
From File Folders to Knowledge Graphs : An

Automatic and Configurable Symbiotic

Approach

Emmanouil Smyrnakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Prof.Yannis Tzitzikas

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

University of Crete
Computer Science Department

From File Folders to Knowledge Graphs : An Automatic and
Configurable Symbiotic Approach

Thesis submitted by
Emmanouil Smyrnakis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Emmanouil Smyrnakis

Committee approvals:
Yannis Tzitzikas
Professor, Thesis Supervisor

Dimitris Plexousakis
Professor, Committee Member

Kostas Magoutis
Professor, Committee Member

Departmental approval:
Polyvios Pratikakis
Professor, Director of Graduate Studies

Heraklion, March 2024

From File Folders to Knowledge Graphs : An
Automatic and Configurable Symbiotic Approach

Abstract

We daily all use the file system of our operating system to organize our files
of any kind (from documents to data and applications), both plain users and IT
professionals. The tree-structured and semantics-neutral approach of file systems
is the dominant method for organizing information, decades now. In this paper
we elaborate on the following two questions: (a) can a file system structure be
benefited by a Knowledge Graph (KG), (b) can the construction of a KG be facili-
tated by the file system? We elaborate on these questions and then we propose an
automatic method for producing KGs from folder structures. The method can be
configured through small, and easy to write, configuration files that can be placed
in the desired folders to guide the KG construction. We present FS2KG, an imple-
mentation of a proof-of-concept prototype that includes a file explorer (enriched
with KG-related information). Then we present empirical and experimental re-
sults, as well as a task-based evaluation with users. In brief, the approach can
facilitate the rapid creation of KGs, as well as various file system related tasks.
Beyond the empirical validation, we include a discussion of potential advancements
and applications.

Από Φακέλους Αρχείων σε Γνωσιακούς Γράφους:

Μια Αυτόματη και Διαμορφώσιμη Συμβιωτική

Προσέγγιση

Περίληψη

΄Ολοι μας καθημερινά χρησιμοποιούμε το σύστημα αρχείων του λειτουργικού μας

συστήματος για να οργανώσουμε αρχεία οποιουδήποτε τύπου (από αρχεία δεδομένων

έως αρχεία λογισμικού) τόσο απλοί χρήστες όσο και επαγγελματίες της πληροφορι-

κής. Η ιεραρχικά δομημένη και σημασιολογικά ουδέτερη προσέγγιση των συστημάτων

αρχείων είναι η κυρίαρχη μέθοδος για την οργάνωση πληροφοριών εδώ και αρκετές δε-

καετίες. Σε αυτή την μεταπτυχιακή εργασία, επικεντρωνόμαστε σε δύο ερωτήσεις: α)

μπορεί ένα σύστημα αρχείων να επωφεληθεί από την ύπαρξη ενός γνωσιακού γράφου·

β) μπορεί η δημιουργία ενος γνωσιακού γράφου να διευκολυνθεί από το σύστημα αρ-

χείων· Συζητάμε αυτές τις δύο ερωτήσεις και έπειτα προτείνουμε μια αυτόματη μέθοδο

για την παραγωγή γνωσιακών γράφων από δομές φακέλων. Η μέθοδος αυτή μπορεί να

διαμορφωθεί μέσω μικρών και εύκολων στη δημιουργία, αρχείων ρυθμίσεων που μπο-

ρούν να τοποθετηθούν στους επιθυμητούς φακέλους για να οδηγήσουν την δημιουργία

του γνωσιακού γράφου. Συγκεκριμένα, παρουσιάζουμε το FS2KG, ένα ερευνητικό
πρωτότυπο που υλοποιεί αυτήν την ιδέα και περιλαμβάνει και έναν εξερευνητή αρχείων

ο οποίος είναι εμπλουτισμένος με λειτουργίες που εδράζονται στο Γνωσιακό Γράφο.

Κατόπιν παρουσιάζουμε κάποια εμπειρικά και πειραματικά αποτελέσματα καθώς και

μια αξιολόγηση βάσει εργασιών με χρήστες. Επίσης περιγράφουμε μια πληθώρα από

πιθανές επεκτάσεις τόσο στην προσέγγιση όσο και στην υλοποίηση.

Ευχαριστίες

Αρχικά, θα ήθελα να ευχαριστήσω τον κ. Γιάννη Τζίτζικα για την στήριξη και

την καθοδήγηση τόσο σε προπτυχιακό επίπεδο όσο και καθόλη την διάρκεια της ακα-

δημαικής μου καριέρας μέχρι την ολοκλήρωση της εργασίας αυτής. Επίσης, θα ήθελα

να εκφράσω τις ευχαριστίες μου στον κ. Δημήτρη Πλεξουσάκη και στον κ. Κώστα

Μαγκούτη για την προθυμία τους να συμμετέχουν στην τριμελή επιτροπή. Ακόμη,

ευχαριστώ το Τμήμα Επιστήμης ΄Υπολογιστων του Πανεπιστημίου Κρήτης για την

αποδοχή στο μεταπτυχιακό πρόγραμμα και το Ινστιτούτο Πληροφορικής του ΙΤΕ για

την υποτροφία που μου προσέφερε κατα τη διάρκεια της μεταπτυχιακής μου εργασίας.

Τέλος, θα ήθελα να ευχαριστήσω την οικογενειά μου για τη συνεχή στήριξη και

εμπιστοσύνη τους.

Contents

1 Introduction 1

1.1 Research Questions . 2

1.2 Challenges . 2

1.3 Approach . 2

1.4 Implementation . 3

1.5 Thesis Structure . 3

2 Background and Related Work 7

2.1 Background: Semantic Web . 7

2.1.1 RDF . 7

2.1.2 Triplestore . 8

2.1.3 Linked Data and URI . 8

2.1.4 Ontology . 8

2.1.5 OWL . 9

2.1.6 SPARQL . 9

2.2 Related Work . 11

3 Proposed Approach 17

3.1 The Default Operation Mode (the Folder’s view) 17

3.2 Configuration . 18

3.3 Scope Restriction . 18

3.4 Generation of Semantic Classes and Entities 18

3.5 Generation of Semantic Relationships 21

3.6 Extra Triples . 24

3.7 Provenance (connecting the Folder’s view with the Semantic View) 24

3.8 Query Manager . 25

4 Implementation, Applications and Extensions 27

4.1 Implementation . 27

4.1.1 Technical Overview . 27

4.1.2 Main grid . 29

4.1.3 File tree structure . 31

4.1.4 Semantic info panel . 32

i

4.1.5 Console panel . 34
4.1.6 Knowledge graph creation 36

4.2 Applicability . 39
4.3 Test Case: Personal Library . 39
4.4 Efficiency . 40
4.5 Possible Extensions and Discussion 40

5 Evaluation 41
5.1 Evaluation scenarios . 42

5.1.1 Scenario A . 42
5.1.2 Scenario B . 42
5.1.3 Scenario C . 43

5.2 Evaluation results . 45
5.2.1 Participants . 45
5.2.2 Scenario A . 49

5.2.2.1 Results summary 56
5.2.3 Scenario B . 58

5.2.3.1 Results summary 65
5.2.4 User Ratings . 66

6 Concluding Remarks 69

Bibliography 71

ii

List of Tables

3.1 Overview of the commands that can be included in ’.kg’ files . . . 19

4.1 Experiments related to efficiency 40

5.1 Evaluation Tasks: Scenario A . 42
5.2 Evaluation Tasks: Scenario B . 43

iii

iv

List of Figures

1.1 The core connections . 4

1.2 The big picture . 5

2.1 Linked-data principles . 8

2.2 Example ontology . 9

2.3 RDF model and Web Ontology Language (OWL) 10

2.4 A semantic desktop example (added from [20]) 12

2.5 TagFS architecture (added from [23]) 13

2.6 PreScan tool overview (added from [15]) 13

2.7 TripFS tool architecture (added from [25]) 14

2.8 A complete virtual file system, representing resources from DBpedia
(added from [17]) . 15

3.1 The two class hierarchies (folder’s view and Semantic Network), and
their connection through entities 20

3.2 Defining a taxonomy through a csv file 23

3.3 FS2KG: Query/browsing interfaces 26

4.1 FS2KG technical overview . 29

4.2 The main grid . 31

4.3 The tree file structure . 33

4.4 The semantic info panel displaying a file 34

4.5 The semantic info panel displaying entities 35

4.6 Multiple classified entity . 35

4.7 The console panel . 36

4.8 Creating a Knowledge graph . 38

5.1 Scenario A: Evaluators academic/working background chart 46

5.2 Scenario B: Evaluators academic/working background chart 46

5.3 Scenario A: Evaluators gender chart 47

5.4 Scenario B: Evaluators gender chart 47

5.5 Scenario A: Evaluators age distribution 47

5.6 Scenario B: Evaluators age distribution 48

5.7 Scenario A: TA1 direct sub-folders 49

5.8 Scenario A: TA1 answers . 50

v

5.9 Scenario A: TA2 answers . 51
5.10 Scenario A: TA3 answers . 52
5.11 Scenario A: TA3 multiple classification entity 52
5.12 Scenario A: TA4 answers . 53
5.13 Scenario A: TA5 answers . 54
5.14 Scenario A: TA5 entities defined in TonyDavidson 55
5.15 Scenario A: TA6 answers . 56
5.16 Scenario A: TA6 locations taxonomy file 57
5.17 Scenario B: TB1-a answers . 58
5.18 Scenario B: TB1-b Difference between data given 59
5.19 Scenario B: TB2-a answers . 60
5.20 Scenario B: TB2-b answers . 61
5.21 Scenario B: TB3-a answers . 62
5.22 Scenario B: TB3-b answers . 63
5.23 Scenario B: TB4-a answers . 64
5.24 Scenario B: TB4-b answers . 65
5.25 Scenario A: User ratings . 67
5.26 Scenario B: User ratings . 67

vi

Chapter 1

Introduction

All of us, either plain users or IT professionals, use daily the file system of our
computer to create, update and manage our files. File systems offer a tree structure
consisting of folders and files. The same structuring is offered by cloud-based
file systems. This simple tree-structured and semantics-neutral approach of file
systems is the dominant method with which we organize information decades now.
The idea of using the term (and metaphor) folder for designing hierarchical file
systems dates back to 1958 [2], while the first file system to support arbitrary
hierarchies of directories was used in the Multics operating system [4], in 1965, half
a century ago! We could say that the main benefits from the typical hierarchical
organization of file systems is that: (a) it allows grouping resources (through folders
with names and unlimited nesting level), (b) it allows naming resources relative
to their parent folder, and (c) it allows moving/copying/deleting these resources
in one shot, i.e. all contained resources are moved/copied/deleted. However,
traditional file systems typically follow a hierarchical folder structure. While this is
organized, it can be limiting for scenarios that require more complex relationships
or multiple categorizations. Another weakness of this structuring method is that
(a) each resource (file or folder) should be placed (and appears) in one place. The
“shortcuts” that file systems typically offer is a remedy, but it is quite weak (one
way links; not bidirectional). Consequently, file systems do not support a multi-
faceted approach for locating resources (e.g. if a user has a folder about conferences
attended, and inside each conference folder has a subfolder with photos from that
conference, then the user cannot get all such conference photos easily). This
thesis is inspired by the demo description presented in [27]. In comparison to that
paper, this thesis (a) explains the motivation, (b) includes the related work, (c)
provides more examples and the full specification of the configuration language, (d)
showcases the implementation of a file explorer that is enriched with KG-related
functionality, and (e) presents the results of task-based evaluation with users.

1

2 CHAPTER 1. INTRODUCTION

1.1 Research Questions

Two questions that arise are:
(Q1) since Knowledge Graphs (KG) are labeled graphs, and not trees, could this
extra expressiveness be leveraged for the contents of our file system?, and
(Q2) since there is a need for practical and effective methods for producing KG,
as automatically as possible, could the ubiquitous use (and knowledge of using)
file systems, be leveraged for speeding up the creation of KGs?

Both directions could have significant impact. The first would enable leverag-
ing the Semantic Web technologies in every day tasks. The second would assist
the creation of KGs, something desirable, since there is a need for practical and
mature tools to foster knowledge engineering (there are some critiques about the
practicality and availability of tools for the Semantic Web, e.g. see [28], and an
elaborated discussion of these critiques at [11]).

Indeed, although there are several successful applications of semantic tech-
nologies for background knowledge (e.g. DBpedia [1]), for collaborative knowledge
creation (e.g. Wikidata [29]), for building domain specific semantic repositories
that aggregate data from several cultural sources (e.g., Europeana [10]), marine
sources (e.g. GRSF [16]), historical sources (e.g. [14], [8]) and recently covid-
19 sources (e.g. [18, 26]), a successful application for our daily activities is still
missing.

1.2 Challenges

Enriching a file system with a KG is a challenging task, since a file system con-
tains very heterogeneous material since it is used for various purposes and tasks.
For instance, one part of the file system may contain training material (books,
papers, slides, assignments, student exercises), another part various personal ma-
terial (family documents, photos and videos, travel information), software code
and systems and others. Also, achieving semantic interoperability between the file
system’s native structure and the ontological representations in the KG requires
careful mapping and alignment to ensure meaningful relationships. Someone could
also say that as file systems are dynamic, and their content can change frequently,
keeping the KG updated to reflect these changes in real-time requires efficient syn-
chronization mechanisms. Finally, as the volume of data within the file system
grows, maintaining a scalable KG becomes challenging. Efficient methods for han-
dling large-scale data and ensuring quick query response times are essential. For
surveys related to how users actually use the file system see [6, 5].

1.3 Approach

In this paper we elaborate on questions Q1 and Q2, and we propose a method for
constructing KGs from the file system with emphasis on automation and flexibility,

1.4. IMPLEMENTATION 3

i.e. the approach does not restrict the freedom of changing the structure of our
file system. The method supports small configuration files that can be placed
in the desired folders to guide the KG construction at that folder. In brief, the
key contributions are: (a) the introduction of a method for automatically creating
KGs from file systems that is based on a modular and easy-to-use configuration,
(b) an implementation of the approach (configuration language and tool FS2KG),
(c) empirical and experimental results from applying this approach on real file
systems.

We propose supporting two fundamental interrelated aspects: folder structure
and semantic network with connections between these two. The core schema is
illustrated in Figure 1.1 where with “*” we denote multiplicity (as in UML Class
Diagrams). The approach is equipped with methods that create entities based on
the files and folders of the file system, as well as by extracting them from csv files.

In comparison to the line of research under the term “semantic desktop”, we
could say that the current work has a more modest, but realistic, vision: not to
integrate data, applications, and tasks, but to focus on the data part (folders and
files). The proposed approach is more tightly related with the classical file system
usage. It adopts a modular configuration approach, there is no dependency to a
central repository, or central configuration, or any other service.

The big picture is sketched in Figure 1.2.

1.4 Implementation

In this paper we will present a proof-of-concept prototype that stands as a Java-
based file explorer application. FS2KG seamlessly integrates traditional file man-
agement functionalities with advanced semantic technologies. Through user con-
figuration and the utilization of a knowledge graph, the application facilitates
semantic querying, resulting in an intelligent, context-aware tool for users. This
integration offers a unified interface for efficient file navigation coupled with en-
hanced contextual understanding. By harmoniously combining robust file manage-
ment capabilities with advanced semantic functionalities, FS2KG empowers users
to uncover valuable insights and relationships within their data. The result is a
comprehensive and user-friendly tool that transcends traditional file explorers by
providing a deeper understanding of data through semantic integration.

1.5 Thesis Structure

This thesis is organized as follows: Chapter 1 introduces the topic of this thesis, the
research questions that need to be answered, the challenges enriching a file system
with a KG and the approach we suggest to tackle this issue. Chapter 2 includes
key findings and methodologies from previous studies, laying the groundwork for
the innovative contributions of the present research. Chapter 3 focuses on the
the methodology and techniques employed in the research, providing a detailed

4 CHAPTER 1. INTRODUCTION

rationale for the selection of the proposed approach. Chapter 4 dives into practical
aspects of the research, detailing the implementation of the proposed approach and
suggests some possible extensions. Chapter 5 is dedicated to the evaluation of the
proposed approach, assessing the validity of the findings and the effectiveness of the
current implementation. Finally, Chapter 6 summarizes the main contributions of
the research, emphasizing their significance while some potential areas for future
research are suggested, providing a launching pad for subsequent investigations.

Figure 1.1: The core connections

1.5. THESIS STRUCTURE 5

Figure 1.2: The big picture

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Related Work

2.1 Background: Semantic Web

The Semantic Web is an extension of the World Wide Web that aims to make
online information more meaningful and interconnected. It was conceptualized by
Sir Tim Berners-Lee , the inventor of the World Wide Web. The fundamental idea
behind the Semantic Web is to add a layer of semantics, or meaning, to the exist-
ing web content, allowing machines to understand and process information more
intelligently. In traditional web environments, information is primarily designed
for human consumption, and computers struggle to interpret the context and rela-
tionships between different pieces of data. The Semantic Web addresses this lim-
itation by providing a set of technologies and standards that enable the creation
of structured and linked data. Key technologies include the Resource Descrip-
tion Framework (RDF), the Web Ontology Language (OWL) and the SPARQL
Protocol and RDF Query Language (SPARQL). By utilizing these technologies,
the Semantic Web aims to create a network of interconnected and semantically
annotated data. This enhanced level of comprehension opens up new possibilities
for automated reasoning, knowledge discovery, and more effective data integration
across diverse sources. Ultimately, the vision of the Semantic Web is to enable
more intelligent applications, improved information retrieval, and seamless inter-
operability between different systems, leading to a more efficient and powerful web
experience.

2.1.1 RDF

RDF 2.3 allows information to be expressed in a machine-readable format by de-
scribing resources and the relationships between them. Key features include its
triple-based structure (subject-predicate-object), enabling the expression of rela-
tionships between resources. RDF creates interconnected graphs of data, allowing
resources in one triple to link to others, forming a web of linked data. Resources
are identified by Uniform Resource Identifiers (URIs), ensuring global uniqueness.
Overall, RDF forms the foundation of the Semantic Web, enabling the structured

7

8 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Linked-data principles

representation, querying, and discovery of knowledge.

2.1.2 Triplestore

A triplestore is a specialized type of database designed for the storage, retrieval,
and management of data represented in the Resource Description Framework
(RDF). RDF is a model for representing information in the form of triples, which
consist of subject-predicate-object statements. These triples form a graph-like
structure that captures relationships between resources.

2.1.3 Linked Data and URI

Linked Data 2.1 is a concept and set of best practices for publishing, connecting,
and interlinking structured data on the web in a way that allows for seamless and
meaningful exploration by both humans and machines. Linked Data follows a set
of principles to enable the creation of a global network of interlinked datasets,
contributing to the vision of a more interconnected and accessible web of data. A
key principle in Linked Data is URI, or Uniform Resource Identifier, is a string
of characters that provides a unique and standardized way to identify a resource
on the internet. URIs are used to identify and locate resources, which can be
anything from web pages, documents, and images to services and specific parts of
a document.

2.1.4 Ontology

An ontology 2.2 is a formal and explicit representation of the knowledge within a
specific domain. It defines the concepts, entities, relationships, and rules that char-
acterize that domain, providing a shared understanding and a structured frame-
work for organizing information. Ontologies are used to capture the semantics
of a particular domain, making it possible for both humans and machines to un-
derstand and interpret information consistently.Key components include classes,

2.1. BACKGROUND: SEMANTIC WEB 9

Figure 2.2: Example ontology

properties, instances, axioms, and a hierarchical structure. Also, ontologies enable
semantic interoperability by providing a shared and unambiguous understanding
of terms and relationships. This allows different systems and applications to ex-
change information and communicate effectively.

2.1.5 OWL

OWL, or Web Ontology Language 2.3, is a language designed to represent and
reason about knowledge in the context of the Semantic Web. It is a W3C (World
Wide Web Consortium) standard and is used to create ontologies, which are for-
malized representations of knowledge in a specific domain. OWL provides a way
to express relationships, constraints, and classes, allowing for the creation of rich
and complex semantic models.

2.1.6 SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is a key component of
the Semantic Web stack, designed specifically for querying and manipulating data
expressed in the Resource Description Framework (RDF). The Semantic Web aims
to enhance the meaning and interconnectivity of data on the web, and SPARQL
plays a crucial role in enabling users to retrieve and work with this semantically
enriched information.

10 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.3: RDF model and Web Ontology Language (OWL)

2.2. RELATED WORK 11

2.2 Related Work

The main input for producing linked data are structured data (csv files and databases)
and texts (over which information extraction is applied). To use directly the folder
structure of a file system as input, to the best of our knowledge has not been
explored adequately.

There are a few works related to the notion, or vision, of semantic desktop that
was developed 15 years ago. However, as pointed out in [13], existing Semantic
Desktops are either too complicated, or not scale well, and a real ”killer app” is
still missing. In general we could say that this line of research has not flourished
yet, since it has not affected the way we use our desktop. A brief discussion such
works, and others, (in chronological order) follows.

Back in 1999, [12] proposed the automatic generation of metadata, expressed
in RDF, for improved resource discovery. This paper describes how an automatic
classifier, that classifies HTML documents according to Dewey Decimal Classifica-
tion, can be used to extract context sensitive metadata which is then represented
using RDF. At the time the paper was written the inclusion of of RDF meta infor-
mation was not so encouraging. Following, [20] gave an overview of the vision of
’semantic desktop’, the year of 2005, see 2.4. This paper analyzes existing systems
and proposes two software architecture paradigms, one for the Semantic Desktop
at large and another for applications running on a Semantic Desktop. A view
on the context aspect of the Semantic Desktop and the Knowledge Management
aspect is given.

In 2006, [23] points the problem with traditional file systems that do not pro-
vide sufficient means for organizing and annotating directories based on ontology-
based classification schemes, especially when multiple users access the same file
inventory. On that basis, the SemDav project is described, that aimed at en-
riching the storage of filesystems with semantic capabilities. Another attempt is
SemDesk, based on a Personal Information Model (PIMO) [22] (2007). PIMO is
used to represent a single users’ concepts, such as projects, tasks, contacts, or-
ganizations, allowing files, e-mails, and other resources of interest to the user to
be categorized. This categorization using multiple criteria was used to integrate
information across different applications and file formats. Based on RDF/S, mul-
tiple layers were defined: an upper-layer for a minimal set of generic concepts,
a mid-layer for refinements, and a user-layer for concepts of the individual user.
The previous attempt was accompanied by a user study conducted later in 2008
[21]. Using the open source software prototype Gnowsis, they evaluated the ap-
proach in a two month case study which concluded in that simple has-Part and
is-related relations are sufficient for users to file and re-find information, and that
the personal semantic wiki was used creatively to note information. In 2006, [3]
analyzed the different semantics between strictly hierarchical and tagging-based
organisation, and proposed a mapping of non-hierarchical tagging and query se-
mantics to the commonly used hierarchical file system semantics, for combining
the benefits of both worlds. TagFS, their WebDAV-based implementation allowed

12 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.4: A semantic desktop example (added from [20])

users to collaboratively manage their files in a tag-based manner via existing, file
system explorers. TagFS 2.5, a file system with tag semantics, as a means for
managing,browsing and retrieving large amounts of files efficiently. On the first
sight, the resulting system behaves like a traditional file system but the retrieval
and change operations like copy or move carry tagging based semantics.

In 2009, [15] presented the tool PreScan 2.6 that scans the file system, extracts
the embedded metadata from the files, transforms them to RDF and places them in
a triplestore (the focus was on digital preservation, not on access and querying, nor
the production of semantic entities). Generally, this tool allows the automation of
the extraction, the transformation and the maintenance of the embedded metadata
of digital objects.

Probably the most related that we have found is from the page https://www.
w3.org/wiki/ConverterToRdf, that refers to tool TripFS 2.7 (the provided link
does not work, however there is a publication from 2010: [25]). That tool exposes
an entire file system as linked data, tracks changes, and links files to external data
sources. The focus of that work was to publish linked data, not to support daily fs-
related activities. The idea is to publish parts of a local file system as linked data,
where files and directories become RDF resources. It produces random UUIDs
to be used in global distributed context (for uniqueness). They use their own
vocabulary to model low-level file system meta data (parent/child relationships,
path, size, creation date). Extractors can be plugged into TripFS (to read files
of certain format and extract RDF graph) and the main focus is on detecting file
create, remove, move (rename) and update events.

In 2012 [7] described the various Semantic Desktop systems up to that year.
This paper describes and explores their similarities, what they do differently, the

https://www.w3.org/wiki/ConverterToRdf
https://www.w3.org/wiki/ConverterToRdf

2.2. RELATED WORK 13

Figure 2.5: TagFS architecture (added from [23])

Figure 2.6: PreScan tool overview (added from [15])

14 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.7: TripFS tool architecture (added from [25])

features they provide, as well as some common shortcomings and sensitive areas.
In 2018 [13] presented a new SemDesk-based prototype with emphasis on con-

text spaces that users directly interact with and work on. The system is trans-
parently integrated using mostly standard protocols complemented by a sidebar
for advanced features. By exploiting collected context information and applying
Managed Forgetting features (like hiding, condensation or deletion), the system is
able to dynamically reorganize itself, which also includes a kind of tidy-up-itself
functionality.

In 2016, [17] investigates the exploitation of Linked Data technology in file
systems and provides a comprehensive review on the possible use of Linked Data
Technology in file systems. Finally [24] points that on typical desktops , the
majority of applications are not aware of Web standards, but use hierarchical file
systems to organize and store information. This results in a gap between the two
distinct information spaces of the Web and the desktop. To bridge this gap, is
proposed a virtual file system representation of Linked Open Data (LOD) sets 2.8,
through which they can be accessed as if they were present in the file system and
thus easily be used within desktop applications.

2.2. RELATED WORK 15

Figure 2.8: A complete virtual file system, representing resources from DBpedia
(added from [17])

16 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

Proposed Approach

We have identified the following key requirements, or desiderata:

R1 Do not restrict (for the shake of maintaining integrity) the way file system
is used.

R2 Full automation, even without any configuration, that can capture the con-
tainment relationships

R3 Ability to configure/guide the KS construction if required, in an easy and
modular way, without sacrificing the flexibility in changing the file system
structure and without needing special tools/editors.

Based on this desiderata we have decided to define a process that scans (R2) the
file system starting from the desired folder, without any restriction on its structure
(R2), and even without configuration, produces a KG with the structure of the file
system that will be directly loadable and leveraged for browsing and querying and
captures the containment relationships of file systems. As regards configurability
(R3), we propose a configuration approach relying on small configuration files
(with extension .kg) that can be placed at the desired folders to guide the process
regarding these folders. This method satisfies (R1), in the sense that when the
user reorganizes the folders he does not have to make any change in the “.kg”
files. Consequently, no integrity problems arise. These configuration files are
small and easily edited. The configuration language is described using examples
in the subsections that follow.

3.1 The Default Operation Mode (the Folder’s view)

According to the default mode, that does not require any configuration, each folder
becomes a class, each subfolder becomes subclass of the parent folder class, and
each file becomes instance of the class of its folder. As running example, consider
three nested folders c1/c2/c3 (c3 is included in c2 which in turn is included in c1)
and a file f2 in c2. The essential triples related to folder c2 that will be produced

17

18 CHAPTER 3. PROPOSED APPROACH

are: { (c2,rdfs:subClassOf,c1), (f2, rdf:type,c2)}. The complete set
of triples about c2 follows, where with ⟨n⟩ we denote the URI that is produced
using the full path of an element (folder or file) with name n.

1<c2> rdf:type owl:Class;

2 rdfs:label "c2";

3 rdfs:subClassOf <c1>.

4<f2> rdf:type owl:NamedIndividual;

5 rdf:type <c2> .

The benefit from modeling folders and files in this way, is that we can use
the KG to browse the folders structure and their contents (as it can be seen in
the upper left part of Figure 3.1), we can exploit the semantics (the interplay of
rdf:type and rdfs:subClassOf) in queries, e.g. get all files under subfolder x
that satisfy a condition (e.g. with extension png).

3.2 Configuration

We can control and adapt the KG construction related to a specific folder, by
placing to the desired folder a text file named “.kg” that contains property-value
pairs. Table 3.1 shows an overview of all configuration commands, each described
in the following subsections.

3.3 Scope Restriction

For restricting the scope of the scan, and the folders/files to be included, we can
use the following two properties.

• traverse=off
With this line the contents (files and subfolders) of the current folder are ignored.
It is useful when we do not want to include in the KG parts of the hierarchy that
are not useful, like tmp folders, backup files, software binaries, etc.

• ignoreExt=tmp;aux;class
With this particular line all files with extension “.tmp”, “.aux” or .“class” will be
ignored. The user can include as many extensions as she wants to, for excluding
from the KG files with no special value.

3.4 Generation of Semantic Classes and Entities

• subFoldersClass=example:Student
With this line for each subfolder of the current folder, an entity instance will be
created and classified under the class example:Student. In our running example,
if we have this line in the “.kg” file of c2, and by considering also the default

3.4. GENERATION OF SEMANTIC CLASSES AND ENTITIES 19

Syntax Example and Notes

traverse=off traverse=off

Stops the traversal under the current directory
(and its subfolders)

ignoreExt=
ext1;..;extk

ignoreExt=tmp;aux;class

Ignores all files having the extensions ext1 ..
extk

subFoldersClass
= curi1; ..; curik

subFoldersClass=example:Student

For each subfolder a new entity is created and
classified under the classes curi1, ..., curik. The new
entity is connected with moreAt with the URI of the
subfolder.

readme=on readme=on

Makes the contents of readme.txt (if it exists
in current directory) a literal connected with
rdfs:comment with the URI of the container folder

extraTriples
t1;..;tk

extraTriples= triple;tiple;...

Adds to the KG the triples t1, .. tk.

Extraction language

Cx=curi C1=foaf:Person

All values extracted for column x of the csv file
will be classified under the class curi

R=Cx,p1,Cy;Cx2,p2,
Cy2

R=C1,example:livesAt,C2;C1,example:likes,C3

Each value at column x of the csv file will be con-
nected through property p1 with the value at column
y of the same row. Many such rules can be separated
with “;”

C0 C0=example:GreatBook

C0 corresponds to the URI of the file to which
the ’.kg’ file refers to. Here it will be classified under
the class GreatBook.

provenance=on All extracted data are connected through
rdfs:isDefinedBy with the URI of the file that
contains the data

Table 3.1: Overview of the commands that can be included in ’.kg’ files

20 CHAPTER 3. PROPOSED APPROACH

Figure 3.1: The two class hierarchies (folder’s view and Semantic Network), and
their connection through entities

operation (of §3.2), the following triples will be generated (the last four lines are
the new ones):

1<c2> rdf:type owl:Class;

2 rdfs:label "c2";

3 rdfs:subClassOf <c1>.

4<f2> rdf:type owl:NamedIndividual;

5 rdf:type <c2> .

6example:c2_entity

7 rdf:type example:Student;

8 rdfs:label "c2_entity";

9 example:moreAt <c2>

Notice that here we have classes that do not correspond to folders (i.e. the
class example:Student), and entities whose name is based on the folder names,
(i.e. the entity example:c2 entity). Moreover notice that this entity is connected
through example:moreAt with the class corresponding to c2.

An example of the gain is evident from Figure 3.1 that shows the result of

3.5. GENERATION OF SEMANTIC RELATIONSHIPS 21

opening the produced output.ttl file with Protégé. At first notice that we have
two class hierarchies: the one corresponding to folders (DemoFolder), and another
one, called Semantic Network. The latter is the superclass of the user defined
classes, example:Student in our case. The figure shows the instances of the class
Student, four instances in our case. Notice that Tony Davinson has a folder under
that ’MSC Students’ but also under ’Recommendation Letters’. With the proposed
approach one single entity is created for that person, and that entity is related to
the two folders. This facilitates browsing and querying. Note that the URIs of
these entities are not location based, enabling the connection of information across
various folders.

This construction is useful in various cases, e.g. in folders that like “Projects”,
“Students”, etc., i.e. we can get all names (of projects, students, etc) as entities
classified to the class name that we provided (not necessarily the same with the
folder name). Moreover each such entity is related with example:moreAt with the
folder, enabling at browsing/query time to get the resources (files) that are related
to each such entity.

If we have placed this “.kg file” in every folder that contains student subfolders,
then we can make queries of the form: “Get all students and their files over their
folders”, something that is not possible in the file system structure.

Multiple classification is also supported, for example with
subFoldersClass=example:Movies;example:Videos each subfolder will be
classified to both classes.

• readme=on
With this line if the current folder contains a file readme.txt (with any capi-
talization), then its contents (as a string) becomes an rdfs:comment of the URI
of the folder. For example, if the folder Projects/2021-H2020-ProjA contains
a readme.txt that contains “This is a H2020 project started in 2021”, then the
following triple will be produced:

1 <file:/C:/Users/..../DemoFolder/Projects/2021-H2020-ProjA/>

2 rdfs:comment "This is a H2020 project started in 2021".

3.5 Generation of Semantic Relationships

So far we have used rdfs:subclassOf (for capturing the hierarchical organization
of folders), rdf:type (for connecting instances to classes, either in the folder’s KG
or Semantic Network), example:moreAt (to relate an entity to folders containing
resources about these entities), rdfs:comment (to express the comments of readme
files as comment). A question that arise is: How could we connect entities by
semantic relations, if we wish so? There is no direct mapping of file system
constructs to this (the mapping problem is also described in [24]). To close this
gap, we propose a method that is based on csv files, since these files are very

22 CHAPTER 3. PROPOSED APPROACH

commonly used and are very easy to write. If we have a csv file (text) then we can
place in the same folder a file with the same name but with extension “.kg” where
we can specify rules that control the creation of entities and relationships from the
contents of the csv file. For example, suppose a file with name Connections.txt

with the following contents:

1David;London;Tennis

2Leonardo;Rome;Football

3Nicolas;Paris;Billiards

4Socrates;Athens;Running

We can place in the same folder a file Connections.kg with the following contents:

1C1=example:Student

2C2=example:Location

3C3=example:Sport

4R=C1,example:livesAt,C2;C1,example:likes,C3

Property C1 refers to the first column, and its value means that the values
that occur in that column should become instances of the class example:Student
Consequently, with the first three lines (properties C1-C3), we managed to classify
all values that appear in the csv file to the classes Student, Location and Sport.
The last row contains rules for creating relationships. In our case it has two rules
separated by semicolon. The first is “C1,example:livesAt,C2” that states that
the values in C1 should be connected via example:livesAt with the values of C2.
Analogously, the second rule relates the values of the first column with the values
of the third column. There is no restriction about how many columns to include in
Connections.kg and how many rules (if any) to include. In our running example,
the following triples will be produced.

1example:David rdf:type example:Student.

2example:London rdf:type example:Location.

3example:Tennis rdf:type example:Sport.

4example:Leonardo rdf:type example:Student.

5example:Rome rdf:type example:Location.

6example:Football rdf:type example:Sport.

7example:Nicolas rdf:type example:Student.

8example:Paris rdf:type example:Location.

9example:Billiards rdf:type example:Sport.

10example:Socrates rdf:type example:Student.

11example:Athens rdf:type example:Location.

12example:Running rdf:type example:Sport.

13

14example:David example:livesAt example:London.

15example:Leonardo example:livesAt example:Rome.

16example:Nicolas example:livesAt example:Paris.

17example:Socrates example:livesAt example:Athens.

18

19example:David example:likes example:Tennis.

20example:Leonardo example:likes example:Football.

3.5. GENERATION OF SEMANTIC RELATIONSHIPS 23

21example:Nicolas example:likes example:Billiards.

22example:Socrates example:likes example:Running.

23

24% schema part

25example:Student rdfs:subClassOf example:SemanticNetwork .

26example:Location rdfs:subClassOf example:SemanticNetwork .

27example:Sport rdfs:subClassOf example:SemanticNetwork .

28example:livesAt rdf:type owl:ObjectProperty.

29example:likes rdf:type owl:ObjectProperty.

Note that there is no need to define any schema in advance; as we see, the
last lines define the classes and properties encountered in the configuration file.
Also note that it is not obligatory to use the R property; one could use only Cx
properties for defining entities and their classes. If the R property is used, one can
write there as many rules as she wishes to. This simple extraction language can
be used also for defining schema elements, if that is required. For instance, we
can define a taxonomy structured with rdfs:subClassOf as shown in Figure 3.2
(instead of rdfs:subClassOf, SKOS could be used as well).

(a) taxonomy.txt
EU;Location
Austria;EU
Belgium;EU
Bulgaria;EU
Croatia;EU
Cyprus;EU
CzechRepublic;EU
Brussels;Belgium
Vienna;Austria
Finland;EU
Helsinki;Finland
Rome;Italy
Italy;EU

(b) taxonomy.kg
C1=owl:Class
C2=owl:Class
R=C1,rdfs:subClassOf,C2

(c) Produced taxonomy

Figure 3.2: Defining a taxonomy through a csv file

The same method can be used for defining a schema (classes and properties),
e.g. we can define classes and the domain and range of properties as shown next:

24 CHAPTER 3. PROPOSED APPROACH

1//ontology.txt |//ontology.kg

2Car;hasEngine;Engine | C1=owl:Class

3Car;hasColor;Color | C2=owl:ObjectProperty

4Car;hasDoors;rdfs:Literal | C3=owl:Class

5 | R=C2,rdfs:domain,C1;C2,rdfs:range,C3

During application testing (described later in §??), we realized that it is con-
venient to use the same convention for adding metadata to files that are not csv
files. For this purpose we decided CO to refer to the URI of the current file,
for example, if we have a file BookDataManagement2022.pdf and we create a
BookDataManagement2022.kg with:

1C0=example:GreatBook

2R=CO,example:year,2022

then the URI of that book will be classified to the class example:GreatBook and
the year 2022 will be associated with that URI. This is a convenient way to add
arbitrary structured metadata to files, and make evident in the filesystem the asso-
ciation between the original file and the file that contain its metadata, consequently
in folder/file movements it is easy to relocate both.

3.6 Extra Triples

• extraTriples=example:Alumni rdfs:subClassOf example:Student; u1
rdf:type example:Alumni

We noticed that sometimes there is a need to add some extra triples to connect
related classes or entities, and “extraTriples” enables exactly this. It can be used
for creating a common superclass (between UnderGraduateStudent and MSCStu-
dent), for creating rdfs:subPropertyOf relationships which are important for
query interoperability.

3.7 Provenance (connecting the Folder’s view with the
Semantic View)

As regards provenance, i.e. the origin of the semantic data, for the classes and in-
dividuals that correspond to folders and files (§3.1), there is no need for additional
information since their real URI is used. The same is true for the semantic entities
defined from subfolders’s names, since they are connected with moreAt with the
corresponding folders (as described in §3.4).

However, for entities, classes, and properties defined by csv files (as described
in §3.5) there is no connection to the file from which they have been extracted
from. To this end we write as comment in the ttl file the filepath of the file from
which each triple was extracted, enabling one to see the origin of every produced

3.8. QUERY MANAGER 25

triple. If we would like to keep this provenance information also as triples for
using it during browsing or querying, then we can use the rdfs:isDefinedBy
property and connect the URIs of such classes and individuals with the URI of the
corresponding file. Since that would increase the number of triples, this mode is
activated only if we add to the .kg file the statement: provenance=on. In our
example, with

1C1=example:Location

2C2=example:Location

3R=C1,rdfs:subClassOf,C2

4provenance=on

for the example of Figure ??, and the entity Croatia, we get the following extra
triple:

1example:Croatia rdfs:isDefinedBy

2 <file:/C:/Users/..... /DemoFolder/Data/LocationsTaxonomy.txt> .

3.8 Query Manager

Apart from exploiting the output RDF file with an ontology editor (if the file is
small), there is a need for a handy tool that could indeed help daily activities.
For this purpose we have developed FS2KG-Q, a tool that leverages the produced
triples and offers to the user useful information while working at the file system.
The user can call it for the current folder, or through a file selection box can select
a file or folder. Then a window shows information about the selected entry. Below
we describe the information given about the selected entity.

Some notations first: For an entity e we shall use Folders(e), to
denote those folders that contain information about that entity, e.g. Folders(e) =
{ fd | (e,moreAt, fd) ∈ K}. We shall also use DefinedIn(e) to denote the files
from which e was mined, i.e. DefinedIn(e) = { f | (e, rdfs : isDefinedBy, f)}.
In brief, the query manager exploits the relationships that have been created,
whose schema was illustrated in Figure 1.1. In brief, for each such e we compute
and show both Folders(e) and DefinedIn(e). Below we describe the information
given of the selected entity if it is file or folder.

File fl. For a file fl we show the entities defined in that file (if any), i.e. all
entities e such that fl ∈ DefinedIn(e), and for each such entity e we show the
folder(s) that contain information about that entity, i.e. Folders(e).

Folder fr. If there is an entity corresponding to folder fr, its name would be
fr entity. If such entity exists, let’s denote it by efr, we show the entity name, its
class (or classes), and the other the folders that might exist that contain resources
about that folder, i.e. Folders(efr). If there is a readme file associated with
this folder we also show it. In addition, we show the entities mined from files in
that folder, i.e. the entities in MinedEnt(fr) = ∪{ DefinedIn(f) | (f, rdfs :

26 CHAPTER 3. PROPOSED APPROACH

subClassOf, fr) ∈ K} and for each such entity we could either show the related
folders (i.e. if it extracted from other files), or enable the user to open that entity to
get this information. The latter option is followed by our prototype. A screenshot
of the card for the entity TonyDavinson is shown in Figure 3.3(left). We can see
the additional folder that contains information about this entity, as well as entities
defined in files in that folder: in this example the corresponding folder contains
two files each with manually specified metadata. Currently we are in the process
of implementing an explorer that combines the functionality of the classical file
explorer with FS2KG-Q, Figure 3.3(right).

Figure 3.3: FS2KG: Query/browsing interfaces

Chapter 4

Implementation, Applications
and Extensions

4.1 Implementation

We have implemented a proof-of-concept prototype called FS2KG, a Java-based
file explorer application that integrates traditional file management functionali-
ties with semantic technologies,where the user configuration and the knowledge
graph enable semantic querying ,resulting in an intelligent and context-aware tool
for users. The application provides users with a unified interface for efficient file
navigation and enhanced contextual understanding. Key features include a cen-
tral workspace for file interaction, a hierarchical file tree structure for intuitive
navigation, and a dedicated panel for displaying semantic information associated
with selected files. The console at the bottom of the application logs executed
SPARQL queries, enabling users to interact with linked data and explore semantic
connections within their file system. By seamlessly combining file management
with semantic capabilities, the application empowers users to discover valuable
insights and relationships within their data.

4.1.1 Technical Overview

The application utilizes Java for its cross-platform compatibility and object-oriented
programming capabilities. The whole application is composed of 3 major compo-
nents: The FileSystemToKG , the QueryManager and the FileBrowser class. All
three classes are dependent on the Jena framework, an open-source project devel-
oped by the Apache Software Foundation and provides a set of tools and APIs
for working with RDF (Resource Description Framework) data, ontologies, and
semantic technologies. The FileSystemToKG class contains all the methods
needed to create a Knowledge Graph(KG) out of a directory. It scans all files and
sub-folders of a given folder and expresses that structure in RDF. It supports a
modular configuration approach relying on .kg files and various conventions. The

27

28 CHAPTER 4. IMPLEMENTATION, APPLICATIONS AND EXTENSIONS

most important method is :

public static void traverseAndCreateKG (String startupfolder,

String filenameToWrite);

This method starts the traveral and the creation of the knowledge graph. The
startupfolder is the folder where scan should begin and filenameToWrite is the file
to write the produced RDF triples.

The QueryManager class encapsulates the Knowledge Base interaction logic,
providing a clean and organized way to handle queries. Uses a ttl file which is the
Knowledge Graph, a starting folder and offers a programmatic query functional-
ity(SPARQL independent). The main methods in this class are:

List folders(String e);

Takes as input an entity and returns the folders related to that entity. As
parameter we pass a string variable e which is the URI of an entity.

List entitiesDefinedInFile(String f)

Takes as input the URI of a file and returns the entities defined in that file.
As parameter we pass a string variable f which is the URI of a file.

List entityOffolder(String fd) {

Takes as input a folder fd and return the corresponding entity if it exists. As
parameter we pass a string variable fd which is the URI of a folder. The convention
is that if entity exists then its URI = folder-URI +entity.

List getComment(String f) {

Takes as input a folder fd and returns the corresponding comment if it exists.
As parameter we pass a string variable f which is the URI of a folder.

The user interface of this app is located in the FileBrowser 4.1 class which uti-
lizes the both of previously mentioned classes. It is constructed on Java Swing’s
threading model and is consisted of a main JFrame. The JFrame contains a JMenu
with the option to create a KG, a JTree which displays the file tree structure and 3
major JPanels which are the main grid (center), the semantic info (right) and the
console (below). Some JButtons are displayed such as Open and Cancel while there
are some disabled fields below the main grid which show basic info. The whole
functionality is based on EventListeners and PropertyChangeListeners which com-
bine the QueryManager object with a GUI update method. In more details, there
is a render function that initializes the UI of the application:

4.1. IMPLEMENTATION 29

Figure 4.1: FS2KG technical overview

public Container getGui() throws TreeException;

Especially the main grid where the user has the most interaction with is a
JFileChooser, which is bind to an EventListener and a PropertyChangeListener:

fileChoser = new JFileChooser();

fileChoser.setFileSelectionMode(JFileChooser.FILES_AND_DIRECTORIES);

fileChoser.addPropertyChangeListener(listener);

fileChoser.addActionListener(listener);

Every time a user clicks on the main grid and fires an event, the actionPer-
formed or the propertyChange function is called. The application has a state, in
which keeps the current entity, current folder or current file. Every event that is
handled, updates the state and accordingly calls a method to update the UI based
on the application’s state:

public void paintHTML(String queryResults,String path);

4.1.2 Main grid

The application starts from the root folder. This is the primary workspace where
users can interact with their files. It likely displays a grid or list of files and folders
for easy navigation and management. This includes actions such as opening files,
creating new folders, renaming items, and moving or copying files. As mentioned

30 CHAPTER 4. IMPLEMENTATION, APPLICATIONS AND EXTENSIONS

earlier, it is consisted of a file chooser component(JFileChooser) with all the fea-
tures provided by that class. The Open button will update the UI to the specific
location and the Cancel button will close the whole app. There is also a compo-
nent below, which is a main panel(JPanel) with two panels next to each other with
some info about the current location the user is. The first panel of the main, is
the for file details labels while the other one is for the values.

// details for a File

JPanel fileMainDetails = new JPanel(new BorderLayout(4,2));

fileMainDetails.setBorder(new EmptyBorder(0,6,0,6));

JPanel fileDetailsLabels = new JPanel(new GridLayout(0,1,2,2));

fileMainDetails.add(fileDetailsLabels, BorderLayout.WEST);

JPanel fileDetailsValues = new JPanel(new GridLayout(0,1,2,2));

fileMainDetails.add(fileDetailsValues, BorderLayout.CENTER);

Some of the info that are displayed are: The type of the file(icon) followed by
the file name, the absolute path of the file selected, last modified date, the file size
and some readonly radio buttons which indicate whether its a file or a directory
and the permissions. See 4.2

//file type

fileDetailsLabels.add(new JLabel("File", JLabel.TRAILING));

fileName = new JLabel();

fileDetailsValues.add(fileName);

//absolute path

fileDetailsLabels.add(new JLabel("Path/name", JLabel.TRAILING));

path = new JTextField(5);

path.setEditable(false);

fileDetailsValues.add(path);

//last modified date

fileDetailsLabels.add(new JLabel("Last Modified", JLabel.TRAILING));

date = new JLabel();

fileDetailsValues.add(date);

//file size

fileDetailsLabels.add(new JLabel("File size", JLabel.TRAILING));

size = new JLabel();

fileDetailsValues.add(size);

//directory or file and the permissions

4.1. IMPLEMENTATION 31

Figure 4.2: The main grid

fileDetailsLabels.add(new JLabel("Type", JLabel.TRAILING));

JPanel flags = new JPanel(new FlowLayout(FlowLayout.LEADING,4,0));

isDirectory = new JRadioButton("Directory");

flags.add(isDirectory);

isFile = new JRadioButton("File");

flags.add(isFile);

fileDetailsValues.add(flags);

4.1.3 File tree structure

The file tree structure visually represents the hierarchical organization of files and
folders on the user’s system. Users can expand and collapse nodes to navigate
through different levels of the directory structure. The file tree structure reveals
its sub-directories and files allowing efficient exploration and navigation, especially
when dealing with deep folder structures. Technically, this is a hierarchical tree
component(DefaultMutableTreeNode) used in conjunction with the JTree compo-
nent. The file tree hierarchy is constructed when the UI is initialized. The first step
is to retrieve the root directories of the file system using fileSystemView.getRoots().
The fileSystemView object is an instance of javax.swing.filechooser.FileSystemView,
which provides access to the file system. If the roots are null, it throws a custom
exception (TreeException) indicating that the file system view roots are null. The
next part iterates through each root directory obtained from the file system. For

32 CHAPTER 4. IMPLEMENTATION, APPLICATIONS AND EXTENSIONS

each root, it creates a DefaultMutableTreeNode with the root File object and adds it
to the root node (assuming root is the root of your tree). Then, it retrieves the files
within the current root using fileSystemView.getFiles(fileSystemRoot, true). The
second parameter true in the getFiles method indicates that it should recursively
retrieve files within sub-directories. For each file in the obtained list, it checks if
it’s a directory (file.isDirectory()). If it is, it creates a new DefaultMutableTreeN-
ode with the directory File object and adds it as a child to the current root node
(node). This process is repeated for each root directory, creating a tree structure
where the root node represents the file system roots, and each child node represents
a directory within the file system. See figure 4.3

// the File tree

DefaultMutableTreeNode root = new DefaultMutableTreeNode(rootDirectory);

treeModel = new DefaultTreeModel(root);

// show the file system roots.

File[] roots = fileSystemView.getRoots();

if(roots == null) {

throw new TreeException("File system view roots are null");

}

for (File fileSystemRoot : roots) {

DefaultMutableTreeNode node = new DefaultMutableTreeNode(fileSystemRoot);

root.add(node);

File[] files = fileSystemView.getFiles(fileSystemRoot, true);

for (File file : files) {

if (file.isDirectory()) {

node.add(new DefaultMutableTreeNode(file));

}

}

//

}

4.1.4 Semantic info panel

The panel dynamically updates its content based on user interactions, providing
real-time semantic information related to the selected file or folder in the main
grid. This dynamic nature ensures that users receive up-to-date and relevant
details. The panel may showcases the semantic metadata associated with the
selected folder/file. The semantic info panel is a panel (JPanel) which has a Swing
component that is used for displaying and editing formatted text (JEditorPane) in
conjunction with JScrollPane which is a Swing component that provides a scroll-
able view of a component or a group of components. Every time the state changes
the UI on the semantic info panel is repainted. Basically, this panel resembles the

4.1. IMPLEMENTATION 33

Figure 4.3: The tree file structure

state of the application in HTML format. However a user cannot type and edit
the semantic info panel as it is read-only. There are 2 main states displayed in
this panel: Entity and File (See 4.4 and 4.5). The entity is displayed as: Entity:
name, a comment if it is defined in a gray color, other folders that this entity can
be found and the entities that are defined in the current folder. We also support
multiple classification as some entities may have more than one classes (see 4.6).
On the other hand the file is displayed as: File: name and the enities that are
defined in this file as a list. Every list option has a clickable sub-list option which
indicates the folder a user can find these entities. Finally every option that is
clickable inside the semantic info panel, triggers a state update and therefore a UI
update, redirecting the user to the clicked option.

//semantic info panel

html = new JPanel(new BorderLayout(3,3));

//html editor pane

JEditorPane editorPane = new JEditorPane();

editorPane.setEditorKit(JEditorPane.createEditorKitForContentType("text"));

editorPane.setEditable(false);

//Put the editor pane in a scroll pane.

JScrollPane editorScrollPane = new JScrollPane(editorPane);

editorScrollPane.setVerticalScrollBarPolicy(

34 CHAPTER 4. IMPLEMENTATION, APPLICATIONS AND EXTENSIONS

Figure 4.4: The semantic info panel displaying a file

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);

editorScrollPane.setPreferredSize(new Dimension(450, 345));

editorScrollPane.setMinimumSize(new Dimension(10, 10));

html.add(editorScrollPane);

4.1.5 Console panel

The console logs the execution of SPARQL queries, providing users with a clear
record of queries they have run. This logging is valuable for users to review their
query history, identify patterns, and track their interactions with the semantic
features of the application. Also the console provides detailed error messages and
feedback for query execution errors or other system events. This helps users quickly
identify and address issues, enhancing the overall usability of the application. The
console panel is constructed by a JPanel which is used to store the system output
and system error. In more details, we created a component TextAreaOutputStream
which appears to be a custom implementation of the OutputStream class in Java.
It allows us to capture and display data written to the output stream in a graphical
user interface which is a JTextArea. Upon the application initialization, we use
a function setConsoleLog() that creates a component of this custom class and
redirects the PrintStream to itself. See figure 4.7

//Set console function

public void setConsoleLog() {

4.1. IMPLEMENTATION 35

Figure 4.5: The semantic info panel displaying entities

Figure 4.6: Multiple classified entity

36 CHAPTER 4. IMPLEMENTATION, APPLICATIONS AND EXTENSIONS

Figure 4.7: The console panel

//create a JTextArea

JTextArea textArea = new JTextArea(15, 30);

textArea.setFont(textArea.getFont().deriveFont(12f));

//Create a custom TextAreaOutputStream component

TextAreaOutputStream taOutputStream = new TextAreaOutputStream(

textArea, "Console");

output= new PrintStream(taOutputStream);

console.setLayout(new BorderLayout());

console.add(new JScrollPane(textArea,

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,

JScrollPane.HORIZONTAL_SCROLLBAR_NEVER));

//redirect sysout and syserror to custom component

System.setOut(output);

System.setErr(output);

}

4.1.6 Knowledge graph creation

Users can generate Knowledge Graphs by specifying source and output folders.
Clicking on the menu on top right will direct them to choose the source folder and
the folder where the KG file should be placed. A Turtle (.ttl) file is generated,
capturing semantic relationships and metadata from the file system and the pro-
duced file is directly loadable by an ontology editor, like Protégé. If the size of the
.ttl file is larger than the size the editor can handle,the user can import the triples
to a triplestore. The process of the KG creation is represented as a JMenuOption,
which is bind to a JMenuListener, of the JMenu on top left When a user clicks the
option, the actionPerformed function of the JMenuListener is called, asking the
user to choose the source folder at first with a JOptionPane and a JFileChooser.
Choosing the source folder, the application will ask for the destination folder the
same way it did with the source. Once both source folder and destination folder

4.1. IMPLEMENTATION 37

are defined the KG is created and stored in the destination folder under the name
fileSystemKG.ttl. while the system will automatically open the file with the de-
fault selected app. As a new KG is created, a new instance of the QueryManager
component is created with the new KG. See figure 4.8

if (returnValue1 == JFileChooser.APPROVE_OPTION && !sourceFolder.equals("")) {

File selectedFile = jfc1.getSelectedFile();

//selected destination folder

String destinationFolder = selectedFile.getAbsolutePath();

//absolute path for the ttl file

String createdTTLFile=destinationFolder+"/fileSystemKG.ttl";

// creates the knowlege graph

FileSystemToKG.traverseAndCreateKG(sourceFolder,createdTTLFile);

// opens the ttl using the associated application/editor (if any)

in the host computing system

FileSystemToKG.open(createdTTLFile);

//creates a new instance of the QueryManager

qm = new QueryManager(startFolder,createdTTLFile);

}

38 CHAPTER 4. IMPLEMENTATION, APPLICATIONS AND EXTENSIONS

Figure 4.8: Creating a Knowledge graph

4.2. APPLICABILITY 39

4.2 Applicability

We can identify two main scenarios: (S1) Over existing file systems to enable
querying, identification and grouping of entities scattered in different subfolders,
and (S2) Over folder structures created for facilitating KG construction (e.g. pa-
pers organized in categories, the user can use the file system for this purpose
instead of using an taxonomy/ontology editor).

The first scenario FS2KG will allow users to perform sophisticated queries
within their existing file systems. Instead of relying solely on traditional search
methods, users can now leverage semantic technologies to execute queries based
on the meaning and relationships embedded in the files. Also, through semantic
annotations and metadata, FS2KG enhances the identification process, providing
a more intelligent and context-aware approach to locating specific entities. By
recognizing semantic connections between files, it organizes them into meaningful
groups, reducing the manual effort required for categorization.

Based on the second scenario, users can leverage existing folder structures for
KG construction. For example, they can organize research papers into categories
and subcategories within the file system, effectively constructing a KG without
the need for a separate taxonomy or ontology editor. The file system serves as an
intuitive and user-friendly interface for KG construction. Finally, as users continue
to organize and modify their folder structures, FS2KG dynamically updates the
underlying KG. This ensures that the KG evolves in sync with changes in the file
system, maintaining a real-time representation of the knowledge landscape.

4.3 Test Case: Personal Library

We tested the process and the tool over a personal library with books and research
papers, that are organized in folders, containing no metadata not any other sys-
tem. Some empirical results from using it follow. This exercise made the owner
of the library to fix errors and improve the taxonomy (she increased the nest-
ing level and performed various renamings). By inspecting and visualizing the
produced RDF using an ontology editor, the author further changed the file struc-
ture (names and nesting). Overall, this exercise improved the folder structure as
well as the names of the folders and files. Since the library contained a folder
“byAuthor” that contains books and papers organized by authors, she used the
subFoldersClass=example:Author to get as entities all these authors. She used
traverse=off for excluding folders with administrative data (book borrowings,
etc). Moreover, for cases where a paper/book should in two (semantic) classes,
she added metadata using the filename.kg option (and C0) to specify the extra
classes, to achieve a multi-faceted organosis.

40 CHAPTER 4. IMPLEMENTATION, APPLICATIONS AND EXTENSIONS

Test Case FS size #Folders #Files Output ttl size Time required
test1-small 11.2 GB 9,513 42,982 18.8 MB (19,795,667 bytes) 15 secs
test2-big 139.1 GB 60,730 382,601 139 MB 98 secs

Table 4.1: Experiments related to efficiency

4.4 Efficiency

The efficiency is that of plain folder structure scanning. The main memory require-
ments are very limited, since FS2KG it does not keep anything in main memory, it
directly writes the ’.ttl’ file while scanning. The only main memory that is re-
quired is that for supporting the recursive calls (depth-first-search, thus low main
memory requirements). In general the proposed approach is scalable (time com-
plexity O(n) where n is the number of folders and files). By testing the tool
in various file systems, we observed that the measured times are faster than the
“right-click Properties” of a folder (since the later also counts the size in disk).
Table 4.1 shows some indicative measurement over real file systems (the measure-
ments were performed using an ordinary laptop with 1.8 GHz i7, 4MB cache and
16 GB of RAM, running Microsoft Windows 10 Pro). We can see that it takes less
than 90 seconds to produce a ttl file of size 140 MB for a file system with 382K
files and 60K folders (the size of the file system is 140 GB).

4.5 Possible Extensions and Discussion

We have decided to include functionality related to the main hypothesis. On top
of this functionality, several straightforward extensions are applicable (since they
have already been studied in isolation). This includes KG enrichment, e.g. (a)
representation of the filesystem’s file metadata in RDF (as in [12]), (b) extraction
of the embedded in the files metadata and representation in RDF (as in [15]), (c)
instance matching over the KG to establish connections between entities whose
name is slightly different in different folders, traversal services, e.g. (d) regex-based
specification of the desired files/folders (as in web crawlers), extraction services,
e.g. (e) augment with information extraction capabilities from files according
to their type (text, etc) based on the application content and requirements at
hand (including scripts in the ’.kg’ files), access services, e.g. (f) materialize the
extracted triples from big csv files, to avoid re-extracting them in the next KG
reconstruction, if the files have not been changed in the meantime, and (g) keyword
search based on both the contents of the files and produced KG (as in [19]).

Chapter 5

Evaluation

In the initial phases of our project development, we executed a meticulous and
deliberately small-scale task-based evaluation involving end-users. The primary
objectives of this evaluation were twofold: firstly, to assess the users’ proficiency
and affinity towards the interaction paradigm introduced in our system, and sec-
ondly, to solicit valuable feedback aimed at enhancing both the graphical user
interface (GUI) and the underlying procedural framework.

This exploratory evaluation was designed to gauge the effectiveness and user-
friendliness of the interaction paradigm under consideration. By formulating spe-
cific tasks representative of real-world scenarios, we sought to determine the users’
ability to seamlessly navigate through the system and to comprehend and utilize
the novel interaction model. Simultaneously, we aimed to uncover insights into
the users’ subjective experiences by investigating their preferences and attitudes
towards the introduced paradigm.

The limited scale of the evaluation was intentional, serving as an initial ex-
ploration to identify potential challenges, strengths, and areas for improvement.
Emphasizing a task-based approach allowed us to observe users in action, provid-
ing valuable insights into how well the system aligns with their expectations and
requirements.

Crucially, the evaluation served as a conduit for gathering comprehensive feed-
back from participants. Users were encouraged to share their thoughts, sugges-
tions, and concerns regarding both the GUI and the overall user interaction pro-
cess. This qualitative feedback proved instrumental in recognizing nuances that
might have otherwise gone unnoticed and in shaping a roadmap for iterative re-
finement.

During the preliminary and deliberately small-scale task-based evaluation con-
ducted with end-users, we carefully designed and executed a series of three distinct
scenarios. Each scenario was thoughtfully crafted to encompass a range of user
interactions and challenges that users might encounter within our system. The
inclusion of multiple scenarios aimed to provide a comprehensive assessment of
user experiences across various aspects of the interaction paradigm.

41

42 CHAPTER 5. EVALUATION

5.1 Evaluation scenarios

5.1.1 Scenario A

The first scenario has as (Scenario A) a primary goal to evaluate the usability of the
explorer tool when used by individuals without specialized technical knowledge.
This scenario focuses on the user’s ability to navigate the system, perform specific
tasks, and provide feedback on their experience. Participants were presented with
a demo folder containing pre-configured files and folders. This setup ensures a
standardized environment for testing. After the setup, users were instructed to
use the explorer tool to navigate through the provided demo folder. Participants
were assigned specific tasks 5.1, each accompanied by a corresponding question to
be addressed. The purpose was to guide users through predefined activities and
prompt them to articulate their insights, observations, and responses to the asso-
ciated questions for a more comprehensive evaluation. This approach facilitated a
structured examination of user interactions and experiences within the context of
the designated tasks.

Table 5.1: Evaluation Tasks: Scenario A

ID Task

TA1 Navigate into the folder Evaluation/DemoFolder that you have created. How many
(direct) sub-folders it contains?

TA2 Is there any folder named TonyDavidson inside the DemoFolder? If so which is its
parent folder?

TA3 Provide the class of the TonyDavidon entity.

TA4 How many folders about the entity TonyDavidson exist?

TA5 Which other entities did you find in the TonyDavidson directory, and which are their
classes? (If there are any)

TA6 Navigate to the folder Data/2-LocationsTaxonomy and find how many European
countries are listed.

5.1.2 Scenario B

Scenario B aims to evaluate the proficiency of expert users in utilizing the configu-
ration language of the explorer tool. This scenario involves providing a designated
folder, a tutorial on configuration options, and tasks to assess the users’ ability
to write configuration files and effectively use the explorer. Participants are given
access to a folder, akin to the demo folder used in previous scenarios. This folder
serves as the environment for configuring and testing the explorer tool. Also, users
are provided with a tutorial detailing the various configuration options available
within the tool. The tutorial offers guidance on syntax, parameters, and best
practices for configuring. At first, they are tasked with writing a few configuration
options or even whole files based on the tutorial provided. The goal is to assess
their proficiency in translating their understanding of the configuration language
into functional and effective configuration files. Based on each configuration file

5.1. EVALUATION SCENARIOS 43

that was constructed/edited, participants utilize the explorer tool with their newly
created configuration files to evaluate their ability to apply the configurations and
navigate through the system seamlessly. Tasks 5.2 were also handed in this sce-
nario each accompanied by a corresponding question to be answered.

Table 5.2: Evaluation Tasks: Scenario B

ID Task

TB1-a Navigate to the Data/2-LocationsTaxonomy and add Paris. What did you have to
write and where?

TB1-b Using FS2KG-Explorer, create the KG and navigate to Data/2-LocationsTaxonomy.
Can you see Paris as entity when clicking the LocationsTaxonomy.txt?

TB2-a Enrich the .kg file at the folder Sports so that all subfolders are classified to a class
example:Sport. What did you have to write and where?

TB2-b Using FS2KG-Explorer, create the KG. Open with Protege the produced ttl. Is the
class example:Sport and its two instances defined properly? Write down the instances.

TB3-a Enrich the folder Software with a subfolder ”tool2”, write inside that folder a Readme
file, and create a .kg file so that the contents of the readme file become rdfs:comment
of tool2. What did you have to write and where?

TB3-b Using FS2KG-Explorer navigate to tool2 and ensure that the comment is visible at
the right frame. Is that visible?

TB4-a Place in the subfolder ”tool2”, a ”main.java” file and classify it with the class ”ex-
ample:Java”. What did you have to write and where?

TB4-b Using FS2KG-Explorer navigate to tool2. Is the file main.java and its class visible at
the right frame?

5.1.3 Scenario C

Here users were asked to use the approach over their own file systems for obtaining
a functionality that is useful for them. They were free to propose and implement
whatever they wanted. Obviously, this scenario involves running the system, ex-
ploring outputs using ontology editors and knowledge management systems, con-
necting folders related to the same entity using configuration files, producing a
Knowledge Graph (KG), evaluating the functionality of the system’s browser, and
implementing new functionality. Seven teams comprised of computer science grad-
uate students were established. Among them, four proposals fit to the category
(S1), i.e. construction a KG to improve the management of the file system contents,
while the remaining teams employed both the FS2KG explorer and the configura-
tion procedure for knowledge graph construction (S2). Below we summarize these
projects.

1. User friendly configuration (S1). Certain students pointed out that
the configuration process could pose challenges for users, particularly as the
file system expands. They proposed the implementation of an innovative
assistive system for the FS2KG platform, resulting in a more user friendly
experience configuring the file system. In detail, the process of creating addi-
tional ’.kg’ files for the Knowledge Graph (KG), within the FS2KG platform,

44 CHAPTER 5. EVALUATION

is simplified through a web application which uses Java Spring and Angular
JS.

2. Google Drive cloud extension (S1). Some users identified the current
limitation that lies in FS2KG exclusive compatibility with local file systems.
This restriction requires the presence of the entire folder structure within the
local storage, posing significant storage challenges for large-scale projects.
Consequently, the users proposed a cloud extension tailored to Google Drive
storage which enables KG creation without the need to download large files
and folders, thereby reducing storage requirements. However, the integration
of cloud functionality introduces its own set of challenges, notably network
overhead, and dependency on cloud providers.

3. Streamline code and software organization (S1). Based on our ap-
proach and implementation a user wanted to tackle an issue that many de-
velopers may face nowadays which is navigating through extensive code bases
and repositories. The solution that is proposed has as main goal to create
knowledge graphs for programs or code snippets, capturing elements such
as the content of the code and the programming language. User extended
the FS2KG system’s functionality and combined it with an intuitive GUI
which facilitates queries, providing information about the desired code. The
fields are defined to inquire about programs with a specific language and/or
specific content.

4. Comprehensive KG for organizing academic workload (S1, S2). A
user recognized the necessity of organizing academic tasks within a student’s
workspace. Utilizing both the FS2KG and the configuration system, the
user developed a Knowledge Graph that cleverly leverages the hierarchical
structure of a File System to empower students in organizing their aca-
demic folders efficiently. The primary idea in this Knowledge Graph is that
seamlessly connects all student assignments based on key criteria including
associated course modules, conceptual relevance, assignment type, whether
programming or theoretical, and performance grade, whether pass or fail.

5. Organizing a file system based on topics, dates, and geographical
locations (S2). Similar to the preceding user, the primary objective of
this implementation was to efficiently structure a file system. Consequently,
harnessing both the FS2KG and the configuration system, user created a
Knowledge Graph that associates and categorizes my collection of images
and videos based on the topic, the date or the geographical location. Main
entities that were used in the KG: (a) Image, (b) Video, (c) Location, (d)
Topic/Theme, (e) Person. Some relationships between these entities: (1)
captured at (Image- Location), (2) filmed at (Video - Location), (3) associ-
ated with (Location - Topic/Theme), (4) photographed by (Image - Person),

5.2. EVALUATION RESULTS 45

(5) related to (Image or Video - Topic/Theme), (6) recorded by (Video -
Person).

6. Establishing connections within a file system housing scientific re-
ports (S2). Like previous users, this student employed both FS2KG and
the configuration procedure to make an infrastructure that could be prove
helpful in a meta-analysis based on data contained in articles. Precisely,
a number of files were organized in a folder hierarchy, while adding some
configuration files and rules in order to create the KG.

7. Extracting information related to enzymes from a file system (S1,
S2). A user recognized the need of creating an infrastructure to handle
information that could be prove helpful in a meta-analysis, concerning a hy-
pothesis the structure-function relations of enzymes, based on data contained
in databases, and therefore in bibliography. In this context, the term ”file
system based” suggests that the data extraction process involves accessing
and retrieving information stored within files or directories on a computer’s
file system while configuring each folder based on our configuration process.

5.2 Evaluation results

5.2.1 Participants

We extended invitations via email to individuals, inviting them to participate vol-
untarily in the evaluation process. Every participant was handed with a Google
Form link, where they were requested to perform designated tasks and anony-
mously complete a pre-prepared questionnaire. In the initial scenario (A), there
were 20 participants, while in the subsequent two scenarios (B,C), there were 10
participants each. The chosen number of evaluators met our requirements ef-
fectively, as indicated in [9], where it is suggested that employing 20 evaluators is
adequate for identifying over 95% of the usability problems within a user interface.

In scenario A, users were provided with a brief PowerPoint presentation of the
FS2KG-explorer which gave them an overview of the app. The participants were
equally split to female (50%) and male (50%) 5.3, with ages ranging from 22 to 56
years. The distribution appears nearly uniform, with the exception of the age 22,
which stands out as the most prevalent, accounting for 35% of the distribution,
as illustrated (see 5.5). Comprehensively, 50% of the evaluators were UOC-CS561
students, 20% of them Computer Science Professionals, and 10% each for the rest 3
categories (ELMEPA student, Other Computer Science-Engineering student, Not
computer science/engineering related) (see 5.1).

For the second scenario (B) evaluators were given a short demo paper of FS2KG
offering them a more detailed and comprehensive view of the application. The
evaluators that participated were 10, 60% of them were male and 40% female (see
5.4), with ages ranging from 22 to 25 years (see 5.6). Based on the age distribution

46 CHAPTER 5. EVALUATION

in this scenario, it is indicated that it was handed to more experienced users and
mostly to students with Semantic Web knowledge. Precisely, 90% of the evaluators
were UOC-CS561 students and 10% of them Other Computer Science-Engineering
students (see 5.2).

Figure 5.1: Scenario A: Evaluators academic/working background chart

Figure 5.2: Scenario B: Evaluators academic/working background chart

5.2. EVALUATION RESULTS 47

Figure 5.3: Scenario A: Evaluators gender chart

Figure 5.4: Scenario B: Evaluators gender chart

Figure 5.5: Scenario A: Evaluators age distribution

48 CHAPTER 5. EVALUATION

Figure 5.6: Scenario B: Evaluators age distribution

5.2. EVALUATION RESULTS 49

5.2.2 Scenario A

TA1 Use FS2KG-Explorer to navigate into the folder Evaluation/DemoFolder that
you have created. How many (direct) subfolders it contains?: 10 (80%), 11
(10%), 22 (5%), 49 (5%)

The first task in this scenario was a simple interaction with the application. We
asked users to navigate through the app, find and note how many direct sub-folders
the demo folder, that they were given, contains. Most of the users, replied with
the number of 10 folders which is the correct answer (see 5.7). Specifically 80% of
the users answered 10 folders, 10% of the users answered 11 folders and 5% each
answered 22 and 49 folders (see 5.8). There was probably a misunderstanding,
as users reported more than 10 folders, on the word direct which actually meant
only inside the DemoFolder and not its sub-folders too.

Figure 5.7: Scenario A: TA1 direct sub-folders

50 CHAPTER 5. EVALUATION

Figure 5.8: Scenario A: TA1 answers

5.2. EVALUATION RESULTS 51

TA2 Is there any folder named TonyDavidson inside the DemoFolder? If so
which is its parent folder?: MScStudents (75%), RecommendationLetters
and MScStudents (25%)

After that, users had to search for a specific folder (TonyDavidson) and write
down its parent folder. In detail 5.9, the 75% of the users answered one folder
(MScStudents) as its parent while 25% answered two folders (Recommendation-
Letters and MScStudents). Apparently, some users tried to explore and find every
folder with that name, most of them followed a logical path through the students
folder and no users reported RecommendationLetters as the only parent folder.
Also, there wasn’t any user that had a difficulty to locate the wanted folder.

Figure 5.9: Scenario A: TA2 answers

TA3 Provide the class of the TonyDavidon entity: Student (80%), TonyDavinson
(5%), Student, Alumni (5%), Smyrnakis (5%)

The third task, asked users to provide some info for the specific folder (Tony-
Davidson). Precisely, users had to discover and note the class of the specific entity.
Providing a detailed breakdown in 5.10, the majority of users (80%) identified a
single class (Student) as the entity’s class, a user provided two classes for the same
entity 5.11 (5%) whereas the rest of the users gave inconclusive answers. An obser-
vation here is that most users answered with a single class following the question
they were given to provide the class of Tony Davidson.

52 CHAPTER 5. EVALUATION

Figure 5.10: Scenario A: TA3 answers

Figure 5.11: Scenario A: TA3 multiple classification entity

5.2. EVALUATION RESULTS 53

TA4 How many folders about the entity TonyDavidson exist?: 2 (70%), 1 (25%),
4 (5%)

Based on the second task, users were given the insight through the forth task
to record how many folders of the specific entity (TonyDavidson) exist. In the
analysis presented in 5.12, the primary trend reveals that 70% of users indicated
that two folders exist with that entity, the 25% opted for one folder while the
rest 5% recorded an erroneous number of folders. As is evident, users followed
the question and tried to identify more than one folders with that entity defined.
Compared to the second task on the users that answered two folders, we can see
that there was a 45% raise.

Figure 5.12: Scenario A: TA4 answers

TA5 Which other entities did you find in the TonyDavidson directory, and which
are their classes? (If there are any): code.zip (class: SourceCode) , Gradu-
ationPhono.png (class: Photos) (80%), none (20%)

The fifth task asked users to identify and list the entities found within the
TonyDavidson directory, along with their corresponding classes if applicable. This
task had a dual purpose as users had to explore the different folders that the entity
was found and then record the entities that were stored there. In the chart in 5.13,
the predominant pattern suggests that 80% of users acknowledged the presence of
two entities defined in the TonyDavidson directory, recording their names and
classes, while the rest 20% of users could not find any entities. We can safely say
that there is an explanation for this finding as all of the users that recorded the

54 CHAPTER 5. EVALUATION

TonyDavidson in two folders also noted the entities defined in one of the folders
(see 5.14).

Figure 5.13: Scenario A: TA5 answers

5.2. EVALUATION RESULTS 55

Figure 5.14: Scenario A: TA5 entities defined in TonyDavidson

56 CHAPTER 5. EVALUATION

TA6 Navigate to the folder Data/2-LocationsTaxonomy and find how many Euro-
pean countries are listed : 8 (70%), 14 (15%), 13 (10%), 12 (5%),

Finally the last task in scenario A was to navigate to a specific file (Loca-
tionsTaxonomy.txt) and explore the contents of this file. Particularly, users were
asked to discover the definedInFile functionality and were asked to record how
many countries are defined in this file. In the bar chart presented in 5.15, a pre-
vailing trend emerges, indicating that 70% of users recognized the existence of two
8 countries defined within the LocationsTaxonomy file. These users successfully
recorded the number of countries. Conversely, the 15% of users identified 14 coun-
tries, 10% identified 13 countries and 5% noted 12 countries. It seems that users
that recorded more than 8 countries tried to record generally locations as the file
is consisted of these entities (see 5.16).

Figure 5.15: Scenario A: TA6 answers

5.2.2.1 Results summary

As regards task performance, all users responded to the questions of the tasks.
Most of them were correct. There were some variations, mainly because of possi-
ble misunderstandings on the task questions. An observation is that many users
provide comprehensive explanations on their answers. This is mainly caused by
the fact that users are not confident enough about their answer as they have not
experienced a similar application before. Apart from that, the metrics regarding
the answers given show that transitioning from one question to the next, users
become more familiar with the application.

5.2. EVALUATION RESULTS 57

Figure 5.16: Scenario A: TA6 locations taxonomy file

58 CHAPTER 5. EVALUATION

5.2.3 Scenario B

TB1-a Navigate to the Data/2-LocationsTaxonomy and add Paris. What did you
have to write and where?: Paris;France France;EU (60%), Paris;EU (30%),
Paris;France (10%),

The first task in scenario B asks users to try to locate a specific folder and
add an entity inside the file. In detail, users had to add data inside the Loca-
tionsTaxonomy.txt about Paris. Most of the users, replied with the ’Paris;France
France;EU’ rows which is the most accurate answer following the pattern and the
configuration tutorial they were given. Specifically 60% of the users answered
correctly, 30% of the users answered ’Paris;EU’ and 10% of the users answered
’Paris;France’ (see 5.17). All of the answered questions can be valid as in every
question the data will be linked correcty and Paris will be visible in the semantic
info panel.

Figure 5.17: Scenario B: TB1-a answers

TB1-b Using FS2KG-Explorer, create the KG and navigate to Data/2-LocationsTaxonomy.
Can you see Paris as entity when clicking the LocationsTaxonomy.txt?: Yes
(100%),

Based on first task users had to navigate through the FS2KG-explorer to con-
firm that their answer is semantically correct. All of the users were able to suc-
cessfully identify Paris as a defined entity in the file through the app. However,
70% of users could also identify France as an entity and a Location subclass as
they added it separately (France;EU) or in a row (Paris;France) (see 5.18).

5.2. EVALUATION RESULTS 59

Figure 5.18: Scenario B: TB1-b Difference between data given

60 CHAPTER 5. EVALUATION

TB2-a Enrich the .kg file at the folder Sports so that all subfolders are classified to
a class example:Sport. What did you have to write and where? : subFolder-
sClass=example:Sport (80%), subFoldersClass=example:Sport readme=on
(20%),

In the third task, users were instructed to write a specific configuration inside
the Sports folder in the given Demo Folder. In more details, users were asked what
is the configuration and where it should be written so every sub-folder inside the
Sports folder to be classified as example:Sport. All of the users, answered that they
had to create a .kg file inside the Sports folder and 80% of them wrote ’subFolder-
sClass=example:Sport’ while the rest 20% wrote ’subFoldersClass=example:Sport
readme=on’ (see 5.19). Both the answers were right and users were provided the
same semantic info.

Figure 5.19: Scenario B: TB2-a answers

TB2-b Using FS2KG-Explorer, create the KG. Open with Protege the produced ttl.
Is the class example:Sport and its two instances defined properly? Write down
the instances. : Football and Tennis (70%), Baseball,Billiards,Football,Running,Tennis
(30%),

Similarly with the first two questions, we asked users to make an observation
based on the previous task. Users were instructed to create the Knowledge Graph
after the configuration they added and to use the produced .ttl file as input in the
knowledge management tool, Protégé. Precisely, the question required users to

5.2. EVALUATION RESULTS 61

confirm that the classification is correct and to identify the two instances they no-
ticed within the application. The 70% of the users indicated two instances ’Football
and Tennis’ while the rest 30% of them wrote down all of the instances (’Base-
ball,Billiards,Football,Running,Tennis’) that were classified as example:Sport (see
5.20).

Figure 5.20: Scenario B: TB2-b answers

TB3-a Enrich the folder Software with a subfolder ”tool2”, write inside that folder a
Readme file, and create a .kg file so that the contents of the readme file become
rdfs:comment of tool2. What did you have to write and where?: Readme.txt
and readme=on (70%), readme=on (30%),

The fifth task directed users to write a specific configuration inside the Software
folder and to create a new entity. In greater detail, users were prompted to specify
the configuration and indicate the location for its entry so a ’tool2’ entity is created
and has an rdfs:comment property. Every user, answered that they had to create
a sub-folder inside the Software folder and .kg file inside that sub-folder with the
’readme=on’ rule inside the file. However only the 70% of them were right as they
created a README.txt file in which is the comment stored (see 5.21).

62 CHAPTER 5. EVALUATION

Figure 5.21: Scenario B: TB3-a answers

5.2. EVALUATION RESULTS 63

TB3-b Using FS2KG-Explorer navigate to tool2 and ensure that the comment is
visible at the right frame. Is that visible?: Yes (70%), No (30%),

In reference to the fifth task, users were questioned if the comment is visible
at the semantic info panel. Although users created the correct configuration rule
inside the .kg ,as mentioned earlier, some of the users (30%) did not create a
README file with the contents of the comment (see 5.22).

Figure 5.22: Scenario B: TB3-b answers

TB4-a Place in the subfolder ”tool2”, a ”main.java” file and classify it with the class
”example:Java”. What did you have to write and where? : C0=example:Java
inside a main.kg (60%), extraTriples = main.java rdf:type example:Java;
(30%), C1=example:Java inside a main.kg (10%)

Another task users had to complete was to create a new file and the proper
configuration to make this file an entity under a specific class. In particular, users
were requested to create a new Java file inside the previously defined directory
(tool2) and add the configuration needed so the file is classified as an ’example:Java’
entity. A large portion of the users (60%), created a new main.kg file and inserted
the ’C0=example:Java’ rule. However, some users (30%) found a different way
to classify this file as Java entity, adding a rule inside the existing .kg file using
the extra triples rule: ’extraTriples = main.java rdf:type example:Java;’. The rest
(10%) of the users inserted a faulty configuration rule (see 5.23).

64 CHAPTER 5. EVALUATION

Figure 5.23: Scenario B: TB4-a answers

5.2. EVALUATION RESULTS 65

TB4-b Using FS2KG-Explorer navigate to tool2. Is the file main.java and its class
visible at the right frame?: Yes (90%), No (10%)

Finally, users had to answer whether the class of the added java file is visible
on the semantic info panel. Following the stats collected earlier on how users tried
to classify the main.java file, we can see that both the ways work effectively and
users observed the file as an example:Java entity (see 5.24).

Figure 5.24: Scenario B: TB4-b answers

5.2.3.1 Results summary

Similarly, as in scenario A, regarding the task performance all users responded to
the questions of the tasks. The majority were accurate, with a few discrepancies
arising primarily due to potential misunderstandings regarding the task questions.
However, the discrepancies were much more less than the first scenario as this
task was delegated to users more proficient in Semantic Web, involving more in-
tricate tasks. An noteworthy observation is the diversity in approaches that users
employed while addressing the question. Other than that, following the same be-
haviour as in scenario A, the provided answers indicate that as users progress from
one question to the next, they grow more acquainted with the application.

66 CHAPTER 5. EVALUATION

5.2.4 User Ratings

Each scenario was accompanied by a user rating questionnaire, in which users
could express their opinion on the application and the configuration system.

Q1 How would you rate the usability of FS2KG-Exlorer?: Very user friendly
(40%), User friendly (60%), Not user friendly (0%), Very difficult to use
(0%)

In greater detail, the first scenario was combined with a questionnaire regarding
the application’s usability. Most of the users described the application user friendly
and the rest very user friendly (see 5.25).

Q2 How would you rate the process of the configuration?: Very user friendly
(40%), User friendly (60%), Not user friendly (0%), Very difficult to use
(0%)

The second scenario included a questionnaire which asked about the configu-
ration procedure. Most of the users described the application user friendly, some
very user friendly while there were some users that found the whole procedure not
user friendly (see 5.26).

Additionally, both of the scenarios provided a form for reporting any er-
rors,problems and recommendations. In the first scenario, there were some sug-
gestions to improve the user interface when listing entities defined in a file, while
there were some comments on the functionality of the double click on the main
grid. Most of the comments were positive and some users indicated that there was
nothing to add or report.

Similarly, in the second scenario there were some improving comments on the
user interface on the main grid. There were some users that indicated an im-
provement on how a user can run the whole procedure of the configuration and
the Knowledge Base creation from the beginning. Finally, a user proposed a re-
fresh/update button which would update the UI after any change.

5.2. EVALUATION RESULTS 67

Figure 5.25: Scenario A: User ratings

Figure 5.26: Scenario B: User ratings

68 CHAPTER 5. EVALUATION

Chapter 6

Concluding Remarks

Finding an effective method to conciliate freedom of file system usage, and Knowl-
edge Graph integrity and usability, is a challenging task. We proposed a modular
configuration approach relying on small configuration files in the folders, and KG
reconstruction at any moment. We introduced a configuration language, and we
have showcased its feasibility, and flexibility that it offers. The approach supports a
default operation that requires no configuration, scope restriction directives, auto-
matic creation and classification of entities corresponding to subfolders, leveraging
of ’readme’ files, easily configurable data extraction and transformation from the
desired csv files, provenance of the mined entities, a convenient method to add
arbitrary metadata, as well as a light weight query client.

We showcased the feasibility of the approach by an implementation through the
tool FS2KG we have reported experimental and empirical results from using it (over
real file systems). FS2KG effortlessly combines conventional file management fea-
tures with cutting-edge semantic technologies. By allowing user configuration and
leveraging a knowledge graph, the application enables semantic querying, creating
an intelligent and context-aware tool for users.

We conducted a careful and intentionally limited task-based evaluation with
end-users. The main goals of this evaluation were twofold: first, to gauge users’
proficiency and comfort with the interaction paradigm introduced in our system,
and second, to gather valuable feedback for improving both the graphical user
interface (GUI) and the underlying procedural framework. The majority of rat-
ings and comments were overwhelmingly positive, with users expressing a strong
inclination to utilize our work for effectively organizing their file systems.

We encouraged users to apply the approach to their individual file systems to
acquire a functionality tailored to their needs. They had the freedom to suggest
and implement whatever they deemed useful. Most users utilized both the FS2KG
explorer and the configuration procedure to construct the knowledge graph based
on their needs while some users suggested enhancements or extensions. We col-
lected many ideas that are worth further work and research, on possible extensions
and improvements both on User Interface and functionality.

69

70 CHAPTER 6. CONCLUDING REMARKS

Returning to the questions of the introductory section, as regards Q1 we have
seen that we can enrich the capabilities of file systems with methods that spot
and connect entities in different folders. As regards Q2, we have seen that we can
construct various forms of KGs (from taxonomies to arbitrary triples by extrac-
tion and transformation rules) very easily. Finally we proposed various possible
extensions and combinations with other tools. One immediate next step is the
implementation of an explorer that combines the functionality of the classical file
explorer with FS2KG-Q. We wish OS and file systems to start incorporating this
functionality in their forthcoming versions.

Bibliography

[1] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cy-
ganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The
semantic web, pages 722–735. Springer, 2007.

[2] GA Barnard III and Louis Fein. Organization and retrieval of records gener-
ated in a large-scale engineering project. In Papers and discussions presented
at the December 3-5, 1958, eastern joint computer conference: Modern com-
puters: objectives, designs, applications, pages 59–63, 1958.

[3] Stephan Bloehdorn, Olaf Görlitz, Simon Schenk, Max Völkel, et al. Tagfs-tag
semantics for hierarchical file systems. In Proceedings of the 6th Interna-
tional Conference on Knowledge Management (I-KNOW 06), Graz, Austria,
volume 8, pages 6–8, 2006.

[4] Robert C Daley and Peter G Neumann. A general-purpose file system for
secondary storage. In Proceedings of the November 30–December 1, 1965, fall
joint computer conference, part I, pages 213–229, 1965.

[5] Jesse David Dinneen and Charles-Antoine Julien. The ubiquitous digital file:
A review of file management research. Journal of the Association for Infor-
mation Science and Technology, 71(1):E1–E32, 2020.

[6] Jesse David Dinneen, Charles-Antoine Julien, and Ilja Frissen. The scale
and structure of personal file collections. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, pages 1–12, 2019.

[7] Laura Drăgan and Stefan Decker. Knowledge management on the desktop.
In International Conference on Knowledge Engineering and Knowledge Man-
agement, pages 373–382. Springer, 2012.

[8] Pavlos Fafalios, Konstantina Konsolaki, Lida Charami, Kostas Petrakis,
Manos Paterakis, Dimitris Angelakis, Yannis Tzitzikas, Chrysoula Bekiari,
and Martin Doerr. Towards semantic interoperability in historical research:
Documenting research data and knowledge with synthesis. In International
Semantic Web Conference, pages 682–698. Springer, 2021.

71

72 BIBLIOGRAPHY

[9] Laura Faulkner. Beyond the five-user assumption: Benefits of increased sam-
ple sizes in usability testing. Behavior Research Methods, Instruments, &
Computers, 35:379–383, 2003.

[10] Bernhard Haslhofer and Antoine Isaac. data. europeana. eu: The europeana
linked open data pilot. In International Conference on Dublin Core and Meta-
data Applications, pages 94–104, 2011.

[11] Aidan Hogan. The semantic web: Two decades on. Semantic Web, 11(1):169–
185, 2020.

[12] Charlotte Jenkins, Mike Jackson, Peter Burden, and Jon Wallis. Automatic
RDF metadata generation for resource discovery. Computer Networks, 31(11-
16):1305–1320, 1999.

[13] Christian Jilek, Markus Schröder, Sven Schwarz, Heiko Maus, and Andreas
Dengel. Context spaces as the cornerstone of a near-transparent and self-
reorganizing semantic desktop. In European Semantic Web Conference, pages
89–94. Springer, 2018.

[14] Mikko Koho, Esko Ikkala, Petri Leskinen, Minna Tamper, Jouni Tuominen,
and Eero Hyvönen. Warsampo knowledge graph: Finland in the second world
war as linked open data. Semantic Web – Interoperability, Usability, Appli-
cability, 2020. In press.

[15] Yannis Marketakis, Makis Tzanakis, and Yannis Tzitzikas. Prescan: towards
automating the preservation of digital objects. In Proceedings of the Inter-
national Conference on Management of Emergent Digital EcoSystems, pages
404–411, 2009.

[16] Yannis Marketakis, Yannis Tzitzikas, Aureliano Gentile, Bracken van Niekerk,
and Marc Taconet. On the evolution of semantic warehouses: The case of
global record of stocks and fisheries. In Research Conference on Metadata
and Semantics Research, pages 269–281. Springer, 2020.

[17] Syed Rahman Mashwani, Azhar Rauf, Shah Khusro, and Saeed Mahfooz.
Linked file system: Towards exploiting linked data technology in file systems.
In 2016 International Conference on Open Source Systems & Technologies
(ICOSST), pages 135–141. IEEE, 2016.

[18] Franck Michel, Fabien Gandon, Valentin Ah-Kane, Anna Bobasheva, Elena
Cabrio, Olivier Corby, Raphaël Gazzotti, Alain Giboin, Santiago Marro, To-
bias Mayer, et al. Covid-on-the-web: Knowledge graph and services to ad-
vance covid-19 research. In International Semantic Web Conference, pages
294–310. Springer, 2020.

BIBLIOGRAPHY 73

[19] Christos Nikas, Giorgos Kadilierakis, Pavlos Fafalios, and Yannis Tzitzikas.
Keyword search over RDF: Is a single perspective enough? Big Data and
Cognitive Computing, 4(3):22, 2020.

[20] Leo Sauermann, Ansgar Bernardi, and Andreas Dengel. Overview and out-
look on the semantic desktop. In Semantic Desktop Workshop, volume 175.
Citeseer, 2005.

[21] Leo Sauermann and Dominik Heim. Evaluating long-term use of the gnowsis
semantic desktop for pim. In International Semantic Web Conference, pages
467–482. Springer, 2008.

[22] Leo Sauermann, Ludger Van Elst, and Andreas Dengel. PIMO - a framework
for representing personal information models. Proceedings of I-Semantics,
7:270–277, 2007.

[23] Bernhard Schandl. SemDAV: a file exchange protocol for the semantic desk-
top. In SemDesk’06: Proceedings of the 5th International Conference on Se-
mantic Desktop and Social Semantic Collaboration, November 2006.

[24] Bernhard Schandl. Representing linked data as virtual file systems. In Pro-
ceedings of the WWW’2009 Workshop on Linked Data on the Web, LDOW
2009, 2009.

[25] Bernhard Schandl and Niko Popitsch. Lifting file systems into the linked data
cloud with tripfs. In Proceedings of the WWW’2010 Workshop on Linked
Data on the Web, LDOW 2010, Raleigh, USA, 2010.

[26] Bram Steenwinckel, Gilles Vandewiele, Ilja Rausch, Pieter Heyvaert, Ruben
Taelman, Pieter Colpaert, Pieter Simoens, Anastasia Dimou, Filip De Turck,
and Femke Ongenae. Facilitating the analysis of covid-19 literature through a
knowledge graph. In International Semantic Web Conference, pages 344–357.
Springer, 2020.

[27] Yannis Tzitzikas. Fs2kg: From file systems to knowledge graphs. In Demo
paper, Proceeding of ISWC 2022.

[28] Ruben Verborgh and Miel Vander Sande. The semantic web identity crisis: in
search of the trivialities that never were. Semantic Web, 11(1):19–27, 2020.

[29] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowl-
edgebase. Communications of the ACM, 57(10):78–85, 2014.

	Introduction
	Research Questions
	Challenges
	Approach
	Implementation
	Thesis Structure

	Background and Related Work
	Background: Semantic Web
	RDF
	Triplestore
	Linked Data and URI
	Ontology
	OWL
	SPARQL

	Related Work

	Proposed Approach
	The Default Operation Mode (the Folder's view)
	Configuration
	Scope Restriction
	Generation of Semantic Classes and Entities
	Generation of Semantic Relationships
	Extra Triples
	Provenance (connecting the Folder's view with the Semantic View)
	Query Manager

	Implementation, Applications and Extensions
	Implementation
	Technical Overview
	Main grid
	File tree structure
	Semantic info panel
	Console panel
	Knowledge graph creation

	Applicability
	Test Case: Personal Library
	Efficiency
	Possible Extensions and Discussion

	Evaluation
	Evaluation scenarios
	Scenario A
	Scenario B
	Scenario C

	Evaluation results
	Participants
	Scenario A
	Results summary

	Scenario B
	Results summary

	User Ratings

	Concluding Remarks
	Bibliography

