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Protecting LSM Key-Value Stores using Secure
Enclaves

Abstract

Log-structured merge (LSM) key-value stores are widely used in various applica-
tions mainly due to their ability to handle writes efficiently. However, ensuring
the security and integrity of the stored data remains challenging, especially in
untrusted infrastructures (such as cloud environments). Hardware-based Trusted
Execution Environments (TEEs) are a practical solution that provides trust guar-
antees for code execution in third-party computing environments and protects even
against highly privileged adversaries. Previous work has implemented fully func-
tional, secure key-value stores in TEEs; however, they suffer from high memory
pressure which is a major limitation for TEE applications.

This thesis presents Fennec, a secure LSM-based key-value store designed to
protect data confidentiality and integrity using hardware-based TEEs. Fennec
leverages unique, per-level encryption keys and hash-based message authentica-
tion codes (HMACs) to safeguard data against various threats, including root-
privileged access, tampering, physical attacks, and replay attacks. The system
also employs a log protection mechanism to ensure data recoverability in the face
of failures while preventing rollback attacks. Our evaluation demonstrates that
Fennec achieves strong security guarantees with a slowdown of 6.6x when com-
pared to the unprotected key-value store while reducing the amount of memory
needed to store the history of encryption keys by up to 50x compared to previous
work.






ITecooctaciae LSM Key-Value Store Yuoctnudtwy
xenoiponotwviag Acparn IlepiBdiiovia Extéreong

ITepiandn

To key-value store cuctriuata mou eivor Bactopéva oto LSM 8évtpo, yenoionoto-
OVTOL €VPEWS OE OLAPORES EPUPUOYES XUPIWE AOYW TNG XAAAC AmOBOCNC TOUC OTIC
EYYPUPES BESOUEVLY. 20TOCO, 1) BLUGPIMGCT) TNS EUTLC TELTIXOTNTAUC Xl TNG OXEQAL-
OTNTAS TWV BEBOUEVHY TOU ATOUNXEVOVTOL GE QUTH T GUC THUATO TORUUEVEL BOOXOAT),
eldwd oe un ofdmotec unodopée (6mwe mepBdhhovta Vépouc). Ta Aogouny Ile-
e3drrovTa Extéheong Boocioyéva o UAIXO TOREYOUV EYYUNOELS ACQPIAELNG Yiol TNV
EXTEAEDT) TOU XOOIXA 0L TROCTATEVOUV oxOUTN ot amd LPNAG e€louctodoTNUéVOUC
emtiéuevoug. Tlponyolueveg epyaoieg LhomolOV TAHPKS AclToupYIXd, aopoin key-
value stores oe Acgaly| IlepBdrhovta Extéheone wotéco, napoucidlouvy auinuévo
poeTo 0T uviun tou Acgoroic HepBdilovtog Extéleonc.

Avuth 1 epyaocio napouvoidler to Fennec, éva acparéc key-value store ocbotnua,
OYEDLAOUEVO VUL TPOGTUTEVEL TNV EUTIC TEUTIXOTNTA XOL TNV UXEEOULOTNTA TWV OEDO-
uévewv yenotponotwvtog Acgary| IepiBdhhovia Extéheone Poocioyéva oe vhixd. To
Fennec expetohheteton povodixd, ove-eminedo XAEWOId XpUTTOYEAPNONG oL XWOLXO-
O¢ ehéyyou audevuxdTnrag unvuudtoy pe texvixée xotoxeppotiopot (HMACS) yi
VO TROCTATEVCEL ToL BEQOUEVO amd BLAPOPES OMELNES, OIS TEOCBUOT UE OLXAULOUOTA
root, oAholwor, guoéc eméoelg xa emiéoelg emavdindne. To cbotnua yenouo-
motel enfong évay unyaviopd mpoctaciag Tou log vl va Slacgaiicel Ty duvaToTTa
AVAATNONG OEBOUEVLY OF TEP(TTWOT amoTUYLKOY, anoteénoviag Ti¢ rollback emvdéoelc.
H o€iohdynot| pog detyver 6Tu To Fennec emtuyydvel ioyuer aopdieia pe emPedduvon
6,6x og clyxplon pe To Un mpooTateuuévo key-value store cUGTNUA, EVH UEWWOVEL TI
AMAUTACELS UVANG Yo TNV AmOUAXEVCT] TOU LOTORLXOU TWV XAELBLWMY XPUTTOYRAPNONS
€wg xan 50X Qopéc oe alyXpELoN UE TEOTYOVUEVES EQYAGIES.
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Chapter 1

Introduction

Key-value stores (KVS) are storage systems designed to provide fast access
to data using a simple key-value lookup system [7, 25]. They have been proven
to be very efficient for a plethora of diversified applications that store and re-
trieve large amounts of data, from real-time analytics systems, to graph-based
systems, message queues, and feature storage for recommendation systems [19, 4].
However, the lack of trust in third-party or shared resources poses a significant
barrier to outsourcing computations, especially when sensitive data is involved.
For example, security violations or attacks can compromise the stored data and
the query operations. As the importance of data increases for modern applications
and workflows, protecting data from other applications and users becomes a sig-
nificant challenge. Thus, ensuring data confidentiality and detecting tampering to
ensure correct query results becomes critical.

Although current privacy-enhancing technologies, such as homomorphic en-
cryption, can increase security, they are still very slow and have high storage
requirements, especially for complex computations [24]. Hardware-based Trusted
Execution Environments (TEE) are an attractive alternative that can provide
trust guarantees for code execution in third-party computing environments and
protect even against highly privileged adversaries [20]. Previous work [2, 10] has
implemented fully functional, secure KVSs in TEEs. They achieved strong se-
curity guarantees with acceptable performance overhead. However, to ensure the
integrity and freshness of their data, they either created Merkle trees [2] or utilized
a unique encryption key for each SSTable [10]. Both of these methods impact the
scalability of the KVS. The traversal of a Merkle tree is costly and increases the
latency of lookups. On the other hand, using a unique encryption key for each
SSTable requires maintaining the history of encryption keys, leading to increased
memory pressure within the Enclave Page Cache (EPC).

In this thesis, we implement Fennec, a secure KVS that runs inside a TEE. The
main goal of Fennec is to improve the scalability of KVS when run in TEEs by (i)
securely moving most data structures outside the EPC, as TEE memory pressure
is a significant point of performance overhead, and by (ii) leveraging full-leveling
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compactions to reduce the number of unique encryption keys required (i.e., one
encryption key per level instead of one per SSTable).

We implement Fennec on Tebis [23], an open-source KVS, and evaluate it
using the popular Yahoo Cloud Serving Benchmark (YCSB) [6]. Our results show
that Fennec can fully protect data against strong adversaries, including physical
attacks and root-privileged malware, with less than 13 x slowdown compared to the
default execution of Tebis. Our experimental evaluation reveals that this slowdown
is mainly the result of excessively switching in and out of the TEE, everytime
Fennec sends or receives data over the network. We mitigate this by implementing
custom operators that batch many GET/PUT requests in the same buffer; this
results to a slowdown of 6.6x compared to native Tebis, while maintaining the
same, strong security guarantees.
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Background

2.1 Intel SGX

SGX is Intel’s hardware that provides confidentiality and integrity to programs,
called enclaves, that run in a predetermined address space. The enclaves are signed
at compile time so that the hardware can verify that the code we expect runs in
the enclave. SGX provides 128MB or, in some cases, 256MB of trusted enclave
memory called EPC, in which the enclave’s data is secure and cannot be read or
modified by anyone outside the enclave, including the OS. Some limitations of SGX
include modifications that need to be made to applications in order to run them
in an enclave, which are mostly solved by using libary OSs such as SCONE [1],
Occlum [21], and others, which allow an unmodified application to run in SGX,
limited EPC capacity which results in significant overheads when an application
uses more than the available EPC due to the cost of decrypting and encrypting
pages to page them in or out, and no support for secure use of storage devices
which means that storage applications have to secure anything that goes to a
storage device manually.

2.2 LSM Key-Value Stores

Log-structured merge trees (LSM Trees) [15] are a key optimization technique
used in modern key-value stores to improve write performance. Modern KVSs
consist of a Level 0 (LO) in memory, with the remaining levels stored on disk.
The disk levels are sorted by key. Every level has a capacity threshold larger
than its previous level by a fixed growth factor. The levels of the KVS consist
of SSTables, which are immutable files, each containing a range of keys. The
write process involves appending incoming writes to the in-memory Level 0 (L0).
Once L0 reaches a capacity threshold, a compaction happens. Compaction is the
process of moving data from level n to level n+1 to free up space in level n. In full-
leveling compactions, when a level n is full, all its SSTables are merged with all the
SSTables in level n+1, and the result becomes the new level n+1. In incremental
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compactions, when a level n is full, only one SSTable moves to the next level n+1.
This leads to a higher total number of compactions, but it amortizes the cost more
efficiently than full-leveling compactions. When performing reads, queries first
search in LO. If the key cannot be found, the search continues sequentially to the
on-disk levels. LSM Trees offer significant advantages, especially their efficiency
in handling write operations, but they have other disadvantages, such as read
amplification.
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Methodology

3.1 Design Objectives

Even though TEEs aim to provide strong data protection during processing,
it is equally important to guarantee that data remains well protected throughout
their whole lifecycle, including when transiting over the network and when stored
in main memory and storage devices. One of the most effective ways to protect
data is by using encryption, which should be enforced end-to-end in the phases
above (namely, transit, in-use, and rest phases). We briefly describe each of them
below:

e Data in transit: The data is transferred over the network in a client-server
fashion (i.e., the client reads or writes key-value pairs on a remote server). In
our case, the network is considered untrusted. Hence, the connection should
be encrypted. This can be performed at different levels of the network stack,
e.g., on the application level by using TLS/SSL sockets or at the network
level by establishing IPsec or VPN channels between the nodes. Unlike the
traditional client-server architecture, the operating system is also consid-
ered untrusted; hence, the encrypted connection should terminate within
the TEE. By doing so, the data will only be decrypted within the protected
space of the TEE without risking being leaked into the network or the oper-
ating system.

e Data in use: The data are protected during computation using hardware-
based TEEs (e.g., Intel SGX, ARM TrustZone, etc.). TEEs provide an
isolated space inaccessible to other applications, the operating system, or
other hardware modules.

e Data at rest: The storage devices typically reside outside the trusted domain.
Hence, the data should always be stored in encrypted form. The encryption
can be performed transparently, at the block level (e.g., similar to dm-crypt)
or the application layer (e.g., similar to SQL TDE). In any case, it is nec-
essary to redesign the data structures to extend the trust to the untrusted
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storage medium in order to achieve end-to-end security properties between
the TEE and the storage mediums.

Design Space

Implementing a secure KVS requires many different design decisions, depend-
ing on a user’s demands for the security guarantees it provides, its use case, and
performance requirements. Table 3.1 summarizes the design space. Before dis-
cussing the pros and cons of each row, we clarify the contents of each column in
the table.

Explanation of table columns:

Configuration: Describes what kind of encryption scheme is used, who
performs the encryption, and whether the KVS runs in a TEE or not.

Server Changes: Denotes if the KVS needs to change for this configuration,
and to what degree.

Secure Multi-Party: Indicates if the configuration supports multiple clients
querying the KVS securely.

Index: The index is the data structure used to search for a specific key in
every level. This column shows where the index is placed (if applicable) and
how it is encrypted/decrypted if at all.

Confidential: Indicates if the keys and/or values remain confidential in this
configuration.

Scans: Scans are a range query, starting at a key specified by the client.
This column represents if the configuration is able to perform scans.

EPC Usage: Shows the EPC memory usage depending on where the index
is placed in each configuration for the configurations running in a TEE.

Integrity: Indicates if the integrity of code and/or data can be verified.

Description of configurations:

Symmetric encryption from clients - No TEE: This configuration involves

a client that symmetrically encrypts the data before sending it to the server.
The server is not running inside a TEE, so the server machine (and operating
system, etc) must be trusted. The server can run without any changes since
it is unaware that the data is encrypted. This configuration does not allow
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Symmetric encryption from clients + TEE: This configuration is similar
to the previous one, with the difference that the server is now running inside
a TEE. Small changes need to be made to the server, first to be able to run
inside a TEE, and second, to explicitly place the index outside the EPC and

DESIGN SPACE
Server Secure EPC
Configuration Multi- Index Confidential | Scans Integrity
Changes Usage
party
Symmetric
encryption Built Key
. . N N N - Dat
from clients © © encrypted Value © ata
(No TEE)
Symmetric In host
encryption o memory Key Code
from clients Minimal No built Value No Low Data
(TEE) encrypted
OPE
encryption Built Key .
from clients No No encrypted Value Yes Data
(No TEE)
OPE In host
encryption . memory Key . Code
from clients Minimal No built Value Yes Low Data
(TEE) encrypted
g were | .
CRerypuio Yes Yes (Enc/Dec oy Yes High ode
from server transparently) Value Data
(TEE) P v
In host
" " memory Key . Code
(Enc/Dec Value Yes Low Data
manually)
In host
memory
N ) : Key ) Code
encrypted Value No Low Data
(never
decrypted)
. . In host Code
’ memory Value Yes Low
Data
unencrypted
e COP}?' [ host Ke Cod
neryplion Yes Yes memory v Yes Low N
from server Value Data
encrypted

(TEE)

Table 3.1: The different possible secure key-value store designs.

multiple clients to query the KVS securely, since the client holds the encryp-
tion key of the data. The index is built based on the encrypted data, so no
changes need to be made to preserve the data’s confidentiality. The key and
the value remain confidential, as only the client can decrypt them. However,
scans do not work with this configuration as the server does not know the
plaintext order of the keys. Finally, if the client wants to implement integrity

checking, it can; however, rollback protection seems complicated.
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reduce EPC usage since the client already encrypts the data. Secure multi-
party is still not supported since the client holds the encryption key for the
data. The confidentiality of the keys and values is preserved since only the
client can decrypt them. Scans are still not supported since the server knows
nothing about the plaintext order of the keys. EPC usage is low as all the
data and metadata can reside in the host’s memory since the server never
deals with plaintext data. Finally, the client can verify the TEE’s integrity
using attestation and can again choose to implement integrity checking using
hashing for the data, but rollback attack protection remains complicated.

OPE encryption from clients - No TEE: In this configuration, the clients
use Order-Preserving Encryption (OPE) (e.g., Boldyreva [3]) to encrypt the
data before sending it to the server. OPE is a type of encryption that pre-
serves the lexicographic order of the plaintexts when they are encrypted into
ciphertext. However, OPE is significantly more expensive than symmetric
encryption (e.g., AES). This configuration offers the same benefits as the
first configuration, with the addition of scans being possible since the order
between the keys is preserved even after encryption.

OPE encryption from client + TEE: In this configuration, the clients use
OPE to encrypt the data before sending it to the server, which runs in a
TEE. The pros and cons of this configuration are the same as those of the
second configuration, with the additional capability of scans for the same
reasons mentioned before.

Symmetric encryption from server + TEE: In this configuration, the server
running in a TEE performs data encryption and decryption, as well as any
integrity checking or other security mechanisms. This requires changes to the
server to preserve the confidentiality and integrity of the data. As the server
is responsible for the encryption keys, this configuration can securely support
multiple clients. We split this configuration into four variations depending
on how we handle the index metadata.

1. The index lives in the EPC. This means that it is encrypted and de-
crypted transparently when it needs to be paged in or out. This con-
figuration can offer confidentiality for both the keys and the values and
can perform scans. However, keeping the index in the EPC can result
in memory pressure, a significant overhead in TEE applications due to
the need to encrypt and decrypt data to page it in or out.

2. The index lives in the host memory and is encrypted/decrypted man-
ually. This configuration also offers confidentiality for both the keys
and the values and can provide scans. Keeping the index encrypted
in the host memory reduces memory pressure in EPC. However, every
time the server searches for a key, it needs to decrypt the corresponding
index entry before performing the comparison.
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3. The index lives in the host memory and is built on the encrypted data.
If we build the index on the encrypted keys and sort all the levels based
on the encrypted key, we can perform lookups without decryption and
leaking any data information. However, scans will not be possible since
the order of the ciphertext is not the same as the order of the plaintext.

4. The index lives in the host memory, but it is unencrypted. This configu-
ration leaks information about the keys, even if we build the index with
keys that do not necessarily exist in the data. However, lookups will be
much faster since there is no need for encryption or decryption of the
index and no memory pressure since the index is in the host memory.

OPE encryption from server 4+ TEE: In this configuration, the server en-
crypts the data with OPE. By doing this, the index can now be built on the
encrypted data and reside in the host memory, but now scans will be pos-
sible since the order between the ciphertexts will be the same as the order
between the plaintexts.

3.3 Threat Model

In our work, we assume a strong attacker that can take complete control of the
system that our server is running on, except the SGX-protected enclave. Therefore,
the attacker can modify the data that resides in memory and the data on disk.
The attacker cannot modify the data in the EPC. Our server will not accept the
attacker as a client by using appropriate attestation, which is an already solved
problem, so the attacker cannot query the KV store. This work does not attempt
to solve existing SGX limitations and implementation bugs, which are orthogonal
to our proposed system and will be solved in future releases. Most research on
secure systems that run on Intel SGX assumes this threat model.

3.4 Design

The overview of Fennec is shown in Figures 3.1 and 3.2 for GET requests
and PUT requests respectively. As we can see, Fennec uses a socket-based inter-
face, making integration with any application easy. More specifically, clients can
communicate over TLS/SSL sockets with the server running inside the TEE. The
clients can either send GET requests to retrieve the values of specific keys or PUT
requests to insert or update key-value pairs. The server uses Direct 1/O to write
to the storage device, and mmap() to map the storage device to the host memory
address space and perform reads. Fennec handles plaintext data only inside Intel
SGX’s secure and trusted environment. Data is encrypted every time it leaves the
EPC, whether on the network, the host memory, or the storage device. Similarly,
whenever Fennec reads data from the network, the host memory, or the storage
device, it decrypts it safely inside the EPC.
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Client

SSL_read() 5
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Y
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Figure 3.1: The high-level system overview for GET requests.

3.4.1 Client-Server Approach

Implementing a KVS in TEEs requires clear boundaries between the server
running in the TEE and the client. The sockets() interface becomes the sole
interface between the client and the server, used to send requests and receive
responses. Using sockets enables the KVS to serve both local and remote clients
securely through the same interface. The clients connect to the server through
TLS/SSL connections. Thus, all data is transferred over the network in encrypted
form and ends up in the EPC. The current implementation of Fennec uses the
mbedtls [12] library for handling the TLS/SSL connections. Since Fennec is TLS-
compatible, the clients do not need any modifications to communicate with the
server.
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3.4.2 Data Encryption

An important decision that we need to make when designing a secure KVS
is the granularity at which the data will be encrypted at the storage device. In
previous work [2], the data is encrypted at a block granularity. This reduces
the spatial overhead that HMACs introduce, but comes at the cost of decreased
performance due to the need to decrypt and calculate an HMAC over a whole
block every time the system needs to read a specific key-value pair. In Fennec,
the granularity of encryption is the key-value pair. This enables us to verify the
freshness and integrity of the pair more efficiently, as we only need to calculate
the hash of the pair instead of a block any time we need to execute an operation.
When the server receives a PUT request from the client, it computes the pair’s
HMAC using SHA-256, manually encrypts it using symmetric encryption (AES)
along with the HMAC, and places it in L0, which resides in the host’s memory.

3.4.3 Per-Level Encryption Key

There have been two main approaches proposed to guarantee data freshness.
The one approach, used in Speicher [2], uses a single encryption key for all the
data and constructs a Merkle tree to verify the integrity and freshness of the
blocks holding the key-value pairs. The other approach, used in Tweezer [10], uses
a separate, unique, encryption key for each SSTable. By avoiding using the same
encryption key twice, Tweezer can verify the integrity and freshness of a key-value
pair without constructing a Merkle tree. The reason they are able to achieve this is
because of some properties that hold for every SSTable. The first property is that
an SSTable is immutable, and the second is that every key in an SSTable is unique.
By having an HMAC per key-value pair combined with the secret encryption key,
the attacker cannot construct an encrypted key-value pair with a valid HMAC.
The attacker’s only remaining possibility is copying an existing key-value pair. If
the attacker copies a key-value pair with the same key from a different SSTable, it
would have been encrypted with a different encryption key, resulting in the HMAC
check failing upon decryption. The attacker cannot find a key-value pair with the
same key in the same SSTable due to the uniqueness of every key. The drawback
of this technique is that it does not scale well. To avoid replay attacks, Tweezer
must remember the history of its encryption keys. If an encryption key is used
twice, key-value pairs from the previous time it was used will become valid options
for a replay attack. For long-running workloads, the memory pressure in the EPC
due to the size of the history of encryption keys will become a bottleneck. We
reduce the size of the history by leveraging full-leveling compactions. In a system
with full-leveling compactions, every level has the same properties as an SSTable;
once written during the compaction, it becomes immutable, and every key in a
level is unique. Thus, we can use a unique encryption key per level, allowing us
to reduce the size of the history of encryption keys significantly while keeping the
same security guarantees and reducing EPC usage by not constructing a Merkle
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3.4.4 Log Protection

The recovery log is where the system persists the KV pairs that are in L0 in
order to recover from a failure. The log is stored on the storage device outside the
EPC; therefore, an attacker can read or modify its data. Hence, it is crucial to
ensure that the data stored in the log is encrypted and to verify its integrity and
freshness to protect the log against rollback attacks. Fennec protects its recovery
log by leveraging the existing Log Sequence Numbers (LSN), an integer appended
to each key-value pair before it becomes a log entry. Each log entry consists of
an LSN, the key-value pair, and an HMAC, which we encrypt with a secret key.
Every time Fennec flushes a log buffer to the device, we let the client know the
LSNs of the log entries we persist. Since the entries are encrypted with a unique
key, an attacker cannot construct a valid entry and can only replace one with an
older one. However, during recovery, Fennec will let the client know the LSNs of
the recovered pairs, and if they are older than they should be, then the trusted
client will let the server know that a replay attack happened.

3.4.5 Primitive Operations
3.4.5.1 PUT

When Fennec receives a PUT request, the encryption key for LO is retrieved
from the EPC. It then computes the HMAC of the pair and appends it to the
key-value buffer. The buffer is then encrypted and placed in L0, which resides in
the host’s memory. It then decrypts the buffer, appends the LSN, and re-encrypts
it with the log’s encryption key so it can be inserted into the log. Once it writes
the log entry, the server will respond to the client, stating that the PUT request
is complete.

3.4.5.2 GET

When Fennec receives a GET request for a key, it searches level by level for the
key to retrieve its value. It performs a binary search on the index of every level,
which is made of encrypted keys, by decrypting the index key and comparing it
to the plaintext key received from the client. When it reaches the leaf, it decrypts
the key-value buffer with the appropriate encryption key retrieved from EPC,
calculates the HMAC of the key-value pair, and compares it to the HMAC stored
in the buffer. If the two HMACs match, Fennec returns the value to the client.

3.4.5.3 Compaction

When a level of the KV store is full, the server performs a compaction. Com-
paction is the merging of two levels, n and n+1. Before performing the compaction,
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Fennec has to decrypt both levels. There are two reasons for this. 1) Symmetric
encryption (AES), which we use, does not preserve the order between plaintexts
when it encrypts them to ciphertext, and 2) every new level that is created as a
result of compaction must be encrypted with a new, unique encryption key to pro-
tect the data from replay attacks as explained in 3.4.3. The compaction is done
by decrypting both levels with their respective encryption keys, verifying every
pair’s HMAC, and merge-sorting since both levels are already sorted. The KV
pairs in the new level are then encrypted with a new unique encryption key. The
new encryption key is encrypted with the log’s encryption key together with an
LSN and appended to the log.

3.4.5.4 Recovery

Every key-value pair entry in the log includes a Log Sequence Number (LSN).
When a log buffer is flushed, the server lets the client know the LSN of the last KV
entry in the buffer. On compaction completion from LO to L1, Fennec records the
offset of the log up to which the entries are in L1 so that it knows where the next
recovery operation should start. When the system recovers from a crash, Fennec
starts replaying the log entries by decrypting them one by one from the offset
previously recorded until the last entry. If, at any point, it encounters an LSN
that is not consecutive with the LSN of the previous entry, it aborts compaction
since an attacker modified the log. When it reaches the end of the log, it sends
the last LSN to the client and confirms that this is the latest entry inserted in the
log.

3.4.6 Batched Operations

It has been shown that performing system calls from TEEs is quite expensive,
mainly because of the TEE exits and re-entries that occur [14]. We experimentally
verify this effect in Section 5.2. To quantify the effects of exiting and re-entering
the TEE for receiving and sending network requests, we implement custom GET
and PUT operations that batch requests up to a predefined number. The server
then reads all the requests in a single call/buffer and unwraps them to execute
them. When the server executes all the requests, it similarly responds to the client
by batching all responses in one buffer. As we will see in Section 5.2 this can boost
the performance up to 1.96x times.

3.5 Implementation

We implement Fennec by modifying Parallax [25], a modern LSM tree KVS,
and more specifically, Tebis [23], which offers a socket interface for clients on top
of Parallax. Parallax already uses full-leveling compactions, a feature that allows
us to reduce the number of encryption keys needed for a specific dataset size.
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Implementing an application to run in TEE requires to choose a suitable frame-
work. There are several frameworks (e.g., SCONE [1], Graphene-SGX [5], and
Occlum [21]) that aim to ease the development process by offering ready-to-use
containers, 1ibOSes, libraries, and runtimes that allow existing applications to run
(almost) unmodified. However, these frameworks vastly increase the TCB (Trusted
Computing Base) of the application, which now includes any untrusted third-party
code, as well as the underlying libOS. Other approaches, such as Google’s Asylo [9]
and Microsoft’s Open Enclave [13], focus on portability by offering a universal
interface for cross-platform TEE offloading. The latter approaches support cross-
platform implementations, enabling the exact implementation to run over different
hardware TEEs. For example, Open Enclave supports Intel SGX and OP-TEE
OS on ARM TrustZone.

Fennec is implemented on top of Open Enclave and, more specifically, Edge-
lessRT [22]. Open Enclave is a hardware-agnostic open-source library for devel-
oping applications that run in TEEs. This enables Fennec to run on both Intel
SGX and Arm TrustZone platforms without any modifications. EdgelessRT is an
SDK built on top of Open Enclave that provides extended C/C++ support, with
support for more libc and POSIX functions. We implemented two extra functions
that were not supported by the SDK but were needed by Fennec. One function
allocates aligned memory from the host, which we can then use for direct I/O. The
other is a function that memory maps a region of the host’s memory to a file.
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Chapter 4

Security Analysis

4.1 Man-in-the-middle attack

A man-in-the-middle attack occurs when an attacker gets in the middle of
communication to either eavesdrop or impersonate a legitimate communication
party. Our system successfully deals with this kind of attack. The client can
perform remote attestation to verify the server’s identity and confirm the integrity
of the code running inside the TEE before establishing a connection. All the data
subsequently traveling over the network is encrypted through TLS/SSL sockets,
so any adversary cannot deduce any meaningful information by inspecting the
network packets. One can implement a password-based authentication policy to
prevent the attacker from impersonating a trusted client, but this is orthogonal to
our design.

4.2 Physical Attacks / Cold Boot Attacks

A physical attack or a cold boot attack can happen when the adversary has
access to the hardware on which our server is running. There are various kinds
of physical attacks. Assuming SGX successfully protects all the data in the EPC
from physical attacks, our design is resilient to them. This is because any data
leaving the EPC for the client, host memory, or storage device is encrypted before
transmission.

4.3 Log Replay

A log replay occurs when an attacker replaces the log or part of the log with
a previous version. This causes the server to replay older entries, rendering the
database inconsistent. To counter this, we leverage the already existing LSN ap-
pended to every key-value pair before inserting it into the log. We encrypt the
LSN along with the key-value pair with the log’s encryption key and the HMAC
of the key-value pair and append it to the log. When we append a new entry to

17



18 CHAPTER 4. SECURITY ANALYSIS

the log, we let the client know the LSN of the latest entry. Since the attacker
does not know the encryption key of the log, they cannot create a valid log entry
that will not fail the HMAC comparison. The only option is to replace either part
of the log with an older one or the whole log. In the first case, during recovery,
the server will notice that the LSN of the entries that are being replayed are not
consecutive, as they should be, and it will abort. In the second case, the LSN it
will send to the client will not match the latest LSN that the client expects, and
the client will let the server know.

4.4 Key-Value Pair Replay

A key-value pair replay attack occurs when the attacker tries to replace either
specific key-value pairs with other pairs or a whole level with another level. For
the first case, the attacker cannot construct their own encrypted key-value pair
with a valid HMAC so their only option is to copy a key-value pair either from the
same level or from a different level. If they copy a pair from the same level, then
that pair is valid, so the server will not return an incorrect value. If they copy
a pair from another level or an older pair from the same level, then the HMAC
will not match, as the pair was encrypted with a different encryption key. The
same holds for replacing a level with another one since they were encrypted with
different encryption keys, and the HMAC computed when retrieving a pair will
not match the HMAC found in the pair.

4.5 Rollback Attack

A rollback attack occurs when an attacker replaces all the server data with a
snapshot taken at a previous time. This can happen in two ways: online - while the
KV store is running, and offline - when the KV store crashes or terminates and
resumes execution later. An online attack is impossible because the encryption
keys reside in the EPC. If an attacker replaces all the data on disk with a previous
version, the data would have been encrypted with a different encryption key, so
the HMAC check when decrypting a pair will fail. An offline attack means that
the encryption keys will not be in the EPC, and the server will try to recover them
from the log. The attacker can replace the log with the previous version from
their snapshot so the encryption keys will match the data. However, whenever an
encryption key is persisted in the log, the client is informed of the LSN; when the
server tries to recover the encryption keys and confirm the LSN with the client, it
will realize that this is a previous version of the database.

4.6 Denial-of-Service Attacks

Denial-of-service (DoS) attacks are defined as attempts by the adversary to shut
down a machine or service to make it inaccessible to its intended users. Our system
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is vulnerable to this type of attack since, for example, someone with physical access
to the machine can shut it down and render it unable to respond to requests.
However, the data stored in our KVS remains confidential.
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Chapter 5

Performance Evaluation

In this section we present the performance evaluation of Fennec when executing
in Intel SGX and we compare it with the native execution of Tebis.

5.1 Experimental Setup

5.1.1 Base Setup

We evaluate our work on a desktop machine with SGX1, an Intel(R) Core(TM)
i7-7700 CPU @ 3.60GHz processor with 4 cores and 8 threads, 32GB of DDR4
RAM, and 256GB of NVMe SSD. The server and client both run on the same
machine. The server runs on the first 2 cores of the machine with 2 threads, and 8
client threads run on the CPU’s remaining 2 cores (4 threads). We run our system
with 8 regions, each with a L0 size of 8MB and a growth factor of 8.

5.1.2 Workloads

We use the YCSB benchmark [6] to evaluate our system’s performance. YCSB
has 7 different workloads and we use 2 of them for our evaluation, specifically
YCSB Workload A (LoadA), a write-heavy workload with 100% write operations,
and Workload C (RunC), a read-heavy workload with 100% read operations. We
use small key-value pairs with a total size of 30B.

5.1.3 Baseline and Fennec Configurations

In order to analyse the performance costs of Fennec we use five configurations
that also provide different security measures (i.e., securing data when in transit,
when in use, and when at rest, and some of their combinations):

e Tebis: Native Tebis does not offer any security guarantees for the data. It
uses unencrypted sockets, runs outside the TEE, and performs no encryption
when storing the data on the storage device.
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Tebis+TLS: Native Tebis with TLS sockets. It protects data in transit as it
is transferred encrypted over the network.

o Tebis+enclO: Native Tebis with encrypted storage I/O and HMAC calcula-
tion. It protects data at rest as everything it writes to the storage device is
encrypted, integrity-checked, and protected from replay attacks.

o Tebis+TLS+enclO: Native Tebis with TLS sockets, encrypted device 1/0,
and HMAC calculation. It protects data in transit and data at rest. Data
in use is still vulnerable since this configuration is not running in a TEE.

e Fennec: Fennec runs in an Intel SGX enclave with TLS sockets, encrypted
I/O, and HMAC calculation. This configuration offers all the security fea-
tures and protects data in all three phases.

5.2 Performance Analysis

5.2.1 End-to-end Performance

200000 200000 | 178559
156234
150000 __ 150000 131570
g 114935 2
]
2 2
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& 100000 72088 s
3 57467 2
5 2
2 50000 3 50000
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0
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Figure 5.1: Throughput achieved for each configuration when runnning LoadA
and RunC.

Figures 5.1a and 5.1b show the throughput for the five configurations pre-
sented in Section 5.1.3, when running workloads LoadA and RunC respectively.
The configuration that offers no data protection at any phase (namely Tebis)
achieves a throughput of 156234 ops/sec for writes and 178559 ops/sec for reads.
When adding TLS encryption to protect the data in transit (namely Tebis+TLS),
throughput falls to 114935 ops/sec, 1.36x slower, due to the data being encrypted
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Figure 5.2: The cycles per operation for the different configurations when running
LoadA and RunC.

before being sent by the client and decrypted when it reaches the server. The con-
figuration that protects the data at rest (namely Tebis+enclO) achieves a through-
put of 72988 ops/sec for writes, which is 2.14x slower than default Tebis, and a
throughput of 71424 ops/sec for reads, which is 2.50x slower. The configuration
that combines data protection in transit and at rest (namely Tebis+TLS+enclO)
achieves a throughput of 57467 ops/sec in LoadA and 63690 ops/sec in RunC.
Compared to default Tebis, the slowdown is 2.72x and 2.80x, respectively. Fi-
nally, the last configuration, namely Fennec, runs inside the Intel SGX enclave and
protects the data in all three phases. The throughput for LoadA is 12853 ops/sec,
12.16x slower than native Tebis, and 13811 ops/sec for RunC, 12.93x slower than
native Tebis.

For the same set of experiments, we also calculate the average number of cycles
the server needs for each operation in our workload, for all the configurations: The
formula we use to calculate this metric is:

CPU _Utilization cycles
les/op = 100 XS
cycies/op = average-ops

s

X cores

Figures 5.2a and 5.2b show the results for LoadA and RunC. As expected, Tebis
needs the least amount of cycles to complete an operation with 22 Kcycles/op for
writes and 19 Kcycles/op for reads. Enabling the TLS sockets to protect data in
transit incurs a 34 Kcycles/Op overhead for writes and 33 Kcycles/op for reads.
Enabling data encryption on the storage device to protect data at rest incurs
a 42 Kcycles/op overhead in LoadA, and 29 Kcycles/op in RunC compared to
Tebis. When both are enabled, the overhead is 94 Kcycles/op in LoadA, and 90
Kcycles/op in RunC compared to native Tebis. Finally, Fennec, which protects
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data in all three phases, takes 549 Kcycles to complete a write operation, and 518
Kcycles to complete a read operation, which is 25x ~ 27X times worse compared
to Tebis.

5.2.2 Performance Breakdown Analysis

In this section, we analyse the performance of Fennec and assess the per-
formance costs of each of its component individually (e.g., TEE execution, data
encryption, hashing).
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Figure 5.3: The performance breakdown for Fennec when running LoadA and
RunC.

Figure 5.3a shows the throughput results for LoadA and RunC. By running the
system inside the TEE and using TLS sockets for the client/server communication,
but without performing data encryption and HMAC calculations, Fennec achieves
a throughput of 26314 ops/sec in LoadA, and 27172 ops/sec in RunC. Compared
to Tebis+TLS, the slowdown is 4.37x for LoadA, and 4.84x for RunC, with the
only difference between them being running inside the TEE. This demonstrates the
impact on performance when running inside a TEE. We then enable encryption for
all the data that leaves from the EPC to the host memory or the storage device,
but keep HMAC calculation disabled. This causes a further 1.47x slowdown for
writes and 1.37x for reads. For writes, the slowdown is caused by the server
needing to encrypt every KV pair to insert it into L0 and the recovery log. Also,
during compaction, the server needs to decrypt both levels to merge them and
then re-encrypt the resulting level with a new key. For reads, the main overhead is
that the index is encrypted; in order to perform a lookup, the system must decrypt
the appropriate index entry and then compare it to the search key. The Fennec
configuration introduces HMAC in every KV pair and log entry. Compared to the
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configuration without HMAC calculation, the slowdown is 1.39x for writes and
1.43x for reads. The system has to calculate a hash for every KV pair before
encrypting it and verify the correctness of the HMAC after decrypting, which is
what is causing this slowdown.

Figure 5.3b shows the cycles per operation for LoadA and RunC. The configu-
ration running in the TEE without disk encryption and HMAC calculation takes
268 KCycles to complete an operation in LoadA and 260 KCycles to complete an
operation in RunC. Again, this reveals the impact on performance that running in-
side the TEE has, prior to adding any storage device encryption, as the operations
need 4.8x ~ 5x more cycles than Tebis+TLS to complete. Enabling data encryp-
tion for everything that leaves the EPC, causes a 47% increase in Cycles/Op for
LoadA and a 39% increase for RunC compared to the configuration without any
disk encryption. Finally, enabling HMAC calculation causes a further 39% ~ 43%
increase in cycles per operation.

5.2.3 Batched Operations

TEE exits and re-entries have been shown to cause a significant overhead,
mainly due to TLB flushes and LLC pollution [14]. Exiting the TEE happens
because of system calls. In our system, every time the server receives a request
from the client or sends the response to a request back to the client, it has to exit
the TEE. In order to measure how much this affects the performance, we modify
both the server and the client to batch multiple requests and responses in one
TCP request. The batching versions of Fennec offer the same security guarantees
as Fennec, only now they receive multiple requests in one buffer and process them
all in order, one by one, before responding to the client.

We run the same set of experiments on the same machine as before. Figures
5.4a and 5.4b show the results for Load A and RunC, respectively. The figures show
how the throughput improves as the number of requests in one batch increase.
We observe that while the performance improves by batching more requests, the
performance gains are marginal after a certain point. This is because of other
overheads in the system. For PUT requests, writing to the log, and compactions
which read from the storage device and then write to it, still cause TEE exits
in order to perform I/O. For GET requests, when reading from the device using
mmap, page faults occur which again cause TEE exits. Nonetheless, batching
improves Fennec’s performance by up to 1.84x for writes, and 1.96x for reads,
which reduces the total slowdown of Fennec compared to native Tebis to 6.6x for
both reads and writes.

5.2.4 Memory Requirements of Full-leveling and Incremental Com-
pactions

As we mentioned in Section 3.4.3, the full-leveling compactions allow us to
use fewer encryption keys compared to incremental compactions, since only one
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Figure 5.4: The throughput for Fennec with different batch sizes.

key is required per level (instead of one key per SSTable). As a result, keeping
all previous encryption keys used (so that they can be queried every time a new
encryption key is generated and avoid duplicates), requires much less space. To
exemplify the space overheads, we simulate two systems, one with full-leveling
compactions and one with incremental and measure the difference in encryption
keys used over time. We assume a KVS of a specific size (4TB, 8TB, 16TB, and
32TB) that will be overwritten 1000 times to perform the calculation. The L0 for
the simulation is set to 64M and the growth factor to 8. Table 5.1 presents the
results regarding the number of compactions of each configuration. We can see
that with incremental compactions the system performs 4.7x ~ 5.5x times more
compactions.

Compactions (M)

KVS Size (TB)

Full-Leveling | Incremental
4 75 350
8 150 744
16 300 1530
32 999 3328

Table 5.1: The number of compactions performed by the two different compaction
policies for a KVS of fixed size overwritten 1000 times.

The impact of this becomes even greater if we consider that every incremental
compaction creates on average 9 new SSTables while full-leveling compactions
create one new level. Table 5.2 shows the difference in the total number of keys
used by the two compaction policies. By leveraging full-leveling compactions we
manage to reduce the number of encryption keys by 42x ~ 50x times.
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Encryption Keys Used (M)

KVS Size (TB)

Full-Leveling | Incremental
4 75 3154
8 150 6693
16 300 13771
32 599 29949

Table 5.2: The number of keys used by the two different compaction policies for a
KVS of fixed size overwritten 1000 times.

An appropriate data structure for keeping track of the history of encryption
keys would be a bloom filter. The reason is that we mainly care about never re-
using the same encryption key, false positives are not an issue for our use-case.
State-of-the-art bloom filters can achieve great accuracy with only 7 bits per key.
Table 5.3 shows the memory needed by each of the two policies to maintain the
history of encryption keys.

For the full-leveling compactions, for a KVS of size 4TB and 8TB, such a data
structure can still fit in the EPC which is usually 128MB, and for newer versions of
SGX where the EPC is 256 MB, it would fit for the 16TB KVS as well. In contrast,
this data structure is more than an order of magnitude larger than the EPC with
incremental compactions.

KVS Size (TB) Memory Usage (MB)

Full-Leveling | Incremental
4 62 2632
8 125 5585
16 250 11491
32 500 24991

Table 5.3: The memory needed to store the history of keys using a bloom filter
by the two different compaction policies for a KVS of fixed size overwritten 1000
times.
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Chapter 6

Related Work

There are various frameworks that are designed to allow applications to run in
TEEs without any modifications. Some of them are Open Enclave [13], SCONE [1],
Graphene-SGX [5], Occlum [21], and SGX-LKL [17]. As we mentioned before,
Fennec is implemented on top of Open Enclave and specifically EdgelessRT [22],
which offers support for more libc functions. This enables our system to run on
various TEEs, as Open Enclave is a hardware-agnostic framework.

Speicher [2] and Tweezer [10] are the two works most closely related to ours.
Speicher was the first secure key-value store system implemented. Speicher adapts
RocksDB [8] to run efficiently in a TEE. It calculates a MAC for each data block
and then builds a Merkle tree for authentication. It also reduces EPC usage by
moving values outside the EPC and into the host’s memory with cryptographic
protection. Speicher uses user-level I/O through an Intel SPDK-based Direct I/0O
library to reduce TEE exits, which negatively affect performance.

Tweezer improves Speicher’s performance based on a key observation: the
SSTables are sorted, immutable, and contain unique keys. By leveraging this,
Tweezer uses a per-SSTable authentication scheme and encrypts each key-value
pair separately. The per-SSTable authentication scheme allows Tweezer to avoid
using a Merkle tree, which helps with performance. However, having a unique
encryption key per SSTable does not scale well because as the KV store keeps
running, an increasingly large history of encryption keys must be stored in memory
and queried every time a new encryption key is created. Our work improves on
Tweezer by leveraging full-leveling compactions to reduce the number of encryption
keys used by the KVS.

ShieldStore [11] and EnclaveDB [18] are both in-memory storage systems that
run in TEEs. ShieldStore is a system for secure in-memory key-value storage
using Intel SGX enclaves. It provides confidentiality and integrity guarantees for
stored data and supports various privacy-preserving protocols. Like Speicher, it
relies on Merkle trees for freshness guarantees. EnclaveDB is a shielded in-memory
SQL database. EnclaveDB only uses the storage device for logging and does not
provide any freshness guarantees about the data on it. Our work provides security
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guarantees for confidentiality, integrity and freshness that extends to the storage
device as well.

There are approaches that aim to provide confidentiality in untrusted envi-
ronments without TEEs. CryptDB [16] is an encrypted database that provides
confidentiality guarantees for untrusted hardware but does not guarantee integrity
and freshness. It handles unmodified database queries and uses encryption schemes
such as OPE to perform computation on encrypted data.



Chapter 7

Conclusions

This thesis presented Fennec, a secure LSM-based key-value store designed
to operate within Intel SGX enclaves. By employing per-level encryption keys,
HMACs, and a log protection mechanism, Fennec effectively addresses challenges
related to data confidentiality, integrity, and recoverability in untrusted environ-
ments. Our evaluation results demonstrate that Fennec achieves strong security
guarantees with an acceptable performance overhead of 6.6x compared to native
Tebis, making it a promising solution for protecting sensitive data in various ap-
plications.

There are various improvements that can be explored in the future. One of
them is re-enabling bloom filters to avoid the expensive traversal of levels for
lookups. Searching for a key involves multiple decryptions which can be avoided
with the use of bloom filters. We need to adjust them to work for encrypted keys,
and also make sure they are not vulnerable to attacks. Another improvement
we can explore is having an exitless service performing I/O. As we mentioned
many times, TEE exits are expensive. By having a dedicated process outside of
the TEE performing the I/O with a shared buffer, we can reduce this overhead
transparently to the application, unlike batched operations for example. Finally,
we can investigate whether having the LO or a part of it in the EPC, can be
beneficial. We opted to keep it in the host memory since EPC memory pressure
is a major cause of overhead in TEE applications. However, moving the L0 to the
EPC can have some benefits. The biggest one is that we won’t need to decrypt the
KV pairs of L0 to perform compactions from L0 to L1. Since the most compactions
are from L0 to L1, this can improve performance, depending on how much the EPC
memory pressure affects the performance.
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