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Abstract 
 

Switches and routers are the most important building blocks of today’s 

networks and the Internet. The wide spread and growth of the Internet imposes high 

performance and efficiency in the network infrastructures in order to support the QoS, 

demanded by the state-of-the-art network applications, and the ever increasing 

network traffic. This thesis primarily addresses the searching tasks performed by 

Internet routers and switches in order to forward packets and provide differentiation 

of services to packets belonging to particular traffic flows. Considering that these 

searching tasks must be performed in a per packet basis, the speed and effectiveness 

of the solutions to these problems determines the efficiency of the overall networks. 

We have proposed novel hardware based classification schemes to support QoS 

in multiple network layers and meet today’s high speed links’ requirements. Initially, 

we propose a Hash Based Classification Engine (HBCE) to address the problem of 

classification in the network MAC layer (Data Link Layer). Moving to routers we 

developed an innovative scheme, Bitmap Oriented Strides (BOS), which faces the 

Longest Prefix Matching problem and supports fast lookups by efficiently managing 

the routing tables. Striving to enhance the granularity of service differentiation we 

propose a 5-dimentional packet classification scheme that leverages packet fields 

from higher network layers. We developed the Bloom Based Packet Classification 

(B2PC) scheme which is an innovative approach for decomposed packet classification 

that involves Bloom filter data structures. 

The proposed implementation of the Hash Based Classification Engine 

(HBCE), can support up to 64K MAC address rules at aggregate speeds of more than 
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50 Gbps using only 540KB of memory. Moreover, the hardware implementation of 

Bitmap Oriented Strides (BOS) can handle more than 90K prefixes while requires 

only 600KB of memory and allows routing decisions for more than 240 million 

packets per second. Finally, a hardware realization of the Bloom Based Packet 

Classification (B2PC) handles more than 4000 rules by involving 530KB of memory 

and can classify packets at rates greater than 8Gbps. 

 

Keywords: packet classification, routing lookups, longest prefix matching 

Thesis Supervisors: Prof. Manolis Katevenis – Dr. Yiannis Papaefstathiou 
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Περίληψη 
 

Οι µεταγωγείς και οι δροµολογητές είναι τα πιο σηµαντικά δοµικά στοιχεία των 

σηµερινών δικτύων και του ∆ιαδικτύου. Η µεγάλη εξάπλωση και ανάπτυξη του 

∆ιαδικτύου απαιτεί υψηλές επιδόσεις και ικανότητες από τις δικτυακές υποδοµές 

ώστε να υποστηρίξει την ποιότητα των υπηρεσιών, που απαιτείται από τις δικτυακές 

εφαρµογές τελευταίας τεχνολογίας, και την συνεχή αύξηση της δικτυακής κίνησης. Η 

εργασία αυτή ασχολείται κυρίως µε τις λειτουργίες αναζήτησης που εκτελούνται από 

τους δροµολογητές και τους µεταγωγείς του δικτύου µε σκοπό να προωθήσουν 

πακέτα και να παρέχουν διαφοροποιηµένες υπηρεσίες στα πακέτα που ανήκουν σε 

ιδιαίτερες ροές κίνησης. Θεωρώντας ότι αυτές οι λειτουργίες αναζήτησης πρέπει να 

διεκπεραιωθούν για κάθε πακέτο, η ταχύτητα και η αποτελεσµατικότητα των λύσεων 

σε αυτά τα προβλήµατα καθορίζει την απόδοση των δικτύων. 

Προτείνουµε καινοτόµα σχήµατα κατηγοριοποίησης πακέτων για υλικό τα 

οποία υποστηρίζουν ποιότητα υπηρεσίων σε πολλαπλά στρώµατα δικτύου και 

ικανοποιούν τις υψηλές ταχύτητες των σηµερινών συνδέσµων. Αρχικά, προτείνουµε 

µια Μηχανή Κατηγοριοποίησης Βασισµένη σε ∆ιασπορά (ΜΚΒ∆) για να διεκπεραιώσει 

το πρόβληµα της κατηγοριοποίησης στο στρώµα δικτύου MAC ( Στρώµα Σύνδεσης 

∆ικτύου). Για τους δροµολογητές αναπτύξαµε ένα καινοτόµο σχήµα, ∆ρασκελιές 

Προσανατολισµένες σε Bitmaps (∆ΠΒ), το οποίο αντιµετωπίζει το πρόβληµα του 

Ταιριάσµατος Μεγίστου Προθέµατος και υποστηρίζει γρήγορες αναζητήσεις, 

διαχειριζόµενο αποδοτικά τους πίνακες δροµολόγησης. Προσπαθώντας να πετύχουµε 

καλύτερη λεπτοµέρεια στις διαφοροποιηµένες υπηρεσίες προτείνουµε ένα 5-διάστατο 

σχήµα κατηγοριοποίησης πακέτων το οποίο χρησιµοποιεί πεδία πακέτων από 
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υψηλότερα στρώµατα του δικτύου. Αναπτύξαµε το σχήµα Κατηγοριοποίηση Πακέτων 

Βασιζόµενη σε φίλτρα Bloom (ΚΠΒ2) το οποίο είναι µια καινοτόµος προσσέγιση για 

αποσυνθετική κατηγοριοποίηση πακέτων η οποία περιλαµβάνει δοµές δεδοµένων 

τύπου Bloom φίλτρων. 

Η προτεινόµενη υπολοίηση για την Μηχανή Κατηγοριοποίησης Βασισµένη σε 

∆ιασπορά (ΜΚΒ∆) µπορεί να υποστηρίξει 64 χιλιάδες κανόνες διευθύνσεων MAC  σε 

συνολικές ταχύτητες µεγαλύτερες από 50 Gbps χρησιµοποιώντας µόνο 540KB 

µνήµης. Επιπλεόν, η υλοποίηση σε υλικό του σχήµατος ∆ρασκελιές 

Προσανατολισµένες σε Bitmaps (∆ΠΒ) µπορεί να διαχειριστεί περισσότερα από 90 

χιλιάδες προθέµατα χρησιµοποιώντας µόνο 600KB µνήµης και επιτρέπει αποφάσεις 

δροµολόγησης για περισσότερα από 240 εκατοµµύρια πακέτα ανα δευτερόλεπτο. 

Τέλος, µια υλοποίηση υλικού του σχήµατος Κατηγοριοποίηση Πακέτων Βασιζόµενη 

σε φίλτρα Bloom (ΚΠΒ2) διαχειρίζεται περισσότερους από 4000 κανόνες 

χρησιµοποιώντας 530KB µνήµης και µπορεί να κατηγοριοποιεί πακέτα σε ρυθµούς 

υψηλότερους από 8 Gbps. 

 

Επόπτες Εργασίας: Καθ. Μανόλης Κατεβαίνης – ∆ρ. Ιωάννης Παπαευσταθίου 
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1 Chapter 1 

 
Introduction 

 
Nowadays, the Internet has emerged as a global communications service of 

continuously increasing importance. The ever expanding scope of Internet users and 

applications require the network infrastructures to exchange large volumes of 

information, augmenting the already challenging performance constraints. This thesis 

addresses the searching tasks performed by Internet routers in order to forward 

packets and apply network services to packets belonging to particular traffic flows. 

Considering that these searching tasks must be performed for each packet traversing 

the router, the speed and efficiency of the solutions to these problems determines the 

performance of the router, and hence the entire Internet.  

1.1 Internet and Networking 
The building blocks of the Internet are essentially interconnected networks, 

each consisting of heterogeneous hosts, links, and routers. Hosts produce and 

consume packets, or datagrams, which contain chunks of data - a part of a file, 

digitized voice samples, etc. Hosts may be personal computers, workstations, servers 

and network enabled electronic appliances such as Personal Digital Assistants (PDAs) 

or mobile phones. Packets indicate the sender and receiver of the data similar to a 

letter in the postal system. Links connect hosts to routers, and routers to routers. Links 

may be twisted-pair copper wire, fiber optic cable or a variety of wireless radio 

technologies. The role of routers is to switch packets from incoming links to the 

appropriate outgoing links depending on the destination of the packets. Packets may 

traverse many links, called hops, in order to reach its destination. Due to the 

impermanent nature of network links (failure, congestion, additions, removals), 

routing protocols allow the routers to continually exchange information about the state 
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of the network so as to decide the forwarding of packets destined for a particular host, 

network, or sub-network.  

Ethernet Networks  

Ethernet is the dominant networking protocol used in Local Area Networks 

(LANs) over the last decades. It is the most widely adopted protocol in the physical 

and data link layer of the network. It defines 48-bit addresses, called MAC addresses, 

that are unique for each network interface, and uses them in order to manage the 

circulation of packets in the physical medium. Ethernet’s speeds started from 10 Mbps 

and eventually evolved to 100Mbps, 1Gbps and recently to 10Gbps. 

IP and TCP Protocols 

The original Internet protocol comprises mainly of two protocols: the Internet 

Protocol (IP) and the Transmission Control Protocol (TCP). The primary function of 

the Internet Protocol (IP) is to provide an end-to-end packet delivery service. This 

task is accomplished by including information regarding the sender and receiver 

inside each packet transmitted through the network. IP protocol specifies the format of 

this information which is prepended to the content of each packet, namely the packet 

header. In order to uniquely identify Internet hosts, each host is assigned an Internet 

Protocol (IP) address. Currently, the vast majority of Internet traffic utilizes Internet 

Protocol Version 4 (IPv4) [1] which assigns 32-bit addresses to Internet hosts. As 

shown in Figure 1-1, the IPv4 header of packets includes the IP address of the source 

and destination host and many other important fields such as the protocol which 

specifies the type of transport protocol used by the sending application. The type of 

transport protocol determines the format of the transport protocol header following the 

IP header in the packet. 

The second protocol produced by the original Internet Architecture project, the 

Transmission Control Protocol (TCP), provides a reliable transmission service for IP 

packets. Through the use of small acknowledgment packets transmitted from the 

destination host to the source host, TCP detects packet loss and regulates the 

transmission of packets in order to adjust to network congestion. When the source 

host detects a packet loss, it retransmits the lost packet or packets. At the destination 

host, TCP provides in-order delivery of packets to higher level protocols or 

applications. After the initial development of TCP, a third protocol, the User 
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Datagram Protocol (UDP), was added to provide additional flexibility. UDP 

essentially allows applications or higher level protocols to control the transmission 

behaviour. For example, a streaming video application may wish to ignore packet 

losses in order to prevent large breaks in the video stream caused by packet 

retransmissions. Typically, the TCP and UDP transport protocols identify applications 

using 16-bit port numbers carried in the transport header as shown in Figure 1-1. 

 
Figure 1-1 IP header format 

Internet Addressing 

IPv4 addresses were allocated to organizations in contiguous blocks with the 

intention that all hosts in the same network share a common set of initial bits. This 

common set of initial bits is referred to as the network address or prefix and the 

remaining set of bits is called the host address. This allocation strategy provided 

decentralized control of address allocation and each organization was free to make 

allocation decisions for the addresses within its assigned block. As shown in Figure 

1-2, IPv4 addresses were originally divided into classes, each supporting different 

sizes of hosts: 

• Class A (16 million hosts),  

• Class B (64 thousand hosts), and  

• Class C (254 hosts).  

• Class D addresses for multicast (one-to-many transmission) 

• Class E reserved addresses. 

Most organizations which required a larger address space than Class C were 

allocated a block of Class B addresses; however their network nodes are assigned only 
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a small portion of the addresses. This waste of available address space combined with 

the explosive growth of the Internet resulted in shortage of unassigned IP addresses. 

Classless Inter-Domain Routing (CIDR) was introduced in order to prolong the life of 

IPv4 [2]. CIDR essentially allows the “network” part of the address to be an arbitrary 

length prefix of the IP address, thus a network’s address space may span multiple 

Class C networks. CIDR also allows routing protocols to aggregate network addresses 

in order to reduce the amount of packet forwarding information stored by each router. 

The wide adoption of CIDR by the Internet community has slowed the deployment of 

a more permanent solution, Internet Protocol Version 6 (IPv6) [3]. 

 
Figure 1-2 Class Based Internet Addressing 

1.2 QoS in Ethernet 
Ethernet is, by far the most common network, has the highest number of 

installed ports and provides great cost-performance ratio and thus it is making a 

breakthrough in MAN and WAN networks. The deployment of Gigabit Ethernet 

networks and their use beyond the tight borders of LANs motivated the development 

of QoS mechanisms in the MAC layer of Ethernet networks such as the VLAN 

scheme [4]. These QoS mechanisms require identification of network flows and the 

classification of Ethernet packets according to their MAC addresses, VLAN IDs or 

port numbers. The length of the MAC addresses, namely 48-bits, is what makes the 

decisions more difficult since exact matches in such a big value it not a trivial task. 

The advantage of Ethernet networks and equipment is their low cost and thus the 

classification solutions should also be cost efficient. 
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1.3 Longest Prefix Matching 
The primary task of routers is to forward packets from input links to the 

appropriate output links. In order to do this, Internet routers consult a route table 

containing a set of network addresses together with the associated output link, or next 

hop, for packets destined for each network. Entries in the route tables change 

dynamically according to the state of the network and the information exchanged by 

routing protocols. The task of resolving the next hop from the destination IP address is 

commonly referred to as route lookup or IP lookup. Finding the network address 

given a packet’s destination address would not be difficult if the early Internet 

Protocol (IP) address hierarchy was kept. A simple lookup in three tables, one for 

each Class of networks, would be sufficient. However, the wide adoption of CIDR 

allows the network addresses in route tables to have variable lengths (prefixes) and 

thus performing a search for every possible network address length is not trivial. If we 

store all the variable-length network addresses in a single table, a route lookup 

requires finding the longest matching prefix in the table for the given destination 

address. 

A prefix is a set of leftmost bits of a key value, the IP destination address in the 

case of route lookups. The key values that share a common prefix have the same 

contiguous set of bits starting at the most significant bit. Given a search key x of size 

b bits, Longest Prefix Matching (LPM) is a search technique which selects the prefix 

pi in the set of prefixes P, such that pi matches x and pi  has the most specified bits. 

Prefixes can be represented by simply using the * character to denote the end of the 

valid bits in the prefix. An example of Longest Prefix Matching (LPM) for a 10-bit 

search key is illustrated in Figure 1-3. The three shaded prefixes match the search key, 

but 1000011* is the longest matching prefix. The throughput of an Internet router 

essentially depends on the speed that Longest Prefix Matching (LPM) operation can 

be performed.  
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Figure 1-3 Longest Prefix Match Example 

1.4 The Packet Classification Problem 
If an Internet router is to provide more advanced services than packet 

forwarding, it must perform more fine grained flow identification. The process of 

identifying the packets belonging to a specific application session or group of sessions 

between a source and destination host or sub-network is typically referred as the 

packet classification problem. The route lookup problem may be also viewed as a sub-

problem of the more general packet classification problem. Applications for Quality 

of Service, security, and monitoring typically operate on flows, thus each packet 

traversing a router must be classified in order to be assigned a flow identifier, FlowID.  

Packet classification requires searching a table of filters for the highest priority 

or the most specific filter that matches the packet. Filters correlate a flow or set of 

flows to a FlowID. Note that filters are also referred as rules in the packet 

classification literature. Filters contain multiple field values that specify an exact 

packet header or a set of headers and the associated FlowID for packets matching the 

corresponding field values. The type of field values are typically prefixes for IP 

address fields, an exact value or wildcard1 for the transport protocol and ranges for 

port numbers. An example filter set is shown in Table 1-1. In this simple example, 

filters contain field values for four packet header fields: 8-bit source (SA) and 

destination addresses (DA), transport protocol (PRO), and a 4-bit destination port 

number (PORT). The packet fields most commonly used for packet classification are 

                                                 
1 Wildcards are used when we don’t specify a value and want to represent all the possible values. The 
symbol used for wildcards is *. 
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also referred as the IP 5-tuple and include the 8-bit protocol, 32-bit source address, 

32-bit destination address from the IPv4 header and the 16-bit source port and 16-bit 

destination port from the TCP and UDP transport protocol headers.  

SA DA PORT PRO FlowID
11010010  *  [3:15]  TCP  1 
10011100  *  [1:1]  *  2 
101101*  001110*  [0:15]  *  3 
10011100  01101010 [5:5]  UDP  4 
*  *  [0:15]  ICMP 5 
100111*  011010*  [3:15]  *  6 
10010011  *  [3:15]  TCP  7 
*  *  [3:15]  UDP  8 
11101100  01111010 [0:15]  *  9 
111010*  01011000 [6:6]  UDP  10 
100110*  11011000 [0:15]  UDP  11 
010110*  11011000 [0:15]  UDP  12 
01110010  *  [3:15]  TCP  13 
10011100  01101010 [0:1]  TCP  14 
01110010  *  [3:3]  *  15 
100111*  011010*  [1:1] UDP 16 

Table 1-1 Example of a filter set 
 
 
 

The packet classification problem may be stated formally as follows:  

Given a packet P containing fields Pj and a collection of filters F 

with each filter Fi containing fields j
iF , select the highest priority or the 

most specific filter from the set , where for each filter ∀j : j
iF  matches Pj. 

 

Consider the example of searching Table 1-1 for the best matching filter and 

for a packet with the following header field values:  

• SA: 1001 1100  

• DA: 0110 1010  

• PORT: 5  

• PRO: UDP  

The filters with FlowIDs 4, 6 and 8 match the packet, but FlowID 4 is the most 

specific filter in all the fields. Hence, the search should return FlowID 4. 
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Packet Classification Challenges 

Computational complexity is not the only challenging aspect of the packet 

classification problem. The increasing traffic in the Internet backbone travels over 

links with transmission rates in excess of one billion bits per second (1 Gb/s). Current 

generation fiber optic links can operate at over 40 Gb/s. The combination of 

transmission rate and packet size define the throughput, in terms of packets per 

second, routers must support. The majority of the Internet traffic utilizes the 

Transmission Control Protocol which transmits 40 byte acknowledgment packets. In 

the worst case, a router could receive a long sequence of TCP acknowledgments, 

therefore conservative router architects set the throughput target based on the input 

link rate and 40 byte packet lengths. For example, supporting 10 Gb/s links requires a 

throughput of 31 million packets per second per port. Modern Internet routers contain 

tens to thousands of ports. In such high-performance routers, route lookup and packet 

classification is performed on a per-port basis. 

1.5 Contributions of this work 
Within this work we have studied the classification tasks required by the 

modern networks and proposed several hardware solutions to meet the delay sensitive 

searching tasks required by the network infrastructures. We proposed a classification 

engine for the MAC layer of the Ethernet networks which uses the techniques of 

hashing and internal replacement of MAC Vendor IDs; Hash Based Classification 

Engine (HBCE) compacts the MAC address tables and supports high speed decisions 

using a modest amount of memory. Moreover we proposed a solution for the Longest 

Prefix Matching (LPM) problem and developed an innovative scheme; Bitmap 

Oriented Strides (BOS) uses bitmaps to compact the prefixes and reaches routing 

decisions in very high speeds. We have also proposed a novel packet classification 

scheme for the IP 5-tuple case; Bloom Based Packet Classification (B2PC) uses our 

BOS solution to decompose multiple-field packet classification into single fields and 

combine them in an efficient way by leveraging Bloom filter data structures. 

 



CHAPTER 1. INTRODUCTION 9
 

 

1.6 Outline of the thesis 
The remainder of the thesis is organized as follows. Chapter 2 provides an 

overview of the existing single field search techniques, including Longest Prefix 

Matching (LPM) techniques and a survey of multi field searching solutions that 

address the packet classification problem. Chapter 3 presents a classification scheme 

targeted to MAC Layer of Ethernet networks while a reference hardware design of 

this scheme is described in Chapter 4. In Chapter 5 we present BOS which is a multi-

bit trie algorithmic solution to the Longest Prefix Matching problem. Chapter 6 

presents our algorithm for decomposed packet classification, B2PC which utilizes 

Bloom filter data structures to achieve efficient packet processing. A reference 

hardware implementation of B2PC is described in Chapter 7. Finally, we provide a 

summary of the contributions and a discussion of future work in Chapter 8. 
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2 Chapter 2 

 
Related Work 

 
In this chapter we present the major algorithms and techniques presented in 

literature to address the problem of packet classification. We provide an overview of 

the single field searching techniques, including the longest prefix matching and other 

types of searches dictated by packet classification. Further, we present the most 

important algorithms and solutions for multi field searching that are actually used in 

packet classification. 

2.1 Single Field Searching Techniques 
A variety of searching problems naturally arise in packet classification due to 

the structure of packet filters. As discussed in Chapter 1, filter fields specify one of 

the three different match conditions on the corresponding packet header fields: a fully 

specified value or exact matching, partially specified value or prefix matching, a range 

of values or range matching. In this subsection, we provide a summary of the existing 

algorithmic solutions to these three types of search problems.  

2.1.1 Exact Matching  

The simplest form of exact matching is the set membership query: determine 

whether key x belongs to the set of keys X. Often we wish to store associated 

information with each key xi ∈ X such as identifiers or additional information. In such 

cases, a search where x ∈ X returns not only a “yes” for the membership query, but 

also the information associated with the matching entry. Exact match search problems 

naturally arise in packet classification when filters examine packet fields such as the 

MAC address in the Data Link Layer. Due to the constraints on exact match searches 

in the networking context, namely the size of the key sets and the speed at which the 
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search must be performed, non trivial data structures must be used for these 

applications.  

We describe the two classical data structures that attempt to minimize the 

number of memory accesses per search, B-trees and hash tables. Both data structures 

are capable of supporting set membership queries as well as storing additional 

information with each key. We also provide a brief introduction to Bloom filters, a 

data structure designed to efficiently represent a set of keys.  

2.1.1.1 B-Trees  

B-Trees were originally designed to limit the number of accesses to direct 

access storage units such as disks [5]. The reduction in I/O operations is achieved by 

organizing keys in a tree data structure where the nodes of the tree may have many 

children. The maximum number of children of each node is referred as the degree of 

the tree. The number of keys stored in any tree node (except the root node) is bounded 

by the minimum degree of the B-Tree. Specifically, each node in the tree must contain 

at least (B − 1) keys and at most (2B − 1) keys, where B ≥ 2.  An example of a B-Tree 

storing the integer multiples of three is shown in Figure 2-1. The keys stored in a node 

are arranged in non-decreasing order and each internal node also stores a set of 

pointers between the keys. The child nodes that store keys greater than the parent key 

are pointed by the parent’s “left” pointer and the children with value less or equal to 

the parent key are pointed by the parent’s “right” pointer. Finally, the height h of a B-

Tree containing n keys is bounded by:  

2
1log +

≤
nh B  

 
Figure 2-1 Example B-Tree data structure 

2.1.1.2 Hashing 

Hashing is a technique that can provide excellent average performance when 

the number of keys, n, in the set X is much less than the maximum number of possible 
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keys K. Assume a set X that contains 100 keys where the keys may take any value in 

the range [0 : 65535], i.e. a 16-bit unsigned integer. We could simply allocate a table 

with 65,536 entries and use the value of the key x as an index into the table, but 

obviously this is very wasteful. This technique, direct addressing, is only efficient 

when the number of keys n in the set X approaches the number of possible key values 

K.  

The classical solution to this problem is to map the key value x to a narrower 

range of values that can be used to index a smaller table. In order to perform the 

mapping function, a hash function, h(x), is computed on the key value. The resulting 

value is used as an index into a hash table of size [0: m − 1] where m<<K. Ideally, 

the hash function uniformly distributes all n keys across the m slots in the hash table. 

This search method, called hashing, has been extensively studied and is given 

thorough treatment by a number of computer science textbooks [5].  

There is a variety of methods for constructing hash functions. Often, the low-

order bits of key values are uniform in distribution such that the hash index may be 

constructed by selecting the low order bits of the key. Such hash functions are trivial 

to construct in hardware. Figure 2-2 illustrates an example of using the four low-order 

bits of the key as a hash index for the same integer multiples of three used in the B-

Tree example in Figure 2-1.  

Note that when n is greater than m or the distribution of keys across the hash 

table is not uniform, then collisions occur. In our example, we use a common collision 

resolution technique called chaining, where keys that map to the same hash index 

form a linked list. The ratio of keys to hash table slots is referred to as the load factor, 

n
ma =

 
, which specifies the average number of keys in a chain. Thus, the average 

number of probes in a hash table where chaining is used for collision resolution is 1 + 

α. Moreover, there is a variety of much more sophisticated hash functions and 

collision resolution techniques presented literature and in textbooks [5]. 
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Figure 2-2 Hash function example 

2.1.1.3 Bloom Filters 

A Bloom filter is a data structure used for efficiently representing a set of 

keys. Via implicit representations of the keys in the set, the data structure supports 

membership queries but is not capable of storing additional information for each 

stored key. This technique was formulated by Burton H. Bloom in 1970 [6], and has 

received renewed attention in the research community for various applications such as 

web caching, intrusion detection, and content based routing [7].  

A Bloom filter is essentially a bit-vector of length m where a key x is 

represented by a subset of the m bits. Given a set of keys X with n members, we insert 

a key xi ∈ X into the Bloom filter as follows. We compute k hash functions on xi, 

producing k values in the range [0 : m−1]. Each of these values addresses a single bit 

in the m-bit vector, hence each key xi causes k bits in the m-bit vector to be set to 1. 

Figure 2-3 provides an example of inserting two keys into a Bloom filter. Note that if 

one of the k hash values specifies a bit that is already set to 1, that bit is not changed. 

 
Figure 2-3 Bloom Filter Example 
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Querying the filter in order to determine if a given key x belongs to the set X is 

similar to the insertion process. Given key x, we generate k hash indices using the 

same hash functions used to insert keys into the filter. We check the bit locations 

corresponding to the k hash indices in the m-bit vector. If at least one of the k bits is 0, 

then it denotes that the key is not a member of the set. If all the bits are found to be 1, 

then we claim that the key belongs to the set with a certain probability. If we find all k 

bits to be 1 and x is not a member of X, then it is said to be a false positive match. This 

ambiguity in membership comes from the fact that the k bits in the m-bit vector can be 

set by any of the n members of X. Thus, finding a bit set to 1 does not necessarily 

imply that it was set by the particular key being queried. However, finding a 0 bit 

certainly implies that the key does not belong to the set, since if it was a member then 

all k-bits would have been set to 1 when the key was inserted into the Bloom filter.  

The following is a derivation of the probability of a false positive match, f. 

The probability that a random bit of the m-bit vector is set to 1 by a hash function is 

simply
m
1 . The probability that it is not set is 

m
11− . The probability that it is not set 

by any of the n members of X is 
nk

m
⎟
⎠
⎞

⎜
⎝
⎛ −

11 . Hence, the probability that this bit is set 

is
nk

m
⎟
⎠
⎞

⎜
⎝
⎛ −−

111 . For a key to be declared a possible member of the set, all k bit 

locations generated by the hash functions need to be 1. The probability that this 

happens, f, is given by 
knk

m
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For large values of m the above equation reduces to 
k

m
nk

ef ⎟
⎟
⎠

⎞
⎜
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⎝

⎛
−≈

−

1  

Since this probability is independent of the input key, it is termed the false positive 

probability. The false positive probability can be reduced by choosing appropriate 

values for m and k for a given size of the member set, n. For a given ratio of 
n
m , the 

false positive probability can be reduced by adjusting the number of hash functions, k. 
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In the optimal case, when false positive probability is minimized with respect to k, we 

get the following relationship: 

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎥
⎤

⎢⎢
⎡

⎥⎦
⎥

⎢⎣
⎢= 2ln,2ln

n
m

n
mk  

The false positive probability at this optimal point is given by 
k

f ⎟
⎠
⎞

⎜
⎝
⎛=

2
1  

It should be noted that if the false positive probability is to be tuned, then the size of 

the filter, m, needs to scale linearly with the size of the key set, n. 

One property of Bloom filters is that it is not possible to delete a key stored in 

the filter. Deleting a particular entry requires that the corresponding k hashed bits in 

the bit vector be set to zero, which would disturb other keys programmed into the 

filter which hash to any of these bits. In order to solve this problem the idea of the 

Counting Bloom Filter was proposed by Fan, et.al. [8]. A Counting Bloom Filter 

maintains a vector of counters corresponding to each bit in the bit-vector. Whenever a 

key is added to or deleted from the filter, the counters corresponding to the k hash 

values are incremented or decremented, respectively. When a counter changes from 

one to zero, the corresponding bit in the bit-vector is cleared. Note that maintaining 

counters significantly increases the storage requirements. 
 

2.1.2 Longest Prefix Match 

Longest Prefix Matching (LPM) has received significant attention in the 

literature over the past ten years. This is due to the fundamental role it plays in the 

performance of Internet routers. Due to the explosive growth of the Internet, Classless 

Inter-Domain Routing (CIDR) was widely adopted to prolong the life of Internet 

Protocol Version 4 (IPv4) [2]. Use of this protocol requires Internet routers to search 

variable-length address prefixes in order to find the longest matching prefix of the IP 

destination address and retrieve the corresponding forwarding information, or “next 

hop”, for each packet traversing the router. This computationally intensive task, 

commonly referred to as IP Lookup, is often the performance bottleneck in high-

performance Internet routers.  
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2.1.2.1 Linear Search 

If the set of prefixes is small, a linear search through a list of the prefixes 

sorted in order of decreasing length is sufficient. The sorting step guarantees that the 

first matching prefix in the list is the longest matching prefix for the given search key. 

Linear search is the most memory efficient of all LPM techniques and the memory 

requirements are O(N) where N is the number of prefixes in the table. Note that the 

search time is also O(N), thus linear search is not practical for IP lookup when the set 

of prefixes is relatively large. 

2.1.2.2 Content Addressable Memory (CAM)  

Many commercial router designers have chosen to use Content Addressable 

Memory (CAMs) for IP address lookups in order to keep up with the latest optical 

link speeds despite their larger size, cost, and power consumption relative to Static 

Random Access Memory (SRAM). CAMs minimize the number of memory accesses 

required to locate an entry by comparing the input key against all memory words in 

parallel; hence, a lookup effectively requires one clock cycle. While binary CAMs 

perform well for exact match operations and can be used for route lookups in strictly 

hierarchical addressing schemes [9], the wide use of address aggregation techniques 

like CIDR requires storing and searching entries with arbitrary prefix lengths. In 

response, Ternary Content Addressable Memories (TCAMs) were developed with the 

ability to store an additional “Don’t Care” state which allows them to ensure single 

clock cycle lookups for arbitrary prefix lengths. 

2.1.2.3 Trie Based Schemes  

Search techniques which build decision trees use the bits of prefixes to make 

branching decisions and allow the worst-case search time to be independent of the 

number of prefixes in the set. An example of a binary trie
 
constructed from a set of 

prefixes is shown in Figure 2-4. Shaded nodes denote a stored prefix with the 

corresponding next hop shown next to the node. A search is conducted by traversing 

the trie using the bits of the address, starting with the most significant bit. Note that 

the worst-case search time is now O(W), where W is the length of the address and 

maximum prefix size in bits.  



CHAPTER 2. RELATED WORK 18
 

 

 
Figure 2-4 Binary Trie example 

 
One of the first IP lookup techniques to employ tries2 is Sklower’s 

implementation of a Patricia trie in the BSD kernel [10]. The Patricia trie is a binary 

radix tree that compresses paths with one-way branching into a single node. It 

assumes contiguous masks and bounds the worst case lookup time to O(W). While 

paths may be compressed, only one bit of the address is examined at a time during a 

search resulting in search rates that do not meet the needs of high-performance 

routers. 

In order to speed up the lookup process, multi-bit trie schemes were developed 

which perform a search using multiple bits of the address at a time. Srinivasan and 

Varghese introduced two important techniques for multi-bit trie searches, Controlled 

Prefix Expansion (CPE) and Leaf Pushing [11]. Controlled Prefix Expansion restricts 

the set of distinct prefix lengths by “expanding” prefixes shorter than the next distinct 

length into multiple prefixes. This allows the lookup to proceed as a direct index 

lookup into tables corresponding to the distinct prefix length, or stride length, until the 

longest match is found. The technique of Leaf Pushing reduces the amount of 

information stored in each table entry by “pushing” information about the best 

matching prefix along the paths to leaf nodes. As a result each leaf node needs only to 

store a pointer or next hop information. While this technique reduces memory usage, 

                                                 
2 Trie is the term used for trees in information retrieval data structures. It originates from the word 
retrieval. 
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it also increases incremental update overhead. The authors also discuss variable length 

stride lengths, optimal selection of stride lengths, and dynamic programming 

techniques.  

Gupta, Lin, and McKeown simultaneously developed a special case of CPE 

specifically targeted to hardware implementation [12]. Arguing that DRAM is such a 

plentiful and inexpensive resource, their technique spends large amounts of memory 

in order to limit the number of off-chip memory accesses to two or three. Their basic 

scheme is a two level “expanded” trie with an initial stride length of 24 and second 

level tables of stride length eight. Given that random accesses to DRAM may require 

up to eight clock cycles and current DRAMs operate at less than half the speed of 

SRAMs, this technique can be out-performed by techniques utilizing SRAM and 

requiring less than 10 memory accesses. 

Other techniques such as Lulea [13] and Eatherton and Dittia’s Tree Bitmap 

[14] employ multi-bit tries with compressed nodes. The Lulea scheme essentially 

compresses an expanded, leaf-pushed trie with stride lengths 16, 8, and 8. In the worst 

case, the scheme requires 12 memory accesses; however, the data structure only 

requires a few bytes per entry. While extremely compact, the Lulea scheme’s update 

performance suffers from its implicit use of leaf pushing. The Tree Bitmap technique 

avoids leaf pushing by maintaining compressed representations of the prefixes stored 

in each multi-bit node. It also employs a clever indexing scheme to reduce pointer 

storage to two pointers per multi-bit node. 

2.1.2.4 Multiway and Multicolumn Search  

Several other algorithms exist with attractive properties that are not based on 

tries. The Multiway and Multicolumn Search techniques presented by Lampson, 

Srinivasan, and Varghese are designed to optimize performance for software 

implementations on general purpose processors [15]. The primary contribution of this 

work is mapping the longest matching prefix problem to a binary search over the 

fixed-length endpoints of the ranges defined by the prefixes. By specifying a set of 

contiguous initial bits, prefixes define ranges of values. For example, if 10∗ is a 

prefix for a four bit field, then it defines the range [1000:1011]. Prefixes never define 

overlapping ranges, only nested ranges. For example, [0:3] and [2:4] are overlapping 

ranges, whereas [0:3] and [1:2] are nested ranges. The authors use this property to 
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develop a binary search technique over the endpoints of the ranges defined by the 

prefixes.  

2.1.2.5 Binary Search on Prefix Lengths  

The most efficient lookup algorithm known, from a theoretical perspective, is 

Binary Search on Prefix Lengths which was introduced by Waldvogel, et. al.[16]. The 

number of steps required by this algorithm grows logarithmically with the length of 

the address, making it particularly attractive for IPv6, where address lengths increase 

to 128 bits. However, the algorithm is relatively complex to implement, making it 

more suitable for software rather than hardware implementation. It also does not 

readily support incremental updates.  

This technique bounds the number of memory accesses via significant pre-

computation of the route table. First, the prefixes are sorted into sets based on prefix 

length, resulting in a maximum of W sets to examine for the best matching prefix. A 

hash table is built for each set, and it is assumed that examination of a set requires one 

hash probe. The basic scheme selects the sequence of sets to probe using a binary 

search on the sets beginning with the median length set. For example: for an IPv4 

database with prefixes of all 32 lengths, the search begins by probing the set with 

length 16 prefixes. Prefixes of longer lengths direct the search to its set by placing 

“markers” in the shorter sets along the binary search path. Accordingly, a 24-length 

prefix would have a “marker” in the length 16 set. Therefore, at each set the search 

selects the longer set on the binary search path if there is a matching marker directing 

it lower. If there is no matching prefix or marker, then the search continues at the 

shorter set on the binary search path.  

The use of markers introduces the problem of “backtracking”: having to search 

the upper half of the trie because the search followed a marker for which there is no 

matching prefix in a longer set for the given address. In order to prevent this, the best-

matching prefix for the marker is computed and stored with the marker. If a search 

terminates without finding a match, the best-matching prefix stored with the most 

recent marker is used to make the routing decision. The authors also propose methods 

of optimizing the data structure based on the statistical characteristics of the route 

table. For all versions of the algorithm, the worst case bounds are O(logWdist)time 

and O(N×logWdist) space where Wdist is the number of unique prefix lengths. 
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Empirical measurements using an IPv4 route table resulted in memory requirement of 

about 42 bytes per entry. 

2.1.3 All Prefix Matching (APM)  

Longest Prefix Matching (LPM) is a special case of the general All Prefix 

Matching (APM) problem. Instead of returning just the longest matching prefix, the 

APM problem requires that all matching prefixes are returned. This problem arises 

when multi-filed search techniques are decomposed into several instances of single-

field search techniques.  

Note that most trie-based algorithms easily map to the APM problem. The 

algorithm can simply return all matching prefixes along the path to the longest 

matching prefix.  While the trie-based algorithms easily map to APM, it is important 

to note that the Binary Search on Prefix Lengths and Multiway and Multicolumn 

Search techniques do not readily support APM. The use of markers in Binary Search 

on Prefix Lengths naturally directs searches to longer prefixes before examining 

shorter length prefixes. The same consequence is experienced by the Multiway and 

Multicolumn Search due to the binary search over range endpoints. In order to support 

APM searches using these techniques, we must use a general technique that allows 

any LPM algorithm to perform APM. 

2.1.4 Range Matching  

Range matching problems naturally arise in many searching problems in the 

areas of networking and database design, and there are several forms of range 

matching problems. In this subsection we describe the most widely used approaches 

to address the following problem that arises in packet classification: Given a set X of 

closed intervals [i, j] and a point p, find all the intervals in X that contain p. This task 

is an essential part of packet classification, as packet filters may specify ranges for the 

source and destination port numbers in packet headers in order to identify a set of 

applications. Solutions to this problem typically employ a variant of the Interval Tree 

[17] or convert each closed interval [i,j] into a set of prefixes and then employ one of 

the Longest Prefix Matching (LPM) algorithms. 



CHAPTER 2. RELATED WORK 22
 

 

2.1.4.1 Interval Tree  

An Interval Tree stores a set of closed intervals X using a balanced binary tree 

as the underlying data structure [5]. Each node in the Interval Tree stores an interval x 

∈ X. The low endpoint of the interval is used as the key for the node in the balanced 

binary search tree. In order to facilitate faster searches, tree nodes typically store 

additional variables such as the maximum value of all the endpoints of the ranges 

stored in their sub-tree. An example of an Interval Tree is shown in Figure 2-5. 

 
Figure 2-5 Interval Tree example 

 
Searching for one matching interval for a given point p is straight-forward, but 

returning the set S of all matching intervals for p requires a few extra steps. We first 

locate the matching interval for p that is stored at the leftmost node in the tree. From 

this node, we perform an in-order walk of the tree nodes, stopping when we arrive at 

the last node in the tree or a node whose key is greater than p. An example search for 

p =4 is shown in Figure 2-5. Letting S be the number of matching intervals, the search 

requires O(logX + S) time. 

2.1.4.2 Range to Prefix Conversion  

Prefixes define exactly one range on the real numbers. The low and high 

endpoints of the range defined by a prefix are the minimum and maximum points 

covered by the prefix. For binary numbers, this translates to replacing the masked bits 

of the prefix with zeros and ones, respectively. For example, the four bit prefix 11∗ 

defines the range [1100:1111] or [12:15]. This transform operation is not symmetric, 
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as an arbitrary range may specify multiple prefixes. Specifically, a range defined on 

the set of b-bit numbers will specify at most [2 × (b − 1)] prefixes.  

For a single-field search on a reasonable number of ranges, this expansion 

factor is not prohibitive. As a result, several packet classification techniques use the 

range to prefix conversion technique to solve the range matching sub-problem [18], 

[19]. Finally, we note that Feldman and Muthukrishnan [17] provide a range to prefix 

conversion technique for the special case of searching elementary intervals by 

converting them into prefixes. They show that a set of (n − 1) elementary intervals 

can be converted into a set prefixes containing at most 2n prefixes, where an LPM 

search is used to select the elementary interval containing a given point p. 

2.2 Multi Field Searching Techniques 
In this subsection we provide a summary of the major multiple field search 

techniques aimed at packet classification. Due to the complexity of the search, packet 

classification is often a performance bottleneck in network infrastructure and thus it 

has received significant attention by the research community. Many algorithms and 

classification schemes have been proposed with numerous different approaches. 

These techniques can be categorized according to the high level approach of the 

classification solution. We can consider that there are three main different high-level 

approaches: 

• Exhaustive Search: examines all entries in the filter set. 

• Decision Tree: construct decision trees from the filters in the filter set and 

use the packet fields to traverse the decision trees. 

• Decomposition: decompose the multiple field search into instances of 

single field searches, perform independent searches on each packet field and 

then combine the results. 

2.2.1 Exhaustive Search 

The fundamental solution to any searching problem is simply to search 

through all the entries in the set. The two most common exhaustive search approaches 

for packet classification are a linear search through a list of filters or a parallel search 

over the set assuming that it is divided into a number of subsets. These are extreme 

solutions, where the lowest performance option, linear search, does not divide the set 
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into subsets and the highest performance option, Ternary Content Addressable 

Memory (TCAM), completely divides the set into subsets containing only one entry. 

We discuss both of these solutions in detail below. 

2.2.1.1 Linear Search 

Performing a linear search through a list of filters has O(N) storage 

requirements, but it also requires O(N) memory accesses per lookup. Even in the 

smaller filter sets, linear search becomes very slow. It is possible to reduce the 

number of memory accesses per lookup by partitioning the list into sub-lists and 

pipelining the search where each stage searches a sub-list. Note that linear search can 

be popular solution for the final stage of a lookup when the set of possible matching 

filters has been drastically reduced [19][20][21]. 

2.2.1.2 Ternary Content Addressable Memory (TCAM) 

Alike fully-associative cache memories, Ternary Content Addressable 

Memory (TCAM) devices perform a parallel search over all filters in the filter set. 

TCAMs were developed with the ability to store a “Don’t Care” state in addition to a 

binary digit. A typical TCAM cell is shown in Figure 2-6. Input keys are compared 

against every TCAM entry which enables them to ensure single clock cycle lookups 

for arbitrary bit mask matches.  

 
Figure 2-6 A typical TCAM cell 

 
Despite their astonishing efficiency, TCAMs have four primary drawbacks:  

1. high cost per bit relative to other memory technologies; current TCAMs cost 

about 20 times more per bit of storage than DDR SRAMs. 

2. storage waste, in addition to the six transistors required for binary digit 

storage, a typical TCAM cell requires an additional six transistors to store the 
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mask bit and four transistors for the match logic, resulting in a total of 16 

transistors; some very efficient solutions use 14 transistors. 

3. high power consumption; the massive parallelism in TCAM architectures is 

the main source of high power consumption. Each “bit” of TCAM match logic 

must drive a match word line which signals a match for the given key. The 

extra logic and capacitive loading results in access times approximately three 

times longer than SRAM. Specifically, TCAMs consume 150 times more 

power per bit than SRAM. 

4. limited scalability to long input keys; TCAMs can only match keys of 

maximum length equal to the word size. 

2.2.2 Decision Trees 

Another popular approach to packet classification on multiple fields is to 

construct a decision tree where the leaves of the tree contain filters or subsets of 

filters. In order to perform a search using a decision tree, we construct a search key 

from the packet header fields. We traverse the decision tree by using individual bits or 

subsets of bits from the search key to take branching decisions at each node of the 

tree. The search continues until we reach a leaf node storing the best matching filter or 

subset of filters. Decision tree construction is complicated due to the fact that a filter 

may specify several different types of searches. The mix of Longest Prefix Match, 

arbitrary range match, and exact match filter fields significantly complicates the 

branching decisions at each node of the decision tree. A common solution to this 

problem is to convert all the filter fields to a single type of match. 

2.2.2.1 Grid of Tries 

Srinivasan, Varghese, Suri, and Waldvogel introduced the original Grid-of-

Tries algorithm for packet classification [22]. Grid-of-Tries applies a decision tree 

approach to the problem of packet classification on source and destination address 

prefixes. For filters defined by source and destination prefixes, Grid-of-Tries 

improves the directed acyclic graph (DAG) technique introduced by Decasper, Dittia, 

Parulkar, and Plattner [23]. This technique is also called set pruning trees because 

redundant sub-trees can be “pruned” from the tree by allowing multiple incoming 

edges at a node. While this optimization does eliminate redundant sub-trees, it does 
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not completely eliminate replication as filters may be stored at multiple nodes in the 

tree. Grid-of-Tries eliminates this replication by storing filters at a single node and 

using switch pointers to direct searches to potentially matching filters. 

 Consider the filter set shown in Table 2-1 where source and destination 

address prefixes for each rule are defined. Moreover, assume we are searching for the 

best matching filter for a packet with source and destination addresses equal to 0011. 

Filter Source 
Address

Destination
Address 

F1 0* 10* 
F2 0* 01* 
F3 0* 1* 
F4 00* 1* 
F5 00* 11* 
F6 10* 1* 
F7 * 00* 
F8 0* 10* 
F9 0* 1* 
F10 0* 10* 
F11 111* 000* 

Table 2-1 Example filter set for Grid of Tries 
 

In the Grid-of-Tries structure shown in Figure 2-7, we find the longest matching 

source address prefix 00* and follow the pointer to the destination address tree. Since 

there is no 0 branch at the root node, we follow the switch pointer to the 0* node in 

the destination address tree for source address prefix 0*. Since there is no branch for 

00* in this tree, we follow the switch pointer to the 00* node in the destination 

address tree for source address prefix *. Here we find a stored filter F7 which is the 

best matching filter for the packet. 

 
Figure 2-7 Grid of Tries data structure 
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Grid-of-Tries bounds memory usage to O(NW) while achieving search time of 

O(W), where N is the number of filters and W is the maximum number of bits 

specified in the source or destination fields. For the case of searching on IPv4 source 

and destination address prefixes, the measured implementation uses multi-bit tries 

sampling 8 bits at a time for the destination trie; each of the source tries starts with a 

12 bit node, followed by 5 bit trie nodes. This yields a worst case of 9 memory 

accesses; the authors claim that this could be reduced to 8 with an increase in storage. 

2.2.2.2 Hierarchical Intelligent Cuttings (HiCuts) 

Gupta and McKeown introduced an innovative technique called Hierarchical 

Intelligent Cuttings (Hi-Cuts) [20]. The concept of “cutting” comes from viewing the 

packet classification problem geometrically. Each filter in the set defines a d-

dimensional rectangle in d-dimensional space, where d is the number of fields in the 

filter. Selecting the decision criteria translates into choosing a partitioning, or 

“cutting”, of the space. Consider the example filter set in Table 2-2 consisting of 

filters with two fields: a 4-bit address prefix and a port range covering 4-bit port 

numbers. This set is shown geometrically in Figure 2-8. 

Filter Address Port
a 1010 2 
b 1100 5 
c 0101 8 
d * 6 
e 11* 0-15
f 001* 9-15
g 00* 0-4 
h 0* 0-3 
i 0110 0-15
j 1* 7-15
k 0* 11 

Table 2-2 Example filter set for HiCuts 
 

HiCuts pre-processes the filter set in order to build a decision tree with leaves 

containing a small number of filters bounded by a threshold. Packet header fields are 

used to traverse the decision tree until a leaf is reached. The filters stored in that leaf 

are then linearly searched for a match. HiCuts converts all filter fields to arbitrary 

ranges, avoiding filter replication. The algorithm uses various heuristics to select 

decision criteria at each node that minimizes the depth of the tree while controlling 

the amount of memory used.  
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Figure 2-8 HiCuts geometric representation 

 
A HiCuts data structure for the example filter set in Table 2-2 is shown in 

Figure 2-9. Each tree node covers a portion of the d-dimensional space and the root 

node covers the entire space. In order to keep the decisions at each node simple, each 

node is cut into equal sized partitions along a single dimension. For example, the root 

node in Figure 2-9 is cut into four partitions along the Address dimension. In this 

example, we have set the thresholds such that a leaf contains at most two filters and a 

node may contain at most four children. The authors describe a number of more 

sophisticated heuristics and optimizations for minimizing the depth of the tree and the 

memory resource requirement. 

Experimental results in the two-dimensional case show that a filter set of 20k 

filters requires 1.3MB with a tree depth of 4 in the worst case and 2.3 on average. 

Experiments with four-dimensional classifiers used filter sets ranging in size from 

approximately 100 to 2000 filters. Memory consumption ranged from less than 10KB 

to 1MB, with associated worst case tree depths of 12 (20 memory accesses). Due to 

the considerable pre-processing required, this scheme does not readily support 

incremental updates. 
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Figure 2-9 HiCuts Data Structure 

2.2.2.3 Fat Inverted Segment (FIS) Trees 

Feldman and Muthukrishnan introduced a scheme for packet classification 

using independent field searches on Fat Inverted Segment (FIS) Trees [17]. FIS Trees 

utilize a geometric view of the filter set and map filters into d-dimensional space. 

Projections from the “edges” of the d-dimensional rectangles specified by the filters 

define elementary intervals on the axes. N filters will define a maximum of I =(2N + 

1) elementary intervals on each axis. A FIS Tree is a balanced t-ary tree with k levels 

that stores a set of segments, or ranges. Note that t=(2I + 1)1/k is the maximum 

number of children a node may have. The leaf nodes of the tree correspond to the 

elementary intervals on the axis. Each node in the tree stores a canonical set of ranges 

such that the union of the canonical sets at the nodes visited on the path from the leaf 

node associated with the elementary interval. Covering a point p to the root node is 

the set of ranges containing p. 

Using the example filter set shown in Table 2-2 we present an overview of FIS 

in Figure 2-10. The scheme starts by building an FIS Tree on one axis. For each node 

with a non-empty canonical set of filters, we construct an FIS Tree for the elementary 

intervals formed by the projections of the filters in the canonical set on the next axis 

(filter field) in the search. The authors propose a method of using a Longest Prefix 

Matching technique to locate the elementary interval covering a given point. This 

method requires at most 2I prefixes. 
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Figure 2-10 FIS example 

 
Figure 2-10 also provides an example search for a packet with address 2, and 

port number 11. A search begins by locating the elementary interval covering the first 

packet field, interval [2:3] on the Address axis in our example. The search proceeds 

by following the parent pointers in the FIS Tree from leaf to root node. Along the 

path, we follow pointers to the sets of elementary intervals formed by the Port 

projections and search for the covering interval. Throughout the search, we remember 

the highest priority matching filter.  The authors performed simulations with real and 

synthetic 78 filter sets containing filters classifying on source and destination address 

prefixes. For filter sets ranging in size from 1K to 1M filters, memory requirements 

ranged from 100 to 60 bytes per filter. Lookups required between 10 and 21 cache-

line accesses which amounts to 80 to 168 word accesses, assuming 8 words per cache 

line. 
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2.2.3 Decomposition 

Given the option of efficient single field search techniques, decomposing a 

multiple field search problem into several instances of a single field search problem is 

a practical approach. Employing this high-level approach has several advantages. 

First, each single field search engine operates independently, thus we have the 

opportunity to exploit the parallelism offered by modern hardware. Performing each 

search independently also offers more degrees of freedom in optimizing each type of 

search on the packet field.  

Despite these advantages, decomposing a multi-field search problem creates 

other complicated issues. The primary challenge is to efficiently aggregate and 

combine the results of the single field searches. Moreover, the longest matching prefix 

for a given filter field is not sufficient as a result from the single field search engines. 

The best matching filter may contain a field which is not necessarily the longest 

matching prefix relative to other filters; it may be more specific or have higher 

priority in other fields. As a result, techniques employing decomposition try to take 

advantage of filter set characteristics that allow them to limit the number of 

intermediate results. In general, solutions using decomposition provide high 

throughput due to their parallel hardware implementations. The high level of lookup 

performance often comes at the cost of memory waste. 

2.2.3.1 Parallel Bit Vectors (BV) 

Lakshman and Stiliadis introduced one of the first multiple field packet 

classification algorithms targeted to a hardware implementation. Their technique is 

commonly referred to as the Lucent bit-vector scheme or Parallel Bit-Vectors (BV) 

[24]. The authors make the initial assumption that the filters are sorted according to 

priority. Parallel BV utilizes a geometric view of the filter set and maps filters into d-

dimensional space. As shown in Figure 2-11, projections from the “edges” of the d-

dimensional rectangles specified by the filters define elementary intervals on the axes. 

Note that we are using the example filter set shown in Table 2-2 where filters contain 

two fields: a 4-bit address prefix and a range covering 4-bit port numbers. N filters 

define at maximum (2N+1) elementary intervals on each axis.  
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Figure 2-11 Parallel Bit Vectors example 

 
For each elementary interval on each axis an N-bit bit-vector is defined. Each 

bit position corresponds to a filter in the filter set, sorted by priority. All bit-vectors 

are initialized to all ‘0’s. For each bit-vector, we set the bits corresponding to the 

filters that overlap the associated elementary interval. Consider the interval [12:15] on 

the Port axis in Figure 2-11. Assume that sorting the filters according to priority 

places them in alphabetical order. Filters e, f, i, and j overlap this elementary interval; 

therefore, the bit-vector for that elementary interval is 00001100110 where the bits 

correspond to filters a through k in alphabetical order. For each dimension d, we 

construct an independent data structure that locates the elementary interval covering a 

given point, then we return the bit-vector associated with that interval. The authors 

utilize binary search, but any range location algorithm is suitable. 

Once we compute all the bit-vectors and construct the d data structures, 

searches are relatively simple. We search the d data structures with the corresponding 

packet fields independently. Once we have all d bit vectors from the field searches, 

we simply perform the bit-wise AND of all the vectors. The most significant ‘1’ bit in 

the result denotes the highest priority matching filter. Multiple matches are easily 

supported by examining the most significant set of bits in the resulting bit vector.  
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The authors implemented a five field version with five 128Kbyte SRAMs. 

This configuration supports 512 filters and performs one million lookups per second. 

Assuming a binary search technique over the elementary intervals, the general 

Parallel BV approach has O(lgN) search time and O(N2) memory requirement. The 

authors have further proposed an algorithm to reduce the memory requirement to 

O(NlogN) using incremental reads. 

2.2.3.2 Aggregated Bit-Vector (ABV) 

Baboescu and Varghese introduced the Aggregated Bit-Vector (ABV) 

algorithm which seeks to improve the performance of the Parallel BV technique by 

using statistical observations of real filter sets [25]. Conceptually, ABV starts with d 

sets of N-bit vectors constructed in the same manner as in Parallel BV. The authors 

leverage the widely known property that the maximum number of filters matching a 

packet is inherently limited in real filter sets. This property causes the N-bit vectors to 

be sparse. In order to reduce the number of memory accesses, ABV essentially 

partitions the N-bit vectors into A chunks and only retrieves chunks containing ‘1’ 

bits. Each chunk is N / A bits in size and has an associated bit in an A-bit aggregate 

bit-vector. If any of the bits in the chunk are set to ‘1’, then the corresponding bit in 

the aggregate bit-vector is set to ‘1’. Figure 2-12 provides an example using the filter 

set in Table 2-2.  

Each independent search on the d packet fields returns an A-bit aggregate bit-

vector. We perform the bit-wise AND on the aggregate bit-vectors. For each ‘1’ bit in 

the resulting bit-vector, we retrieve the d chunks of the original N-bit bit-vectors from 

memory and perform a bit-wise AND. Each ‘1’ bit in the resulting bit-vector denotes a 

matching filter for the packet. ABV also removes the strict priority ordering of filters 

by storing each filter’s priority in an array. This allows us to reorder the filter in order 

to cluster ‘1’ bits in the bit-vectors. This in turn reduces the number of memory 

accesses. Simulations with real filter sets show that ABV reduced the number of 

memory accesses relative to Parallel BV by a factor of a four. Simulations with 

synthetic filter sets show more dramatic reductions by a factor of 20 or more when the 

filters sets do not contain any wildcards. As wildcards increase, the reductions 

become much more modest. 
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Figure 2-12 Aggregated Bit Vector example 

2.2.3.3 Recursive Flow Classification (RFC) 

Leveraging observations on real filter sets, Gupta and McKeown introduced 

Recursive Flow Classification (RFC) which provides high lookup rates at the cost of 

memory inefficiency [26]. The authors introduced a unique high-level view of the 

packet classification problem. Essentially, packet classification can be viewed as the 

reduction of an m-bit string defined by the packet fields to a k-bit string specifying the 

set of matching filters for the packet or action to apply to the packet. For classification 

on the IPv4 5-tuple, m is 104 bits and k is typically on the order of 10 bits. The 

authors also performed a rather comprehensive and widely cited study of real filter 

sets and extracted several useful properties. Specifically, they noted that filter overlap 

and the associated number of distinct regions created in multi-dimensional space is 

much smaller than the worst case of O(nd). For a filter set with 1734 filters the 

number of distinct overlapping regions in four-dimensional space was found to be 

4316, as compared to the worst case which is approximately 1013. 

RFC performs independent, parallel searches on “chunks” of the packet 

header, where “chunks” may or may not correspond to packet header fields. The 

results of the “chunk” searches are combined in multiple phases. The result of each 



CHAPTER 2. RELATED WORK 35
 

 

“chunk” lookup and aggregation step in RFC is an equivalence class identifier 

(classID) which represents the set of potentially matching filters for the packet. The 

number of classIDs in RFC depends upon the number of distinct sets of filters that can 

be matched by a packet. The number of classIDs in an aggregation step scales with 

the number of unique overlapping regions formed by filter projections. 

RFC lookups in “chunk” and aggregation tables utilize indexing; the address 

for the table lookup is formed by concatenating the classIDs from the previous stages 

as shown in Figure 2-13. The resulting classID has fewer number of bits than the 

address, thus RFC performs a multi-stage reduction to a final classID that specifies 

the action to apply to the packet. The use of indexing simplifies the lookup process at 

each stage and allows RFC to provide high throughput. This simplicity and 

performance comes at the cost of memory inefficiency. The memory usage for less 

than 1000 filters ranged from a few hundred kilobytes to over one gigabyte of 

memory depending on the number of stages. The authors propose a hardware 

architecture using two 64MB SDRAMs and two 4Mb SRAMs that could perform 30 

million lookups per second when operating at 125MHz. The index tables used for 

aggregation also require significant pre-computation in order to assign the proper 

classID for the combination of the classIDs of the previous phases. Such extensive 

pre-computation prohibits dynamic updates at high rates. 

 
Figure 2-13 RFC aggregation scheme 
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3 Chapter 3 

3  
MAC Layer Classification 
 

In this chapter we present our solution for MAC layer switching and 

classification in Ethernet networks. We developed a scheme suitable for hardware 

implementation that can facilitate the support of forwarding, switching, filtering, 

classification and QoS in Layer 2 (Data Link Layer). Our hardware solution aims at 

Ethernet switches or Bridges. We design a Hash Based Classification Engine (HBSE) 

that can support fast and storage efficient classification of many multi-gigabit links. 

3.1 Ethernet Switching 
Layer 2 (Data Link Layer) switching allows packets to be switched in the 

network based on their Media Access Control (MAC) address. The MAC sub-layer is 

part of the Data Link Layer and it is responsible to move the data packets from one 

Network Interface Card (NIC) to another across a channel. When a packet arrives at 

the switch, the switch checks the packet’s destination MAC address and, if known, it 

sends the packet to the output port where the destination MAC is connected. The 

format of the Ethernet packets is shown in Figure 3-1. 

 

 
Figure 3-1 Ethernet Frame Format 
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The field lengths are in bytes and are the following: 
 PRE = Preamble 

 SFD = Start-of-frame delimiter 

 DA = Destination Address 

 SA = Source Address 

 Len/Type = Data Length of frame or frame Type 

 FCS = Frame Check Sequence 

 

The three fundamental elements in Ethernet L2 switching are the MAC 

addresses, the ports of the switch and the Virtual LANs (VLANs). Since Ethernet 

switching is making a breakthrough in MAN and WAN networks, these elements are 

critical in mechanisms that provide QoS. 

MAC Addresses 

The MAC address is a 48-bit(6 bytes) value that uniquely identifies a NIC. 

The first 24-bits(3 bytes) of the address identify the vendor of the card and the last 24-

bits identify the card itself. Every NIC has a MAC address that is hardwired and 

cannot be changed. 

Ports 

The ports are the physical interfaces where the NICs are connected to the 

switch. Each port can be identified by a number assigned by the manufacturer of the 

switch and provides all the communication from and to the attached NIC. 

VLANs 

VLAN tagging was introduced in IEEE 802.1q [4] and defines how an 

Ethernet frame is tagged with a VLAN ID. This tagging is a MAC option that 

provides some important capabilities not previously available to Ethernet network 

users and network managers. VLANs provide a mechanism to handle time-critical 

network traffic by setting transmission priorities to outgoing frames according to 

IEEE 802.1p [27]. Moreover VLANs allow network stations to be assigned to logical 

groups, and then communicate across multiple LANs as if they were on a single LAN. 

Bridges and switches filter destination addresses and forward VLAN frames only to 

ports that serve the specific VLAN traffic. 
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A VLAN-tagged frame is simply a basic MAC data frame that has a 4-byte 

extra header inserted between the SA and Length/Type fields as shown in Figure 3-2. 

The VLAN header consists of two fields: 
 A reserved 16-bit value to indicate that this is a VLAN frame(0x8100) 

 A 16-bit Tag Control Info field: 

o The first 3-bits indicate the priority according to  

IEEE 802.1p (8 possible) 

o The next 1 bit is CFI (Canonical Format Indication) 

o The last 12-bits indicate the VLAN Identifier (4096 possible).  

 
Figure 3-2 VLAN Ethernet Frame 

 
Typically, there are two types of VLANs, port-based and MAC address-based. 

On port-based VLANs the logical grouping is done by assigning some specific ports 

to constitute a VLAN. When a data frame is received on a port, the switch or bridge 

determines the associated VLAN based on the port of the reception. Using the 

forwarding database information, the data frame is sent to the appropriate port(s). The 

other option is to specify VLANs using MAC addresses. MAC-based VLANs can be 

created by the MAC addresses of all devices on a network. VLANs of this type 

provide better device mobility and privacy for the users. 

3.2 Hardware Based Classifiers 
L2 switching, forwarding and filtering require the fields of each packet to be 

examined and the appropriate action to be performed. For example, given a packet’s 

destination MAC address, the packet should be forwarded to the appropriate output 

port. Therefore, the switches need to store some information and consult it for their 

decisions. The information about the MAC addresses, the VLANs and the Ports is 

stored in internal data structures and for each packet a search is conducted using the 

packet header fields. 

Switches and bridges have integrated hardware solutions for the L2 

classification task. They place the MAC address tables in internal or external 

memories and all operations access the tables to find the exact match. Today’s 
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switches support at most 32K MAC addresses [28] and 4096 VLANs, hence the size 

of memories is relatively small. 

The nature of L2 classification requires exact matches and many 

implementations use CAMs that provide single access matching. CAM solutions are 

simple but are expensive and power consuming. Trie based solutions have poor 

performance since the 48-bits of the MAC address are relatively long to be resolved 

with partial matches in subparts of the address. Moreover, trie based solutions may 

require several memory accesses and massive storage in pointers.  

Another popular solution is hashing of the MAC address bits [29] and storing 

the data in SRAM based lookup tables. The 48-bits are hashed with a specific hashing 

function and an index for the lookup table is generated. Possible collisions due to 

hashing are usually resolved with linked lists of entries. Hashing 48-bits into a small, 

say 16-bit, value requires a good function that generates differentiated values by 

taking into account all the information bits. Many solutions use the CRC polynomials 

for hashing since they have been proved very efficient [30] or others use direct 

mapping by the least significant bits of the MAC address. 

3.3 Hash Based Classification Engine 
Our solution for L2 classification is based on hashing like many commercial 

products but we propose a hashing scheme that exactly matches certain requirements 

in terms of both memory accesses and storage. We propose a Hash Based 

Classification Engine (HBCE) with internal MAC Vendor replacement. HBCE is 

designed to support up to 64K MAC-address rules, 4096 VLANs and 1024 ports. 

Every rule in HBCE is uniquely identified by a number that can be called Flow ID, in 

our case we consider that 32K Flow IDs would be enough for a LAN.   

The most essential part of our scheme is the MAC address table that will hold 

the associated information. The length of MAC addresses, namely 48-bits, is what 

makes this part the most critical in terms of both speed and storage. VLANs and ports 

are relatively small in size and can be directly mapped into tables, as it will be 

described in the next sections. 
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3.3.1 MAC Address Hashing 

We developed a hashing function to map the MAC addresses into a table that 

will hold the Flow ID of the associated rule. MAC addresses are stored in a 64K table 

called MAC_TBL and the indexes to it are generated by the MAC address bits using 

our hashing function. The collisions due to hashing are handled by pointers to variable 

size blocks. Handling variable size blocks requires dynamic memory management 

implementation and is discussed in subsection 3.3.5. The number of entries of each 

variable size block is defined by the number of MACs that collide in a specific entry. 

Indexes in MAC_TBL are generated by the use of the XOR function in all the 

48-bits of the MAC address and the16-bit address is produced as follows: 
MAC_TBLindex = { MAC[47:40] xor MAC[31:24] xor MAC[15:8] , 

       MAC[39:32] xor MAC[23:16] xor MAC[7:0] } 

To identify a certain MAC address in the block we also need to save some additional 

information so as to be able to distinguish those that collide. Fortunately, we don’t 

need to save all 48-bits and we take advantage of the fact that the address has been 

produced by the actual MAC-address field. Therefore a MAC located in address A of 

MAC_TBL can be reproduced by the 16-bits of A and the last 32-bits (Hval) of the 

MAC address as follows: 
MAC[47:40]  =  A[15:8] xor Hval[31:24] xor Hval[15:8] 

MAC[39:32]  =  A[7:0] xor Hval[23:16] xor Hval[7:0] 

MAC[31:0]   =  Hval(31:0) 

The bits saved in Hval are unique for every possible MAC address located in address 

A and can be used to identify it. If we use CRC-16, like popular schemes, to produce 

16-bit indexes then we should store the complete 48-bits of the MAC address because 

there is no inverse CRC function. Moreover, CRC polynomials don’t have one-to-one 

correspondence between input and generated values. The speed and storage 

performance of our hashing function is discussed in section 3.4 

3.3.2 MAC Vendor Replacement 

The official IEEE OUI and Company ID assignments [31] has published all 

the assigned MAC vendor IDs of 24-bits and the associated company names. We 

collect them and observe that the 24-bit vendor address space of the MAC addresses 

is not fully occupied. The available list shows that fewer than 8000 vendors are active 

instead of the 224= 16777216 possible. Therefore we can replace the 24-bit vendor ID 

with a 13-bit internally assigned vendor ID; 13 bits are enough for the 8000 vendors. 



CHAPTER 3. MAC LAYER CLASSIFICATION 42
 

 

The last 24-bits of the MAC address that uniquely identify a device of a vendor can 

remain unchanged. We decide to have internally replaced the vendor ID part of a 

MAC in order to reduce the storage requirements for each MAC address, at the cost 

obviously of the replacement operation. Consequently, every incoming MAC address 

need to be translated before the actual processing begins.  

We can now consider that each MAC address handled by our system is 37-bits 

long. Naturally, this replacement means that we keep a small table with 8192 entries 

called VID_RPL that matches the existing 24-bit Vendor ID values with the internally 

assigned 13-bit Vendor ID values. This table can be easily constructed since all 

Vendor IDs are sequentially assigned by IEEE and a few ‘holes’ that exist in the 

address space can be handled by a 24-to-13 decoder. Despite this table is constant and 

can be kept in a ROM, we can use a method that learns the connected MAC addresses 

and assigns incrementally an internal ID. The first time an unknown MAC vendor ID 

appears in the system we can assign it with a new ID.  

After this replacement we define a new hashing function on the 37-bits of the 

MAC address. Now, the 16-bit indexes in MAC_TBL are generated as follows: 
MAC_TBLindex = { MAC[31:24] xor MAC[15:8] , 

       MAC[23:16] xor MAC[7:0] } 

Notice that we don’t use the 6 MSB of the replaced Vendor ID in order to have a byte 

balanced hashing function. The new Hval is now 21-bits and is defined as follows: 
Hval = { MAC[36:24] ,  MAC[7:0] } 

Now, a MAC located in address A of MAC_TBL can be reproduced by the 16-bits of 

the address and Hval as follows: 
MAC[36:24]  =  Hval[20:8] 

MAC[23:16]  =  A[15:8] xor Hval[7:0] 

MAC[15:8]   =  A[15:8] xor Hval[15:8] 

MAC[7:0]    =  Hval(7:0) 

3.3.3 MAC_TBL and Data Structure 

MAC_TBL is a table with 64K entries and stores the Flow ID of each MAC 

address. Indexes in MAC_TBL are generated with hashing and therefore collisions 

may occur. To support resolving these collisions we define a complex data structure 

associated with each entry of the MAC_TBL. Each MAC address stored in an entry of 

the table needs 21-bits (Hval) to be fully identified (as described above) and along with 

this value we have to store the Flow ID which needs 15-bits. This information sums to 
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36-bits and should be stored in the memory. These 36-bits force the memory word to 

be at least 36-bits. If we use on-chip memories the word size is not a problem but in 

case of off-chip memories we have to find a commercial solution that matches our 

requirements. Fortunately, 36-bits is a popular word size of many SRAM vendors. 

In the case where only one MAC address is saved in a table entry we can save 

the Flow ID in the 15 MSB of the word and Hval in the 21 LSB. However, a table 

entry might be empty which means that is not mapped to any MAC address, therefore 

we reserve the Flow ID number 0 for this purpose. The 15 MSB of the memory word 

should be set to 0 in empty entries. Moreover, a table entry may be mapped to many 

MAC addresses. In the latter case, where collisions occur, we have to store a pointer 

to the variable size block and the number of MACs that collide. The number of 

colliding MACs can also indicates the size of the block. For the cases of collisions we 

have reversed the Flow ID number 1 and store it in the 15 MSB of the word. The last 

17-bits of the word are used to store the pointer to the block and the remaining 4-bits 

are used to keep the number of MACs mapped in this table entry. 4-bits are enough 

for the maximum number of collisions of our system as explained in subsection 3.4.1. 

The format of the memory words in each case is shown in Figure 3-3. 

 
Figure 3-3 MAC_TBL entries format 

 
The variable size blocks also use 36-bit memory words and the format of their entries 

is the same with the normal format of Figure 3-3. An example that shows the form of 

the data structure for some hypothetical MAC addresses is depicted in Figure 3-4. 
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Figure 3-4 MAC_TBL Data structure example 

 

Insert Operation 

 An insert operation in HBCE is a relatively simple task and needs a specific 

number of steps. Once a 48-bit MAC address is handled by our scheme we have first 

to replace the Vendor value with our internally assigned one by accessing VID_RPL. 

Then, the new MAC address of 37-bits is hashed to generate MAC_TBLindex and Hval. 

The generated index is used to access MAC_TBL and get the contents of the specific 

entry. The next step is to decode the Flow ID field and make the appropriate actions. 

Depending on the FlowID we may just insert the MAC address or allocate extra 

memory words to host the new MAC address. The complete specification of required 

steps is presented in subsection 4.3.2. 

Lookup Operation 

 The lookup operation requires to examine a specific entry in MAC_TBL and 

follow the block pointer, if applicable, to locate the specific MAC address. Locating a 

MAC requires to check all the existing Hval fields. Once a 48-bit MAC address should 

be looked up by our scheme we have to replace the Vendor value with our internally 

assigned one by accessing VID_RPL. Then, the new MAC address of 37-bits is 

hashed to generate MAC_TBLindex and Hval. The generated index is used to access 

MAC_TBL and get the contents of the specific entry. The next step is to decode the 

Flow ID field and make the appropriate actions. Depending on the FlowID we may 
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find the MAC address at once or we may follow pointers and sequentially search a 

block of colliding MAC addresses. The complete specification of required steps is 

presented in subsection 4.3.3. 

Delete Operation 

Delete operation requires to examine a specific entry in MAC_TBL and 

follow the block pointer, if applicable, to locate the MAC address and remove it. 

Locating a MAC requires to check all the existing Hval fields. Once a 48-bit MAC 

address should be deleted we have to first replace the Vendor value with our 

internally assigned one by accessing VID_RPL. Then, the new MAC address of 37-

bits is hashed to generate MAC_TBLindex and Hval. The generated index is used to 

access MAC_TBL and get the contents of the specific entry. The next step is to 

decode the Flow ID field and make the appropriate actions. Depending on the FlowID 

we may delete the MAC address easily or we may follow pointers and remove it from 

a block of colliding MAC addresses. The complete specification of required steps is 

presented in subsection 4.3.4. 

3.3.4 VLAN and Port Tables 

Handling VLAN and Port fields is simple and requires storing the associated 

15-bit Flow ID for each of the fields. VLAN is defined as a 12-bit identifier and can 

be directly mapped in a 4K table called VLAN_TBL. Similartly, the port field is 

defined as a 10-bit identifier and is directly mapped in a 1K table called PORT_TBL. 

3.3.5 Dynamic Memory Management 

Dynamic memory management in our system is needed to support the variable 

blocks described when collisions occur. This mechanism handles requests for memory 

allocation and deallocation of variable sizes. We have a pool of 64K adjacent memory 

words intended to be used for anti-collision purposes. An operation may require 

allocation of a certain number of memory words and our mechanism has to provide 

the address of the first of these words. The current dynamic memory management 

mechanism provides support for 2-word and 4-word blocks and is extensively 

described in subsection 4.4. 
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In case we need larger blocks, we cannot have adjacent memory words but we 

can link internally 2 or 4-word blocks by using the collision format discussed before. 

This decision does not significantly degrade the performance of our design because in 

both cases of adjacent and linked blocks we need to access all the memory words. The 

main disadvantage of this implementation is that if we need block sizes not multiples 

of 2 or 4 then we have to pay a small fragmentation overhead. Figure 3-5 depicts how 

blocks can be linked together and used in HBCE. 

 
Figure 3-5 Data structure example with linked blocks 

3.4 Simulation Results and Performance 
In this subsection we discuss simulation results based on synthetic MAC 

address tables and present our results on storage and speed complexity. We calculate 

and analyze the performance of HBCE and compare it with the traditional CRC-16 

and direct mapped solutions. HBCE storage and speed performance is based on 

certain assumptions for the underlying hardware and memory architecture. 

3.4.1 Indexing MAC_TBL with a hashing function 

Indexing MAC_TBL in HBCE is based on the hashing function proposed in 

subsection 3.3.2 which hashes the modified MAC address bits. We illustrate the 

performance of our function by using synthetic MAC address databases with existing 

MAC vendor IDs. We generated 32K, 48K and 64K MAC address databases with 
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variable number of active vendor IDs, such as 256, 1500 and 4000, to test the 

behaviour of our function. For the generation of the databases we used real MAC 

Vendor IDs from the subset provided by OUI and appended random uniformly 

distributed 24-bit values that can represent the real network cards’ serial numbers. We 

calculate the maximum and average number of collisions for our scheme and compare 

it with CRC-16 and direct mapping of the 16 LSBs. The simulation results are 

presented in Table 3-1. 

Database Size 
(Active Vendors) 

Index 
Function 

Maximum
Collisions 

Average 
Collisions 

CRC-16 5 1,495 
Direct Mapping 6 1,542 32K (256) 

HBCE 6 1,490 
CRC-16 6 1,476 

Direct Mapping 7 1,527 32K (1500) 
HBCE 5 1,483 

CRC-16 5 1,482 
Direct Mapping 6 1,532 32K (4000) 

HBCE 5 1,481 
CRC-16 6 1,732 

Direct Mapping 8 1,822 48K (256) 
HBCE 6 1,737 

CRC-16 7 1,730 
Direct Mapping 8 1,821 48K (1500) 

HBCE 7 1,732 
CRC-16 6 1,728 

Direct Mapping 8 1,818 48K (4000) 
HBCE 7 1,735 

CRC-16 8 2,631 
Direct Mapping 9 2,792 64K (256) 

HBCE 7 2,642 
CRC-16 7 2,630 

Direct Mapping 8 2,765 64K (1500) 
HBCE 7 2,637 

CRC-16 7 2,618 
Direct Mapping 9 2,771 64K (4000) 

HBCE 8 2,642 
Table 3-1 Indexing simulation results 

 
 The results show that the HBCE seems a good hash function that approaches 

CRC-16 performance and is better that direct mapping. The XOR function used by 

both CRC-16 and HBCE provides better collisions results because in generates more 

uniformly distributed indexes.  The advantage of HBCE is that it requires only a small 

portion from the original MAC address to be stored instead of the total 48-bits 
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required by CRC. It is also much simpler and less expensive to implement the HBCE 

hash function in hardware. The results also show that when the number of MAC 

addresses stored in MAC_TBL grows to the limits of the table, namely 64K, the 

average number of collisions increases but fortunately it remains in tolerable levels. 

The number of active vendors in the dataset seems that it does not influence the 

performance. Moreover, the maximum number of collisions appeared during 

simulations allows us to assume that 4-bits are enough for the #Collisions field which 

currently supports up to 15 collisions. 

Additionally to the synthetic MAC databases we use real MAC addresses from 

ICS-FORTHs network and Computer Laboratory of University of Cambridge3. We 

concatenate these MAC addresses to create a real database and provide the simulation 

results in Table 3-2. 

Database Size 
(Active Vendors) 

Index 
Function 

Maximum
Collisions 

Average 
Collisions 

CRC-16 2 1,023 
Direct Mapping 2 1,031 1611 (195) 

HBCE 2 1,019 
Table 3-2 Real database simulation results 

This small sample of real MAC addresses still shows that our hashing function 

is performing very well and can be efficiently used on a real system such as a central 

L2 switch of a big institution. 

3.4.2 Storage Requirements 

We calculate the total storage requirements of HBCE for the synthetic 

databases based on the collisions produced in each case and assume that all the rules 

are stored in 36-bit wide words. The collisions are handled by the dynamic memory 

management system described in subsection 3.3.5 and thus apart from the static tables 

used we have to calculate the number of 2-word and 4-word blocks required. The size 

of the static tables is demonstrated in Table 3-3. 

Table Entries Total Bytes 
MAC_TBL 65536 294912 
VLAN_TBL 4096 18432 
PORT_TBL 1024 4608 
VID_RPL 8192 36864 

Total 78848 354816 (346 Kb)
Table 3-3 HBCE static tables memory 

                                                 
3 We kindly thank the network administrators for providing us with this valuable information. 
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In Table 3-4 we present the final storage requirements of HBCE for each database, 

and include in our calculations the collision blocks linked in MAC_TBL. We also 

present the storage requirements if CRC-16 was the hashing function for the same 

databases. Note that in the CRC case we need two memory words for each MAC 

address because we need to keep the 37-bit internal MAC address and the 

corresponding 15-bit FlowID. 

Database Size 
(Active Vendors) 

Static Tables
(Kbytes) 

Collision Blocks
(Kbytes) 

HBCE Total 
(Kbytes) 

CRC Total
(Kbytes) 

32K (256) 346 58 404 634 
32K (1500) 346 57 403 634 
32K (4000) 346 58 404 634 
48K (256) 346 120 466 788 
48K (1500) 346 120 466 787 
48K (4000) 346 120 466 787 
64K (256) 346 194 540 947 
64K (1500) 346 194 540 948 
64K (4000) 346 195 541 946 
1611(195) 346 0,1 346,1 360 

Table 3-4 HBCE final storage requirements 
 

We can see that half megabyte is enough for HBCE to store 64K MAC 

addresses and support QoS. Moreover, we have 36% - 42% better storage 

requirements than the equivalent CRC-16 solution. Note also, that although we have 

assigned 64K adjacent memory words (288 Kbytes) for collision resolving only 70% 

of this space is actually used which means that it is possible for our scheme to support 

more than 64K MAC addresses. The cost of supporting even more MAC addresses 

would naturally be an increase in the average number of collisions. 

3.4.3 Lookup performance 

The lookup performance of HBCE is based on the total number of memory 

accesses required to find a match in the tables. This a performance metric very 

frequently used in such schemes. VLAN_TBL and PORT_TBL are direct mapped and 

therefore the Flow ID can be found with a single access in the appropriate table. 

MAC_TBL is the most critical table for the performance of HBCE since collisions 

may occur and we have to lookup sequentially all the colliding MAC addresses. For 

every incoming MAC address we have first to replace the original vendor ID with our 

internally assigned one. Therefore we need a single memory access in VID_RPL, then 

the MAC_TBL index is generated based on the modified MAC address. The number 
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of accesses required to resolve a MAC address also depends on the number of 

collisions that have occurred. According to Table 3-1 the worst case number of 

memory accesses for 64K MAC addresses is 8 but the average number is 2,64 which 

is fairly smaller. In Table 3-5 we present the summary of worst and average case 

memory accesses for each case. 

Active MAC
Addresses 

Average Case Worst Case

32K 2,49 7 
48K 2,73 8 
64K 3,64 9 

Table 3-5 HBCE total number of memory accesses 

Supported Link Speeds 

According to our lookup performance we can calculate the efficiency of 

HBCE as a classification engine in a high speed L2 switch. To calculate the network 

performance we have to assume a certain speed for the memory we use and a 

pipelined hardware implementation that can provide one memory access per cycle. 

The results we present assume 2 possible memory configurations: 

• 200Mhz off-chip synchronous SRAM 

• 400Mhz on-chip synchronous SRAM 

We also assume that the worst case scenario for HBCE is when L2 transports 

minimum sized Ethernet packets (64 bytes). The summary of the supported link 

speeds are presented in Table 3-6. 

Off-chip SRAM 200Mhz On-Chip SRAM 400Mhz Active MAC 
Addresses Average 

(Gbps) 
Worst Case 

(Gbps) 
Average 
(Gbps) 

Worst Case 
(Gbps) 

32K 41,2 14,6 82,2 29,3 
48K 37,5 12,8 75,0 25,6 
64K 28,13 11,4 56,2 22,8 

Table 3-6 HBCE network performance 
 

The network performance presented in Table 3-6 allows HBCE to be used in a 

high speed switch that can support many high speed ports. The average case of a 64K 

MAC database demonstrates that our scheme can be used in a switch/concentrator 

consisting of 36 x 1Gbit ports and 2 x 10Gbit port or other combinations such as 16 x 

1Gbit ports and 4 x 10Gbit ports. 
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4 Chapter 4 

 
Hardware Implementation of HBCE 
 

In this chapter we present a reference hardware implementation of the HBCE 

MAC layer classification scheme that was described in Chapter 3. We provide a 

detailed description of all the internal blocks of the system and the hardware resources 

utilized. We also present the speed and silicon area estimations of the final design. We 

decide to implement the final design in an FPGA platform to prove the feasibility and 

scalability of the architecture, even when limited hardware resources are available. 

The FPGA platform we use is a Xilinx Virtex II Pro [32] with an external Cypress 

NoBL (ZBT) SSRAM [33]. 

4.1 HBCE Organization 
HBCE involves many internal blocks to implement the required functionalities. 

Figure 4-1 illustrates the internal organization of HBCE and the external interfaces. 

The central operation of the system is handled by a Main Control Block 

(HBCE_MCB) which receives commands from the OPB_INF block. OPB_INF is an 

implementation of Xilinx OPB Bus slave interface [34]. Upon a reception of a 

command HBCE_MCB instructs the MAC_VID block to make the vendor ID 

replacement and then provides the modified MAC address to MAC_HSH in order to 

perform hashing in the data. When the hashed values are ready then HBCE_MCB 

performs the appropriate actions so as to insert, lookup or delete a MAC address or a 

VLAN or a Port in the data structure.  HBCE_MCB interfaces with the memory 

through the memory handler (MEM_HDLR) and the memory controller 

(MEM_CTRL). The MEM_HDLR implements the dynamic memory management 

scheme described in section 4.4 by employing several free-lists and the MEM_CTRL 

is the actual low level memory interface. When the final FlowID is resolved then it is 

returned through the OPB_INF block to the instructor of the initial command. 
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Figure 4-1  HBCE Internal organization and block diagram 

 

4.2 OPB_INF 
OPB_INF has an FSM to implement the OPB Bus slave interface timings in 

order to have interconnection with the peripheral Bus that is widely used in Xilinx 

FPGA platforms. This interface has a 32-bit address bus and a 32-bit data bus and 

supports read and write operations on specific addresses that correspond to actual 

block registers. OPB_INF receives read and write commands to internal registers 

from four parallel processing units (PPUs) and provides the result to the 

corresponding instructor unit through BRAM interfaces. The signals of the interface 

and their descriptions are shown in Table 4-1. 

Signal Length In/Out Description 
i_opb_select 1 I Initiates the transaction. 
i_opb_rnw 1 I Indicates read or write. 
i_opb_be 4 I Byte enable for the data. 
i_opb_seqaddr 1 I Sequential address transactions. 
i_opb_abus 32 I Incoming Address 
i_opb_dbus 32 I Incoming Data 
o_opb_xferack 1 O Transaction acknowledge. 
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o_opb_errack 1 O Error acknowledge. 
o_opb_toutsup 1 O Timeout suppress. 
o_opb_retry 1 O Request retry. 
o_opb_dbus 32 O Outgoing Data 
o_hbce_req 1 O Request for HBCE operation 
o_hbce_opcode 3 O Opcode of operation 
o_hbce_addr 48 O MAC address data 
o_hbce_flow_id 15 O Flow ID data 
o_hbce_vlan 12 O VLAN data 
o_hbce_port 10 O Port data 
o_hbce_fld_bmp 3 O Bitmap to indicate the valid data 

Table 4-1 OPB_INF signals with the bus and HBCE 
 

HBCE needs several data to start working on a MAC address, a VLAN or a Port 

and all of them need to pass over the OPB bus. For this purpose, we define some 

control registers that each instructor unit should fill before it starts an operation. The 

control registers defined are the following: 

• ConfReg0 : It contains the PPU number that instructs the commands and the 

valid parts of the command. The fields of the register are: 

Address: ADDRHI & 0x10000 

31:11 10:8 7:2 1:0 
Reserved Rule Bitmap Reserved PPU number 

 

PPU number:  Is a 2-bit field that indicates which of the 4 PPUs instructed 

the command. 

Rule Bitmap :  Is a 3-bit that indicates which parts of the incoming rule are 

valid. Bit(10)  indicates that MAC is valid, Bit(9)  indicates that VLAN is 

valid and Bit(8)  indicates that port is valid.  

• ConfReg1 : It contains the 32 MSB of the incoming 48-bit MAC Address. 

The fields of the register are: 

Address: ADDRHI & 0x10001 

31:0 
MAC Address [47:16]

 

• ConfReg2 : It contains the 16 LSB of the incoming 48-bit MAC Address. The 

fields of the register are: 

Address: ADDRHI & 0x10002 

31:16 15:0 
Reserved MAC Address [15:0]
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• ConfReg3 : It contains the Flow ID of the rule to be inserted. The fields of the 

register are: 

Address: ADDRHI & 0x10003 

31:15 14:0 
Reserved Flow ID

 

• ConfReg4 : It contains the values of the incoming VLAN and Port. The fields 

of the register are: 

Address: ADDRHI & 0x10004 

31:28 27:16 15:10 9:0 
Reserved VLAN Reserved Port

 

Access to these registers is achieved with normal OPB reads or writes to the address 

of each register. Using these registers we also define the commands for HBCE that 

can be given through the OPB Bus. The commands are the following: 

• InsertKey: This command aims to be used for rule insertion in the database 

and results in insert operation requests to HBCE. Before this command is 

initiated the appropriate configuration registers (ConfReg0-4)  should be 

written with the desired values. 

Address: ADDRHI & 0xA0000 

OPB Command: Read 

• SearchKey: This command should be used to lookup a given set of MAC, 

VLAN, PORT values in the data structure and results in lookup operation 

requests to HBCE. Before this command is initiated the appropriate 

configuration registers (ConfReg0-4) should be written with the desired 

values. 

Address: ADDRHI & 0xC0000 

OPB Command: Read 

• DelKey: This command should be used to delete a rule given the MAC 

address, or VLAN or Port of the rule and results in delete operation requests to 

HBCE. Before this command is initiated the appropriate configuration 

registers (ConfReg0-4)  should be written with the desired values. 

Address: ADDRHI & 0xC0000 

OPB Command: Write 
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• WrVendor: This command aims to be used on the initialization of the block 

to fill the MAC vendor replacement tables with the appropriate values. The 

range of valid addresses is: 0xA0000 - 0xA0EC8 

Address: ADDRHI & 0xA0000 

OPB Command: Write 

4.3 HBCE_MCB  
 HBCE_MCB has several internal blocks that handle the operations of the 

HBCE scheme as described in Chapter 3. The internal organization of HBCE_MCB is 

depicted in Figure 4-2. HBCE_MCB interfaces with OPB_INF block to receive 

commands and notifies it when it completes an operation. It also communicates with 

MAC_VID to receive the internally modified MAC address and with MAC_HSH to 

get the hashed values. Moreover the required memory communication is done over 

the MEM_HDLR block where requests for read, write, memory allocation and 

deallocation are given. 

 
Figure 4-2 HBCE_MCB internal organization 
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Memory Organization and Tables 

The current HBCE implementation is based on sequential accesses to 

MAC_TBL and follows the pointers to the dynamically allocated nodes. Moreover in 

the memory we have stored the VLAN table (VLAN_TBL), the Port table 

(PORT_TBL) and the vendor assignment table (VID_RPL). All these tables and the 

free memory addresses are stored in the same SSRAM.  The memory word we use is 

36-bits and we use at most 128K words which have been found enough during the 

simulations of subsection 3.4.2. The organization of the tables in the memory and the 

pool of free memory words for dynamic memory management is shown in Figure 4-3. 

The first 64K words are used for MAC_TBL, the next 8K words are for VID_RPL, 

the next 4K words are for VLAN_TBL and the next 1K words are for PORT_TBL. 

The remaining 52224 memory words are used by the memory handler (MEM_HDLR) 

to provide dynamic allocation and deallocation of memory blocks. 

 
Figure 4-3 HBCE Memory Organization 

4.3.1 MCB_CTRL 

MCB_CTRL is responsible to manage the block’s operations and involves an 

FSM to handle the requests for the insert, lookup and delete defined by the following 

opcodes: 
 2’b00 : Lookup 

 2’b01 : Insert 

 2’b10 : Delete 

 2’b11 : Reserved 
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For each operation there is a sub-block responsible to complete it. MCB_INS is 

responsible for the inserts, MCB_LUP for the lookups and MCB_DEL for the deletes. 

Upon a reception of a command MCB_CTRL generates a request to MAC_VID block 

in order the MAC vendor ID to be replaced and then instructs MAC_HSH to generate 

the proper hash values. Then it orders one of the MCB_INS, MCB_LUP and 

MCB_DEL blocks to start its operation and sets the MEM_MUX to output the 

appropriate block’s requests to the memory handler. 

4.3.2 MCB_INS 

MCB_INS sub-block handles all the insertions in the appropriate table 

depending on whether a MAC address, a VLAN or a Port rule is to be inserted. 

VLAN and port insertions require a single memory access and are trivial, however 

inserting a MAC address is the most complex operation and has an FSM to handle the 

possible cases. After the vendor replacement and the hashing we access MAC_TBL in 

the address indicated by Tindex and decode the FlowID field: 
 If FlowID field is 0 we write the given Flow ID and the generated Hval.  

 If FlowID field has value 1 we proceed to the following steps: 

o allocate a memory block of size #Collisions + 1 ,  

o we copy the contents of the old block specified by the block 

pointer to the newly allocated block, 

o add the new entry in the last word of the block by writing the 

given FlowID and the generated Hval, 

o deallocate the old block, 

o update the MAC_TBL entry with the new #Collisions and the new 

block pointer. 

 If FlowID field has value other than 0 or 1 we do the following: 

o allocate a memory block of size 2 

o write the data read from MAC_TBL to the first word of the block, 

o add the new entry in the second word of the block by writing the 

given FlowID and the generated Hval, 

o update the MAC_TBL entry by writing the FlowID field with 1, the 

#Collisions field with 2 and the Block Pointer field with the 

address of the allocated block. 

4.3.3 MCB_LUP 

MCB_LUP sub-block handles the lookups in the appropriate table depending 

on whether a MAC address, a VLAN or a Port rule is to be searched. VLAN and port 

lookups require a single memory access and are trivial, however looking for a MAC 
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address is a more complex operation and has an FSM to handle the possible cases. 

After the vendor replacement and the hashing we access MAC_TBL in the address 

indicated by Tindex and decode the FlowID field: 
 If the FlowID field is 0 then we have not a match.  

 If the FlowID field is has a value 1 we follow the Block Pointer and 

read as many words as the #Collisions field says. During each word 

access we compare the Hval field of the word with the generated one.  

o If we find a match in one of the words then we return associated 

the FlowID field,  

o Otherwise, when the words finish and we don’t have found a match. 

 If the FlowID field has value other than 0 or 1 then we compare the 

Hval field of the entry with the generated one.  

o If the values match we return the FlowID field of the entry, 

o Otherwise we don’t have a match. 

4.3.4 MCB_DEL 

MCB_DEL sub-block handles the deletions in the appropriate table depending 

on whether a MAC address, a VLAN or a Port rule is to be deleted. VLAN and port 

deletes require a single memory access and are trivial, however deleting a MAC 

address is more a complex operation and has an FSM to handle the possible cases. 

After the vendor replacement and the hashing, we access MAC_TBL in the address 

indicated by Tindex and decode the FlowID field: 
 If the FlowID field has value 0 then delete fails.  

 If the FlowID field has a value 1 we check the #Collisions Field 

o If it is 2 then we find which word matches, we move the other word 

to the specific TBL_MAC entry and deallocate the block. If none of 

the words match then delete fails. 

o If it is not 2 we follow the Block Pointer and read as many words 

as the #Collisions field says. During each word access we compare 

the Hval field of the word with the generated one.  

• If we find a match in one of the words then we substitute this 

word with the last word of the block and remove the last word.  

• Otherwise, the words finish and delete fails. 

 If the FlowID field has value other than 0 or 1 then we compare the 

Hval field of the entry with the generated one.  

• If the values match we substitute it with a word of empty 

format. 

• Otherwise delete fails. 
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4.3.5 MAC_VID 

This sub-block receives the vendor ID value in 24-bits and finds the 

corresponding internally assigned ones in 13-bits. It holds a small number of special 

cases into an internal lookup table and consults the VID_RPL table if the vendor ID 

does not belong to the special cases. VID_RPL is located inside the external SSRAM 

and the final internal ID is found in a defined table offset and in the sub-offset 

specified by the last 8-bits of the MAC vendor. 

4.3.6 MAC_HSH 

This sub-block receives the modified vendor ID value from MAC_VID and 

the last 24-bits of the original MAC address and calculates Tindex and Hval as defined 

in subsection 3.3.2. This sub-block is of minor complexity since it has only a few 

XOR gates and has single cycle latency. It can be easily modified to implement a new 

hashing scheme of variable latency without affecting the rest of the system. 

4.4 MEM_HDLR 
The MEM_HDLR sub-block provides the dynamic memory management in 

our system and supports variable size blocks. MEM_HDLR is the intermediate layer 

between the blocks and the memory controller MEM_CTRL to support requests for 

allocation and deallocation of variable size blocks. Requests for reads or writes in the 

memory are immediately forwarded to the memory controller MEM_CTRL. 

We have a pool of 64K adjacent memory words intended for dynamic 

operations. To support this management we use a head pointer to the pool of these 

addresses, a tail pointer to the last address of this pool and a current pointer to keep 

the state of the already used words. During allocation from the pool we increment the 

current pointer. The deallocated blocks are placed into free-lists where each free-list 

holds all the deallocated blocks of a certain size. For every free-list we keep a head, 

tail pointer and a counter to keep the number of linked blocks. Linking between 

multiple blocks is implemented by writing the address of the next block inside the 

data of the previous block. We decide not to support unlimited free-lists for blocks of 

different sizes but limit allocation and deallocation into blocks of 2 and 4 words. 

During requests for allocation of a specific size block we first check if we have 

available blocks in the corresponding free-list and if not then we allocate from the 
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pool. Upon deallocation, we add the deallocated block in the tail of the corresponding 

free-list and increment the appropriate counter. Figure 4-4 illustrates the mechanism 

of memory pool and the free-lists. 

 
Figure 4-4 Snapshot of dynamic memory management mechanism 

4.5 MEM_CTRL 
The memory controller has an FSM to implement the timing described by the 

Cypress ZBT SRAM datasheet [33] and provides an interface to read and write the 

memory. Writes are performed in a single cycle but reads have two cycles latency 

since the data outputted from the memory need to be registered in order to be safely 

returned. Figure 4-5 illustrates the view of the system and highlights the read path. 

The memory inserts a single cycle latency and the register another cycle. The input 

data are registered because they come from an external memory interface and it is not 

safe to use this input in slow logic or long routed paths. Moreover, the valid read data 

are given along with an acknowledge signal that exists in the controller interface. 
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Figure 4-5 Overview of MEM_CTRL 

4.6 Implementation Analysis 
In this subsection we provide an analysis of the block latencies and an 

estimation of the implementation cost for the reference design.  

4.6.1 Latency Analysis 

We calculate the minimum and the maximum number of clock cycles required 

by each block to complete its operation. Many of the blocks have variable latencies 

which depend on the access patterns and the data stored in the data structures. 

Moreover, the blocks that access the external SSRAM for the stored data structures 

have to also suffer from the latency of our memory controller.  In Table 4-2 we 

present the latency per block of HBCE. 

Block Name Min Latency
(clock cycles)

Max Latency
(clock cycles)

OPB_INF 1 3 
MCB_CTRL 1 - 
MCB_INS 3 13 
MCB_LUP 2 17 
MCB_DEL 3 15 
MAC_VID 1 3 
MAC_HSH 1 1 
MEM_HDLR 0 3 
MEM_CTRL 1 2 

Table 4-2 B2PC Blocks Latencies 
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The fact that the memory controller has latency 2 cycles for a read operation in the 

external SSRAM significantly affects the performance of the blocks that perform 

sequential accesses to the memory. Insert, lookup and delete operations are high 

depending on the read data to decide the address of the next memory access and thus 

the 2 cycle latency of the memory controller is continuously introduced. Additionally, 

for the blocks MCB_INS, MCB_LUP and MCB_DEL we consider that we may have 

and support at most 15 collisions and this bounds the maximum latency. According to 

the number of memory accesses we calculated in subsection 3.4.3 we need for a 

lookup 7,3 clock cycles on average. 

4.6.2 Hardware Cost Analysis 

We have used VHDL to describe the design and the results presented are the 

reports from the synthesis tools. We have synthesized the design using the Synopsys 

Design Compiler [35] which is the most widely used synthesis tool. We have used 

UMCs 0.13µm technology library to estimate the area and the frequency of the 

design. Moreover, we used the XilinX ISE tool to implement and port the design in 

the FPGA. 

The synthesis tool for the ASIC flow indicates that the maximum working 

frequency of our design is 500Mhz.Using the synthesis tool we calculated the number 

of flip-flops contained in our design and we present them per high level block in 

Table 4-3 and also calculate the total. 

Block Block Description Number of Flip-Flops 
HBCE_MCB Main Control of HBCE 592 
MAC_VID Vendor ID replacement 28 
MAC_HSH Hashing the MAC address 38 

MEM_HDLR Memory Handler 184 
MEM_CTRL Memory Controller 43 

OPB_INF OPB Bus Interface 296 
Total  1181 

Table 4-3  Flip-Flop count per block 
 

The area of the total design and the equivalent gate count is presented in Table 4-4. 

The equivalent gate count is calculated by considering how many 2-input NANDs can 

be accommodated in this area.   
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Block Area 
(mm2)

Equivalent  
NAND Gates

Combinatorial 0,044 8482 
Non-Combinatorial 0,054 10362 

Total 0,098 18844 
Table 4-4 Area estimations of HBCE 

 
ISE tool of the Xilinx FPGA flow shows that the maximum working frequency 

of our design is 100 Mhz. The tool reports the occupied resources after a full back-end 

FPGA flow while occupying optimizations to remove redundant logic or replicate 

logic to improve speed. The final results are shown in Table 4-5. 

Resource Resource count

Used 4 input LUTs 2371 

Slice Flip Flops 1060 

Table 4-5  FPGA resource allocation 

4.6.3 HBCE Hardware Performance 

Considering that we have a 100MHz clock, the external memory works on the 

same frequency and the average lookup time is 7,3 clock cycles then, the FPGA 

prototype design of HBCE supports at worst case 7 Gbps. 
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5 Chapter 5 

 
Bitmap Oriented Strides 
 

 In this chapter we present Bitmap Oriented Strides (BOS), our algorithm for 

Longest Prefix Matching (LPM). We developed an algorithm for LPM, suitable for 

pipelined hardware implementation which can be used in an environment that prefix 

lookups are essential. Applications of this kind are routing lookups, forwarding and 

packet classification. BOS is a multi-bit trie algorithm that uses bitmaps across strides 

and involves complex data structures and certain optimization techniques so as to 

support fast and storage efficient IPv4 prefix lookups. The design of BOS is based on 

observations and simulations upon real IPv4 routing prefixes. We also strive after a 

scheme that can support incremental updates in modest time and storage. 

5.1 Analysis and Description of BOS Algorithm 
The BOS algorithm design and analysis is based on some very important 

observations that were made after extended literature study and routing tables’ 

analysis. 

5.1.1 Routing Table Analysis 

We collected several routing tables from backbone routers of the Internet that 

are available in IPMA [36] and analyze them in statistical manner. We counted 

lengths of the prefixes included in those routing tables and observe the distribution 

shown in Figure 5-1. Table 5-1 shows values collected from the tables’ analysis. It is 

clearly shown that more than 99% of the prefixes have lengths in the interval between 

16 and 24 and more that half of the total prefixes have length equal to 24. This 

distribution has been found to be constant over time and stable between routing tables 

of various sizes, hence we can use it as a guide for our algorithm. 
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AADS 
2000/10 

MAE-EAST 
2000/01 

PAIX 
2000/10 Prefix 

Length 
Prefix Count % Prefix Count % Prefix Count % 

0 0 0,00 0 0,00 0 0,00 
1 0 0,00 0 0,00 0 0,00 
2 0 0,00 0 0,00 0 0,00 
3 0 0,00 0 0,00 0 0,00 
4 0 0,00 0 0,00 0 0,00 
5 0 0,00 0 0,00 0 0,00 
6 0 0,00 0 0,00 0 0,00 
7 0 0,00 0 0,00 0 0,00 
8 14 0,04 28 0,05 25 0,03 
9 2 0,01 4 0,01 4 0,00 
10 1 0,00 5 0,01 5 0,01 
11 0 0,00 9 0,01 9 0,01 
12 5 0,01 28 0,05 29 0,03 
13 13 0,03 36 0,06 60 0,07 
14 49 0,12 130 0,22 174 0,19 
15 95 0,24 224 0,37 289 0,32 
16 2726 6,84 5610 9,35 6693 7,33 
17 450 1,13 625 1,04 933 1,02 
18 849 2,13 1284 2,14 1889 2,07 
19 2833 7,10 4195 6,99 6023 6,60 
20 1670 4,19 2321 3,87 3875 4,25 
21 1553 3,89 2671 4,45 3932 4,31 
22 2329 5,84 3757 6,26 5900 6,46 
23 2984 7,48 5175 8,62 7883 8,64 
24 19846 49,77 33691 56,15 52679 57,71 
25 428 1,07 28 0,05 258 0,28 
26 555 1,39 54 0,09 323 0,35 
27 421 1,06 9 0,01 190 0,21 
28 625 1,57 13 0,02 54 0,06 
29 307 0,77 12 0,02 26 0,03 
30 761 1,91 84 0,14 18 0,02 
31 25 0,06 0 0,00 0 0,00 
32 1335 3,35 11 0,02 7 0,01 

Total 39876  60004  91278  
Table 5-1 Routing Table Data 

 
It is obvious that we wanted to design an algorithm that takes into 

consideration the form of routing tables and exploit these observations. Since most of 

the prefixes are in the interval between 16 and 24 we tried to optimize the data 

structure so as to handle these prefixes as fast and as efficient as possible. Since we 

would like to “make the common case fast” we concentrated our efforts on the 

lookups contained in this particular interval. 
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Figure 5-1 Routing Table Distribution 

5.1.2 Trie-Based Solutions 

Many algorithmic solutions on the LPM problem make extended use of tries 

and traverse tree data structures to find the matching prefix. Unibit tries check one bit 

at a time and follow the nodes until no matching bit is found. Schemes of this type 

have a worst case lookup of 32 memory accesses for IPv4 (since the IPv4 address 

fields are 32 bits long) and spend also lot of memory to save the pointers for the next 

nodes. On the other hand, multi-bit tries traverse several bits at a time and this 

provides faster searches. For example if we check 4 bits at a time (4-bit strides) then 

the worst case is 8 memory accesses. In these tries, problems arise when the prefixes 

are not multiples of the stride length. Solution to this problem is prefix expansion as 

described in [11]. CPE generates many prefixes and leads to great memory waste 

(especially when the stride length grows) and to non deterministic update times. 

Other, LPM schemes from literature like Lulea [13] tried to solve the memory 

waste of CPE by using compressed bitmaps to represent strides. They use strides of 

16,8 and 8-bits consecutively to represent the 32-bit IPv4 address space. The first 

16bits are used as an index to a 64K table and the next 8-bit strides are represented by 

their own bitmap algorithm where each stride requires 32 bytes nodes even if only 1 

prefix exists in the 256 space. A lookup is performed at worst case with 9 memory 

accesses but incremental updates to this scheme are inherently slow. Lulea is the most 

storage efficient scheme presented in literature so far.  
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5.1.3 Memory technologies and wire speed 

The routing lookup operation is very important in the latest switching/routing 

equipments and networks. The need for wire-speed means that a routing decision 

should be made in time less that 40ns (worst case in 10Gbps) and of course this 

cannot be done efficiently in software. Moreover the routing tables’ sizes require the 

use of big (dense) and fast memories that can provide high bandwidth.  

Today’s memory technology provides fast SRAMs and high-throughput and 

large DRAMs but a designer must make the right decision given the requirements of 

his system. DRAMs can be big (256Mbytes) and relatively cheap but their access time 

is poor (~60ns) when is to be used in routing lookup functions. SRAMs on the other 

side are a lot faster with access times smaller than 5ns but large capacity SRAMs cost 

a lot. Additionally, SDRAMs are highly suggested for sequential accesses. Under 

these conditions they provide high bandwidth but in the case of trie-based algorithms 

the use of pointers to random addresses makes this choice not practical. Contrarily 

SRAMs give the flexibility of fast random accesses and constant bandwidth. 

5.1.4 BOS approach 

In our approach to find a solution to the LPM problem we will use all the 

above observations to extract an algorithm that will have the following properties: 

1. Easily implementable in hardware 

2. Moderate algorithmic complexity  

3. Fast lookups times for common case 

4. Decent storage requirements and affordable for low budget designs 

5. Deterministic and bounded incremental update times 

In order to cope with the above requirements we ended up with BOS algorithm which: 

• Uses strides and multi-bit trie nodes in order to traverse several bits at a time 

and produce fast lookups.  

• Employs data structures with multi-bit nodes optimized to perform efficiently 

in the prefix interval 16 to 24. 

 Its nodes are represented with bitmaps that can be processed fast in hardware 

and require small storage. 

 The updates in the nodes are executed by well defined routines and in 

deterministic time. 
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BOS Trie Nodes 

The key ingredient of BOS is a trie node that can hold prefixes of lengths from 0 

to 7 bits. This trie has 8 levels and therefore the total number of possible prefixes that 

can be accommodated are 28-1=255. We can use a bitmap to represent all the possible 

prefixes and this needs at least 255 bits as presented in Lulea [13]. According to this 

representation every prefix is correlated with a specific bit position inside the bitmap. 

If a specific bit is set then it is denoted that the corresponding prefix exists.   

Consider a trie that can accommodate prefixes with lengths from 0 to 3 bits as 

shown in Figure 5-2. The prefix with length 0, namely *,  is assigned with number 0, 

the prefix with length 1 and the prefix bit set to 0, namely 0*,  is assigned with 

number 1,  the prefix with length 1 and the prefix bit set to 1, namely 1*, is assigned 

with number 2 and so on as Figure 5-2 presents. Moreover, the level of the trie where 

a specific prefix is located is equal to its length. 

 
Figure 5-2 Prefix trie that supports prefixes up to length 3 

 
We can derive a formula that correlates the length and the decimal value of a prefix 

with a number. Prefix with length 0 is assigned number 0 and all the other prefixes 

use the following formula: 
PrefixNO = PrefixValue + 2

PrefixLength - 1 

The assigned prefix number can be used to indicate a specific bit position inside 

the bitmap. The bitmap that can accommodate all prefix lengths from 0 to 7 needs 255 

bits and this means that even for a single prefix in this range, the trie node needs 32 

bytes. We can prevent this memory waste and partition this trie in 17 subtries where 

each subtrie can support prefixes with lengths 0 to 3 as shown in Figure 5-3. We store 

the prefixes that have length 0 to 3 in the subtrie numbered 0 and the prefixes of 

greater length, namely 4 to 7, to an appropriate subtrie. The appropriate subtrie for the 
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prefixes that have length 4 to 7 is defined by the 4 MSB of the prefix. The prefixes 

that have their 4MSB equal to 0000 are stored in the subtrie numbered 1, the prefixes 

that have their 4MSB equal to 0001 are stored in the subtrie numbered 2 and so on as 

Figure 5-3 presents. 

 
Figure 5-3 Trie partitions 

 

We can derive a formula that correlates the length and the MSB of a prefix with a 

subtrie number. Prefixes with length 0 to 3 are stored in the subtrie 0 and for the 

prefixes of lengths from 4 to 7 we use the following formula to find the subtrie 

number: 
SubtrieNO = PrefixValue[0:3] + 1 

BOS, now uses the subtrie partitioning described in the last paragraph and the tries 

that support 0 to 3 length prefixes to represent the trie node that can support 0 to 7 

length prefixes. To store efficiently the information about the subtries we define a 

bitmap (TrieBmp). In TrieBmp we correlate each bit with a specific subtrie according 

to the SubtrieNO formula. When a bit inside TrieBmp is set then it means that the 

corresponding subtrie has a least 1 prefix active. For every active subtrie we need the 

information about the included active prefixes, therefore we define another bitmap 

(PrefixBmp). In PrefixBmp we correlate each bit with a specific prefix according to 

the PrefixNO formula. When a bit inside PrefixBmp is set then it means that the 

corresponding prefix is active. 

The partitioning of 8-bit tries into smaller 4-bit subtries gives the flexibility to 

save only the necessary prefix bitmaps (active) and not all of them. The trie bitmap 

needs 17 bits and each prefix bitmap needs 15 bits. This partitioning can be efficiently 

implemented by the dynamic memory management scheme discussed in subsection 
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3.3.5 because thevariable number of prefix bitmaps requires pointers to variable size 

blocks. 

The associated information for each prefix is considered an N-bit quantity (the 

data associated with each rule), say 16-bits, and should be stored along with the prefix 

bitmap. Since more that one prefixes could be active we also need dynamic pointers 

to variable size blocks. So along with the prefix bitmap we save a pointer to the 

associated prefix data. 

To locate the subtrie of a specific prefix in the trie bitmap we use the subtrie 

formula below, where Tindex indicates the bit position of the actual subtrie number. 

 If the prefix has length 0-3 then : 

Tindex = 0 

 If the prefix has length 4-7 then : 

Tindex = prefix[0:3] + 1 

 

To locate a specific prefix in the prefix bitmap we present the formula shown 

below, where Pindex indicates the bit position of the actual prefix number in a specific 

subtrie. 

 If Tindex = 0 

o If the prefix inside the trie has length 0 then : 

Pindex = 0 

o If the prefix inside the trie has length 1 then : 

Pindex = prefix[0] + 1 

o If the prefix inside the trie has length 2 then : 

Pindex = prefix[0:1] + 3 

o If the prefix inside the trie has length 3 then : 

Pindex = prefix[0:2] + 7 

 If Tindex != 0 

o If the prefix inside the trie has length 0 then : 

Pindex = 0 

o If the prefix inside the trie has length 1 then : 

Pindex = prefix[4] + 1 

o If the prefix inside the trie has length 2 then : 

Pindex = prefix[4:5] + 3 

o If the prefix inside the trie has length 3 then : 

Pindex = prefix[4:6] + 7 

In order to be able to efficiently search the blocks that are generated by our 

dynamic memory management scheme we have to have the prefix bitmaps and the 

associated prefix information sorted inside the blocks. The prefix bitmap for the first 
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active subtrie should be placed first in the variable size block, the second in the 

second position etc. Moreover this indicates that we should know the number of set 

bits in the bitmap, fortunately this is a trivial operation for hardware to perform. The 

requirement for dynamic memory management generates an additional complexity in 

insertions or updates since the variable size blocks need to be resized appropriately 

and put sorted. This operation can be handled easily since resizing and sorting is 

limited to 17 nodes. 

To illustrate the data structures used by BOS we introduce an example with 

the prefixes shown in Table 5-2. The two leftmost columns have the actual prefixes 

and the associated information and the two rightmost columns show the internally 

represented subtrie and prefix number pairs. As calculated, a general view of the data 

structure needed to store the prefixes of the example is shown in Figure 5-4. 

Prefix  
[0:6] 

Associated 
Info 

Subtrie 
Number

Prefix 
Number

00001* 23 1 2 
0000101* 47 1 12 
0000110* 7 1 13 
01* 15 0 5 
100* 121 0 11 
1001* 36 10 0 
1100* 51 13 0 
110011* 3 13 6 

Table 5-2 Prefix example 
 

 
Figure 5-4 Trie data structure example 
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For a given 7-bit value, BOS should first find the candidate subtries that could match 

a certain prefix and then the candidate prefixes, inside the subtrie, that could also 

match. Tracking the longest one is the solution. The candidate subtries are always 

two: 

 T1index= 0 and 

 One of the subtries 1-16 depending on the value 

T2index = value[0:3] + 1. 

Inside the 2 subtries the candidate prefixes are four: 

 for T1index : 

o P1index = 0 

o P2index = value[0] + 1 

o P3index = value[0:1] + 3

o P4index = value[0:2] + 7

 for T2index: 

o P1index = 0 

o P2index = value[4] + 1 

o P3index = value[4:5] + 3

o P4index = value[4:6] + 7

 

We check the bit positions in TrieBmp for the 2 subtries and if both exist we give 

priority to the second subtrie which produces longer prefixes. Inside a matching 

subtrie we check all the bit positions in PrefixBmp for the 4 prefixes by giving 

priority to the fourth prefix which is the longest. The associated information for a 

matched prefix is retrieved by the node indicated by the pointer stored at the node of 

the matched prefix. 

BOS Tables 

BOS scheme uses the trie nodes for all the distinct 7-bit prefix lengths inside the 

32-bit address space. BOS in its simplest form (BOS-SIMPLE) has trie nodes for the 

following prefix intervals: 

i. 0-7, 

ii. 8-15, 

iii. 16-23, 

iv. 24-31 and  

v. 32 
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To hold the root nodes for the prefixes in each distinct interval, BOS-SIMPLE 

uses several tables as shown in Figure 5-5. For the interval 0-7 we have a single entry 

for root called TBL0. For interval 8-15 we have 28 possible roots, therefore we use a 

256-entry table called TBL8 and the indexing is done with the first 8-bits of the 

prefix. For interval 16-23 we use a 216=65536 table called TBL16 and uses the first 

16-bits of the prefix as index. For interval 24-31 we don’t use 224 entries because it 

would lead to great storage waste since no routing table could have 16777216 prefixes 

in this interval. Instead we use 216 entries in table TBL24 and indexing is done by 

hashing the first 24-bits of the value. The collisions that occur due to hashing are 

handled with pointers to variable size blocks. For the 32 bit prefixes we use only 212 

entries in table TBL32, since most routing tables have few entries in this interval, and 

addressing is done by hashing. Collisions in this table are also handled with variable 

size blocks.  

 
Figure 5-5 BOS Tables 

 
Note that all distinct intervals are independent and this gives us the flexibility 

to start searching for a prefix from the middle of the address space. Searching 

sequentially would require to lookup all 5 tables but we can use a binary search type 

of access and limit the lookups to 3 or less. Furthermore, we can implement parallel 

searches in hardware if each table is stored in a separate memory. 
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Indexes in TBL24 are generated by the use of the XOR function in the first 24 

bits of the prefix and a 16-bit address is produced as follows: 
TBL24index = prefix(8:23) xor (0000,prefix(0:7),0000) 

Indexes in TBL32 are also generated by XOR function and the 12-bit address is 

produced as follows: 
TBL32index = prefix(4:15) xor prefix(20:31) 

The decision for the hashing functions described above is presented in Section 5.3. 

To handle the collisions in TBL24 we use pointers to variable size blocks as 

mentioned above. The collision resolving nodes save the number of prefixes that 

collide and a pointer to the variable size block, as described in subsection 3.3.3. To 

identify a prefix in the block we need to save some information to distinguish between 

the prefixes. Fortunately, we don’t need to save all 24-bits and we take advantage of 

the fact that the address has been produced by the actual prefix. Therefore a prefix 

located address A of TBL24 can be reproduced by the 16-bits of A and the first 8-

bits(value) of the prefix as follows: 
 Prefix(0:7)  =  value(0:7) 

 Prefix(8:23) =  A(0:15) xor (0000,value(0:7),0000) 

It is now clear that to resolve collisions, the quantity that must be kept in the variable 

size block is dependent of the hashing scheme, in our case the first 8-bits of the prefix. 

Additionally we keep a pointer to the basic trie node starting from this root. 

In TBL32 collision handling is done the same way as in TBL24 but the 

quantity that must be kept here is 20-bits and there is no need for a pointer to a trie 

node (no longer prefixes exist) but only store the associated information itself. A 

prefix located in address A of TBL32 can be reproduced by the 12-bits of A and the 

first 20-bits(value) of the prefix as follows: 
 Prefix(0:19) =  value(0:19) 

 Prefix(20:31) = A(0:11) xor value(4:15) 

 

BOS-BASIC searches the tables in specific sequence in order to minimize the 

number of accesses. Since 99% of the prefixes exist in the intervals 16-23 and 24-31, 

it is more likely to find the longest match there by examining the associated tables. At 

first we look in TBL16 and if a prefix match occurs then we can search in TBL24 and 

TBL32 to find a matching prefix. If lookups in TBL16 or TBL24 or TBL32 cannot 

find a match then we proceed to search TBL8 and if there is not any match again we 

finally search in TBL0. The sequence of lookups is the following: 
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TBL16 → TBL24 → TBL32 → TBL8 → TBL0 

If after TBL32 a match was produced then our lookup process does not proceed to the 

next tables. 

5.2 BOS optimizations 
BOS, as described above, has some weaknesses in terms of storage efficiency 

since it contains redundant information in some special cases. This section proposes 

some optimizations in the basic scheme and explores the trade-off between storage 

requirements and the number of memory accesses. Moreover we quote some 

modifications that could allow BOS to become the single field solution for the general 

decomposed N-dimensional packet classification, described in detail in Chapter 6.  

5.2.1 Prefix Node Optimization 

We observe an irritating feature of the trie node data structure that keeps the 

associated prefix node information. In case only a single prefix is active inside a 

subtrie, we need to store a pointer to the prefix information node and then acquire 

these data. This waste can be avoided by keeping the associated data in the node itself 

instead of the pointer to the data. This modification requires a flag to indicate that 

there is only a single prefix. Additionally, instead of keeping the prefix bitmap we can 

only keep the prefix number. The prefix number needs 4-bits and the flag 1-bit. In 

total, now, we use 5-bits instead of 15 required for the bitmap. By this trick we save 

one memory word that would keep the associated data and we also save the extra 

memory access to acquire these data. 

5.2.2 Trie Node Optimization 

In the cases where only one prefix is active inside the entire trie then there is 

only one subtrie active. Normally we should store a pointer to the prefix node and 

then lookup for the prefix number and the associated data. We can improve this case 

and save memory by keeping all the information in the basic trie node, similarly to 

5.2.1. Instead of the 17-bit trie bitmap and the prefix node pointer, we keep the subtrie 

number in 5-bits, the prefix number in 4-bits and an extra flag to indicate this special 

case. Moreover, we don’t save a pointer to prefix node but the actual associated prefix 
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data. This optimization saves the memory of the prefix node and the extra memory 

access. 

5.2.3 TBL16 Optimization 

BOS adopted the use of TBL16, which has 64K entries (216), in order to reach 

the prefix interval 16 to 23 very fast. This practice is very common in literature 

[13][37][38] although it could waste memory since many of the 64K entries could be 

empty. To reduce the storage requirements of BOS the large 64K static tables TBL16 

and TBL24 should probably be shrinked. At first glance TBL16 is likely the most 

underutilized table since not all the entries could be roots of tries. We can save 

memory by reducing TBL16 table into a smaller one, say 16K entries, and use 

hashing for indexing.  For indexing now we need 14-bits and we have to produce each 

index by the first 16-bits of the prefix. Hashing the address into 14-bits requires 

saving 2-bits in the entries to identify a root of prefixes.  

In this hashing we can take advantage of the fact that CIDR [2] aggregates 

consecutive routing prefixes from the early class-based addressing and gives us 

information about the first 2-bits of each address. When aggregating subnets from the 

old Class A addresses then bits(0:1) have the value 00 or 01 but these prefixes would 

have length lower that 8, so they don’t affect TBL16. Similarly for aggregation of 

Class B subnets, the addresses bits(0:1) have the value 10 but their prefix length is 

lower than 16. Aggregation of Class C subnets has value 11 in bits(0:1) of the address 

and the prefix lengths exceeds 16. The prefixes from Class C addresses well affect 

TBL16 and it is likely that most roots in TBL16 come from these addresses. However, 

routing protocols like BGP [39] implement, what is called route aggregations, so as to 

be efficient. This route aggregation is generally based on the associated prefix 

information (namely NEXT_HOP) and can create prefixes longer than 16 from Class 

A and Class B addresses. Because CIDR is widely used we decided to use bits (2:15) 

for indexing of the TBL16 table. Therefore we define a new index for TBL16 which 

is: 
TBL16index = prefix(2:15) 

The performance of the above indexing scheme is discussed in Section 1.3. 

 In case of collisions inside TBL16 we can use the solution of sorted roots 

inside variable size blocks as described for TBL24 and TBL32. In TBL16 the 

maximum number of collisions is limited to 4 and 2-bits can identify the root of the 
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prefixes. It is obvious that by reducing TBL16 we trade the storage for the number of 

memory accesses to locate a specific root for prefixes in the interval 16-23. We make 

TBL16 4 times smaller by sacrificing one possible extra memory access and a pointer.  

 Reduction of TBL16 is also helpful if BOS is to be used in decomposed N-

dimensional classification. The number of rules-prefixes in classification databases is 

notably smaller than in routing tables. In related literature [40][20][26] the number of 

rules is lower than 2000 and the number of distinct prefixes is even smaller. This 

denotes that smaller TBL16 can produce better memory utilization. If the target 

application is packet classification with a small number of rules, we can even shrink 

TBL16 to 4K entries.   

5.2.4 TBL24 and TBL32 Optimization 

BOS assigns a 64K entry table for TBL24 to save the trie nodes for the roots 

of prefix lengths equal or longer than 24. In order to avoid underutilization of this 

table we propose a more fine-grained approach with dynamic memory management. 

We decide to link the entries of TBL16 with the entries that extend further than 24, so 

as to share the common 16-bit prefix, by using dynamic pointers to 256 entries’ 

blocks (BLK256). Every entry of TBL16 has a pointer to the basic trie node for 

lengths 16-23 and a pointer to a 256 block that saves roots for lengths 24-31 if 

applicable. 

For prefixes that have length 24 or more we allocate a BLK256 and link to the 

corresponding entry of TBL16. The first 16 bits of the prefix index TBL16 (or the 14 

rightmost from that first 16 according to TBL16 optimization) and the next 8 bits 

index the corresponding BLK256. When a new prefix of length greater or equal to 24 

is inserted we first check the corresponding entry in TBL16 and if a BLK256 is linked 

we insert the prefix in the specific BLK256 otherwise we allocate a new block. 

There are cases where a BLK256 is underutilized because it contains much 

less than 256 entries. To avoid this possible underutilization we can assign the same 

BLK256 in more that one entries of TBL16. This means that the prefixes in this block 

could have the first 16-bits different, so this should be the information that we save in 

BLK256 to distinguish the prefix roots. Roots inside BLK256 are still indexed with 

the last 8-bits and every entry has a pointer to the associated trie node. The scheme 

assigns a BLK256 to more than one TBL16 entries and has counters to keep the 
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utilization of the block. If a BLK256 is highly populated and reaches its limits, 

namely 256 roots, then the scheme assigns a new block for the forthcoming 24 length 

roots. 

When roots with different first 16-bits are inserted in a BLK256 it is possible 

that we have collisions since indexing is done only by the last 8-bits. Handling these 

collisions is trivial with our variable size blocks but it could lead to extra memory 

accesses. We can trade the collision resolving accesses by setting the utilization factor 

of BLK256 to lower limits. We can decide not to have fully populated BLK256 but 

allocate new block when the number of roots inside a BLK256 is lower than 256. 

These limits can be 224 or 192 or 160 or 128 which means that many entries in the 

block can be empty. This waste can help us have fewer collisions in the blocks and 

therefore fewer memory accesses. 

The same strategy is used for TBL32 which is transformed into multiple 

blocks of BLK256 linked to the corresponding BLK256 blocks containing the items 

with length 24. This multi-linking scheme gives us the flexibility to save the 

obligatory memory accesses to TBL24 and TBL32 when no prefix exists. Now 

lookups start at TBL16 and if a link to further roots exists then we lookup to the 

corresponding BLK256. Further access to 32 length nodes is done only if a link from 

a BLK256 that holds 24 length nodes exists. TBL8 and TBL0 are now accessed only 

if no entry matches in TBL16 and no block for 24 roots exists. The form of BOS after 

the table optimizations is shown in Figure 5-6. 

 
Figure 5-6 BOS with BLK256 
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The dynamic management of roots 24 and 32 is also helpful if BOS is to be 

used in decomposed N-dimensional classification. The number of rules-prefixes in 

classification databases is notably smaller than in routing tables as discussed above. 

We have the flexibility to create as many BLK256 as required by the number of 24 

and 32 existing roots and we can fine-tune the thresholds, where new BLK256 are 

allocated, depending on our memory budget. 

5.2.5 All prefix match 

BOS is designed to solve the Longest Prefix Matching (LPM) problem but it 

can easily adapt to support All Prefix Matching (APM); BOS should return all the 

matching prefixes during its way to find the longest one. APM is essential for 

decomposed N-dimensional classification where multiple field searches can be 

converted into several single field searches, as described in Chapter 6.    

 BOS can support APM by searching in parallel or sequentially all of its tables 

and blocks to find all the prefixes. BOS simple should search TBL0 then TBL8 and so 

on until it finds all prefixes. The sequence of searching in tables for BOS-SIMPLE is: 

TBL0→ TBL8 →TBL16 → TBL24 → TBL32 

In every table, when an active root exists BOS searches for all the matching prefixes 

inside the trie node. Inside the trie node the maximum number of matching prefixes is 

8. At first, BOS should lookup in all the candidate subtries; these are subtrie 0 and the 

subtrie indicated by the prefix value. Inside every subtrie BOS looks for matches in 

all four candidate prefixes. Once a match is found the associated prefix information is 

returned. 

 If BOS is implemented with the proposed TBL24 and TBL32 optimizations 

then the sequence of lookups is the same as BOS-SIMPLE but searches in ranges 

further than 23 proceed only is a link from TBL16 exists. Therefore, search in 

BLK256s for TBL24 is performed if a link from TBL16 exists. Similarly, searches in 

BLK256s for TBL32 are performed only if a block is linked to the corresponding 

BLK256 which contains the 24-bit roots. 
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5.3 Simulation Results and Performance 
In this subsection we present our simulation results based on real routing tables 

and details about the storage and speed of the presented scheme. We first analyze the 

prefixes of several real world routing tables and count the number of tries nodes that 

should be used by our scheme. We present our results before and after the 

optimizations proposed in Section 5.2 and illustrate their effectiveness. BOS storage 

and speed performance is based on assumptions for the hardware and memory 

configurations. 

5.3.1 Hashing functions and Indexing 

TBL24 and TBL32 Hashing 

Indexing in TBL24 and TBL32 is implemented by hashing the most significant 

bits of each prefix. The decisions for the hashing functions were taken by comparing 

the performance (in terms of collisions) achieved by a large number of them when 

applied in real routing tables. The hashing functions we created and tested are 

following: 
 HSH24_1index = prefix(0:15) 

 HSH24_2index = prefix(0:15) xor (0000,prefix(16:23),0000) 

 HSH24_3index = prefix(8:23) xor (0000,prefix(0:7),0000) 

 CRC-16 

The first three functions require 8 additional bits to be saved in the collision resolving 

nodes so as to be able to distinguish the collided prefixes and the CRC function 

requires all 24-bits to be stored. The maximum and the average number of collisions 

produced by each hash function are shown in Table 5-3. The simulation results, 

presented in the table, show that the hash functions which use XOR  applied in the 

first 24-bits of each prefix, generate more uniformly distributed values and therefore 

the indexes are better shuffled that just using the 16 most significant bits (HSH24_1). 

CRC-16 has the better results in terms of collisions and HSH24_3 is very close. 

Despite the fact that CRC-16 is slightly better than HSH24_3, we decide to use 

HSH24_3 function because it requires only 8-bits to be saved in the collision nodes 

instead of 24-bits that CRC-16 requires. 
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Routing Table 
(Total Prefixes) 

Hash 
function 

Max 
Collisions 

Average 
Collisions 

HSH24_1 209 34,09 
HSH24_2 12 3,81 
HSH24_3 4 1,30 

AADS 
10/2000 
(39876) 

CRC-16 5 1,32 
HSH24_1 199 36,98 
HSH24_2 16 6,24 
HSH24_3 5 1,49 

MAE-EAST  
01/2000 
(60004) 

CRC-16 5 1,48 
HSH24_1 228 41,83 
HSH24_2 20 7,54 
HSH24_3 6 1,77 

PAIX 
10/2000 
(91278) 

CRC-16 8 1,73 
Table 5-3 Hash functions performance 

TBL16 Indexing 

As discussed in subsection 5.2.3 (TBL16 optimization) we decided to shrink 

TBL16 and use the last 14-bits from the 16 leftmost as index to the table. This 

decision was guided by the form of the internet addressing but is also confirmed by 

simulation results. We test in simulation the following indexing functions: 
 IDX16_1index = prefix(0:13) 

 IDX16_2index = prefix(1:14) 

 IDX16_3index = prefix(2:15) 

All functions use a 14-bit portion from the first 16-bits of the prefix and their 

performance in presented in Table 5-4. 

Routing Table 
(Total Prefixes) 

Index 
function 

Max 
Collisions 

Average 
Collisions 

IDX16_1 4 2,65 
IDX16_2 4 1,62 

AADS 
10/2000 
(39876) IDX16_3 3 1,26 

IDX16_1 4 3,12 
IDX16_2 4 1,74 

MAE-EAST  
01/2000 
(60004) IDX16_3 3 1,42 

IDX16_1 4 3,30 
IDX16_2 4 1,87 

PAIX 
10/2000 
(91278) IDX16_3 3 1,52 

Table 5-4 Performance of BOS indexing functions 
 

It is clear from these results that the last 14-bits carry the most “important” 

information that differentiates prefixes by one other. Indexing scheme IDX16_3 is 

suitable to be used for TBL16 since it generates fewer collisions than the others and 

thus triggers less memory accesses. 
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5.3.2 Storage requirements 

This subsection presents the storage requirement of our scheme for several 

routing tables. We present the requirements of our scheme before and after the 

proposed optimizations. To calculate the total storage for BOS we need to count the 

number of the active subtries for the trie nodes and the total number of stored 

prefixes. Additionally, we have to calculate the total amount of memory needed for 

the static tables. We simulated our scheme and the results are shown in Table 5-5. 

On a static table entry we have to fit a 17-bit trie bitmap and a possible 16-bit 

pointer to the subtrie nodes; this assumes a memory word equal or larger than 33-bits. 

A popular memory word size for commercial off-chip SRAMs is 36-bits and can 

match our requirements. Hence, for every memory word on BOS we assume 36-bits 

(4,5 bytes). 

Routing Table 
(Total Prefixes) 

Interval Active Roots Active Tries Active Prefixes 

0-7 0 0 0 
8-15 52 132 179 
16-23 5555 10542 15394 
24-31 20705 21765 22968 

32 1335 1335 1335 

AADS 
10/2000 
(39876) 

Total 27647 33774 39876 
0-7 0 0 0 
8-15 85 315 464 
16-23 8587 17180 25638 
24-31 33776 33815 33891 

32 11 11 11 

MAE-EAST 
01/2000 
(60004) 

Total 42459 51321 60004 
0-7 0 0 0 
8-15 91 377 595 
16-23 10248 23193 37128 
24-31 53167 53217 53548 

32 7 7 7 

PAIX 
10/2000 
(91278) 

Total 63513 76794 91278 
Table 5-5 Routing Tables Properties 

 
For each active subtrie we have to allocate dynamically a memory word to fit 

the 15-bits of the prefix bitmap and the 16-bit pointer to the actual prefix node; those 

can fit in one memory word. As a result the memory words for the subtries are equal 

to the total number of subtries. For the prefixes we allocate a memory word every two 

prefixes since we can fit two associated prefix data in a word. We have assumed 16-

bit data, which is what is basically assumed in the majority of similar studies such as 
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[xRef]. Therefore the total number of the bytes for the trie nodes including the 

associated prefix information is: 

 Totalbytes = ( no_active_tries + no_prefixes/2) * 4,5 

As far as the static tables are concerned, we calculate the total amount of memory 

needed in Table 5-6. 

Table Entries Total Bytes 
TBL0 1 4,5 
TBL8 256 1152 
TBL16 65536 294912 
TBL24 65536 294912 
TBL32 4096 18432 
Total 135425 609412,5 (595Kb)
Table 5-6 Static tables memory requirements 

In Table 5-7 we present the final storage requirements for the simple BOS scheme 

without any optimizations, including the collisions in TBL24 and TBL32.  

Routing Table 
(Total Prefixes) 

Static Tables
(Kbytes) 

Collision Nodes
(Kbytes) 

Trie Nodes 
(Kbytes) 

Total 
(Kbytes)

AADS 10/2000 
(39876) 

595 24 236 855 

MAE-EAST 01/2000 
(60004) 

595 59 357 1011 

PAIX 10/2000 
(91278) 

595 128 538 1264 

Table 5-7 BOS simple storage 
Results show that the static tables consume nearly 50% percent of the total 

storage. The collision nodes required are relatively small and require few Kbytes but 

the trie nodes possess a respectable part of the overall storage. 

Trie Node Optimizations 

 By applying the prefix node optimization (subsection 5.2.1) we don’t need an 

extra memory word for the prefix information in the case where there is only one 

prefix inside a subtrie. We count the number of subtries that have exactly one prefix 

and present them in Table 5-8. 

Routing Table 
(Total Prefixes) 

Total Active
Subtries 

Single Prefix
Subtries 

% of Single 
Prefix Subtries 

AADS 10/2000 
(39876) 

33774 28994 85,8% 

MAE-EAST 01/2000 
(60004) 

51321 46745 91% 

PAIX 10/2000 
(91278) 

76794 69562 90,5% 

Table 5-8 Single Prefix Subtries 
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The results from the routing tables show that more than 85% of the subtries existing 

in BOS have exactly one prefix and therefore we don’t need extra memory words to 

save them. The number of single prefix subtries gives us the number of prefixes that 

we don’t need to save in separate nodes. It is obvious that the prefix node 

optimization is significantly effective since it saves many wasted memory words. We 

recalculate the required storage for BOS after the prefix node optimization in Table 

5-9. We observe that prefix node optimization improved the initial trie node storage 

approximately 28% and the total storage requirement by 7% - 12%.  

Routing Table 
(Total Prefixes) 

Static Tables
(Kbytes) 

Collision Nodes
(Kbytes) 

Trie Nodes 
(Kbytes) 

Total 
(Kbytes)

AADS 10/2000 
(39876) 

595 24 172 791 

MAE-EAST 01/2000 
(60004) 

595 59 255 909 

PAIX 10/2000 
(91278) 

595 128 385 1108 

Table 5-9 Prefix Node Optimization Storage 
 

A further optimization discussed was when a root has just one subtrie and just 

one prefix (trie node optimization 5.2.2). In this case all the information for this 

subtrie is saved in the corresponding static table. In order to measure this 

optimization’s effectiveness we have to calculate the roots that have exactly one 

subtrie and exactly one prefix; single prefix roots. Moreover we have to calculate the 

new number of single prefix subtries since the single prefix roots are a subset of the 

single prefix subtries. Our results are presented in Table 5-10. 

Routing Table 
(Total Prefixes) 

Total 
Active 

Subtries

Single
Prefix
Roots

% of Single 
Prefix 
Roots 

Single 
Prefix 

Subtries

% of Single 
Prefix 

Subtries 
AADS 10/2000 

(39876) 
33774 23398 69,2% 5596 16,6% 

MAE-EAST 
01/2000 
(60004) 

51321 39372 76,7% 7373 14,3% 

PAIX 10/2000 
(91278) 

76794 59181 77% 10381 13,5% 

Table 5-10 Single prefix roots 
 

Calculations on the routing tables show that more than 70% of the roots 

existing in BOS have exactly one prefix and therefore we don’t need allocation of 

extra memory words; we can save them in the static table. We can take advantage of 

the common case that trie node optimization reveals us and save memory words. We 
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recalculate the required storage for BOS after the trie node and prefix node 

optimization in Table 5-11. 

Routing Table 
(Total Prefixes) 

Static Tables
(Kbytes) 

Collision Nodes
(Kbytes) 

Trie Nodes 
(Kbytes) 

Total 
(Kbytes)

AADS 10/2000 
(39876) 

595 24 69 688 

MAE-EAST 01/2000 
(60004) 

595 59 82 736 

PAIX 10/2000 
(91278) 

595 128 125 848 

Table 5-11 Trie and Prefix Node Optimization Storage 
 

Trie node and prefix node optimization together, improved the initial trie node storage 

70% – 77% and the total storage requirement 19% - 33%.  

Static Table Optimizations 

Moving to the optimization of the static tables, as described in subsection 

5.2.3, we decided to shrink TBL16 to 16K entries instead of 64K at the cost of an 

extra memory access and some extra memory space in the case of the additional 

collisions. When we analyze the routing tables in Table 5-5 we see that the active 

roots of the interval 16-23 are significantly less than 64K on all the examined routing 

tables. We find that in the worst case we have 10248 active roots and a 16K table is 

enough for this interval. These results confirm our arguments about few active roots 

inside TBL16. We calculate the collisions and the required storage for TBL16 in this 

case and present our results in Table 5-12. 

Routing Table 
(Total Prefixes) 

Original
TBL16 

(Kbytes)

Optimized
TBL16 

(Kbytes) 

Collision 
Nodes 

(Kbytes)

Total 
(Kbytes) 

AADS 10/2000 
(39876) 

288 72 6 78 

MAE-EAST 01/2000 
(60004) 

288 72 15 87 

PAIX 10/2000 
(91278) 

288 72 21 93 

Table 5-12 TBL16 Storage Optimization 
 

The decision for smaller TBL16 gives us 67% - 73% better storage requirements for 

TBL16 by the cost of an extra memory access.  

In subsection 5.2.4 we have also proposed the replacement of TBL24 and 

TBL32. According to this optimization we replace these tables with dynamic memory 
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blocks of 256 entries and link them to TBL16. This means that for the calculation of 

storage we have to count the number of BLK256 and the collision nodes inside them. 

We simulate our approach and present the results in Table 5-13. We have used a 

number of different threshold values for the utilization of BLK256s to illustrate their 

effectiveness in terms of collisions. The thresholds clearly show that underutilized 

blocks can provide better average access performance at the cost of additional storage. 

Routing Table 
(Total Prefixes)

Threshold Interval Number of
Blocks 

Maximum 
Collisions 

Average 
Collisions 

24-31 90 7 2,01 256 
32 6 11 2,45 

24-31 120 6 1,75 192 
32 7 8 2,15 

24-31 179 5 1,50 

AADS 
10/2000 
(39876) 

128 
32 11 7 1,77 

24-31 133 7 2,00 256 
32 1 1 1,00 

24-31 177 6 1,74 192 
32 1 1 1,00 

24-31 265 6 1,50 

MAE-EAST 
01/2000 
(60004) 

128 
32 1 1 1,00 

24-31 210 8 2,00 256 
32 1 2 1,28 

24-31 279 6 1,74 192 
32 1 2 1,28 

24-31 419 6 1,49 

PAIX 
10/2000 
(91278) 

128 
32 1 2 1,28 

Table 5-13 Dynamic BLK256 for TBL24 and TBL32 
 

After the static tables optimizations we recalculate the required storage for BOS in 

Table 5-14. 

Routing Table 
(Total 

Prefixes) 

 
Thres. 

Trie 
Nodes
(Kb) 

Modified
Static 
Tables 
(Kb) 

TBL16  
Collision 

Nodes 
(Kb) 

Dyn. 
Blocks
(Kb) 

Dyn. 
Collision 

Nodes 
(Kb) 

Total
(Kb) 

256 69 73 6 107 64 319 
192 69 73 6 143 53 344 

AADS 10/2000 
(39876) 

128 69 73 6 214 40 402 
256 82 73 15 150 96 416 
192 82 73 15 200 78 448 

MAE-EAST 
01/2000 
(60004) 128 82 73 15 299 59 528 

256 125 73 21 237 148 604 
192 125 73 21 315 124 658 

PAIX  
10/2000 
(91278) 128 125 73 21 472 92 783 

Table 5-14 Fully optimized BOS storage 
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We can calculate the overall efficiency of BOS by computing a metric that 

indicates the average storage space in terms of bytes per prefix. The absolutely 

essential information includes 32 bits for the prefix itself, 6-bits for the length of the 

prefix and 16-bits for the associated prefix information. So we need at most 54 bits or 

6,75 bytes per prefix. Our scheme requires the values shown in Table 5-15. 

Routing Table 
(Total Prefixes) 

Thres. Total
(Kb) 

Bytes/Prefix 

256 319 8,19 
192 344 8,83 

AADS 10/2000 
(39876) 

128 402 10,32 
256 416 7,09 
192 448 7,64 

MAE-EAST 01/2000
(60004) 

128 528 9,01 
256 604 6,77 
192 658 7,38 

PAIX  
10/2000 
(91278) 128 783 8,78 

Table 5-15 BOS bytes per prefix 
 

We can see that as the routing tables grow, BOS is more efficient in terms of 

storage and provides lower average bytes per prefix that approximate the “perfect” 

reference solution. The overhead of BOS comes from the data structure that we use, 

contrarily the perfect approach does not imply any data structure or organization, 

neither assumes any lookup mechanisms.  

5.3.3 Lookup Performance 

In this subsection we analyze the lookup performance of BOS scheme in terms 

of memory accesses. BOS lookup performance differs before and after the 

optimizations that were proposed. For every interval of the address space we can 

compute the worst and average latency of lookups inside a trie node. 

BOS Simple   

BOS needs one memory access to acquire the data stored in the root node, 

then it follows the pointer to the candidate subtrie node and then the pointer to the 

prefix node. The normal case requires 3 memory accesses for each interval. The worst 

case is when we don’t find a prefix match inside the 1st candidate subtrie, so we seek 

in the 2nd subtrie and then to the prefix node, this case requires 4 memory accesses. In 

case neither prefixes inside the subtries match, we spend 3 memory accesses and we 
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don’t follow any pointer to the prefix node. BOS-SIMPLE has 5 intervals and 5 

distinct tables for each prefix interval, therefore in the worst case we need to search 

all of them so as to determine if a match exists. We need 3 memory accesses for the 

first 4 tables and 4 for the last table. This sums to 16 memory accesses in the worst 

case. If the tables are in separate memories we can search all of them in parallel and 

then the worst case is 4 memory accesses. 

BOS with optimized trie nodes 

If we use prefix and trie node optimizations we can achieve better average 

number of memory accesses but the worst case will remain the same. According to 

the results presented in Table 5-10, nearly 70% of the roots have a single prefix and 

nearly 14% have a single subtrie. On single prefix roots we need 1 memory access 

and on single subtrie roots we need 2 memory accesses. Hence, the average number of 

memory accesses to locate a prefix in an interval is calculated to be 1,62. We see that 

the average case after the node optimizations is 60% better. In case we use sequential 

accesses to tables we need in total 8,1 memory accesses and in case we use parallel 

searches we need on average only 1,62 memory accesses. 

BOS with optimized TBL16 and dynamic blocks. 

Optimizations in TBL16 are rather helpful in terms of storage but significantly 

increase the number of memory accesses to locate a prefix inside an interval. For 

every colliding root inside TBL16 we need an extra memory access and due to that 

the average lookup latency in TBL16 is measured to be 2,62 memory accesses and the 

worst case 5 memory accesses.  

By adding the dynamic memory blocks in our scheme may have saved storage 

but the average and maximum number of memory accesses is increased. For roots of 

prefix lengths 24 or more, we need to locate the block by accessing TBL16, then 

locate the specific root between the roots that collide, and then lookup inside the trie 

node. This sequence of accesses sums to 4,62 memory accesses on average and 11 on 

the worst case. 

The summary of lookup performance for BOS with and without optimizations 

is presented in Table 5-16 and shows the number of memory accesses per lookup in 

every case. These results are an average of all the simulated routing tables. 
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Scheme Average Worst Case Parallel 
BOS-SIMPLE 

No opt. 
10,1 16 4 

BOS Opt. 
Nodes 

4,86 16 1,62 

BOS Opt. 
Tables 

12,1 24 4,62 

Table 5-16 Memory access performance of BOS 

Lookup Perfomance and Link Speeds 

According to our lookup performance we can calculate the efficiency of BOS as a 

forwarding engine in a high speed router. To calculate the network performance we 

assumed a certain speed of the memory and a pipelined hardware implementation that 

can provide one memory access per cycle. The results we present assume 2 possible 

memory configurations: 

• 200Mhz off-chip synchronous SRAM 

• 400Mhz on-chip synchronous SRAM 

Table 5-17 presents the network performance of BOS counted in millions of packets 

per second (Mpps). 

Off-chip SRAM 200Mhz On-Chip SRAM 400Mhz 
Scheme Average 

(Mpps) 
Worst Case

(Mpps) 
Parallel
(Mpps)

Average
(Mpps) 

Worst Case 
(Mpps) 

Parallel
(Mpps)

BOS-SIMPLE 
No opt. 

20 12,5 50 40 25 100 

BOS Opt. 
Nodes 

41,2 12,5 123,5 82,3 25 246 

BOS Opt. 
Tables 

16,5 8,3 43,3 33 16,6 86,6 

Table 5-17 Network Performance of BOS in Mpps 
 

If we assume the worst case of taking routing decisions for minimum sized IP packets 

(40 bytes) then the supported link speeds are shown in Table 5-18. 

Off-chip SRAM 200Mhz On-Chip SRAM 400Mhz 
Scheme Average 

(Gbps) 
Worst Case

(Gbps) 
Parallel
(Gbps) 

Average
(Gbps) 

Worst Case 
(Gbps) 

Parallel
(Gbps) 

BOS-SIMPLE 
No opt. 

6,4 4 16 12,8 8 32 

BOS Opt. 
Nodes 

13,2 4 39,5 26,4 8 79 

BOS Opt. 
Tables 

5,3 2,67 13,8 10,6 5,3 27,7 

Table 5-18 Network Performance of BOS in Gbps 
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6 Chapter 6 

 
Bloom Filter Based Packet Classification 
 

 In this chapter we present Bloom Based Packet Classification (B2PC), our 

scheme for efficient packet classification. We developed a scheme suitable for 

pipelined hardware implementation which can be used as a classification engine for 

network streams. B2PC comprises of a 5-field search algorithm and decomposes 

multi-field classification rules into internal single field rules which are then organized 

in Bloom filter sets. The design of B2PC is optimized for the common case based on 

analysis of real world filter sets and uses the BOS single field technique which was 

described in Chapter 5. 

6.1 Real Filter Sets 
Researchers’ attempts to discover better classification techniques are mainly 

focused in analysis of real world sets of classification rules. Many research groups 

have studied real classification data from commercial ISPs and access lists (ACLs) 

from enterprise networks to exploit the specific characteristics of these sets. The 

results from these surveys provide statistical characteristics of the filter sets and are 

valuable as a guide for the classification algorithms’ designers. 

The standard packet classifiers are 5-dimensional and their fields come from the 

Network Layer (L3) and the Transport Layer (L4) network packet fields. These fields 

are the following: 

• Source IP address in 32-bits (L3) 

• Destination IP address in 32-bits (L3) 

• Source Port in 16-bits (L4) 

• Destination Port in 16-bits (L4) 

• Protocol in 8-bits (L4) 
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A filter in a classifier may specify all the fields with prefixes, ranges, exact values or 

wildcards4. 

There exist several studies of the specific characteristics of the real world 

classification rules. Primarily Gupta and McKeown published a number of 

observations regarding the characteristics of real filters sets [26], while others have 

performed analyses on real filter sets and published their observations [40][41]. The 

following key observations are a review of these studies: 

I. Current filter sets’ size are small, ranging from tens of filters to less than 

5000 filters. However, it is not clear if the size limitation is “natural” or a 

result of the limited performance of packet classification solutions. 

II. The protocol field is restricted to small set of values. TCP, UDP and 

wildcarded are the most common specifications. 

III. Filters specify a limited number of unique transport port ranges. The 

specifications for port ranges vary and have definitions like ‘greater than 

1023’ or ‘20 to 23’. 

IV. The number of unique address prefixes matching a given address is typically 

five or less. 

V. The number of filters matching a given packet is typically five or less. 

VI. Different filters often share a number of the same field values. 

VII. The number of unique field values is significantly less than the number of 

filters. 

 

To evaluate the performance of classification schemes and algorithms it is 

important to test it with representative filter sets. The properties of the filter sets and 

the query patterns are essential to benchmark classification schemes and thus realistic 

filters and test patterns should both be used. D. Taylor has created ClassBench [42] to 

address this problem. ClassBench is a suite of tools for performance evaluation of 

classification algorithms and is publicly available. ClassBench involves a filter set 

generator that uses seeds from real filter sets to provide synthetic filter sets that 

accurately model real filters. Moreover, it includes a packet header generator that 

produces a sequence of packet headers to exercise a given filter set. This generator 

uses the Pareto Distribution[43] that is widely used to model the Internet traffic. 
                                                 
4 Wildcards are used when we don’t specify a value and want to represent all the possible values. The 
symbol used for wildcards is *.  
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6.2 B2PC Design and Description 
B2PC design is driven by the observations presented in the last section. Our 

approach for packet classification lays on the idea of decomposition where multiple 

field searches are divided into many single field searches. The results of single fields 

are then combined to produce the final rule/filter match. We strive to design a packet 

classifier that supports 5-dimensional rules and provides the associated FlowID of a 

matching rule/filter for a given packet.  

The fields we use are the standard supported by all 5D classifiers, namely two 

32-bits IP addresses, two 16-bit ports and an 8-bit protocol. We allow the database to 

have at most 4096 of such rules, which seems enough according to the referenced 

observations. Consequently, each rule/filter of the database can be identified by a 12-

bit FlowID value. An example filter set is shown in Table 6-1. 

No Src IP Dest IP Src Port Dest Port Protocol Flow ID 
1 139.91.70.* 147.52.16.* * * TCP 10 
2 139.91.*.* 147.102.*.* * 21 TCP 14 
3 139.91.*.* 147.27.*.* < 1024 * * 17 
4 *.*.*.* 139.91.*.* * 80 UDP 26 
5 139.91.70.33 147.52.16.33 135 < 1024 TCP 31 
6 139.91.70.36 147.27.*.* < 1024 21 * 45 
7 *.*.*.* 147.52.*.* * 23 * 47 
8 139.91.*.* 147.52.*.* 135 135 TCP 50 
9 139.*.*.* 147.*.*.* * 80 TCP 54 
10 139.91.*.* 147.52.*.* * 135 TCP 55 

Table 6-1 Filter Set Example 

6.2.1 Single Field Operations 

 Given the fact that we have followed the decomposition path a very efficient 

single field engine supporting both exact and prefix matches is essential. Hence, we 

decided to use the BOS scheme described in Chapter 5 as our single field engine. 

Each field of the rule can be inserted in a single field engine and be identified by the 

rule’s FlowID. It should be noted that this single field lookup should not only report 

the longest prefix match but, instead all the prefixes that match; as discussed in 

subsection 2.2.3. Fortunately BOS has the capability to work as APM engine as 

described in subsection 5.2.5.  

The rules regarding the IP address fields are specified as prefixes and this 

makes BOS an excellent solution. The Port fields are usually specified as ranges but 

can be transformed into prefixes with well known formulas [17]. Additionally, the 
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BOS engine that keeps the Port Fields should be finetuned since BOS provides all 

prefix match (APM) for 32-bit values and we intend to store only 16-bit values.  

Protocol field is assigned exact values and since it is 8-bit we can map it into a 256 

entry table (PRO_TBL). 

6.2.2 Internally Represented Filters 

The observation that many rules may share same field values gives us the 

opportunity to save storage for rules that have common values. However, a problem 

arises due to this value sharing and the fact that BOS and many other APM solutions 

support only one Flow ID to be stored and returned during single field searches. To 

solve this problem we decide to keep internally represented filters where each field is 

assigned an internal ID during insertion. The internal ID of each field is the originally 

given Flow ID value. In case the value of a field was previously inserted then its 

internal ID is set to be equal to the existing Flow ID value, which is the first inserted. 

Table 6-2 illustrates how the rules presented in Table 6-1 are kept internally in B2PC. 

Src IP Dest IP Src Port Dest Port ProtocolNo 
ID ID ID ID ID 

Flow ID 

1 10 10 10 10 10 10 
2 14 14 10 14 10 14 
3 14 17 17 10 17 17 
4 26 26 10 26 26 26 
5 31 31 31 31 10 31 
6 45 17 17 14 17 45 
7 26 47 10 47 17 47 
8 14 47 31 50 10 50 
9 54 54 10 26 10 54 
10 14 47 10 50 10 55 

Table 6-2 B2PC internally represented filter set 
 

This internal representation of filters requires storing the five 12-bit internal 

IDs that belong to a rule so as to be able to identify it. Keeping 4096 rules with their 

5- field internal IDs can be stored in a table with 4096 entries (RULES_TBL) where 

indexing is done by the 12-bit Flow ID value. 

A side-effect of this ID sharing is that a value of a single field cannot be 

deleted since many rules may depend on this internal ID. In order to cope with this 

problem we keep a reference count for each internal ID of each field. Inherently, we 

can have up to 4096 Flow IDs and therefore the same number of distinct internal IDs. 

Each internal ID may be referenced from at most 4096 rules and therefore we need 
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4096 12-bit counters for each field. In total we need 5 x 4096 12-bit counters to 

support incremental updates in our scheme. Accordingly, when a rule upon insertion 

references an internal ID, we increment the appropriate counter and when a rule is 

deleted we decrement the counter. The original single field value is only deleted when 

the related counter reaches to zero.  

6.2.3 Combining Results 

Given the 5 fields of a packet, B2PC has to find which of the existing rules 

best matches them. Single field engines provide a number of matching prefixes and 

the associated IDs. The IP address fields, namely Source IP and Destination IP, are 

prefix based and may provide at most 33 matches each; 32 possible matches for the 

32 possible prefix lengths and 1 for the zero length wildcard. The port fields are also 

prefix based and may provide at most 17 matches; 16 possible matches for the 16 

possible prefix lengths and 1 for the zero length wildcard. The protocol field is an 

exact value so it may provide a match on either the value itself or the wildcard; 

therefore we have at most 2 matches.  

The internal IDs and the lengths of each matching field are gathered in certain 

collection points, one for every field, and they are forwarded to the mechanism that 

combines all the single field results. The collection points are taken the matched 

prefixes from the BOS modules and keep them in decreasing length order. Each 

collection point gives the longest prefix match first and proceeds with the less specific 

matches.  

The results from every single field should be combined to cover all the 

possible permutations and then determine which of these permutations are actually 

valid, namely determine if such a multi field rule exists. Although the possible 

number of permutations could be large, the published observations indicate that the 

maximum number of matches in the fields is typically less than 5 and the rules that 

match are usually less than five. The best matching rule is the rule that has the most 

specific value. To accomplish this, we first check if the combination of the internal 

IDs that come from longest single field matches, as collection points provide it, is 

indeed valid and continue on checking the less specific matches. B2PC assigns 

priorities to the fields so as to guide the generation of permutations. The permutations 

are generated by keeping the current matched value of the most significant field and 
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producing the combinations of the values coming from the least significant fields. The 

significance of fields in decreasing order is: Source IP, Destination IP, Source Port, 

Destination Port and Protocol. 

Note that when all the collection points provide the same internal ID, then we 

surely know that this permutation belongs to our set. The same value for all the 

internal IDs in a permutation denotes that the values in all fields are the initially 

inserted ones for this specific FlowID (since that this is the way we keep internally the 

rules). The only thing we have to look, in this case, is whether this rule has been 

deleted and the values found have only been kept due to references from other rules. 

The following example illustrates how the permutations are generated. 

Assume an incoming packet with the field values shown in Table 6-3 and the rules of 

Table 6-1.  

Src IP Dest IP Src Port Dest Port Protocol 
139.91.62.39 147.52.17.25 5000 80 TCP 

Table 6-3 B2PC incoming packet example 
 

The matching results in every collection point are stored in order from the most 

specific to the less specific and are shown in Table 6-4.  

Src IP Dest IP Src Port Dest Port Protocol 
ID ID ID ID ID 
14 47 10 26 10 
54 54 - 31 17 
26 - - 10 - 

Table 6-4 Collection points contents 
 

The total number of possible permutations is equal to the overall product of the 

number of matches in every field.  

Totalperm =  #Src IP IDs * #Dest IP IDs * #Src Port IDs * #Dest Prt IDs * #Proto IDs. 

Hence for the matches shown in Table 6-4 the total number of permutations is: 

Totalperm = 3 * 2 * 1 * 3 * 2 = 36 

These 36 generated permutations are shown in Table 6-5 and the permutation that 

corresponds to an existing ruleset entry is shown in bold. 
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Src IP Dest IP Src Port Dest Port Protocol Perm No 
ID ID ID ID ID 

1 14 47 10 26 10 
2 14 47 10 26 17 
3 14 47 10 31 10 
4 14 47 10 31 17 
5 14 47 10 10 10 
6 14 47 10 10 17 
7 14 54 10 26 10 
8 14 54 10 26 17 
9 14 54 10 31 10 
10 14 54 10 31 17 
11 14 54 10 10 10 
12 14 54 10 10 17 
13 54 47 10 26 10 
14 54 47 10 26 17 
15 54 47 10 31 10 
16 54 47 10 31 17 
17 54 47 10 10 10 
18 54 47 10 10 17 
19 54 54 10 26 10 
20 54 54 10 26 17 
21 54 54 10 31 10 
22 54 54 10 31 17 
23 54 54 10 10 10 
24 54 54 10 10 17 
25 26 47 10 26 10 
26 26 47 10 26 17 
27 26 47 10 31 10 
28 26 47 10 31 17 
29 26 47 10 10 10 
30 26 47 10 10 17 
31 26 54 10 26 10 
32 26 54 10 26 17 
33 26 54 10 31 10 
34 26 54 10 31 17 
35 26 54 10 10 10 
36 26 54 10 10 17 

Table 6-5 Total possible permutations 

6.2.4 Set Membership Queries with Bloom Filters 

We have well studied how the rules can be decomposed into fields, inserted in 

the rule database, assigned an internal ID as well as how permutations are generated. 

The challenge we have also faced now is how to identify that a permutation belongs 

to our set of rules. Sequential accesses to the rule table are very slow since we may 
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need to access them all. We need a data structure that can efficiently represent our 

ruleset and support quick set membership queries. Hash tables and B-Trees are widely 

used for this type of queries but there are also Bloom Filters [6] that have received 

renewed attention for network applications according to [7][44]. A Bloom filter is an 

efficient data structure that supports set membership queries and has tunable false 

positive errors as described in subsection 2.1.1.3. 

We represent our rule database with a Bloom Filter that can hold 4096 rules 

and we have to tune the parameters of the filter so as to produce tolerable false 

positive rate. We have to find the optimal number of bits for the bloom filter bit-

vector and the number of hash functions that set these bits. We choose the size of the 

bit vector to be 214 bits wide and then according to the theory presented, the optimal 

number of hash functions is #Hash = ( 214 / 212 ) * ln2 = 2,76. So by using the optimal 

number of 3 hash functions we can expect false positive probability 0,53 = 0,125 . We 

decide to use 4 hash functions and further reduce the false positive probability to 0,54 

= 0,062 , namely 6,2 %. 

The bit-vector of the Bloom filter is relatively large to be kept in registers/flip-

flops, and therefore we need a memory array to hold these bits. Moreover, having 4 

hash functions means that we have to set (program) 4 bit positions in the bit vector 

and always test 4 bits. Due to the fact that the bit-vector is stored in a memory array 

we may require up to 4 memory accesses to locate each bit. Thus, to avoid sequential 

accesses and since the array is quite small and can be kept on-chip, we can increase 

parallelization and split this bit-vector into 4 equal sub-vectors of 4096 bits each and 

assign each hash function to set and test a sub-vector. This allows us to implement the 

accesses in parallel and decide in a single parallel memory access if the current 

permutation belongs to our set. Additionally, this splitting prevents the hash functions 

from setting the same bit. 

The bits of the Bloom filter may be shared by many rules in the ruleset and 

thus we cannot delete a bit if other rules depend on this. The solution to this problem 

is given by [8] which proposes to keep counters for every bit of the Bloom filter. 

Hence, for the 16384 bit-vector of our bloom filter we need the same number of 

counters. Each counter is at most 12-bits since this is the maximum number of filters 

supported. Accordingly, a bit from the vector is deleted only when its counter reaches 

zero.  
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 The results of the hash functions have to point to only one bit of the 4096 

possible in the sub-vector and thus generate a 12-bit value. Moreover these hash 

functions have to use all the ID information so as to be efficient and provide discrete 

values for each permutation. Inherently, the IDs we use are the actual Source IP (SIP), 

Destination IP(DIP), Source Port(SPO), Destination Port (DPO) and Protocol (PRO). 

We have defined the hash functions by the use of XOR, SHIFT (>>,<<) and the 

reverse (REV) function according to the following formulas: 
 BLH1 = (SIP>>4) xor REV(DIP>>2) xor (SPO<<4) xor (DPO>>3) xor (PRO<<3)   

 BLH2 = SIP xor (DIP<<6) xor (SPO>>2) xor REV(DPO) xor PRO 

 BLH3 = (SIP<<3) xor REV(DIP) xor REV(SPO) xor DPO xor (PRO<<6) 

 BLH4 = REV(SIP) xor (DIP<<3) xor (SPO>>3) xor (DPO<<1) xor (PRO>>2) 

The performance of these hash functions is studied and analyzed in subsection 6.3.2. 

6.2.5 Flow ID Resolving 

Once we have a match in a set membership query we have to determine 

whether it is a false positive match or in case it is not, to return the corresponding 

FlowID. To locate the FlowID we use a hash table of 16K entries (HSH_TBL) that 

shall give us the matched FlowID. Once we have the FlowID we visit RULES_TBL 

(subsection 6.2.2) and compare the stored IDs with the IDs of the current permutation. 

In case the IDs match we have found the final result, otherwise this match is a false 

positive and we continue with the generation and testing of the permutations. 

Indexing the HSH_TBL requires a hash function and obviously this hash 

function may produce collisions. Resolving these collisions is trivial by using variable 

size blocks that hold the colliding FlowIDs. If more than one FlowIDs are stored in a 

specific HSH_TBL entry then we have to check the currently matched IDs with the 

corresponding IDs of each FlowID. The hash function uses the already hashed values 

of the BLH1, BLH2, BLH3 and BLH4 to indicate an entry in HSH_TBL. Its 14-bit 

value is defined as follows: 
HSH_TBLindex = (BLH1,00) xor (00,BLH2>>4) xor (00,BLH3) xor (00,REV(BLH4)) 

The performance of this hash function is studied and analyzed in subsection 6.3.2. 

6.2.6 Improving the Efficiency of Set Membership Queries  

According to the generation of permutations we have to query every 

permutation in the Bloom filter despite the fact that a pair of source-destination 

prefixes or a pair of source-destination ports may not be part of the ruleset. To avoid 
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these useless queries we can represent these pairs with additional Bloom Filters and 

split the membership queries problem into two sub-problems. This proposed splitting 

is compatible with the guidelines that were proposed in [40] and indicate that the IP 

address pair characterizes the actual network paths and the Port pairs characterize the 

network applications.  

Now, we have to query the additional Bloom filters with the IP pair 

permutations and the Port pair permutations and if both match then we query the 

Bloom filter that holds the actual rules. For the Bloom filters of each pair we define 

two smaller bit-vectors of size 8192 with two hash functions for each one. We also 

split each bit-vector into two equal sub-vectors and store them is separate tables to 

exploit parallelism since they can also be placed on-chip. Moreover, accessing the 

Bloom filters of the IP pair and Port pair can be done in parallel and simultaneously 

perform accesses in the Rule Bloom Filter.  

We have defined the hash functions for the IP and Port pairs by the use of XOR 

and the reverse (REV) function according to the following formulas: 
 IP_BLH1 = { SIP(6:11) xor DIP(0:5) , SIP(0:5) xor DIP(6:11) }  

 IP_BLH2 = { SIP(0:5) xor DIP(6:11) , SIP(6:11) xor DIP(0:5) } 

 PR_BLH1 = SPO xor (DPO<<2) 

 PR_BLH2 = (SPO<<2) xor REV(DPO) 

The performance of these hash functions is studied and analyzed in subsection 6.3.2. 

The number of generated permutations for IP and Port pairs now is 

significantly smaller compared to the total number of permutations and can be 

checked in a parallel fashion. When both queries for pairs are successful then, these 

pairs along with the 2 possible Protocol matches are queried in the Bloom filter that 

handles the actual rules. Using the example of Table 6-3 and the data shown in Table 

6-4 we illustrate in Table 6-6 which queries are performed in parallel in the three 

Bloom filters. Queries in both IP and Port pair Bloom Filters are started together. 

Once matches in both pairs occur then queries in the Rule Bloom filter start, if a pair 

matches and the other has not yet found a match then it pauses. For the matches of 

pairs and rules we should consult Table 6-2.  We continue by keeping the IP pair 

stable we test all the Port pairs given by the corresponding collection points until they 

finish. The queries in bold indicate the paused and stable condition of the matched 

permutations. The bold underlined is the matched query. 
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IP Pair 
Perm. 

Port Pair 
Perm. 

Rule Permutation 

Src 
IP 

Dest 
IP 

Src 
Port 

Dest 
Port 

Src 
IP 

Dest 
IP 

Src 
Port 

Dest 
Port 

ProtoQuery 
Number 

ID ID ID ID ID ID ID ID ID 
1 14 47 10 26 - - - - - 
2 14 47 10 31 14 47 10 26 10 
3 14 47 10 10 14 47 10 26 17 
4 14 54 10 26 14 47 10 10 10 
5 54 47 10 26 14 47 10 10 17 
6 54 54 10 26 - - - - - 
7 54 54 10 31 54 54 10 26 10 
8 54 54 10 10 54 54 10 26 17 
9 26 47 10 26 54 54 10 10 10 
10 26 47 10 26 54 54 10 10 17 
11 26 47 10 31 26 47 10 26 10 
12 26 47 10 10 26 47 10 26 17 
13 26 54 10 26 26 47 10 10 10 
14 - - - - 26 47 10 10 17 

Table 6-6 Parallel Bloom filter Queries 
 

Breaking the problem into two gives us the opportunity to better handle the 

required membership tests. The IP pair first determines existing network paths in the 

ruleset and then the port pair determines existing network configurations. The final 

rule membership query then tests if those pairs match together in a rule. Searching 

these pairs independently distributes the queries in a more efficient manner and 

provides faster matches. 
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A general overview of the final B2PC form is presented in Figure 6-1 where all the 

components of the scheme are shown. 

 
Figure 6-1 Overall view of B2PC components 
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6.3 Simulation Results and Performance 
In this subsection we discuss simulation results based on synthetic filter sets and 

present our results on storage and speed. We generate 12 synthetic filter sets of 

various sizes with the ClassBench [42] tool and corresponding packet filter headers to 

test the efficiency of B2PC. We also analyze the properties of the generated filter sets 

and compare them with the observations found in literature. Moreover, we illustrate 

the efficiency of the hashing functions used by the Bloom filters and perform analysis 

on the observed false positives. 

6.3.1 Analysis of Generated Filter Sets 

 We use the ClassBench tool and the seeds from real filter sets that are 

provided by this tool to generate sets that represent the most common filter formats: 

Access Control Lists (ACL), Firewall (FW) and IP Chain (IPC). We use all the real 

filter seeds and generate 12 synthetic filter sets of various sizes and formats. The 

generated filter sets and an analysis on the unique number of field values produced is 

shown in Table 6-7. We present the unique Source IP Addresses (SA), Destination IP 

Addresses (DA), Source Ports (SP), Destination Ports (DP) and the Protocols (PRO). 

Filter Set
Name 

Set 
Size 

Unique
SA 

Unique
DA 

Unique
SP 

Unique
DP 

Unique 
PRO 

ACL1 712 25 316 1 96 4 
ACL2 615 172 378 1 24 5 
ACL3 2348 403 188 2 154 4 
ACL4 2974 271 329 1 204 6 
ACL5 3343 297 502 1 39 4 
FW1 282 50 74 12 32 5 
FW2 68 34 26 7 1 5 
FW3 178 36 43 8 33 4 
FW4 263 33 56 25 39 7 
FW5 156 39 55 9 28 4 
IPC1 1687 123 607 29 50 7 
IPC2 169 24 19 3 3 4 

Table 6-7 Unique field values for the generated filter sets 
 

The filter set sizes that were generated by the tool range from 68 to 3343 and 

this fact is in line with observation I (section 6.1) , namely that the filter set sizes are 

smaller than 5000. Moreover, observation VII is also confirmed by the results of 

Table 6-7 since we can see that the number of unique field values found is relatively 
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small compared to the database size. The fact that we have few unique values means 

that many filters share the same data as stated by observation VI. Additionally, the 

number of unique protocol values is ranging from 4 to 7 and is in line with the 

restriction professed by observation II. The port range specifications are also limited 

something also stated in observation III. 

 ClassBench provides us with a very useful packet header generator which we 

used to take several measurements. We generated large packet header traces and 

simulated B2PC in order to count the number of matches for every field. These results 

are shown in Table 6-8.  

Set 
Name 

Set 
Size 

Max 
SA 

Avg 
SA 

Max
DA 

Avg
DA 

Max
SP 

Avg
SP 

Max
DP 

Avg 
DP 

Max 
PRO 

Avg 
PRO

ACL1 712 4 3,98 4 3,87 1 1 5 3,05 2 1,91 
ACL2 615 5 4,92 7 5,20 1 1 4 2,36 2 1,63 
ACL3 2348 6 5,92 5 4,00 2 1,00 5 2,56 2 1,95 
ACL4 2974 7 6,93 7 5,30 2 1,00 6 3,02 2 1,98 
ACL5 3343 3 2,99 3 1,99 1 1 4 2,01 1 1 
FW1 282 4 3,75 5 4,08 3 1,63 3 1,90 2 1,91 
FW2 68 3 2,76 2 1,93 2 1,75 1 1 2 1,76 
FW3 178 4 3,81 4 3,00 3 1,79 3 1,96 2 1,99 
FW4 263 3 2,88 4 3,90 4 2,94 3 2,61 2 1,90 
FW5 156 5 4,18 4 3,82 3 1,71 3 2,04 2 1,98 
IPC1 1687 4 3,99 7 5,85 4 1,20 5 2,05 2 1,89 
IPC2 169 2 1,86 2 2 2 1,14 2 1,14 2 1,46 

Table 6-8 Number of matched values per field 
 

A careful look in the results reveals us that observation IV is also valid. The 

maximum number of either SA or DA matching a given packet ranges from 2 to 7 

while the average is smaller and ranges from 1,86 to 6,93. As far as the port fields are 

concerned we can also see that observation IV is also valid. The maximum number of 

protocol field matches is bound by 2 which naturally come from the fact that we can 

only have an exact value or the wildcard. 

6.3.2 Hashing Functions and False Positives 

We incorporate many hash functions in B2PC in order to index specific bits 

inside the Bloom filters and to resolve the final FlowID. The most important property 

of a hash function used to index the Bloom filter bits is to produce several distinct 

values and minimize the number of different rules referencing the same bit. These 

hash functions are described in subsections 6.2.4 and 6.2.6. We provide an analysis of 
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the number of bits set in each of the Bloom filters and the number of rules that 

reference these bits. The results are shown in Table 6-9. 

IP Bloom Filter 
(8192 bits) 

Port Bloom Filter
(8192 bits) 

Rule Bloom Filter 
(16384 bits) Filter 

Set 
Set 
Size # set 

bits 
Max 
Refs 

Avg
refs 

# set
Bits 

Max
Refs

Avg 
Refs 

# set 
bits 

Max 
refs 

Avg 
refs 

ACL1 712 911 21 1,56 192 189 7,41 2242 9 1,27 
ACL2 615 1071 4 1,14 48 406 25,62 2153 5 1,14 
ACL3 2348 2651 29 1,77 305 321 15,39 6566 16 1,43 
ACL4 2974 2912 32 2,04 396 336 15,02 7847 10 1,51 
ACL5 3343 2985 40 2,23 78 708 85,71 8468 9 1,57 
FW1 282 418 8 1,34 107 47 5,27 1023 4 1,10 
FW2 68 126 3 1,07 14 19 9,71 251 3 1,08 
FW3 178 233 7 1,52 88 16 4,04 629 7 1,13 
FW4 263 355 13 1,48 219 29 2,40 958 4 1,09 
FW5 156 228 7 1,36 78 29 4,00 568 3 1,09 
IPC1 1687 2406 10 1,40 164 650 20,5 5251 5 1,28 
IPC2 169 202 8 1,67 18 111 18,77 503 7 1,34 

Table 6-9 Number of references in Bloom Filters 
 

The results show that our hashing functions behave quite efficiently and set 

many different distinct bits in the Bloom filters. As far as the Port Bloom filter is 

concerned, the high rate of references comes from the fact that we have a limited 

number of common specifications as we have observed in Table 6-7 . The Rule 

Bloom Filter has many bits set with a small average number of references to each bit 

due to the diversity of the used ID values in each rule. However, the average number 

of references in IP Bloom filter is a little higher than in Rule Bloom filter as an effect 

of the small number of unique field values compared to the size of the set 

(observation VII). This means that many rules in the same set share the same Source 

and Destination IP address specifications. 

 The hash functions used to index the Bloom filters and are also responsible for 

the number of false positives that occur. Additionally the bit-vector size of the Bloom 

filters influences that false positive rate. We simulate B2PC with the generated filter 

sets and the corresponding packet headers and we counted the false positives. The rate 

of observed false positives for every Bloom filter is shown in Table 6-10. 
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Filter Set
Name 

Set 
Size 

IP Bloom  
False Positives

(%) 

Port Bloom  
False Positives

(%) 

Rule Bloom  
False Positives 

(%) 
ACL1 712 0 0 0,02 
ACL2 615 7,7 0 0,01 
ACL3 2348 3,2 0 5,1 
ACL4 2974 8,4 0 8,3 
ACL5 3343 0,005 0 0,01 
FW1 282 3,7 0 0 
FW2 68 0 0 0 
FW3 178 0 0 0 
FW4 263 1,5 0 0 
FW5 156 2,0 0,7 0,2 
IPC1 1687 0,3 0 0,5 
IPC2 169 0,1 0 0 

Table 6-10 Observed false positives rate in B2PC 
 

The observed false positives rate in B2PC is close to the theoretical 6,2% for 

4096 active rules and it is very low for small filter sets. The high rate of false 

positives in IP and Rule Bloom filters for ACL3 and ACL4 filter sets can be justified 

by the fact that our hashing functions have produced higher maximum and average 

reference counts as shown in Table 6-9. Moreover these filter sets have an increased 

number of matched values per field as shown Table 6-8 and thus produce more 

permutations that are probed in the Bloom filters. On the other hand, ACL5, which is 

the largest database we generated, has a very low rate of false positives despite the 

fact that we observe the highest maximum and average reference counts. However, 

this is due to the fact that we have a small number of matched values in the all the 

fields as shown in Table 6-8 and therefore fewer permutations are generated and 

probed in the Bloom filters. 

B2PC also uses a hash function to resolve the final FlowID of the matching 

permutation as described in subsection 6.2.5. We illustrate the collisions produced by 

this hash function in Table 6-11. We see that this hash function produces very few 

collisions and is certainly satisfactory for our scheme. 

Filter Set 
Name 

Set 
Size 

Max 
Collisions

Average 
Collisions

ACL1 712 2 1,09 
ACL2 615 2 1,03 
ACL3 2348 3 1,17 
ACL4 2974 3 1,19 
ACL5 3343 3 1,21 
FW1 282 2 1,02 
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FW2 68 1 1 
FW3 178 1 1 
FW4 263 2 1,07 
FW5 156 1 1 
IPC1 1687 2 1,10 
IPC2 169 3 1,29 

Table 6-11 B2PC hash table collisions 

6.3.3 Storage Requirements 

This subsection presents the storage requirements of B2PC for all the 

generated filter sets. To calculate the total storage for B2PC we need the storage 

requirements of the B2PC tables and the storage of every included BOS engine.  

During simulations we find that each BOS engine has very few unique values 

as shown before in Table 6-7 for all the generated databases and additionally to the 

included static tables the memory requirements for the dynamic part of the algorithm 

are between 2 and 5 Kbytes. Therefore every BOS engine needs 73Kbytes for its 

static tables as discussed in subsection 5.3.2 and along with the included trie nodes 

and dynamic blocks it needs at most 78Kbytes. 

For the storage requirements of B2PC we have to calculate the size of the 

Bloom filters, the associated counters, the counters for the IDs of each BOS engine, 

the protocol table (PRO_TBL), the hash table (HSH_TBL) and the rules table 

(RULES_TBL). For our calculations we keep the same memory configuration as in 

BOS, namely 36-bit wide memory words. We also assume that two counters can fit in 

a 36-bit word and each rule entry needs 2 memory words. Accordingly, the storage 

requirements for the B2PC components which are independent of the size of database 

are calculated in Table 6-12. 

Component Memory
Words Total Bytes 

BOS ID counters 10240 46080 
Bloom Filters counters 16384 73728 

HSH_TBL 16384 73728 
RULES_TBL 8192 36864 

PRO_TBL 256 1152 
Total 51456 231552 (226Kb) 

Table 6-12 B2PC components memory requirements 
 

In total we need 4 BOS engines and therefore 78 x 4 = 312 Kbytes and 226 Kbytes for 

B2PC components, so we finally require 538 Kbytes. These requirements are 
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approximately the same for the entire generated filter sets since all the BOS tables are 

underutilized. 

6.3.4 Lookup Performance 

In this subsection we analyze the lookup performance of the B2PC scheme in 

terms of memory accesses. B2PC lookup performance is highly dependant on the 

APM lookup time of each BOS and on the set membership queries in the Bloom 

filters. 

BOS supporting APM  

The BOS scheme was introduced and analyzed in Chapter 5 and here we only 

discuss how it is used to provide matches for many prefixes so as to be used in B2PC. 

BOS needs several memory accesses to provide all the matches in an interval of the 

32-bit address space. In every interval we check the two candidate subtries and in 

every matching subtrie we check all the four possible prefixes. Therefore at worst 

case we require one memory access to acquire the node, then another access for every 

subtrie node and one more memory access for every prefix. This worst case sums to 

11 memory accesses and provides the FlowIDs for 8 prefixes. For the cases of single 

prefix subtries and single prefix roots according to the optimizations of BOS the 

required memory accesses are 3 and 1 respectively. 

 When all BOS intervals are accessed in parallel then we have the final results 

when lookups in the most populated interval finish, thus the number of memory 

accesses of the slowest trie lookup. If lookups are performed sequentially in every 

interval then the total number of memory accesses is equal to the sum of accesses. 

Note that for BOS engines that are used for the port specification we have only 3 

intervals and for the IP specifications we have 5. 

 We simulate BOS with the generated filter sets and the packets headers and 

count the average and the worst case of memory accesses in every interval. We have 

found that the number of matching prefixes inside an interval is typically 1 and the 

average number of memory accessed needed to obtain the FlowID is 2,2 while the 

worst case observed is 6 memory accesses despite the theoretical number of 11 

accesses. Therefore if we lookup the intervals in parallel we have a complete match 

operation every 2,2 memory accesses on average and every 6 memory accesses on the 



CHAPTER 6. BLOOM FILTER BASED PACKET CLASSIFICATION 109
 

 

worst case. When we lookup the intervals sequentially we need 9,2 accesses on 

average and 25 on the worst case.  

B2PC Bloom Filter Probes 

The other essential factor of performance for B2PC besides the BOS matches 

is the number of sequential probes in the Bloom filters. We query the IP and Port pair 

Bloom filters in parallel and simultaneously probe the rule Bloom filter for the 

matched IP and Port pairs. We simulate each filter set with the corresponding packets 

headers and calculate the average and worst case of the sequential Bloom filter 

probes. The results are shown in Table 6-13.  

Filter Set
Name 

Set 
Size 

Max 
Probes

Average
Probes 

ACL1 712 10 2,21 
ACL2 615 21 2,91 
ACL3 2348 17 2,68 
ACL4 2974 29 4,03 
ACL5 3343 6 2,01 
FW1 282 22 4,74 
FW2 68 5 2,64 
FW3 178 14 3,63 
FW4 263 18 3,18 
FW5 156 34 5,34 
IPC1 1687 16 2,16 
IPC2 169 4 2,07 

Table 6-13 Sequential Bloom Filter probes 
 

In the number of sequential accesses we have to add the average number of accesses 

in the hash table (HSH_TBL) that are equal to the collisions presented in Table 6-11 

and two memory accesses to acquire the final rule from RULES_TBL. Now, the total 

number of memory accesses is presented in Table 6-14. 

Filter Set 
Name 

Set 
Size 

Hash Table
Accesses 

Bloom Filter
Accesses 

Total  
Accesses 

ACL1 712 1,09 2,21 5,30 
ACL2 615 1,03 2,91 5,94 
ACL3 2348 1,17 2,68 5,85 
ACL4 2974 1,19 4,03 7,22 
ACL5 3343 1,21 2,01 5,22 
FW1 282 1,02 4,74 7,76 
FW2 68 1 2,64 5,64 
FW3 178 1 3,63 6,63 
FW4 263 1,07 3,18 6,25 
FW5 156 1 5,34 8,34 
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IPC1 1687 1,10 2,16 5,26 
IPC2 169 1,29 2,07 5,36 

Table 6-14 Average number of memory accesses for B2PC data structures 
 

To calculate the total average number of memory accesses for B2PC we have to 

include the BOS lookup times. We perform parallel accesses in all the BOS engines 

and collect simultaneously all the results in the collection points. Each BOS engine 

may perform parallel or sequential accesses in its intevals. In Table 6-15 we present 

the final number of memory accesses needed for B2PC to produce a result. 

Filter Set 
Name 

Set 
Size 

BOS 
Parallel 

BOS 
Sequential

B2PC 
Accesses

B2PC with  
Seq. BOS 

B2PC with 
Par. BOS 

ACL1 712 2,20 9,20 5,30 14,50 7,50 
ACL2 615 2,20 9,20 5,94 15,14 8,14 
ACL3 2348 2,20 9,20 5,85 15,05 8,05 
ACL4 2974 2,20 9,20 7,22 16,42 9,42 
ACL5 3343 2,20 9,20 5,22 14,42 7,42 
FW1 282 2,20 9,20 7,76 16,96 9,96 
FW2 68 2,20 9,20 5,64 14,84 7,84 
FW3 178 2,20 9,20 6,63 15,83 8,83 
FW4 263 2,20 9,20 6,25 15,45 8,45 
FW5 156 2,20 9,20 8,34 17,54 10,54 
IPC1 1687 2,20 9,20 5,26 14,46 7,46 
IPC2 169 2,20 9,20 5,36 14,56 7,56 

Table 6-15 Final number of average memory accesses for B2PC 
 

Lookup Perfomance and Link Speeds 

According to our lookup performance we can calculate the efficiency of B2PC as 

a classification engine in a high speed router. To calculate the network performance 

we have to assumed a certain speed of the memory and a pipelined hardware 

implementation that can provide one memory access per cycle. The results we present 

assume 2 possible memory configurations: 

• 200Mhz off-chip synchronous SRAM 

• 400Mhz on-chip synchronous SRAM 

Table 6-16 presents the network performance of B2PC counted in millions of packets 

per second (Mpps). 
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Off-chip SRAM 200Mhz On-Chip SRAM 400Mhz 
Filter Set 

Name 
Set 
Size 

B2PC with 
Seq. BOS 
(Mpps) 

B2PC with 
Par. BOS 
(Mpps) 

B2PC with 
Seq. BOS 
(Mpps) 

B2PC with  
Par. BOS 
(Mpps) 

ACL1 712 13,79 26,66 27,58 53,33 
ACL2 615 13,21 24,57 26,42 49,14 
ACL3 2348 13,28 24,84 26,57 49,68 
ACL4 2974 12,18 21,23 24,36 42,46 
ACL5 3343 13,86 26,95 27,73 53,90 
FW1 282 11,79 20,08 23,58 40,16 
FW2 68 13,47 25,51 26,95 51,02 
FW3 178 12,63 22,65 25,26 45,30 
FW4 263 12,94 23,66 25,88 47,33 
FW5 156 11,40 18,97 22,80 37,95 
IPC1 1687 13,81 26,80 27,66 53,61 
IPC2 169 13,73 26,45 27,47 52,91 

Table 6-16 Network performance of B2PC in Mpps 
 

If we assume the worst case of classifying minimum sized IP packets (40 bytes) then 

the supported link speeds are shown in Table 6-17. 

Off-chip SRAM 200Mhz On-Chip SRAM 400Mhz 
Filter Set 

Name 
Set 
Size 

B2PC with 
Seq. BOS 

(Gbps) 

B2PC with 
Par. BOS 
(Gbps) 

B2PC with 
Seq. BOS 

(Gbps) 

B2PC with  
Par. BOS 
(Gbps) 

ACL1 712 4,41 8,53 8,83 17,07 
ACL2 615 4,23 7,86 8,45 15,72 
ACL3 2348 4,25 7,95 8,50 15,90 
ACL4 2974 3,90 6,79 7,80 13,59 
ACL5 3343 4,44 8,63 8,88 17,25 
FW1 282 3,77 6,43 7,55 12,85 
FW2 68 4,31 8,16 8,63 16,33 
FW3 178 4,04 7,25 8,09 14,50 
FW4 263 4,14 7,57 8,28 15,15 
FW5 156 3,65 6,07 7,30 12,14 
IPC1 1687 4,43 8,58 8,85 17,16 
IPC2 169 4,40 8,47 8,79 16,93 

Table 6-17 Network performance of B2PC in Gbps 
 

We can compare the performance of B2PC with other similar classification 

schemes presented in literature in terms of supported rules, storage requirements, 

throughput and working frequency. Our comparison is based on the results presented 

in the corresponding papers, where hardware implementations without TCAMs are 

described, and are shown in Table 6-18. 
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Scheme 
Working 

Frequency 
(MHz) 

Number of
Rules 

Storage 
Requirements 

(Number of memories) 

Throughput 
(Mpps) 

BV [24] 33 512 640Kb (5) 1 
RFC [25] 125 1700 976 Kb (2) + 15,6 Mb (2) 30 

B2PC 200 3300 540 Kb (4) 4,5 
Table 6-18 Summary of Classification Schemes 

 
Further, we introduce the metric of Mpps per Mbyte to illustrate the efficiency 

of classification schemes. This metric has been calculated for all the schemes of Table 

6-18 by considering that all schemes work in 200MHz and extrapolating the 

throughput. The values of this metric for every scheme are shown in Table 6-19. We 

see that BV seems to be the most efficient but it only supports 512 rules. Despite RFC 

has the best throughput, its performance is based on greedy memory consumption as 

our metric shows, moreover it supports at most 1700 rules. Our scheme is very close 

to BV and supports more than 3300 rules with dandy efficiency. 

Scheme Efficiency 
(Mpps/Mbytes)

BV [24] 9,6 
RFC [26] 2,9 

B2PC 8,65 
Table 6-19 Schemes efficiency in Mpps per Mbyte 
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7 Chapter 7 

 
Hardware Implementation of B2PC 
 

In this chapter we present a reference hardware implementation of the B2PC 

classification scheme that was described in Chapter 6. We provide a detailed 

description of all the internal blocks of the system and the hardware resources 

utilized. We also present the speed and silicon area estimations of the final design. We 

decided to implement the final design in an FPGA platform so as to prove the 

feasibility and scalability of the architecture, even when limited hardware resources 

are available. The FPGA platform we use is a Xilinx Virtex II Pro [32] with external 

Cypress ZBT SSRAMs [33]. 

7.1 B2PC Organization 
B2PC consists of many internal blocks which are shown in Figure 7-1.  The 

operation of the system is coordinated by the B2PC_CTRL block which receives 

commands and data from an external command interface (CMD_INF). Upon a 

reception of a command, B2PC_CTRL orders all the BOS blocks and PRO_CTRL to 

start in parallel their operation and feeds them with the appropriate values. The BOS 

blocks are responsible to work on the prefix based values and PRO_CTRL to control 

the protocol related table. The data structures handled by each BOS are stored in an 

external SSRAM and each BOS communicates with the memory handler 

(MEM_HDLR) and the memory controller (MEM_CTRL). The MEM_HDLR 

implements the dynamic memory management scheme described in section 4.4 by 

employing several free-lists and the MEM_CTRL is the actual low level memory 

interface. PRO_CTRL works on the protocol field of the network packets and stores 

its data on PRO_TBL which is a Single Port Block RAM (SPBRAM) of size 256x12 

which is kept inside the FPGA. The results of all the BOS blocks and PRO_CTRL are 

given and kept to the collection points (CLPT). When all BOS operations finish then 
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Figure 7-1 B2PC organization and block diagram 

 
the Bloom filter control block (BL_CTRL) is instructed by B2PC_CTRL to handle all 

the intermediate results provided by the CLPTs. BL_CTRL generates the 

permutations and operates on the Bloom Filters which are stored in four on-chip Dual 

Port Block RAMs (DPBRAM) of size 256x32. When BL_CTRL completes the 

specific operation then the final result is forwarded to B2PC_CTRL and is fed to the 

CMD_INF. More detailed descriptions of the internal blocks are provided in the next 

sections. 
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7.2 B2PC_CTRL Block 
B2PC_CTRL is the coordinator and controls all the operations that are 

requested by the command interface CMD_INF. This interface provides B2PC with 

the incoming data and also the exact operation that must be executed. The signals of 

the interface and their descriptions are shown in Table 7-1. This is a rather simple 

interface that provides all the incoming data fields together so as to be given in a 

single cycle to all the functional blocks in parallel. 

Signal Length In/Out Description 
i_req 1 I Request signal 
i_opcode 2 I Opcode for insert, lookup and delete 
i_pfx1_data 32 I Data for 1st 32-bit prefix 
i_pfx1_len 5 I Length of the 1st 32-bit prefix 
i_pfx2_data 32 I Data for 2nd 32-bit prefix 
i_pfx2_len 5 I Length of the 2nd 32-bit prefix 
i_pfx3_data 16 I Data for 1st 16-bit prefix 
i_pfx3_len 4 I Length of the 1st 16-bit prefix 
i_pfx4_data 16 I Data for 2nd 16-bit prefix 
i_pfx4_len 4 I Length of the 2nd 16-bit prefix 
i_pfx5_data 8 I Data for the protocol exact value 
i_pfx5_wc 1 I Protocol wildcarded or not 
o_ack 1 O Acknowledgement 
o_flow_id 12 O The returned flow ID 

Table 7-1 Command Interface Signals 
 

B2PC_CTRL involves a finite state machine (FSM) to handle all the possible 

cases and generates request signals to all the other blocks. The block receives a 

request for a command defined by i_opcode and latches all the incoming data to 

registers. The following opcodes are defined: 
 2’b00 : Lookup 

 2’b01 : Insert 

 2’b10 : Delete 

 2’b11 : Reserved 

Request signals are generated to all BOS and PRO_CTRL blocks with the incoming 

opcode and the appropriate data and lengths. When all these sub-blocks finish then it 

sends a request to BL_CTRL so as to start the generation of permutations and operate 

on the Bloom filters. When BL_CTRL finishes it returns the concluding FlowID 

which is then returned to CMD_INF along with the o_ack signal.   
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7.3 BOS Block 
BOS needs several internal blocks so as to handle the operations of the BOS 

scheme as described in Chapter 5. The internal organization of BOS is depicted in 

Figure 7-2. The BOS block receives commands from B2PC_CTRL and informs it 

when it completes an operation. It also provides the CLPT with the matched prefixes 

information, namely the FlowID and the length of each matched prefix. Moreover the 

required memory communication is done over the MEM_HDLR block where requests 

for read, write, memory allocation and deallocation are given. 

 
Figure 7-2 BOS internal organization 

 

Memory Organization and Nodes 

The current BOS implementation is based on sequential accesses to the BOS 

tables TBL0, TBL8 and TBL16 because we prefer for cost purposes not to have 

separate memories and all the tables of the same BOS engine are stored in the same 

SSRAM.  The memory word we have is 36-bits and we use at most 32K words which 

are sufficient as presented in subsection 6.3.3. The organization of the tables in the 

memory and the pool of free addresses for the dynamic memory management scheme 

is shown in Figure 7-3. The first 16K words are used for TBL16, the next 256 words 
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are for TBL8 and a single memory word for TBL0. The remaining 16127 memory 

words are used by the memory handler (MEM_HDLR) to provide dynamic allocation 

and deallocation of the required memory blocks. 

 

Figure 7-3 BOS Memory Organization 
 

BOS internally defines some data structures for the nodes that are used, 

namely the basic nodes, the root nodes, the trie nodes and the prefix nodes. The 

formats of the nodes we defined for BOS are shown in Figure 7-4. 

 
Figure 7-4 BOS nodes format 
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The basic nodes are stored in TBL16 or within BLK256s and provide the linking 

from 16 length nodes to 24 and 32 length nodes according to the TBL24 and TBL32 

optimization discussed in subsection 5.2.4. The fields of the basic nodes are the 

following: 
 BLK256 Valid : Indicates whether there is a link in the next stride  

 and if the data contained in the BLK256 Pointer field 

     are valid (1-bit). 

 Root Node Valid : Indicates whether the data contained in the Root 

         Node Pointer field are valid (1-bit). 

 BLK256 Pointer : The address of the linked BLK256 (17-bits). 

 Root Node Pointer : The address of the root node (17-bits). 

 

The root nodes are stored in TBL0 and TBL8 and are linked in the Root Node 

Pointer fields of the basic nodes existing in TBL16 and BLK256s. There are 2 types 

of root nodes, the normal and the optimized node that implements the trie node 

optimization discussed in subsection 5.2.2. The fields of the normal root nodes are the 

following: 
 RDesc : Root descriptor that indicates if this is a normal or an 

optimized node. The value 1 indicates optimized node. Two 

values are reserved for future use (2-bits). 

 Trie Bitmap : The bitmap that indicates which subtries are active  

(17-bits). 

 Trie Node Pointer : The address of the trie node (17-bits). 

The fields of the optimized root nodes are the following: 
 RDesc : Root descriptor that indicates if this is a normal or an 

optimized node. The value 0 indicates an empty node, value 1     

indicates an optimized node and value 2 indicates a normal   

node (2-bits). 

 Subtrie Number : The number of the single active subtrie (5-bits).  

 Prefix Number : The number of the active prefix (4-bits). 

 Prefix Flow ID : The corresponding FlowID of the prefix (17-bits). 

The trie nodes are used to keep the prefix bitmap and the pointer to the associated 

data. There are two formats for the trie nodes, the normal and the optimized that 

exploits the prefix node optimization discussed in subsection 5.2.1. The fields of the 

normal trie nodes are the following: 
 TDesc : Trie descriptor that indicates if this is a normal or an 

optimized node. The value 1 indicates optimized node (1-bit). 

 Prefix Bitmap : The bitmap that indicates which prefixes are active  

  (15-bits). 

 Prefix Node Pointer : The address of the prefix node (17-bits). 
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The fields of the optimized trie nodes are the following: 
 TDesc : Trie descriptor that indicates if this is a normal or an 

optimized node. The value 1 indicates optimized node (1-bit). 

 Prefix Number : The number of the active prefix (4-bits). 

 Prefix Flow ID : The corresponding FlowID of the prefix (17-bits). 

Note that a single root may have many trie nodes depending on the number of active 

subtries. When there is more than one subtrie then these trie nodes are kept in blocks 

of adjacent memory words in sorted order. Sorting is performed by putting a given 

subtrie node in the position of the block which is equal to the number of set bits in the 

Trie Bitmap before the correlated subtrie bit, namely by counting the number of active 

subtries that have number smaller than the current subtrie.  

The prefix nodes are used to keep the associated prefix data for subtrie nodes that 

have more than one active prefixes. They have two fields that keep the Flow IDs in 

sorted order. The fields of the prefix nodes are the following :  
 Prefix Flow ID #1 : The FlowID of the 1st saved prefix (17-bits). 

 Prefix Flow ID #2 : The FlowID of the 2nd saved prefix (17-bits). 

Also, note that a single trie may have many prefix nodes depending on the number of 

active prefixes. When there is more than one prefix then these prefix nodes are kept in 

blocks of adjacent memory words in sorted order. Sorting is performed the same way 

as in subtrie nodes but now the Prefix Bitmap is used. 

7.3.1 BOS_CTRL 

BOS_CTRL is responsible for managing the operations of the block and 

involves an FSM to handle the requests for the insert, lookup and delete operations. 

For each operation there is a sub-block responsible to complete it. BOS_INS is 

responsible for the inserts, BOS_LUP for the lookups and BOS_DEL for the deletes. 

Upon a reception of a command BOS_CTRL generates a request to the appropriate 

block and sets the appropriate select value in MEM_MUX so as to output a specific 

block’s requests to the memory handler. 

7.3.2 BOS_INS 

BOS_INS sub-block handles all the prefix insertions in the appropriate table 

or BLK256 together with TR_INS. This block also provides the final internal ID for 

B2PC by checking if the prefix already exists. The functional aim of this sub-block 

inside BOS is to provide the suitable root node pointer to TR_INS which implements 
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the final insertion in the trie data structures. Depending on the incoming prefix length 

BOS_INS accesses the tables and reads the root node pointer. The insert procedure 

has an FSM to handle the following series of actions: 
 If the incoming prefix length is shorter that 8 then it provides 

TR_INS with the address of the single memory word TBL0. 

 If the incoming prefix length is shorter that 16 then it provides 

TR_INS with the address of the memory word inside TBL8 that is defined 

by the first 8-bits of the prefix. 

 If the incoming prefix length is shorter that 24 then it accesses the 

memory word of TBL16 defined by the first 16-bits of the prefix and 

the checks the Root Node Valid flag (Basic Node Format).  

o If this flag is set then gives the Root Node Pointer address to 

TR_INS  

o Otherwise, it requests allocation of a single word from MEM_HDLR 

and sets the Root Node Valid bit and the Root Node Pointer with 

the allocated address. Moreover, the allocated address in 

forwarded to TR_INS. 

 If the incoming prefix length is shorter that 32 then it accesses the 

memory word of TBL16 defined by the first 16-bits of the prefix and 

the checks the BLK256 Valid flag (Basic Node Format).  

o If this flag is set then it accesses the address shown by BLK256 

Pointer in the offset defined by the active 8 LSB of the prefix 

and checks the Root Node Valid flag.  

• If this flag is set then gives the Root Node Pointer address to 

TR_INS  

• Otherwise, it requests allocation of a single word from 

MEM_HDLR and sets the Root Node Valid bit and the Root Node 

Pointer with the allocated address. Moreover, the allocated 

address in forwarded to TR_INS. 

o If the BLK256 Valid flag is not set then it requests allocation of 

a 256 word block and a single memory word. The BLK256 Valid flag 

and the BLK256 Pointer are set in the TBL16 entry and the Root 

Node Valid flag and Root Node Pointer are set inside the newly 

allocated block in the address defined by the active 8 LSB of the 

prefix. The address of the single memory word is given to TR_INS. 

 If the incoming prefix has length 32 then it accesses the memory word 

of TBL16 defined by the first 16-bits of the prefix and the checks the 

BLK256 Valid flag (Basic Node Format).  

o If this flag is set then it accesses the address shown by BLK256 

Pointer in the offset defined by the bits 16-23 of the prefix and 

checks the new BLK256 Valid flag. If this flag is set then it 

accesses the address shown by BLK256 Pointer in the offset defined 

by the active 8 LSB of the prefix and checks the Root Node Valid 

flag.  
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• If this flag is set then we have found the FlowID of the prefix 

and get it from the root node pointer field. 

• If this is not set then we set it and put the incoming FlowID 

in the Root Node Pointer field. 

o If the BLK256 valid flag is not set then it requests allocation of 

two 256 word blocks. The BLK256 Valid flag and the BLK256 Pointer 

are set in the TBL16 entry and next the BLK256 Valid flag and 

BLK256 Pointer are set inside the newly allocated block in the 

address defined by the bits 16-23 of the prefix. Inside the second 

BLK256 in the offset defined by the 8 LSB of the prefix it sets 

the Root Node Valid flag and puts the FlowID in the Root Node 

Pointer field. 

7.3.3 TR_INS 

TR_INS sub-block handles the actual prefix insertions in the appropriate root 

nodes. This sub-block also provides the final internal ID for B2PC by checking if the 

prefix already exists. The aim of this sub-block is to generate or update the existing 

root nodes in order to incorporate the incoming prefix. TR_INS works on root nodes, 

trie nodes and prefix nodes. 

For the prefix to be inserted, TR_INS has first to find the subtrie number and 

the prefix number in order to work on the bitmaps. The formulas for generating these 

numbers have been discussed in subsection 5.1.4. Once these numbers have been 

generated then an FSM examines the contents of the root node and follows the steps 

shown below: 
 If the RDesc field is 0 we have an empty node and we proceed to create 

and node with optimized format. Hence, we set RDesc to 1, set the 

Subtrie Number and the Prefix number with the generated values and put 

the incoming FlowID in the Prefix Flow ID field. 

 If the RDesc field is 1 we have an optimized node and have to proceed 

to generate further nodes.  

o If the existing Subtrie number matches with the generated one then 

we allocate memory for a trie node and a prefix node. We generate 

a Trie Bitmap with the appropriate bit set, link the trie node in 

the Trie Node Pointer field and write it as a new root node, then 

we generate a Prefix Bitmap and link the prefix node in the Prefix 

Node Pointer of the trie node and finally put the Prefix Flow IDs 

inside the prefix node in ascending order. 

o If the existing Subtrie Number does not match with the generated 

one then we allocate memory for two trie nodes of optimized 

format. We generate a Trie Bitmap with the appropriate bits set, 

link the trie nodes in the Trie node Pointer field and write it as 



CHAPTER 7. HARDWARE IMPLEMENTATION OF B2PC 122
 

 

a new root node, then we write in each trie node TDesc with 1 and 

fill the Prefix Number and Prefix Flow ID fields. 

 If the RDesc field is 2 we have a normal node and have to examine if 

the bit number indicated by the generated subtrie number is set in the 

existing Trie Bitmap.  

o If this specific bit is set then we follow the Trie Node Pointer. 

If it has normal format, namely TDesc is 0, then we check the 

Prefix Bitmap. 

• If the bit indicated by prefix number is set the we read the 

Prefix Node Pointer in the appropriate offset and return the 

new internal Flow ID. 

• Otherwise, we set the specific bit in the Prefix Bitmap, 

allocate space for the new prefix node and write the final 

Prefix Flow ID in the proper position. 

o If TDesc is 1 then we have an optimized prefix node and we 

allocate memory for the prefix node, generate the Prefix Bitmap, 

link the prefix node and write the Prefix Flow IDs sorted in the 

node.    

o If the bit is not set in the Subtrie Bitmap then we set it and 

allocate space for the new trie node that has optimized format. We 

place the trie node in the proper position so as the trie nodes to 

be sorted and write the appropriate data. We write TDesc with 1, 

write the Prefix Number and the Prefix Flow ID. 

7.3.4 BOS_LUP 

BOS_LUP sub-block handles the prefix lookups and implements the All 

Prefix Match (APM) algorithm. For cost purposes we have implemented BOS with 

sequential accesses in the tables and this sub-block visits all the tables one by one and 

follows the links to BLK256 to find valid root pointers. Once BOS_LUP finds an 

active root node then it provides the address of the root node to TR_LUP which 

makes the actual lookup inside the trie nodes. The insert procedure has an FSM to 

handle the following steps: 
 Provide TR_LUP with the address of TBL0. 

 Provides TR_INS with the address of the memory word inside TBL8 that 

is defined by the first 8-bits of the prefix. 

 Access TBL16 and  

o if the Root Valid flag if set then it gives the Root Node Pointer 

to TR_LUP. 

o If the BLK256 Valid flag is set we follow the BLK256 Pointer and 

access in the offset specified by the bits 16-23 of the prefix. If 

Root Valid is set there we provide TR_LUP with the existing Root 

Node Pointer. If BLK256 Valid flag is also set then we follow the 
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BLK256 Pointer and access in the offset specified by the 8 LSB of 

the prefix. If Root Valid is set there then we return the Flow ID 

stored in the Root Node Pointer. 

7.3.5 TR_LUP 

TR_LUP sub-block handles the actual prefix lookups in the appropriate root 

nodes. This sub-block provides the matching IDs for B2PC by checking if the prefixes 

match. TR_LUP works on root nodes, trie nodes and prefix nodes. For a given value 

to be matched, TR_INS has first to find the candidate subtries and the prefixes 

numbers in order to work on the bitmaps. The formulas for producing these numbers 

have been discussed in subsection 5.1.4. Once these numbers have been produced 

then an FSM examines the contents of the root node and follows the steps shown 

below: 
 If the RDesc field is 0 we have an empty node and therefore no 

matches. 

 If the RDesc field is 1 we have an optimized root node and have to 

check if the Subtrie Number matches with one of the generated.  

o If it matches then we check the Prefix Number with the four 

candidate generated prefixes.  

• If it matches then we return the Prefix Flow ID.  

• Otherwise, we have no match. 

o Otherwise, we have no match. 

 If the RDesc field is 2 we have a normal root node and have to examine 

the Subtrie Bitmap for the two specific bits set. 

o For those subtries that the bit in the Subtrie Bitmap is set we 

follow the Trie Node Pointer. 

• If TDesc is 1 the we check the Prefix Number with the four 

candidate and if one matches then we return the Prefix Flow ID. 

o If TDesc is 0 then we examine the Prefix Bitmap for the 

four specific bits indicated by the candidate prefix 

numbers. 

o For every specific bit that is set the we follow the 

Prefix Node Pointer in the appropriate offset and return 

the Prefix Flow ID. 

o If neither bits are set we have no match. 

7.3.6 BOS_DEL 

BOS_DEL sub-block handles all the prefix deletions in the appropriate tables 

or BLK256 together with TR_DEL. In terms of functionallity this sub-block provides 

the suitable root node pointer to TR_DEL which handles the final deletion in the trie 
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data structures. Depending on the incoming prefix length BOS_DEL accesses the 

tables and reads the root node pointer. The delete procedure has an FSM to handle the 

following series of actions: 
 If the incoming prefix length is shorter that 8 then it provides 

TR_DEL with the address of the single memory word TBL0. 

 If the incoming prefix length is shorter that 16 then it provides 

TR_DEL with the address of the memory word inside TBL8 that is defined 

by the first 8-bits of the prefix. 

 If the incoming prefix length is shorter that 24 then it accesses the 

memory word of TBL16 defined by the first 16-bits of the prefix and 

the checks the Root Node Valid flag (Basic Node Format).  

o If this flag is set then gives the Root Node Pointer address to 

TR_DEL. 

o Otherwise, delete fails. 

 If the incoming prefix length is shorter that 32 then it accesses the 

memory word of TBL16 defined by the first 16-bits of the prefix and 

the checks the BLK256 Valid flag (Basic Node Format).  

o If this flag is set then it accesses the address shown by BLK256 

Pointer in the offset defined by the active 8 LSB of the prefix 

and checks the Root Node Valid flag.  

• If this flag is set then it gives the Root Node Pointer address 

to TR_DEL  

• If the flag is zero, delete fails. 

 If the incoming prefix has length 32 then it accesses the memory word 

of TBL16 defined by the first 16-bits of the prefix and the checks the 

BLK256 Valid flag (Basic Node Format).  

o If this flag is set then it accesses the address shown by BLK256 

Pointer in the offset defined by the bits 16-23 of the prefix and 

checks the new BLK256 Valid flag.  

• If this flag is set then it accesses the address shown by 

BLK256 Pointer in the offset defined by the active 8 LSB of the 

prefix and checks the Root Node Valid flag. If this flag is set 

then we have to reset the Root Node Valid flag and set the 

contents of the Root Node Pointer field to zero. Otherwise, 

delete fails. 

• Otherwise, delete fails. 

o If the flag is zero, delete fails. 

7.3.7 TR_DEL 

TR_DEL sub-block handles the actual prefix deletions in the appropriate root 

nodes. The aim of this sub-block is to deallocate or update the existing root nodes in 
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order to remove the given prefix. TR_DEL works on root nodes, trie nodes and prefix 

nodes. 

For the prefix to be deleted, TR_DEL has first to find the subtrie number and 

the prefix number in order to work on the bitmaps. The formulas for generating these 

numbers have been discussed in subsection 5.1.4. Once these numbers have been 

generated then an FSM examines the contents of the root node and follows the steps 

shown below: 
 If the RDesc field is 0 we have an empty node and delete fails. 

 If the RDesc field is 1 we have an optimized node and have to examine 

the fields.  

o If both the existing Subtrie number and the Prefix Number match 

then we put zeros in the word. 

o Otherwise, delete fails. 

 If the RDesc field is 2 we have a normal node and have to examine if 

the bit number indicated by the generated subtrie number is set in the 

existing Trie Bitmap.  

o If this specific bit is set then we follow the Trie Node Pointer. 

If it has normal format, namely TDesc is 0, then we check the 

Prefix Bitmap. 

• If the bit indicated by prefix number is set, we reset it 

and deallocate its space for the memory of the Prefix Node 

Pointer by keeping the sorted order. 

• If TDesc is 1 and Prefix Number matches then we deallocate 

the trie node, rearrange the trie nodes and reset the bit in 

the Trie Bitmap of the root node. 

• Otherwise, delete fails. 

o Otherwise, delete fails. 

7.4 PRO_CTL 
PRO_CTL block is responsible to insert, delete and find the two possible 

matches of the protocol field. When instructed, its FSM accesses PRO_TBL in the 

memory address 0 to find a match for the wildcard specification and the memory 

address defined by the incoming 8-bit protocol field value. The matches are sent to 

the appropriate collection point (CLPT) and a finish signal is asserted to B2PC_CTL. 
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7.5 CLPT 
CLPT is the implementation of the collection point and gathers the results from 

every single field search. CLPT keeps at most 33 FlowIDs (subsection 6.2.3) 

internally in a memory, sorted in descending order and provides them to BL_CTRL. It 

provides the matching IDs in a show-ahead fashion and signals BL_CTRL when all of 

them have been read. CLPT does not dequeue the IDs upon reading and when all of 

them have been read, it starts providing them from the beginning. Basically, CLPT is 

a show-ahead circular buffer. 

7.6 BL_CTRL 
BL_CTRL handles all the Bloom Filters, generates the permutations to be tested 

and provides the final filter match. It performs the set membership queries and 

resolves the FlowID by visiting the hash and rule tables. BL_CTRL involves many 

sub-blocks to accomplish several operations and its internal organization is depicted 

in Figure 7-5. It reads the matched IDs from the 5 collections points with the proper 

sequence in order to generate the permutations based on the descriptions of 

subsections 6.2.3 and 6.2.6.  

 
Figure 7-5 BL_CTRL Internal organization 
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Memory organization of Bloom Filters and Static Tables 

 The implementation of B2PC requires the Bloom Filters of the IP pair, the 

Port pair and the Rules to be stored in memories inside the FPGA. According to the 

design of the Bloom filters we partition the bit-vector of Rule Bloom filter into four 

equal parts to access them in parallel. Moreover, the bit-vectors of IP and Port Bloom 

filters are also split into two equal parts. Additionally all the existing bit-subvectors 

need to be accessed in parallel. To achieve this parallelization and store these Bloom 

Filters we keep on-chip four Dual Port Block RAMs (DPBRAM) of size 256x32. 

Figure 7-6 illustrates how the bit-vectors of the Bloom filters are organized inside the 

memories. 

 
Figure 7-6 Bloom filter memory partitioning 

 
All the memories are split into two parts and thus we have 128x32 = 4096 bits 

for every bit-vector of the Bloom filters as it is required. The first part of each 

memory is accessed by the first port and the second by the second port so as to have 

parallel accesses. The hash functions provide a 12-bit value to indicate a specific bit 

inside the bit-vector. The first 7-bits of the value can be used to identify one of the 

128 memory words of each bit-vector and the last 5-bits define a specific bit from the 

32 of each word. 

B2PC has also some static tables to hold the internally represented rules 

(RULES_TBL) , a hash table (HSH_TBL) to resolve the matched permutations and 

several tables with counters to keep the reference counts of the BOS IDs and the 

Bloom filters bit references. This kind of information is only known to BL_CTRL 

block which knows the final internal IDs, the Bloom filter bits and calculates their 

reference counts. This information is stored in the first external SSRAM and 

BL_CTRL has an interface with the related memory handler. The first 32K memory 

words of the first SSRAM are allocated for BOS #1 and therefore BL_CTRL is 
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assigned addresses below 32K. The additional memory words used by B2PC have 

been discussed in subsections 6.2.2 and 6.2.4 and their organization inside the 

SSRAM is shown in Figure 7-7. 

 
Figure 7-7 Organization of Static Tables 

 

7.6.1 BL_MAIN 

BL_MAIN sub-block responsible for the central operation of BL_CTRL and 

involves an FSM to handle the requests for the insert, lookup and delete operations 

defined by the same opcodes as in B2PC. For each operation there is a sub-block 

responsible to complete it. BL_INS is responsible for the inserts, BL_LUP for the 

lookups and BL_DEL for the deletes. Upon a reception of a command BL_MAIN 

generates a request to the appropriate block and sets the BL_MUX and MEM_MUX 

to output a specific block’s requests to the Bloom filters’ memory and the memory 

handler. 

7.6.2 BL_INS 

BL_INS sub-block has an FSM to handle all the programming of the Bloom 

filters, save the internal rule representation in the RULES_TBL, set HSH_TBL values 

and update the reference counters. When all single field values are inserted in BOS 

engines and protocol table then BL_INS calculates the hashing functions on the IDs 

and the following steps are performed: 
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 the IDs of each field of the rule are then inserted in the RULES_TBL, 

 the appropriate ID counters are incremented, 

 HSH_TBL values are set, 

 Bloom Filters’ bits are set, 

 Bloom Filters’ counters are incremented. 

7.6.3 BL_LUP 

BL_LUP sub-block performs all the set membership queries in the Bloom 

Filters and generates all the permutations. BL_LUP involves four FSM’s to achieve 

the parallel accesses in the Bloom Filters. We have one FSM for the IP pair queries, 

one for the Port pair queries, one for the Rule queries and the main FSM that resolves 

the final FlowID. 

The first FSM performs the queries in the IP pair Bloom filter. The 

permutations are generated by reading the Source IP ID from the appropriate 

collection point and while keeping this value steady, we read sequentially all the 

values from the Destination IP collection point. When these finish then we read the 

next value from the Source IP collection point and start from the beginning of 

Destination IP IDs. For every permutation the IP pair Bloom filter is probed and when 

a match occurs then the couple of IDs is sent to the FSM that handles the Rule Bloom 

filter queries. The Port pair Bloom filter queries and permutations are performed in 

the same way as the IP pair but now the Source and Destination Port collection points 

are read. 

The FSM that handles the Rule Bloom Filter queries waits for matches from 

both IP and Port pair FSM’s and when both provide values then these values along 

with the two possible IDs of the Protocol field are probed in the Rule Bloom Filter. If 

a query is successful then the 5 IDs are sent to the main FSM to resolve the final 

FlowID or indicate a false positive. 

The main FSM uses the 5 ID values that matched and visits the hash table to 

get the possible Rule FlowID. The values that are found in the specific memory word 

of HSH_TBL indicate the possible FlowIDs. For the found FlowIDs then this FSM 

visits RULES_TBL and checks if the IDs values located there match with the 5 

provided IDs. If all match then we have finally found a match and return this FlowID, 

otherwise if we have no match then it is a false positive and the FSMs that probe the 

Bloom Filters continue looking for matches. 
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7.6.4 BL_DEL 

BL_DEL sub-block has an FSM to handle the updates of the Bloom filters, to 

remove rules from RULES_TBL, to reset HSH_TBL values and to update the 

reference counters. When a FlowID is to be deleted, all the IDs from RULES_TBL 

are read, the Bloom hashing functions are calculated and the following steps are 

performed: 
 all the IDs counters are decremented and if a counter is decremented 

to zero then a delete command is sent to the appropriate BOS engine to 

be removed. 

 all the Bloom Filters’ bit counters are decremented and if a counter 

is decremented to zero then the corresponding Bloom bit is cleared. 

 the related HSH_TBL value is cleared. 

 the entry in RULES_TBL is cleared. 

7.7 MEM_HDLR and MEM_CTRL 
The MEM_HDLR sub-block provides the dynamic memory management in 

our system and supports the variable size blocks. MEM_HDLR is the intermediate 

layer between the sub-blocks and the memory controller (MEM_CTRL) and supports 

requests for allocation and deallocation of variable size blocks. Requests for reads or 

writes in the memory are immediately forwarded to the memory controller 

MEM_CTRL.  

The design of MEM_HDLR is already described in section 4.4 and here we 

have the same configuration but we support many different sizes of memory word 

blocks. We support blocks of 1,2,4,8 and 18 words. Moreover we provide the ability 

to allocate the big 256-word memory blocks. The design of MEM_CTRL is already 

described in subsection 4.5 and here we use the same design. 
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7.8 Implementation Analysis 
In this subsection we provide an analysis of the block latencies and an 

estimation of the implementation cost for the reference design.  

7.8.1 Latency Analysis 

We calculate the minimum and the maximum number of clock cycles required 

by each block to complete its operation. Many of the blocks have variable latencies 

which depend on the access patterns and the data stored in the data structures. 

Moreover, the blocks that access the external SSRAMs for the stored data structures 

have to also suffer the latency of our memory controller.  In Table 4-2 we present the 

latency per block of B2PC. 

Block Name Min Latency
(clock cycles)

Max Latency
(clock cycles)

B2PC_CTRL 1 - 
BOS_CTRL 1 - 
BOS_INS 1 7 
BOS_LUP 4 8 
BOS_DEL 1 7 
TR_INS 3 23 
TR_LUP 2 22 
TR_DEL 3 22 
PRO_CTL 2 2 
CLPT 0 0 
BL_MAIN 1 - 
BL_INS 38 38 
BL_LUP 8 - 
BL_DEL 35 35 
MEM_HDLR 0 3 
MEM_CTRL 1 2 

Table 7-2 B2PC Blocks Latencies 
 

The fact that the memory controller has latency 2 cycles (section 4.5) for a read 

operation in the external SSRAM significantly affects the performance of the blocks 

that perform sequential accesses to the memory. Insert, lookup and delete operations 

are high depending on the read data to decide the address of the next memory access 

and thus the 2 cycle latency of the memory controller is continuously introduced. 

Additionally, some blocks like BL_LUP have unspecified maximum latency since 

they perform iterative operations on the collected data and depend on every case 

specifically. Note also that BOS_LUP occupies TR_LUP at most 4 times therefore the 
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total latency of a BOS lookup requires at minimum 6 clock cycles and at maximum 

92 clock cycles. According to the number of memory accesses we calculated in 

subsection 6.3.4 we need for a BOS lookup 18,4 clock cycles on average and for a 

Bloom lookup (BL_LUP) 9,4 clock cycles. In total the average lookup time is 

approximately 28 clock cycles. 

7.8.2 Hardware Cost Analysis 

We have used VHDL to describe the design and the results presented are the 

reports from the synthesis tools. We have synthesized the design using the Synopsys 

Design Compiler[35] which is the most widely used synthesis tool. We have used 

UMCs 0.13µm technology library to estimate the area and the frequency of the 

design. Moreover, we used the XilinX ISE tool to implement and port the design in 

the FPGA. 

The synthesis tool for the ASIC flow indicates that the maximum working 

frequency of our design is 200Mhz.Using the synthesis tool we calculated the number 

of flip-flops contained in our design and we present them per high level block in 

Table 7-3. Since the final design has many instances of the same blocks, we also 

calculate the total number of flip-flops. 

Block Block Description Number of Flip-Flops 
BOS BOS engine 624 
PRO_CTL Control of Protocol Table 14 
CLPT Collection Point 19 
BL_CTRL Bloom Control 191 
MEM_HDLR Memory Handler 662 
MEM_CTRL Memory Controller 43 
B2PC_CTRL Control Block of B2PC 219 
Total 5835 

Table 7-3 Flip-Flop count per block 
 

The area of the total design and the equivalent gate count is presented in Table 7-4. 

The equivalent gate count is calculated by considering how many 2-input NANDs can 

be accommodated in this area.   

Components Area 
(mm2)

Equivalent 
NAND Gates

Combinatorial 0,595 115K 
Non-Combinatorial 0,250 48K 
Memories 0,456 88K 
Total 251K 

Table 7-4 B2PC area and gate count 
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The ISE tool of the Xilinx FPGA flow shows that the maximum working 

frequency of our design is 75Mhz. The tool reports the occupied resources after a full 

back-end FPGA flow while occupying optimizations to remove redundant logic or 

replicate logic to improve speed. The final results are shown in Table 7-5. 

Resource Resource count

Used 4 input LUTs 30867 

Slice Flip Flops 5390 

Table 7-5 FPGA resource allocation 

7.8.3 B2PC Hardware Performance 

Considering that we have a 75MHz clock, the external memories work on the 

same frequency and the average lookup time is 28 clock cycles then, the FPGA 

prototype design of B2PC supports 2,7 Mpps. 
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8 Chapter 8 

 
Contributions and Future Work 

8.1 Summary of Contributions 
We have extensively studied packet classification, the longest prefix matching 

problem and the related literature and worked on several issues of them. We designed, 

simulated and proposed classification solutions that exploit the most important 

information existing in the packet headers. We have designed and implemented 

hardware schemes that can support high speed packet classification based on the 

packet’s headers of network layers 2, 3 and 4. 

In Chapter 3 we propose a classification solution for the MAC layer of the 

Ethernet networks. We used a hashing scheme and an internal replacement of MAC 

Vendor IDs to compact the MAC address tables and support high speed decisions. 

The proposed hardware scheme, Hash Based Classification Engine (HBCE), uses 

modest amount of memory and a single memory to store and retrieve its data 

structures. When HBCE is implemented with on-chip memories it can support 

aggregate speeds of more than 50 Gbps. In Chapter 4 we fully describe a reference 

hardware implementation of HBCE that can be implemented in FPGAs. 

Chapter 5 presents our solution for the Longest Prefix Matching (LPM) problem 

that mainly applies in route lookups. We developed an innovative data structure that 

uses bitmaps to compact the prefixes and retrieve them in relatively high speed. When 

the proposed solution, Bitmap Oriented Strides (BOS) is implemented on-chip with 

parallel memory arrays it can support destination route lookups of more than 240 

Million packets per second, translated into 80Gbps. 

This thesis also proposes a novel packet classification scheme for the IP 5-tuple 

in Chapter 6. The proposed solution, Bloom Based Packet Classification (B2PC), 

approaches the packet classification problem in a decomposed manner, where single 

field matches of each packet field are combined to identify the matching rule. B2PC 
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uses the BOS solution for LPM to provide efficient single field independent matches 

of 5D classification rules. Moreover, it represents internally the 5D classification rules 

and stores them in Bloom filter data structures so as to provide fast and efficient set 

membership queries. On-chip implementation of B2PC with parallel BOS engines 

provides classification of packets at rates greater than 8Gbps for more than 4000 

rules. In Chapter 7 we fully describe a reference hardware implementation of B2PC 

that can be implemented in FPGAs. 

8.2 Future work 
Our solution to the Longest Prefix Matching, BOS, is strictly restricted to find 

prefix matches for IPv4 addresses. It will be rather useful to examine whether the data 

structures involved in BOS could be used to support IPv6 [3] routing lookups. The 

IPv4 addresses are 32-bits long and the IPv6 addresses are defined to be 128-bit. 

These 128-bit addresses could be possibly split into 32-bit segments and follow a 

decomposition solution similar to that proposed for B2PC. Hence, we may use 4 

parallel 32-bit BOS engines to examine each segment independently and combine all 

the intermediate results. Moreover, another interesting point is how the BOS hardware 

implementation can scale in respect of state-of-the-art deep submicron chip 

technologies. 

On the other hand, our packet classification solution (B2PC), was designed to 

support a few thousand rules and this restricts its scalability. However, the arrival of 

new network protocols for dynamic resource reservation, like RSVP [45], can 

increase the number of rules to hundreds of thousands. Hosting such a large number 

of rules demands altering many parameters of the scheme, like the Bloom filters’ sizes 

and the associated memory sizes and this should be extensively studied. Moreover, we 

can study how B2PC could support additional packet header fields beyond the 

standard IP 5-tuple. Adding more fields in B2PC requires more parallel single field 

searches which would naturally increase the number of intermediate results. Handling 

and combining an increased number of intermediate results can become a serious 

threat to the performance our scheme. The possible number of single field 

permutations could be a serious bottleneck and may require more sophisticated 

combination techniques. 
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