2 VLAN Ethernet Frame

Typically, there are two types of VLANSs, port-based and MAC address-based.
On port-based VLANSs the logical grouping is done by assigning some specific ports
to constitute a VLAN. When a data frame is received on a port, the switch or bridge
determines the associated VLAN based on the port of the reception. Using the
forwarding database information, the data frame is sent to the appropriate port(s). The
other option is to specify VLANs using MAC addresses. MAC-based VLANSs can be
created by the MAC addresses of all devices on a network. VLANs of this type

provide better device mobility and privacy for the users.

3.2 Hardware Based Classifiers

L2 switching, forwarding and filtering require the fields of each packet to be
examined and the appropriate action to be performed. For example, given a packet’s
destination MAC address, the packet should be forwarded to the appropriate output
port. Therefore, the switches need to store some information and consult it for their
decisions. The information about the MAC addresses, the VLANSs and the Ports is
stored in internal data structures and for each packet a search is conducted using the
packet header fields.

Switches and bridges have integrated hardware solutions for the L2
classification task. They place the MAC address tables in internal or external

memories and all operations access the tables to find the exact match. Today’s
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switches support at most 32K MAC addresses [28] and 4096 VLANSs, hence the size
of memories is relatively small.

The nature of L2 classification requires exact matches and many
implementations use CAMs that provide single access matching. CAM solutions are
simple but are expensive and power consuming. Trie based solutions have poor
performance since the 48-bits of the MAC address are relatively long to be resolved
with partial matches in subparts of the address. Moreover, trie based solutions may
require several memory accesses and massive storage in pointers.

Another popular solution is hashing of the MAC address bits [29] and storing
the data in SRAM based lookup tables. The 48-bits are hashed with a specific hashing
function and an index for the lookup table is generated. Possible collisions due to
hashing are usually resolved with linked lists of entries. Hashing 48-bits into a small,
say 16-bit, value requires a good function that generates differentiated values by
taking into account all the information bits. Many solutions use the CRC polynomials
for hashing since they have been proved very efficient [30] or others use direct

mapping by the least significant bits of the MAC address.

3.3 Hash Based Classification Engine

Our solution for L2 classification is based on hashing like many commercial
products but we propose a hashing scheme that exactly matches certain requirements
in terms of both memory accesses and storage. We propose a Hash Based
Classification Engine (HBCE) with internal MAC Vendor replacement. HBCE is
designed to support up to 64K MAC-address rules, 4096 VLANs and 1024 ports.
Every rule in HBCE is uniquely identified by a number that can be called Flow ID, in
our case we consider that 32K Flow IDs would be enough for a LAN.

The most essential part of our scheme is the MAC address table that will hold
the associated information. The length of MAC addresses, namely 48-bits, is what
makes this part the most critical in terms of both speed and storage. VLANSs and ports
are relatively small in size and can be directly mapped into tables, as it will be

described in the next sections.
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3.3.1 MAC Address Hashing

We developed a hashing function to map the MAC addresses into a table that
will hold the Flow ID of the associated rule. MAC addresses are stored in a 64K table
called MAC TBL and the indexes to it are generated by the MAC address bits using
our hashing function. The collisions due to hashing are handled by pointers to variable
size blocks. Handling variable size blocks requires dynamic memory management
implementation and is discussed in subsection 3.3.5. The number of entries of each
variable size block is defined by the number of MAC:s that collide in a specific entry.

Indexes in MAC_TBL are generated by the use of the XOR function in all the

48-bits of the MAC address and thel6-bit address is produced as follows:

MAC_TBLinsex = { MAC[47:40] xor MAC[31:24] xor MAC[15:8] ,
MAC[39:32] xor MAC[23:16] xor MAC[7:0] }

To identify a certain MAC address in the block we also need to save some additional
information so as to be able to distinguish those that collide. Fortunately, we don’t
need to save all 48-bits and we take advantage of the fact that the address has been
produced by the actual MAC-address field. Therefore a MAC located in address A of
MAC _TBL can be reproduced by the 16-bits of A and the last 32-bits (Hy,) of the
MAC address as follows:

MAC[47:40] = A[15:8] xor Hys[31:24] xor H,4[15:8]
MAC[39:32] = A[7:0] xor Hya[23:16] xor Hya[7:0]
MAC[31:0] = Hya(31:0)

The bits saved in Hy, are unique for every possible MAC address located in address
A and can be used to identify it. If we use CRC-16, like popular schemes, to produce
16-bit indexes then we should store the complete 48-bits of the MAC address because
there is no inverse CRC function. Moreover, CRC polynomials don’t have one-to-one
correspondence between input and generated values. The speed and storage

performance of our hashing function is discussed in section 3.4

3.3.2 MAC Vendor Replacement

The official IEEE OUI and Company ID assignments [31] has published all
the assigned MAC vendor IDs of 24-bits and the associated company names. We
collect them and observe that the 24-bit vendor address space of the MAC addresses
is not fully occupied. The available list shows that fewer than 8000 vendors are active
instead of the 2**= 16777216 possible. Therefore we can replace the 24-bit vendor ID
with a 13-bit internally assigned vendor ID; 13 bits are enough for the 8000 vendors.
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The last 24-bits of the MAC address that uniquely identify a device of a vendor can
remain unchanged. We decide to have internally replaced the vendor ID part of a
MAC in order to reduce the storage requirements for each MAC address, at the cost
obviously of the replacement operation. Consequently, every incoming MAC address
need to be translated before the actual processing begins.

We can now consider that each MAC address handled by our system is 37-bits
long. Naturally, this replacement means that we keep a small table with 8192 entries
called VID_RPL that matches the existing 24-bit Vendor ID values with the internally
assigned 13-bit Vendor ID values. This table can be easily constructed since all
Vendor IDs are sequentially assigned by IEEE and a few ‘holes’ that exist in the
address space can be handled by a 24-to-13 decoder. Despite this table is constant and
can be kept in a ROM, we can use a method that learns the connected MAC addresses
and assigns incrementally an internal ID. The first time an unknown MAC vendor ID
appears in the system we can assign it with a new ID.

After this replacement we define a new hashing function on the 37-bits of the

MAC address. Now, the 16-bit indexes in MAC_TBL are generated as follows:
MAC_TBLingex = { MAC[31:24] xor MAC[15:8] ,
MAC[23:16] xor MAC[7:0] }

Notice that we don’t use the 6 MSB of the replaced Vendor ID in order to have a byte

balanced hashing function. The new Hy, is now 21-bits and is defined as follows:
Her = { MAC[36:24] , MAC[7:0] }
Now, a MAC located in address A of MAC TBL can be reproduced by the 16-bits of

the address and H,, as follows:

MAC[36:24] = H,a[20:8]
MAC[23:16] = A[15:8] xor Hy,[7:0]
MAC[15:8] = A[15:8] xor Hya[15:8]
MAC[7:0] = Hya((7:0)

3.3.3 MAC _TBL and Data Structure
MAC TBL is a table with 64K entries and stores the Flow ID of each MAC

address. Indexes in MAC_TBL are generated with hashing and therefore collisions
may occur. To support resolving these collisions we define a complex data structure
associated with each entry of the MAC_ TBL. Each MAC address stored in an entry of
the table needs 21-bits (Hy,) to be fully identified (as described above) and along with

this value we have to store the Flow ID which needs 15-bits. This information sums to
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36-bits and should be stored in the memory. These 36-bits force the memory word to
be at least 36-bits. If we use on-chip memories the word size is not a problem but in
case of off-chip memories we have to find a commercial solution that matches our
requirements. Fortunately, 36-bits is a popular word size of many SRAM vendors.

In the case where only one MAC address is saved in a table entry we can save
the Flow ID in the 15 MSB of the word and H,, in the 21 LSB. However, a table
entry might be empty which means that is not mapped to any MAC address, therefore
we reserve the Flow ID number 0 for this purpose. The 15 MSB of the memory word
should be set to 0 in empty entries. Moreover, a table entry may be mapped to many
MAC addresses. In the latter case, where collisions occur, we have to store a pointer
to the variable size block and the number of MACs that collide. The number of
colliding MACs can also indicates the size of the block. For the cases of collisions we
have reversed the Flow ID number 1 and store it in the 15 MSB of the word. The last
17-bits of the word are used to store the pointer to the block and the remaining 4-bits
are used to keep the number of MACs mapped in this table entry. 4-bits are enough
for the maximum number of collisions of our system as explained in subsection 3.4.1.

The format of the memory words in each case is shown in Figure 3-3.

~ Flow ID
Empty Format 0x0 0x0
~ 15-bits 21-bits
Flow ID HVal
Normal Format 0x??? 0x77279
15-bits 21-hits

Flow ID  #Collisions Block Pointer

Collision Format . 0x1 0x? 0x?77?
' 15-bits 4-bits 17-bits

Figure 3-3 MAC_TBL entries format

The variable size blocks also use 36-bit memory words and the format of their entries
is the same with the normal format of Figure 3-3. An example that shows the form of

the data structure for some hypothetical MAC addresses is depicted in Figure 3-4.
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Flow ID Hval

Al

0x0000 0x1234 0x456CD | oaasoc Ox0A 13 0xBAI4I

-~

0x0001 0x0001 4 0x1A40C 0x6B42 0xD45B7

0x0002 0x0001 2 0x14E1C 0x77A4 0x16DC7

0x0003 0x0000 0x00000 0x100A 0xA5629

0x0004 0x5678 0x123AB 3

0x0005 0x0000 0x00000 oxiaE1c 0x1C34 0xD759A
0x85C2 OxFE391

# Collisions . Block Pointer
| - . ’. | e .

OxXFFFD 0x0001 3| 0x1D43A |  oapa3a 0x36A1 0x936AC

O0xFFFE 0x9A12 0x789EF 0xdB67 0x43E4B

0xFFFF 0x0000 0x00000 0x2E98 0xC49A5

MAC_TBL

Figure 3-4 MAC_TBL Data structure example

Insert Operation

An insert operation in HBCE is a relatively simple task and needs a specific
number of steps. Once a 48-bit MAC address is handled by our scheme we have first
to replace the Vendor value with our internally assigned one by accessing VID_ RPL.
Then, the new MAC address of 37-bits is hashed to generate MAC TBLiygex and Hyg).
The generated index is used to access MAC _TBL and get the contents of the specific
entry. The next step is to decode the Flow ID field and make the appropriate actions.
Depending on the FlowID we may just insert the MAC address or allocate extra
memory words to host the new MAC address. The complete specification of required

steps is presented in subsection 4.3.2.
Lookup Operation

The lookup operation requires to examine a specific entry in MAC _TBL and
follow the block pointer, if applicable, to locate the specific MAC address. Locating a
MAC requires to check all the existing Hy, fields. Once a 48-bit MAC address should
be looked up by our scheme we have to replace the Vendor value with our internally
assigned one by accessing VID RPL. Then, the new MAC address of 37-bits is
hashed to generate MAC TBLiex and Hy,. The generated index is used to access
MAC TBL and get the contents of the specific entry. The next step is to decode the
Flow ID field and make the appropriate actions. Depending on the FlowID we may
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find the MAC address at once or we may follow pointers and sequentially search a
block of colliding MAC addresses. The complete specification of required steps is

presented in subsection 4.3.3.
Delete Operation

Delete operation requires to examine a specific entry in MAC TBL and
follow the block pointer, if applicable, to locate the MAC address and remove it.
Locating a MAC requires to check all the existing Hy, fields. Once a 48-bit MAC
address should be deleted we have to first replace the Vendor value with our
internally assigned one by accessing VID RPL. Then, the new MAC address of 37-
bits is hashed to generate MAC TBLiygex and Hy,. The generated index is used to
access MAC TBL and get the contents of the specific entry. The next step is to
decode the Flow ID field and make the appropriate actions. Depending on the FlowID
we may delete the MAC address easily or we may follow pointers and remove it from
a block of colliding MAC addresses. The complete specification of required steps is

presented in subsection 4.3.4.

3.3.4 VLAN and Port Tables

Handling VLAN and Port fields is simple and requires storing the associated
15-bit Flow ID for each of the fields. VLAN is defined as a 12-bit identifier and can
be directly mapped in a 4K table called VLAN TBL. Similartly, the port field is
defined as a 10-bit identifier and is directly mapped in a 1K table called PORT TBL.

3.3.5 Dynamic Memory Management

Dynamic memory management in our system is needed to support the variable
blocks described when collisions occur. This mechanism handles requests for memory
allocation and deallocation of variable sizes. We have a pool of 64K adjacent memory
words intended to be used for anti-collision purposes. An operation may require
allocation of a certain number of memory words and our mechanism has to provide
the address of the first of these words. The current dynamic memory management
mechanism provides support for 2-word and 4-word blocks and is extensively

described in subsection 4.4.
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In case we need larger blocks, we cannot have adjacent memory words but we
can link internally 2 or 4-word blocks by using the collision format discussed before.
This decision does not significantly degrade the performance of our design because in
both cases of adjacent and linked blocks we need to access all the memory words. The
main disadvantage of this implementation is that if we need block sizes not multiples
of 2 or 4 then we have to pay a small fragmentation overhead. Figure 3-5 depicts how

blocks can be linked together and used in HBCE.

oxiasoe 0X0A 13 OxBA941
0x6B42 0xD45B7
0x77A4 0x16DC7

0x0000 0x1234  0x456CD |
0x0001 0x1D14C -

0x0001 0x0001 6 0x1A40C |
0x0002 0x5678 (0x123AB |
0x0003 0x0000 0x00000

0x0004 0x0001 2| 0xI4E1C |
0x0005 0x0000 0x00000 |

0x1D14C 0x67A3. 0x736BC
0x39A2 0x9A56B
0x22B4 0x66C2B
0x0000 0x00000

. ox14E1¢]0x1C34| 0xD759A

. 0x85C2 0xFE391

OXFFFD 0x0001 3 0x1D43A
OXFFFE 0x9A12 0x789EF
OXFFFF 0x0000 0x00000

oanass 0X36A1 0x936AC
0x4B67 0x43E4B
O0X2E98 0xC49A5

MAC_TBL 0x0000 0x00000

Figure 3-5 Data structure example with linked blocks

3.4 Simulation Results and Performance

In this subsection we discuss simulation results based on synthetic MAC
address tables and present our results on storage and speed complexity. We calculate
and analyze the performance of HBCE and compare it with the traditional CRC-16
and direct mapped solutions. HBCE storage and speed performance is based on

certain assumptions for the underlying hardware and memory architecture.

3.4.1 Indexing MAC_TBL with a hashing function
Indexing MAC_TBL in HBCE is based on the hashing function proposed in
subsection 3.3.2 which hashes the modified MAC address bits. We illustrate the

performance of our function by using synthetic MAC address databases with existing

MAC vendor IDs. We generated 32K, 48K and 64K MAC address databases with
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variable number of active vendor IDs, such as 256, 1500 and 4000, to test the
behaviour of our function. For the generation of the databases we used real MAC
Vendor IDs from the subset provided by OUI and appended random uniformly
distributed 24-bit values that can represent the real network cards’ serial numbers. We
calculate the maximum and average number of collisions for our scheme and compare
it with CRC-16 and direct mapping of the 16 LSBs. The simulation results are
presented in Table 3-1.

Database Size Index Maximum | Average

(Active Vendors) Function Collisions | Collisions
CRC-16 5 1,495
32K (256) Direct Mapping 6 1,542
HBCE 6 1,490
CRC-16 6 1,476
32K (1500) Direct Mapping 7 1,527
HBCE 5 1,483
CRC-16 5 1,482
32K (4000) Direct Mapping 6 1,532
HBCE 5 1,481
CRC-16 6 1,732
48K (256) Direct Mapping 8 1,822
HBCE 6 1,737
CRC-16 7 1,730
48K (1500) Direct Mapping 8 1,821
HBCE 7 1,732
CRC-16 6 1,728
48K (4000) Direct Mapping 8 1,818
HBCE 7 1,735
CRC-16 8 2,631
64K (256) Direct Mapping 9 2,792
HBCE 7 2,642
CRC-16 7 2,630
64K (1500) Direct Mapping 8 2,765
HBCE 7 2,637
CRC-16 7 2,618
64K (4000) Direct Mapping 9 2,771
HBCE 8 2,642

Table 3-1 Indexing simulation results

The results show that the HBCE seems a good hash function that approaches
CRC-16 performance and is better that direct mapping. The XOR function used by
both CRC-16 and HBCE provides better collisions results because in generates more
uniformly distributed indexes. The advantage of HBCE is that it requires only a small

portion from the original MAC address to be stored instead of the total 48-bits
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required by CRC. It is also much simpler and less expensive to implement the HBCE
hash function in hardware. The results also show that when the number of MAC
addresses stored in MAC TBL grows to the limits of the table, namely 64K, the
average number of collisions increases but fortunately it remains in tolerable levels.
The number of active vendors in the dataset seems that it does not influence the
performance. Moreover, the maximum number of collisions appeared during
simulations allows us to assume that 4-bits are enough for the #Collisions field which
currently supports up to 15 collisions.

Additionally to the synthetic MAC databases we use real MAC addresses from
ICS-FORTHs network and Computer Laboratory of University of Cambridge®. We
concatenate these MAC addresses to create a real database and provide the simulation

results in Table 3-2.

Database Size Index Maximum | Average
(Active Vendors) Function Collisions | Collisions
CRC-16 2 1,023
1611 (195) Direct Mapping 2 1,031
HBCE 2 1,019

Table 3-2 Real database simulation results
This small sample of real MAC addresses still shows that our hashing function

is performing very well and can be efficiently used on a real system such as a central

L2 switch of a big institution.

3.4.2 Storage Requirements

We calculate the total storage requirements of HBCE for the synthetic
databases based on the collisions produced in each case and assume that all the rules
are stored in 36-bit wide words. The collisions are handled by the dynamic memory
management system described in subsection 3.3.5 and thus apart from the static tables
used we have to calculate the number of 2-word and 4-word blocks required. The size

of the static tables is demonstrated in Table 3-3.

Table Entries Total Bytes
MAC TBL | 65536 294912
VLAN TBL | 4096 18432
PORT TBL | 1024 4608
VID RPL 8192 36864
Total 78848 | 354816 (346 Kb)

Table 3-3 HBCE static tables memory

* We kindly thank the network administrators for providing us with this valuable information.



CHAPTER 3. MAC LAYER CLASSIFICATION 49

In Table 3-4 we present the final storage requirements of HBCE for each database,
and include in our calculations the collision blocks linked in MAC TBL. We also
present the storage requirements if CRC-16 was the hashing function for the same
databases. Note that in the CRC case we need two memory words for each MAC
address because we need to keep the 37-bit internal MAC address and the
corresponding 15-bit FlowID.

Database Size | Static Tables | Collision Blocks | HBCE Total | CRC Total
(Active Vendors) (Kbytes) (Kbytes) (Kbytes) (Kbytes)
32K (256) 346 58 404 634
32K (1500) 346 57 403 634
32K (4000) 346 58 404 634
48K (256) 346 120 466 788
48K (1500) 346 120 466 787
48K (4000) 346 120 466 787
64K (256) 346 194 540 947
64K (1500) 346 194 540 948
64K (4000) 346 195 541 946
1611(195) 346 0,1 346,1 360

Table 3-4 HBCE final storage requirements

We can see that half megabyte is enough for HBCE to store 64K MAC
addresses and support QoS. Moreover, we have 36% - 42% better storage
requirements than the equivalent CRC-16 solution. Note also, that although we have
assigned 64K adjacent memory words (288 Kbytes) for collision resolving only 70%
of this space is actually used which means that it is possible for our scheme to support
more than 64K MAC addresses. The cost of supporting even more MAC addresses

would naturally be an increase in the average number of collisions.

3.4.3 Lookup performance

The lookup performance of HBCE is based on the total number of memory
accesses required to find a match in the tables. This a performance metric very
frequently used in such schemes. VLAN TBL and PORT TBL are direct mapped and
therefore the Flow ID can be found with a single access in the appropriate table.
MAC TBL is the most critical table for the performance of HBCE since collisions
may occur and we have to lookup sequentially all the colliding MAC addresses. For
every incoming MAC address we have first to replace the original vendor ID with our
internally assigned one. Therefore we need a single memory access in VID RPL, then

the MAC TBL index is generated based on the modified MAC address. The number
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of accesses required to resolve a MAC address also depends on the number of
collisions that have occurred. According to Table 3-1 the worst case number of
memory accesses for 64K MAC addresses is 8 but the average number is 2,64 which
is fairly smaller. In Table 3-5 we present the summary of worst and average case

memory accesses for each case.

Active MAC | Average Case | Worst Case
Addresses
32K 2,49 7
48K 2,73 8
64K 3,64 9

Table 3-5 HBCE total number of memory accesses

Supported Link Speeds

According to our lookup performance we can calculate the efficiency of
HBCE as a classification engine in a high speed L2 switch. To calculate the network
performance we have to assume a certain speed for the memory we use and a
pipelined hardware implementation that can provide one memory access per cycle.
The results we present assume 2 possible memory configurations:

e 200Mhz off-chip synchronous SRAM

e 400Mhz on-chip synchronous SRAM
We also assume that the worst case scenario for HBCE is when L2 transports
minimum sized Ethernet packets (64 bytes). The summary of the supported link

speeds are presented in Table 3-6.

. Off-chip SRAM 200Mhz | On-Chip SRAM 400Mhz
Active MAC
Addresses Average | Worst Case Average | Worst Case
(Gbps) (Gbps) (Gbps) (Gbps)
32K 41,2 14,6 82,2 29,3
48K 37,5 12,8 75,0 25,6
64K 28,13 11,4 56,2 22,8

Table 3-6 HBCE network performance

The network performance presented in Table 3-6 allows HBCE to be used in a
high speed switch that can support many high speed ports. The average case of a 64K
MAC database demonstrates that our scheme can be used in a switch/concentrator
consisting of 36 x 1Gbit ports and 2 x 10Gbit port or other combinations such as 16 x
1Gbit ports and 4 x 10Gbit ports.
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Chapter 4

Hardware Implementation of HBCE

In this chapter we present a reference hardware implementation of the HBCE
MAC layer classification scheme that was described in Chapter 3. We provide a
detailed description of all the internal blocks of the system and the hardware resources
utilized. We also present the speed and silicon area estimations of the final design. We
decide to implement the final design in an FPGA platform to prove the feasibility and
scalability of the architecture, even when limited hardware resources are available.
The FPGA platform we use is a Xilinx Virtex I Pro [32] with an external Cypress
NoBL (ZBT) SSRAM [33].

4.1 HBCE Organization

HBCE involves many internal blocks to implement the required functionalities.
Figure 4-1 illustrates the internal organization of HBCE and the external interfaces.
The central operation of the system is handled by a Main Control Block
(HBCE_MCB) which receives commands from the OPB_INF block. OPB_INF is an
implementation of Xilinx OPB Bus slave interface [34]. Upon a reception of a
command HBCE MCB instructs the MAC_VID block to make the vendor ID
replacement and then provides the modified MAC address to MAC _HSH in order to
perform hashing in the data. When the hashed values are ready then HBCE _MCB
performs the appropriate actions so as to insert, lookup or delete a MAC address or a
VLAN or a Port in the data structure. HBCE MCB interfaces with the memory
through the memory handler (MEM_HDLR) and the memory controller
(MEM_CTRL). The MEM_HDLR implements the dynamic memory management
scheme described in section 4.4 by employing several free-lists and the MEM CTRL
is the actual low level memory interface. When the final FlowID is resolved then it is

returned through the OPB_INF block to the instructor of the initial command.



CHAPTER 4. HARDWARE IMPLEMENTATION OF HBCE 52

OPB BUS PPUs

1111

OPB_INF

!

HBCE_MCB

— 1 =

MAC_VID <4==p MEM HDLR MAC_HSH

!

MEM CTRL 4uussp SSRAM

Figure 4-1 HBCE Internal organization and block diagram

4.2 OPB_INF

OPB_INF has an FSM to implement the OPB Bus slave interface timings in
order to have interconnection with the peripheral Bus that is widely used in Xilinx
FPGA platforms. This interface has a 32-bit address bus and a 32-bit data bus and
supports read and write operations on specific addresses that correspond to actual
block registers. OPB_INF receives read and write commands to internal registers
from four parallel processing units (PPUs) and provides the result to the
corresponding instructor unit through BRAM interfaces. The signals of the interface

and their descriptions are shown in Table 4-1.

Signal Length | In/Out Description
i opb select 1 I Initiates the transaction.
1 opb rnw 1 I Indicates read or write.
1 opb be 4 I Byte enable for the data.
i opb seqaddr 1 | Sequential address transactions.
i opb abus 32 I Incoming Address
1 opb dbus 32 I Incoming Data
o opb xferack 1 0 Transaction acknowledge.
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0 opb errack 1 0 Error acknowledge.

0 opb toutsup 1 O Timeout suppress.

0 opb retry 1 0) Request retry.

o opb dbus 32 0 Outgoing Data

0 hbce req 1 O Request for HBCE operation
o hbce opcode 3 0 Opcode of operation

o hbce addr 48 0 MAC address data

o hbce flow id 15 O Flow ID data

o hbce vlan 12 0] VLAN data

o hbce port 10 ) Port data

o hbce fld bmp 3 O Bitmap to indicate the valid data

Table 4-1 OPB_INF signals with the bus and HBCE

HBCE needs several data to start working on a MAC address, a VLAN or a Port

and all of them need to pass over the OPB bus. For this purpose, we define some

control registers that each instructor unit should fill before it starts an operation. The

control registers defined are the following:

ConfReg0 : It contains the PPU number that instructs the commands and the

valid parts of the command. The fields of the register are:

Address: ADDRHI & 0x10000

31:11 10:8

7:2 1:0

Reserved

Rule Bitmap

Reserved

PPU number

PPU number: Is a 2-bit field that indicates which of the 4 PPUs instructed

the command.

Rule Bitmap : Is a 3-bit that indicates which parts of the incoming rule are
valid. Bit(10) indicates that MAC is valid, Bit(9) indicates that VLAN is
valid and Bit(8) indicates that port is valid.

ConfRegl : It contains the 32 MSB of the incoming 48-bit MAC Address.

The fields of the register are:
Address: ADDRHI & 0x10001

31:0

MAC Address [47:16]

ConfReg? : It contains the 16 LSB of the incoming 48-bit MAC Address. The

fields of the register are:

Address: ADDRHI & 0x10002

31:16

15:0

Reserved

MAC Address [15:0]
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ConfReg3 : It contains the Flow ID of the rule to be inserted. The fields of the
register are:
Address: ADDRHI & 0x10003

31:15 14:0
Reserved | Flow ID

ConfReg4 : It contains the values of the incoming VLAN and Port. The fields
of the register are:
Address: ADDRHI & 0x10004

31:28 27:16 15:10 9:0
Reserved | VLAN | Reserved | Port

Access to these registers is achieved with normal OPB reads or writes to the address

of each register. Using these registers we also define the commands for HBCE that

can be given through the OPB Bus. The commands are the following:

InsertKey: This command aims to be used for rule insertion in the database
and results in insert operation requests to HBCE. Before this command is
initiated the appropriate configuration registers (ConfReg0-4) should be
written with the desired values.

Address: ADDRHI & 0xA0000

OPB Command: Read

SearchKey: This command should be used to lookup a given set of MAC,
VLAN, PORT values in the data structure and results in lookup operation
requests to HBCE. Before this command is initiated the appropriate
configuration registers (ConfReg0-4) should be written with the desired
values.

Address: ADDRHI & 0xC0000

OPB Command: Read

DelKey: This command should be used to delete a rule given the MAC
address, or VLAN or Port of the rule and results in delete operation requests to
HBCE. Before this command is initiated the appropriate configuration
registers (ConfReg0-4) should be written with the desired values.

Address: ADDRHI & 0xC0000

OPB Command: Write
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e WrVendor: This command aims to be used on the initialization of the block
to fill the MAC vendor replacement tables with the appropriate values. The
range of valid addresses is: 0xA0000 - 0OxAOEC8
Address: ADDRHI & 0xA0000
OPB Command: Write

4.3 HBCE_MCB

HBCE _MCB has several internal blocks that handle the operations of the
HBCE scheme as described in Chapter 3. The internal organization of HBCE MCB is
depicted in Figure 4-2. HBCE MCB interfaces with OPB_INF block to receive
commands and notifies it when it completes an operation. It also communicates with
MAC_VID to receive the internally modified MAC address and with MAC_ HSH to
get the hashed values. Moreover the required memory communication is done over
the MEM_HDLR block where requests for read, write, memory allocation and

deallocation are given.

HBCE_MCB OPB_INF
MAC_VID <=p MCB_CTRL <+ MAC_HSH
MCB_INS MCB_LUP MCB_DEL

| ¢l¢ |

N\ MEM_MUX

MEM_HDLR

Figure 4-2 HBCE_MCB internal organization
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Memory Organization and Tables

The current HBCE implementation is based on sequential accesses to
MAC TBL and follows the pointers to the dynamically allocated nodes. Moreover in
the memory we have stored the VLAN table (VLAN TBL), the Port table
(PORT TBL) and the vendor assignment table (VID_RPL). All these tables and the
free memory addresses are stored in the same SSRAM. The memory word we use is
36-bits and we use at most 128K words which have been found enough during the
simulations of subsection 3.4.2. The organization of the tables in the memory and the
pool of free memory words for dynamic memory management is shown in Figure 4-3.
The first 64K words are used for MAC _TBL, the next 8K words are for VID_RPL,
the next 4K words are for VLAN TBL and the next 1K words are for PORT TBL.
The remaining 52224 memory words are used by the memory handler (MEM_HDLR)

to provide dynamic allocation and deallocation of memory blocks.

- 30 bits -

0
MAC_TBL

65536
VID_RPL

73728
VLAN_TBL
77824 | PORT _TBL

78848
FREE SPACE

131071

Figure 4-3 HBCE Memory Organization

43.1 MCB_CTRL

MCB_CTRL is responsible to manage the block’s operations and involves an
FSM to handle the requests for the insert, lookup and delete defined by the following

opcodes:
= 27b00 : Lookup
2’b01 : Insert
= 27b10 : Delete
2’bl11l : Reserved
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For each operation there is a sub-block responsible to complete it. MCB _INS is
responsible for the inserts, MCB_LUP for the lookups and MCB_DEL for the deletes.
Upon a reception of a command MCB_CTRL generates a request to MAC VID block
in order the MAC vendor ID to be replaced and then instructs MAC _HSH to generate
the proper hash values. Then it orders one of the MCB INS, MCB _LUP and
MCB_DEL blocks to start its operation and sets the MEM MUX to output the

appropriate block’s requests to the memory handler.

432 MCB_INS

MCB_INS sub-block handles all the insertions in the appropriate table
depending on whether a MAC address, a VLAN or a Port rule is to be inserted.
VLAN and port insertions require a single memory access and are trivial, however
inserting a MAC address is the most complex operation and has an FSM to handle the
possible cases. After the vendor replacement and the hashing we access MAC_TBL in

the address indicated by Tindex and decode the FlowlD field:

= If FlowlD field is O we write the given Flow ID and the generated Hy,-
= |If FlowlD field has value 1 we proceed to the following steps:
o allocate a memory block of size #Collisions + 1 ,
o we copy the contents of the old block specified by the block
pointer to the newly allocated block,
0o add the new entry in the last word of the block by writing the
given FlowlD and the generated Hyy,
o deallocate the old block,
update the MAC_TBL entry with the new #Collisions and the new
block pointer.
= If FlowlD field has value other than 0 or 1 we do the following:
o allocate a memory block of size 2
0 write the data read from MAC_TBL to the first word of the block,
0 add the new entry in the second word of the block by writing the
given FlowlD and the generated Hy,,
0 update the MAC_TBL entry by writing the FlowlD field with 1, the
#Collisions fTield with 2 and the Block Pointer field with the
address of the allocated block.

433 MCB_LUP

MCB_LUP sub-block handles the lookups in the appropriate table depending
on whether a MAC address, a VLAN or a Port rule is to be searched. VLAN and port

lookups require a single memory access and are trivial, however looking for a MAC
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address is a more complex operation and has an FSM to handle the possible cases.
After the vendor replacement and the hashing we access MAC TBL in the address

indicated by Tingex and decode the FlowID field:
= |If the FlowlD field is O then we have not a match.
= If the FlowID field is has a value 1 we follow the Block Pointer and
read as many words as the #Collisions field says. During each word
access we compare the H,, field of the word with the generated one.
o If we find a match in one of the words then we return associated

the FlowlD field,
o Otherwise, when the words finish and we don’t have found a match.

= If the FlowlD field has value other than O or 1 then we compare the
Hya1 Field of the entry with the generated one.
o If the values match we return the FlowlD field of the entry,

o Otherwise we don’t have a match.

43.4 MCB DEL

MCB_DEL sub-block handles the deletions in the appropriate table depending
on whether a MAC address, a VLAN or a Port rule is to be deleted. VLAN and port
deletes require a single memory access and are trivial, however deleting a MAC
address i1s more a complex operation and has an FSM to handle the possible cases.
After the vendor replacement and the hashing, we access MAC_TBL in the address

indicated by Tingex and decode the FlowlD field:
= |If the FlowlD field has value O then delete fails.
= If the FlowlD field has a value 1 we check the #Collisions Field

o If it is 2 then we find which word matches, we move the other word
to the specific TBL_MAC entry and deallocate the block. If none of
the words match then delete fails.

o If it is not 2 we follow the Block Pointer and read as many words
as the #Collisions field says. During each word access we compare
the Hy, Field of the word with the generated one.

e If we find a match in one of the words then we substitute this
word with the last word of the block and remove the last word.
e Otherwise, the words finish and delete fails.
= |If the FlowlD field has value other than 0 or 1 then we compare the

Hya1 Field of the entry with the generated one.

e If the values match we substitute it with a word of empty
format.

e Otherwise delete fails.
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43.5 MAC_VID

This sub-block receives the vendor ID value in 24-bits and finds the
corresponding internally assigned ones in 13-bits. It holds a small number of special
cases into an internal lookup table and consults the VID RPL table if the vendor ID
does not belong to the special cases. VID RPL is located inside the external SSRAM
and the final internal ID is found in a defined table offset and in the sub-offset

specified by the last 8-bits of the MAC vendor.

43.6 MAC_HSH

This sub-block receives the modified vendor ID value from MAC VID and
the last 24-bits of the original MAC address and calculates Tingex and Hya as defined
in subsection 3.3.2. This sub-block is of minor complexity since it has only a few
XOR gates and has single cycle latency. It can be easily modified to implement a new

hashing scheme of variable latency without affecting the rest of the system.

44 MEM_HDLR

The MEM_HDLR sub-block provides the dynamic memory management in
our system and supports variable size blocks. MEM_HDLR is the intermediate layer
between the blocks and the memory controller MEM_CTRL to support requests for
allocation and deallocation of variable size blocks. Requests for reads or writes in the
memory are immediately forwarded to the memory controller MEM_CTRL.

We have a pool of 64K adjacent memory words intended for dynamic
operations. To support this management we use a head pointer to the pool of these
addresses, a tail pointer to the last address of this pool and a current pointer to keep
the state of the already used words. During allocation from the pool we increment the
current pointer. The deallocated blocks are placed into free-lists where each free-list
holds all the deallocated blocks of a certain size. For every free-list we keep a head,
tail pointer and a counter to keep the number of linked blocks. Linking between
multiple blocks is implemented by writing the address of the next block inside the
data of the previous block. We decide not to support unlimited free-lists for blocks of
different sizes but limit allocation and deallocation into blocks of 2 and 4 words.
During requests for allocation of a specific size block we first check if we have

available blocks in the corresponding free-list and if not then we allocate from the
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pool. Upon deallocation, we add the deallocated block in the tail of the corresponding
free-list and increment the appropriate counter. Figure 4-4 illustrates the mechanism

of memory pool and the free-lists.

Ox0000 = POOL HEAD
0x0001
0x3A04
0x3A05 _ | = POOL CURRENT
0xFFFD
xFFFE
0xFFFF - POOL_TAIL
MEMORY POOL FL2 TAIL (0x174A)
: X A '
FL2 HEAD —= 0x22B4 Ox174A Ox0000
(0x1B42)
. L1
FL4 HEAD —=| 0x30C4 0x0000 -~ FL4 TAIL
(0x0B78) | | | (0x30C4)

Figure 4-4 Snapshot of dynamic memory management mechanism

45 MEM_CTRL

The memory controller has an FSM to implement the timing described by the
Cypress ZBT SRAM datasheet [33] and provides an interface to read and write the
memory. Writes are performed in a single cycle but reads have two cycles latency
since the data outputted from the memory need to be registered in order to be safely
returned. Figure 4-5 illustrates the view of the system and highlights the read path.
The memory inserts a single cycle latency and the register another cycle. The input
data are registered because they come from an external memory interface and it is not
safe to use this input in slow logic or long routed paths. Moreover, the valid read data

are given along with an acknowledge signal that exists in the controller interface.
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Figure 4-5 Overview of MEM_CTRL

4.6 Implementation Analysis

In this subsection we provide an analysis of the block latencies and an

estimation of the implementation cost for the reference design.

4.6.1 Latency Analysis

We calculate the minimum and the maximum number of clock cycles required
by each block to complete its operation. Many of the blocks have variable latencies
which depend on the access patterns and the data stored in the data structures.
Moreover, the blocks that access the external SSRAM for the stored data structures
have to also suffer from the latency of our memory controller. In Table 4-2 we

present the latency per block of HBCE.

Min Latency | Max Latenc

Block Name (clock cycles); (clock cycles))’
OPB INF 1 3
MCB CTRL 1 -
MCB INS 3 13
MCB LUP 2 17
MCB DEL 3 15
MAC VID 1 3
MAC HSH 1 1
MEM HDLR 0 3
MEM CTRL 1 2

Table 4-2 B2PC Blocks Latencies
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The fact that the memory controller has latency 2 cycles for a read operation in the
external SSRAM significantly affects the performance of the blocks that perform
sequential accesses to the memory. Insert, lookup and delete operations are high
depending on the read data to decide the address of the next memory access and thus
the 2 cycle latency of the memory controller is continuously introduced. Additionally,
for the blocks MCB_INS, MCB_LUP and MCB_DEL we consider that we may have
and support at most 15 collisions and this bounds the maximum latency. According to
the number of memory accesses we calculated in subsection 3.4.3 we need for a

lookup 7,3 clock cycles on average.

4.6.2 Hardware Cost Analysis

We have used VHDL to describe the design and the results presented are the
reports from the synthesis tools. We have synthesized the design using the Synopsys
Design Compiler [35] which is the most widely used synthesis tool. We have used
UMCs 0.13um technology library to estimate the area and the frequency of the
design. Moreover, we used the XilinX ISE tool to implement and port the design in
the FPGA.

The synthesis tool for the ASIC flow indicates that the maximum working
frequency of our design is 500Mhz.Using the synthesis tool we calculated the number
of flip-flops contained in our design and we present them per high level block in

Table 4-3 and also calculate the total.

Block Block Description Number of Flip-Flops
HBCE MCB | Main Control of HBCE 592
MAC VID Vendor ID replacement 28
MAC HSH | Hashing the MAC address 38
MEM HDLR Memory Handler 184
MEM CTRL Memory Controller 43
OPB INF OPB Bus Interface 296
Total 1181

Table 4-3 Flip-Flop count per block

The area of the total design and the equivalent gate count is presented in Table 4-4.
The equivalent gate count is calculated by considering how many 2-input NANDs can

be accommodated in this area.
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Area Equivalent
Block (mm?) NAqND Gates
Combinatorial 0,044 8482
Non-Combinatorial | 0,054 10362
Total 0,098 18844

Table 4-4 Area estimations of HBCE

ISE tool of the Xilinx FPGA flow shows that the maximum working frequency
of our design is 100 Mhz. The tool reports the occupied resources after a full back-end
FPGA flow while occupying optimizations to remove redundant logic or replicate

logic to improve speed. The final results are shown in Table 4-5.

Resource Resource count
Used 4 input LUTs | 2371

Slice Flip Flops 1060
Table 4-5 FPGA resource allocation

4.6.3 HBCE Hardware Performance
Considering that we have a 100MHz clock, the external memory works on the
same frequency and the average lookup time is 7,3 clock cycles then, the FPGA

prototype design of HBCE supports at worst case 7 Gbps.
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Chapter 5

Bitmap Oriented Strides

In this chapter we present Bitmap Oriented Strides (BOS), our algorithm for
Longest Prefix Matching (LPM). We developed an algorithm for LPM, suitable for
pipelined hardware implementation which can be used in an environment that prefix
lookups are essential. Applications of this kind are routing lookups, forwarding and
packet classification. BOS is a multi-bit trie algorithm that uses bitmaps across strides
and involves complex data structures and certain optimization techniques so as to
support fast and storage efficient [Pv4 prefix lookups. The design of BOS is based on
observations and simulations upon real IPv4 routing prefixes. We also strive after a

scheme that can support incremental updates in modest time and storage.

5.1 Analysis and Description of BOS Algorithm

The BOS algorithm design and analysis is based on some very important
observations that were made after extended literature study and routing tables’

analysis.

5.1.1 Routing Table Analysis

We collected several routing tables from backbone routers of the Internet that
are available in IPMA [36] and analyze them in statistical manner. We counted
lengths of the prefixes included in those routing tables and observe the distribution
shown in Figure 5-1. Table 5-1 shows values collected from the tables’ analysis. It is
clearly shown that more than 99% of the prefixes have lengths in the interval between
16 and 24 and more that half of the total prefixes have length equal to 24. This
distribution has been found to be constant over time and stable between routing tables

of various sizes, hence we can use it as a guide for our algorithm.
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Prefix AADS MAE-EAST PAIX
Length 2000/10 2000/01 2000/10
Prefix Count | % | Prefix Count| % | Prefix Count| %
0 0 0,00 0 0,00 0 0,00
1 0 0,00 0 0,00 0 0,00
2 0 0,00 0 0,00 0 0,00
3 0 0,00 0 0,00 0 0,00
4 0 0,00 0 0,00 0 0,00
5 0 0,00 0 0,00 0 0,00
6 0 0,00 0 0,00 0 0,00
7 0 0,00 0 0,00 0 0,00
8 14 0,04 28 0,05 25 0,03
9 2 0,01 4 0,01 4 0,00
10 1 0,00 5 0,01 5 0,01
11 0 0,00 9 0,01 9 0,01
12 5 0,01 28 0,05 29 0,03
13 13 0,03 36 0,06 60 0,07
14 49 0,12 130 0,22 174 0,19
15 95 0,24 224 0,37 289 0,32
16 2726 6,84 5610 9,35 6693 7,33
17 450 1,13 625 1,04 933 1,02
18 849 2,13 1284 2,14 1889 2,07
19 2833 7,10 4195 6,99 6023 6,60
20 1670 4,19 2321 3,87 3875 4,25
21 1553 3,89 2671 4,45 3932 431
22 2329 5,84 3757 6,26 5900 6,46
23 2984 7,48 5175 8,62 7883 8,64
24 19846 49,77 33691 56,15 52679 57,71
25 428 1,07 28 0,05 258 0,28
26 555 1,39 54 0,09 323 0,35
27 421 1,06 9 0,01 190 0,21
28 625 1,57 13 0,02 54 0,06
29 307 0,77 12 0,02 26 0,03
30 761 1,91 84 0,14 18 0,02
31 25 0,06 0 0,00 0 0,00
32 1335 3,35 11 0,02 7 0,01
Total 39876 60004 91278

Table 5-1 Routing Table Data

It is obvious that we wanted to design an algorithm that takes into

consideration the form of routing tables and exploit these observations. Since most of

the prefixes are in the interval between 16 and 24 we tried to optimize the data

structure so as to handle these prefixes as fast and as efficient as possible. Since we

would like to “make the common case fast” we concentrated our efforts on the

lookups contained in this particular interval.
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Figure 5-1 Routing Table Distribution

5.1.2 Trie-Based Solutions

Many algorithmic solutions on the LPM problem make extended use of tries
and traverse tree data structures to find the matching prefix. Unibit tries check one bit
at a time and follow the nodes until no matching bit is found. Schemes of this type
have a worst case lookup of 32 memory accesses for IPv4 (since the IPv4 address
fields are 32 bits long) and spend also lot of memory to save the pointers for the next
nodes. On the other hand, multi-bit tries traverse several bits at a time and this
provides faster searches. For example if we check 4 bits at a time (4-bit strides) then
the worst case is 8 memory accesses. In these tries, problems arise when the prefixes
are not multiples of the stride length. Solution to this problem is prefix expansion as
described in [11]. CPE generates many prefixes and leads to great memory waste
(especially when the stride length grows) and to non deterministic update times.

Other, LPM schemes from literature like Lulea [13] tried to solve the memory
waste of CPE by using compressed bitmaps to represent strides. They use strides of
16,8 and 8-bits consecutively to represent the 32-bit [Pv4 address space. The first
16bits are used as an index to a 64K table and the next 8-bit strides are represented by
their own bitmap algorithm where each stride requires 32 bytes nodes even if only 1
prefix exists in the 256 space. A lookup is performed at worst case with 9 memory
accesses but incremental updates to this scheme are inherently slow. Lulea is the most

storage efficient scheme presented in literature so far.
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5.1.3 Memory technologies and wire speed

The routing lookup operation is very important in the latest switching/routing
equipments and networks. The need for wire-speed means that a routing decision
should be made in time less that 40ns (worst case in 10Gbps) and of course this
cannot be done efficiently in software. Moreover the routing tables’ sizes require the
use of big (dense) and fast memories that can provide high bandwidth.

Today’s memory technology provides fast SRAMs and high-throughput and
large DRAMs but a designer must make the right decision given the requirements of
his system. DRAMSs can be big (256Mbytes) and relatively cheap but their access time
is poor (~60ns) when is to be used in routing lookup functions. SRAMs on the other
side are a lot faster with access times smaller than 5ns but large capacity SRAMs cost
a lot. Additionally, SDRAMs are highly suggested for sequential accesses. Under
these conditions they provide high bandwidth but in the case of trie-based algorithms
the use of pointers to random addresses makes this choice not practical. Contrarily

SRAMs give the flexibility of fast random accesses and constant bandwidth.

5.1.4 BOS approach

In our approach to find a solution to the LPM problem we will use all the
above observations to extract an algorithm that will have the following properties:
1. Easily implementable in hardware
2. Moderate algorithmic complexity
3. Fast lookups times for common case
4. Decent storage requirements and affordable for low budget designs
5. Deterministic and bounded incremental update times
In order to cope with the above requirements we ended up with BOS algorithm which:
e Uses strides and multi-bit trie nodes in order to traverse several bits at a time
and produce fast lookups.
e Employs data structures with multi-bit nodes optimized to perform efficiently
in the prefix interval 16 to 24.
= [ts nodes are represented with bitmaps that can be processed fast in hardware
and require small storage.
*» The updates in the nodes are executed by well defined routines and in

deterministic time.
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BOS Trie Nodes

The key ingredient of BOS is a trie node that can hold prefixes of lengths from 0
to 7 bits. This trie has 8 levels and therefore the total number of possible prefixes that
can be accommodated are 2%-1=255. We can use a bitmap to represent all the possible
prefixes and this needs at least 255 bits as presented in Lulea [13]. According to this
representation every prefix is correlated with a specific bit position inside the bitmap.
If a specific bit is set then it is denoted that the corresponding prefix exists.

Consider a trie that can accommodate prefixes with lengths from 0 to 3 bits as
shown in Figure 5-2. The prefix with length 0, namely *, is assigned with number 0,
the prefix with length 1 and the prefix bit set to 0, namely 0%, is assigned with
number 1, the prefix with length 1 and the prefix bit set to 1, namely 1%, is assigned
with number 2 and so on as Figure 5-2 presents. Moreover, the level of the trie where

a specific prefix is located is equal to its length.

000* 001* 010* O11* 100* 101* 110* 111*

Figure 5-2 Prefix trie that supports prefixes up to length 3

We can derive a formula that correlates the length and the decimal value of a prefix
with a number. Prefix with length 0 is assigned number 0 and all the other prefixes

use the following formula:

Prefixy, = Prefixvalue + 2°refixtength _ 7

The assigned prefix number can be used to indicate a specific bit position inside
the bitmap. The bitmap that can accommodate all prefix lengths from 0 to 7 needs 255
bits and this means that even for a single prefix in this range, the trie node needs 32
bytes. We can prevent this memory waste and partition this trie in 17 subtries where
each subtrie can support prefixes with lengths 0 to 3 as shown in Figure 5-3. We store
the prefixes that have length O to 3 in the subtrie numbered 0 and the prefixes of

greater length, namely 4 to 7, to an appropriate subtrie. The appropriate subtrie for the
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prefixes that have length 4 to 7 is defined by the 4 MSB of the prefix. The prefixes
that have their 4MSB equal to 0000 are stored in the subtrie numbered 1, the prefixes
that have their 4MSB equal to 0001 are stored in the subtrie numbered 2 and so on as

Figure 5-3 presents.

Lengths 0-3 =

! \
! \

// ‘ \\ \\ \\
o000X  ooorn VYN 11
Lengths 4-7 =«
: 0T e

Figure 5-3 Trie partitions

We can derive a formula that correlates the length and the MSB of a prefix with a
subtrie number. Prefixes with length 0 to 3 are stored in the subtrie 0 and for the
prefixes of lengths from 4 to 7 we use the following formula to find the subtrie

number:
Subtriey, = PrefixvValue[0:3] + 1

BOS, now uses the subtrie partitioning described in the last paragraph and the tries
that support 0 to 3 length prefixes to represent the trie node that can support 0 to 7
length prefixes. To store efficiently the information about the subtries we define a
bitmap (TrieBmp). In TrieBmp we correlate each bit with a specific subtrie according
to the Subtrieyo formula. When a bit inside TrieBmp is set then it means that the
corresponding subtrie has a least 1 prefix active. For every active subtrie we need the
information about the included active prefixes, therefore we define another bitmap
(PrefixBmp). In PrefixBmp we correlate each bit with a specific prefix according to
the Prefixyo formula. When a bit inside PrefixBmp is set then it means that the
corresponding prefix is active.

The partitioning of 8-bit tries into smaller 4-bit subtries gives the flexibility to
save only the necessary prefix bitmaps (active) and not all of them. The trie bitmap
needs 17 bits and each prefix bitmap needs 15 bits. This partitioning can be efficiently

implemented by the dynamic memory management scheme discussed in subsection
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3.3.5 because thevariable number of prefix bitmaps requires pointers to variable size
blocks.

The associated information for each prefix is considered an N-bit quantity (the
data associated with each rule), say 16-bits, and should be stored along with the prefix
bitmap. Since more that one prefixes could be active we also need dynamic pointers
to variable size blocks. So along with the prefix bitmap we save a pointer to the
associated prefix data.

To locate the subtrie of a specific prefix in the trie bitmap we use the subtrie

formula below, where Ti,¢ex indicates the bit position of the actual subtrie number.

= If the prefix has length 0-3 then :
Tindex = O

= If the prefix has length 4-7 then :
Tindex = prefix[0:3] + 1

To locate a specific prefix in the prefix bitmap we present the formula shown
below, where Piygex indicates the bit position of the actual prefix number in a specific

subtrie.

* I Tigex = O
o If the prefix inside the trie has length 0O then :
Pindex = 0
o If the prefix inside the trie has length 1 then :
Pindex = prefix[0] + 1
o If the prefix inside the trie has length 2 then :
Pindex = prefix[0:1] + 3
o If the prefix inside the trie has length 3 then :
Pindex = prefix[0:2] + 7
" IF Tingex 1= 0O
o If the prefix inside the trie has length 0 then :
Pindex = 0
o If the prefix inside the trie has length 1 then :
Pindex = prefix[4] + 1
o If the prefix inside the trie has length 2 then :
Pindex = prefix[4:5] + 3
o If the prefix inside the trie has length 3 then :
Pindex = prefix[4:6] + 7

In order to be able to efficiently search the blocks that are generated by our
dynamic memory management scheme we have to have the prefix bitmaps and the

associated prefix information sorted inside the blocks. The prefix bitmap for the first
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active subtrie should be placed first in the variable size block, the second in the
second position etc. Moreover this indicates that we should know the number of set
bits in the bitmap, fortunately this is a trivial operation for hardware to perform. The
requirement for dynamic memory management generates an additional complexity in
insertions or updates since the variable size blocks need to be resized appropriately
and put sorted. This operation can be handled easily since resizing and sorting is
limited to 17 nodes.

To illustrate the data structures used by BOS we introduce an example with
the prefixes shown in Table 5-2. The two leftmost columns have the actual prefixes
and the associated information and the two rightmost columns show the internally
represented subtrie and prefix number pairs. As calculated, a general view of the data

structure needed to store the prefixes of the example is shown in Figure 5-4.

Prefix | Associated | Subtrie | Prefix
[0:6] Info Number | Number
00001* 23 1 2
0000101* 47 1 12
0000110%* 7 1 13
01* 15 0 5
100* 121 0 11
1001* 36 10 0
1100* 51 13 0
110011* 3 13 6

Table 5-2 Prefix example

Associated Info
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TreeBmp — T ] 7
00010010000000011 | @ 121
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,000100000100000 e 47
rd '
/_{., 011000000000100 [ ] 7
PrefixBmp "¢
.\, "} 000000000000001 ® .
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Vol
% 000000001000001 ] 36
™
51
3

Figure 5-4 Trie data structure example



CHAPTER 5. BITMAP ORIENTED STRIDES 73

For a given 7-bit value, BOS should first find the candidate subtries that could match
a certain prefix and then the candidate prefixes, inside the subtrie, that could also
match. Tracking the longest one is the solution. The candidate subtries are always

two:

= Tlindex= 0 and
= One of the subtries 1-16 depending on the value
T2index = value[0:3] + 1.

Inside the 2 subtries the candidate prefixes are four:

= for Tlingex -

Plingex = O

P2ingex = value[0] + 1
P3ingex = value[0:1] + 3
P4ingex = value[0:2] + 7
= for T2jngex:

Plingex = O

P2ingex = value[4] + 1
P3index = value[4:5] + 3
P4ingex = value[4:6] + 7

O O O O

o
(o]
(o]
o

We check the bit positions in TrieBmp for the 2 subtries and if both exist we give
priority to the second subtrie which produces longer prefixes. Inside a matching
subtrie we check all the bit positions in PrefixBmp for the 4 prefixes by giving
priority to the fourth prefix which is the longest. The associated information for a
matched prefix is retrieved by the node indicated by the pointer stored at the node of

the matched prefix.
BOS Tables

BOS scheme uses the trie nodes for all the distinct 7-bit prefix lengths inside the
32-bit address space. BOS in its simplest form (BOS-SIMPLE) has trie nodes for the

following prefix intervals:

i.  0-7,
ii.  8-15,
. 16-23,
iv. 24-31 and

v. 32



CHAPTER 5. BITMAP ORIENTED STRIDES 74

To hold the root nodes for the prefixes in each distinct interval, BOS-SIMPLE
uses several tables as shown in Figure 5-5. For the interval 0-7 we have a single entry
for root called TBLO. For interval 8-15 we have 2* possible roots, therefore we use a
256-entry table called TBL8 and the indexing is done with the first 8-bits of the
prefix. For interval 16-23 we use a 2'°=65536 table called TBL16 and uses the first
16-bits of the prefix as index. For interval 24-31 we don’t use 2** entries because it
would lead to great storage waste since no routing table could have 16777216 prefixes
in this interval. Instead we use 2'® entries in table TBL24 and indexing is done by
hashing the first 24-bits of the value. The collisions that occur due to hashing are
handled with pointers to variable size blocks. For the 32 bit prefixes we use only 2"
entries in table TBL32, since most routing tables have few entries in this interval, and
addressing is done by hashing. Collisions in this table are also handled with variable

size blocks.

_Address _ . . _
0 78 1516 23|24 3|
r 1 ~
[ o] [ o 0 0 0
TBLO 1 1 1 1
[ 2 2 2
. _ 3 3 3
L 255 | :
TBL8 )
4095
TBL32
65535 65535
TBL16 TBL24

Figure 5-5 BOS Tables

Note that all distinct intervals are independent and this gives us the flexibility
to start searching for a prefix from the middle of the address space. Searching
sequentially would require to lookup all 5 tables but we can use a binary search type
of access and limit the lookups to 3 or less. Furthermore, we can implement parallel

searches in hardware if each table is stored in a separate memory.
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Indexes in TBL24 are generated by the use of the XOR function in the first 24

bits of the prefix and a 16-bit address is produced as follows:
TBL24;h4ex = prefix(8:23) xor (0000,prefix(0:7),0000)
Indexes in TBL32 are also generated by XOR function and the 12-bit address is

produced as follows:
TBL32ineex = prefix(4:15) xor prefix(20:31)
The decision for the hashing functions described above is presented in Section 5.3.

To handle the collisions in TBL24 we use pointers to variable size blocks as
mentioned above. The collision resolving nodes save the number of prefixes that
collide and a pointer to the variable size block, as described in subsection 3.3.3. To
identify a prefix in the block we need to save some information to distinguish between
the prefixes. Fortunately, we don’t need to save all 24-bits and we take advantage of
the fact that the address has been produced by the actual prefix. Therefore a prefix
located address A of TBL24 can be reproduced by the 16-bits of A and the first 8-

bits(value) of the prefix as follows:
Prefix(0:7) = value(0:7)
Prefix(8:23) = A(0:15) xor (0000,value(0:7),0000)

It is now clear that to resolve collisions, the quantity that must be kept in the variable
size block is dependent of the hashing scheme, in our case the first 8-bits of the prefix.
Additionally we keep a pointer to the basic trie node starting from this root.

In TBL32 collision handling is done the same way as in TBL24 but the
quantity that must be kept here is 20-bits and there is no need for a pointer to a trie
node (no longer prefixes exist) but only store the associated information itself. A
prefix located in address A of TBL32 can be reproduced by the 12-bits of A and the

first 20-bits(value) of the prefix as follows:
Prefix(0:19) = value(0:19)
Prefix(20:31) = A(0:11) xor value(4:15)

BOS-BASIC searches the tables in specific sequence in order to minimize the
number of accesses. Since 99% of the prefixes exist in the intervals 16-23 and 24-31,
it is more likely to find the longest match there by examining the associated tables. At
first we look in TBL16 and if a prefix match occurs then we can search in TBL24 and
TBL32 to find a matching prefix. If lookups in TBL16 or TBL24 or TBL32 cannot
find a match then we proceed to search TBLS8 and if there is not any match again we

finally search in TBLO. The sequence of lookups is the following:
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TBL16 —» TBL24 —» TBL32 —» TBL8 — TBL0
If after TBL32 a match was produced then our lookup process does not proceed to the

next tables.

5.2 BOS optimizations

BOS, as described above, has some weaknesses in terms of storage efficiency
since it contains redundant information in some special cases. This section proposes
some optimizations in the basic scheme and explores the trade-off between storage
requirements and the number of memory accesses. Moreover we quote some
modifications that could allow BOS to become the single field solution for the general

decomposed N-dimensional packet classification, described in detail in Chapter 6.

5.2.1 Prefix Node Optimization

We observe an irritating feature of the trie node data structure that keeps the
associated prefix node information. In case only a single prefix is active inside a
subtrie, we need to store a pointer to the prefix information node and then acquire
these data. This waste can be avoided by keeping the associated data in the node itself
instead of the pointer to the data. This modification requires a flag to indicate that
there is only a single prefix. Additionally, instead of keeping the prefix bitmap we can
only keep the prefix number. The prefix number needs 4-bits and the flag 1-bit. In
total, now, we use 5-bits instead of 15 required for the bitmap. By this trick we save
one memory word that would keep the associated data and we also save the extra

memory access to acquire these data.

5.2.2 Trie Node Optimization

In the cases where only one prefix is active inside the entire trie then there is
only one subtrie active. Normally we should store a pointer to the prefix node and
then lookup for the prefix number and the associated data. We can improve this case
and save memory by keeping all the information in the basic trie node, similarly to
5.2.1. Instead of the 17-bit trie bitmap and the prefix node pointer, we keep the subtrie
number in 5-bits, the prefix number in 4-bits and an extra flag to indicate this special

case. Moreover, we don’t save a pointer to prefix node but the actual associated prefix
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data. This optimization saves the memory of the prefix node and the extra memory

acCcCess.

5.2.3 TBL16 Optimization
BOS adopted the use of TBL16, which has 64K entries (2'°), in order to reach

the prefix interval 16 to 23 very fast. This practice is very common in literature
[13][37][38] although it could waste memory since many of the 64K entries could be
empty. To reduce the storage requirements of BOS the large 64K static tables TBL16
and TBL24 should probably be shrinked. At first glance TBL16 is likely the most
underutilized table since not all the entries could be roots of tries. We can save
memory by reducing TBL16 table into a smaller one, say 16K entries, and use
hashing for indexing. For indexing now we need 14-bits and we have to produce each
index by the first 16-bits of the prefix. Hashing the address into 14-bits requires
saving 2-bits in the entries to identify a root of prefixes.

In this hashing we can take advantage of the fact that CIDR [2] aggregates
consecutive routing prefixes from the early class-based addressing and gives us
information about the first 2-bits of each address. When aggregating subnets from the
old Class A addresses then bits(0:1) have the value 00 or 01 but these prefixes would
have length lower that 8, so they don’t affect TBL16. Similarly for aggregation of
Class B subnets, the addresses bits(0:1) have the value 10 but their prefix length is
lower than 16. Aggregation of Class C subnets has value 11 in bits(0:1) of the address
and the prefix lengths exceeds 16. The prefixes from Class C addresses well affect
TBL16 and it is likely that most roots in TBL16 come from these addresses. However,
routing protocols like BGP [39] implement, what is called route aggregations, so as to
be efficient. This route aggregation is generally based on the associated prefix
information (namely NEXT HOP) and can create prefixes longer than 16 from Class
A and Class B addresses. Because CIDR is widely used we decided to use bits (2:15)
for indexing of the TBL16 table. Therefore we define a new index for TBL16 which
is:

TBL16jngex = prefix(2:15)
The performance of the above indexing scheme is discussed in Section 1.3.

In case of collisions inside TBL16 we can use the solution of sorted roots
inside variable size blocks as described for TBL24 and TBL32. In TBL16 the

maximum number of collisions is limited to 4 and 2-bits can identify the root of the
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prefixes. It is obvious that by reducing TBL16 we trade the storage for the number of
memory accesses to locate a specific root for prefixes in the interval 16-23. We make
TBL16 4 times smaller by sacrificing one possible extra memory access and a pointer.

Reduction of TBL16 is also helpful if BOS is to be used in decomposed N-
dimensional classification. The number of rules-prefixes in classification databases is
notably smaller than in routing tables. In related literature [40][20][26] the number of
rules is lower than 2000 and the number of distinct prefixes is even smaller. This
denotes that smaller TBL16 can produce better memory utilization. If the target
application is packet classification with a small number of rules, we can even shrink

TBL16 to 4K entries.

5.2.4 TBL24 and TBL32 Optimization

BOS assigns a 64K entry table for TBL24 to save the trie nodes for the roots
of prefix lengths equal or longer than 24. In order to avoid underutilization of this
table we propose a more fine-grained approach with dynamic memory management.
We decide to link the entries of TBL16 with the entries that extend further than 24, so
as to share the common 16-bit prefix, by using dynamic pointers to 256 entries’
blocks (BLK256). Every entry of TBL16 has a pointer to the basic trie node for
lengths 16-23 and a pointer to a 256 block that saves roots for lengths 24-31 if
applicable.

For prefixes that have length 24 or more we allocate a BLK256 and link to the
corresponding entry of TBL16. The first 16 bits of the prefix index TBL16 (or the 14
rightmost from that first 16 according to TBL16 optimization) and the next 8 bits
index the corresponding BLK256. When a new prefix of length greater or equal to 24
is inserted we first check the corresponding entry in TBL16 and if a BLK256 is linked
we insert the prefix in the specific BLK256 otherwise we allocate a new block.

There are cases where a BLK256 is underutilized because it contains much
less than 256 entries. To avoid this possible underutilization we can assign the same
BLK256 in more that one entries of TBL16. This means that the prefixes in this block
could have the first 16-bits different, so this should be the information that we save in
BLK256 to distinguish the prefix roots. Roots inside BLK256 are still indexed with
the last 8-bits and every entry has a pointer to the associated trie node. The scheme

assigns a BLK256 to more than one TBL16 entries and has counters to keep the
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utilization of the block. If a BLK256 is highly populated and reaches its limits,
namely 256 roots, then the scheme assigns a new block for the forthcoming 24 length
roots.

When roots with different first 16-bits are inserted in a BLK256 it is possible
that we have collisions since indexing is done only by the last 8-bits. Handling these
collisions is trivial with our variable size blocks but it could lead to extra memory
accesses. We can trade the collision resolving accesses by setting the utilization factor
of BLK256 to lower limits. We can decide not to have fully populated BLK256 but
allocate new block when the number of roots inside a BLK256 is lower than 256.
These limits can be 224 or 192 or 160 or 128 which means that many entries in the
block can be empty. This waste can help us have fewer collisions in the blocks and
therefore fewer memory accesses.

The same strategy is used for TBL32 which is transformed into multiple
blocks of BLK256 linked to the corresponding BLK256 blocks containing the items
with length 24. This multi-linking scheme gives us the flexibility to save the
obligatory memory accesses to TBL24 and TBL32 when no prefix exists. Now
lookups start at TBL16 and if a link to further roots exists then we lookup to the
corresponding BLK256. Further access to 32 length nodes is done only if a link from
a BLK256 that holds 24 length nodes exists. TBL8 and TBLO are now accessed only
if no entry matches in TBL16 and no block for 24 roots exists. The form of BOS after

the table optimizations is shown in Figure 5-6.
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Figure 5-6 BOS with BLK256
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The dynamic management of roots 24 and 32 is also helpful if BOS is to be
used in decomposed N-dimensional classification. The number of rules-prefixes in
classification databases is notably smaller than in routing tables as discussed above.
We have the flexibility to create as many BLK256 as required by the number of 24
and 32 existing roots and we can fine-tune the thresholds, where new BLK256 are

allocated, depending on our memory budget.

5.2.5 All prefix match

BOS is designed to solve the Longest Prefix Matching (LPM) problem but it
can easily adapt to support All Prefix Matching (APM); BOS should return all the
matching prefixes during its way to find the longest one. APM is essential for
decomposed N-dimensional classification where multiple field searches can be
converted into several single field searches, as described in Chapter 6.

BOS can support APM by searching in parallel or sequentially all of its tables
and blocks to find all the prefixes. BOS simple should search TBLO then TBLS8 and so
on until it finds all prefixes. The sequence of searching in tables for BOS-SIMPLE is:

TBL0— TBL8 -»TBL16 —» TBL24 — TBL32
In every table, when an active root exists BOS searches for all the matching prefixes
inside the trie node. Inside the trie node the maximum number of matching prefixes is
8. At first, BOS should lookup in all the candidate subtries; these are subtrie 0 and the
subtrie indicated by the prefix value. Inside every subtrie BOS looks for matches in
all four candidate prefixes. Once a match is found the associated prefix information is
returned.

If BOS is implemented with the proposed TBL24 and TBL32 optimizations
then the sequence of lookups is the same as BOS-SIMPLE but searches in ranges
further than 23 proceed only is a link from TBL16 exists. Therefore, search in
BLK256s for TBL24 is performed if a link from TBL16 exists. Similarly, searches in
BLK256s for TBL32 are performed only if a block is linked to the corresponding
BLK?256 which contains the 24-bit roots.
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5.3 Simulation Results and Performance

In this subsection we present our simulation results based on real routing tables
and details about the storage and speed of the presented scheme. We first analyze the
prefixes of several real world routing tables and count the number of tries nodes that
should be used by our scheme. We present our results before and after the
optimizations proposed in Section 5.2 and illustrate their effectiveness. BOS storage
and speed performance is based on assumptions for the hardware and memory

configurations.

5.3.1 Hashing functions and Indexing
TBL24 and TBL32 Hashing

Indexing in TBL24 and TBL32 is implemented by hashing the most significant
bits of each prefix. The decisions for the hashing functions were taken by comparing
the performance (in terms of collisions) achieved by a large number of them when
applied in real routing tables. The hashing functions we created and tested are

following:
= HSH24 1;inqex = prefix(0:15)
=  HSH24 2;.4ex = prefix(0:15) xor (0000,prefix(16:23),0000)
=  HSH24 3jn4ex = prefix(8:23) xor (0000,prefix(0:7),0000)
= CRC-16

The first three functions require 8 additional bits to be saved in the collision resolving
nodes so as to be able to distinguish the collided prefixes and the CRC function
requires all 24-bits to be stored. The maximum and the average number of collisions
produced by each hash function are shown in Table 5-3. The simulation results,
presented in the table, show that the hash functions which use XOR applied in the
first 24-bits of each prefix, generate more uniformly distributed values and therefore
the indexes are better shuffled that just using the 16 most significant bits (HSH24 1).
CRC-16 has the better results in terms of collisions and HSH24 3 is very close.
Despite the fact that CRC-16 is slightly better than HSH24 3, we decide to use
HSH24 3 function because it requires only 8-bits to be saved in the collision nodes

instead of 24-bits that CRC-16 requires.
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Routing Table Hash Max Average
(Total Prefixes) function Collisions Collisions

AADS HSH24 1 209 34,09
10/2000 HSH24 2 12 3,81
(39876) HSH24 3 4 1,30
CRC-16 5 1,32

MAE-EAST HSH24 1 199 36,98
01/2000 HSH24 2 16 6,24
(60004) HSH24 3 5 1,49
CRC-16 5 1,48

PAIX HSH24 1 228 41,83
10/2000 HSH24 2 20 7,54
(91278) HSH24 3 6 1,77
CRC-16 8 1,73

Table 5-3 Hash functions performance

TBL16 Indexing

As discussed in subsection 5.2.3 (TBL16 optimization) we decided to shrink
TBL16 and use the last 14-bits from the 16 leftmost as index to the table. This
decision was guided by the form of the internet addressing but is also confirmed by
simulation results. We test in simulation the following indexing functions:

= IDX16_1ljngex = prefix(0:13)

= IDX16_2jngex = prefix(l:14)

= IDX16_3jngex = prefix(2:15)

All functions use a 14-bit portion from the first 16-bits of the prefix and their

performance in presented in Table 5-4.

Routing Table Index Max Average

(Total Prefixes) function Collisions Collisions
AADS IDX16 1 4 2,65
10/2000 IDX16 2 4 1,62
(39876) IDX16 3 3 1,26
MAE-EAST IDX16 1 4 3,12
01/2000 IDX16 2 4 1,74
(60004) IDX16 3 3 1,42
PAIX IDX16 1 4 3,30
10/2000 IDX16 2 4 1,87
(91278) IDX16 3 3 1,52

Table 5-4 Performance of BOS indexing functions

It is clear from these results that the last 14-bits carry the most “important”
information that differentiates prefixes by one other. Indexing scheme IDX16 3 is
suitable to be used for TBL16 since it generates fewer collisions than the others and

thus triggers less memory accesses.
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5.3.2 Storage requirements

This subsection presents the storage requirement of our scheme for several
routing tables. We present the requirements of our scheme before and after the
proposed optimizations. To calculate the total storage for BOS we need to count the
number of the active subtries for the trie nodes and the total number of stored
prefixes. Additionally, we have to calculate the total amount of memory needed for
the static tables. We simulated our scheme and the results are shown in Table 5-5.

On a static table entry we have to fit a 17-bit trie bitmap and a possible 16-bit
pointer to the subtrie nodes; this assumes a memory word equal or larger than 33-bits.
A popular memory word size for commercial off-chip SRAMs is 36-bits and can
match our requirements. Hence, for every memory word on BOS we assume 36-bits

(4,5 bytes).

Routing Table | Interval | Active Roots | Active Tries | Active Prefixes
(Total Prefixes)
AADS 0-7 0 0 0
10/2000 8-15 52 132 179
(39876) 16-23 5555 10542 15394
24-31 20705 21765 22968
32 1335 1335 1335
Total 27647 33774 39876
MAE-EAST 0-7 0 0 0
01/2000 8-15 85 315 464
(60004) 16-23 8587 17180 25638
24-31 33776 33815 33891
32 11 11 11
Total 42459 51321 60004
PAIX 0-7 0 0 0
10/2000 8-15 91 377 595
(91278) 16-23 10248 23193 37128
24-31 53167 53217 53548
32 7 7 7
Total 63513 76794 91278

Table 5-5 Routing Tables Properties

For each active subtrie we have to allocate dynamically a memory word to fit
the 15-bits of the prefix bitmap and the 16-bit pointer to the actual prefix node; those
can fit in one memory word. As a result the memory words for the subtries are equal
to the total number of subtries. For the prefixes we allocate a memory word every two
prefixes since we can fit two associated prefix data in a word. We have assumed 16-

bit data, which is what is basically assumed in the majority of similar studies such as
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[xRef]. Therefore the total number of the bytes for the trie nodes including the
associated prefix information is:

Totalyyies = ( n0O_active _tries + no_prefixes/2) * 4,5
As far as the static tables are concerned, we calculate the total amount of memory

needed in Table 5-6.

Table | Entries Total Bytes
TBLO 1 4,5

TBLS 256 1152
TBL16 | 65536 294912
TBL24 [ 65536 294912
TBL32 | 4096 18432

Total | 135425 | 609412,5 (595Kb)

Table 5-6 Static tables memory requirements
In Table 5-7 we present the final storage requirements for the simple BOS scheme

without any optimizations, including the collisions in TBL24 and TBL32.

Routing Table Static Tables | Collision Nodes | Trie Nodes | Total

(Total Prefixes) (Kbytes) (Kbytes) (Kbytes) | (Kbytes)

AADS 10/2000 595 24 236 855
(39876)

MAE-EAST 01/2000 595 59 357 1011

(60004)

PAIX 10/2000 595 128 538 1264
(91278)

Table 5-7 BOS simple storage
Results show that the static tables consume nearly 50% percent of the total

storage. The collision nodes required are relatively small and require few Kbytes but

the trie nodes possess a respectable part of the overall storage.
Trie Node Optimizations

By applying the prefix node optimization (subsection 5.2.1) we don’t need an
extra memory word for the prefix information in the case where there is only one
prefix inside a subtrie. We count the number of subtries that have exactly one prefix

and present them in Table 5-8.

Routing Table Total Active | Single Prefix | % of Single
(Total Prefixes) Subtries Subtries Prefix Subtries
AADS 10/2000 33774 28994 85,8%
(39876)
MAE-EAST 01/2000 51321 46745 91%
(60004)
PAIX 10/2000 76794 69562 90,5%
(91278)

Table 5-8 Single Prefix Subtries
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The results from the routing tables show that more than 85% of the subtries existing
in BOS have exactly one prefix and therefore we don’t need extra memory words to
save them. The number of single prefix subtries gives us the number of prefixes that
we don’t need to save in separate nodes. It is obvious that the prefix node
optimization is significantly effective since it saves many wasted memory words. We
recalculate the required storage for BOS after the prefix node optimization in Table
5-9. We observe that prefix node optimization improved the initial trie node storage

approximately 28% and the total storage requirement by 7% - 12%.

Routing Table Static Tables | Collision Nodes | Trie Nodes | Total

(Total Prefixes) (Kbytes) (Kbytes) (Kbytes) | (Kbytes)

AADS 10/2000 595 24 172 791
(39876)

MAE-EAST 01/2000 595 59 255 909

(60004)

PAIX 10/2000 595 128 385 1108
(91278)

Table 5-9 Prefix Node Optimization Storage

A further optimization discussed was when a root has just one subtrie and just
one prefix (trie node optimization 5.2.2). In this case all the information for this
subtrie is saved in the corresponding static table. In order to measure this
optimization’s effectiveness we have to calculate the roots that have exactly one
subtrie and exactly one prefix; single prefix roots. Moreover we have to calculate the
new number of single prefix subtries since the single prefix roots are a subset of the

single prefix subtries. Our results are presented in Table 5-10.

Routing Table Total | Single | % of Single | Single % of Single
(Total Prefixes) Active | Prefix Prefix Prefix Prefix
Subtries | Roots Roots Subtries Subtries
AADS 10/2000 33774 | 23398 69,2% 5596 16,6%
(39876)
MAE-EAST 51321 | 39372 76,7% 7373 14,3%
01/2000
(60004)
PAIX 10/2000 76794 | 59181 77% 10381 13,5%
(91278)

Table 5-10 Single prefix roots

Calculations on the routing tables show that more than 70% of the roots
existing in BOS have exactly one prefix and therefore we don’t need allocation of
extra memory words; we can save them in the static table. We can take advantage of

the common case that trie node optimization reveals us and save memory words. We
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recalculate the required storage for BOS after the trie node and prefix node

optimization in Table 5-11.

Routing Table Static Tables | Collision Nodes | Trie Nodes | Total
(Total Prefixes) (Kbytes) (Kbytes) (Kbytes) | (Kbytes)
AADS 10/2000 595 24 69 688
(39876)
MAE-EAST 01/2000 595 59 82 736
(60004)
PAIX 10/2000 595 128 125 848
(91278)

Table 5-11 Trie and Prefix Node Optimization Storage

Trie node and prefix node optimization together, improved the initial trie node storage

70% — 77% and the total storage requirement 19% - 33%.
Static Table Optimizations

Moving to the optimization of the static tables, as described in subsection
5.2.3, we decided to shrink TBL16 to 16K entries instead of 64K at the cost of an
extra memory access and some extra memory space in the case of the additional
collisions. When we analyze the routing tables in Table 5-5 we see that the active
roots of the interval 16-23 are significantly less than 64K on all the examined routing
tables. We find that in the worst case we have 10248 active roots and a 16K table is
enough for this interval. These results confirm our arguments about few active roots
inside TBL16. We calculate the collisions and the required storage for TBL16 in this

case and present our results in Table 5-12.

Routing Table Original | Optimized | Collision | Total
(Total Prefixes) TBL16 TBL16 Nodes | (Kbytes)
(Kbytes) | (Kbytes) | (Kbytes)

AADS 10/2000 288 72 6 78

(39876)
MAE-EAST 01/2000 288 72 15 87

(60004)

PAIX 10/2000 288 72 21 93
(91278)

Table 5-12 TBL16 Storage Optimization

The decision for smaller TBL16 gives us 67% - 73% better storage requirements for
TBL16 by the cost of an extra memory access.
In subsection 5.2.4 we have also proposed the replacement of TBL24 and

TBL32. According to this optimization we replace these tables with dynamic memory
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blocks of 256 entries and link them to TBL16. This means that for the calculation of
storage we have to count the number of BLK256 and the collision nodes inside them.
We simulate our approach and present the results in Table 5-13. We have used a
number of different threshold values for the utilization of BLK256s to illustrate their
effectiveness in terms of collisions. The thresholds clearly show that underutilized

blocks can provide better average access performance at the cost of additional storage.

Routing Table | Threshold | Interval | Number of | Maximum | Average
(Total Prefixes) Blocks Collisions | Collisions
AADS 256 24-31 90 7 2,01
10/2000 32 6 11 2,45
(39876) 192 24-31 120 6 1,75
32 7 8 2,15
128 24-31 179 5 1,50
32 11 7 1,77
MAE-EAST 256 24-31 133 7 2,00
01/2000 32 1 1 1,00
(60004) 192 24-31 177 6 1,74
32 1 1 1,00
128 24-31 265 6 1,50
32 1 1 1,00
PAIX 256 24-31 210 8 2,00
10/2000 32 1 2 1,28
(91278) 192 24-31 279 6 1,74
32 1 2 1,28
128 24-31 419 6 1,49
32 1 2 1,28
Table 5-13 Dynamic BLK256 for TBL24 and TBL32

After the static tables optimizations we recalculate the required storage for BOS in

Table 5-14.

Routing Table Trie | Modified | TBL16 | Dyn. Dyn. Total
(Total Thres. [ Nodes | Static | Collision | Blocks | Collision | (Kb)
Prefixes) (Kb) Tables Nodes (Kb) Nodes
(Kb) (Kb) (Kb)
AADS 10/2000 | 256 69 73 6 107 64 319
(39876) 192 69 73 6 143 53 344
128 69 73 6 214 40 402
MAE-EAST 256 82 73 15 150 96 416
01/2000 192 82 73 15 200 78 448
(60004) 128 82 73 15 299 59 528
PAIX 256 125 73 21 237 148 604
10/2000 192 125 73 21 315 124 658
(91278) 128 | 125 73 21 472 92 783

Table 5-14 Fully optimized BOS storage
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We can calculate the overall efficiency of BOS by computing a metric that
indicates the average storage space in terms of bytes per prefix. The absolutely
essential information includes 32 bits for the prefix itself, 6-bits for the length of the
prefix and 16-bits for the associated prefix information. So we need at most 54 bits or

6,75 bytes per prefix. Our scheme requires the values shown in Table 5-15.

Routing Table Thres. | Total | Bytes/Prefix
(Total Prefixes) (Kb)

AADS 10/2000 256 319 8,19
(39876) 192 344 8,83
128 402 10,32
MAE-EAST 01/2000 | 256 416 7,09
(60004) 192 448 7,64
128 528 9,01
PAIX 256 604 6,77
10/2000 192 658 7,38
(91278) 128 | 783 8,78

Table 5-15 BOS bytes per prefix

We can see that as the routing tables grow, BOS is more efficient in terms of
storage and provides lower average bytes per prefix that approximate the “perfect”
reference solution. The overhead of BOS comes from the data structure that we use,
contrarily the perfect approach does not imply any data structure or organization,

neither assumes any lookup mechanisms.

5.3.3 Lookup Performance

In this subsection we analyze the lookup performance of BOS scheme in terms
of memory accesses. BOS lookup performance differs before and after the
optimizations that were proposed. For every interval of the address space we can

compute the worst and average latency of lookups inside a trie node.
BOS Simple

BOS needs one memory access to acquire the data stored in the root node,
then it follows the pointer to the candidate subtrie node and then the pointer to the
prefix node. The normal case requires 3 memory accesses for each interval. The worst
case is when we don’t find a prefix match inside the 1% candidate subtrie, so we seek
in the 2™ subtrie and then to the prefix node, this case requires 4 memory accesses. In

case neither prefixes inside the subtries match, we spend 3 memory accesses and we
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don’t follow any pointer to the prefix node. BOS-SIMPLE has 5 intervals and 5
distinct tables for each prefix interval, therefore in the worst case we need to search
all of them so as to determine if a match exists. We need 3 memory accesses for the
first 4 tables and 4 for the last table. This sums to 16 memory accesses in the worst
case. If the tables are in separate memories we can search all of them in parallel and

then the worst case is 4 memory accesses.
BOS with optimized trie nodes

If we use prefix and trie node optimizations we can achieve better average
number of memory accesses but the worst case will remain the same. According to
the results presented in Table 5-10, nearly 70% of the roots have a single prefix and
nearly 14% have a single subtrie. On single prefix roots we need 1 memory access
and on single subtrie roots we need 2 memory accesses. Hence, the average number of
memory accesses to locate a prefix in an interval is calculated to be 1,62. We see that
the average case after the node optimizations is 60% better. In case we use sequential
accesses to tables we need in total 8,1 memory accesses and in case we use parallel

searches we need on average only 1,62 memory accesses.
BOS with optimized TBL16 and dynamic blocks.

Optimizations in TBL16 are rather helpful in terms of storage but significantly
increase the number of memory accesses to locate a prefix inside an interval. For
every colliding root inside TBL16 we need an extra memory access and due to that
the average lookup latency in TBL16 is measured to be 2,62 memory accesses and the
worst case 5 memory accesses.

By adding the dynamic memory blocks in our scheme may have saved storage
but the average and maximum number of memory accesses is increased. For roots of
prefix lengths 24 or more, we need to locate the block by accessing TBL16, then
locate the specific root between the roots that collide, and then lookup inside the trie
node. This sequence of accesses sums to 4,62 memory accesses on average and 11 on
the worst case.

The summary of lookup performance for BOS with and without optimizations
is presented in Table 5-16 and shows the number of memory accesses per lookup in

every case. These results are an average of all the simulated routing tables.
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Scheme Average | Worst Case | Parallel
BOS-SIMPLE 10,1 16 4
No opt.
BOS Opt. 4,86 16 1,62
Nodes
BOS Opt. 12,1 24 4,62
Tables

Table 5-16 Memory access performance of BOS

Lookup Perfomance and Link Speeds

According to our lookup performance we can calculate the efficiency of BOS as a
forwarding engine in a high speed router. To calculate the network performance we
assumed a certain speed of the memory and a pipelined hardware implementation that

can provide one memory access per cycle. The results we present assume 2 possible

memory configurations:
e 200Mhz off-chip synchronous SRAM
e 400Mhz on-chip synchronous SRAM

Table 5-17 presents the network performance of BOS counted in millions of packets

per second (Mpps).
Off-chip SRAM 200Mhz On-Chip SRAM 400Mhz
Scheme Average | Worst Case | Parallel | Average | Worst Case | Parallel
(Mpps) | (Mpps) | (Mpps) | (Mpps) | (Mpps) | (Mpps)
BOS-SIMPLE 20 12,5 50 40 25 100
No opt.
BOS Opt. 41,2 12,5 123,5 82,3 25 246
Nodes
BOS Opt. 16,5 8,3 433 33 16,6 86,6
Tables

Table 5-17 Network Performance of BOS in Mpps

If we assume the worst case of taking routing decisions for minimum sized IP packets

(40 bytes) then the supported link speeds are shown in Table 5-18.

Off-chip SRAM 200Mhz On-Chip SRAM 400Mhz
Scheme Average | Worst Case | Parallel | Average | Worst Case | Parallel
(Gbps) | (Gbps) | (Gbps) | (Gbps) | (Gbps) | (Gbps)
BOS-SIMPLE 6,4 4 16 12,8 8 32
No opt.
BOS Opt. 13,2 4 39,5 26,4 8 79
Nodes
BOS Opt. 53 2,67 13,8 10,6 53 27,7
Tables

Table 5-18 Network Performance of BOS in Gbps
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Chapter 6

Bloom Filter Based Packet Classification

In this chapter we present Bloom Based Packet Classification (B2PC), our
scheme for efficient packet classification. We developed a scheme suitable for
pipelined hardware implementation which can be used as a classification engine for
network streams. B2PC comprises of a 5-field search algorithm and decomposes
multi-field classification rules into internal single field rules which are then organized
in Bloom filter sets. The design of B2PC is optimized for the common case based on
analysis of real world filter sets and uses the BOS single field technique which was

described in Chapter 5.

6.1 Real Filter Sets

Researchers’ attempts to discover better classification techniques are mainly
focused in analysis of real world sets of classification rules. Many research groups
have studied real classification data from commercial ISPs and access lists (ACLs)
from enterprise networks to exploit the specific characteristics of these sets. The
results from these surveys provide statistical characteristics of the filter sets and are
valuable as a guide for the classification algorithms’ designers.

The standard packet classifiers are 5-dimensional and their fields come from the
Network Layer (L3) and the Transport Layer (L4) network packet fields. These fields
are the following:

e Source IP address in 32-bits (L3)

e Destination IP address in 32-bits (L3)
e Source Port in 16-bits (L4)

e Destination Port in 16-bits (L4)

e Protocol in 8-bits (L4)
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A filter in a classifier may specify all the fields with prefixes, ranges, exact values or
wildcards®,

There exist several studies of the specific characteristics of the real world
classification rules. Primarily Gupta and McKeown published a number of
observations regarding the characteristics of real filters sets [26], while others have
performed analyses on real filter sets and published their observations [40][41]. The
following key observations are a review of these studies:

I. Current filter sets’ size are small, ranging from tens of filters to less than

5000 filters. However, it is not clear if the size limitation is “natural” or a
result of the limited performance of packet classification solutions.

II. The protocol field is restricted to small set of values. TCP, UDP and

wildcarded are the most common specifications.

III. Filters specify a limited number of unique transport port ranges. The
specifications for port ranges vary and have definitions like ‘greater than
1023’ or ‘20 to 23’.

IV. The number of unique address prefixes matching a given address is typically
five or less.

V. The number of filters matching a given packet is typically five or less.

VI. Different filters often share a number of the same field values.

VII. The number of unique field values is significantly less than the number of

filters.

To evaluate the performance of classification schemes and algorithms it is
important to test it with representative filter sets. The properties of the filter sets and
the query patterns are essential to benchmark classification schemes and thus realistic
filters and test patterns should both be used. D. Taylor has created ClassBench [42] to
address this problem. ClassBench is a suite of tools for performance evaluation of
classification algorithms and is publicly available. ClassBench involves a filter set
generator that uses seeds from real filter sets to provide synthetic filter sets that
accurately model real filters. Moreover, it includes a packet header generator that
produces a sequence of packet headers to exercise a given filter set. This generator

uses the Pareto Distribution[43] that is widely used to model the Internet traffic.

* Wildcards are used when we don’t specify a value and want to represent all the possible values. The
symbol used for wildcards is *.
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6.2 B2PC Design and Description

B2PC design is driven by the observations presented in the last section. Our
approach for packet classification lays on the idea of decomposition where multiple
field searches are divided into many single field searches. The results of single fields
are then combined to produce the final rule/filter match. We strive to design a packet
classifier that supports 5-dimensional rules and provides the associated FlowID of a
matching rule/filter for a given packet.

The fields we use are the standard supported by all 5D classifiers, namely two
32-bits IP addresses, two 16-bit ports and an 8-bit protocol. We allow the database to
have at most 4096 of such rules, which seems enough according to the referenced
observations. Consequently, each rule/filter of the database can be identified by a 12-

bit FlowID value. An example filter set is shown in Table 6-1.

No | Src IP Dest IP Src Port | Dest Port | Protocol | Flow ID
1 1139.91.70.* | 147.52.16.* * * TCP 10
2 | 139.91.** 147.102.* * * 21 TCP 14
3 [139.91.** 147.27.* * <1024 * * 17
4 | FEFF 139.91.* * * 80 UDP 26
5 1139.91.70.33 | 147.52.16.33 135 <1024 TCP 31
6 [139.91.70.36 | 147.27.* * <1024 21 * 45
7| R 147.52.* * * 23 * 47
8 | 139.91.** 147.52.* * 135 135 TCP 50
9 | 139.* ** 147 % * * * 80 TCP 54
10 | 139.91.*%.* 147.52.* * * 135 TCP 55

Table 6-1 Filter Set Example

6.2.1 Single Field Operations

Given the fact that we have followed the decomposition path a very efficient
single field engine supporting both exact and prefix matches is essential. Hence, we
decided to use the BOS scheme described in Chapter 5 as our single field engine.
Each field of the rule can be inserted in a single field engine and be identified by the
rule’s FlowID. It should be noted that this single field lookup should not only report
the longest prefix match but, instead all the prefixes that match; as discussed in
subsection 2.2.3. Fortunately BOS has the capability to work as APM engine as
described in subsection 5.2.5.

The rules regarding the IP address fields are specified as prefixes and this
makes BOS an excellent solution. The Port fields are usually specified as ranges but

can be transformed into prefixes with well known formulas [17]. Additionally, the



CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 94

BOS engine that keeps the Port Fields should be finetuned since BOS provides all
prefix match (APM) for 32-bit values and we intend to store only 16-bit values.
Protocol field is assigned exact values and since it is 8-bit we can map it into a 256

entry table (PRO_TBL).

6.2.2 Internally Represented Filters

The observation that many rules may share same field values gives us the
opportunity to save storage for rules that have common values. However, a problem
arises due to this value sharing and the fact that BOS and many other APM solutions
support only one Flow ID to be stored and returned during single field searches. To
solve this problem we decide to keep internally represented filters where each field is
assigned an internal ID during insertion. The internal ID of each field is the originally
given Flow ID value. In case the value of a field was previously inserted then its
internal ID is set to be equal to the existing Flow ID value, which is the first inserted.

Table 6-2 illustrates how the rules presented in Table 6-1 are kept internally in B2PC.

Src IP | Dest IP | Src Port | Dest Port | Protocol
No Flow ID
ID ID ID ID ID
1 10 10 10 10 10 10
2 14 14 10 14 10 14
3 14 17 17 10 17 17
4 26 26 10 26 26 26
5 31 31 31 31 10 31
6 45 17 17 14 17 45
7 26 47 10 47 17 47
8 14 47 31 50 10 50
9 54 54 10 26 10 54
10 14 47 10 50 10 55

Table 6-2 B2PC internally represented filter set

This internal representation of filters requires storing the five 12-bit internal
IDs that belong to a rule so as to be able to identify it. Keeping 4096 rules with their
5- field internal IDs can be stored in a table with 4096 entries (RULES TBL) where
indexing is done by the 12-bit Flow ID value.

A side-effect of this ID sharing is that a value of a single field cannot be
deleted since many rules may depend on this internal ID. In order to cope with this
problem we keep a reference count for each internal ID of each field. Inherently, we
can have up to 4096 Flow IDs and therefore the same number of distinct internal IDs.

Each internal ID may be referenced from at most 4096 rules and therefore we need
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4096 12-bit counters for each field. In total we need 5 x 4096 12-bit counters to
support incremental updates in our scheme. Accordingly, when a rule upon insertion
references an internal ID, we increment the appropriate counter and when a rule is
deleted we decrement the counter. The original single field value is only deleted when

the related counter reaches to zero.

6.2.3 Combining Results
Given the 5 fields of a packet, B2PC has to find which of the existing rules

best matches them. Single field engines provide a number of matching prefixes and
the associated IDs. The IP address fields, namely Source IP and Destination IP, are
prefix based and may provide at most 33 matches each; 32 possible matches for the
32 possible prefix lengths and 1 for the zero length wildcard. The port fields are also
prefix based and may provide at most 17 matches; 16 possible matches for the 16
possible prefix lengths and 1 for the zero length wildcard. The protocol field is an
exact value so it may provide a match on either the value itself or the wildcard;
therefore we have at most 2 matches.

The internal IDs and the lengths of each matching field are gathered in certain
collection points, one for every field, and they are forwarded to the mechanism that
combines all the single field results. The collection points are taken the matched
prefixes from the BOS modules and keep them in decreasing length order. Each
collection point gives the longest prefix match first and proceeds with the less specific
matches.

The results from every single field should be combined to cover all the
possible permutations and then determine which of these permutations are actually
valid, namely determine if such a multi field rule exists. Although the possible
number of permutations could be large, the published observations indicate that the
maximum number of matches in the fields is typically less than 5 and the rules that
match are usually less than five. The best matching rule is the rule that has the most
specific value. To accomplish this, we first check if the combination of the internal
IDs that come from longest single field matches, as collection points provide it, is
indeed valid and continue on checking the less specific matches. B2PC assigns
priorities to the fields so as to guide the generation of permutations. The permutations

are generated by keeping the current matched value of the most significant field and
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producing the combinations of the values coming from the least significant fields. The
significance of fields in decreasing order is: Source IP, Destination IP, Source Port,
Destination Port and Protocol.

Note that when all the collection points provide the same internal ID, then we
surely know that this permutation belongs to our set. The same value for all the
internal IDs in a permutation denotes that the values in all fields are the initially
inserted ones for this specific FlowlD (since that this is the way we keep internally the
rules). The only thing we have to look, in this case, is whether this rule has been
deleted and the values found have only been kept due to references from other rules.

The following example illustrates how the permutations are generated.
Assume an incoming packet with the field values shown in Table 6-3 and the rules of

Table 6-1.

Src IP Dest IP Src Port | Dest Port | Protocol

139.91.62.39 | 147.52.17.25 5000 80 TCP
Table 6-3 B2PC incoming packet example

The matching results in every collection point are stored in order from the most

specific to the less specific and are shown in Table 6-4.

Src IP | Dest IP | Src Port | Dest Port | Protocol
ID ID ID ID ID
14 47 10 26 10
54 54 - 31 17
26 - - 10 -

Table 6-4 Collection points contents

The total number of possible permutations is equal to the overall product of the
number of matches in every field.

Totalyerm = #Src IP IDs * #Dest IP IDs * #Src Port IDs * #Dest Prt IDs * #Proto IDs.
Hence for the matches shown in Table 6-4 the total number of permutations is:
Totalperm =3 *2*1*3*2=36

These 36 generated permutations are shown in Table 6-5 and the permutation that

corresponds to an existing ruleset entry is shown in bold.
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Perm No Src IP | Dest IP | Src Port | Dest Port | Protocol

ID ID ID 1D D
1 14 47 10 26 10
2 14 47 10 26 17
3 14 47 10 31 10
4 14 47 10 31 17
5 14 47 10 10 10
6 14 47 10 10 17
8 14 54 10 26 17
9 14 54 10 31 10
10 14 54 10 31 17
11 14 54 10 10 10
12 14 54 10 10 17
13 54 47 10 26 10
14 54 47 10 26 17
15 54 47 10 31 10
16 54 47 10 31 17
17 54 47 10 10 10
18 54 47 10 10 17
19 54 54 10 26 10
20 54 54 10 26 17
21 54 54 10 31 10
22 54 54 10 31 17
23 54 54 10 10 10
24 54 54 10 10 17
25 26 47 10 26 10
26 26 47 10 26 17
28 26 47 10 31 17
29 26 47 10 10 10
31 26 54 10 26 10
32 26 54 10 26 17
34 26 54 10 31 17
36 26 54 10 10 17

Table 6-5 Total possible permutations

6.2.4 Set Membership Queries with Bloom Filters

We have well studied how the rules can be decomposed into fields, inserted in
the rule database, assigned an internal ID as well as how permutations are generated.
The challenge we have also faced now is how to identify that a permutation belongs

to our set of rules. Sequential accesses to the rule table are very slow since we may
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need to access them all. We need a data structure that can efficiently represent our
ruleset and support quick set membership queries. Hash tables and B-Trees are widely
used for this type of queries but there are also Bloom Filters [6] that have received
renewed attention for network applications according to [7][44]. A Bloom filter is an
efficient data structure that supports set membership queries and has tunable false
positive errors as described in subsection 2.1.1.3.

We represent our rule database with a Bloom Filter that can hold 4096 rules
and we have to tune the parameters of the filter so as to produce tolerable false
positive rate. We have to find the optimal number of bits for the bloom filter bit-
vector and the number of hash functions that set these bits. We choose the size of the
bit vector to be 2'* bits wide and then according to the theory presented, the optimal
number of hash functions is #Hash = ( 2'*/2'?) * In2 = 2,76. So by using the optimal
number of 3 hash functions we can expect false positive probability 0,5° = 0,125 . We
decide to use 4 hash functions and further reduce the false positive probability to 0,5*
= 0,062 , namely 6,2 %.

The bit-vector of the Bloom filter is relatively large to be kept in registers/flip-
flops, and therefore we need a memory array to hold these bits. Moreover, having 4
hash functions means that we have to set (program) 4 bit positions in the bit vector
and always test 4 bits. Due to the fact that the bit-vector is stored in a memory array
we may require up to 4 memory accesses to locate each bit. Thus, to avoid sequential
accesses and since the array is quite small and can be kept on-chip, we can increase
parallelization and split this bit-vector into 4 equal sub-vectors of 4096 bits each and
assign each hash function to set and test a sub-vector. This allows us to implement the
accesses in parallel and decide in a single parallel memory access if the current
permutation belongs to our set. Additionally, this splitting prevents the hash functions
from setting the same bit.

The bits of the Bloom filter may be shared by many rules in the ruleset and
thus we cannot delete a bit if other rules depend on this. The solution to this problem
is given by [8] which proposes to keep counters for every bit of the Bloom filter.
Hence, for the 16384 bit-vector of our bloom filter we need the same number of
counters. Each counter is at most 12-bits since this is the maximum number of filters
supported. Accordingly, a bit from the vector is deleted only when its counter reaches

Z€ro.
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The results of the hash functions have to point to only one bit of the 4096
possible in the sub-vector and thus generate a 12-bit value. Moreover these hash
functions have to use all the ID information so as to be efficient and provide discrete
values for each permutation. Inherently, the IDs we use are the actual Source IP (SIP),
Destination IP(DIP), Source Port(SPO), Destination Port (DPO) and Protocol (PRO).
We have defined the hash functions by the use of XOR, SHIFT (>>,<<) and the

reverse (REV) function according to the following formulas:
= BLH1 (SI1P>>4) xor REV(DIP>>2) xor (SP0<<4) xor (DP0>>3) xor (PR0O<<3)
= BLH2 = SIP xor (DIP<<6) xor (SP0>>2) xor REV(DPO) xor PRO
= BLH3 (SI1P<<3) xor REV(DIP) xor REV(SPO) xor DPO xor (PRO<<6)
= BLH4 = REV(SIP) xor (DIP<<3) xor (SP0>>3) xor (DPO<<1l) xor (PRO>>2)

The performance of these hash functions is studied and analyzed in subsection 6.3.2.

6.2.5 Flow ID Resolving

Once we have a match in a set membership query we have to determine
whether it is a false positive match or in case it is not, to return the corresponding
FlowID. To locate the FlowID we use a hash table of 16K entries (HSH _TBL) that
shall give us the matched FlowID. Once we have the FlowID we visit RULES TBL
(subsection 6.2.2) and compare the stored IDs with the IDs of the current permutation.
In case the IDs match we have found the final result, otherwise this match is a false
positive and we continue with the generation and testing of the permutations.

Indexing the HSH TBL requires a hash function and obviously this hash
function may produce collisions. Resolving these collisions is trivial by using variable
size blocks that hold the colliding FlowIDs. If more than one FlowIDs are stored in a
specific HSH_TBL entry then we have to check the currently matched IDs with the
corresponding IDs of each FlowID. The hash function uses the already hashed values
of the BLH1, BLH2, BLH3 and BLH4 to indicate an entry in HSH_TBL. Its 14-bit

value is defined as follows:
HSH_TBLinsex = (BLH1,00) xor (00,BLH2>>4) xor (00,BLH3) xor (00,REV(BLH4))

The performance of this hash function is studied and analyzed in subsection 6.3.2.

6.2.6 Improving the Efficiency of Set Membership Queries

According to the generation of permutations we have to query every
permutation in the Bloom filter despite the fact that a pair of source-destination

prefixes or a pair of source-destination ports may not be part of the ruleset. To avoid



CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 100

these useless queries we can represent these pairs with additional Bloom Filters and
split the membership queries problem into two sub-problems. This proposed splitting
is compatible with the guidelines that were proposed in [40] and indicate that the IP
address pair characterizes the actual network paths and the Port pairs characterize the
network applications.

Now, we have to query the additional Bloom filters with the IP pair
permutations and the Port pair permutations and if both match then we query the
Bloom filter that holds the actual rules. For the Bloom filters of each pair we define
two smaller bit-vectors of size 8192 with two hash functions for each one. We also
split each bit-vector into two equal sub-vectors and store them is separate tables to
exploit parallelism since they can also be placed on-chip. Moreover, accessing the
Bloom filters of the IP pair and Port pair can be done in parallel and simultaneously
perform accesses in the Rule Bloom Filter.

We have defined the hash functions for the IP and Port pairs by the use of XOR

and the reverse (REV) function according to the following formulas:
= IP_BLH1 = { SIP(6:11) xor DIP(0:5) , SIP(0:5) xor DIP(6:11) }
= IP_BLH2 = { SIP(0:5) xor DIP(6:11) , SIP(6:11) xor DIP(0:5) }
= PR_BLH1 = SPO xor (DP0<<2)
* PR _BLH2 = (SP0<<2) xor REV(DPO)

The performance of these hash functions is studied and analyzed in subsection 6.3.2.
The number of generated permutations for IP and Port pairs now is
significantly smaller compared to the total number of permutations and can be
checked in a parallel fashion. When both queries for pairs are successful then, these
pairs along with the 2 possible Protocol matches are queried in the Bloom filter that
handles the actual rules. Using the example of Table 6-3 and the data shown in Table
6-4 we illustrate in Table 6-6 which queries are performed in parallel in the three
Bloom filters. Queries in both IP and Port pair Bloom Filters are started together.
Once matches in both pairs occur then queries in the Rule Bloom filter start, if a pair
matches and the other has not yet found a match then it pauses. For the matches of
pairs and rules we should consult Table 6-2. We continue by keeping the IP pair
stable we test all the Port pairs given by the corresponding collection points until they
finish. The queries in bold indicate the paused and stable condition of the matched

permutations. The bold underlined is the matched query.
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IP Pair Port Pair Rule Permutation
Perm. Perm.
N?llrlrfgr Src | Dest Src Dest Src | Dest Src Dest | Proto

1P 1P Port Port 1P 1P Port Port

ID ID ID ID ID ID ID ID ID
1 14 47 10 26 - - - - -
2 14 47 10 31 14 47 10 26 10
3 14 47 10 10 14 47 10 26 17
4 14 54 10 26 14 47 10 10 10
5 54 47 10 26 14 47 10 10 17
6 54 54 10 26 - - - - -
7 54 54 10 31 54 54 10 26 10
8 54 54 10 10 54 54 10 26 17
9 26 47 10 26 54 54 10 10 10
10 26 47 10 26 54 54 10 10 17
11 26 47 10 31 26 47 10 26 10
12 26 47 10 10 26 47 10 26 17
13 26 54 10 26 26 47 10 10 10
14 - - - - 26 47 10 10 17

Table 6-6 Parallel Bloom filter Queries

Breaking the problem into two gives us the opportunity to better handle the

required membership tests. The IP pair first determines existing network paths in the

ruleset and then the port pair determines existing network configurations. The final

rule membership query then tests if those pairs match together in a rule. Searching

these pairs independently distributes the queries in a more efficient manner and

provides faster matches.
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A general overview of the final B2PC form is presented in Figure 6-1 where all the

components of the scheme are shown.
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Figure 6-1 Overall view of B2PC components
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6.3 Simulation Results and Performance

In this subsection we discuss simulation results based on synthetic filter sets and
present our results on storage and speed. We generate 12 synthetic filter sets of
various sizes with the ClassBench [42] tool and corresponding packet filter headers to
test the efficiency of B2PC. We also analyze the properties of the generated filter sets
and compare them with the observations found in literature. Moreover, we illustrate
the efficiency of the hashing functions used by the Bloom filters and perform analysis

on the observed false positives.

6.3.1 Analysis of Generated Filter Sets

We use the ClassBench tool and the seeds from real filter sets that are
provided by this tool to generate sets that represent the most common filter formats:
Access Control Lists (ACL), Firewall (FW) and IP Chain (IPC). We use all the real
filter seeds and generate 12 synthetic filter sets of various sizes and formats. The
generated filter sets and an analysis on the unique number of field values produced is
shown in Table 6-7. We present the unique Source IP Addresses (SA), Destination IP
Addresses (DA), Source Ports (SP), Destination Ports (DP) and the Protocols (PRO).

Filter Set | Set | Unique | Unique | Unique | Unique | Unique
Name | Size SA DA SP DP PRO
ACL1 712 25 316 1 96 4
ACL2 615 172 378 1 24 5
ACL3 [2348| 403 188 2 154 4
ACL4 [2974 ) 271 329 1 204 6
ACL5 [3343] 297 502 1 39 4

FW1 282 50 74 12 32 5
FW2 68 34 26 7 1 5
FW3 178 36 43 8 33 4
FW4 263 33 56 25 39 7
FW5 156 39 55 9 28 4
IPC1 1687 123 607 29 50 7
IPC2 169 24 19 3 3 4

Table 6-7 Unique field values for the generated filter sets

The filter set sizes that were generated by the tool range from 68 to 3343 and
this fact is in line with observation I (section 6.1) , namely that the filter set sizes are
smaller than 5000. Moreover, observation VII is also confirmed by the results of

Table 6-7 since we can see that the number of unique field values found is relatively
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small compared to the database size. The fact that we have few unique values means
that many filters share the same data as stated by observation VI. Additionally, the
number of unique protocol values is ranging from 4 to 7 and is in line with the
restriction professed by observation II. The port range specifications are also limited
something also stated in observation III.

ClassBench provides us with a very useful packet header generator which we
used to take several measurements. We generated large packet header traces and
simulated B2PC in order to count the number of matches for every field. These results

are shown in Table 6-8.

Set | Set | Max | Avg | Max | Avg | Max | Avg | Max | Avg | Max | Avg
Name [ Size | SA | SA| DA | DA| SP | SP | DP | DP | PRO | PRO
ACL1 | 712 4 13981 4 |387] 1 1 5 [3,05] 2 1,91
ACL2 | 615 5 14921 7 [520] 1 1 4 [236] 2 1,63
ACL3 2348 ) 6 [592] 5 [400] 2 [100] 5 [256] 2 1,95
ACL4 2974 7 [693] 7 [530] 2 [1,00] 6 [3,02] 2 1,98
ACLS5 3343 ) 3 299 3 [199] 1 1 4 |[2,01 1 1
FW1 | 282 4 1375] 5 1408] 3 |1,63] 3 |190] 2 1,91
FW2 | 68 3 12761 2 193] 2 1,75 1 1 2 1,76
FW3 | 178 4 1381] 4 13,00] 3 |L,79] 3 |196] 2 1,99
FW4 | 263 3 1288 4 [390] 4 ([294] 3 [261] 2 1,90
FWS | 156 5 14,181 4 382 3 |1,71| 3 [2,04] 2 1,98
IPC1 | 1687 ) 4 [399] 7 [585] 4 [120] 5 [205] 2 1,89
IPC2 | 169 2 | 1,86)] 2 2 2 | L,14f 2 [1,14] 2 1,46

Table 6-8 Number of matched values per field

A careful look in the results reveals us that observation IV is also valid. The
maximum number of either SA or DA matching a given packet ranges from 2 to 7
while the average is smaller and ranges from 1,86 to 6,93. As far as the port fields are
concerned we can also see that observation IV is also valid. The maximum number of
protocol field matches is bound by 2 which naturally come from the fact that we can

only have an exact value or the wildcard.

6.3.2 Hashing Functions and False Positives

We incorporate many hash functions in B2PC in order to index specific bits
inside the Bloom filters and to resolve the final FlowID. The most important property
of a hash function used to index the Bloom filter bits is to produce several distinct
values and minimize the number of different rules referencing the same bit. These

hash functions are described in subsections 6.2.4 and 6.2.6. We provide an analysis of
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the number of bits set in each of the Bloom filters and the number of rules that

reference these bits. The results are shown in Table 6-9.

IP Bloom Filter | Port Bloom Filter | Rule Bloom Filter

Filter | Set (8192 bits) (8192 bits) (16384 bits)
Set | Size | #set | Max | Avg | #set | Max | Avg | #set | Max | Avg
bits | Refs | refs | Bits | Refs [ Refs | bits | refs | refs
ACL1 | 712 | 911 | 21 | 1,56 192 | 189 | 7,41 | 2242 9 1,27
ACL2 | 615 | 1071 4 | 1,14 48 | 406 | 25,62 | 2153 5 1,14
ACL3 | 2348 | 2651 | 29 [ 1,771 305 | 321 [ 15,39 ]| 6566 | 16 | 1,43
ACL4 129742912 | 32 |2,04]| 396 | 336 | 15,02 7847 | 10 | 1,51
ACL5 | 3343|2985 40 |2,23]| 78 | 708 | 85,71 | 8468 9 1,57
FW1 | 282 | 418 8 1,34 | 107 | 47 | 5,27 | 1023 4 1,10
FW2 68 126 3 1,07 14 19 | 9,71 | 251 3 1,08
FW3 | 178 | 233 7 1,52 | 88 16 | 4,04 | 629 7 1,13
FW4 | 263 | 355 13 [1,48) 219 | 29 | 2,40 | 958 4 1,09
FW5 | 156 | 228 7 [1,36] 78 29 | 4,00 | 568 3 1,09
IPC1 [ 1687 | 2406 | 10 | 1,40] 164 | 650 | 20,5 | 5251 5 1,28
IPC2 | 169 | 202 8 1,67 18 | 111 | 18,77 503 7 1,34

Table 6-9 Number of references in Bloom Filters

The results show that our hashing functions behave quite efficiently and set
many different distinct bits in the Bloom filters. As far as the Port Bloom filter is
concerned, the high rate of references comes from the fact that we have a limited
number of common specifications as we have observed in Table 6-7 . The Rule
Bloom Filter has many bits set with a small average number of references to each bit
due to the diversity of the used ID values in each rule. However, the average number
of references in IP Bloom filter is a little higher than in Rule Bloom filter as an effect
of the small number of unique field values compared to the size of the set
(observation VII). This means that many rules in the same set share the same Source
and Destination IP address specifications.

The hash functions used to index the Bloom filters and are also responsible for
the number of false positives that occur. Additionally the bit-vector size of the Bloom
filters influences that false positive rate. We simulate B2PC with the generated filter
sets and the corresponding packet headers and we counted the false positives. The rate

of observed false positives for every Bloom filter is shown in Table 6-10.
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Filter Set | Set IP Bloom Port Bloom Rule Bloom

Name Size | False Positives | False Positives | False Positives
(%) (%) (%)

ACL1 712 0 0 0,02

ACL2 615 7,7 0 0,01

ACL3 | 2348 3,2 0 5,1

ACL4 | 2974 8,4 0 8,3

ACL5 | 3343 0,005 0 0,01

FW1 282 3,7 0 0

FW2 68 0 0 0

FW3 178 0 0 0

FWw4 263 1,5 0 0

FW5 156 2,0 0,7 0,2

IPC1 1687 0,3 0 0,5

IPC2 169 0,1 0 0

Table 6-10 Observed false positives rate in B2PC

The observed false positives rate in B2PC is close to the theoretical 6,2% for
4096 active rules and it is very low for small filter sets. The high rate of false
positives in [P and Rule Bloom filters for ACL3 and ACLA4 filter sets can be justified
by the fact that our hashing functions have produced higher maximum and average
reference counts as shown in Table 6-9. Moreover these filter sets have an increased
number of matched values per field as shown Table 6-8 and thus produce more
permutations that are probed in the Bloom filters. On the other hand, ACLS, which is
the largest database we generated, has a very low rate of false positives despite the
fact that we observe the highest maximum and average reference counts. However,
this is due to the fact that we have a small number of matched values in the all the
fields as shown in Table 6-8 and therefore fewer permutations are generated and
probed in the Bloom filters.

B2PC also uses a hash function to resolve the final FlowID of the matching
permutation as described in subsection 6.2.5. We illustrate the collisions produced by
this hash function in Table 6-11. We see that this hash function produces very few

collisions and is certainly satisfactory for our scheme.

Filter Set | Set Max Average
Name Size | Collisions | Collisions
ACL1 712 2 1,09
ACL2 615 2 1,03
ACL3 | 2348 3 1,17
ACL4 | 2974 3 1,19
ACLS | 3343 3 1,21

FW1 282 2 1,02
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FW2 68 1 1
FW3 178 1 1
FW4 263 2 1,07
FWS5 156 1 1
IPC1 1687 2 1,10
IPC2 169 3 1,29

Table 6-11 B2PC hash table collisions

6.3.3 Storage Requirements

This subsection presents the storage requirements of B2PC for all the
generated filter sets. To calculate the total storage for B2PC we need the storage
requirements of the B2PC tables and the storage of every included BOS engine.

During simulations we find that each BOS engine has very few unique values
as shown before in Table 6-7 for all the generated databases and additionally to the
included static tables the memory requirements for the dynamic part of the algorithm
are between 2 and 5 Kbytes. Therefore every BOS engine needs 73Kbytes for its
static tables as discussed in subsection 5.3.2 and along with the included trie nodes
and dynamic blocks it needs at most 78Kbytes.

For the storage requirements of B2PC we have to calculate the size of the
Bloom filters, the associated counters, the counters for the IDs of each BOS engine,
the protocol table (PRO_TBL), the hash table (HSH TBL) and the rules table
(RULES_TBL). For our calculations we keep the same memory configuration as in
BOS, namely 36-bit wide memory words. We also assume that two counters can fit in
a 36-bit word and each rule entry needs 2 memory words. Accordingly, the storage
requirements for the B2PC components which are independent of the size of database

are calculated in Table 6-12.

Component 1\;[;2:21? Total Bytes
BOS ID counters 10240 46080
Bloom Filters counters | 16384 73728
HSH TBL 16384 73728
RULES TBL 8192 36864
PRO TBL 256 1152
Total 51456 | 231552 (226Kb)

Table 6-12 B2PC components memory requirements

In total we need 4 BOS engines and therefore 78 x 4 = 312 Kbytes and 226 Kbytes for

B2PC components, so we finally require 538 Kbytes. These requirements are
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approximately the same for the entire generated filter sets since all the BOS tables are

underutilized.

6.3.4 Lookup Performance

In this subsection we analyze the lookup performance of the B2PC scheme in
terms of memory accesses. B2PC lookup performance is highly dependant on the
APM lookup time of each BOS and on the set membership queries in the Bloom
filters.

BOS supporting APM

The BOS scheme was introduced and analyzed in Chapter 5 and here we only
discuss how it is used to provide matches for many prefixes so as to be used in B2PC.
BOS needs several memory accesses to provide all the matches in an interval of the
32-bit address space. In every interval we check the two candidate subtries and in
every matching subtrie we check all the four possible prefixes. Therefore at worst
case we require one memory access to acquire the node, then another access for every
subtrie node and one more memory access for every prefix. This worst case sums to
11 memory accesses and provides the FlowIDs for 8 prefixes. For the cases of single
prefix subtries and single prefix roots according to the optimizations of BOS the
required memory accesses are 3 and 1 respectively.

When all BOS intervals are accessed in parallel then we have the final results
when lookups in the most populated interval finish, thus the number of memory
accesses of the slowest trie lookup. If lookups are performed sequentially in every
interval then the total number of memory accesses is equal to the sum of accesses.
Note that for BOS engines that are used for the port specification we have only 3
intervals and for the IP specifications we have 5.

We simulate BOS with the generated filter sets and the packets headers and
count the average and the worst case of memory accesses in every interval. We have
found that the number of matching prefixes inside an interval is typically 1 and the
average number of memory accessed needed to obtain the FlowID is 2,2 while the
worst case observed is 6 memory accesses despite the theoretical number of 11
accesses. Therefore if we lookup the intervals in parallel we have a complete match

operation every 2,2 memory accesses on average and every 6 memory accesses on the
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worst case. When we lookup the intervals sequentially we need 9,2 accesses on

average and 25 on the worst case.
B2PC Bloom Filter Probes

The other essential factor of performance for B2PC besides the BOS matches
is the number of sequential probes in the Bloom filters. We query the IP and Port pair
Bloom filters in parallel and simultaneously probe the rule Bloom filter for the
matched IP and Port pairs. We simulate each filter set with the corresponding packets
headers and calculate the average and worst case of the sequential Bloom filter

probes. The results are shown in Table 6-13.

Filter Set | Set Max | Average
Name Size | Probes | Probes
ACL1 712 10 2,21
ACL2 615 21 2,91
ACL3 | 2348 17 2,68
ACL4 | 2974 29 4,03
ACL5 | 3343 6 2,01

FW1 282 22 4,74
FW2 68 5 2,64
FW3 178 14 3,63
Fw4 263 18 3,18
FW5 156 34 5,34
IPC1 1687 16 2,16
IPC2 169 4 2,07

Table 6-13 Sequential Bloom Filter probes

In the number of sequential accesses we have to add the average number of accesses
in the hash table (HSH_ TBL) that are equal to the collisions presented in Table 6-11
and two memory accesses to acquire the final rule from RULES TBL. Now, the total

number of memory accesses is presented in Table 6-14.

Filter Set | Set | Hash Table | Bloom Filter Total
Name Size Accesses Accesses Accesses
ACL1 712 1,09 2,21 5,30
ACL2 615 1,03 291 5,94
ACL3 | 2348 1,17 2,68 5,85
ACL4 | 2974 1,19 4,03 7,22
ACLS |3343 1,21 2,01 5,22
FW1 282 1,02 4,74 7,76
FW2 68 1 2,64 5,64
FW3 178 1 3,63 6,63
Fw4 263 1,07 3,18 6,25
FW5 156 1 5,34 8,34
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IPC1 1687 1,10 2,16 5,26
IPC2 169 1,29 2,07 5,36

Table 6-14 Average number of memory accesses for B2PC data structures

To calculate the total average number of memory accesses for B2PC we have to
include the BOS lookup times. We perform parallel accesses in all the BOS engines
and collect simultaneously all the results in the collection points. Each BOS engine
may perform parallel or sequential accesses in its intevals. In Table 6-15 we present

the final number of memory accesses needed for B2PC to produce a result.

Filter Set | Set BOS BOS B2PC | B2PC with | B2PC with
Name | Size | Parallel | Sequential | Accesses | Seq. BOS | Par. BOS
ACL1 712 2,20 9,20 5,30 14,50 7,50
ACL2 615 2,20 9,20 5,94 15,14 8,14
ACL3 [2348| 2,20 9,20 5,85 15,05 8,05
ACL4 [2974| 2,20 9,20 7,22 16,42 9,42
ACLS [3343 | 2,20 9,20 5,22 14,42 7,42
FW1 282 2,20 9,20 7,76 16,96 9,96
FWwW2 68 2,20 9,20 5,64 14,84 7,84
FW3 178 2,20 9,20 6,63 15,83 8,83
FW4 263 2,20 9,20 6,25 15,45 8,45
FWS5 156 2,20 9,20 8,34 17,54 10,54
IPC1 1687 | 2,20 9,20 5,26 14,46 7,46
1PC2 169 2,20 9,20 5,36 14,56 7,56

Table 6-15 Final number of average memory accesses for B2PC

Lookup Perfomance and Link Speeds

According to our lookup performance we can calculate the efficiency of B2PC as
a classification engine in a high speed router. To calculate the network performance
we have to assumed a certain speed of the memory and a pipelined hardware
implementation that can provide one memory access per cycle. The results we present
assume 2 possible memory configurations:

e 200Mhz off-chip synchronous SRAM

e 400Mhz on-chip synchronous SRAM
Table 6-16 presents the network performance of B2PC counted in millions of packets

per second (Mpps).
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Off-chip SRAM 200Mhz | On-Chip SRAM 400Mhz
Filter Set | Set | B2PC with | B2PC with | B2PC with | B2PC with
Name | Size | Seq. BOS | Par. BOS Seq. BOS Par. BOS
(Mpps) (Mpps) (Mpps) (Mpps)
ACL1 712 13,79 26,66 27,58 53,33
ACL2 615 13,21 24,57 26,42 49,14
ACL3 | 2348 13,28 24,84 26,57 49,68
ACL4 |2974 12,18 21,23 24,36 42,46
ACLS | 3343 13,86 26,95 27,73 53,90
FW1 282 11,79 20,08 23,58 40,16
FW2 68 13,47 25,51 26,95 51,02
FW3 178 12,63 22,65 25,26 45,30
FW4 263 12,94 23,66 25,88 47,33
FW5 156 11,40 18,97 22,80 37,95
IPC1 1687 13,81 26,80 27,66 53,61
1PC2 169 13,73 26,45 27,47 52,91

Table 6-16 Network performance of B2PC in Mpps

If we assume the worst case of classifying minimum sized IP packets (40 bytes) then

the supported link speeds are shown in Table 6-17.

Off-chip SRAM 200Mhz | On-Chip SRAM 400Mhz
Filter Set | Set | B2PC with | B2PC with | B2PC with | B2PC with
Name | Size | Seq. BOS | Par. BOS Seq. BOS Par. BOS
(Gbps) | (Gbps) | (Gbps) | (Gbps)
ACL1 712 4,41 8,53 8,83 17,07
ACL2 615 4,23 7,86 8,45 15,72
ACL3 | 2348 4,25 7,95 8,50 15,90
ACL4 | 2974 3,90 6,79 7,80 13,59
ACLS | 3343 4,44 8,63 8,88 17,25
FW1 282 3,77 6,43 7,55 12,85
FW2 68 431 8,16 8,63 16,33
FW3 178 4,04 7,25 8,09 14,50
FW4 263 4,14 7,57 8,28 15,15
FW5 156 3,65 6,07 7,30 12,14
IPC1 1687 4,43 8,58 8,85 17,16
IPC2 169 4,40 8,47 8,79 16,93

Table 6-17 Network performance of B2PC in Gbps

We can compare the performance of B2PC with other similar classification
schemes presented in literature in terms of supported rules, storage requirements,
throughput and working frequency. Our comparison is based on the results presented
in the corresponding papers, where hardware implementations without TCAMs are

described, and are shown in Table 6-18.



CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 112

Working Number of St?rage Throughput
Scheme | Frequency Rules Requirements (Mpps)
(MHz) (Number of memories)
BV [24] 33 512 640Kb (5) 1
RFC [25] 125 1700 976 Kb (2) + 15,6 Mb (2) 30
B2PC 200 3300 540 Kb (4) 4,5

Table 6-18 Summary of Classification Schemes

Further, we introduce the metric of Mpps per Mbyte to illustrate the efficiency
of classification schemes. This metric has been calculated for all the schemes of Table
6-18 by considering that all schemes work in 200MHz and extrapolating the
throughput. The values of this metric for every scheme are shown in Table 6-19. We
see that BV seems to be the most efficient but it only supports 512 rules. Despite RFC
has the best throughput, its performance is based on greedy memory consumption as
our metric shows, moreover it supports at most 1700 rules. Our scheme is very close

to BV and supports more than 3300 rules with dandy efficiency.

Efficienc
Scheme (Mpps/Mby)t’es)
BV [24] 9,6
RFC [26] 2.9
B2PC 8,65

Table 6-19 Schemes efficiency in Mpps per Mbyte
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Chapter 7

Hardware Implementation of B2PC

In this chapter we present a reference hardware implementation of the B2PC
classification scheme that was described in Chapter 6. We provide a detailed
description of all the internal blocks of the system and the hardware resources
utilized. We also present the speed and silicon area estimations of the final design. We
decided to implement the final design in an FPGA platform so as to prove the
feasibility and scalability of the architecture, even when limited hardware resources
are available. The FPGA platform we use is a Xilinx Virtex II Pro [32] with external
Cypress ZBT SSRAMs [33].

7.1 B2PC Organization

B2PC consists of many internal blocks which are shown in Figure 7-1. The
operation of the system is coordinated by the B2PC_CTRL block which receives
commands and data from an external command interface (CMD_INF). Upon a
reception of a command, B2PC_CTRL orders all the BOS blocks and PRO_CTRL to
start in parallel their operation and feeds them with the appropriate values. The BOS
blocks are responsible to work on the prefix based values and PRO_CTRL to control
the protocol related table. The data structures handled by each BOS are stored in an
external SSRAM and each BOS communicates with the memory handler
(MEM_HDLR) and the memory controller (MEM CTRL). The MEM HDLR
implements the dynamic memory management scheme described in section 4.4 by
employing several free-lists and the MEM_CTRL is the actual low level memory
interface. PRO_CTRL works on the protocol field of the network packets and stores
its data on PRO_TBL which is a Single Port Block RAM (SPBRAM) of size 256x12
which is kept inside the FPGA. The results of all the BOS blocks and PRO_CTRL are
given and kept to the collection points (CLPT). When all BOS operations finish then
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Figure 7-1 B2PC organization and block diagram

the Bloom filter control block (BL_CTRL) is instructed by B2PC_CTRL to handle all
the intermediate results provided by the CLPTs. BL CTRL generates the
permutations and operates on the Bloom Filters which are stored in four on-chip Dual
Port Block RAMs (DPBRAM) of size 256x32. When BL CTRL completes the
specific operation then the final result is forwarded to B2PC_CTRL and is fed to the
CMD _INF. More detailed descriptions of the internal blocks are provided in the next

sections.
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7.2 B2PC_CTRL Block

B2PC CTRL is the coordinator and controls all the operations that are
requested by the command interface CMD_INF. This interface provides B2PC with
the incoming data and also the exact operation that must be executed. The signals of
the interface and their descriptions are shown in Table 7-1. This is a rather simple
interface that provides all the incoming data fields together so as to be given in a

single cycle to all the functional blocks in parallel.

Signal Length [ In/Out | Description

1 req 1 I Request signal

i opcode 2 | Opcode for insert, lookup and delete
i pfxl data 32 I Data for 1% 32-bit prefix

i pfxl len 5 I Length of the 1% 32-bit prefix

i pfx2 data 32 | Data for 2" 32-bit prefix

i pfx2 len 5 | Length of the 2™ 32-bit prefix

i pfx3 data| 16 I Data for 1* 16-bit prefix

i pfx3 len 4 I Length of the 1% 16-bit prefix

i pfx4 data 16 | Data for 2" 16-bit prefix

i pfx4 len 4 I Length of the 2™ 16-bit prefix

i pfx5 data 8 | Data for the protocol exact value
i pfx5 wc 1 | Protocol wildcarded or not

o ack 1 0 Acknowledgement

o flow id 12 O The returned flow 1D

Table 7-1 Command Interface Signals

B2PC CTRL involves a finite state machine (FSM) to handle all the possible
cases and generates request signals to all the other blocks. The block receives a
request for a command defined by i opcode and latches all the incoming data to

registers. The following opcodes are defined:

= 2’b00 : Lookup
= 2°b01 : Insert
= 27b10 : Delete
= 27pbll1l : Reserved

Request signals are generated to all BOS and PRO CTRL blocks with the incoming
opcode and the appropriate data and lengths. When all these sub-blocks finish then it
sends a request to BL_ CTRL so as to start the generation of permutations and operate
on the Bloom filters. When BL_CTRL finishes it returns the concluding FlowID
which is then returned to CMD_INF along with the o_ack signal.
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7.3 BOS Block

BOS needs several internal blocks so as to handle the operations of the BOS
scheme as described in Chapter 5. The internal organization of BOS is depicted in
Figure 7-2. The BOS block receives commands from B2PC_CTRL and informs it
when it completes an operation. It also provides the CLPT with the matched prefixes
information, namely the FlowID and the length of each matched prefix. Moreover the
required memory communication is done over the MEM_HDLR block where requests

for read, write, memory allocation and deallocation are given.

CLPT B2PC_CTRL

BOS | T T

— 1t

BOS_INS BOS_LUP BOS_DEL

i
TR_LUP I

|

| .¢l¢ I

MEM_MUX

TR_INS TR_LUP

MEM_HDLR

Figure 7-2 BOS internal organization

Memory Organization and Nodes

The current BOS implementation is based on sequential accesses to the BOS
tables TBLO, TBL8 and TBL16 because we prefer for cost purposes not to have
separate memories and all the tables of the same BOS engine are stored in the same
SSRAM. The memory word we have is 36-bits and we use at most 32K words which
are sufficient as presented in subsection 6.3.3. The organization of the tables in the
memory and the pool of free addresses for the dynamic memory management scheme

is shown in Figure 7-3. The first 16K words are used for TBL16, the next 256 words
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are for TBL8 and a single memory word for TBLO. The remaining 16127 memory
words are used by the memory handler (MEM_HDLR) to provide dynamic allocation

and deallocation of the required memory blocks.

= 36 bits -
0
TBL16
16384
TBLS
16640 TBLO
16641
FREE SPACE
32767

Figure 7-3 BOS Memory Organization

BOS internally defines some data structures for the nodes that are used,
namely the basic nodes, the root nodes, the trie nodes and the prefix nodes. The

formats of the nodes we defined for BOS are shown in Figure 7-4.

RS X 16 0
Basic Node Format PN BLK256 Pointer Root Node Pointer

BLK256 Valid  Root Node Valid

33 3 16 0
Root Node Normal Format 4 Trie Bitmap Trie Node Pointer

RDesc ( Root Descriptor )

33 33 28 24 16 0

Root Node Optimized Format 4 N N N Prefix Flow 1D

RDwese b
Prefix Number  Reserved

Subtrie Number

35 M 19 16 0
Trie Node Normal Format | 4 Prefix Bitmap y | Prefix Node Pointer

TDese ( Trie Descriptor ) \
Reserved

3 M 30 16 0
Trie Node Optimized Format ‘4 Prefix Number N Prefix Flow ID
TDese ( Trie Descriptor }
Reserved
s 3 16 0
Prefix Node Format ‘ Prefix Flow 1D #1 Prefix Flow 1D #2

Reserved

Figure 7-4 BOS nodes format



CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 118

The basic nodes are stored in TBL16 or within BLK256s and provide the linking
from 16 length nodes to 24 and 32 length nodes according to the TBL24 and TBL32
optimization discussed in subsection 5.2.4. The fields of the basic nodes are the

following:

= BLK256 Valid : Indicates whether there is a link in the next stride
and if the data contained in the BLK256 Pointer field
are valid (1-bit).

= Root Node Valid : Indicates whether the data contained in the Root

Node Pointer field are valid (1-bit).
= BLK256 Pointer : The address of the linked BLK256 (17-bits).
= Root Node Pointer : The address of the root node (17-bits).

The root nodes are stored in TBLO and TBL8 and are linked in the Root Node
Pointer fields of the basic nodes existing in TBL16 and BLK256s. There are 2 types
of root nodes, the normal and the optimized node that implements the trie node
optimization discussed in subsection 5.2.2. The fields of the normal root nodes are the

following:

= RDesc : Root descriptor that indicates if this is a normal or an
optimized node. The value 1 indicates optimized node. Two
values are reserved for future use (2-bits).
= Trie Bitmap : The bitmap that indicates which subtries are active
(17-bits).
= Trie Node Pointer : The address of the trie node (17-bits).
The fields of the optimized root nodes are the following:

= RDesc : Root descriptor that indicates if this is a normal or an
optimized node. The value O indicates an empty node, value 1
indicates an optimized node and value 2 indicates a normal
node (2-bits).

= Subtrie Number : The number of the single active subtrie (5-bits).

= Prefix Number : The number of the active prefix (4-bits).

= Prefix Flow ID : The corresponding FlowlD of the prefix (17-bits).

The trie nodes are used to keep the prefix bitmap and the pointer to the associated
data. There are two formats for the trie nodes, the normal and the optimized that
exploits the prefix node optimization discussed in subsection 5.2.1. The fields of the

normal trie nodes are the following:

= TDesc : Trie descriptor that indicates if this is a normal or an
optimized node. The value 1 indicates optimized node (1-bit).
= Prefix Bitmap : The bitmap that indicates which prefixes are active
(15-bits).
= Prefix Node Pointer : The address of the prefix node (17-bits).
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The fields of the optimized trie nodes are the following:

= TDesc : Trie descriptor that indicates if this is a normal or an
optimized node. The value 1 indicates optimized node (1-bit).
= Prefix Number : The number of the active prefix (4-bits).

= Prefix Flow ID : The corresponding FlowlD of the prefix (17-bits).

Note that a single root may have many trie nodes depending on the number of active
subtries. When there is more than one subtrie then these trie nodes are kept in blocks
of adjacent memory words in sorted order. Sorting is performed by putting a given
subtrie node in the position of the block which is equal to the number of set bits in the
Trie Bitmap before the correlated subtrie bit, namely by counting the number of active
subtries that have number smaller than the current subtrie.

The prefix nodes are used to keep the associated prefix data for subtrie nodes that
have more than one active prefixes. They have two fields that keep the Flow IDs in

sorted order. The fields of the prefix nodes are the following :

=  Prefix Flow ID #1 : The FlowlD of the 1°* saved prefix (17-bits).
* Prefix Flow ID #2 : The FlowID of the 2" saved prefix (17-bits).

Also, note that a single trie may have many prefix nodes depending on the number of
active prefixes. When there is more than one prefix then these prefix nodes are kept in
blocks of adjacent memory words in sorted order. Sorting is performed the same way

as in subtrie nodes but now the Prefix Bitmap is used.

7.3.1 BOS_CTRL
BOS CTRL is responsible for managing the operations of the block and

involves an FSM to handle the requests for the insert, lookup and delete operations.
For each operation there is a sub-block responsible to complete it. BOS INS is
responsible for the inserts, BOS LUP for the lookups and BOS DEL for the deletes.
Upon a reception of a command BOS_CTRL generates a request to the appropriate
block and sets the appropriate select value in MEM_MUX so as to output a specific

block’s requests to the memory handler.

7.3.2 BOS_INS

BOS_INS sub-block handles all the prefix insertions in the appropriate table
or BLK256 together with TR _INS. This block also provides the final internal ID for
B2PC by checking if the prefix already exists. The functional aim of this sub-block
inside BOS is to provide the suitable root node pointer to TR _INS which implements



CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 120

the final insertion in the trie data structures. Depending on the incoming prefix length

BOS _INS accesses the tables and reads the root node pointer. The insert procedure

has an FSM to handle the following series of actions:

IT the incoming prefix length is shorter that 8 then it provides
TR_INS with the address of the single memory word TBLO.

IT the incoming prefix length is shorter that 16 then it provides
TR_INS with the address of the memory word inside TBL8 that is defined

by the first 8-bits of the prefix.

IT the incoming prefix length is shorter that 24 then it accesses the
memory word of TBL16 defined by the first 16-bits of the prefix and
the checks the Root Node Valid flag (Basic Node Format).

(0}

IT this flag is set then gives the Root Node Pointer address to

TR_INS

Otherwise, it requests allocation of a single word from MEM_HDLR
and sets the Root Node Valid bit and the Root Node Pointer with

the allocated address. Moreover, the allocated address in

forwarded to TR_INS.

IT the incoming prefix length is shorter that 32 then it accesses the
memory word of TBL16 defined by the first 16-bits of the prefix and
the checks the BLK256 Valid flag (Basic Node Format).

(0}

IT this flag is set then it accesses the address shown by BLK256
Pointer in the offset defined by the active 8 LSB of the prefix
and checks the Root Node Valid flag.

e If this flag is set then gives the Root Node Pointer address to

TR_INS
e Otherwise, it requests allocation of a single word from
MEM_HDLR and sets the Root Node Valid bit and the Root Node
Pointer with the allocated address. Moreover, the allocated
address in forwarded to TR_INS.
IT the BLK256 Valid flag is not set then it requests allocation of
a 256 word block and a single memory word. The BLK256 Valid flag
and the BLK256 Pointer are set in the TBL16 entry and the Root
Node Valid flag and Root Node Pointer are set inside the newly
allocated block in the address defined by the active 8 LSB of the
prefix. The address of the single memory word is given to TR_INS.

IT the incoming prefix has length 32 then it accesses the memory word
of TBL16 defined by the first 16-bits of the prefix and the checks the

BLK256 Valid flag (Basic Node Format).

(0]

IT this flag is set then it accesses the address shown by BLK256
Pointer in the offset defined by the bits 16-23 of the prefix and
checks the new BLK256 Valid flag. ITf this flag is set then it
accesses the address shown by BLK256 Pointer in the offset defined
by the active 8 LSB of the prefix and checks the Root Node Valid

flag.
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e If this flag is set then we have found the FlowlD of the prefix
and get it from the root node pointer field.

e If this is not set then we set it and put the incoming FlowlD
in the Root Node Pointer field.

o If the BLK256 valid flag is not set then it requests allocation of
two 256 word blocks. The BLK256 Valid flag and the BLK256 Pointer
are set in the TBL16 entry and next the BLK256 Valid flag and
BLK256 Pointer are set inside the newly allocated block in the
address defined by the bits 16-23 of the prefix. Inside the second
BLK256 in the offset defined by the 8 LSB of the prefix it sets
the Root Node Valid flag and puts the FlowlD in the Root Node
Pointer field.

7.3.3 TR_INS

TR _INS sub-block handles the actual prefix insertions in the appropriate root
nodes. This sub-block also provides the final internal ID for B2PC by checking if the
prefix already exists. The aim of this sub-block is to generate or update the existing
root nodes in order to incorporate the incoming prefix. TR _INS works on root nodes,
trie nodes and prefix nodes.

For the prefix to be inserted, TR _INS has first to find the subtrie number and
the prefix number in order to work on the bitmaps. The formulas for generating these
numbers have been discussed in subsection 5.1.4. Once these numbers have been
generated then an FSM examines the contents of the root node and follows the steps

shown below:

= If the RDesc field is 0 we have an empty node and we proceed to create
and node with optimized format. Hence, we set RDesc to 1, set the
Subtrie Number and the Prefix number with the generated values and put
the incoming FlowlD in the Prefix Flow ID field.
= |If the RDesc field is 1 we have an optimized node and have to proceed
to generate further nodes.
o If the existing Subtrie number matches with the generated one then
we allocate memory for a trie node and a prefix node. We generate
a Trie Bitmap with the appropriate bit set, link the trie node in
the Trie Node Pointer field and write it as a new root node, then
we generate a Prefix Bitmap and link the prefix node in the Prefix
Node Pointer of the trie node and finally put the Prefix Flow IDs
inside the prefix node in ascending order.
o If the existing Subtrie Number does not match with the generated
one then we allocate memory for two trie nodes of optimized
format. We generate a Trie Bitmap with the appropriate bits set,
link the trie nodes in the Trie node Pointer field and write it as
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a new root node, then we write In each trie node TDesc with 1 and
fill the Prefix Number and Prefix Flow ID fields.
= If the RDesc field is 2 we have a normal node and have to examine if
the bit number indicated by the generated subtrie number is set in the
existing Trie Bitmap.

o If this specific bit is set then we follow the Trie Node Pointer.
IT it has normal format, namely TDesc is O, then we check the
Prefix Bitmap.

e If the bit indicated by prefix number is set the we read the
Prefix Node Pointer in the appropriate offset and return the
new internal Flow ID.

e Otherwise, we set the specific bit in the Prefix Bitmap,
allocate space for the new prefix node and write the final
Prefix Flow ID in the proper position.

o |If TDesc is 1 then we have an optimized prefix node and we
allocate memory for the prefix node, generate the Prefix Bitmap,
link the prefix node and write the Prefix Flow IDs sorted in the
node.

o If the bit is not set in the Subtrie Bitmap then we set it and
allocate space for the new trie node that has optimized format. We
place the trie node in the proper position so as the trie nodes to
be sorted and write the appropriate data. We write TDesc with 1,
write the Prefix Number and the Prefix Flow ID.

7.3.4 BOS_LUP

BOS LUP sub-block handles the prefix lookups and implements the All
Prefix Match (APM) algorithm. For cost purposes we have implemented BOS with
sequential accesses in the tables and this sub-block visits all the tables one by one and
follows the links to BLK256 to find valid root pointers. Once BOS LUP finds an
active root node then it provides the address of the root node to TR LUP which
makes the actual lookup inside the trie nodes. The insert procedure has an FSM to

handle the following steps:
= Provide TR_LUP with the address of TBLO.
= Provides TR_INS with the address of the memory word inside TBL8 that
is defined by the first 8-bits of the prefix.
= Access TBL16 and
o if the Root Valid flag if set then it gives the Root Node Pointer
to TR_LUP.
o If the BLK256 Valid flag is set we follow the BLK256 Pointer and
access in the offset specified by the bits 16-23 of the prefix. If
Root Valid is set there we provide TR_LUP with the existing Root
Node Pointer. ITf BLK256 Valid flag is also set then we follow the
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BLK256 Pointer and access in the offset specified by the 8 LSB of
the prefix. ITf Root Valid is set there then we return the Flow ID

stored in the Root Node Pointer.

735 TR _LUP

TR_LUP sub-block handles the actual prefix lookups in the appropriate root
nodes. This sub-block provides the matching IDs for B2PC by checking if the prefixes
match. TR_LUP works on root nodes, trie nodes and prefix nodes. For a given value
to be matched, TR INS has first to find the candidate subtries and the prefixes
numbers in order to work on the bitmaps. The formulas for producing these numbers
have been discussed in subsection 5.1.4. Once these numbers have been produced
then an FSM examines the contents of the root node and follows the steps shown

below:
= If the RDesc field is 0 we have an empty node and therefore no
matches.
= If the RDesc field is 1 we have an optimized root node and have to
check if the Subtrie Number matches with one of the generated.
o If it matches then we check the Prefix Number with the four
candidate generated prefixes.
e If it matches then we return the Prefix Flow ID.
e Otherwise, we have no match.
o Otherwise, we have no match.
= If the RDesc field is 2 we have a normal root node and have to examine
the Subtrie Bitmap for the two specific bits set.
0 For those subtries that the bit in the Subtrie Bitmap is set we
follow the Trie Node Pointer.
e |If TDesc is 1 the we check the Prefix Number with the four
candidate and if one matches then we return the Prefix Flow ID.
o |If TDesc is 0 then we examine the Prefix Bitmap for the
four specific bits indicated by the candidate prefix
numbers.
o0 For every specific bit that is set the we follow the
Prefix Node Pointer in the appropriate offset and return
the Prefix Flow ID.

o |If neither bits are set we have no match.

7.3.6 BOS DEL

BOS_DEL sub-block handles all the prefix deletions in the appropriate tables
or BLK256 together with TR_DEL. In terms of functionallity this sub-block provides
the suitable root node pointer to TR _DEL which handles the final deletion in the trie
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data structures. Depending on the incoming prefix length BOS DEL accesses the

tables and reads the root node pointer. The delete procedure has an FSM to handle the

following series of actions:

IT the incoming prefix length is shorter that 8 then it provides

TR_DEL with the address of the single memory word TBLO.

IT the incoming prefix length is shorter that 16 then it provides

TR_DEL with the address of the memory word inside TBL8 that is defined

by the first 8-bits of the prefix.

IT the incoming prefix length is shorter that 24 then it accesses the

memory word of TBL16 defined by the first 16-bits of the prefix and

the checks the Root Node Valid flag (Basic Node Format).

o If this flag is set then gives the Root Node Pointer address to
TR_DEL.

o Otherwise, delete fails.

IT the incoming prefix length is shorter that 32 then it accesses the

memory word of TBL16 defined by the first 16-bits of the prefix and

the checks the BLK256 Valid flag (Basic Node Format).

o If this flag is set then it accesses the address shown by BLK256
Pointer in the offset defined by the active 8 LSB of the prefix
and checks the Root Node Valid flag.

e If this flag is set then it gives the Root Node Pointer address
to TR_DEL

e |If the flag is zero, delete fails.

IT the incoming prefix has length 32 then it accesses the memory word

of TBL16 defined by the first 16-bits of the prefix and the checks the

BLK256 Valid flag (Basic Node Format).

o If this flag is set then it accesses the address shown by BLK256
Pointer in the offset defined by the bits 16-23 of the prefix and
checks the new BLK256 Valid flag.

e If this flag is set then it accesses the address shown by
BLK256 Pointer in the offset defined by the active 8 LSB of the
prefix and checks the Root Node Valid flag. If this flag is set
then we have to reset the Root Node Valid flag and set the
contents of the Root Node Pointer field to zero. Otherwise,
delete fails.

e Otherwise, delete fails.

o |If the flag is zero, delete fails.

7.3.7 TR _DEL

TR _DEL sub-block handles the actual prefix deletions in the appropriate root

nodes. The aim of this sub-block is to deallocate or update the existing root nodes in
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order to remove the given prefix. TR_DEL works on root nodes, trie nodes and prefix

nodes.
For the prefix to be deleted, TR _DEL has first to find the subtrie number and

the prefix number in order to work on the bitmaps. The formulas for generating these
numbers have been discussed in subsection 5.1.4. Once these numbers have been

generated then an FSM examines the contents of the root node and follows the steps

shown below:
= If the RDesc field is 0 we have an empty node and delete fails.
= |If the RDesc field is 1 we have an optimized node and have to examine

the fields.
o If both the existing Subtrie number and the Prefix Number match

then we put zeros in the word.
o Otherwise, delete fails.
= If the RDesc field is 2 we have a normal node and have to examine if
the bit number indicated by the generated subtrie number is set in the
existing Trie Bitmap.

o If this specific bit is set then we follow the Trie Node Pointer.
If it has normal format, namely TDesc is 0, then we check the
Prefix Bitmap.

e If the bit indicated by prefix number is set, we reset it
and deallocate its space for the memory of the Prefix Node
Pointer by keeping the sorted order.

e |If TDesc is 1 and Prefix Number matches then we deallocate
the trie node, rearrange the trie nodes and reset the bit in
the Trie Bitmap of the root node.

e Otherwise, delete fails.

o Otherwise, delete fails.

7.4 PRO _CTL

PRO_CTL block is responsible to insert, delete and find the two possible
matches of the protocol field. When instructed, its FSM accesses PRO_TBL in the
memory address 0 to find a match for the wildcard specification and the memory
address defined by the incoming 8-bit protocol field value. The matches are sent to

the appropriate collection point (CLPT) and a finish signal is asserted to B2PC_CTL.
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7.5 CLPT

CLPT is the implementation of the collection point and gathers the results from
every single field search. CLPT keeps at most 33 FlowIDs (subsection 6.2.3)
internally in a memory, sorted in descending order and provides them to BL CTRL. It
provides the matching IDs in a show-ahead fashion and signals BL_ CTRL when all of
them have been read. CLPT does not dequeue the IDs upon reading and when all of
them have been read, it starts providing them from the beginning. Basically, CLPT is

a show-ahead circular buffer.

7.6 BL_CTRL

BL CTRL handles all the Bloom Filters, generates the permutations to be tested
and provides the final filter match. It performs the set membership queries and
resolves the FlowID by visiting the hash and rule tables. BL CTRL involves many
sub-blocks to accomplish several operations and its internal organization is depicted
in Figure 7-5. It reads the matched IDs from the 5 collections points with the proper
sequence in order to generate the permutations based on the descriptions of

subsections 6.2.3 and 6.2.6.

CLPT #1 -#2 - #3 -#4 - #5

BL_CTRL I I I I I

BL_MAIN
BL_INS BL_LUP BL_DEL

| Fe— |

A4

BLMUX N\ MEM_MUX /

N
IR |

DPBRAM #1 - #2 - #3 - #4 MEM_HDLR

Figure 7-5 BL_CTRL Internal organization
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Memory organization of Bloom Filters and Static Tables

The implementation of B2PC requires the Bloom Filters of the IP pair, the
Port pair and the Rules to be stored in memories inside the FPGA. According to the
design of the Bloom filters we partition the bit-vector of Rule Bloom filter into four
equal parts to access them in parallel. Moreover, the bit-vectors of IP and Port Bloom
filters are also split into two equal parts. Additionally all the existing bit-subvectors
need to be accessed in parallel. To achieve this parallelization and store these Bloom
Filters we keep on-chip four Dual Port Block RAMs (DPBRAM) of size 256x32.

Figure 7-6 illustrates how the bit-vectors of the Bloom filters are organized inside the

memories.

32 32 - 32— - 32—

0 L0 0
IP BF IP BF Port BF Port BF
Bit—Vector #1 Bit—Vector #2 Bil—Vector #1 Bit—Vector #2

128 128 128
Rule BF Rule BF Rule BF Rule BF
Bit-Vector #1 Bilt-Vector #2 Bit—-Vector #3 Bit-Vector #4
255 255 25 ] 255 ]

DPBRAM #1 DPBRAM #2 DPBRAM #3 DPBRAM #4

Figure 7-6 Bloom filter memory partitioning

All the memories are split into two parts and thus we have 128x32 = 4096 bits
for every bit-vector of the Bloom filters as it is required. The first part of each
memory is accessed by the first port and the second by the second port so as to have
parallel accesses. The hash functions provide a 12-bit value to indicate a specific bit
inside the bit-vector. The first 7-bits of the value can be used to identify one of the
128 memory words of each bit-vector and the last 5-bits define a specific bit from the
32 of each word.

B2PC has also some static tables to hold the internally represented rules
(RULES _TBL) , a hash table (HSH_TBL) to resolve the matched permutations and
several tables with counters to keep the reference counts of the BOS IDs and the
Bloom filters bit references. This kind of information is only known to BL CTRL
block which knows the final internal IDs, the Bloom filter bits and calculates their
reference counts. This information is stored in the first external SSRAM and
BL CTRL has an interface with the related memory handler. The first 32K memory
words of the first SSRAM are allocated for BOS #1 and therefore BL CTRL is
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assigned addresses below 32K. The additional memory words used by B2PC have
been discussed in subsections 6.2.2 and 6.2.4 and their organization inside the

SSRAM is shown in Figure 7-7.

= 36 bits
32768
RULES_TBL
(8192)
40960
HSH_TBL
(16384)
57344
Bloom Filters
Counters
(16384)
73728
BOS IDs
Counters
83968 (10240)

Figure 7-7 Organization of Static Tables

7.6.1 BL_MAIN
BL MAIN sub-block responsible for the central operation of BL CTRL and

involves an FSM to handle the requests for the insert, lookup and delete operations
defined by the same opcodes as in B2PC. For each operation there is a sub-block
responsible to complete it. BL INS is responsible for the inserts, BL LUP for the
lookups and BL_DEL for the deletes. Upon a reception of a command BL MAIN
generates a request to the appropriate block and sets the BL MUX and MEM_MUX
to output a specific block’s requests to the Bloom filters’ memory and the memory

handler.

7.6.2 BL_INS

BL INS sub-block has an FSM to handle all the programming of the Bloom
filters, save the internal rule representation in the RULES TBL, set HSH TBL values
and update the reference counters. When all single field values are inserted in BOS
engines and protocol table then BL _INS calculates the hashing functions on the IDs

and the following steps are performed:
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= the IDs of each field of the rule are then inserted in the RULES TBL,
= the appropriate ID counters are incremented,

= HSH_TBL values are set,

= Bloom Filters” bits are set,

= Bloom Filters” counters are incremented.

7.63 BL_LUP

BL LUP sub-block performs all the set membership queries in the Bloom
Filters and generates all the permutations. BL _LUP involves four FSM’s to achieve
the parallel accesses in the Bloom Filters. We have one FSM for the IP pair queries,
one for the Port pair queries, one for the Rule queries and the main FSM that resolves
the final FlowID.

The first FSM performs the queries in the IP pair Bloom filter. The
permutations are generated by reading the Source IP ID from the appropriate
collection point and while keeping this value steady, we read sequentially all the
values from the Destination IP collection point. When these finish then we read the
next value from the Source IP collection point and start from the beginning of
Destination IP IDs. For every permutation the IP pair Bloom filter is probed and when
a match occurs then the couple of IDs is sent to the FSM that handles the Rule Bloom
filter queries. The Port pair Bloom filter queries and permutations are performed in
the same way as the IP pair but now the Source and Destination Port collection points
are read.

The FSM that handles the Rule Bloom Filter queries waits for matches from
both IP and Port pair FSM’s and when both provide values then these values along
with the two possible IDs of the Protocol field are probed in the Rule Bloom Filter. If
a query is successful then the 5 IDs are sent to the main FSM to resolve the final
FlowID or indicate a false positive.

The main FSM uses the 5 ID values that matched and visits the hash table to
get the possible Rule FlowID. The values that are found in the specific memory word
of HSH_TBL indicate the possible FlowIDs. For the found FlowIDs then this FSM
visits RULES TBL and checks if the IDs values located there match with the 5
provided IDs. If all match then we have finally found a match and return this FlowID,
otherwise if we have no match then it is a false positive and the FSMs that probe the

Bloom Filters continue looking for matches.
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7.64 BL_DEL

BL DEL sub-block has an FSM to handle the updates of the Bloom filters, to
remove rules from RULES TBL, to reset HSH TBL values and to update the
reference counters. When a FlowlID is to be deleted, all the IDs from RULES TBL
are read, the Bloom hashing functions are calculated and the following steps are

performed:

= all the IDs counters are decremented and if a counter is decremented
to zero then a delete command is sent to the appropriate BOS engine to
be removed.

= all the Bloom Filters” bit counters are decremented and if a counter
is decremented to zero then the corresponding Bloom bit is cleared.

= the related HSH_TBL value is cleared.

= the entry in RULES_TBL is cleared.

7.7 MEM_HDLR and MEM_CTRL

The MEM_HDLR sub-block provides the dynamic memory management in
our system and supports the variable size blocks. MEM_HDLR is the intermediate
layer between the sub-blocks and the memory controller (MEM_CTRL) and supports
requests for allocation and deallocation of variable size blocks. Requests for reads or
writes in the memory are immediately forwarded to the memory controller
MEM_CTRL.

The design of MEM_HDLR is already described in section 4.4 and here we
have the same configuration but we support many different sizes of memory word
blocks. We support blocks of 1,2,4,8 and 18 words. Moreover we provide the ability
to allocate the big 256-word memory blocks. The design of MEM_CTRL is already

described in subsection 4.5 and here we use the same design.
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7.8 Implementation Analysis

In this subsection we provide an analysis of the block latencies and an

estimation of the implementation cost for the reference design.

7.8.1 Latency Analysis

We calculate the minimum and the maximum number of clock cycles required
by each block to complete its operation. Many of the blocks have variable latencies
which depend on the access patterns and the data stored in the data structures.
Moreover, the blocks that access the external SSRAMs for the stored data structures
have to also suffer the latency of our memory controller. In Table 4-2 we present the

latency per block of B2PC.

Min Latency | Max Latenc

Block Name (clock cycles); (clock cycles))l
B2PC CTRL 1 -
BOS CTRL 1 -
BOS INS 1 7
BOS LUP 4 8
BOS DEL 1 7

TR INS 3 23

TR LUP 2 22

TR DEL 3 22
PRO CTL 2 2
CLPT 0 0

BL MAIN 1 -

BL INS 38 38

BL LUP 8 -

BL DEL 35 35
MEM HDLR 0 3
MEM CTRL 1 2

Table 7-2 B2PC Blocks Latencies

The fact that the memory controller has latency 2 cycles (section 4.5) for a read
operation in the external SSRAM significantly affects the performance of the blocks
that perform sequential accesses to the memory. Insert, lookup and delete operations
are high depending on the read data to decide the address of the next memory access
and thus the 2 cycle latency of the memory controller is continuously introduced.
Additionally, some blocks like BL LUP have unspecified maximum latency since
they perform iterative operations on the collected data and depend on every case

specifically. Note also that BOS LUP occupies TR_LUP at most 4 times therefore the
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total latency of a BOS lookup requires at minimum 6 clock cycles and at maximum
92 clock cycles. According to the number of memory accesses we calculated in
subsection 6.3.4 we need for a BOS lookup 18,4 clock cycles on average and for a
Bloom lookup (BL LUP) 9,4 clock cycles. In total the average lookup time is
approximately 28 clock cycles.

7.8.2 Hardware Cost Analysis

We have used VHDL to describe the design and the results presented are the
reports from the synthesis tools. We have synthesized the design using the Synopsys
Design Compiler[35] which is the most widely used synthesis tool. We have used
UMCs 0.13um technology library to estimate the area and the frequency of the
design. Moreover, we used the XilinX ISE tool to implement and port the design in
the FPGA.

The synthesis tool for the ASIC flow indicates that the maximum working
frequency of our design is 200Mhz.Using the synthesis tool we calculated the number
of flip-flops contained in our design and we present them per high level block in
Table 7-3. Since the final design has many instances of the same blocks, we also

calculate the total number of flip-flops.

Block Block Description Number of Flip-Flops
BOS BOS engine 624
PRO CTL Control of Protocol Table 14
CLPT Collection Point 19
BL CTRL Bloom Control 191
MEM HDLR | Memory Handler 662
MEM CTRL | Memory Controller 43
B2PC CTRL [ Control Block of B2PC 219
Total 5835

Table 7-3 Flip-Flop count per block

The area of the total design and the equivalent gate count is presented in Table 7-4.
The equivalent gate count is calculated by considering how many 2-input NANDs can

be accommodated in this area.

Components Arezzl Equivalent
(mm~) | NAND Gates
Combinatorial 0,595 115K
Non-Combinatorial | 0,250 48K
Memories 0,456 88K
Total 251K

Table 7-4 B2PC area and gate count
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The ISE tool of the Xilinx FPGA flow shows that the maximum working
frequency of our design is 75SMhz. The tool reports the occupied resources after a full
back-end FPGA flow while occupying optimizations to remove redundant logic or

replicate logic to improve speed. The final results are shown in Table 7-5.

Resource Resource count

Used 4 input LUTs | 30867
Slice Flip Flops 5390

Table 7-5 FPGA resource allocation

7.8.3 B2PC Hardware Performance

Considering that we have a 7SMHz clock, the external memories work on the
same frequency and the average lookup time is 28 clock cycles then, the FPGA
prototype design of B2PC supports 2,7 Mpps.
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Chapter 8

Contributions and Future Work

8.1 Summary of Contributions

We have extensively studied packet classification, the longest prefix matching
problem and the related literature and worked on several issues of them. We designed,
simulated and proposed classification solutions that exploit the most important
information existing in the packet headers. We have designed and implemented
hardware schemes that can support high speed packet classification based on the
packet’s headers of network layers 2, 3 and 4.

In Chapter 3 we propose a classification solution for the MAC layer of the
Ethernet networks. We used a hashing scheme and an internal replacement of MAC
Vendor IDs to compact the MAC address tables and support high speed decisions.
The proposed hardware scheme, Hash Based Classification Engine (HBCE), uses
modest amount of memory and a single memory to store and retrieve its data
structures. When HBCE is implemented with on-chip memories it can support
aggregate speeds of more than 50 Gbps. In Chapter 4 we fully describe a reference
hardware implementation of HBCE that can be implemented in FPGAs.

Chapter 5 presents our solution for the Longest Prefix Matching (LPM) problem
that mainly applies in route lookups. We developed an innovative data structure that
uses bitmaps to compact the prefixes and retrieve them in relatively high speed. When
the proposed solution, Bitmap Oriented Strides (BOS) is implemented on-chip with
parallel memory arrays it can support destination route lookups of more than 240
Million packets per second, translated into 80Gbps.

This thesis also proposes a novel packet classification scheme for the IP 5-tuple
in Chapter 6. The proposed solution, Bloom Based Packet Classification (B2PC),
approaches the packet classification problem in a decomposed manner, where single

field matches of each packet field are combined to identify the matching rule. B2PC
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uses the BOS solution for LPM to provide efficient single field independent matches
of 5D classification rules. Moreover, it represents internally the 5D classification rules
and stores them in Bloom filter data structures so as to provide fast and efficient set
membership queries. On-chip implementation of B2PC with parallel BOS engines
provides classification of packets at rates greater than 8Gbps for more than 4000
rules. In Chapter 7 we fully describe a reference hardware implementation of B2PC

that can be implemented in FPGAs.

8.2 Future work

Our solution to the Longest Prefix Matching, BOS, is strictly restricted to find
prefix matches for IPv4 addresses. It will be rather useful to examine whether the data
structures involved in BOS could be used to support IPv6 [3] routing lookups. The
IPv4 addresses are 32-bits long and the IPv6 addresses are defined to be 128-bit.
These 128-bit addresses could be possibly split into 32-bit segments and follow a
decomposition solution similar to that proposed for B2PC. Hence, we may use 4
parallel 32-bit BOS engines to examine each segment independently and combine all
the intermediate results. Moreover, another interesting point is how the BOS hardware
implementation can scale in respect of state-of-the-art deep submicron -chip
technologies.

On the other hand, our packet classification solution (B2PC), was designed to
support a few thousand rules and this restricts its scalability. However, the arrival of
new network protocols for dynamic resource reservation, like RSVP [45], can
increase the number of rules to hundreds of thousands. Hosting such a large number
of rules demands altering many parameters of the scheme, like the Bloom filters’ sizes
and the associated memory sizes and this should be extensively studied. Moreover, we
can study how B2PC could support additional packet header fields beyond the
standard IP 5-tuple. Adding more fields in B2PC requires more parallel single field
searches which would naturally increase the number of intermediate results. Handling
and combining an increased number of intermediate results can become a serious
threat to the performance our scheme. The possible number of single field
permutations could be a serious bottleneck and may require more sophisticated

combination techniques.
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