
Stream Processing of Financial Tick Data

with In-Order Guarantees

Stefanos Kalogerakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Associate Professor Kostas Magoutis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS). The research in this thesis was also supported by
the Hellenic Foundation for Research and Innovation (HFRI/EΛI∆EK) through the STREAM-
STORE faculty grant (Grant ID HFRI-FM17-1998).

University of Crete
Computer Science Department

Stream Processing of Financial Tick Data with In-Order Guarantees

Thesis submitted by
Stefanos Kalogerakis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Stefanos Kalogerakis

Committee approvals:
Kostas Magoutis
Associate Professor, Thesis Supervisor

Angelos Bilas
Professor, Committee Member

Dimitris Plexousakis
Professor, Committee Member

Departmental approval:
Polyvios Pratikakis
Associate Professor, Director of Graduate Studies

Heraklion, June 2023

Stream Processing of Financial Tick Data with
In-Order Guarantees

Abstract

Data related to all types of societal activity are nowadays being produced and
available in high volumes and velocity, in the form of data streams. This thesis
focuses on financial tick data generated by stock exchanges and the necessity for
stream processing analytics to assist traders in identifying trading opportunities.
We design and implement the Tick Analysis Platform (TAP), a streaming ana-
lytics application that performs event aggregation and complex event processing
to compute trend indicators and detect patterns, enabling the identification of
buy/sell opportunities for traders. Based on the need to process streaming data
as rapidly as possible, we investigate techniques for scalable stream processing,
with an additional guarantee, namely the in-order processing of such data based
on sequencing information available in batches of incoming data. The solutions
designed and implemented in this thesis, S-TAP (Single-source TAP) and P-TAP
(Parallel-source TAP), progressively enhance the scalability of TAP to achieve
high performance on a cluster of multi-core servers while ensuring the accuracy
of results via the in-order guarantees. An additional challenge investigated by
this thesis is efficient fault-tolerance mechanisms to achieve low down-times dur-
ing recovery of data analysis jobs. This is achieved by aligning the deployment
of recovery tasks with the location of externally-stored checkpoint replicas, taking
advantage of data locality where possible. The solutions implemented and demon-
strated in this thesis advance the state of the art in scalable streaming analytics
of financial tick data that are also rapidly recoverable in the face of failures.

Επεξεργασία Ροών Οικονομικών Δεδομένων με

Εγγυήσεις Διάταξης

Περίληψη

Στις μέρες μας, δεδομένα που σχετίζονται με όλες τις μορφές κοινωνικής δρα-

στηριότητας παράγονται και γίνονται διαθέσιμα σε μεγάλο όγκο και ταχύτητα με τη

μορφή ροών (χρονοσειρών) δεδομένων. Η συγκεκριμένη μεταπτυχιακή διατριβή επι-

κεντρώνεται σε ροές οικονομικών δεδομένων (τιμών μετοχών) που παράγονται από

χρηματιστηριακές αγορές και στην ανάγκη για ανάπτυξη τεχνικών επεξεργασίας τους

για την ανίχνευση ευκαιριών συναλλαγών. Στην διατριβή αυτή σχεδιάζουμε και υλο-

ποιούμε την Πλατφόρμα Ανάλυσης Δεδομένων Μετοχών (TAP), μια εφαρμογή ανάλυ-
σης ροών που χρησιμοποιεί τεχνικές συγχώνευσης και επεξεργασίας γεγονότων για

τον υπολογισμό δεικτών τάσης και την ανίχνευση προτύπων, δίνοντας τη δυνατότητα

αναγνώρισης ευκαιριών αγοράς/πώλησης. Βασιζόμενοι στην ανάγκη για ταχεία επε-

ξεργασία των ροών δεδομένων, ερευνούμε τεχνικές για την κλιμακωσιμότητα τους,

με μια επιπλέον εγγύηση, την επεξεργασία των δεδομένων αυτών με βάση τις πλη-

ροφορίες διάταξης που είναι διαθέσιμες στα εισερχόμενα δεδομένα. Οι λύσεις που

σχεδιάστηκαν και υλοποιήθηκαν σε αυτήν τη διατριβή, S-TAP (TAP απο μια πηγή
δεδομένων) και P-TAP (TAP πολλαπλών πηγών δεδομένων), βελτιώνουν την κλιμα-
κωσιμότητα του TAP για την επίτευξη υψηλής επίδοσης σε κατανεμημένο περιβάλλον
πολυπύρηνων διακομιστών, διασφαλίζοντας την ακρίβεια των αποτελεσμάτων μέσω

των εγγυήσεων επεξεργασίας σε διάταξη. Μια επιπλέον πρόκληση που μελετά αυτή η

διατριβή είναι οι αποδοτικοί μηχανισμοί ανοχής σφαλμάτων για να επιτευχθεί ταχεία

ανάκαμψη εργασιών μετά από αστοχίες. Αυτό επιτυγχάνεται ευθυγραμμίζοντας την

εκτέλεση των εργασιών ανάκαμψης με την δικτυακή θέση των αντιγράφων ασφαλείας,

εκμεταλλευόμενοι την τοπικότητα των δεδομένων όπου αυτό είναι εφικτό. Οι λύσεις

που υλοποιήθηκαν και αξιολογήθηκαν σε αυτήν τη διατριβή προάγουν την τεχνολογία

αιχμής στην κλιμακώσιμη και ταχέως ανακάμψιμη ανάλυση ροών χρηματιστηριακών

δεδομένων.

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervi-
sor, Kostas Magoutis, for his continuous guidance and encouragement throughout
my entire postgraduate studies. His expertise and insightful feedback have been
instrumental in shaping the direction and quality of this work.

Special thanks to Antonis Papaioannou for his invaluable assistance and for
presenting our work during the participation in the DEBS 2022 Grand Challenge.
His contributions have significantly enriched the outcomes of this research.

I would also like to thank Prof. Dimitris Plexousakis and Prof. Angelos Bilas
for agreeing to serve as members of my thesis committee and for dedicating their
time to evaluating my thesis.

Furthermore, I would like to acknowledge the University of Crete and FORTH
Institute for providing the necessary resources and facilities that greatly facilitated
the completion of this thesis. Their support has been instrumental in enabling me
to conduct comprehensive research and achieve my academic goals.

On a personal note, I would like to express my deepest gratitude to my family
and friends. Their encouragement, love, and belief in my abilities have been a
constant source of inspiration throughout this journey. I am immensely thankful
for their patience and support, which have motivated me to strive for excellence
throughout this journey.

to my family

Contents

Table of Contents iii

List of Tables v

List of Figures ix

1 Introduction 1
1.1 Thesis Contributions . 2
1.2 Thesis Organization . 3

2 Background 7
2.1 Stream Processing . 7

2.1.1 Bounded and Unbounded Streams 7
2.2 Apache Flink . 8

2.2.1 Overview . 8
2.2.2 Ecosystem and Integration 9
2.2.3 Architecture of Apache Flink 10

2.2.3.1 Task Slots and Resource Management 11
2.2.4 State Management . 13

2.2.4.1 Types of State in Flink 13
2.2.4.2 State Backends in Flink 14

2.2.5 Checkpoints and Savepoints 15
2.2.6 Data Processing . 16

2.2.6.1 Time Notion, Windows & Watermarks 16
2.2.6.2 Flink Programs & DataStream API 19

2.2.7 Environment Setup . 21
2.2.7.1 Setup a Multi-Node Flink cluster 21
2.2.7.2 Building from source 22

2.3 Apache Kafka . 22
2.3.1 Publish/Subscribe messaging 23
2.3.2 Architecture . 23

2.4 Financial Analytics: Discovering Breakout Patterns 25
2.5 Financial Dataset . 26
2.6 HDFS - Hadoop Distributed File System 28

i

2.6.1 Key Features of HDFS . 28

2.6.2 Architecture . 28

2.6.2.1 NameNode . 29

2.6.2.2 DataNodes . 29

2.6.3 Data Manipulation . 30

2.6.3.1 Block Division . 30

2.6.3.2 Replication . 31

2.6.4 Environment Setup . 31

2.6.4.1 Setup a Multi-Node HDFS Cluster 31

2.6.4.2 Building HDFS from source 32

2.6.4.3 Automating the building and testing process . . . 33

3 Single-source Tick Analysis Platform(S-TAP) 35

3.1 Introduction & DEBS Grand Challenge 2022 35

3.2 Design and Implementation . 37

3.2.1 Data Ingestion-Reporting Manager (DIRM) 37

3.2.2 Use of Kafka for asynchronous messaging 38

3.2.3 Data Processing . 38

3.3 Automation Script . 43

3.4 Evaluation on Challenger Platform 44

3.4.1 Effect of ingestion rate-control (throttling) 44

3.4.2 Effect of memory allocated to Flink 45

3.4.3 Effect of parallelism on single TaskManager 45

4 Parallel-source Tick Analysis Platform (P-TAP) 47

4.1 Introduction & S-TAP Restrictions 47

4.2 Design and Implementation . 49

4.2.1 Data Ingestion Manager (DIM) 50

4.2.2 Use of Kafka for asynchronous messaging 51

4.2.3 P-TAP data processing . 51

4.2.4 Result Validation Manager (RVM) 59

4.3 Evaluation . 60

4.3.1 Impact of timer setting . 61

4.3.2 Impact of batch size . 62

4.3.3 Impact of number of lookup symbols 62

4.3.4 Scalability with increasing parallelism 63

4.3.5 Performance comparison of S-TAP to P-TAP 65

4.3.6 Further tuning of P-TAP 66

4.4 Discussion . 68

5 Rapid Recovery of SPSs 71

5.1 Introduction . 71

5.2 Replica Placement Awareness . 72

5.2.1 Evaluation . 73

ii

5.2.1.1 Experiment Description and setup 73
5.2.1.2 Results . 74
5.2.1.3 Discussion . 75

5.3 Control Task Recovery with Flink & HDFS 76
5.3.1 Evaluation . 81

5.3.1.1 Experiment description and setup 81
5.3.1.2 Results . 83
5.3.1.3 Discussion . 84

6 Related Work 87
6.1 Achieving Completeness: In-Order Stream Processing 87
6.2 Processing of Financial Tick Data 88
6.3 Recovery of SPSs . 89

7 Conclusions & Future Work 91

Bibliography 93

iii

iv

List of Tables

2.1 Useful attributes from dataset with their description 27
2.2 Different Datasets description . 27

3.1 Configuration Options . 44
3.2 Varying degrees of throttle (1 slot, 5GB mem) 45
3.3 Varying memory size (1 slot, throttle 15) 45
3.4 Varying parallelism (throttle 15, 5GB mem) 46

4.1 Configuration Options . 60
4.2 Parallelism of different operator groups in different configurations

of three SlotSharingGroups (SSGs) 67

5.1 Evaluation of elapsed time during local and non-local data reading
in large files (122MB) . 74

5.2 Evaluation of elapsed time during local and non-local data reading
in small files (1MB each) . 75

5.3 Results of elapsed time during local and remote state recovery . . 84

v

vi

List of Figures

1.1 Breakout Patterns Example: Price for RDS A plotted against EMA(38)
(green) and the EMA(100) (orange) showing at least three crossings
that trigger buy/sell advice [1] . 3

1.2 High-Level Overview of Tick Analysis Platform [10] 4

2.1 Bounded and Unbounded Streaming [16] 8

2.2 Flink Software Component Stack [16] 9

2.3 Apache Flink Architecture [16] . 10

2.4 Task Slots default behavior: slots are shared between subtasks of
different tasks under the same job [16] 12

2.5 Apache Flink: RocksDB Checkpoint [44] 14

2.6 Apache Flink: Checkpoint Snapshot [17] 15

2.7 Apache Flink Checkpointing mechanism, periodically inserting light-
weight barriers into the data stream [17] 16

2.8 Flink watermarks in an out-of-order stream [19] 18

2.9 Publish/Subscribe messaging pattern 23

2.10 Apache Kafka - Architecture . 24

2.11 Bullish Breakout [21] . 26

2.12 Bearish Breakout [21] . 26

2.13 HDFS - Architecture [24] . 29

2.14 HDFS - Block Division [27] . 30

2.15 HDFS Multi-Node Cluster status 33

3.1 Data analysis pipeline . 36

3.2 Stream-processing job . 38

3.3 Custom window-operator state for symbol ABC. Each batch Bi,
i = 1, 2, . . . points to the time-frame affected by the last occurrence
(last ts) of symbol ABC in that batch 41

3.4 Window closing example: The checkmarks indicate that batches
B1-B5 have been fully processed and four 5-minute time-frames are
safely considered fully closed . 42

vii

4.1 Events emitted by a Source (e.g., an Exchange) are grouped in
batches Bi (upper figure); events for a given symbol ABC within
batches are time ordered (lower figure) 48

4.2 S-TAP easily detects batches with no events of symbol ABC by
their absence in sequence, whereas P-TAP requires additional info
as batches come from multiple paths 49

4.3 Data analysis pipeline . 50

4.4 P-TAP stream-processing query (overlapping circles denote multiple
tasks per operator) . 51

4.5 Tick events e are emitted on the main stream (solid lines) while
metadata br are broadcast through the side stream (dashed line) to
all tasks of the Enrich Operator 52

4.6 Shared State update of last-in-sequence and dependency-batch-registry
after the sequence of batches B5, B3, B1, B2 and B0 trigger the pro-
cessBroadcastElement . 54

4.7 Custom window-operator state for symbol ABC. Each batch Bi,
i = 1, 2, . . . points to the time-frame affected by the last occurrence
(last ts) of symbol ABC in that batch 56

4.8 Window closing example: The checkmarks indicate that batches
B1-B5 are considered safe-to-report and four 5-minute time-frames
are safely considered fully closed 57

4.9 Impact of timer configuration (§4.3.1) for batch size 1000 and 10000 61

4.10 Impact of batch size (§4.3.2) with parallelism 32 62

4.11 Impact of # of lookup symbols (§4.3.3) with parallelism 32 63

4.12 Scalability of P-TAP, S-TAP (§4.3.4), Day 1-5 Dataset 64

4.13 Latency of P-TAP vs Parallelism, Day 1-5 Dataset 65

4.14 Performance comparison of S-TAP to P-TAP, for parallelism 32
(§4.3.5) . 66

4.15 Total Throughput of the source operator with 1 and 2 kafka brokers 67

4.16 P-TAP with different SlotSharingGroups on 32 cores 68

4.17 P-TAP Latency with different SlotSharingGroups and parallelism
32, Days 1-5 Dataset . 69

5.1 Python HDFS block Tracer sample output 73

5.2 HDFS pool of equally large-sized data (122MB files) 74

5.3 Evaluation of elapsed time during local and non-local data reading
in large files (122MB), as shown in Tab. 5.1 75

5.4 Core Idea Overview: Create a portable middle layer to provide
cross-layer cooordination of Flink and HDFS during operator state
recovery, with minimal changes to the Flink and HDFS systems . . 77

viii

5.5 Cluster topology example: TaskManagers (TM) and DataNodes
(DN) must be co-located on all machines. JobManager (JM) and
NameNode (NN) be located on either the same or different ma-
chines. M3, M5 machines execute a Flink pipeline of multiple oper-
ators and produce local RocksDB state. Arrows point to the loca-
tions where checkpointed state persist its replicas 78

5.6 Execution example HDFS chunk distribution. In the example, the
replication factor is 2 with 5 chunks of data. Naming the chunks
follows the pattern chk(#Chunk number) (#Chunk replica). The
term chunks is used to describe HDFS data blocks that also repre-
sents how checkpoints are stored 79

5.7 Probabilistic approach recovery execution flow of an application
from the moment of failure until the recovery 80

5.8 HDFS persistent checkpointing name hashing 80
5.9 Local RocksDB checkpointing naming format 81
5.10 Deterministic approach recovery execution flow of an application

from the moment of failure until the recovery 82
5.11 Result representation of recovery time during local and remote state

recovery . 85

7.1 HDFS - Flink zero copy mechanism. When recovering from failure,
instead of copying the recovery state from HDFS simply modify its
reference . 92

ix

x

Chapter 1

Introduction

In today’s era of rapid technological advancements, the exponential growth of data
has transformed the way we approach information processing and analysis. The
term Big Data has emerged to describe the vast and complex datasets that are
generated from various sources, including social media, Internet of Things (IoT)
devices, scientific experiments, and financial transactions. Big Data is character-
ized by its volume, velocity, variety, and veracity, posing significant challenges for
traditional data processing techniques. However, this paradigm shift also brings
new possibilities for organizations across various industries, including the financial
sector.

The financial industry, in particular, has experienced an astounding increase
in the overall volume of events published by different exchanges and handled by
technical solution providers like Infront Financial Technology (IFT). For instance,
between 2019 and 2021, the daily average of event notifications processed by IFT
escalated from 18 billion to an astonishing 24 billion [22]. This exponential growth
in data underscores the significance of efficient and advanced data processing tech-
niques to extract valuable insights and drive informed decision-making in the fi-
nancial domain.

The unprecedented amount of data generated by financial markets, has cre-
ated a demand for efficient stream processing solutions. Stream processing in-
volves the continuous analysis of data as it is generated, enabling organizations to
gain insights and make informed decisions in real time. Unlike traditional batch
processing, which handles data in large chunks, streaming analytics operates on
continuous data streams, allowing for faster response to changing conditions. In
the financial domain, where timely decisions are crucial for investment strategies
and risk management, real-time processing capability is of utmost importance.

Frameworks like Apache Flink have emerged as powerful tools for stream pro-
cessing and analytics on the fly. Apache Flink is an open-source framework that
provides high-throughput, low-latency processing of streaming data. It offers a uni-
fied programming model that combines batch processing and stream processing,

1

2 CHAPTER 1. INTRODUCTION

enabling seamless analysis of both historical and real-time data. With its fault-
tolerant and scalable architecture, Apache Flink has gained popularity in various
industries, including finance, for its ability to handle large-scale data streams effi-
ciently.

However, stream processing in the financial domain faces its own set of chal-
lenges. Financial tick data, which consists of fine-grained time-stamped updates
for financial instruments, plays a crucial role in understanding market dynamics,
detecting trading patterns, and optimizing investment strategies . Analyzing tick
data in real-time presents unique challenges due to the sheer volume and speed
of incoming data streams, requiring the development of efficient and scalable pro-
cessing techniques. In this context, ensuring in-order guarantees through stream
processing is essential in financial applications to accurately capture market trends
and maintain the integrity of derived analytics.

As stream processing systems (SPSs) operate in dynamic and often unpre-
dictable environments, they are susceptible to various types of failures that can
disrupt the processing pipeline and lead to data loss or inconsistencies. Failures
can manifest in various forms, including hardware malfunctions, network disrup-
tions, or even human error. Therefore, ensuring fault tolerance becomes a crucial
aspect of SPSs. Fault tolerance encompasses the ability of an SPS to gracefully
handle failures and recover from them, minimizing the adverse effects on data pro-
cessing and maintaining the system’s reliability and consistency. Techniques such
as checkpointing, replication, and recovery algorithms enable the system to recover
the state and progress from a known consistent point in the event of a failure.

In this thesis, our efforts focus on addressing two distinct challenges. The
primary focus is on developing an efficient Tick Analysis Platform that utilizes
event aggregation and complex event processing to compute trend indicators and
detect patterns in real-time tick data (Fig. 1.1), while achieving in-order processing
of tick data. The goal is to highlight breakout patterns and consequently identify
buy/sell opportunities for real-life traders (Fig. 1.2). We address this challenge
through two applications, S-TAP (Chapter 3) and P-TAP (Chapter 4). S-TAP, the
initial solution proposed, enables sequential ingest on the data source to achieve
the desired semantics, while P-TAP represents the evolution of its predecessor,
allowing for parallel ingestion on the data source.

The second challenge addressed in this thesis is rapid recovery of SPSs to
ensure uninterrupted analysis in the face of failures. Our approach revolves around
achieving fast recovery by aligning recovery tasks with externally stored state. We
build upon the state-of-the-art incremental distributed checkpointing capabilities
of the Flink SPS and extend them in this direction (Chapter 5).

1.1 Thesis Contributions

The contributions of this thesis are as follows

• A single source (S-TAP) and a fully parallelized solution (P-TAP) to the

1.2. THESIS ORGANIZATION 3

Figure 1.1: Breakout Patterns Example: Price for RDS A plotted against EMA(38)
(green) and the EMA(100) (orange) showing at least three crossings that trigger
buy/sell advice [1]

problem of discovering breakout patterns in financial tick data via parallel
stream processing with in-order guarantees

• An evaluation of P-TAP on a 32-core 4-server cluster demonstrating its scal-
ability over the sequential-ingest version (S-TAP) on the same cluster

• An investigation of the benefits possible with finer tuning of parallelism vs.
default settings in Flink

• An investigation of techniques to achieve rapid recovery of SPSs by aligning
recovery tasks with externally stored state

1.2 Thesis Organization

The thesis outline consists of the following chapters:

Chapter 2 - Background: This chapter offers an introduction to the fundamen-
tal theoretical knowledge and key concepts that underpin this thesis. It explores
the concept of stream processing, emphasizing its significance in the financial do-
main. Additionally, it presents an analysis of the financial dataset employed in
the subsequent chapters. Furthermore, a detailed examination of the frameworks

4 CHAPTER 1. INTRODUCTION

Query 1

Query 2

Identify Buy/Sell
Opportunities

Exchange
Sources

Tick Analysis Platform
Processing

Figure 1.2: High-Level Overview of Tick Analysis Platform [10]

utilized in this thesis, namely Apache Flink, Apache Kafka, and the Hadoop Dis-
tributed File System (HDFS), is conducted.

Chapter 3 - Single-source Tick Analysis Platform (S-TAP): Chapter 3
delves into the analysis of S-TAP (Single-source Tick Analysis Platform), a solu-
tion developed for the 2022 DEBS Grand Challenge (GC). The primary objective
of the challenge was to effectively calculate specific trend indicators and iden-
tify patterns resembling those utilized by real-life traders when making decisions
regarding buying or selling on financial markets. During our analysis, we identi-
fied the handling of late (out-of-order) events and the mapping between batches
of events and the corresponding window-closings as significant correctness chal-
lenges. To address these challenges, S-TAP offers a solution that maintains a
single instance of the source operator and batch-unpack logic, eventually limiting
the achievable parallelism.

Chapter 4 - Parallel-source Tick Analysis Platform (P-TAP): This chapter
introduces P-TAP (Parallel-source Tick Analysis Platform), a new solution that
builds upon our initial S-TAP solution from Chapter 3. P-TAP addresses the
challenge of parallel data ingestion while maintaining the same in-order batch-
processing guarantees as S-TAP.

Chapter 5 - Rapid Recovery of SPSs: In this chapter, our primary focus is to
achieve fast recovery of Stream-processing Systems (SPSs) by effectively aligning
recovery tasks with externally stored checkpoint state. Specifically, we devote our
efforts to two key aspects: controlling task recovery decisions and task placement
within the Flink SPS, as well as extracting information from and influencing HDFS
block placement on data nodes.

Chapter 6 - Related Work: This chapter provides a comprehensive review of

1.2. THESIS ORGANIZATION 5

the existing literature and research efforts related to in-order stream processing,
processing of financial tick data and recovery of SPSs. We discuss the strengths and
limitations of the current approaches while emphasizing the contributions made
by this thesis.

Chapter 7 - Conclusions & Future Work: Finally, Chapter 7 concludes the
thesis by summarizing the key contributions of the research and discussing poten-
tial future directions.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

The background section aims to provide a comprehensive understanding of the
key components and concepts that form the foundation of this thesis. Section 2.1
starts by exploring the key concept of stream processing, while Sections 2.2, 2.3 fo-
cus on the frameworks utilized for our financial analytics applications. Specifically,
Section 2.2 delves into Apache Flink a powerful open-source framework utilized for
data processing while Section 2.3 highlights Apache Kafka, a distributed messaging
system used for ingestion purposes. Additionally, Section 2.4 depicts the domain
of financial analytics and emphasizes the identification of breakout patterns. The
subsequent section, Section 2.5, provides a detailed analysis of the financial dataset
utilized in this study, including its characteristics, sources, and relevance. Finally,
Section 2.6 examines the Hadoop Distributed File System (HDFS), a highly scal-
able and fault-tolerant storage system, which plays a crucial role in the chapter
covering the recovery of SPSs (Chapter 5).

2.1 Stream Processing

Streaming describes continuous, never-ending sequences of data that are made
available over time. That way, a constant feed of data is provided in applications,
allowing for on-the-fly manipulation without the need for downloading. These data
streams can originate from diverse sources, each with their own rates and volumes,
and can be merged into a unified stream. Examples of streaming data applications
include real-time stock exchange updates, sensor monitoring, and website activity
tracking. Streaming is particularly crucial in the realm of big data as it facilitates
real-time analytics, data ingestion, and data integration. [27]

2.1.1 Bounded and Unbounded Streams

Streaming can be examined from two different paradigms: bounded and un-
bounded. Each paradigm represents a different approach to processing and ana-
lyzing data in a streaming context (Fig. 2.1).

7

8 CHAPTER 2. BACKGROUND

An unbounded stream refers to a stream of data that does not have a prede-
termined ending point. Due to the infinite nature of unbounded streams, it is not
possible to wait for all input data to arrive before processing it. Instead, events in
an unbounded stream need to be processed on-the-fly as they are acquired. The
distinguishing factor among these events is typically their received time.

In contrast to unbounded streams, bounded streams have a well-defined
start and end point. Bounded data streams can be processed by fetching all the
data before performing any calculations or analysis. Unlike unbounded streams,
ordered fetching of events is not typically required for processing bounded streams.
Bounded data sets can be sorted and processed in batches, hence the term batch
processing is often used interchangeably with bounded stream processing.

Figure 2.1: Bounded and Unbounded Streaming [16]

2.2 Apache Flink

2.2.1 Overview

Apache Flink is an open-source distributed framework for processing large-scale
streaming and batch data. It offers a unified platform for handling both real-time
and batch data, making it a valuable tool for use cases in data analytics, machine
learning, and data-driven applications. The framework offers a set of programming
interfaces and libraries for processing data in real-time, with capabilities for high
throughput, low latency, fault tolerance, and scalability. Flink’s main goal is
to express different classes of processing applications, such as stream processing,
batch processing, and iterative algorithms, as pipelined fault-tolerant dataflows. [5]

Flink provides several key features that set it apart from other data process-
ing systems. One of its primary features is its ability to support both real-time
data processing through stream processing, as well as offline batch processing for
large datasets. Flink’s fault tolerance capabilities ensure that it can recover from
system failures without losing any data, making it a reliable tool for critical data
processing tasks. Additionally, Flink is highly flexible and extensible, with sup-
port for a variety of data sources and sinks, including Hadoop Distributed File
System (HDFS), Apache Kafka, and Amazon S3. Flink’s low latency and
high throughput processing capabilities make it an ideal choice for real-time data

2.2. APACHE FLINK 9

processing use cases, while its support for machine learning algorithms and com-
plex event processing (CEP) provides a versatile platform for building a variety of
data processing applications. With its ability to process data quickly and reliably,
Apache Flink is a powerful framework that can handle data processing tasks of all
types and sizes.

2.2.2 Ecosystem and Integration

Apache Flink provides a rich ecosystem comprising various of components that
enhance its functionality. This ecosystem follows a layered structure, with each
component building upon the previous layer to raise the abstraction layer of the
program representation they accept. Figure 2.2 illustrates the hierarchical arrange-
ment of these layers.

Figure 2.2: Flink Software Component Stack [16]

Runtime Layer: It is the core of Flink, responsible for the distributed execu-
tion of dataflows. Flink represents dataflows as Directed Acyclic Graphs (DAGs),
known as JobGraphs within the Flink framework. These JobGraphs consist of
tasks that can generate and consume data streams.

APIs Layer: Dataset and DataStream are the two core APIs of Flink for handling
batch and stream processing, respectively. Both APIs generate JobGraphs, which
are executed within the runtime layer. Notably, the compilation process differs
between the two APIs; Dataset API utilizes an optimizer to establish the optimal
execution plan, while DataStream API relies on a stream builder. This decision
to distinguish the APIs was based on achieving optimal performance and ease of
use.

10 CHAPTER 2. BACKGROUND

Libraries Layer: On top of Flink’s basic functionality APIs, several domain-
specific libraries and APIs are connected with Flink facilitating the development
of Dataset and DataStream programs. Noteworthy libraries include FlinkML,
which addresses machine learning tasks, Gelly, designed for graph processing, and
Table, enabling SQL-like computations on Flink.

Deployment Layer: Flink offers diverse deployment options for planning, mon-
itoring, and managing resources in the execution of Flink jobs. These options
include Local deployment for local testing, Remote deployment for executing jobs
on remote clusters, and Yarn deployment for leveraging resource management ca-
pabilities, among others.

2.2.3 Architecture of Apache Flink

Apache Flink’s architecture (Fig. 2.3) plays a critical role in providing fault-
tolerant, scalable, and efficient stream processing capabilities. At the core of this
architecture is the master-worker pattern, where the JobManager takes charge of
job execution and resource coordination, while multiple TaskManagers perform
the actual data processing. In this section, we will investigate the architecture of
Apache Flink, exploring the roles and functionalities of its fundamental compo-
nents. These key components include:

Figure 2.3: Apache Flink Architecture [16]

2.2. APACHE FLINK 11

Client: While it is not part of the runtime environment, the client is Flink’s first
interaction with the user, serving as the interface between users or applications
and the Flink cluster. It enables job submission, configuration management, and
dependency handling, allowing users to specify job parameters and manage job
dependencies. The client interacts with the Flink cluster to obtain cluster in-
formation and provides a user interface or command-line interface (CLI) for job
monitoring and management. It further contributes to performance optimization
by performing client-side optimizations, such as task chaining and optimizing the
job graph. Overall, the client component simplifies the interaction with Apache
Flink, streamlining job submission, management, and monitoring processes.

JobManager: Following the master-worker architecture, the JobManager serves
as the master node, coordinating the distributed execution of Flink Applications.
It acts as the central component responsible for job submission, execution plan
creation, and task scheduling. By accepting job submissions, the JobManager re-
ceives the job graph, which represents the dataflow of the application, and divides
it into a series of tasks. It efficiently schedules these tasks onto available TaskMan-
agers in the cluster, considering resource availability, task dependencies, and de-
sired parallelism to achieve optimal distribution. Additionally, the JobManager
ensures fault tolerance by maintaining checkpoints(introduced in Section 2.2.5),
periodically capturing snapshots of the application’s state. In case of failures, it
can recover the application’s state and resume processing from the last successful
checkpoint. In high-availability setups, multiple JobManagers can exist simul-
taneously, with each preserving additional metadata information in a persistent
storage to facilitate recovery and seamless resumption of execution by alternative
JobManagers.

Task Manager: TaskManagers, the worker nodes, have essential responsibilities
in executing tasks and processing dataflows. A Flink application requires at least
one TaskManager for successful execution. TaskManagers operate by running par-
allel instances of tasks, known as task slots, assigned by the JobManager. These
task slots represent the unit of resource allocation in Flink and can be configured
to execute tasks concurrently. TaskManagers maintain communication with the
JobManager to receive task assignments, report progress, and exchange data with
other TaskManagers. In addition, TaskManagers utilize buffer pools to efficiently
handle data streams and enable seamless data exchange between operators over
the network. By performing these crucial functions, TaskManagers contribute to
the distributed and parallel execution of tasks within Flink, facilitating efficient
processing of data in various streaming applications.

2.2.3.1 Task Slots and Resource Management

Resource management plays a crucial role in the efficient execution of distributed
computing systems. In Apache Flink, task slots are employed as fundamental units
for resource allocation and parallelism control. In this subsection, we explore the

12 CHAPTER 2. BACKGROUND

concept of task slots in Flink and their role in managing computing resources.
A task slot represents a fixed-size subset of computing resources owned by

a TaskManager, which is a set of independent resources. When configuring a
TaskManager, the number of task slots can be set in the cluster configuration file
(at least one). For example, if a TaskManager has three slots, it will divide the
managed memory equally into three parts, with each slot having an exclusive copy.

The primary purpose of task slots is to provide isolation between subtasks.
Each worker, represented by a TaskManager in Flink, is a JVM process that can
execute one or more subtasks in separate threads. By controlling the number of
task slots, the isolation level between subtasks can be adjusted. When multiple
slots are available, subtasks can share the same JVM, leading to benefits such as
shared TCP connections, heartbeat messages, and reduced per-task overhead.

Figure 2.4: Task Slots default behavior: slots are shared between subtasks of
different tasks under the same job [16]

By default, Flink allows subtasks from the same job to share slots, even if they
are subtasks of different tasks (Fig. 2.4). This means that one slot may hold an
entire pipeline of the job. This slot sharing approach offers two main benefits;
first, the number of task slots required for a Flink cluster is solely determined
by the highest parallelism used in the job, eliminating the need for calculating
the total number of tasks in the program with varying parallelism. Second, it
facilitates better resource utilization by ensuring that resource-intensive subtasks
are fairly distributed among the TaskManagers, preventing resource blocking by
non-intensive subtasks.

In cases where users want to control the level of slot sharing, Flink provides
the ability to specify SlotSharingGroup for operators. This allows manual config-
uration of whether certain operators should occupy a slot exclusively or share a
slot with specific operators. Subtasks belonging to the same slot sharing group

2.2. APACHE FLINK 13

enable slot sharing, while tasks between different groups are completely isolated
and must be assigned to different slots. The total number of slots required in this
scenario is the sum of the maximum parallelism of each slot sharing group.

2.2.4 State Management

Before going into further details about Flink’s features, it is essential to introduce
the concept of state. In Flink, this term refers to operations that retain and
preserve their information across time [17]. It enables Flink to capture snapshots
of operators, allowing them to have knowledge of all the events that occurred in
the application until a specific point in time. State can encompass various types
of mutable information, such as aggregations, counts, user-defined variables, and
machine learning models. The ability to maintain state is crucial for rescaling
Flink applications by redistributing state across parallel instances and ensuring
fault-tolerance.

2.2.4.1 Types of State in Flink

Apache Flink provides different types of state to cover a wide range of stream
processing use cases. These types differ in how the state is partitioned and dis-
tributed across the processing nodes. The two primary types of state in Flink are
Operator State and Keyed State.

Operator state in Flink is associated with individual operators or functions
in the stream processing application. It represents the local state maintained
by each operator during the stream processing. This state is partitioned and
managed independently by each operator, offering fine-grained control over the
state management process.

Keyed state, on the other hand, is state associated with keys present in the
stream data. It allows Flink to maintain state for different keys in a scalable and
fault-tolerant manner. Keyed state is partitioned based on the keys, ensuring that
all events with the same key are processed by the same operator instance.

Both keyed state and operator state have two forms: Raw and Managed. Raw
state is represented as raw bytes and does not have knowledge of the state’s data
structure. Operators are responsible for managing the state in their own data
structures. On the other hand, managed state is represented in data structures
controlled by the Flink runtime. It is recommended to use managed state as Flink
can automatically redistribute the state when the parallelism is changed, and it
offers better memory management. [35]

The managed keyed state in Flink includes the following types: ValueState,
ListState, ReducingState, AggregatingState and MapState

These managed keyed states provide flexible options for storing and managing
state within Flink applications.

14 CHAPTER 2. BACKGROUND

2.2.4.2 State Backends in Flink

The state backend in Apache Flink determines how the internal state is repre-
sented and persisted during checkpoints. Currently, Flink offers two built-in state
backends: the HashMapStateBackend and the EmbeddedRocksDBState-
Backend

The HashMapStateBackend is the default state backend in Flink. It main-
tains all the ”working” state in memory, resulting in faster operations compared to
the RocksDB state backend. Since the accesses occur in memory, there is no need
for data serialization/deserialization. However, this state backend is constrained
by the available memory in the application. Therefore, its capacity is limited by
the memory size within the cluster.

On the other hand, theEmbeddedRocksDBStateBackend uses a co-located
key-value store to keep the ”working” state of Flink application while it spills data
into disks. However, this backend requires serialization/deserialization of data,
resulting in approximately 10 times slower operations compared to the HashMap-
StateBackend. The memory size of RocksDB is practically unlimited because it is
only bounded by the disk size, which can be adjusted as needed. [45]

Figure 2.5: Apache Flink: RocksDB Checkpoint [44]

One significant advantage of the EmbeddedRocksDBStateBackend is its sup-
port for incremental checkpointing (Fig. 2.5)[12]. Unlike traditional full check-
points, incremental checkpoints only record the changes made since the last com-
pleted checkpoint, resulting in significantly reduced checkpointing times. This
makes it a favorable choice where efficiency and scalability are crucial.

The choice between the HashMapStateBackend and the EmbeddedRocksDB-
StateBackend depends on the specific requirements of the application and the

2.2. APACHE FLINK 15

trade-off between performance and scalability. The HashMapStateBackend is very
fast, as it operates entirely in memory. However, its size is limited by the avail-
able memory within the cluster. On the other hand, RocksDB scales based on
the available disk space and is the only state backend that supports incremental
checkpoints. Although the performance of RocksDB is slower due to disk accesses
and serialization/deserialization operations, it offers greater scalability. [12]

2.2.5 Checkpoints and Savepoints

Checkpointing is a fundamental mechanism in Apache Flink that ensures fault
tolerance and recovery capabilities in stateful stream processing applications. It
involves capturing the state of an application at regular intervals and persisting it
to durable storage, such as HDFS. This process requires coordination between the
JobManager and TaskManagers, with the JobManager triggering the checkpoint
and the TaskManagers taking snapshots of their respective tasks’ state, as shown
in Fig. 2.6.

Figure 2.6: Apache Flink: Checkpoint Snapshot [17]

Flink combines stream replay and checkpointing to provide fault tolerance
and maintain consistency in streaming dataflows. Checkpoints draw global, asyn-
chronous snapshots [4] of input streams and corresponding operator state, following
the Chandy-Lamport algorithm for distributed snapshots (Fig. 2.7). The snapshot
includes not only the dataflow, but the state attached to it. Maintaining consis-
tency in streaming dataflows is also rather challenging, but with its checkpointing

16 CHAPTER 2. BACKGROUND

mechanism that enables restoring state of the operators and replaying the records
from the latest checkpoint, Flink ensures exactly-once semantics.

Figure 2.7: Apache Flink Checkpointing mechanism, periodically inserting light-
weight barriers into the data stream [17]

In the event of a failure, Flink initially halts the distributed streaming dataflow,
then restarts the operators, and finally resets them to the last successful check-
point. The input stream is also reset to the point of the state snapshot. In the
special case of incremental checkpoints, instead of preserving in each checkpoint
the full state, simply maintain the differences between each checkpoint and store
only the “delta” between the last checkpoint and the current state. Incremental
checkpoints can have significant performance impact especially when working with
large states, which is the case in our problem.

Savepoints offer advanced state management in Flink. They are manually
triggered snapshots of an application’s state and provide greater control and flex-
ibility compared to checkpoints. Savepoints can be used for application recovery,
migration across different Flink versions or setups, and experimentation.

Enabling checkpointing in Flink involves configuring the checkpoint interval
and ensuring the source can replay records for a certain duration. Additionally,
the storage for state should be persistent, such as HDFS. Savepoints are triggered
by the user and provide a backup mechanism for restoring the application, with
or without state, in case of failure or upgrade. By default, checkpoints are not
retained and are deleted when a program is cancelled. However, you can configure
periodic checkpoints to be retained for resuming jobs from failures.

2.2.6 Data Processing

2.2.6.1 Time Notion, Windows & Watermarks

In stream-processing frameworks like Apache Flink, understanding the notion of
time is essential for effectively processing unbounded data in real-time. Apache
Flink supports different time concepts, namely event time, ingestion time, and
processing time, which determines how events are processed and grouped. One

2.2. APACHE FLINK 17

widely used approach for stream handling is through the utilization of windows.
Furthermore, in order to handle out-of-order events and ensure progress in event
time, Flink incorporates a mechanism called watermarks. This subsection delves
into the various time notions employed in Flink, explores the built-in window
mechanisms available, and discusses the significance of watermarks in preserving
temporal order during stream processing.

Time Notions

The different time notions that Apache Flink supports are [18]:

• Processing time refers to the time based on the clock of the machine where
the event is being processed. This notion is straightforward to use, as it relies
on the local system clock and requires no coordination between streams and
machines. However, it can lead to inconsistent results since the processing
time may vary across different executions of the job. In distributed systems
or scenarios involving network delays, processing time might not be ideal as
events can arrive out of order.

• Event time represents the time when individual events are generated at
their source. It is typically based on a timestamp field included in the event’s
metadata. When using event time, the same input consistently produces the
same result, ensuring result determinism. However, working with event time
can be more challenging due to factors like handling out-of-order events.

• Ingestion time reflects the timestamp when events reach the stream pro-
cessing application. It considers the processing delay and assigns a times-
tamp as soon as the processing system ”consumes” the message. Ingestion
time provides more predictability compared to processing time but still can-
not handle time-of-origin and out-of-order data completely.

Windowing in Flink

Windowing is an essential in stream processing frameworks when dealing with
infinite data streams, as they allow aggregations to be executed on a bounded
set of data. By dividing the stream into finite blocks called windows, windowing
enables the computation of aggregate functions on well-defined segments. [46]

In Flink, a window opens when the first data element arrives and closes when
certain criteria are met to indicate the end of the window. Those criteria can be
based on time, count of messages, or more complex conditions. When defining
a time-based window in Flink, it is necessary to specify the notion of time, as
discussed in Section 2.2.6.1.

Flink provides various windowing strategies to effectively handle infinite data
streams. Furthermore, users can create their own strategies beyond the predefined
ones. The default window strategies in Flink are the following:

18 CHAPTER 2. BACKGROUND

• Tumbling windows that divide the data stream into fixed-size, non-overlapping
windows based on elapsed time. Computation is performed on the data
within each window independently.

• Sliding windows that are similar to tumbling windows but allow for over-
lapping windows. Each window slides over the data stream at a specified
interval, enabling continuous computations.

• Session windows that group data based on periods of activity rather than
fixed time intervals. They start with the arrival of data and close when no
data is received for a specified duration.

• Global windows that cover the entire data stream and execute computa-
tions based on specified triggers, such as the arrival of a certain number of
elements.

Watermarks and Event Time in Flink

Watermarks are a critical mechanism in Apache Flink for measuring progress
in event time. They are part of the data stream and carry a timestamp indicating
the event time reached at that point in the stream. Watermarks help handle
out-of-order streams and asynchronous operations where events may not arrive in
timestamp order. A watermark declaration at timestamp t signifies that no more
events with a timestamp t’ ¡= t (i.e. events with timestamps older or equal to
the watermark)should be expected. Once an operator receives a watermark, it can
advance its internal event time clock accordingly. [19]

Watermarks provide a way to track the completeness of incoming data and aid
in operations such as windowing. For example, in an hourly-window operation,
watermarks allow Flink to determine when the specific hourly window surpasses
an hour, triggering the closure of the window (Fig. 2.8).

Figure 2.8: Flink watermarks in an out-of-order stream [19]

Late elements pose a common challenge in event-time windowing, where ele-
ments arrive after the watermark has passed the end timestamp of a window. By
default, Flink drops these late elements, but it provides the flexibility to specify a

2.2. APACHE FLINK 19

maximum allowed lateness for window operators. This parameter determines how
long elements can be delayed before they are dropped. If an element arrives within
the allowed lateness period, it can still be added to the window, potentially trigger-
ing additional computations based on the window’s trigger. Flink retains window
state until the allowed lateness expires, after which the window is removed, and
its state is purged. Effectively managing late elements and setting an appropriate
allowed lateness value is crucial for accurate event-time processing and windowing
in Flink. [13]

Choosing the Appropriate Time

The choice of time notion depends on the requirements of your streaming ap-
plication and the characteristics of the system. While processing time is simple
and provides low latency, it may not guarantee consistent results in all scenarios.
Event time offers result determinism but can be more challenging to work with.
Ingestion time strikes a balance between the two, providing more predictability
but still facing limitations.

By default, Apache Flink uses processing time as the time characteristic. How-
ever, depending on the application’s requirements, it may be necessary to switch to
event time, especially in scenarios involving asynchronous or distributed systems.
Event time is supported by watermarks, allowing for accurate event-based com-
putations. This time characteristic can be customized using Flink’s environment
variable.

2.2.6.2 Flink Programs & DataStream API

Flink programs are regular programs that manipulate distributed collections by
implementing various transformations such as filtering, mapping, state updates,
joining, grouping, defining windows, and aggregating. These collections are ini-
tially created from different sources like files, Kafka topics, or local in-memory
collections. The results are returned via sinks, which can write data to distributed
files or standard output.

In Flink, programs can be executed in standalone mode on a local JVM or on
clusters of multiple machines. Depending on the type of data sources (bounded
or unbounded), users can choose to write either a batch program or a streaming
program. The DataSet API is used for batch processing offering a programming
model similar to traditional batch processing and is well suited for offline data
processing. the DataStream API, on the other hand, is specifically designed for
streaming, making it suitable for real-streaming applications. It is important to
note that Flink’s DataStream API can also combine both stream and batch ca-
pabilities. Given that our work focuses on real-time streaming analytics, we have
chosen to utilize the DataStream API in the upcoming chapters.

The DataStream API in Flink represents a collection of data and provides
operations for working on immutable streams. Similar to Java collections, DataS-
treams cannot have elements added or removed directly, and their elements can

20 CHAPTER 2. BACKGROUND

only be accessed and manipulated through the API’s transformations. By adding
a source and applying operations like map and filter, new streams can be derived
and combined, allowing for data processing within the DataStream.

A characteristic of Flink programs is their lazy evaluation. When the pro-
gram’s main method is executed, the loading of data and transformations do not
happen immediately. Instead, operations are added to the program’s plan, and the
execution is triggered explicitly by invoking the execute() method on the execu-
tion environment. The lazy evaluation allows for the construction of sophisticated
programs executed as one holistically planned unit. [15]

The application structure in Flink follows a similar pattern for both batch and
streaming processing, with the main components being:

1. Get the execution environment: Obtain the reference to the appropri-
ate execution environment (StreamExecutionEnvironment for streaming and
ExecutionEnvironment for batch).

2. Source: Read the data from the desired data source, such as files, mes-
saging systems, or databases. Flink provides various source functions for
different types of sources, including readTextFile for reading text files, sock-
etTextStream for reading from a socket, and fromCollection or fromElements
for creating a stream from given elements or a Java collection.

3. Transformations: Apply transformations on the data stream or dataset
using operations like map, filter, flatMap, union, or reduce. These trans-
formations enable applying desired business logic on individual elements or
combining elements from different streams.

4. Sink: Store or output the results of the computations using sinks provided
by Flink. Supported sinks include print (outputs to console), writeAsText
(writes to multiple files based on parallelism), writeAsCsv (writes as comma-
separated values), and addSink (calls a custom sink function or connector,
such as Apache Kafka).

Listing 2.1 demonstrates the implementation of a typical WordCount applica-
tion using the DataStream API.

To configure Flink applications, it is recommended to use command-line param-
eters or configuration files instead of modifying the runtime code. This approach
enhances flexibility, as the same application can be executed in various deployment
modes without modifying the code.

2.2. APACHE FLINK 21

object WindowWordCount {
def main(args: Array[String]) {

val env = StreamExecutionEnvironment.getExecutionEnvironment
val text = env.socketTextStream("localhost", 9999)

val counts = text.flatMap { _.toLowerCase.split("\\W+") filter {
_.nonEmpty } }

.map { (_, 1) }

.keyBy (0)

.timeWindow(Time.seconds (5))

.sum(1)

counts.print()

env.execute("Window Stream WordCount")
}

}

Listing 2.1: DataStream API: example of streaming window word count
application, that counts the words coming from a web socket in 5 second windows

2.2.7 Environment Setup

To work with Apache Flink, it is crucial to set up the required environment prop-
erly. This section will guide you through the process of setting up an Apache Flink
cluster, which is essential for testing and deploying Flink applications in multiple
machines.

2.2.7.1 Setup a Multi-Node Flink cluster

The recommended approach for getting started with Apache Flink is to download
the binaries from the official website [16]. The standalone cluster version offers
a straightforward setup without requiring additional effort. However, it is essen-
tial to modify the configuration files to ensure optimal execution, as the default
configurations may not suffice for executing even simple scenarios.

A multi-node Flink cluster consists of multiple machines interconnected to form
a distributed topology. To set up a cluster, follow these steps:

1. Install the standalone version of Apache Flink on each machine, as mentioned
in the previous paragraph.

2. Modify the configuration files on each machine to specify the IPs of the
Job Manager and Task Managers. This ensures proper communication and
coordination within the cluster.

In distributed clusters and production environments, it is highly recommended
to fine-tune Flink configurations based on the specific requirements of your job
and workload. Consider modifying the default memory configurations, choosing

22 CHAPTER 2. BACKGROUND

an appropriate state backend, and configuring checkpointing options. These opti-
mizations can significantly impact the performance of your Flink applications.

2.2.7.2 Building from source

In certain cases, modifying the source code of Apache Flink becomes necessary
to achieve specific project goals and desired functionality. The source code for
different versions of Flink can be found in the public repository on GitHub.

When working with the source code, it is crucial to pay attention to the project
version. Open-source projects often have multiple variations, even within the same
version, which can cause confusion. It is recommended to work with the latest
stable edition to minimize errors and unexpected behavior.

Building the Apache Flink project from source can be time-consuming, typi-
cally taking more than 30 minutes, excluding the tests. Despite the project being
divided into multiple modules, changes in the code only take effect after building
the entire project from scratch. This limitation can hinder effective testing. There-
fore, exploring alternative methods to build Flink after applying small changes
would be beneficial for future development if additional functionality is required.

After successfully building the source code, a new directory named /build-
target is generated within the build path. This directory contains all the files
typically found in a binary installation, allowing the installation steps to be fol-
lowed as outlined in the previous section.

2.3 Apache Kafka

Apache Kafka is an open-source, distributed streaming platform known for its high
throughput and fault-tolerant design. It serves as a reliable and high-throughput
publish/subscribe messaging system, often described as a distributed event log
where new records are immutable and appended at the end of the log. Kafka has
become a ubiquitous solution for real-time data ingestion, analytics, and processing
of streaming data. It is compatible with popular Big Data platforms like Spark,
Storm, and Flink, making it a versatile choice for organizations seeking efficient
and scalable data pipelines.

Originally developed at LinkedIn in 2010 by Jay Kreps et. al [30], Kafka
was created to address the challenges associated with handling massive volumes
of real-time data streams. Key features of Kafka include its distributed design,
which ensures high throughput, fault tolerance, and horizontal scalability. The
platform organizes data into topics and partitions, with multiple brokers forming
a Kafka cluster. By leveraging a publish-subscribe messaging model, Kafka allows
producers to publish messages to specific topics, while consumers can subscribe to
those topics to receive the messages. This flexibility enables a wide range of use
cases, from real-time stream processing to batch consumption, and facilitates the
integration of data from multiple sources.

2.3. APACHE KAFKA 23

2.3.1 Publish/Subscribe messaging

Publish/Subscribe (Pub/Sub) messaging pattern is a communication paradigm ex-
tensively utilized in distributed systems (Fig. 2.9). It enables loosely coupled and
scalable message exchange between senders (known as the publishers) and receivers
(known as subscribers). Publishers generate messages, categorize them into top-
ics, and transmit them to a central message broker without any knowledge of
the subscribers interested in those messages. Subscribers express their interest in
specific topics and receive relevant messages from the broker, independent of the
knowledge of publishers. The broker efficiently distributes messages to subscribed
subscribers, enabling decoupled and asynchronous communication. Pub/Sub is
widely employed in real-time data streaming, event-driven architectures, message
queuing systems, and microservices, offering scalability, flexibility, and resilience
to distributed systems.

Figure 2.9: Publish/Subscribe messaging pattern

2.3.2 Architecture

Before breaking down the architecture even further, it is essential to introduce
some fundamental concepts that form the building blocks of Kafka.

Topics serve as the central organizing unit within Kafka, representing a particular
stream of records. Messages published by producers are categorized into these
topics and are continuously appended to them. This design ensures a persistent
and ordered collection of records associated with each topic.

Producers are the clients responsible for publishing messages on specific topics.
They can choose a specific partition within a topic or allow Kafka to handle the
partitioning automatically based on the specified topic’s partitioning strategy.

Consumers subscribe to topics (one or more) and read messages from the par-
titions assigned to them. Each consumer maintains its offset, which represents

24 CHAPTER 2. BACKGROUND

the position of the last consumed message within each partition. This offset en-
ables consumers to have control over their progress and easily handle failures or
reprocessing scenarios.

Figure 2.10: Apache Kafka - Architecture

On a high level, Kafka comprises three main components: the Kafka cluster,
producers, and consumers. A single Kafka server within the cluster is called a
broker(usually at least three brokers for redundancy). The broker is responsible
for several crucial tasks, including collecting messages from producers, assigning
offsets, committing messages to disk, responding to consumers’ fetch requests, and
sending messages. Within the cluster, one broker acts as the cluster controller,
responsible for monitoring broker failures and managing various administrative
tasks.

Following the publish/subscribe messaging pattern, producers create new mes-
sages and send them to specific topics. A topic serves as a category or classification
for the data being sent and can be further divided into partitions. Each parti-
tion maintains separate commit logs, and the order of messages can be guaranteed
within the same partition. Partitioning a topic into multiple partitions facilitates
easy scaling, as different consumers can read from different partitions. This al-
lows partitions and consumers to be distributed across different servers, leading
to higher throughput. Consumers read messages by subscribing to one or more
topics. Messages are consumed in the order they were produced, which is achieved
by keeping track of the offsets (sequential IDs of specific messages within specific
partitions). Consumers are organized into consumer groups, and all partitions
of a topic are evenly distributed among the members of a consumer group.

Kafka also incorporates a unique retention policy, based on which messages are
persistent on disk for a configured amount of time, and after expiration, they are
released.

2.4. FINANCIAL ANALYTICS: DISCOVERING BREAKOUT PATTERNS 25

2.4 Financial Analytics: Discovering Breakout Patterns

Technical analysis of financial markets relies on price charts and other technical
indicators to identify patterns and predict future price movements. Unlike funda-
mental analysis, which focuses on the underlying financial and economic factors
that influence asset prices, technical analysis is primarily concerned with analyz-
ing patterns in price movements themselves and can contribute to identifying these
patterns and can lead traders to make informed decisions about when to buy or
sell.

EMAj
s,wi

=

[
Closes,wi ·

(
2

1 + j

)]
+ EMAj

s,wi−1︸ ︷︷ ︸
prev. window

·
[
1−

(
2

1 + j

)]
(2.1)

with

|w| : window duration in minutes (2.2)

j : smoothing factor for EMA with j ∈ {38, 100} (2.3)

s : symbol s ∈ S = {s1, . . . , sn} (2.4)

Closes,wi : last price event for s observed in window wi (2.5)

EMAj
s,w0

= 0 (2.6)

An essential tool in technical analysis is the exponential moving average (EMA).
EMAs are calculated by weighting recent prices more heavily than older prices,
which makes them more responsive to short-term price changes (Eq. 2.1). Traders
often use two EMAs, calculated over different intervals, to identify breakout pat-
terns, which describe meaningful changes in the development of a price that indi-
cate the start of a trend, even if only temporary. Breakout patterns can be either
bullish or bearish. A bullish breakout (Fig. 2.11) occurs when the price of an asset
starts to rise steadily (crossover from below), while a bearish breakout (Fig. 2.12)
occurs when the price starts to decline steadily (crossover from above). These
patterns can help traders identify opportunities to buy or sell an asset, potentially
maximizing revenue or minimizing losses. While calculating EMAs is a popular
method for identifying breakout patterns, they are not the only method used in
technical analysis. Traders often use a combination of technical indicators, such as
Volume Price Trend Indicator (VPT) or Relative Strength Index (RSI), to confirm
or validate their trading decisions. The effectiveness of these indicators depends on
a variety of factors, including market conditions, the time frame being analyzed,
and the skill and experience of the trader.

26 CHAPTER 2. BACKGROUND

Figure 2.11: Bullish Breakout [21] Figure 2.12: Bearish Breakout [21]

The applications developed in our work uses EMAs to detect breakout patterns
and provide traders with advice on when to buy or sell. Specifically, we track two
EMA intervals for dynamically changing sets of symbols using event aggregation
over tumbling windows (Query 1), and provide the latest three breakout/pattern
detections (Query 2). To mimic the typical behavior of traders, our application
subscribes to multiple symbols and provides advice on opportunities to buy or
sell based on the detected breakout patterns. We use batches that continuously
update their set of subscriptions to achieve dynamic subscription to symbols. Sub-
scription patterns can be implemented to be unpredictable but reproducible, and
subscriptions can change dynamically over an evaluation session (see Section 3.1
for S-TAP and Section 4.2.1 for P-TAP).

2.5 Financial Dataset

The dataset we used consists of high-volume tick data captured the full week of
November 8th to 14th, 2021(i.e. five trading days Monday to Friday + Saturday
and Sunday), provided by Infront Financial Technology GmbH [20]. The raw
dataset includes 289 million tick data events covering 5504 equities and indices
that are traded on three European exchanges: Paris (FR), Amsterdam (NL), and
Frankfurt/Xetra (ETR). The dataset contains all tick data events for security types
equities and indices captured on these days.

The dataset is originally available as a collection of flat comma-separated values
(CSV) files, one file per day. Each line in a file represents a single event. The
attributes directly relevant to our study are highlighted in Table 2.1. Global
CEST timestamps are in the format HH:MM:SS.ssss while dates are stored as
DD-MM-YYYY.

It is worth noting that some events in the raw dataset appear to come with no
payload. This is because only a certain subset of attributes is required for evalua-
tion, and several attributes have been eliminated to preserve the number of events
and their update patterns over time while minimizing the overall size. During the
evaluation of S-TAP (§3.4), we utilized the Challenger Platform provided by the

2.5. FINANCIAL DATASET 27

Debs Challenge. In this particular case, the data had already been filtered, includ-
ing only the essential events required for the application (more details in Sec. 3.1).
To evaluate P-TAP after the conclusion of the Challenge, we adopted the approach
used in the DEBS’22 GC. We pre-filtered the initial raw data, eliminating events
that contained attributes irrelevant to our application, and accomplished this using
the Data Ingestion Manager (§4.2.1). This filtering process significantly enhances
the evaluation process by removing unnecessary noise.

Attribute Description

ID.[Exchange] Unique identifier for this symbol with trading ex-
change: Paris (FR)/Amsterdam (NL)/ Frankfurt
(ETR)

SecType Security type: [E]quity or [I]ndex
Last Last trade price
Date System date for last received update

Trading time Time of last update (bid/ask/trade)

Table 2.1: Useful attributes from dataset with their description

Name of
Dataset

Description

Raw 289 million events consisting of tick data and house-
keeping events

Day 1-5 59 million events of tick data after filtering unneces-
sary events from raw dataset

Day 1-4 47 million events of tick data, subset of the Day 1-5
Dataset for 4 days of trading

Day 1-3 35 million events of tick data, subset of the Day 1-5
Dataset for 3 days of trading

Day 1-2 23 million events of tick data, subset of the Day 1-5
Dataset for 2 days of trading

Day 1 11 million events of tick data, subset of the Day 1-5
Dataset for 1 day of trading

Table 2.2: Different Datasets description

28 CHAPTER 2. BACKGROUND

2.6 HDFS - Hadoop Distributed File System

Hadoop Distributed File System (HDFS) is a fundamental element of the Apache
Hadoop framework, serving as an open-source, fault-tolerant storage data storage
file system that operates on commodity hardware. It was designed to address
the limitations of traditional databases, particularly in terms of handling large
amounts of data with reliability and speed. Inspired by Google’s MapReduce [7]
and Google File System (GFS) [23] research papers, HDFS offers a reliable and
efficient framework for storing and retrieving distributed data in data-intensive
applications. Its scalability and fault-tolerant design make it an essential solution
for effectively managing and analyzing the ever-increasing volumes of complex data
in the field of big data analytics.

2.6.1 Key Features of HDFS

1. Handles big data: HDFS efficiently handles data sets ranging from giga-
bytes to terabytes in size, providing a solution that traditional file systems
cannot match. By dividing data into manageable blocks and leveraging its
cluster architecture, HDFS ensures fast processing times, with the capability
to deliver more than 2GB of data per second.

2. Fault-tolerance: By maintaining multiple replicas of each data block on
different machines, HDFS can mitigate the impact of node failures and data
corruption. Multiple replicas, configured by the replication factor, are dis-
tributed across different machines in the cluster, minimizing the risk of data
loss. In the event of a node failure, HDFS automatically replicates the lost
blocks to other available machines, ensuring data durability.

3. Scalability: HDFS provides mechanisms for managing and scaling resources
in each system. It offers vertical and horizontal scalability, allowing it to
handle enormous datasets and meet the growing demands of big data appli-
cations.

4. Portability: HDFS is designed to be portable across multiple heteroge-
neous hardware platforms and compatible with various underlying operating
systems. This flexibility enables organizations to deploy HDFS on diverse in-
frastructures, from commodity hardware to cloud-based environments. The
cross-platform compatibility of HDFS makes it accessible and adaptable for
different deployment scenarios.

2.6.2 Architecture

HDFS incorporates a master-slave topology, consisting of a master node called the
NameNode (typically one or more in high-availability setups per cluster) and
multiple slave nodes known as DataNodes, as shown in Fig. 2.13.

2.6. HDFS - HADOOP DISTRIBUTED FILE SYSTEM 29

Figure 2.13: HDFS - Architecture [24]

2.6.2.1 NameNode

NameNode serves as the central coordinator in HDFS and is responsible for man-
aging and maintaining DataNodes. NameNode also keeps track of all the metadata
in each data block, and its replicas by maintaining two persistent files; editLog
and FSimage. EditLog records every change that happens within the file system
metadata, and FSimage stores the entire file system image since the beginning.
Metadata contains information about where data is stored, permissions, number
of replicas and directory structure.

The NameNode keeps this metadata in memory for faster access and uses
a persistent storage mechanism, typically on disk, to ensure durability. As the
single point of failure in the HDFS architecture, the NameNode’s high availability
and fault tolerance are crucial. Various techniques, such as backup solutions like
HDFS Federation or High Availability (HA), can be employed to mitigate the risk
of NameNode failure.

2.6.2.2 DataNodes

DataNodes are responsible for storing actual data in blocks assigned by the Na-
meNode. Each DataNode manages the storage of data on its local disk and commu-
nicates with the NameNode to perform operations such as reading, writing, and

30 CHAPTER 2. BACKGROUND

replicating data blocks. HDFS overcomes the issue of DataNode failure, HDFS
creates replicas (copies) of the data. The default replication factor is three, and it
is strongly advised not to set it below three.

DataNodes maintain regular communication with the NameNode by sending
heartbeats to report their health status and update the NameNode with informa-
tion about the blocks they store. They also provide block reports to inform the
NameNode about the list of blocks present on their local disks. This communica-
tion between the NameNode and DataNodes enables the NameNode to maintain
an updated view of the cluster’s data distribution and availability.

2.6.3 Data Manipulation

Similar other distributed files systems, HDFS stores system files as a sequence of
fixed-size blocks on DataNodes. These blocks serve as the fundamental units of
storage and processing within HDFS. By default, the block size in Apache Hadoop
2.x and 3.x is 128MB (64MB in Apache Hadoop 1.x), but this size can be modified
through configuration. Before the NameNode can store and manipulate data, files
are divided into smaller block-sized chunks that are stored independently.

2.6.3.1 Block Division

The number of blocks required to store a file depends on its initial size. Except
for the last block, which may be smaller, all other blocks have the same size as the
configured block size (128MB by default). For instance, a 320MB file would be
split into two blocks of 128MB each, with the remaining 64MB stored in a third
block (Figure 2.14)

Finally, each block is replicated into multiple copies based on the replication
factor.

Figure 2.14: HDFS - Block Division [27]

It is important to note that the selection of a default block size of 128MB aims

2.6. HDFS - HADOOP DISTRIBUTED FILE SYSTEM 31

to strike a balance between overhead and processing time. If the block size is too
small, the presence of numerous data blocks and associated metadata can lead to
increased overhead. Conversely, if the block size is excessively large, the processing
required for each block also increases.

2.6.3.2 Replication

Data replication plays a crucial role in handling unexpected failures and ensuring
data reliability within HDFS. The NameNode creates multiple copies, or replicas,
of each data block. By default, HDFS maintains three replicas of each block,
although this replication factor can be adjusted based on the desired level of
redundancy and fault tolerance. These replicas are distributed across different
DataNodes in a strategic manner, considering rack awareness policies to maximize
fault tolerance and network bandwidth while ensuring high availability.

HDFS employs the following rack awareness policies:

1. One DataNode can store one replica of a data block.

2. A single rack cannot contain more than two replicas of a specific block.

3. The number of racks used inside an HDFS cluster must be smaller than the
number of replicas.

The NameNode maintains the mapping between blocks and DataNodes, ensur-
ing that the replication factor is preserved. In the event of a DataNode failure or
unavailability, the NameNode schedules replication of the missing replicas to other
available DataNodes to maintain the desired replication factor.

2.6.4 Environment Setup

In order to work with HDFS, it is essential to ensure that all systems are properly
installed and functioning. Setting up an HDFS cluster, especially in a multi-
node environment, requires careful optimization of the installation process to save
valuable time and effort.

2.6.4.1 Setup a Multi-Node HDFS Cluster

Deploying an HDFS multi-node cluster can be a challenging task that often involves
trial and error. Even setting up the HDFS standalone version can be complex, let
alone configuring it across multiple machines. Additionally, the original project
involved modifying the HDFS source code, which necessitated building and in-
stalling HDFS from source. The following steps summarize the sequential process
involved:

1. Installing the standalone version of HDFS (§2.6.4.1)

32 CHAPTER 2. BACKGROUND

2. Setting up the multi-node HDFS cluster (§2.6.4.1)

3. Building HDFS from source (§2.6.4.2)

4. Automating the building and testing process (§2.6.4.3)

Installing the standalone version of HDFS

The most common and straightforward approach to installing HDFS is by
downloading the binaries from the official Hadoop website [24]. Before setting up
a full multi-node cluster, it is recommended to start with a local standalone version.
However, even deploying the standalone version of HDFS can be non-trivial, as it
involves addressing various issues such as permission errors, environment variable
problems, and different configurations. To ensure a smooth installation process, a
detailed 3-4 page manual was created, highlighting the installation steps in detail
and providing troubleshooting methods for various scenarios.

Alternatively, Docker images can provide an easier way to use HDFS, including
pre-existing images for multi-node clusters. However, in this project, the require-
ment for high customizability ruled out the use of dockerized environments.

Setting up the multi-node HDFS cluster

To create an HDFS cluster, multiple machines were utilized to form a cluster
topology. Configuring standalone versions of HDFS on each machine is a crucial
step in creating an HDFS cluster. The final stage involves modifying the corre-
sponding configurations to specify the master and slave IPs across the machines.
Upon successful installation of the cluster, the status is displayed in Figure 2.15.

Ensuring homogeneity among the different machines is key to a successful
multi-node cluster deployment. Creating such a cluster involves a complex, multi-
step process, and maintaining consistency across the machines is considered a best
practice. Failure to maintain consistency can make monitoring and managing the
machines challenging.

2.6.4.2 Building HDFS from source

Building HDFS from source differs from using pre-built binaries and involves down-
loading the project from GitHub and compiling it. Selecting the appropriate ver-
sion can be challenging, as there are numerous versions available, and not all of
them function properly. Different versions may also have different requirements
and may cause errors during the building process. Generally, stable versions from
the main branch are preferred.

The initial build process is time-consuming, taking more than 30 minutes ex-
cluding tests and pre-built requirements. During this phase, the entire Hadoop
project is built, resulting in binaries similar to those found on the official Hadoop
website. Once this step is completed, steps 1 and 2 from the setup process are
utilized to deploy the HDFS cluster.

2.6. HDFS - HADOOP DISTRIBUTED FILE SYSTEM 33

Figure 2.15: HDFS Multi-Node Cluster status

Fortunately, modifying the HDFS code in later stages does not require the
lengthy build time. After the initial build, HDFS can be treated and built sep-
arately from the rest of the Hadoop project, reducing the execution time to less
than a minute. The output of this build process produces a subset of the whole
project, and the new files should overwrite the old ones to produce the modified
version of the code.

2.6.4.3 Automating the building and testing process

Manually replacing the newly produced files from the previous step can be time-
consuming and frustrating. To streamline this process, a bash script was created
to automate the building and testing process(Lis. 2.2). This script simplifies the
repetitive tasks involved in building and testing HDFS, reducing the potential for
human error required and enhancing efficiency.

By automating these processes, developers can focus more on the actual devel-
opment and experimentation with HDFS, rather than spending excessive time on
manual tasks.

34 CHAPTER 2. BACKGROUND

#!/bin/sh

projectDir="/home/skalogerakis/Projects"

tar -xvf ${projectDir }/ hadoop/hadoop -hdfs -project/hadoop -hdfs/target/hadoop
-hdfs -3.2.2. tar.gz -C $HOME

echo "Extracting new version completed .\n\n"

rsync --update -raz --progress $HOME/hadoop -hdfs -3.2.2/. $HADOOP_HOME

echo "Copy new version to previous config completed\n\n"

rsync --update -raz --progress etc/ $HADOOP_HOME

echo "Completed"

Remove temporary files

rm -r $HOME/hadoop -hdfs -3.2.2/

Listing 2.2: Shell Script to automate building/testing procedure from source

Chapter 3

Single-source Tick Analysis
Platform(S-TAP)

3.1 Introduction & DEBS Grand Challenge 2022

The 2022 DEBS Grand Challenge (GC) [21] supported by Infront Financial Tech-
nology1 focuses on real-time complex event processing of high-volume tick data. In
the real-world dataset provided (Section 2.5), about 5000+ financial instruments
are being traded on three major exchanges over the course of a week. The goal of
the challenge is to efficiently compute specific trend indicators and detect patterns
that resemble those used by real-life traders to decide on buying or selling on fi-
nancial markets. The 2022 DEBS GC requires developers to implement a basic
trading strategy aiming at (a) identifying trends in price movements for individ-
ual equities using event aggregation over tumbling windows (Query 1) and (b)
triggering buy/sell advises using complex event processing upon detecting specific
patterns (Query 2). The first query implements the exponential moving average
(EMA) [29], an indicator per symbol used in technical analysis to identify trends.
Q2 uses the quantitative indicators of query 1, tracking two EMAs (with differ-
ent smoothing factors) per symbol computed over different intervals to identify
breakout (indication of market turning to bullish or bearish) patterns.

The evaluation dataset (Section 2.5) is provided by the GC platform via a
gRPC-based API in a continuous stream of event batches, Bi, i = 0, 1, 2, . . . Each
batch Bi includes a list of events, each event comprising a symbol (identified by
unique ID and exchange), type (equity or index), last trade price, date of last
trade, and time of last update (bid/ask/trade). Each batch also specifies lookup
symbols that the evaluation platform subscribes to for this batch. The analytics
pipeline must report answers to Query 1 and 2 for the subscribed symbols for each
batch Bi back to the GC platform. Performance is evaluated based on average
throughput and mean (for the two queries) of the 90th-percentile latency for each
batch. The reporting mechanism is also based on the supported gRPC API.

1https://www.infrontfinance.com/

35

https://www.infrontfinance.com/

36 CHAPTER 3. SINGLE-SOURCE TICK ANALYSIS PLATFORM(S-TAP)

We decided to use the Apache Flink [5] framework as our data analysis plat-
form to leverage the scalability and operational reliability afforded by the base
Flink platform, customizing the application logic to solve the DEBS 2022 GC in
an accurate manner and avoiding loss of information. Apart from Flink, our com-
plete software stack includes a data ingestion and reporting service, fetching data
from the GC platform via the gRPC-based API [42], and Apache Kafka [30] as
a messaging and persistence service (Fig. 3.1) that decouples ingestion from data
analysis, simplifying their integration.

In designing our solution to the DEBS 2022 GC, we identified the handling of
late (out-of-order) events and the mapping between batches of events and window-
closings that contribute to them as major correctness challenges. To address them
we designed a custom window operator that leverages event semantics to correctly
order events and to map event-batches to window-closings. While tuning the per-
formance of our solution, we identified the need to rate-control the data ingestion
process (which pulls event-batches off of the GC platform) to ensure a suitable
latency-throughput operating point. Addressing this as well, we achieved a solid
response to the 2022 GC objectives. While our code parallelizes most operators
(including the custom window logic), it maintains a single instance of the source
operator and batch-unpack logic (as parallelizing this introduces further correct-
ness considerations), eventually limiting the achievable parallelism. Consequently,
we refer to the system described in this chapter as S-TAP (Single-source Tick
Analysis Platform). In chapter 4, we analyze how we have tackled these challenges
with P-TAP, and in Section 4.4, we present our experience and insights gained
from transitioning from S-TAP to P-TAP.

Fetch data

Report results

Ingest data

Publish results

Store fetched data

Get Q1/Q2 results

Apache
Flink

Ingestion-Reporting
Manager

Figure 3.1: Data analysis pipeline

3.2. DESIGN AND IMPLEMENTATION 37

3.2 Design and Implementation

The proposed architecture of our data analysis pipeline comprises three major
components (Fig. 3.1): (1) the Data Ingestion-Reporting Manager component, a
tailor-made Java process that acts as an interface to ingest data from and report
query results to the evaluation platform; (2) the Apache Kafka [30] component
that is used to decouple the data ingestion/reporting phase from data analysis,
and; (3) the stream analytics engine built on top of Flink. Here we describe the
design and implementation of each component.

3.2.1 Data Ingestion-Reporting Manager (DIRM)

The Data Ingestion-Reporting Manager (DIRM) component is a Java process
specifically designed to act as an interface with the DEBS’22 GC evaluation plat-
form. It can ingest data and report the query results using the GC-supported
gRPC-based API. It is also responsible to report query results back to the GC
platform. The GC platform makes data available in batches, identified by an ID
assigned by the gRPC service.

The GC platform evaluates the latency of our solution by monitoring the re-
sponse time of each batch by the time we fetch it through the gRPC API until we
report query results for the batch back to the platform. Having data go through
an additional process, the DIRM, can increase latency. However, we opt for this
design, as decoupling the data ingestion/reporting phase from the data analysis
improves portability and interoperability of the solution. The ingestion/reporting
component can be extended to fetch data from different data sources (e.g. files)
and/or reporting services without affecting the implementation of the rest of the
pipeline.

The ingestion and reporting tasks are implemented as separate threads. The
ingestion thread fetches and stores data on a Kafka topic, while the reporting
thread subscribes to the topics that the analytics task publishes query results
(more in Section 3.2.2).

The data ingestion rate from the GC platform should match the results-reporting
rate. Fetching data at a high rate leads to batch queue-up within DIRM, waiting
for subsequent analysis. While this could improve throughput as the data analytics
job will never be idle waiting for data, an unnecessarily-high fetch rate may overly
penalize latency. To handle the latency vs. throughput trade-off, we implemented
a rate controller in the data ingestion task of this component. The controller
throttles the ingestion rate according to the rate results are generated and re-
ported. We empirically (through repeated measurements and informed parameter
settings) achieved a balance between latency and throughput of data analysis in
our evaluation runs (more in Section 3.4.1).

The reporter can also be configured to report results for query 1 or query
2 or both (see Section 3.3). Finally, the DIRM component keeps track of the
total number of ingested batches and the reported queries. When all queries have

38 CHAPTER 3. SINGLE-SOURCE TICK ANALYSIS PLATFORM(S-TAP)

been reported back to the evaluation platform, the reporting component signals
benchmark completion using the GC-supported gRPC API.

3.2.2 Use of Kafka for asynchronous messaging

Kafka [30] is used to simplify the integration of the ingestion and data-analysis
components. It maintains the ingested data before the subsequent analysis, and
the query results before the reporter component reports them back to the GC-
evaluation platform. The use of Kafka allows us to leverage an existing Kafka
connector that is already well integrated with Flink (data ingestion, checkpointing)
rather than having to implement such a connector from scratch.

DIRM uses Kafka producers to publish data to a Kafka topic. We opt for the
synchronous Kafka producer API (instead of the more performant asynchronous
mode) to reduce the window of uncertainty as to the status of published batches
in case of DIRM or Kafka crash. Finally, we built our own custom (de)serializers
to transfer data objects from and to Kafka topics in binary format.

3.2.3 Data Processing

The data analytics job comprises a stream-processing graph with multiple oper-
ators depicted in Figure 3.2. These operators a) consume the ingested data; b)
unpack events included in batches; c) implement custom window logic to deter-
mine the last observed price per symbol in 5-minutes time-frames2, guaranteeing
there will not be dropped late events and window-closing will be correctly associ-
ated with event batches; d) calculate the EMA; e) discover crossover events; and
e) gather and report the query results on all lookup symbols per batch. Next we
describe the design choices and implementation details of each operator.

Kafka
Connector

Flat
Map

Custom
window

Partition on
Symbol-ID

Unpack

Process
Func

Map

EMA
calculator

Partition on

Batch-ID

Process
Func

Q1
reporter

Partition on
Symbol-ID Map

Crossover
detector

Process
Func
Q2

reporter

Partition on
Batch-ID

Partition on
Symbol-ID

Figure 3.2: Stream-processing job

2We use the term time-frame rather than window to refer to the different time intervals/ranges
whose state may be simultaneously maintained by the window operator

3.2. DESIGN AND IMPLEMENTATION 39

Source operator. This operator consumes data from Kafka by subscribing to
the corresponding topic. We use the Flink-supported Kafka connector3 as our data
source operator. We assume a single instance of this (and the Unpack) operator,
processing batches in batch-ID order. We will discuss the impact of this choice in
this section.

Unpack operator. Each batch fetched consists of a list of events (trade
actions for symbols) and a list of symbols of interest, lookup symbols, that a user
subscribes to (requests query results for that symbols). The Unpack operator
extracts and emits events from a batch and also injects metadata on each output
tuple (Listing 3.1). The metadata include the (1) batch ID the event is extracted
from; (2) a flag per event symbol that marks if it is included in the lookup list;
(3) the number of lookup symbols in the batch; and (4) a flag that indicates if
the event is the last occurrence of the symbol in the batch. The metadata are
necessary for the subsequent analysis on downstream operators.

case class EventUnpackSchema (
symbol: String,
securityType: SecurityType,
Price: Double,
timestamp: Long,
batchID: Long,
isSymbolsLastOccurence: Boolean,
lookupSymbolBool: Boolean,
lookupSize: Int,
isLastBatch: Boolean)

Listing 3.1: Emitted output of unpack operator

Window operator. Following the unpack operator is a window operator that
emits the last observed price per symbol in 5-minute time-frames. A major chal-
lenge is to handle out-of-order late events, i.e., events that arrive after a window
has closed. These events are typically dropped and as a results this could result in
correctness issues in the subsequent trend analysis. Flink’s built-in window oper-
ators support allowedLateness option that can accept late events for the specified
amount of time when a window closes. However, it is still challenging to predict an
appropriate allowedLateness value; in the general case, it is not possible to achieve
a guarantee that there will not be events that arrive later than the specified setting.

Our goal was to design an application that will not sacrifice correctness over
performance. We thus decided to build our own custom window operator that
closes a time-frame when, based on event semantics, it determines that there are
no events left out that belong to the corresponding 5-minute time-frame. For each
symbol our window operator maintains a table of 5-minutes time-frames. Upon
the arrival of an event, the window operator has to decide in which time-frame
the event is to be assigned according to the event time. Our mechanism performs

3https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka

40 CHAPTER 3. SINGLE-SOURCE TICK ANALYSIS PLATFORM(S-TAP)

event grouping and alignment using Equation 3.1:

f(event ts) = ⌊(event ts/win interval) ∗ win interval⌋ (3.1)

The input to Equation 3.1 is the timestamp of each processed event. The
window interval is set to 5 minutes. The function returns the starting time of the
5-minute time-frame that the event belongs to. For example, event timestamps
14:00:00.001, 14:00:02.421, 14:00:04.343 all belong to the time-frame starting at
14:00:00.000.

For every 5-minute time-frame, the operator maintains the last-price seen for
the symbol along with its timestamp. Our custom operator applies incremental
processing logic, i.e., it updates the last-price seen of the symbol upon process-
ing an incoming event by comparing if the new event’s timestamp is later than
the previous stored last-price. Thus we maintain minimal state per time-frame,
avoiding buffering of all events within the same time-frame.

The operator also maintains a list of all batches seen and keeps track of the
progress of processing each batch, namely whether the operator has processed all
events of a batch according to the metadata emitted by the upstream unpack
operator. The operator also identifies the 5-minutes time-frames affected by each
batch. Specifically, we link each batch with the last time-frame affected by the
batch. To do this we use the timestamp of the last occurence of the symbol within
the batch (the metadata flag isSymbolsLastOccurance in Listing 3.1). In Figure 3.3,
the last timestamp of symbol ABC in batch B5 is 12:28, affecting up to time-frame
12:25-12:30.

As events are aggregated from multiple sources we cannot assume events for
different symbols are timestamp-ordered. However, we assume that events for the
same symbol (always ingested from a single source) have monotonically increasing
timestamps across batches, a fact that we have validated in the GC data set [20].
Thus, for a given symbol the timestamp of its first event in batch Bi is later
than the last timestamp of that symbol in batch Bi−1. Based on these ordering
properties, for a given symbol, the batch Bi cannot affect a time-frame preceding
the time-frame linked to Bi−1. For instance, in the example of Fig. 3.3 for symbol
ABC, B4 cannot affect a time-frame before the one linked to B3.

When a window operator fully processes a batch, i.e., all events of the batch
have been processed, the operator checks if there are safe-to-close time-frames
to emit the symbol’s last price observed in such time-frames. A time-frame is
considered as safe-to-close when all batches linked to it and, at least the first
batch linked to the next time-frame, are completely processed. In the example of
Fig. 3.4, batches B3 and B4 are linked with time-frame 12:20-12:25. However, the
time-frame is not considered as safe-to-close after the processing of these batches
as we are not sure if the next batch contains events that contribute to it. As soon
as we have processed the first batch of the next time-frame, i.e., batch B5, we are
sure that the subsequent batches cannot contain events for symbol ABC affecting
time-frames preceding the one that B5 is linked to.

3.2. DESIGN AND IMPLEMENTATION 41

State for each 5-min time-frames

Status for each batch

Custom window op for symbol ABC

1 2 3 4 5 6

12:05 12:10 12:15 12:20 12:25
12:10 12:15 12:20 12:25 12:30

Last ts in Batch5 is 12:28

Figure 3.3: Custom window-operator state for symbol ABC. Each batch Bi, i =
1, 2, . . . points to the time-frame affected by the last occurrence (last ts) of symbol
ABC in that batch

Another challenge for our custom window operator is empty batches, i.e., batches
that do not contain events for a given symbol (e.g., batch B1 in Fig. 3.3 does not
contain events for ABC). As the events of each symbol are timestamp-ordered and
we use a single instance of the source and unpack operator forwarding events to
the corresponding window operator instance, we derive the following property: a
batch Bi for which a window operator for symbol ABC has seen no events from,
while having seen events from Bi+1 or later, means that Bi is empty for ABC (e.g.
B1 in Fig. 3.4).

When a batch is complete, the window operator identifies the time-frame it
is linked to and checks if there are pending time-frames that can now be marked
as safe-to-close. The example in Fig. 3.4 illustrates the aforementioned scenario
for symbol ABC: The last occurrence of ABC in batch B2 has its timestamp
within 12:05-12:10 (the time-frame is still not considered as safe-to-close when B2

is fully processed). Batch B3 is linked to the time-frame 12:20-12:25 (i.e., is the
last occurrence of events regarding ABC fall into this time-frame). When B3 is
fully processed we can mark time-frames 12:05-12:10, 12:10-12:15 and 12:15-12:20
as safe-to-close. This is because all events for ABC in subsequent batches are
expected to have timestamp later than the last occurrence of ABC in B3.

The operator emits to its output the closing price of the symbol for each safe-
to-close time-frame and purges its state. If there are no events for the symbol
associated with a time-frame (e.g. time-frames 12:10-12:15, 12:15-12:20 for sym-
bol ABC in Fig. 3.4), the operator ignores the time-frame and purges its state.

42 CHAPTER 3. SINGLE-SOURCE TICK ANALYSIS PLATFORM(S-TAP)

State for each 5-min time-frames

Status for each batch

Custom window op for symbol ABC

1 2 3 4 5 6

12:05 12:10 12:15 12:20 12:25
12:10 12:15 12:20 12:25 12:30

Last ts in Batch5 is 12:28

Figure 3.4: Window closing example: The checkmarks indicate that batches B1-B5

have been fully processed and four 5-minute time-frames are safely considered fully
closed

However, if the symbol is in the lookup-symbols list, the operator emits a special-
crafted tuple to indicate to the downstream operators that there is no closing price
for the 5-minute time-window and thus, they should report the previous EMA (see
EMA calculator described next).

When B4 is completely processed, there are no new safe-to-close time-frames.
In this case the custom window operator emits a specially-crafted output tuple
for the lookup symbols that indicate that the processing of the batch has com-
pleted. These specially-crafted tuples indicate to the downstream operator (the
EMA calculator described below) that it can rely on the last computed EMA corre-
sponding the last closed time-window. In the example of Fig. 3.4 assuming ABC is
a lookup symbol, when batch B4 closes, the time-frame 12:20-12:25 is not safe-to-
close, hence it emits a tuple signaling batch completion. That specific time-frame
will be marked as safe-to-close only when B5 is fully processed.

EMA calculator. The last observed price for a 5-minute time-frame emitted
by the window operator is necessary for the EMA calculation. There is a sepa-
rate instance of the EMA calculator per symbol. The EMA calculator operator
computes the EMA according to Equation 3.2.

EMAj
wi

= [Closewi ∗ (
2

1 + j
)] + EMAj

wi−1
∗ [1− (

2

1 + j
)] (3.2)

wi: the 5-minute time-frame

j: the smoothing factor for EMA with j ∈ {38, 100}

3.3. AUTOMATION SCRIPT 43

Closewi : the last price observed within time-frame wi

The operator computes EMA for a given time-frame for two different j values
specified by the user (see Table 3.1). When a tuple indicates that a batch has
completed but no new time-frames have closed, we just fetch the latest EMA for
this symbol and pass it to the next operator. Otherwise, on entries indicating that
new time-frame(s) have closed, we calculate first the newest EMA(s) and emit the
newest results.

Q1 reporter. For the first query of the challenge we have to report the
EMAs for all the lookup symbols in a batch. The Q1 reporter operator gathers all
computed EMAs for a batch and reports the query result. The output of the EMA
calculator is partitioned on the batch ID. The metadata included on each event
indicating the total number of lookup symbols in a batch indicated when the Q1
reporter has gathered all the requires EMAs for that batch. When a lookup symbol
emits multiple safe-to-close time-frames in a batch and therefore multiple results,
an indicator points to the latest time-frame result for the reporter to expect.

Crossover calculator. The second query of the GC requires to identify break-
out patterns that indicate the start of a trend in the development of a symbol’s
price. This process is based on the computed EMAs for a symbol over different in-
tervals (i.e., EMA j paramater). The Crossover calculator operator consumes the
output of the EMA calculator and discovers crossover events (breakout patterns)
as described in the GC. The operator maintains the three most recent breakout
events per symbol as required by query 2. Upon detecting a new crossover event,
the operator updates its state and discards outdated state.

Q2 reporter. Similar to Q1 reporter, this operator gathers all crossover events
for all the lookup symbols in the batch before it reports the query 2 results. The
input stream of the operator is partitioned on the batch ID.

Both Q1 and Q2 reporters also act as sink operator, using a Kafka producer
to publish the results to the corresponding Kafka topic.

3.3 Automation Script

Our code repository4 ships with a configurable deployment and execution man-
agement script. The script makes the installation and deployment process of the
dependent software components easy. A simple command is enough to install the
necessary library dependencies and the software stack (Java runtime, Apache Flink
and Apache Kafka).

$> ./manage.sh install

The management script can also be used to build the submitted software com-
ponents (DIRM, Analytics application) from source with the following command:

$> ./manage.sh build

4https://github.com/skalogerakis/DEBS_2022_GrandChallenge

https://github.com/skalogerakis/DEBS_2022_GrandChallenge

44 CHAPTER 3. SINGLE-SOURCE TICK ANALYSIS PLATFORM(S-TAP)

Finally, the execution of the whole analytics pipeline can be invoked using the
management script:

$> ./manage.sh start

However, running the application also supports user defined configuration set-
tings (Table 3.1) including different smoothing factors for the EMA calculation
(parameters i and j in Table 3.1) and the reported queries (parameter q). Our
analytics application also supports scalable deployments (parameter p). We also
support operation reliability using the Flink checkpointing mechanism (using the
checkpointing interval option c).

Parameter Description Default

p Parallelism of Flink Application 1
i Parameter to Calculate EMA 38
j Parameter to Calculate EMA 100
c Checkpointing interval (mins) None
q Specify the required queries for reporting.

1 for Q1, 2 for Q2
Both

Table 3.1: Configuration Options

3.4 Evaluation on Challenger Platform

In this section we provide a summary of our experience with how our code performs
in the GC evaluation platform. The results of the following section are averages
over at least 4 runs with negligible standard deviation. While there is a mul-
titude of possible evaluation dimensions, here we showcase key aspects affecting
performance of our implementation.

3.4.1 Effect of ingestion rate-control (throttling)

As analyzed in Section 3.2.1 (DIRM) we created a rate-control mechanism as a
way to increase throughput via pre-fetching of batches from the gRPC service,
and to effectively balance the tradeoff between latency and throughput. Tuning
this mechanism demanded extensive evaluation of different parameters. Table 3.2
shows the impact of different degrees of throttling (number of batches the DIRM
reads-ahead from the gRPC service) tested with 5GB of memory and 1 slot (i.e.,
parallelism is set to 1 for all Flink operators). We observe the tradeoff between
latency and throughput in the results. One may choose throttling settings based
on specific goals (such as rankings in this GC), and during our evaluation we chose
15 as this seemed to provide the best outcome versus competition. Throttle 10
may have been another good choice as it leads to significantly lower latency with
a small impact on throughput. Based on our experience during evaluation trials

3.4. EVALUATION ON CHALLENGER PLATFORM 45

and a focus on throughput at the time, we have narrowly opted for throttle 15 in
our code and use it to conduct the rest of our evaluation tests.

Throttle Latency (ms) Throughput (batches/sec)

5 287 27.1
10 328 38.3
15 484 38.8
20 602 39.0

Table 3.2: Varying degrees of throttle (1 slot, 5GB mem)

3.4.2 Effect of memory allocated to Flink

Choosing the most efficient memory to allocate in the Flink component (TaskMan-
ager setting) is a challenge when building new applications. Our choice of using
5GB memory in the experiments of Section 3.4.1 was made based on early expe-
rience. The choice is supported by the systematic evaluation shown in Table 3.3.
Setting Flink memory at 5GB achieves the best performance in both latency and
throughput compared to 4GB or 6GB (performance with 6GB is practically indis-
tinguishable from that of 5GB). Note that had cost-effectiveness rather than sheer
performance been the key criterion here, 4GB would have been a better choice as
it leads to a better performance per GB ratio in both latency and throughput.

Mem (GB) Latency (ms) Throughput (batches/sec)

4 503 36.8
5 484 38.8
6 485 38.9

Table 3.3: Varying memory size (1 slot, throttle 15)

3.4.3 Effect of parallelism on single TaskManager

After experimenting with the throttling mechanism and different memory configu-
rations, we also tested different parallelism options to obtain the best performance
results possible. Our Flink setup currently operates in standalone mode with mul-
tiple task slots enabling parallelism of a Flink job within one machine.

For this set of experiments, we utilized the best configuration from the throt-
tling section (throttling 15) and the most effective memory configuration (5GB of
memory). Table 3.4 showcases results for different slot options.

46 CHAPTER 3. SINGLE-SOURCE TICK ANALYSIS PLATFORM(S-TAP)

slots Latency (ms) Throughput (batches/sec)

1 484 38.8
2 404 47.3
3 401 46.2

Table 3.4: Varying parallelism (throttle 15, 5GB mem)

Our application performed best when we assigned two task slots to it. Increas-
ing the number of slots beyond that does not yield any additional improvement.
This is due to the fact that our source operator is serial, so scaling the rest of the
application even more does not improve overall throughput/latency results.

Chapter 4

Parallel-source Tick Analysis
Platform (P-TAP)

4.1 Introduction & S-TAP Restrictions

In chapter 3 [28], we presented S-TAP (Single-source Tick Analysis Platform),
a system designed to address the DEBS’22 Grand Challenge [21], supported by
Infront Financial Technology. S-TAP leverages the fact that event sources (Ex-
changes or Brokers) typically group ticks in a monotonically increasing sequence
of batches. In the example of Fig. 4.1, event eABC

t0 in batch Bi refers to a tick for
symbol1 ABC with event time t0. S-TAP features a specially-designed per-symbol
window operator that takes into account all ticks falling within a time interval
(T, T+∆T] by processing batches sequentially, and ordering ticks within batches
according to their timestamps (Fig. 4.2). S-TAP however assumes that batches
are serialized at the query source and thus, a batch Bi+1 that does not contain any
ticks for symbol ABC can be identified by processing an ABC tick from Bi+2 after
an ABC tick from Bi. This amounts to a special form of watermarking [2] through
which S-TAP fully accounts for ticks in its per-symbol windows. The single-source
design choice however impacts scaling, preventing S-TAP from fully taking ad-
vantage of available parallelism (only part of the query is allowed to scale). A
remaining challenge was thus how to ingest in parallel from multiple sources while
maintaining batch ordering guarantees.

In this chapter, we introduce P-TAP (Parallel-source Tick Analysis Platform),
a new solution, extending our initial S-TAP solution, that can handle parallel
data ingestion and achieve the same in-order batch-processing guarantees as S-
TAP. Figure 4.2 highlights the key challenge for P-TAP: Having multiple source
(ingest) paths means that batches can progress out-of-order and thus a window for
ABC that has seen ABC ticks from Bi and Bi+2 cannot be certain that Bi+1 does
not have ABC ticks, as these may (or may not) still be on the way. In P-TAP,
we utilized several features of the Apache Flink framework, such as side outputs,

1A symbol refers to the short name of any equity in financial pricing data (tick)

47

48CHAPTER 4. PARALLEL-SOURCE TICK ANALYSIS PLATFORM (P-TAP)

Bi Bi+1 Bi+2 Bj

Time ordered per Symbol t ≤ t’ ≤ t’’ ≤ t’’’

Bi Bi+1 Bi+2 Bj

Event
Source

Event
Source

𝑒𝑒𝑡𝑡
𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑡𝑡𝑡

𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑡𝑡𝑡𝑡
𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑡𝑡𝑡𝑡𝑡

𝐴𝐴𝐴𝐴𝐴𝐴

𝑒𝑒𝑡𝑡𝑡
𝑁𝑁𝐴𝐴𝐴𝐴 𝑒𝑒𝑡𝑡𝑡

𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑡𝑡𝑡
𝑋𝑋𝑋𝑋𝑋𝑋 𝑒𝑒𝑡𝑡𝑡

𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑡𝑡𝑡
𝑁𝑁𝐴𝐴𝐴𝐴𝑒𝑒𝑡𝑡𝑡

𝐴𝐴𝐴𝐴𝐴𝐴

Symbol ABC

Figure 4.1: Events emitted by a Source (e.g., an Exchange) are grouped in batches
Bi (upper figure); events for a given symbol ABC within batches are time ordered
(lower figure)

timers, and the broadcast state pattern, to enrich the main event stream with
batch-order and batch-content metadata, achieving in-order batch processing and
thus full event accounting without the need for watermarks.

Our results show that P-TAP achieves better scalability compared to S-TAP.
Whereas S-TAP achieved initial scaling up to 8 cores, it eventually levels off be-
yond that. P-TAP demonstrates increasingly higher throughput (as well as higher
latency) for up to 32 cores over 4 servers, with a speedup of up to ∼1.50x versus
S-TAP when using the default parallelism settings. Upon further investigation,
we were able to fine-tune P-TAP to achieve an overall speedup of up to ∼1.78x
vs. S-TAP for 32 cores, while also reducing latency. However, S-TAP is a more
efficient solution than P-TAP for less than 16 cores, leading us to suggest a hybrid
solution: use of S-TAP for less than 16 cores and P-TAP above that. Overall, our
work demonstrates that stream-processing systems that can fully account for late
events in their window processing and achieve in-order processing, are also able to
scale.

The contributions of this work are as follows

• A fully parallelized solution (P-TAP) to the problem of discovering breakout
patterns in financial tick data via parallel stream processing with in-order
guarantees

• An evaluation of P-TAP on a 32-core 4-server cluster demonstrating its scal-
ability over the sequential-ingest version (S-TAP) on the same cluster

4.2. DESIGN AND IMPLEMENTATION 49

BjBi+2Bi

𝑒𝑒𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴
Query
Source

Bi

𝑒𝑒𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴

Bj

𝑒𝑒𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴

Query
Source 1

Query
Source 2

Query
Source 3 Bi+2

T Τ+ΔT

T Τ+ΔT

S-
TA

P
P-

TA
P

Time Window
for Symbol ABC

Time Window
for Symbol ABC

Figure 4.2: S-TAP easily detects batches with no events of symbol ABC by their
absence in sequence, whereas P-TAP requires additional info as batches come from
multiple paths

• An investigation of the benefits possible with finer tuning of parallelism vs.
default settings in Flink

The remainder of this chapter proceeds as follows: In Section 4.2 we present
the design and implementation of P-TAP, along with sufficient information on S-
TAP (described in detail in Chapter 3) to help the reader understand our core
application design, while in Section 4.3 we present our experimental evaluation.

4.2 Design and Implementation

The Parallel-source Tick Analysis Platform (P-TAP) data analysis pipeline com-
prises three major components (Fig. 4.3): the Data Ingestion Manager, a Flink job
that prepares data for ingestion by the analytics application; Apache Kafka [30],
used to decouple the data ingestion/reporting phase from data analysis; the stream
analytics application (P-TAP) built on top of Flink [5]; and a fourth component
used in our evaluation, the Result Validation Manager, a Java process used to
validate results between different versions of the applications. The data ingestion
phase is decoupled from the core data analysis (P-TAP) to ensure portability and
interoperability with a variety of data source types. The Data Ingestion Manager
can be extended to fetch data from different data sources (e.g. network sources
or other types of files) without affecting the implementation of the rest of the

50CHAPTER 4. PARALLEL-SOURCE TICK ANALYSIS PLATFORM (P-TAP)

pipeline. Next, we describe the design and implementation of these components
in detail.

Apache
Flink

Preprocess &
Ingest Initial Data

Store fetched data

Ingest app data

Publish Results
Get Q1\Q2

Result

Result
Validation
Manager

1
3

2

4

5

Figure 4.3: Data analysis pipeline

4.2.1 Data Ingestion Manager (DIM)

The Data Ingestion Manager (DIM) is designed to efficiently ingest data from CSV
files and make it available to downstream applications in batches. DIM performs
pre-filtering on the original data to remove all fields that are either irrelevant to
application queries or empty, thereby reducing noise. The created batches are
published in Kafka topics to which P-TAP subscribes. The topic is configured
for multiple partitions to accommodate higher parallelism from the consumer (P-
TAP) side. With S-TAP the topic should be configured for just a single partition
to assure batch ordering.

Regarding event ordering, we assume that subsequent events of the same sym-
bol (tick) have monotonically increasing timestamps (Fig. 4.1). Events of different
symbols may not necessarily be timestamp-ordered, i.e., we do not assume global
timestamp order for all events. Our original datasets indeed have this property:
we validated this by running through them sequentially and verified that events of
the same symbol are timestamp ordered, as anticipated. To ensure that our data
feed (batch creation in DIM and insertion to Kafka) preserves this property, we
set DIM’s parallelism to 1 to ensure in-order batch creation (where each batch is
identified by a monotonically increasing batch ID) and insertion to Kafka during
the ingestion phase. Batch processing in batch-ID order (to satisfy event process-
ing in timestamp order per symbol) is a key requirement affecting the design of
P-TAP (Section 4.2.3).

Another important aspect of DIM is the choice of lookupSymbols subscriptions
to insert into each batch (emulating the query interests and intensity of financial
brokers). During the pre-processing of the raw dataset we create a symbol registry
with all distinct symbols encountered in the dataset and for each new batch to
be created, we pseudo-randomly select a new set of lookupSymbols from that

4.2. DESIGN AND IMPLEMENTATION 51

registry, to update batch subscriptions and thus simulate a real-time trader. The
number of lookupSymbols to insert into each batch is user-defined. This approach
provides flexibility and allows the system to adapt to different subscription and
user requirements.

DIM proactively loads event batches to Kafka, ensuring that DIM and Kafka
have sufficient memory and CPU capacity to ensure that the speed of downstream
processing by TAP is never constrained by them. This design choice provides
scalability and allows the system to handle large volumes of data efficiently.

4.2.2 Use of Kafka for asynchronous messaging

We rely on Flink’s existing Kafka connector that is already well integrated with
Flink (data source/sink, checkpointing) to serve the ingested data for subsequent
analysis and to receive query results. DIM uses Kafka producers to publish data
to a Kafka topic. Finally, we built our own custom (de)serializers to transfer data
objects from and to Kafka topics in binary format.

4.2.3 P-TAP data processing

cProcess
Func cProcess

Func cProcess
Func

cProcess
Func

cProcess
FunccMap

cMap

Partition on
Batch-ID

Partition on
Symbol-ID

Partition on
Symbol-ID

Partition on
Symbol-ID

Unpack Enrich
Custom
Window

EMA
calculator

Q1
Reporter

Q2
Reporter

Crossover
detector

Broadcast
(BatchID, Distinct Symbols/Batch)Task Parallelism

cKafka
Connector

Source

Figure 4.4: P-TAP stream-processing query (overlapping circles denote multiple
tasks per operator)

The data analytics job comprises the stream-processing graph depicted in Fig-
ure 4.4. These operators a) consume the ingested data; b) unpack events included
in batches; c) determine dependency between batches that the downstream op-
erator expects in order to make progress; d) implement custom window logic to
determine the last observed price per symbol in 5-minutes time-frames2, guaran-
teeing there will not be dropped late events and window-closing will be correctly

2We use the term time-frame rather than window to refer to the different time intervals/ranges
whose state may be simultaneously maintained by the window operator

52CHAPTER 4. PARALLEL-SOURCE TICK ANALYSIS PLATFORM (P-TAP)

associated with event batches; e) calculate the EMA; e) discover crossover events;
and f) gather and report the query results on all lookup symbols per batch. Next
we describe the design choices and implementation details of each operator.

Source operator. The source operator consumes data from Kafka by sub-
scribing to the corresponding topic. We use the Flink-supported Kafka connector3

as our data source operator. To fully exploit parallelism, the subscribed topic must
also support multiple consumers. This is achieved by assigning multiple partitions
to the topic during its creation. To ensure that all instances are active, the number
of partitions in a topic should be at least equal to the number of parallel instances
in the source operator.

Unpack operator. Each batch fetched consists of a list of events (trade
actions for symbols) and a list of symbols of interest, lookup symbols, that a user
subscribes to (i.e., queries results for that symbols). The Unpack operator is
responsible for extracting and emitting events from a batch, while also injecting
metadata into each output tuple (Listing 4.1). Such metadata include: (1) batch
ID the event is extracted from; (2) a flag per event symbol that marks if it is
included in the lookup list; (3) the number of lookup symbols in the batch; and
(4) a flag that indicates if the event is the last occurrence of the symbol in the batch.
The metadata are needed in the subsequent analysis on downstream operators.

Shared State

Shared State

𝑒𝑒DEF

𝐵𝐵𝑖𝑖

𝐵𝐵𝑗𝑗

Unpack Operator Enrich Operator

𝑒𝑒ABC

𝑏𝑏𝑏𝑏Bi

𝑏𝑏𝑏𝑏Bi

𝑏𝑏𝑏𝑏B𝑗𝑗

𝑏𝑏𝑏𝑏B𝑗𝑗

𝑒𝑒𝑒ABC

𝑒𝑒𝑒DEF

e: Listing 1
br: Listing 2
e’: Listing 3

Figure 4.5: Tick events e are emitted on the main stream (solid lines) while meta-
data br are broadcast through the side stream (dashed line) to all tasks of the
Enrich Operator

In order to meet the required ordering constraints, additional metadata is
needed before the upcoming Enrich Operator (Figure 4.5). To accomplish this, we

3https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka

4.2. DESIGN AND IMPLEMENTATION 53

use Flink’s Side Outputs, which allow for the creation of multiple output streams of
different schemas from a single data stream. In addition to the main data stream,
which consists of the output tuples emitted from the previous analysis, we create
a side stream to provide the necessary metadata. After unpacking each batch and
emitting the output for the main stream (e.g., events eABC and eDEF), we emit
a tuple as a side stream that contains the batchID and a list of all the distinct
symbols encountered in that batch (e.g., events brBi and brBj , see Listing 4.2).
This side communication between the Unpack and Enrich operators is an instance
of the broadcast state pattern, which enables the sharing of state among all
parallel instances of a task. In this pattern, a single copy of the shared state is
maintained on each task manager and is updated by broadcasts to all parallel
instances of the task.

final case class EventEnrichmentSchema (
symbol: String,
batchID: Long,
securityType: SecurityType,
Price: Double,
timestamp: Long,
isSymbolsLastOccurence: Boolean,
lookupSymbolBool: Boolean,
lookupSize: Int)

Listing 4.1: Emitted output of unpack operator

final case class BroadcastedSchema (
batchID: Long,
distinctSymbols: List[String])

Listing 4.2: Broadcasted side-stream schema

Enrich operator. We aim to enrich our main stream based on logic applied to
the side stream, which contains the batch ID and a list of all the distinct symbols
encountered in that batch (Listing 4.2). The goal is to create specially crafted tu-
ples that will inform downstream operators about the batch IDs that each symbol
depends on in order to make progress. To achieve this, we connect both the main
and side streams in a single stream using broadcast state, which enables us to
process incoming tuples from both streams. Flink distinguishes between process-
ing incoming tuples from the main-stream with the processElement function and
processing tuples from the broadcasted stream with the processBroadcastElement
function. There is no cross-task communication regarding broadcasted state, so all
tasks must modify the contents of the broadcast state in the same way to produce
consistent results.

In our implementation, the processBroadcastElement function, responsible for
the shared state across task managers, calculates two essential concepts: the
last-in-sequence batch and the dependency-batch-registry. The last-in-sequence
batch signifies the last consecutive batch ID received from the start, whereas the

54CHAPTER 4. PARALLEL-SOURCE TICK ANALYSIS PLATFORM (P-TAP)

dependency-batch-registry is a hashmap that maintains all symbols and the batch
IDs on which each symbol depends to progress. Figure 4.6 illustrates how the
last-in-sequence state evolves as a sequence of new batches arrive, along with the
most recent state of the dependency-batch-registry when the final expected batch
arrives. Initially, when the processBroadcastElement is triggered by batch B5, all
symbols encountered in this batch update the dependency-batch-registry (i.e. sym-
bols ABC, CDF). However, we cannot update the value of last-in-sequence since
there are no consecutive batches from the start. A similar action takes place when
the sequence of batches B3, B1, and B2 tuples follow. The last-in-sequence batch
updates with value 3 when the batch B0 arrives, as shown in Figure 4.6.

Shared State processBroadcastElement

𝐵𝐵5

last-in-sequence: -1

last-in-sequence: -1

last-in-sequence: 3

0 1 2 3 4 5

dependency-batch-registry

5 3 1 2
ABC

CDF

NFR
5

3 2

Symbol0 1 2 3 4 5

0 1 2 3 4 5
𝐵𝐵3,𝐵𝐵1, 𝐵𝐵2

𝐵𝐵0

Figure 4.6: Shared State update of last-in-sequence and dependency-batch-registry
after the sequence of batches B5, B3, B1, B2 and B0 trigger the processBroad-
castElement

The processElement function forwards the tuples from the unpack operator to
downstream operators. Moreover, when the last occurrence of a symbol within a
batch occurs, we verify if the dependency-batch-registry has any new dependency
batches for the corresponding symbol. If this is the case, we emit a specially
crafted tuple containing all the dependency batches from the registry along with
the last-in-sequence batch (Listing 4.3). Once we emit the dependency batches for
a symbol we purge its state from the dependency-batch-registry to avoid forwarding
duplicates to downstream operators. In the example of Figure 4.6, once Batch B0

arrives, the subsequent triggering tuple for the NFR symbol will emit batches B3

and B2 as dependency batches, and the last-in-sequence batch is B3. This informa-
tion signals downstream operators that for the NFR symbol, we have encountered
all the batches until batch B3 and must await the completion of batchIDs B3 and
B2.

final case class EventUnpackSchema (
EventEnrichmentSchema(....), //Listing 1
dependencyBatches: Option[Vector[Long]])

Listing 4.3: Emitted output of enrich operator

4.2. DESIGN AND IMPLEMENTATION 55

An important aspect to consider when working with broadcast state is the
ordering of events. Broadcasting guarantees that all events will eventually go
to all downstream tasks, but elements may arrive in a different order for each
task. Therefore, we maintain the maximum batch ID encountered for each symbol
and trigger periodic timers to ensure that the broadcast state catches up to the
main-stream. Flink’s timers, which are associated with keys, schedule actions to
occur in the future based on processing time. When a timer fires, it triggers a
callback function onTimer that implements logic identical to the processElement
function. Timers are triggered continuously until the last-in-sequence batch re-
ported is greater than or equal to the maximum batch encountered, ensuring that
all events are processed in the correct order.

Window operator. Following the enrich operator is a window operator that
emits the last observed price per symbol in 5-minute time-frames. A major chal-
lenge is to handle out-of-order late events, i.e., events that arrive after a window
has closed. These events are typically dropped and as a results this could result in
correctness issues in the subsequent trend analysis. Flink’s built-in window oper-
ators support allowedLateness option that can accept late events for the specified
amount of time when a window closes. However, it is still challenging to predict an
appropriate allowedLateness value; in the general case, it is not possible to achieve
a guarantee that there will not be events that arrive later than the specified setting.

Our goal was to design an application that will not sacrifice correctness (i.e.,
not accounting for delayed out-of-order tuples) over performance. We thus decided
to build our own custom window operator that closes a time-frame when, based on
event semantics, it determines that there are no events left out that belong to the
corresponding 5-minute time-frame. For each symbol our window operator main-
tains a table of 5-minutes time-frames. Upon the arrival of an event, the window
operator has to decide in which time-frame the event is to be assigned according
to the event time. Our mechanism performs event grouping and alignment using
Equation 4.1:

f(event ts) = ⌊(event ts/win interval) ∗ win interval⌋ (4.1)

The input to Equation 4.1 is the timestamp of each processed event. The
window interval is set to 5 minutes. The function returns the starting time of the
5-minute time-frame that the event belongs to. For example, event timestamps
14:00:00.001, 14:00:02.421, 14:00:04.343 all belong to the time-frame starting at
14:00:00.000.

For every 5-minute time-frame, the operator maintains the last-price seen for
the symbol along with its timestamp. Our custom operator applies incremental
processing logic, i.e., it updates the last-price seen of the symbol upon process-
ing an incoming event by comparing if the new event’s timestamp is later than
the previous stored last-price. Thus we maintain minimal state per time-frame,
avoiding buffering of all events within the same time-frame.

The operator also maintains a list of all batches seen and keeps track of the
progress of processing each batch, namely whether the operator has processed all

56CHAPTER 4. PARALLEL-SOURCE TICK ANALYSIS PLATFORM (P-TAP)

events of a batch according to the metadata emitted by the upstream unpack
operator. The operator also identifies the 5-minutes time-frames affected by each
batch. Specifically, we link each batch with the last time-frame affected by the
batch. To do this we use the timestamp of the last occurrence of the symbol
within the batch (the metadata flag isSymbolsLastOccurance in Listing 4.1). In
Figure 4.7, the last timestamp of symbol ABC in batch B5 is 12:28, affecting up
to time-frame 12:25-12:30.

State for each 5-min time-frames

Status for each batch

Custom window op for symbol ABC

1 2 3 4 5 6

12:05 12:10 12:15 12:20 12:25
12:10 12:15 12:20 12:25 12:30

Last ts in Batch5 is 12:28

Figure 4.7: Custom window-operator state for symbol ABC. Each batch Bi, i =
1, 2, . . . points to the time-frame affected by the last occurrence (last ts) of symbol
ABC in that batch

As events are aggregated from multiple sources we cannot assume events for
different symbols are timestamp-ordered. However, we assume that events for the
same symbol have monotonically increasing timestamps across batches, as analyzed
in Section 4.2.1.

Thus, for a given symbol the timestamp of its first event in batch Bi is later
than the last timestamp of that symbol in batch Bi−1. Based on these ordering
properties, for a given symbol, the batch Bi cannot affect a time-frame preceding
the time-frame linked to Bi−1. In the example of Fig. 4.7 for symbol ABC, B4

cannot affect a time-frame before the one linked to B3.

Despite the ordering guarantees for the same symbol across batches, due to
the parallel nature of the source operator, identifying which batches contribute to
each symbol is a non-trivial task. This challenge arises due to the possibility of
empty batches, i.e., batches that do not contain events for a given symbol (e.g.,
batch B1 in Fig. 4.7 does not contain events for ABC). The progress of the batches

4.2. DESIGN AND IMPLEMENTATION 57

is determined by the dependency batches emitted from the upstream operator,
followed by the last-in-sequence batch ID. Using this information, we can identify
a safe-to-report batch. A batch is deemed safe-to-report when all the dependency
batches from the start until this batch, including this batch, have been fully pro-
cessed (i.e., all their events have been processed). When new dependency batches
arrive, we initialize them in the batch list in case it is their first encounter. We
then iterate from the latest safe-to-report batchID until reaching the maximum
last-in-sequence batchID and update the safe-to-report batchID value as required.
We perform this check continuously as each batch finishes processing to allow the
safe-to-report batches to report in a timely manner.

Every time the window operator updates the safe-to-report value, it also checks
if there are safe-to-close time-frames to emit the symbol’s last price observed in
such time-frames. A time-frame is considered as safe-to-close when all batches
linked to it and, at least the first batch linked to the next time-frame, are completely
processed. In the example of Fig. 4.8, batches B3 and B4 are linked with time-
frame 12:20-12:25. However, the time-frame is not considered as safe-to-close after
the processing of these batches as we are not sure if the next batch contains events
that contribute to it. As soon as we have processed the first batch of the next
time-frame, i.e., batch B5, it is certain that the subsequent batches cannot contain
events for symbol ABC affecting time-frames preceding the one that B5 is linked
to.

State for each 5-min time-frames

Status for each batch

Custom window op for symbol ABC

1 2 3 4 5 6

12:05 12:10 12:15 12:20 12:25
12:10 12:15 12:20 12:25 12:30

Last ts in Batch5 is 12:28

Figure 4.8: Window closing example: The checkmarks indicate that batches B1-B5

are considered safe-to-report and four 5-minute time-frames are safely considered
fully closed

58CHAPTER 4. PARALLEL-SOURCE TICK ANALYSIS PLATFORM (P-TAP)

When a batch is safe-to-report, the window operator identifies the time-frame
it is linked to and checks if there are pending time-frames that can now be marked
as safe-to-close. The example in Fig. 4.8 illustrates the aforementioned scenario
for symbol ABC: The last occurrence of ABC in batch B2 has its timestamp
within 12:05-12:10 (the time-frame is still not considered as safe-to-close when B2

is safe-to-report). Batch B3 is linked to the time-frame 12:20-12:25 (i.e., is the
last occurrence of events regarding ABC fall into this time-frame). When B3 is
safe-to-report we can mark time-frames 12:05-12:10, 12:10-12:15 and 12:15-12:20
as safe-to-close. This is because all events for ABC in subsequent batches are
expected to have timestamp later than the last occurrence of ABC in B3.

The operator emits at its output the closing price of the symbol for each safe-
to-close time-frame and purges its state. If there are no events for the symbol
associated with a time-frame (e.g. time-frames 12:10-12:15, 12:15-12:20 for sym-
bol ABC in Fig. 4.8), the operator ignores the time-frame and purges its state.
However, if the symbol is in the lookup-symbols list, the operator emits a specially-
crafted tuple to indicate to the downstream operators that there is no closing price
for the 5-minute time-window and thus, they should report the previous EMA (see
EMA calculator described next).

When B4 is safe-to-report, there are no new safe-to-close time-frames. In this
case the custom window operator emits a specially-crafted output tuple for the
lookup symbols that indicate that the processing of the batch has completed. These
specially-crafted tuples indicate to the downstream operator (the EMA calculator
described below) that it can rely on the last computed EMA corresponding the last
closed time-window. In the example of Fig. 4.8 assuming ABC is a lookup symbol,
when batch B4 is safe-to-report, the time-frame 12:20-12:25 is not safe-to-close,
hence it emits a tuple signaling batch completion. That specific time-frame will
be marked as safe-to-close only when B5 is safe-to-report.

EMA calculator. The last observed price for a 5-minute time-frame emit-
ted by the window operator is necessary for the EMA calculation. There is a
separate instance of the EMA calculator per symbol, computing the EMA using
Equation 4.2:

EMAj
wi

= [Closewi ∗ (
2

1 + j
)] + EMAj

wi−1
∗ [1− (

2

1 + j
)] (4.2)

wi: the 5-minute time-frame

j: the smoothing factor for EMA with j ∈ {38, 100}
Closewi : the last price observed within time-frame wi

The operator computes EMA for a given time-frame for two different user-
specified j values (Table 4.1). When a tuple indicates that a batch has completed
but no new time-frames have closed, we just fetch the latest EMA for this symbol
and pass it to the next operator. On entries indicating that new time-frame(s)
have closed, we calculate the newest EMA(s) and emit the newer results.

4.2. DESIGN AND IMPLEMENTATION 59

Q1 reporter. For the first query we have to report the EMAs for all the
lookup symbols in a batch. The Q1 reporter operator gathers all computed EMAs
for a batch and reports the query result. The output of the EMA calculator is
partitioned on the batch ID. The metadata included on each event indicating the
total number of lookup symbols in a batch indicated when the Q1 reporter has
gathered all the requires EMAs for that batch. When a lookup symbol emits
multiple safe-to-close time-frames in a batch and therefore multiple results, an
indicator points to the latest time-frame result for the reporter to expect.

Crossover calculator. The second query requires identifying breakout pat-
terns that indicate the start of a trend in the development of a symbol’s price. This
process is based on the computed EMAs for a symbol over different intervals (i.e.,
EMA j paramater). The Crossover calculator operator consumes the output of the
EMA calculator and discovers crossover events (breakout patterns) as described in
the Introduction Section. The operator maintains the three most recent breakout
events per symbol as required by query 2. Upon detecting a new crossover event,
the operator updates its state and discards outdated state.

Q2 reporter. Similar to Q1 reporter, this operator gathers all crossover events
for all the lookup symbols in the batch before it reports the query 2 results. The
input stream of the operator is partitioned on the batch ID.

Both Q1 and Q2 reporters also act as sink operator, using a Kafka producer
to publish the results to the corresponding Kafka topic.

4.2.4 Result Validation Manager (RVM)

The Result Validation Manager (RVM) is a Java process designed to verify that
P-TAP results are identical to those of S-TAP, i.e., the parallel implementation
does not affect the output of our processing logic. Due to the real-time nature
of streaming applications, it is in general challenging to validate query outputs
in a timely and efficient manner. In our case, we use the fact that TAP (S-TAP
and P-TAP) publishes its query results for each batch; this enables us to directly
compare the outputs of P-TAP to those of S-TAP for multiple executions. While
this does not offer a formal proof, it helps us build confidence in the functional
equivalence of the two implementations (and helped us solve bugs along the way).

RVM operates as follows: After ingesting data in batches via DIM and exe-
cuting either version of TAP, the output of queries Q1 and Q2 are published on
distinct topics. RVM then consumes those outputs for the desired query of both
versions and directly compares their results. As both queries generate complex
objects with multiple symbols per batch, RVM utilizes functionality similar to the
Unpack Operator (Section 4.2.3) to unpack the results into distinct events. RVM
then compares the results from the two distinct topics; finding identical results
over multiple executions is a strong indicator that S-TAP and P-TAP are func-
tionally identical, since both queries run on the same inputs. By default, RVM
validates both Q1 and Q2 queries in separate threads. It can also be configured
to validate either Q1 or Q1 separately.

60CHAPTER 4. PARALLEL-SOURCE TICK ANALYSIS PLATFORM (P-TAP)

4.3 Evaluation

We evaluate P-TAP through a series of experiments that test the impact of different
parameters and its overall scalability compared to the sequential-ingest version (S-
TAP). Our main experimental testbed consists of five servers, each equipped with
a Intel Xeon Bronze 3106 8-core 1.70GHz CPU, 16GB DDR4 2666MHz DIMMs,
256GB Intel D3-S4610 SSD and 2TB Ultrastar 7K2 HDD, running Ubuntu Linux
16.04.6 LTS, interconnected via a 10Gb/s Dell N4032 switch. One of the servers
is dedicated to hosting DIM and Kafka.

The results presented here are the averages of at least 5 executions. Our
main evaluation metric is elapsed time, the end-to-end time taken to process the
ingested dataset in each case, measured from the timestamp before the first unpack
operation to the timestamp after the last reporter operation. We also evaluate the
impact of parallelism on latency, measured as the time between ingesting a batch
of data (timestamp before the unpack operation on a batch) and producing a query
response for that batch (timestamp at which the batch reports its results). We do
not include the time to interact with Kafka in reporting Q1 and Q2 results, as we
consider this an external step independent of the time to produce query results
that are the core of our elapsed-time measurements.

P-TAP offers support for user-defined configuration settings (Table 4.1) in-
cluding different smoothing factors for the EMA calculation (parameters i and j in
Table 4.1) and the reported queries (parameter q). Our analytics application also
facilitates scalable deployments (parameter p) and ensures operational reliability
by using the Flink checkpointing mechanism (with the checkpointing interval op-
tion c). We attempted to evaluate our experiments using default parameters for c
and q, which were the same as those used in the Grand Challenge. However, when
experimenting with the RVM component (Section 4.2.4), we observed that these
parameters resulted in very few responses from the Crossover Detector. Therefore,
we selected a different set of smoothing factors, with i=0 and j=1, that led to the
Crossover Detector producing more results, resulting in a more intensive workload.

Parameter Description Default

p Parallelism of Flink Application 1
i Parameter to Calculate EMA 38
j Parameter to Calculate EMA 100
c Checkpointing interval (mins) None
q Specify the required queries for reporting.

1 for Q1, 2 for Q2
Both

Table 4.1: Configuration Options

One out of our 5-node cluster servers hosts the JobManager of the Flink cluster
and a Kafka Broker. The remaining four machines act as TaskManagers of the
cluster, each one supporting 8 Task slots, resulting in a maximum of 32 parallel

4.3. EVALUATION 61

instances. We built our application stack using Flink 1.14.3, Kafka 3.3.2, and Scala
2.12.

Sections 4.3.1, 4.3.2, 4.3.3 examine the impact of timer setting, batch size and
number of lookup symbols on performance, respectively. In Section 4.3.4 we evalu-
ate the benefits of increasing physical parallelism (1-32 cores) on the performance
of S-TAP and P-TAP. In Section 4.3.5 we compare the performance of S-TAP to
P-TAP with increasing dataset size, and finally, in Section 4.3.6 we evaluate the
impact of symmetric parallelism (the default, where the parallelism of all operators
is the same and set to the maximum physical parallelism) vs. asymmetric paral-
lelism, where parallelism of each operator is tuned to their expected computational
needs.

4.3.1 Impact of timer setting

P-TAP’s use of periodic timers to ensure that the broadcast state catches up to the
main-stream raise the question of what impact timer settings have on performance.
An ideal timer setting should balance the tradeoff between frequency and overhead,
as timers should be triggered frequently enough to take into account information
as soon as it is available while avoiding excessive overhead.

Figure 4.9: Impact of timer configuration (§4.3.1) for batch size 1000 and 10000

We evaluated the impact of different timer settings on the performance of P-
TAP against the Day 1 Dataset (described in Table 2.2) with 1000 lookup symbols
and 32 parallel instances. To assess the impact of lookup symbols against different
batch sizes, we tested with batch-size 1000 and 10000.

Our results(Fig. 4.9) show that performance declines somewhat when the timers
are set too high (period ≥ 500ms) or too low (period of 10ms). Setting the timer
at 100ms or 250ms achieves the best performance. We eventually chose to set it to

62CHAPTER 4. PARALLEL-SOURCE TICK ANALYSIS PLATFORM (P-TAP)

250ms for the remaining experiments, as this marginally outperforms the 100ms
setting.

4.3.2 Impact of batch size

The batch size is another important parameter as it affects the frequency of lookup
symbol subscriptions, which simulates the actions of actual traders. Here we eval-
uate the impact of batch size on the performance of both P-TAP and S-TAP. We
set the lookupSymbols and parellelism parameters to 100 and 32, respectively, and
ran tests against the Day 1 Dataset for different batch sizes. Modifying the batch
size accordingly affects the total number of batches processed. In Figure 4.10, we
observe that for batch sizes above 1000, performance either levels off (S-TAP) or
marginally improves (P-TAP). However, smaller batch sizes (e.g., 100 events) are
challenging for both systems, as they entail more frequent lookup symbol subscrip-
tions (impacting both S-TAP and P-TAP), and in the case of P-TAP an additional
synchronization overhead as a higher number of batches results to more frequent
use of broadcast communication. In subsequent experiments we fix the batch size
to 10,000.

0

20

40

60

80

100

120

140

100 1000 2500 5000 7500 10000 12500

El
ap

se
d

 T
im

e
 (

s)

Batch Size
S-TAP P-TAP

Figure 4.10: Impact of batch size (§4.3.2) with parallelism 32

4.3.3 Impact of number of lookup symbols

The number of lookup symbols is another important parameter impacting per-
formance, as the higher the number of subscribed symbols per batch, the higher
the amount of work expected in the course of TAP’s continuous query processing.
Here we use a batch size of 10,000 and parallelism of 32 and evaluate performance
using the Day 1 Dataset.

4.3. EVALUATION 63

Our results (Fig. 4.11) indicate that the number of lookup symbols has only a
moderate impact on performance in either S-TAP or P-TAP. In both versions we
observe that the performance is nearly unchanged (within the standard deviation)
when the number of lookup symbols does not exceed 500. We do note a moderate
increase in elapsed time when the number of lookup symbols exceeds 500, which
is reasonable as the overhead from symbols that need to be reported in each batch
increase significantly. Based on these results, we select a lookup-symbols value
of 1000 in the remaining experiments to create a demanding, compute-intensive
workload.

0

5

10

15

20

25

10 50 100 250 500 750 1000

El
ap

se
d

 T
im

e
 (

s)

Lookup Symbols
S-TAP P-TAP

Figure 4.11: Impact of # of lookup symbols (§4.3.3) with parallelism 32

4.3.4 Scalability with increasing parallelism

Here we evaluate the behavior of S-TAP and P-TAP as we add parallel instances
using the Flink parallelism parameter. We set other parameters of the appli-
cation as follows: batch size set to 10,000 and lookup-symbols to 1,000. We used
the Day 1 Dataset, which consists of one day of trading data, and incrementally
add data for each trading day until we reach the Day 1-5 Dataset and evaluate
the complete week of trading (Table 2.2 for Datasets description). In this way we
evaluate the scalability of S-TAP and P-TAP as both the workload (dataset size)
and parallelism increase. The scalability of S-TAP and P-TAP for the Day 1-5
Dataset with an increasing number of cores is depicted in Figure 4.12.

For S-TAP, we observe an improvement by a factor of ∼1.2x when scaling from
1 to 8 cores in all experiments, but no further speedup as we continue increasing
to 16, 24, and 32 cores. This is due the source and unpack operators forming a
performance choke point preventing further scalability for S-TAP.

For P-TAP, when scaling from 1 to 8 cores we observe a speedup ranging from
∼2.4x to ∼2.8x (Fig. 4.12). Scaling from 8 to 16 cores results in a speedup ranging

64CHAPTER 4. PARALLEL-SOURCE TICK ANALYSIS PLATFORM (P-TAP)

0

50

100

150

200

250

300

1 8 16 24 32

El
ap

se
d

 T
im

e
 (

s)

Parallelism
P-TAP S-TAP

Figure 4.12: Scalability of P-TAP, S-TAP (§4.3.4), Day 1-5 Dataset

from ∼1.3x to ∼1.5x for larger datasets. Increasing parallelism to 24 and 32 cores
led to a similar speedup of ∼1.1x in each case for all datasets.

Although P-TAP scales and eventually outperforms S-TAP (Fig. 4.12), at par-
allelism 1 and 8 it is ∼3x and ∼1.2x slower than S-TAP, respectively. This is
due to the additional synchronization cost of P-TAP that makes S-TAP a more
efficient design when not saturated at the source. We thus believe that a hybrid
scheme where S-TAP is used at low levels of parallelism (less than 16), switching
to P-TAP above that level will produce a system delivering all-around best results.

Contrary to the consistent improvement in elapsed time, the increase in paral-
lelism leads to a decline in latency. Fig. 4.13 depicts average latency as well as the
90th percentile latency derived from all the batches encountered in the correspond-
ing dataset. For S-TAP, latency remains relatively low, from an average of ∼30ms
for parallelism 1 to ∼250ms for parallelism 32. Conversely, P-TAP demonstrates
more pronounced variations in latency and appears to be sensitive to changes in
parallelism, as illustrated in Figure 4.13. For parallelism 1, average latency is
∼225ms (∼350ms at the 90th-percentile), increasing to ∼5.4sec (∼6.7sec at the
90th-percentile) for parallelism 32. As we show in Section 5.6, latency can be
drastically improved through appropriate tuning.

We highlight the importance of aligning the number of Kafka partitions to the
parallelism set for P-TAP. When the number of partitions in a Kafka topic ex-
ceeds the number of parallel source operators, source operators consume multiple
partitions. This results in out-of-order batch ingestion that gets worse with more
partitions, adding extra complexity and impacting performance, in both elapsed
time and latency. We initially assigned 32 partitions for all parallelism parameters
and observed significantly worse performance, particularly for experiments with
lower parallelism, resulting in performance degradation of up to ∼5.7x for paral-
lelism 1. Our results in this section use a number of partitions in the ingested

4.3. EVALUATION 65

0

1000

2000

3000

4000

5000

6000

7000

1 8 16 24 32

La
te

n
cy

 (
m

s)

Parallelism

Average 90th Perc.

Figure 4.13: Latency of P-TAP vs Parallelism, Day 1-5 Dataset

topic equal to the parallelism parameter at the source, empirically seen to yield
best results.

In summary, our experiments highlight the different the scaling behavior of S-
TAP and P-TAP. S-TAP failed to scale beyond 8 cores, whereas P-TAP improved
overall performance and demonstrated good scalability. However, S-TAP is a
more performant solution when not saturated at the source (which happens at
low levels of parallelism), not being set back by synchronization costs. We note
P-TAP’s latency increase when scaling, which may affect deployment decisions in
a production environment. In Section 4.3.6 we further explore tuning P-TAP for
even better performance.

4.3.5 Performance comparison of S-TAP to P-TAP

Here we compare the performance of S-TAP and P-TAP, and evaluate the speedup
achieved by P-TAP as the workload (dataset size) increases with the maximum
available level of parallelism (32 cores on 4 servers). We perform the same set
of experiments as in the previous section (§4.3.4), with a batch size of 10,000
and 1,000 lookup symbol subscriptions. We start with the Day 1 Data set and
gradually increase the dataset size by repeatedly adding another trading day until
we reach the Day 1-5 Dataset. This enables us to observe the speedup of P-TAP
over S-TAP as the workload increases.

Our results (Fig. 4.14) indicate that P-TAP achieves a processing speedup
compared to S-TAP, ranging from approximately 1.2x to 1.5x for larger work-
loads, translating into an absolute performance difference of about 30 seconds
when processing Days 1-5, clearly winning over S-TAP in terms of elapsed time.
The latency increase with parallelism seen in the Day 1-5 Dataset (Fig. 4.13) is

66CHAPTER 4. PARALLEL-SOURCE TICK ANALYSIS PLATFORM (P-TAP)

0

10

20

30

40

50

60

70

80

90

Day 1 Days 1-2 Days 1-3 Days 1-4 Days 1-5

El
ap

se
d

 T
im

e
 (

s)

Days
S-TAP P-TAP

Speedup
1.24x vs S-TAP

Speedup
1.40x vs S-TAP

Speedup
1.46x vs S-TAP

Speedup
1.50x vs S-TAP

Speedup
1.43x vs S-TAP

Figure 4.14: Performance comparison of S-TAP to P-TAP, for parallelism 32
(§4.3.5)

representative of latencies seen with other datasets as well.

Overall, these findings demonstrate the efficiency of P-TAP, which can handle
larger workloads and achieve faster execution times especially when the workload
increases.

4.3.6 Further tuning of P-TAP

Having established P-TAP’s better scalability in terms of processing speed over
S-TAP, we investigate the impact of tuning the parallel implementation to achieve
even better results.

Parallelism of source operator. We initially set our sights on the throughput
of the source operator. We isolated it from the rest of the pipeline and found that
its throughput did not increase proportionally to increasing parallelism as initially
anticipated. This bottleneck was caused by having a single Kafka broker, which
could not scale indefinitely. We achieved the maximum throughput at parallelism
8 and did not see any further improvements for parallelism 16, 24, or 32 (Fig. 4.15).
We attempted to address this by adding a second Kafka broker, which led to the
throughput of the source operator eventually scaling for higher parallelism (up to
32 cores). However, when we executed the complete pipeline with the additional
broker, we did not see any performance improvements due to the synchronization
cost and computational demanding job as additional Kafka partitions increased the
number of out-of-order batches entering the system, working counter-productively
for performance. Therefore, we returned to the original configuration with a single
Kafka broker, which however was efficient enough to overall drive our experiments

4.3. EVALUATION 67

to saturation (all 32 cores on all 4 servers working at full speed, approaching 100%
utilization).

Figure 4.15: Total Throughput of the source operator with 1 and 2 kafka brokers

Leveraging SlotSharingGroups. With the bottleneck at the source operator
investigated, we turned our attention to optimizing resource utilization for the
rest of P-TAP. Flink uses Task Slots to define a fixed slice of resources for a
Task Manager. Each subtask (parallel instance of an operator) requires a slot to
be executed. However, not all operators are equally resource intensive, so Flink
allows subtasks of different operators to be deployed into the same slot, which is
controlled by the SlotSharingGroup. Tasks that share the same SlotSharingGroup
can be executed in the same slot and share resources. By default, all operators are
assigned to the same SlotSharingGroup.

In our previous experiments with parallelism 32 we used the default settings,
with all operators assigned to the same SlotSharingGroup (parallelism 32). To
better utilize resources, we experimented with three additional configurations of
three SlotSharingGroups each with different degrees of parallelism, in all cases
aiming to fully utilize all 32 available Task Slots, as shown in Table 4.2.

Configuration
SSG1: Source
& Unpack

SSG2:
Q1 & Q2
Reporters

SSG3:
Remaining
Operators

#1 8 2 22
#2 6 4 22
#3 4 4 24

Table 4.2: Parallelism of different operator groups in different configurations of
three SlotSharingGroups (SSGs)

68CHAPTER 4. PARALLEL-SOURCE TICK ANALYSIS PLATFORM (P-TAP)

Comparing the results of the 3 configurations to the baseline (default) in Fig-
ure 4.16 we observe that Configuration 1 yields an additional ∼1.1x-1.2x speedup
(vs. default P-TAP) for larger datasets, leading to an overall speedup of ∼1.73x on
elapsed time when compared to S-TAP. In Configurations 2 and 3, we observe less
speedup in elapsed time and in some cases slightly worse results that the default
P-TAP. However, all configurations result to significantly lower latency (Fig. 4.17),
with Configuration 3 achieving approximately 4.5x improved latency vs. default
P-TAP. Our investigation highlights that optimizing resource utilization through
careful selection of SlotSharingGroups can provide significant performance im-
provements for complex parallel stream-processing queries. Ultimately, the choice
of configuration depends on striking a balance between reduced elapsed time and
an acceptable latency level.

0

10

20

30

40

50

60

70

Day 1 Days 1-2 Days 1-3 Days 1-4 Days 1-5

El
ap

se
d

 T
im

e
 (

s)

Days
Default P-TAP Configuration 1 Configuration 2 Configuration 3

Speedup
1.21x vs Default P-TAP

1.73x vs S-TAP
Speedup

1.11x vs Default P-TAP
1.68x vs S-TAP

Speedup
1.10x vs Default P-TAP

1.62x vs S-TAP

Speedup
1.14x vs Default P-TAP

1.60x vs S-TAP
Speedup

1.09x vs Default P-TAP
1.35x vs S-TAP

Figure 4.16: P-TAP with different SlotSharingGroups on 32 cores

4.4 Discussion

Transitioning from S-TAP (Chap. 3) to P-TAP (Chap. 4) proved to be a daunting
task, with numerous challenges that needed to be addressed. In this section, we
discuss the different attempts and insights that eventually led us to the successful
solution of P-TAP.

As outlined in a previous section (Sec. 4.1), the primary challenge in transi-
tioning from S-TAP to P-TAP was effectively handling the out-of-orderness caused
by parallelizing the source operator of the pipeline. This out-of-orderness intro-
duced a level of uncertainty to our windowing mechanism, making it difficult to
determine which instances of symbols had completed and could report their results

4.4. DISCUSSION 69

0

1000

2000

3000

4000

5000

6000

7000

Default P-TAP Configuration 1 Configuration 2 Configuration 3

La
te

n
cy

 (
m

s)

Configuration
Average 90th Percentile

Figure 4.17: P-TAP Latency with different SlotSharingGroups and parallelism 32,
Days 1-5 Dataset

while still maintaining batch ordering guarantees. We thus needed to find a way
to determine whether we should wait for events from batches or if such events did
not exist and we should not expect to account for them within the maintained
windows of the operator.

Our first approach was to utilize an efficient set-membership test mechanism
such as a Bloom Filter (BF) to let operators ask queries such as ”is symbol ABC
a member of the set of symbols appearing in batch Bi?”. As background, BF4

is a probabilistic data structure used to evaluate whether an element is member
of a set. We implemented such a solution in conjunction with an external Redis
Database for maintaining BF state.

Every instance of the Unpack operator created a new BF when processing a
batch. The BF contained all the distinct symbols in that batch, and it was stored
in Redis under the current batch Id. Careful consideration was given to minimizing
the probability of false positives, which could lead to erroneous behavior. Every
instance of our custom window operator retrieved the bloom filter for the missing
batches and checked whether it contained the symbol processed by that instance
of the window operator. If the BF did not contain the symbol, the operator could
safely mark the batch as complete since we did not expect to arrive any event
regarding that specific symbol extracted from that batch. Otherwise, the window
operator marked the batch as pending and awaited to process the late events. In
cases where the requested BF did not exist in Redis, indicating that it had not
been created or stored yet, the batch was treated as missing and would be checked
again in the future i.e., when a next batch is fully processed by the operator.

While this approach initially seemed promising, we encountered a bottleneck

4https://en.wikipedia.org/wiki/Bloom_filter

https://en.wikipedia.org/wiki/Bloom_filter

70CHAPTER 4. PARALLEL-SOURCE TICK ANALYSIS PLATFORM (P-TAP)

caused by the database used as part of the pipeline. The synchronous interaction
performed by Flink when accessing the external database was the main contribut-
ing factor. Although Flink supports Async I/O [14], the constraints imposed by
its API made it impossible for us to solve the problem at hand. Consequently, we
quickly abandoned the idea of interacting with an external database as part of the
pipeline.

We also eventually discarded the use of BFs to solve this problem. The primary
issue with BFs was the possibility of false positives. In our solution, the progress
of each symbol was blocked until all previous encounters of that symbol were
processed. If a false positive occurred, it would wrongly indicate to a symbol that
it should wait for an event that did not exist, causing not only the current batch
to be blocked but also all subsequent batches in the future.

In reaching the current version of P-TAP, several optimizations significantly
improved the system’s performance. Firstly, we minimized the number of control
tuples transmitted between operators. Although seemingly insignificant, when
dealing with large datasets, excessive transmission of control tuples could cause
severe bottlenecks. Working with broadcast state required careful manipulation,
and the importance of purging unnecessary state cannot be understated in address-
ing performance limitations. Additionally, it is advisable to divide and conquer
each pipeline as much as possible, as operators with complex logic are difficult to
debug and can lead to degraded performance. Lastly, it is crucial to avoid unnec-
essary re-calculations of variables, loops, and other redundant computations.

Chapter 5

Rapid Recovery of SPSs

5.1 Introduction

This chapter focuses on ways to achieve fast recovery in stream-processing systems
(SPSs). The core idea we explore is the alignment of recovery tasks with externally
stored checkpoint state, to benefit from locality in accessing state. We build upon
the state-of-the-art incremental distributed checkpointing capabilities of the Flink
SPS (Section 2.2.5) and extend them towards that direction.

Currently, Flink’s incremental checkpointing involves local checkpoints on the
RocksDB instances of each node, followed by remote copies to a distributed Hadoop
Distributed File System (HDFS) for reliability. However, a potential challenge
arises during the recovery process if a Flink task manager crashes and its local state
cannot be recovered (for example, if the hosting machine fails to boot up again).
In such cases, the recovery task faces time-consuming remote transfers to retrieve
the operator state, which significantly prolongs the recovery time compared to
instances where the state is stored locally.

To address this issue, we build upon the notion of alignment between processing
tasks and external state, an idea that is explored in recent work in a slightly
different context [36]. Our objective is to ensure that recovery tasks are placed on
the same node as an HDFS replica that stores the state required for the recovery
task. By doing so, we expect to significantly enhance the efficiency of the recovery
process compared to the original version of Flink, which relies on transferring
state from (in general) remote replicas. It is important to note that the resulting
architecture and system are designed to achieve cross-layer coordination between
Flink and HDFS with minimal modifications to the underlying software. Although
we currently utilize HDFS as the backend, the principles discussed here can be
applied to other distributed storage backends as well.

In designing the recoverable SPS, we encounter two key challenges. Firstly, we
need to control task recovery decisions and task placement within the Flink SPS.
Secondly, we seek to extract information from and influence HDFS block placement
on data nodes. Throughout the design process, we evaluate various replica and

71

72 CHAPTER 5. RAPID RECOVERY OF SPSS

block placement policies offered by HDFS. Our approach leverages the features
of both Flink and HDFS to attain data locality and optimize the performance of
state recovery procedures.

The subsequent section delves into the experimentation with baseline software
systems to gain confidence in their capabilities and extract the locations of data
replicas (Section 5.2). Section 5.2.1 explores the question “what is the performance
difference of reading from a local vs. a remote file, when using the standard
POSIX file API?”. Following that, we will show that it is possible to steer the
deployment of a recovery task in Flink (Section 5.3), and then experimentally
investigate the question “what is the performance difference in Flink task recovery
when performing local vs. remote checkpoint access?” in Section 5.3.1.

5.2 Replica Placement Awareness

In general, both replica and block placement policies aim to offer fault tolerance,
high availability, and reliability while also maintaining (or improving if possible)
performance. Knowledge of the actual data location has the potential to enhance
processing performance by exploiting data locality and reducing network over-
head. There are two approaches to achieving this; either instructing HDFS where
to locate data blocks (or replicas) via a block-placement policy, or extracting the
locations of specific blocks and harness that information in the processing appli-
cation.

The first approach entails making modifications to the HDFS source code.
Upon thorough examination of the source code, it became clear that a simple
solution focusing solely on enforcing data placement locations could compromise
other valuable features offered by HDFS. The existing placement policies encom-
pass load balancing and geospatial considerations, intricately interconnected, and
as such a new placement solution should take these factors into account when
created from scratch. We thus decided that the creation of such a policy would
exceed the scope of this thesis.

As a result, the second approach was chosen, as it offered a simpler imple-
mentation using the powerful Hadoop API. The goal was to identify the different
locations where all blocks and replicas of a specific file reside, using the default
block placement policy. HDFS provides built-in reporting capabilities that offer
detailed information about files and their blocks. Specifically, the following com-
mand produces the desired information:

hdfs fsck file path -files -blocks -locations

By supplying the desired file path and the above arguments, a detailed report
for that file path can be obtained. Since the generated report contains a lot of
extra information and noise, a Python script was developed to extract the necessary
details (Fig. 5.1).

The user simply inputs the desired file path, and the script outputs the IP
addresses where the replicas and blocks are located. In the example shown in

5.2. REPLICA PLACEMENT AWARENESS 73

Figure 5.1: Python HDFS block Tracer sample output

Fig. 5.1, the file ”hdfs sample 1.txt” had a size of 128MB, fitting into a single
block, and a replication factor of 2, resulting in distribution across two machines.

5.2.1 Evaluation

This section simulates a simple execution scenario to examine the impact of data
locality on performance. While the example may seem simple initially, it can be
generalized to more complex real-world applications, as explained later. Addition-
ally, for the purpose of this experiment, the Python script analyzed in the previous
section was not utilized. Although the script provides a portable and user-friendly
solution for more complex scenarios, a new implementation based on the same
principles was developed to best fit the current experiment.

5.2.1.1 Experiment Description and setup

The experiment involves two applications: the writer and the reader. The writer
application generates random files of specific sizes and writes them to a designated
location in the HDFS cluster. The reader application is responsible for reading
those files later on. Our main experimental testbed consists of four servers, hosted
on Okeanos cloud service VMs each equipped with an 8-core CPU, 8GBs of RAM,
running Ubuntu Linux 16.04.6 LTS. The HDFS cluster for the experiment consists
of 1 NameNode and 3 DataNodes, with a replication factor of 2 for all files.

Thewriter application has a straightforward implementation and allows HDFS
to determine the placement of data blocks and replicas based on its own policies.
However, the reader application requires modifications to distinguish between lo-
cal and non-local file reading. One of the optimizations in HDFS is the use of
geospatial policies to minimize network overhead. Thus, if a replica of a block is
requested locally on a machine, HDFS will prioritize the local replica regardless
of the position of the other replicas. To examine this behavior, an indexing step
is necessary to track the replica locations for each file. Non-local execution occurs
when a file’s replicas do not reside on the machine that requested the file. Given
the small size of the cluster and the rarity of non-local cases, it is also important
to count the total number of non-local cases to obtain fair and comparable results.

74 CHAPTER 5. RAPID RECOVERY OF SPSS

5.2.1.2 Results

A pool of files with equal sizes was created using the writer application for the
reader function to consume. Each file has a size of 122.07MB fitting into a single
block (Fig. 5.2). Table 5.1 and Figure 5.3 present the collective elapsed-time re-
sults for reading different numbers of files, both locally and non-locally. Elapsed
Time refers to the end-to-end time taken to process all the desired files. The first
two columns also demonstrate that the current cluster is relatively small for the
experiment at hand. In the first case, out of 10 files, only 2 had non-local replicas,
and so on. Consequently, only 2 out of the remaining 8 local replicas were read and
taken into consideration. Non-local sparsity posed a significant challenge during
this experiment.

Figure 5.2: HDFS pool of equally large-sized data (122MB files)

Total
Number
of Files

Total
Non-Local

Files
Local (s)

Non-Local
(s)

Speedup

10 2 6.671 6.931 x1.04

20 6 9.705 22.498 x2.31

30 7 11.598 25.176 x2.17

40 8 12.739 29.398 x2.31

50 12 15.681 41.938 x2.67

60 15 25.040 67.573 x2.70

70 18 26.700 68.799 x2.58

Table 5.1: Evaluation of elapsed time during local and non-local data reading in
large files (122MB)

A pool of equally-sized small files, each sized at 1MB, was also created to assess
the reading behavior in an experiment identical to the previous one (Tab. 5.2). As

5.2. REPLICA PLACEMENT AWARENESS 75

Figure 5.3: Evaluation of elapsed time during local and non-local data reading in
large files (122MB), as shown in Tab. 5.1

expected, the network impact was negligible in this case and almost identical to
the local case, so further investigation was not pursued.

Total
Number
of Files

Total
Non-Local

Files
Local (s)

Non-Local
(s)

Speedup

50 17 1.321 1.373 x1.00

Table 5.2: Evaluation of elapsed time during local and non-local data reading in
small files (1MB each)

5.2.1.3 Discussion

The experiments demonstrate the impact of data locality, with local reading achiev-
ing a speedup up to ∼2.7x compared to non-local reading. Even better results are
anticipated in similar experiments with a higher number of files.

A question arises of how likely is for local access to happen as a probability
of finding a replica of a particular file block on a specific machine, without any
modification of HDFS replica placement policies. It is important to note that the
experimental environment was not tuned or designed to achieve the best possible

76 CHAPTER 5. RAPID RECOVERY OF SPSS

results. A cluster consisting of only 3 DataNodes with a replication factor of 2
implies that approximately 66.6% of the data would have a local replica. However,
this is not representative of more typical, large cluster topologies, where there is a
lower probability that the data needed resides on a local machine. The probability
that a replica of the data exists on a local machine can be calculated using the
equation:

RF

ND
∗ 100 (5.1)

where RF represents the replication factor and ND denotes the number of
DataNodes. For example, with a 10-DataNode cluster and a replication factor of
2, the probability drops to 20%. In such cases, monitoring the location of each
replica and utilizing directed recovery on specific nodes when possible becomes
particularly important for enhancing overall performance. In the remainder we
will thus focus on control of task placement during recovery actions as a way to
achieve local recovery.

5.3 Control Task Recovery with Flink & HDFS

In this section, we further investigate rapid recovery by aligning recovery tasks
with externally stored state. We recognize that combining frameworks like Flink
with external persistent file systems such as HDFS or S3 is a common use case, as
the former do not typically provide built-in data storage capabilities. By persisting
state reliably, a recoverable stream processing system can effectively recover from
unexpected failures. Thus, the combination of Flink with HDFS, the latter as a
checkpointing back-end for Flink, is a good choice to accomplish our target.

An ideal implementation should be fully portable and involve minimal intru-
sion into existing technologies, apart from extracting and utilizing management
information, preferably through standard APIs, from both systems. Figure 5.4
illustrates this core idea. Beyond the preliminary experimentation described in
previous sections, exploiting data locality and avoiding network overheads in the
general case is the main focus of our efforts.

In more practical terms, we emphasize on the state-of-the-art incremental dis-
tributed checkpointing capabilities of the Flink SPS (Section 2.2.5) as a common
mechanism for maintaining state in a fault-tolerant manner. As demonstrated in
our earlier experiments (Sec. 5.2.1), knowing where the state is stored can impact
the performance of the recovery significantly by avoiding network overheads. For
this to happen, however, it is a prerequisite that Flink and HDFS are co-located
in the same machines (at least the Flink TaskManager and HDFS DataNodes,
creating opportunities for local recovery as depicted in Figure 5.5).

In order to tackle this problem, we have identified two alternative approaches
that we can pursue. The first approach involves influencing data placement policies
on the HDFS side, ensuring that specific data blocks are placed on machines where

5.3. CONTROL TASK RECOVERY WITH FLINK & HDFS 77

Figure 5.4: Core Idea Overview: Create a portable middle layer to provide cross-
layer cooordination of Flink and HDFS during operator state recovery, with min-
imal changes to the Flink and HDFS systems

the information is needed (e.g., if the locations of recovery TaskManagers are
known in advance). The second approach focuses on the Flink side, determining
where recovery TMs are placed after a failure, given apriori knowledge about the
locations of the data.

After evaluating the advantages and disadvantages of both directions, we have
selected the second approach as the preferred option for initial exploration, on
the grounds of feasibility and ease of implementation. This approach primarily
focuses on modifying Flink to make informed decisions about recovery TaskMan-
ager placement while leveraging the powerful HDFS reporting capabilities that
provide insights into replica placement status. As described in Section 5.2 on the
replica-placement awareness system, the script we created to draw information
regarding block locations of specific directories in the HDFS would be used in a
continuous process to learn and maintain knowledge about replica locations in this
solution. Specifically, the script produces a file with a list of all DataNode IPs that
are involved in storing information of files within the specific directory given by
the user (the checkpoint directory). The list of IPs is sorted in descending order
of the total size required for that directory. One way to use this information is
to derive the highest probability of achieving data locality (the more state stored
in a machine the more likely it is that a piece of required data may be found
in the same machine). However, this probabilistic approach alone may not pro-
vide a clear perspective on the comparison between local and non-local recovery.

78 CHAPTER 5. RAPID RECOVERY OF SPSS

Figure 5.5: Cluster topology example: TaskManagers (TM) and DataNodes (DN)
must be co-located on all machines. JobManager (JM) and NameNode (NN) be
located on either the same or different machines. M3, M5 machines execute a Flink
pipeline of multiple operators and produce local RocksDB state. Arrows point to
the locations where checkpointed state persist its replicas

Therefore, we have designed experiments that clearly differentiate between the two
methods by using a small cluster and appropriate replication factor in each case
(see Section 5.3.1 for details).

Another crucial aspect of implementation is ensuring that Flink can effec-
tively leverage replica-placement information. By default, Flink is TaskManager-
agnostic, meaning it does not prioritize which TaskManager executes a given task
as long as the resource requirements are met. To address this, we have decided to
identify the IP addresses of each TaskManager and, in the event of a failure, restart
the TaskManager on the machine that maximizes the probability of achieving data
locality while meeting the resource requirements. Our modified version of Flink
supports this informed decision-making process.

Let us consider the example illustrated in Figure 5.6. Assuming equal chunk
sizes, the script will return the IP of the TM1/DN1 server whose total DN size
will be higher in comparison to others. A higher total size indicates a greater
probability of achieving data locality. In this simple example, 5 chunks with repli-
cation factor 2 are distributed among 3 TM/DNs, and as we see DN1 contains
4
5 chunks in contrast with DN2, DN3 that contain 3

5 of the chunks. In a more
realistic scenario, the node topology can be much more complex with data get-
ting distributed evenly in more machines, which may result in lower data-locality
probabilities. Figure 5.7 depicts a flowchart outlining the steps involved in the
probabilistic-centered recovery process.

When probabilities are balanced across the cluster, in which case there is no
clear pointer on where to restart a failed task, we need to dig deeper into the

5.3. CONTROL TASK RECOVERY WITH FLINK & HDFS 79

Figure 5.6: Execution example HDFS chunk distribution. In the example, the
replication factor is 2 with 5 chunks of data. Naming the chunks follows the pattern
chk(#Chunk number) (#Chunk replica). The term chunks is used to describe
HDFS data blocks that also represents how checkpoints are stored

replica-placement information and derive exact location information, namely which
TM/DN server contains all or part of the required recovery state. Instead of just
taking into consideration the complete checkpoint persisted in the HDFS, a more
effective approach would be to isolate the information that is actually required for
the recovery of each specific TM/DN server.

To provide a more detailed explanation of this approach, it is important to
highlight a few additional technical details about how Flink stores and persists
state. When utilizing RocksDB as state backend, each TM machine maintains
its own local RocksDB instance and snapshots of this state are checkpointed to a
durable store. Given a specific Flink job, multiple RocksDB folders are generated
with each folder being a database itself. Naming those folders follows a specific
pattern as shown in Figure 5.9. Persisted checkpoints also follow a specific direc-
tory structure with the following main directories: shared a directory for state
that is possibly part of multiple checkpoints, taskowned is for state that must
never be dropped by the JobManager and chk-(chk number) which is for state
that belongs to one checkpoint only [11].

Upon examining the mechanism through an example, we discovered that each
of the different RocksDB files persisted differentiate their final name on the HDFS
side by performing some kind of hashing, as shown in Figure 5.8. Furthermore,
we observed that the file names on the HDFS side change from one checkpoint to
another, which is expected due to the incremental nature of the checkpoints. Cur-
rently, work is in progress to determine the exact mapping between local RocksDB
instances and the HDFS checkpointed files. One possible solution involves de-
crypting a file named metadata found under the chk-(chk number) directory

80 CHAPTER 5. RAPID RECOVERY OF SPSS

Figure 5.7: Probabilistic approach recovery execution flow of an application from
the moment of failure until the recovery

Figure 5.8: HDFS persistent checkpointing name hashing

in HDFS. This file is updated on every checkpoint and contains metadata infor-
mation and properties of all the RocksDB instances that are persisted as part
of the checkpoint. However, some of the information in the file is currently un-
readable and cannot be used in its current form. Flink’s log files could also be
a possible solution to the mapping problem. When restoring state from failure
we can observe in the log files a form of mapping between hdfs files and sst table
that RocksDB generates. Whether these sst tables are sufficient to reconstruct the
entire RocksDB local instance during the recovery process or whether it requires
extra information are questions left for future work.

After mapping each TM’s Local RocksDB information to its corresponding
HDFS files we can look up those HDFS file names required for the recovery of a
specific TM using the replica awareness script. This forms the core idea of the
Deterministic approach, and after this step, the rest of the recovery steps follow
the probabilistic approach outlined in Figure 5.10.

5.3. CONTROL TASK RECOVERY WITH FLINK & HDFS 81

Figure 5.9: Local RocksDB checkpointing naming format

By examining the operator-state naming used in the TM, we can look up HDFS
file names into the NN and translate to blocks, then to replicas and their locations.
Using the results of this lookup we believe that we can identify the nodes (DNs)
that hold replicas of the state involved in the recovery of a TN. We then use the
IP to restart the TN on that machine.

To achieve optimal locality results using the deterministic approach, an ad-
ditional step is required: creating a custom HDFS affinity policy based on the
example shown in Fig. 5.5. This policy is crucial for ensuring that all check-
pointed state originating from a specific Local RocksDB TM is persisted on the
same machines. The same principle applies to the replicas as well. This becomes
especially important in complex scenarios where multiple state operators may ex-
ist in the local directories of RocksDB. As discussed earlier, due to the generation
of multiple files during incremental checkpoints, the default HDFS placement pol-
icy can result in the placement of checkpoints from the same local RocksDB on
different machines, thereby leading to non-local recovery cases.

5.3.1 Evaluation

This section presents a simulation of a simple execution scenario designed to eval-
uate the performance impact of data locality during state recovery in streaming
applications. For this evaluation, we utilize Apache Flink as the processing en-
gine, RocksDB as the state backend and HDFS for providing a persistent storage
solution. While the application used for the evaluation is relatively simplistic, fo-
cusing on the recovery aspect allows us to isolate it from the complexities of the
application itself. It is worth noting that the findings and techniques presented
here can be applied to more complex stateful applications as well.

5.3.1.1 Experiment description and setup

The experiment focuses on a variation of a typical WordCount application, which
counts the number of words in a given input. In this case, the application is
designed to generate 128-bit UUIDs and count the instances of each UUID while
maintaining the timestamp of its last occurrence. Both ValueState and MapState

82 CHAPTER 5. RAPID RECOVERY OF SPSS

Figure 5.10: Deterministic approach recovery execution flow of an application from
the moment of failure until the recovery

state primitives are utilized to generate as much state as possible, resulting in large
checkpoints. The checkpoint interval is set to 15 seconds.

While streaming applications are typically unbounded, which can pose chal-
lenges for evaluation purposes, the source operator in this experiment is specifically
crafted to ensure fair results. The input is generated from a pseudorandom UUID
Synthetic Source Generator, and the size of the input (in MBs) is determined by
the user. This approach allows for a fair assessment of the performance impact
during recovery.

The results presented in this section are the averages of at least 5 executions.
Our primary evaluation metric, referred to as the recovery time, focuses on the du-
ration it takes for Flink to retrieve the checkpointed state from persistent storage
(in our case, HDFS) and reconstruct the local RocksDB instances to resume pro-
cessing. It is important to highlight that our metric differs significantly from the

5.3. CONTROL TASK RECOVERY WITH FLINK & HDFS 83

built-in Flink metric recoveryTime, which measures the time it takes the JobMan-
ager to establish new connection with a TaskManager upon after a failure occurs.
To evaluate our recovery time metric, we subtract the connection timestamp of the
recovered TaskManager from the timestamp when the local instance of RocksDB
completes the reconstruction of the checkpointed state. To maintain accuracy and
clarity, we have excluded the time it took for the JobManager to track the failure
and establish a new connection with a TM. Including this time would introduce
noise to our measurements due to the internal handling of failures within Flink.

The experiments follows this timeline: First, the application is executed nor-
mally in Apache Flink. The progress of the application is monitored through Flink
Metrics in the WebUI. Since source generates input of specific size, it is easy to
determine when the processing is complete. After the initial execution of each
experiment, the number of records for each file size is also tracked (Tab. 5.3), pro-
viding previously unknown information. Once all the records are processed, the
TaskManager executing the job is intentionally terminated. This triggers Flink’s
recovery mechanism, and the job is restarted on an available Task Manager.

Two different experiments are conducted to evaluate the performance of local
recovery compared to non-local recovery. Our main experimental testbed consists
of five servers, each equipped with a Intel Xeon Bronze 3106 8-core 1.70GHz CPU,
16GB DDR4 2666MHz DIMMs, 256GB Intel D3-S4610 SSD and 2TB Ultrastar
7K2 HDD, running Ubuntu Linux 16.04.6 LTS, interconnected via a 10Gb/s Dell
N4032 switch. In both experiments, the JobManager of Flink and the NameNode
of HDFS are colocated on the same machine.

In the local recovery case, four TaskManagers and four DataNodes coexist on a
separate servers from the JobManager and NameNode, with a replication factor set
to 4. This configuration ensures that a replica of the data exists on each machine
and can be found locally during recovery.

In the non-local recovery case, we utilize two TaskManagers and two DataN-
odes all of which reside on different servers, in addition to the JobManager and
NameNode. The replication factor is set to 1, and as the existing DataNodes are
detached from the TaskManagers, no local replicas can exist. This scenario enables
the evaluation of recovery performance without the benefit of data locality.

5.3.1.2 Results

Table 5.3 and Figure 5.11 showcase the recovery time of local compared to non-
local state for input of different sizes. The first column of Table 5.3 shows the file
size of the processed files in MBs while the next two columns depict the recovery
time for state recovery in seconds.

In addition to recovery time, the number of records is also a relevant metric.
Table 5.3 provides the correspondence between file size and the number of records.

84 CHAPTER 5. RAPID RECOVERY OF SPSS

File size
(MBs)

Number of
Records
Sent

Local recov-
eryTime
AVG (s)

Non-local
recovery-

Time
AVG(s)

Speedup

1 29k 2.0296 2.2454 x1.11

250 7M 2.5724 2.9022 x1.13

500 14M 2.857 3.572 x1.25

750 21M 3.3196 4.0604 x1.22

1000 29M 3.8112 4.964 x1.30

1250 36M 4.9868 6.1786 x1.24

1500 43M 6.0304 7.6368 x1.27

1750 50M 7.0768 8.9166 x1.26

2000 58M 7.862 10.4488 x1.33

Table 5.3: Results of elapsed time during local and remote state recovery

5.3.1.3 Discussion

The results presented in the previous section align with expectations. In general,
when data locality exists, faster execution times are expected since processing and
data co-locate on the same machine, eliminating the need for additional network
IOs.

In the first two cases, we observe a speedup of ∼1.1x between local and non-
local execution. This can be attributed to two reasons. Firstly, as mentioned
earlier, Flink maintains a minimal checkpoint state for recovery, resulting in a
smaller file size required for recovery compared to the processed state. Secondly,
the fast network bandwidth between the servers minimizes the impact of trans-
ferring data, making the difference between remote and local execution negligible
especially when recovering a smaller amount of state.

In the remaining cases, where the state for recovery increases we observe
speedup ranging from ∼1.2x to ∼1.3x. While the results demonstrate the per-
formance gain achieved through data locality during recovery, we do not observe
linear speedup with file size. The comparison is expected to be much clearer when
recovering much larger state, which would require a more complex application or
larger input state. Nevertheless, even in this simplified scenario, the performance
improvement gained from leveraging data locality during recovery is evident.

5.3. CONTROL TASK RECOVERY WITH FLINK & HDFS 85

Figure 5.11: Result representation of recovery time during local and remote state
recovery

86 CHAPTER 5. RAPID RECOVERY OF SPSS

Chapter 6

Related Work

Stream data processing is an important technology posing unique challenges and
opportunities. Röger and Mayer’s survey [38] highlights the challenges of pro-
cessing high-velocity data streams, achieving low-latency processing for real-time
analytics, and the difficulties of scaling stream processing systems to handle large
volumes of data. They provide an extensive review of methods to parallelize data-
stream processing queries, including techniques such as data partitioning, pipeline
parallelism, and load balancing. These techniques distribute the workload across
multiple processing nodes, allowing stream processing systems to scale out to han-
dle larger data volumes and provide low-latency processing.

6.1 Achieving Completeness: In-Order Stream Pro-
cessing

Handling out-of-order stream data in window processing is an important con-
sideration in stream-processing systems. Watermarks are a key mechanism for
addressing this challenge. Akidau et al. [2] provide a comprehensive analysis of
different watermarking implementations in two widely-used systems, Apache Flink
and Google Cloud Dataflow. The authors analyze the tradeoffs between cost and
complexity of different watermarking approaches, as well as their effectiveness
in ensuring temporal completeness. In this thesis, we contribute an application-
specific watermarking strategy ensuring completeness in the processing of financial
tick data.

In Truviso [31], the authors present the model of order-independent systems,
which specifically addresses the issue of handling late-arriving tuples after a win-
dow closes. Truviso produces partial results when the system receives tuples older
than the latest emitted punctuation (progress indicator tuple), leading to correct-
ness on an eventually consistent basis. These late results are used to consolidate
previously emitted results of closed windows in a lazy fashion, either for live contin-
uous queries or on-demand when queried. Similar to P-TAP, Truviso is designed
to handle streams from multiple data sources that are internally in-order and

87

88 CHAPTER 6. RELATED WORK

out-of-order with respect to each other. However, in contrast to P-TAP, Truviso
focuses more on data stream processing with partial results, targeting a different
application domain.

Schneider et al. [40] proposed an approach for auto-parallelizing stateful dis-
tributed streaming applications that addresses the challenge of ensuring in-order
processing of events. To detect missing and out-of-order events, the authors used
periodic pulses and sequence numbers, respectively. Periodic pulses were sent
on parallel instances with the same sequence number and merged with tuples to
guarantee that at least one piece of information necessary for stream progression
happens per epoch. P-TAP employs similar concepts at a high level, but is imple-
mented at application-level over unmodified Apache Flink. Rather than assigning
sequence numbers to each tuple, we leverage their grouping into batches along with
metadata to reduce the number of required broadcasting messages. Additionally,
our periodic timers are triggered lazily per keyed state until each key catches up
with the latest safe-to-report batch ID.

Tangwongsan et al. [43] introduced FiBA, an aggregation algorithm specifi-
cally designed for sliding window aggregation that efficiently handles out-of-order
tuples. FiBA leverages B-trees with finger searching and position-aware partial
aggregates, enabling it to match a theoretical lower bound. While our problem
requires the use of tumbling windows, our windowing mechanism could be ex-
tended to support sliding windows by incorporating additional metadata. FiBA
focuses on developing an optimal sliding window aggregation mechanism without
restrictions on the degree of disorder, and it accomplishes this without relying on
watermarking. However, it delegates decisions such as closing windows and purg-
ing state to the corresponding framework employed. As such, the FiBA algorithm
can complement our windowing mechanism.

6.2 Processing of Financial Tick Data

In the context of DEBS 2022 GC, several solutions have been proposed to address
the problem of detecting breakout events using tick data [6] [32] [37] [3] [34] [47].
Many of these solutions leverage open-source frameworks such as Apache Flink
and Apache Spark, which are specifically designed to handle large volumes of data
efficiently. While some approaches attempted to develop custom solutions [6] [34],
designed from scratch to maximize performance, they often lack essential features
such as fault-tolerance that are inherent in the aforementioned frameworks. Addi-
tionally, the GC encouraged participants to address non-functional requirements,
leading some solutions to focus on aspects such as easy deployment using Docker
or graphical representation of results using tools like Grafana and Prometheus.
Our solution emphasizes on meeting the functional requirements and how we can
achieve completeness while not sacrificing performance.

Within the domain of financial analytics, several works have focused on devel-
oping prediction market forecasting mechanisms using various machine learning

6.3. RECOVERY OF SPSS 89

models, reinforcement learning, genetic algorithms, and more [9] [39]. Frischbier’s
paper [22] offers valuable insights into the challenges posed by financial data at
scale (including data management, IT governance, and compliance) and how these
challenges can be addressed. The solution in this thesis builds upon this body
of knowledge and, to the best of our knowledge, is the first to achieve complete
in-order event processing in financial tick data despite unpredictable delays in
multiple data-ingestion paths within the parallel query.

6.3 Recovery of SPSs

Fault-tolerance and state migration have emerged as crucial topics in stream pro-
cessing systems, gaining significant importance and traction in recent years [33,
26, 25, 41, 8]. While significant progress has been made in understanding how to
checkpoint state remotely (e.g., the work of Kwon, Balazinska and Greenberg [33],
which uses HDFS for this purpose) and using it to recover to a consistent state of
a streaming job, handling efficiently very large state (of sizes that cannot possibly
fit in the memories of backup nodes via active replication [25]) in such systems is
still a challenging and multi-faceted problem.

One work closely related to the approach taken in this deliverable is Rhino [8].
Rhino is a library designed for the efficient management of very large distributed
state in stream processing systems based on the streaming dataflow paradigm. It
introduces two protocols: a handover protocol and a replication protocol. The
handover protocol facilitates the migration of running operators among work-
ers, while the replication protocol enables proactive and asynchronous incremental
state checkpointing on a set of workers. The protocols are considered to be tailored
for resource elasticity, fault-tolerance and runtime query optimizations.

While Rhino shares the core goal and similar ideas with our proposed imple-
mentation, there are significant differences in the approaches. Rhino is a library
that implements its protocols and functionalities from scratch, without leveraging
the existing functionality of stream processing systems. Notably, the functionality
provided by both Rhino protocols essentially replicates features already imple-
mented in systems like Flink and HDFS. In contrast, our solution takes a different
approach by minimizing intrusion through the combination and coordination (cross
layer) of existing systems. By leveraging the existing functionality of Flink and
HDFS, our approach aims to minimize redundant logic and build upon established
frameworks.

90 CHAPTER 6. RELATED WORK

Chapter 7

Conclusions & Future Work

This chapter concludes the thesis, summarizing the key contributions discussed in
previous chapters, while suggesting potential improvements for future work.

In this thesis, we have explored two challenges related to stream processing
in the financial domain. The first challenge focused on developing an efficient
Tick Analysis Platform (TAP) that leverages event aggregation and complex event
processing to compute trend indicators and detect patterns in real-time tick data.
Our objective was to achieve in-order processing of tick data to accurately capture
market trends and maintain the integrity of derived analytics. To address this
challenge, we proposed two applications: S-TAP and P-TAP.

In Chapter 3, we introduced S-TAP, a solution developed for the 2022 DEBS
Grand Challenge. S-TAP effectively calculated trend indicators and identified
patterns resembling those used by real-life traders. However, we identified the
handling out-of-order events and the mapping between batches of events and the
corresponding window-closings as significant correctness challenges. While S-TAP
parallelizes most operators, it maintains a single instance of the source operator
and batch-unpack logic, eventually limiting the achievable parallelism.

To overcome the limitations of S-TAP, in Chapter 4 we presented P-TAP.
P-TAP improved upon its predecessor and achieved parallel ingest of tick data
streams while preserving the same ordering guarantees, by leveraging Flink’s broad-
cast state pattern to disseminate control information about order. Our results
when analyzing our dataset demonstrate that P-TAP achieves a speedup of up
to ∼1.50x (with default settings for parallelism) vs. S-TAP, increasing to ∼1.73x
when fine-tuning P-TAP by selecting a SlotSharingGroup configurations that bet-
ter aligning operator tasks with the available physical parallelism. It is important
to note that while P-TAP exhibits superior performance in scenarios where paral-
lelism is fully utilized, S-TAP remains a more efficient solution when not saturated
at the source (ingest). Therefore, we recommend a hybrid design based on the level
of available parallelism.

Furthermore, as the second challenge in this thesis, we have focused on the

91

92 CHAPTER 7. CONCLUSIONS & FUTURE WORK

rapid recovery of Stream Processing Systems (SPSs) to ensure uninterrupted anal-
ysis in the face of failures. In Chapter 5, we focused on achieving fast recovery
by aligning recovery tasks with externally stored state. Building upon the state-
of-the-art incremental distributed checkpointing capabilities of the Apache Flink
SPS, we extended them to enhance recovery efficiency. Our primary focus was on
controlling task recovery decisions and task placement within the Apache Flink
SPS, as well as influencing Hadoop Distributed File System (HDFS) block place-
ment on data nodes.

However, there are still opportunities for further exploration and improvement
for both challenges addressed in this thesis. Regarding the TAPs, additional op-
timizations should be considered before moving the solution to production. The
proposed solutions suggest a sophisticated data pipeline along with additional ex-
ternal components (e.g., Kafka for data ingest). Optimizing such a pipeline can be
a challenging procedure due to the large number of parameters that Flink offers
concerning resource management, network communication, and more. Another
interesting avenue would be to leverage the windowing mechanism utilized for
this application. While our work focused on developing a financial application,
this mechanism can be used to ensure in-order guarantees in different application
domains.

Additionally, as mentioned in Chapter 5, some of the ideas of that section can
be further explored in future work. It is crucial to determine the mapping between
HDFS and the Local RocksDB sst tables to identify all the state files required for
recovery accurately. Furthermore, an additional HDFS affinity placement policy
is needed to enforce files originating from the same local instance of RocksDB to
be checkpointed on the same machines, ensuring locality even in more complex
pipelines with multiple operators. Another improvement would involve imple-
menting a mechanism as shown in Fig. 7.1. In this case, assuming that DNs and
TMs are co-located to achieve locality, throughout the recovery process, instead
of performing a copy from HDFS to the local instance of RocksDB, a reference
to it could be made. We intend to focus on achieving these improvements in our
follow-on research.

Figure 7.1: HDFS - Flink zero copy mechanism. When recovering from failure,
instead of copying the recovery state from HDFS simply modify its reference

Bibliography

[1] Debs 2022. Debs 2022: Call for Grand Challenge Solutions. https://2022.
debs.org/call-for-grand-challenge-solutions/[Online].

[2] Tyler Akidau, Edmon Begoli, Slava Chernyak, Fabian Hueske, Kathryn
Knight, Kenneth Knowles, Daniel Mills, and Dan Sotolongo. Watermarks
in stream processing systems: Semantics and comparative analysis of apache
flink and google cloud dataflow. Proc. VLDB Endow., 14(12):3135–3147, jul
2021.

[3] Cecilia Calavaro, Gabriele Russo Russo, and Valeria Cardellini. Real-time
analysis of market data leveraging apache flink. In Proceedings of the 16th
ACM International Conference on Distributed and Event-Based Systems,
DEBS ’22, page 162–165, New York, NY, USA, 2022. Association for Com-
puting Machinery.

[4] Paris Carbone, Gyula Fóra, Stephan Ewen, Seif Haridi, and Kostas Tzoumas.
Lightweight asynchronous snapshots for distributed dataflows, 2015.

[5] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif
Haridi, and Kostas Tzoumas. Apache flink™: Stream and batch processing in
a single engine. IEEE Data Eng. Bull., 38:28–38, 2015.

[6] Luca De Martini, Alessandro Margara, and Gianpaolo Cugola. Analysis of
market data with noir: Debs grand challenge. In Proceedings of the 16th ACM
International Conference on Distributed and Event-Based Systems, DEBS ’22,
page 139–144, New York, NY, USA, 2022. Association for Computing Machin-
ery.

[7] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, jan 2008.

[8] Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
Rhino: Efficient management of very large distributed state for stream pro-
cessing engines. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’20, page 2471–2486, New
York, NY, USA, 2020. Association for Computing Machinery.

93

https://2022.debs.org/call-for-grand-challenge-solutions/
https://2022.debs.org/call-for-grand-challenge-solutions/

94 BIBLIOGRAPHY

[9] M A H Dempster and C M Jones. A real-time adaptive trading system using
genetic programming. Quantitative Finance, 1(4):397, jul 2001.

[10] FlatIcon. ”Graph Icons”. https://www.flaticon.com/[Online].

[11] Flink. Checkpoints-State Backend, 2021. https://ci.apache.org/

projects/flink/flink-docs-master/docs/ops/state/checkpoints/.

[12] Flink. Incremental checkpointing, 2021. https://flink.apache.org/

features/2018/01/30/incremental-checkpointing.html.

[13] Apache Flink. Allowed Lateness. https://nightlies.apache.org/

flink/flink-docs-master/docs/dev/datastream/operators/windows/

#allowed-lateness[Online].

[14] Apache Flink. Async I/O. https://nightlies.apache.org/flink/

flink-docs-master/docs/dev/datastream/operators/asyncio/[Online].

[15] Apache Flink. DataStream API. https://nightlies.apache.org/flink/

flink-docs-release-1.10/dev/api_concepts.html[Online].

[16] Apache Flink. Stateful Computations over Data Streams. https://

ci.apache.org/projects/flink/flink-docs-release-1.1/internals/

general_arch.html[Online].

[17] Apache Flink. Stateful Stream Processing. https://

nightlies.apache.org/flink/flink-docs-master/docs/concepts/

stateful-stream-processing/[Online].

[18] Apache Flink. Stream processing: An Introduction to Event
Time in Apache Flink. https://www.ververica.com/blog/

stream-processing-introduction-event-time-apache-flink[Online].

[19] Apache Flink. Timely Stream Processing. https://nightlies.apache.org/
flink/flink-docs-master/docs/concepts/time/[Online].

[20] S. Frischbier, J. Tahir, C. Doblander, A. Hormann, R. Mayer, and H.-A.
Jacobsen. Debs 2022 grand challenge data set: Trading data, 2022. https:

//doi.org/10.5281/zenodo.6382482.

[21] S. Frischbier, J. Tahir, C. Doblander, A. Hormann, R. Mayer, and H.-A.
Jacobsen. The DEBS 2022 Grand Challenge: Detecting Trading Trends in
Financial Tick Data. In Proc. of the 16th ACM Int. Conference on Distributed
and Event-Based Systems, DEBS ’22, 2022.

[22] Sebastian Frischbier, Mario Paic, Alexander Echler, and Christian Roth. Man-
aging the Complexity of Processing Financial Data at Scale - An Experience
Report, pages 14–26. 01 2020.

https://www.flaticon.com/
https://ci.apache.org/projects/flink/flink-docs-master/docs/ops/state/checkpoints/
https://ci.apache.org/projects/flink/flink-docs-master/docs/ops/state/checkpoints/
https://flink.apache.org/features/2018/01/30/incremental-checkpointing.html
https://flink.apache.org/features/2018/01/30/incremental-checkpointing.html
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/operators/windows/#allowed-lateness
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/operators/windows/#allowed-lateness
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/operators/windows/#allowed-lateness
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/operators/asyncio/
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/operators/asyncio/
https://nightlies.apache.org/flink/flink-docs-release-1.10/dev/api_concepts.html
https://nightlies.apache.org/flink/flink-docs-release-1.10/dev/api_concepts.html
https://ci.apache.org/projects/flink/flink-docs-release-1.1/internals/general_arch.html
https://ci.apache.org/projects/flink/flink-docs-release-1.1/internals/general_arch.html
https://ci.apache.org/projects/flink/flink-docs-release-1.1/internals/general_arch.html
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/stateful-stream-processing/
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/stateful-stream-processing/
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/stateful-stream-processing/
https://www.ververica.com/blog/stream-processing-introduction-event-time-apache-flink
https://www.ververica.com/blog/stream-processing-introduction-event-time-apache-flink
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/time/
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/time/
https://doi.org/10.5281/zenodo.6382482
https://doi.org/10.5281/zenodo.6382482

BIBLIOGRAPHY 95

[23] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file
system. volume 37, pages 29–43, 12 2003.

[24] Apache Hadoop. Apache Hadoop Official Website. https://hadoop.apache.
org/[Online].

[25] Jeong-Hyon Hwang, Magdalena Balazinska, Alexander Rasin, Ugur
Cetintemel, Michael Stonebraker, and Stan Zdonik. High-availability algo-
rithms for distributed stream processing. In Proceedings of the 21st Interna-
tional Conference on Data Engineering, ICDE ’05, page 779–790, USA, 2005.
IEEE Computer Society.

[26] Gabriela Jacques-Silva, Bugra Gedik, Henrique Andrade, and Kun-Lung Wu.
Language level checkpointing support for stream processing applications. In
2009 IEEE/IFIP International Conference on Dependable Systems Networks,
pages 145–154, 2009.

[27] S. Kalogerakis. Migrating state between jobs in apache spark. Diploma work,
School of Electrical and Computer Engineering, Technical University of Crete,
Chania, Greece, 2020.

[28] Stefanos Kalogerakis, Antonis Papaioannou, and Kostas Magoutis. Efficient
processing of high-volume tick data with apache flink for the debs 2022 grand
challenge. In Proceedings of the 16th ACM International Conference on Dis-
tributed and Event-Based Systems, DEBS ’22, page 156–161, New York, NY,
USA, 2022. Association for Computing Machinery.

[29] P. J. Kaufman. Trading Systems and Methods. Wiley Publishing, 5th edition,
2013.

[30] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: a Distributed Messag-
ing System for Log Processing. In Proc. of 6th International Workshop on
Networking Meets Databases (NetDB 2011).

[31] Sailesh Krishnamurthy, Michael J. Franklin, Jeffrey Davis, Daniel Farina,
Pasha Golovko, Alan Li, and Neil Thombre. Continuous analytics over dis-
continuous streams. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10, page 1081–1092, New
York, NY, USA, 2010. Association for Computing Machinery.

[32] Emmanouil Kritharakis, Shengyao Luo, Vivek Unnikrishnan, and Karan Vom-
batkere. Detecting trading trends in streaming financial data using apache
flink. In Proceedings of the 16th ACM International Conference on Distributed
and Event-Based Systems, DEBS ’22, page 145–150, New York, NY, USA,
2022. Association for Computing Machinery.

https://hadoop.apache.org/
https://hadoop.apache.org/

96 BIBLIOGRAPHY

[33] YongChul Kwon, Magdalena Balazinska, and Albert Greenberg. Fault-
tolerant stream processing using a distributed, replicated file system. Proc.
VLDB Endow., 1(1):574–585, August 2008.

[34] Kevin Li, Daniel Fernandez, David Klingler, Yuhan Gao, Jacob Rivera, and
Kia Teymourian. A high-performance processing system for monitoring stock
market data stream. In Proceedings of the 16th ACM International Conference
on Distributed and Event-Based Systems, DEBS ’22, page 166–170, New York,
NY, USA, 2022. Association for Computing Machinery.

[35] Medium. ”Managed Key State in Flink”. https://medium.com/

@sruthisreekumar/managed-key-state-in-flink-30ed45103b3a[Online].

[36] Antonis Papaioannou and Kostas Magoutis. Amoeba: Aligning stream pro-
cessing operators with externally-managed state. In Proceedings of the 14th
IEEE/ACM International Conference on Utility and Cloud Computing, UCC
’21, New York, NY, USA, 2021. Association for Computing Machinery.

[37] Quan Pham, Quang Nguyen, Ryte Richard, Shekhar Sharma, and Xavier
Ruiz. Detecting technical trading patterns in financial data with apache
flink: Debs grand challenge 2022. In Proceedings of the 16th ACM Interna-
tional Conference on Distributed and Event-Based Systems, DEBS ’22, page
151–155, New York, NY, USA, 2022. Association for Computing Machinery.

[38] H. Röger and R. Mayer. A comprehensive survey on parallelization and elas-
ticity in stream processing. ACM Computing Surveys, 52(2):847–872, 2019.

[39] Santosh Kumar Sahu, Anil Mokhade, and Neeraj Dhanraj Bokde. An
overview of machine learning, deep learning, and reinforcement learning-based
techniques in quantitative finance: Recent progress and challenges. Applied
Sciences, 13(3), 2023.

[40] Scott Schneider, Martin Hirzel, Bugra Gedik, and Kun-Lung Wu. Auto-
parallelizing stateful distributed streaming applications. In Proceedings of
the 21st International Conference on Parallel Architectures and Compilation
Techniques, PACT ’12, page 53–64, New York, NY, USA, 2012. Association
for Computing Machinery.

[41] Zoe Sebepou and Kostas Magoutis. CEC: Continuous eventual checkpointing
for data stream processing operators. In 2011 IEEE/IFIP 41st International
Conference on Dependable Systems Networks (DSN), pages 145–156, 2011.

[42] J. Tahir, C. Doblander, R. Mayer, S. Frischbier, and H.-A. Jacobsen. The
debs 2021 grand challenge: Analyzing environmental impact of worldwide
lockdowns. In Proc. of the 15th ACM Int. Conf. on Distributed and Event-
Based Systems, DEBS ’21, 2021.

https://medium.com/@sruthisreekumar/managed-key-state-in-flink-30ed45103b3a
https://medium.com/@sruthisreekumar/managed-key-state-in-flink-30ed45103b3a

BIBLIOGRAPHY 97

[43] Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. Optimal and
general out-of-order sliding-window aggregation. Proc. VLDB Endow.,
12(10):1167–1180, jun 2019.

[44] TowardsDataScience. ”How Flink stores your
state”. https://towardsdatascience.com/

heres-how-flink-stores-your-state-7b37fbb60e1a [Online].

[45] Dawid Wysakowicz Ververica. ”A beginner’s Guide to checkpoints in Apache
Flink”. [Online].

[46] Juliane Verwiebe, Philipp Grulich, Jonas Traub, and Volker Mark. Correction
to: Survey of window types for aggregation in stream processing systems. The
VLDB Journal, 05 2023.

[47] Suyeon Wang, Jaekyeong Kim, Yoonsang Yang, Jinseong Hwang, Jungkyu
Han, and Sejin Chun. Real-time stock market analytics for improving de-
ployment and accessibility using pyspark and docker. In Proceedings of the
16th ACM International Conference on Distributed and Event-Based Systems,
DEBS ’22, page 171–175, New York, NY, USA, 2022. Association for Com-
puting Machinery.

https://towardsdatascience.com/heres-how-flink-stores-your-state-7b37fbb60e1a
https://towardsdatascience.com/heres-how-flink-stores-your-state-7b37fbb60e1a

	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Thesis Contributions
	Thesis Organization

	Background
	Stream Processing
	Bounded and Unbounded Streams

	Apache Flink
	Overview
	Ecosystem and Integration
	Architecture of Apache Flink
	Task Slots and Resource Management

	State Management
	Types of State in Flink
	State Backends in Flink

	Checkpoints and Savepoints
	Data Processing
	Time Notion, Windows & Watermarks
	Flink Programs & DataStream API

	Environment Setup
	Setup a Multi-Node Flink cluster
	Building from source

	Apache Kafka
	Publish/Subscribe messaging
	Architecture

	Financial Analytics: Discovering Breakout Patterns
	Financial Dataset
	HDFS - Hadoop Distributed File System
	Key Features of HDFS
	Architecture
	NameNode
	DataNodes

	Data Manipulation
	Block Division
	Replication

	Environment Setup
	Setup a Multi-Node HDFS Cluster
	Building HDFS from source
	Automating the building and testing process

	Single-source Tick Analysis Platform(S-TAP)
	Introduction & DEBS Grand Challenge 2022
	Design and Implementation
	Data Ingestion-Reporting Manager (DIRM)
	Use of Kafka for asynchronous messaging
	Data Processing

	Automation Script
	Evaluation on Challenger Platform
	Effect of ingestion rate-control (throttling)
	Effect of memory allocated to Flink
	Effect of parallelism on single TaskManager

	Parallel-source Tick Analysis Platform (P-TAP)
	Introduction & S-TAP Restrictions
	Design and Implementation
	Data Ingestion Manager (DIM)
	Use of Kafka for asynchronous messaging
	P-TAP data processing
	Result Validation Manager (RVM)

	Evaluation
	Impact of timer setting
	Impact of batch size
	Impact of number of lookup symbols
	Scalability with increasing parallelism
	Performance comparison of S-TAP to P-TAP
	Further tuning of P-TAP

	Discussion

	Rapid Recovery of SPSs
	Introduction
	Replica Placement Awareness
	Evaluation
	Experiment Description and setup
	Results
	Discussion

	Control Task Recovery with Flink & HDFS
	Evaluation
	Experiment description and setup
	Results
	Discussion

	Related Work
	Achieving Completeness: In-Order Stream Processing
	Processing of Financial Tick Data
	Recovery of SPSs

	Conclusions & Future Work
	Bibliography

