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ABSTRACT

The purpose of the following master thesis is to evaluate and compare the predictions 

about the electricity price in the Nord Pool market through parametric and non-parametric 

models. We will deal with electricity price analysis, estimation, and forecasting using time series 

data of electricity price and also sometimes the estimated consumption for one day ahead from 

January 1 2019 to December 31 2020.

Firstly, we will analyze our time series where the data are daily using the peak hour of 

each day, which is 10:00 AM. Τhen we will estimate the in-sample electricity price through 

various models for the period from January 2019 to December 2019. Afterward, we will forecast 

the out-of-sample short-term electricity price for one day ahead, specifically making predictions 

for the peak hour for the whole of 2020 using rolling forecasts where the rolling window is one 

year. Finally, we will use the actual data of 2020 to compare the models' predictive ability using 

the forecasting errors.

Our models are divided into parametric models: Simple linear model (SLR), 

Autoregressive Integrated Moving Average (ARIMA), Seasonal ARIMA (SARIMA), and 

Autoregressive/Generalized Autoregressive Conditional Heteroskedasticity (ARCH/GARCH) 

and a non-parametric model: Singular Spectrum Analysis (SSA).

Keywords: Time series, Nord Pool Electricity Market, short-term forecasting, forecasting 

methods, rolling forecasts, SSA.
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ΠΕΡΙΛΗΨΗ

Σκοπός της παρακάτω μεταπτυχιακής διπλωματικής εργασίας είναι η αξιολόγηση 

και σύγκριση των προβλέψεων της τιμής της ηλεκτρικής ενέργειας στην αγορά της Nord 

Pool μέσω παραμετρικών και μη παραμετρικών μοντέλων. Θα ασχοληθούμε με την ανά-

λυση της τιμής της ηλεκτρικής ενέργειας, όπως επίσης την εκτίμηση και την πρόβλεψη 

της, χρησιμοποιώντας τα δεδομένα των χρονοσειρών μας για την τιμή της ηλεκτρικής 

ενέργειας και σε κάποιες και την εκτιμώμενη κατανάλωση για μια μέρα μπροστά απο τον 

Ιανουάριο του 2019 μέχρι τον Δεκέμβριο του 2020.

Αρχικά θα αναλύσουμε τις χρονοσειρές μας όπου αφορούν ημερήσια δεδομένα 

για την ώρα αιχμής κάθε ημέρας και στα οποία κάθε κύκλος αποτελείται απο ενα έτος. 

Στη συνέχεια θα κάνουμε εκτίμηση εντός δείγματος για την τιμή της ηλεκτρικής ενέρ-

γειας μέσω διαφόρων υποδειγμάτων για την περίοδο απο τον Ιανουάριο του 2019 μέχρι 

τον Δεκέμβριο του 2019. Έπειτα μέσω των υποδειγμάτων αυτών θα προβλέψουμε την 

εκτός δείγματος βραχυπρόθεσμη τιμή της ηλεκτρικής ενέργειας για το 2020 χρησιμο-

ποιώντας κυλιόμενη πρόβλεψη ενός έτους. Τέλος, θα χρησιμοποιήσουμε τα πραγματικά 

δεδομένα του 2020 για να πάρουμε τα σφάλματα πρόβλεψης και να αξιολογήσουμε την 

προβλεπτική ικανότητα κάθε μοντέλου, έτσι ώστε να καταλήξουμε στο καλύτερο μοντέ-

λο. 

 Τα υποδείγματα μας χωρίζονται σε παραμετρικά: Simple linear model (SLR), 

Autoregressive Integrated Moving Average (ARIMA), Autoregressive/Generalized 

Autoregressive Conditional Heteroskedasticity (ARCH/GARCH) και σε μη παραμετρικά: 

Singular Spectrum Analysis (SSA).  
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 Λέξεις κλειδιά: χρονοσειρές, ηλεκτρική ενέργεια στην αγορά Nord Pool, βραχυ-

πρόθεσμη πρόβλεψη, μεθόδοι πρόβλεψης, κυλιόμενη πρόβλεψη, ανάλυση του ιδιάζον 

φάσματος.
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CHAPTER 1: INTRODUCTION

1.1 Object and purpose

The purpose of the following master thesis is to study the behavior of electricity prices in 

the Nord Pool market for the Nordic countries and to predict the electricity price. We have 

retrieved data for electricity prices and forecasted consumption of electricity in the Nord Pool 

market. First of all, we will analyze our data, and after that, we will proceed with the electricity 

price estimation and forecasting of peak hour electricity price (below we will see that the peak 

time is at 10 Α.Μ.) through various parametric models and a non-parametric model. The data we 

will use was taken from the electricity market through Nord Pool's day-ahead market where a 

separate observation was taken every hour and our data covers the period from 01/01/2019 to 

31/12/2020.

The research regarding short-term electricity price forecasting is truly extensive. As a 

whole (Shahidehpour, Yamin, & Li, 2002), (Weron, 2006) and (Zareipour, 2012) all bring up 

various modeling approaches of the day-ahead forecasting. Recently, Carlo Fezzi and Luca 

Mosetti (2018) conclude that different models and window sizes should be used for different 

hours in Nord Pool. Additional to the parametric models that has been used in the above 

literature, Arash Miranian, Majid Abdollahzade, Hossein Hassani (2013) add a non-parametric 

model for forecasting the day ahead electricity price by singular spectrum analysis. But the 

question is which model types are most suitable to forecast the electricity prices on Nord Pool. 

We have to test if the addition of the non-parametric method can give better results in predictions.

1.2 Thesis structure

Using our data, we will first estimate the electricity price through various models for the 

period from January 2019 to December 2019 and in the second step, we will forecast the 

https://ietresearch.onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Miranian%2C+Arash
https://ietresearch.onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Abdollahzade%2C+Majid
https://ietresearch.onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Hassani%2C+Hossein
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electricity price for January 2020 to December 2020. Finally, we will use the actual data of the 

period from January 2020 to December 2020 to compare the predictive ability of the models. 

Before proceeding with our analysis it should be noted that in cases where there were blank 

observations in our data, we used the average of their 2 intervening observations to fill in the 

blanks. Also, we fixed the problem where some data had double observations at the same time. 

Short-term electricity price forecasting models are typically estimated through rolling 

windows for example using the most recent observation. According to Carlo Fezzi and Luca 

Mosetti (2018), by defining the appropriate rolling window we can greatly improve the 

forecasting performance. The appropriate rolling window for our data is between six months and 

one year, so in our analysis, we will set the rolling window equal to one year.

In the analysis of our time series that follows we will divide the models into parametric 

and non-parametric. Firstly, we will analyze our time series through models where we will use 

the peak time of each day for the whole year so our data will be data per day. Subsequently, in-

sample price forecasts will be computed from estimated models, and at the end, we will do a 

rolling forecast for the out-of-sample data to predict the price of electricity for the year 2020. At 

the end of our analysis, we will compare the results of the estimations and predictions of the 

various models through the forecasting errors.

In Chapter 2 we will analyze the electricity market and the importance of electricity price 

predictions. Next, in Chapter 3 we will present the theory of the time series analysis and in 

Chapter 4 we will present the time series analysis for the Nord Pool Market. Subsequently, in 

Chapter 5 we will apply the models to the Nord Pool data, proceeding to estimations and 

forecasts. Finally, in the last Chapter, we will compare the results of the in-sample and out-of-

sample forecasts. 
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CHAPTER 2:  ELECTRICITY PRICE FORECASTING

2.1 Electricity market 

The electricity market concerns purchases made in the electricity trade for the purchase 

and sale of electricity. The electricity market can be regulated or liberalized (deregulated) and can 

be organized in a variety of ways. As far as regulation is concerned, in regulated markets 

electricity prices are determined by a regulatory authority and they are usually based on 

production costs, demand, and supply of electricity. According to  Rafal Weron (2014), in 

liberalized markets, prices are determined by supply and demand and at the same time are 

affected by factors related to energy in general such as the supply of renewable energy sources, 

fuel costs, and weather conditions.

Regarding the organization of the electricity market, the market can be retail, wholesale, 

regional, or global. In the wholesale market, the purchase and sale of electricity are made by large 

buyers and utilities, while in the retail market, the sale is made to consumers, i.e. households and 

businesses. Finally, there is the electricity market which is done at a regional and global level, or 

globally where the connection of the markets is done through transmission systems and 

interconnections.

2.2 Nord Pool electricity Market

Nord Pool was founded in 1993 and is the first market worldwide that operates at fully 

competitive prices. As we mentioned above, the electricity market can be organized in various 

ways. Nord Pool is a wholesale electricity market that is a key commercial player and serves the 

Nordic countries: Denmark, Finland, Norway, and Sweden as well as the Baltic States: Estonia, 

Latvia, and Lithuania. It belongs to the largest electricity markets in Europe and operates as a 
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spot market where electricity is bought and sold with delivery on the same day or within a few 

days, but also as a producer market. It also belongs to the global market since it is also connected 

to other European markets through interconnections and transport systems.

The Nord Pool market is divided into two sectors: the intraday electricity market where 

electricity is delivered on the day of trading and the day-ahead market where delivery takes place 

the day after trading. In our analysis, the data we use is for the day-ahead market where it is done 

on a nice basis and in which the stakeholders (buyers and sellers of electricity) quote supply and 

demand for each hour of the next day. After the submission by the participants, the auction 

process follows which is based on the above bids and requests and determines the market clearing 

price.

The data used in the present thesis was retrieved from the Nord Pool data portal (2022), 

for system prices and forecasted consumption in the Nordic countries.

2.3 Importance of Electricity price predictions

The electricity market is a market that concerns everyone and the prediction of its price is 

necessary for electricity producers, the retail market, and all consumers. The price of electricity 

concerns a non-stationary and non-linear time series, with a variable mean and variation, so the 

forecasting process becomes difficult. The reasons for needing electricity price forecasting are 

varied and depend on whom the market is concerned with at any given time. Some possible 

reasons may be to initially manage and avoid risk for traders so that investors are more informed 

about future trades. Also, this will help the investors of other markets that are related and 

sensitive to the price of electricity to maximize the profits of their investments. One more reason 

is that governments and regulators can use forecasts to inform policy decisions related to energy 

markets and infrastructure planning. For example, if a large increase in the price of electricity is 

expected, the necessary decisions to support consumers must be taken. Such a surge has recently 
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occurred globally due to Russia's war against Ukraine. Finally, with regard mainly to large energy 

consumers, through the forecasts, they can optimize energy consumption and reduce costs by 

using, for example, more energy-efficient devices.

2.4 Time frame of model predictions

By the meaning of the time frame of a forecasting model, we refer to the period used to 

make predictions, where the time frame differs according to our data, the forecasting model we 

use, and the purpose of the forecasts. There are data for which we want short-term predictions, 

for example, the prediction of the next week's stock price, but also long-term predictions, for 

example, the demand for a product in the next year or decade.

The time frame of a forecasting model can also vary depending on the frequency of the 

data being analyzed. For example, a model designed to make daily forecasts may have a different 

time frame than a model designed to make monthly or yearly forecasts. In the Nord Pool market 

that concerns us, we will make one-step ahead forecasts of the price of electricity for the next day 

until the last day of 2020, and these forecasts are considered short-term since we are forecasting 

the next day using rolling window of one year. 
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CHAPTER 3: TIME SERIES ANALYSIS

3.1 Definition of Time Series

By the term of time series, we mean the set of some data such as the temperature or the 

price of a stock that is collected at regular time intervals such as every hour, day, month, or year. 

They are not only applicable to statistics and economics but can also contribute to other areas 

such as quality control or weather forecasting. Time series due to their form create a time 

classification since they are collected in a specific period and allow us to analyze the time series 

and their characteristics. Time series analysis is used to extract important information, make 

estimates, and also to make future predictions. As far as data analysis is concerned, time series 

models can be analyzed such as the moving average model, the moving average autoregressive 

model, or the simple linear regression model. In addition to the above examples, there are other 

techniques such as smoothing, decomposition, and transformations.

3.2 Time Series Models

As we mentioned above, there are different types of time series models that we can use to 

analyze our data and make predictions. The most common models for time series analysis are the 

moving average model (MA) which uses the moving average of past data for forecasting, and the 

autoregressive integrated moving average (ARIMA) which is a generalization of 

an  autoregressive moving average  (ARMA) model and is a linear combination of the 

autoregressive (AR), variance and MA components and finally the exponential smoothing model 

which it is similar to the MA but places more importance on recent data and less on older data. 

The choice of the appropriate model depends each time on the characteristics of our data and the 

purpose of the forecasts.

https://en.wikipedia.org/wiki/Autoregressive_moving_average
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Time series models assume that there are correlations in the time series. When examining 

a real process or a process with observed noise, it is important to use methods based on the theory 

of stochastic processes. These methods allow for the analysis and modeling of random behavior, 

which is often present in real-world systems. Stochastic processes can be used to model the 

evolution of a system over time and to analyze the impact of random events on the system's 

behavior. In addition, these methods can be used to estimate the magnitude of the noise or other 

random components present in the system. The stochastic process is a phenomenon that evolves 

over time, according to the laws of probability.

3.3 Regression 

Regression is a statistical modeling method that commonly has applications in statistics 

and econometrics, and is based on the study of the relationship between a dependent variable and 

one or more independent variables. The regression technique is used to assign data to a true 

predictor variable. A necessary condition to proceed with the modeling of our data from a 

regression model is that our data match some known type of function (for example a linear 

function) and thus we choose the appropriate type of regression. There are various types of 

regression techniques such as linear, polynomial, logistic, and non-linear regression. The 

regression technique we will use to evaluate the results for our data is linear regression, which is 

the most basic form. The objective of linear regression is to find the best-fitting linear equation 

that describes the relationship between the dependent and independent variables so that 

predictions can be made about the value of the dependent variable, in our case the price of 

electricity based on the values of the independent variables i.e. the predicted consumption. Linear 

regression assumes that the relationship between the variables is linear and that the errors are 

normally distributed.
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3.4 Stationarity

In the analysis of time series, stationarity is a basic condition and a basic problem that we 

are often asked to face is the existence of non-stationarity since it does not allow us to proceed 

with predictions. Non-stationarity is due to reasons such as the existence of a trend, periodicity, 

seasonality, or the existence of extreme values. A stochastic process is called weakly stationary if 

the mean and variance do not change over time and the covariance of its values in two time 

periods depends only on the time lags and not on the time point at which it is estimated. In a few 

words, a stationary process is when the effect of an unexpected change diminishes/has less effect 

over time, while a non-stationary process is one in which an unexpected change at time t is 

followed by equivalent changes for subsequent years and so volatility does not decrease over 

time. That is why characteristics such as trend and seasonality lead to non-stationarity and affect 

the value of the time series at different points in time.

The conditions of the weak stationarity represent in the following Equations (1) - (3): 

                                                 ,                                                                    (1)

                                         ,                                                              (2)

              ,                                       (3) 

where E represents the expectation, μ represents the mean of a set of numbers, Var or   

represents the variance, Cov represents the Covariance,   represents the covariance at lag k,   

represents the value of the time series at time t and k represents the lag. Non-stationarity means 

time dependence in (1) - (3) and stationarity means no time dependence in (1) - (3).

Stationarity can first be observed by studying the graphical display of the series or by 

constructing and studying the autocorrelation function and its corresponding correlogram. If we 

want to show whether or not there is stationarity in our data through some test, we can apply the 

Augmented Dickey-Fuller (ADF) unit root test or the Kwiatkowski-Phillip-Schmidt-Shin (KPSS) 

stationarity test, where in both tests by the term null hypothesis we mean  . If it turns out that 

E(Yt) = μ, ∀t

Var (Yt) = σ2
Y = γ0, ∀t

Cov(Yt, Yt−k) = E[(Yt − μ)(Yt−k − μ)] = γk, ∀t

σ2

γk Yt

H0
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we have non-stationarity, then we can use a transformation to achieve stationarity. In Table 3.1 

we represent both tests, wherein each test we look at the critical value next to our control which 

shows us if there is a statistical significance of the results for level 0.05.

Table 3.1: Stationarity tests.

3.4.1 Augmented Dickey-Fuller unit root test

According to James Hamilton (1994), the ADF test is a statistical test used to determine 

whether a time series has a unit root or not. In econometrics and time series analysis, stationarity 

is an important property because many statistical methods assume that the data is stationary. The 

null hypothesis in our test is non-stationarity or that there is a time dependence, i.e. we have a 

unit root. Accordingly, the alternative hypothesis is stationarity or that there is no dependence on 

time and the time series cannot be reproduced from a unit root.

3.4.2 Kwiatkowski-Phillips-Schmidt-Shin stationarity test

The KPSS test is a statistical test used to determine whether a time series is stationary or 

not. The null hypothesis in our test is stationarity and the alternative hypothesis is non-

stationarity. The KPSS test statistic is calculated based on the autocorrelation of the residuals of a 

regression of the time series on its lags and a constant. The test statistic is then compared to 

critical values from a chi-squared distribution to determine whether to reject or fail to reject the 

null hypothesis.

ADF KPSS

Existence of unit root Stationarity

No unit root Non-stationarity

 H0

 H1
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3.5 Box-Jenkins approach

The goal of time series analysis in the present thesis is to study how the electricity price 

behaves over time. Firstly, we want to study the structure of our data for the electricity price but 

also for the predicted consumption which we will use in some models to identify if there exist 

correlations and similarities between our time series. Then we will estimate the price of 

electricity through the models and finally, we will proceed to predict the future values of the price 

of electricity. To achieve as accurate estimations and predictions as possible, we must first study 

the basic characteristics of our data. In the end, with the help of the appropriate comparison 

measures, we will evaluate the models we used.

Essentially, the above methodology can also be referred to as a Box-Jenkins approach 

where we have 4 steps:

1. Model Identification.

2. Model estimation.

3. Diagnostic test.

4. Time series forecasting.

Initially, the identification of the model is carried out by examining the plot of our original 

time series and by examining the autocorrelation and partial autocorrelation plots that show us 

the characteristics of our time series. If our time series is non-stationary we need to use the 

difference transformation to achieve stationarity. This step will lead us to select some models for 

evaluation. Then we will estimate the parameters defining the model identified in the first step. 

The third step is to examine whether the residuals of the estimated model are characterized as 

white noise. Finally, if the answer to the previous step is positive and after the determination of 

the best fitted model, we will use it to predict future values.
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3.6 Quality characteristics of time series

The main qualitative characteristics likely to be present in a time series are the trend, 

seasonality, cyclical variations, and the existence of extreme values. Below we will present in 

detail the importance of each feature and whether we can deal with them so that they do not affect 

our prediction process.

3.6.1 Trend

The trend of a time series appears in the form of changes in the mean or variance, where 

the mean may increase or decrease following some linear or non-linear pattern. The time series 

may not be stationary in mean, variance, or both. The voltage can be represented as a simple 

linear function of time or perhaps a polynomial function of time or exponential. It is 

distinguished into deterministic when it can be described by a function that is known or can be 

estimated, and stochastic that cannot be described by a known parametric function of time, i.e. it 

shows slow changes over time but not in a deterministic way.

3.6.3 Seasonality

Seasonality is observed when there is approximately a recurring pattern in a specific time 

horizon, eg six months or a year. Seasonality also (like the trend) leads to the non-stationarity of 

time series. It is a periodic fluctuation that is constant and less than or equal to one year in length. 

Since this variation is seasonal, that is, it occurs systematically, we can easily measure it and 

isolate it so that it does not affect our data and we can lead to a stationary series.

3.6.4 Cyclicity

Cyclicity is observed in fluctuating time series with bullish and bearish phases that repeat 

sequentially around the trend line, and cyclical behavior is defined by two lower inflection points 
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and one upper inflection point (top). These cyclical changes do not repeat themselves at regular 

intervals, so there is no fixed period length. Cyclical movement cannot be easily treated, unlike 

seasonality, since it follows no regular pattern but moves unpredictably.

3.6.5 Outliers 

Another characteristic of non-stationarity is isolated observations or extreme values, 

which appear in the time series as abrupt changes in its pattern of behavior. These points are 

unpredictable and their effect on the time series has a short duration. They may represent an 

unusual observation due to some unforeseen event (e.g. a strike) or simply an error in the 

observation recording system.

3.7 Quantitative characteristics of time series

Quantitative features are the statistical indicators that can be calculated from the time 

series data, and the most basic indicators that we will analyze below are the mean value, standard 

deviation, and minimum/maximum values.

3.7.1 Mean value

The mean represents the average value of a data set and it can be used to understand the 

distribution of data, however, it can be affected by outliers and may not always accurately 

represent the standard value in the data set. Equation (4) represents the equation for the mean 

(also known as the average) of a set of numbers as follows: 

                                                       ,                                                           (4) 

where   represents the mean,   represents each value in the set and n represents the number of 

values in the set.

Y = 1/n
n

∑
i=1

Yi

Y Yi
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3.7.2 Standard deviation

The standard deviation (SD) is a measurement of the dispersion of a data set and is 

calculated as the square root of the variance, which is the average of the squared differences 

between the values in the data set and the data set mean. Like the mean, the SD can be used to 

understand the distribution of data. If the SD is large then the values in our data set are scattered, 

while the smaller the SD the closer to the mean our values are. Equation (5) represents the SD of 

a set of numbers as follows: 

                                            .                                                      (5)             

3.7.3 Minimum and maximum value

The minimum and maximum values refer to the lowest and highest value of a data set and 

can be used to describe the range and spread of values. 

3.8 Autocorrelation study

To study correlations in stationary time series, autocorrelation is used, i.e. the 

normalization of the covariance with the dispersion. Autocorrelation is the correlation between 

the time series and itself at different lags. The definition of autocorrelation makes sense when the 

time series is stationary while when the series is not stationary the autocorrelation cannot be 

defined as a function of the lag but is defined for each time instant. 

Autocorrelation can be calculated for 2 different reasons: First, it can be calculated on our 

real data before running any model so that we understand the characteristics of our data. This will 

help us identify if our data is characterized by stationarity or if there is any trend or pattern in our 

initial data that must be addressed subsequently in the modeling process that we will apply. The 

second reason is to use the autocorrelation function (ACF) after running our model so that we can 

SD =
∑n

i=1 (Yi − Y )2

n − 1
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assess the quality of our model and examine whether autocorrelation is present in the residuals. 

That is, this way will help us to determine if our model has adequately captured the patterns or 

trends that we will find from applying ACF to our data before running any model and thus we 

will examine for any remaining autocorrelation in the residuals of the model.

3.8.1 Autocorrelation Function

The ACF is a statistical technique that we can use to determine how correlated the values 

of a time series are with each other. Equation (6) represents the ACF of a time series as follows:

                               ,                                                 (6) 

where   represents the autocorrelation between the values at time t and time t+k and   

represents the variance.

The ACF plot is a key tool for pattern recognition and plots the correlation coefficient 

against the lag k, which is measured in terms of several periods. A lag corresponds to a certain 

point in time after which we observe the first value in the time series. The autocorrelation 

coefficient can range from -1 (perfectly negative relationship) to +1 (perfectly positive 

relationship). A value of 0 means that there is no relationship between the variables. 

 The horizontal lines on an ACF plot are the error bars where anything inside those lines is 

not statistically significant. It means that for correlation values outside this range, it is very likely 

that there is a correlation rather than a statistical fluke. Practically, for a time series to be 

stationary, the autocorrelation diagram should peak immediately after the first k lags, while in a 

time series with a strong trend, the autocorrelation diagram will decrease slowly as the value of k 

increases. In the case of the existence of a strong seasonal component, we have strong 

autocorrelations at specific lags depending on the nature of the data. When our bar graphs are 

ρκ =
γκ

γ0
=

∑ (Yt − Y )(Yt+k − Y )
∑ (Yt − Y )2

ρκ γ0
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very high and we have no stationarity, we can do a transformation (take the differences) to solve 

the non-stationarity problem. 

In addition to the autocorrelation function, there is also the partial autocorrelation function 

which captures a "direct" correlation between the time series and a lagged version of itself, when 

the effect of other time lags remains constant. In Figure 3.1 we introduce an example of the ACF 

and PACF plots, where the dotted lines on the ACF and PACF plot are the error bars where 

anything inside those lines is not statistically significant. On the PACF plot, there is no 

statistically significant autocorrelation, and on the ACF plot, there is a statistically significant 

autocorrelation at lag 4.

Figure 3.1: Example of ACF and PACF plots.
 

3.8.2 Independence test 

We can test for autocorrelation through the Ljung-Box test which is a hypothesis test that 

tests whether a time series contains autocorrelation. The null hypothesis is that the residuals are 

independently distributed and the alternative hypothesis is that the residuals are not 

independently distributed and are autocorrelated. There is also the Box-Pierce independence test 

which is similar to the Ljung-Box and has the same results with the only difference being in the 

way they calculate the statistics, and is commonly used in time series analysis to diagnose the 

need for more complex modeling techniques, such as ARIMA or seasonal ARIMA (SARIMA) 
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models. In both tests, we have a statistical significance level of 0.05. Table 3.2 presents both 

independence tests. These tests can be applied to our original data before running any model to 

see if there is autocorrelation in the data, and also to our data after we run a model to see if there 

is autocorrelation in the residuals. Equation (7) is the Ljung-Box test statistic:  

                                         ,                                                      (7)   

where   represents the Ljung-Box test statistic and   represents the autocorrelation at lag i. 

Εquation (8) is the Box-Pierce test statistic:

                                                    ,                                                            (8)    

where   represents the Box-Pierce test statistic.

Table 3.2: Independence tests.

3.9 White noise 

A stationary time series with 0 autocorrelation for every lag other than 0 is called white 

noise, i.e. the sample ACF tends to 0. If we consider consecutive elements of the time series as 

random variables, then they are independent and identically distributed (iid) random variables 

and there are no correlations between them when for t > 1 the random variables have the same 

distribution and are independent between theirs. White noise is characterized by second-order 

stationarity, but if in addition, regularity can be ensured, then we have a strictly stationary 

QLB = n(n + 2)
k

∑
i=1

ρ2
i

n − k

QLB ρi

QBP = n
K

∑
i=1

ρ2
i

QBP

Ljung-Box result  Box-Pierce result

 No autocorrelation  No autocorrelation

Evidence of autocorrelation Evidence of autocorrelation

 H0

 H1
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process. A white noise process can be represented with the following Equations:                                                       

,                                                            ,                                                                 (9) 

                                                ,                                                                    (10)

                                       ,                                                        (11)

                                 ,                                                (12) 

where   represents the value of the white noise process at time t and   represents the random 

error term at time t where the error terms are independent and normally distributed.

In the context of time series analysis, we want white noise in the error term after we apply 

our model rather than in our actual data. If the errors are white noise it means that the errors are 

randomly distributed and uncorrelated so the model correctly captures the underlying patterns in 

the data and any remaining variation is due to random noise. Conversely, if the data itself is white 

noise it means that there is no pattern or structure in the data and it is difficult for any model to 

make accurate predictions since there is no important information about our data to help us 

choose the appropriate model. In addition to the Ljung-Box independence test, there is also the 

Durbin-Watson test, which is a first-order autocorrelation test in the residuals, so it is only applied 

after some model and not to our original data before running a model. In Figure 3.2 we represent 

a plot of ACF, in which we have white noise because all the lags are inside the dotted lines, so 

there is no statistically significant autocorrelation.

Figure 3.2: Example of white noise.

Yt = μ + εt, ∀t

E(εt) = 0,∀t

Var (εt) = E(ε2
t ) = σ2, ∀t

Cov(εt, εs) = E(εt, εs) = 0,∀t ≠ s

xt εt
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3.10 Transformations 

As we mentioned above, stationarity can be achieved with the help of some 

transformations. Basic transformations are applied by taking the first differences or by taking the 

logarithm. We have the following transformations:

3.10.1 Box-Cox Transformation 

The Box-Cox transformation is used to stabilize the variance of the data, improve 

homoscedasticity, or make the data more suitable for parametric statistical tests that assume 

normally distributed data. The Box-Cox transformation satisfies the criterion of power 

equivalence, meaning that it can transform any non-constant, positive data set to make it 

approximately linear. This makes the transformed data easier to model and analyze using linear 

regression techniques. Equation (13) presents the cases of the Box-Cox transformation                                

                         ,                       (13)                                                        

where λ represents the transformation parameter. Depending on λ we have the following 

results:

• If λ = 0 then the Box-Cox transform is simply the logarithmic transform.

• If λ = 1 then our data do not need transformation.

• If λ = -1 then we have the inverse transformation.

• If λ = 1/2 then we get the square root transformation.

• If λ = 1/3 then we get the cube root.

3.10.2 Logarithmic transformation

The second transformation we will perform is by taking the logarithms which helps to 

stabilize the variance of the time series. The logarithmic transformation is essentially a special 

Y (λ)
i = ln(Yi) i f λ = 0, or Y (λ)

i =
Yλ

i − 1
λ

other wise
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case of the Box-Cox transformation seen earlier where λ=0. The logarithmic transformation is 

given by:  

                                                          ,                                                     (14) 

where x represents the number being logarithmized and y represents the logarithmic result. 

3.10.3 Method of first differences

Differencing helps to stabilize the mean of the time series by removing variations in the 

level of the time series. Sometimes the 2nd difference is needed to make the series stationary, 

although practically it is rarely necessary to proceed to a 2nd difference. Differencing helps to 

stabilize the mean of the time series by removing variations in the level of the time series. Thus it 

reduces or eliminates trend and seasonality. The first difference of a time series can be 

represented mathematically as follows: 

                                                    ,                                                           (15) 

where   represents the first difference of the time series at time t.

3.10.4 Method of seasonal differences

Seasonal differentiation is the difference between our observation and the previous 

observation of the same period, i.e. it takes into account the seasonality of our time series. The 

seasonal difference of a time series can be represented mathematically as follows:

                                                 ,                                                            (16) 

where   represents the seasonal difference of the time series at time t, and s represents the 

number of time units in a season (e.g., s=7 for weekly data and s=12 for monthly data). In time 

series analysis, seasonal differentiation is used as a preprocessing step before fitting models like 

SARIMA.

y = log(x)

ΔYt = Yt − Yt−1

ΔYt

ΔsYt = Yt − Yt−s

ΔsYt
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3.11 Parametric prediction models

   3.11.1 Simple Linear Regression model

The first model that we will use is the Simple Linear Regression model (SLR). It is a 

linear regression model with only one explanatory variable ie it involves one independent 

variable and one dependent variable and finds a linear function (a non-vertical straight line) that 

as accurately as possible predicts the values of the dependent variable as a function of the 

independent variable. The SLR model is represented by Equation (17): 

                                               ,                                                            (17) 

where   represents the dependent variable,   represents the independent variable, α 

represents the intercept, β represents the slope coefficients and ε represents the error term that 

captures the difference between the observed value of Y and its mean. Estimation of the model  

by least-squares gives us estimates of the coefficient β of the regression and the p-value of the t-

test is used to assess its significance. 

Table 3.3: T-statistic.

If even one predictor variable is significantly related to the output, we need to proceed to 

the accuracy of the model, in which diagnosis is based on checking how well the model fits the 

data. Thus, to see overall the quality of the fit of the linear regression, we will use the evaluation 

measures: residual standard error (RSE), R squared ( ), and F-statistic. This process is also 

known as goodness-of-fit.

Yi = a + βXi + εt

Yi Xi

R2

 T-statistic results

The coefficient are equal to zero/there is no relationship between x and y 
The coefficient are not equal to zero/there is relationship between x and y 

 H0

 H1
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   3.11.2 Autoregressive Integrated Moving Average Model (p,d,q)

The Autoregressive Integrated Moving Average Model (ARIMA) model is a time series 

analysis and forecasting technique used in economics, statistics, and signal processing to 

characterize relationships between variables. It can predict future values based on past values and 

is a linear combination of its past values, current errors (also known as innovation term), and past 

errors. The ARIMA model is widely used in time series analysis and is particularly useful for 

modeling data with trend and seasonality. According to Hyndman, R. J., & Athanasopoulos, G. 

(2014), it has three parameters that respectively define the order of the autoregressive (AR) part 

with the number p i.e. the number of AR terms representing the number of previous values used 

to predict the current value, with d being the number of differences representing the number of 

times the data has been differenced to be stationary (i.e. to remove trend and seasonality) and 

finally q is the number of moving average (MA) terms which represents the number of past errors 

used to predict the current error. 

The ARIMA model is the Autoregressive Moving Average Model (ARMA) with the order 

of differencing (d) which is an important parameter of ARIMA and determines the success of the 

model. If the ARMA model is not stationary, then we use the first-order difference (d=1), or 

larger order when seasonality doesn’t exist yet. The ARMA is represented by the following 

Equation:    

  ,                              (18) 

where   is the mean of the time series,   are parameters that control the 

weight given to past values,   are parameters that control the 

weight given to past errors   , and   is the error term at time t that captures any 

unpredictable part of the time series.

Yt = β + (Φ1Yt−1 + . . . + ΦpYt−p) + (ω1εt−1 + . . . + ωqεt−q + εt)

β Φ1, Φ2, . . . , Φp

Yt−1, Yt−2, . . . , Yt−p, ω1, ω2, . . . , ωq

εt−1, εt−2, . . . , εt−q εt
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For better understanding before our analysis, we will define the two parts AR(p) and 

MA(q) separately. Before that, we need to know that both AR and MA models require 

stationarity. Firstly, the autoregressive model expresses the dependence of a variable on a 

previous period, where the signal depends only on its previous values and is represented by the 

following Equation: 

                         ,                                         (19)  

where   is the mean of the time series,   are parameters that control the weight 

given to past values and   . Also, the moving average model calculates its 

forecast value by taking a weighted average of past errors. It can capture trends and patterns in 

time series data. The MA is represented by the following Equation: 

                          ,                                 (20)       

where   is the value of the time series at time t,   is the mean of the time series, and 

  are parameters that control the weight given to past residuals  . 

The errors have a mean of zero.

Table 3.4: Behavior of ACF and PACF.

As we said before, ARIMA is a combination of the AR(p), MA(q), and the differentiation 

number. To find the best order of the ARIMA, we will compare the Bayesian Information 

Criterion of each ARIMA. The lower the value of these criteria, the better the model. 

Furthermore, except for ARIMA, we will try an extension: Seasonal ARIMA (SARIMA), which 

includes additional seasonal terms in the ARIMA. SARIMA adds three new parameters to specify 

Yt = μ + Φ1Yt−1 + Φ2Yt−2 . . . + ΦpYt−p + εt

μ Φ1, Φ2, . . . , Φp

Yt−1, Yt−2, . . . , Yt−p

Yt = μ + (ω1εt−1 + ω2εt−2 + . . . + ωqεt−q + εt)

Yt μ

ω1, ω2, . . . , ωq εt−1, εt−2, . . . , εt−q

AR(p) MA(q) ARMA(p,q)

ACF
Tails off

 (trends to zero gradually) 
Cuts off after lag p (disappear or 

zero) 
Tails off after lags (p-

q)

PACF Cuts off after lag p 
Tails off

 (decays for slowly than AR)
Tails off after lags (p-

q)
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the AR, differencing, and MA for the seasonal component of the series, as well as an additional 

parameter for the period of seasonality.

   3.11.3 ARCH/GARCH model

The ARCH model is defined as the Autoregressive Conditional Heteroscedasticity model 

and the GARCH as the Generalized Autoregressive Conditional Heteroscedasticity model. Before 

proceeding to choose an ARCH or GARCH model, we need to perform the heteroskedasticity test 

on the residuals to see if the ARCH or GARCH models fit our data. According to 

Tim Bollerslev, Robert F. Engle and Daniel B. Nelson (1994), ARCH/GARCH models describe 

the conditional variance of the error term as a function of the actual magnitude of the error term 

of previous periods. Both of them, are statistical models used to capture the time-varying 

volatility of a time series. The ARCH(q) model is appropriate when the error variance follows an 

AR(q) model, while if the error variance follows an ARMA model then we want the GARCH(p, 

q) model where p is the order of the GARCH terms and q is the order of ARCH the terms. Firstly, 

to model a time series using an ARCH process, we denote the   which are split into a stochastic 

piece    (the random variable    is a strong white noise process) and a time-dependent standard 

deviation   so that: 

                                                            .                                                               (21)  

The ARCH Equation is represented as follows :

                 ,                                     (22)  

where   represents the conditional variance at time t,   is a constant larger than 0, and 

  are parameters which are larger or equal to 0 and control the weight given to past 

residuals. The GARCH model is represented by the Equations (23)-(25):

εt

zt zt

σt

εt = σt zt

σ2
t = a0 + a1ε2

t−1 + . . . + aqε2
t−q = a0 +

q

∑
i=1

aiε2
t−i

σ2
t a0

α1, α2, . . . , αq



	 	   37

  ,      (23)    

,                                                          ,                                                                    (24)  

                                               ~     ,                                                      (25)  

where   is the conditional variance, ω is a constant, and   are parameters that 

control the weight given to past residuals and past variances.

 3.11.3.1 Engle ARCH LM test

Engle's ARCH Lagrange Multiplier test, tests whether or not there is heteroscedasticity in 

the residuals and follows the Chi-square distribution with the number of degrees of freedom 

which is equal to the number of ARCH terms included in the model. Table 3.5 shows the 

hypothesis of the ARCH LM test, according to its results if there is no ARCH form in the 

residuals then the autocorrelations and partial autocorrelations of the squared residuals should be 

zero at all time lags and the Q statistics should be non-statistically significant at the 0.05 

significance level.

TABLE 3.5: Engle’s ARCH LM test.

To proceed with the test, we enter the number of time lags k that we want. Then we run an 

auxiliary regression with the squared residuals as a dependent variable and the time lags k of the 

squared residuals as explanatory variables. In this test, the number of observations n on the 

coefficient of determination R-squared is calculated. The formula is as follows:  . If 

σ2
t = ω + a1ε2

t−1 + . . . + aqε2
t−q + β1σ2

t−1 + . . . + βpσ2
t−p = ω +

q

∑
i=1

aiε2
t−i +

p

∑
i=1

βiσ2
t−i

Yt = X ′ 
tb + εt

εt |ψt−1 N(0,σ2
t )

σ2
t β1, β2, . . . , βq

LM statistic Results

The residuals are not characterized by the ARCH form of heteroscedasticity up to the 
k lag, i.e. we have homoscedasticity. 

The residuals are characterized by the ARCH form of heteroscedasticity up to the k 
lag. 

 H0

 H1

L M = n * R2
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our testing leads us to apply the ARCH/GARCH models (when the residuals are characterized by 

the ARCH form of heteroscedasticity), the volatility will depend on the recent past of the time 

series.

3.11.3.2 Apply ARCH/GARCH models

It is important to note that ARIMA models are designed to linearly model time series data, 

which can limit their ability to capture complex nonlinear patterns in the data. Additionally, the 

forecast range for ARIMA models is fixed and cannot be adjusted easily, which can make them 

less suitable for predicting future changes in the data. Furthermore, it is worth noting that ARIMA 

models are typically based on historical data and do not reflect recent changes or incorporate new 

information in real time. That’s why ARIMA models give the best linear prediction and play a 

minimal role in predicting non-linear models. To model volatility, we use ARCH or GARCH 

models, but before that, we need to make sure if the ARCH or GARCH model is necessary for 

our time series, so we will do the following 3 steps. In the first step, we will check if our ARIMA 

residuals chart has any signs of volatility (minimal). Then, in the second step, we will make the 

square plot of the residuals of the ARIMA model. If it shows signs of volatility then we use the 

ARCH or GARCH model which will reflect the recent changes and fluctuations of our series. In 

the third step, the ACF and PACF of the squares of the residuals from the previous step will help 

us see if the residuals, i.e. the term containing the noise, are not independent and can be 

predicted. Should be noted that strict white noise cannot be predicted either linearly or non-

linearly, while simple white noise can be predictable non-linearly, so if we have strict white noise 

we will not be able to make a prediction.

3.12 Non-parametric prediction models

3.12.1 Singular Spectrum Analysis model
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Singular Spectrum Analysis (SSA) is a non-parametric method for time series analysis 

and forecasting which is used in fields such as economics and natural sciences. SSA does not 

require specific conditions on the structure of the time series such as stationarity, linearity, or a 

training stage to make a prediction. It can identify and remove trends, cyclicality, seasonality 

patterns, and noise components from time series, achieving good forecasts.

SSA is a way of decomposing a time series into a much smaller series of eigenvectors and 

their corresponding eigenvalues, which can be used to extract information about trends, seasonal 

patterns, and noise in the data. The main idea of SSA is to break down time series into different 

components and reconstruct our data without noise for further analysis. It depends on the choice 

of the window length: L and the number of required singular values/eigenvalues: r for the 

reconstruction, where we have to separate the periodic components and signal from the noise 

components. The main idea of separability, which characterizes how well signal and noise 

elements can be separated, is to choose the appropriate number of eigenvalues where we will 

proceed by choosing the periodic components and signal and removing the noise components.

According to Nader Alharbi and Hossein Hassani (2016), the length of the window should 

be large enough but not larger than n/2 (where n is the number of observations). As regards the 

eigenvalues r, there are several methods for selecting the required number of r, such as the 

analysis of the singular value plot, the eigenvector analysis plot, the periodogram, the convexity 

plot, and the correlation matrix: W-correlation.

  The SSA process can be summarized in the following four steps:

Figure 3.3: Steps for the SSA process.

Step 1: 
Embedding 

Step 2:  
Singular Value 
Decomposition 
which lead to the 
eigentriples 

Step 3: 
Grouping  

Step 4: 
Reconstruct 
with diagonal 
averaging   
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We will mention the steps in detail, according to Miranian, Abdollahzade, and Hassani 

(2013). In the first step, we have the embedding where the original time series is transformed into 

a matrix of lag vectors. Consider a time series:   where the length of n is more 

than 2. We will let L (which represents the length of the window) < n/2 and we will construct a 

trajectory matrix X from the L=lagged vectors of the original time series   as follows:

                                                          ,                                             (26)  

                                                         ,                                     (27) 

and L is the trajectory matrix window size, T stands for the transposition, and K= n-L+1 where 

 . The trajectory matrix captures the dependence structure of the time series data within 

a sliding window of size L. The trajectory matrix of lagged vectors is mapped as follows:

                                              ,                                           (28)

where the matrix X is a Hankel Matrix as the elements on the off-diagonals (i+j=constant) 

are identical. 

In the second step, we have the Singular Value Decomposition (SVD) of the trajectory 

matrix in Equation (28) which is obtained through the extraction of the eigenvalues   

and eigenvectors   of the matrix the covariance matrix   of size L x L. The 

integration matrix is decomposed into a set of orthogonal series of components (eigenvectors) 

and the corresponding eigenvalues where the eigenvalues are arranged in decreasing order. The 

square roots of the eigenvalues   of length L in the matrix   are called singular 

values of X, where the trace of the matrix   =  . If we divide  , we are 

Yn = (y1, y2, . . . , yn)

Yn

X = [X1, X2, . . . , XK]

Xi = (yi, yi+1, . . . , yi−L+1)T

1 ≤ i ≤ K

X =

y1 y2 . . . yk
y2 y3 . . . yk+1
⋮ ⋮ ⋱ ⋮
yL yL+1 . . . Yn

λ1, λ2, . . . , λL

U1, U2, . . . , UL S = X XT

λ1, λ2, . . . , λL X XT

X XT
L

∑
i=1

λi A =
X XT

∑L
i=1 λi
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provided with important assumptions about the point and noise separation process. We must note 

that any time series can be written as   , where   are the signal 

components and   the noise components. Considering that d=max{i} and setting the factor 

vectors  , then the SVD of the trajectory matrix in Equation (28) can be stated as 

follows:

                                                     ,                                                (29) 

where   are elementary matrices with rank 1 and i=1,2,…,n. The collection {

} is termed ith eigentriple in the SSA. 

The third step is grouping, i.e. the process of selecting the eigentriples where the 

eigenvectors are grouped into component series according to the magnitude of their eigenvalues 

which is the basic criterion for grouping in SSA. In this step, we will proceed with the grouping, 

which partitions the set of elementary matrices indices {1,…,d} into m disjoint subsets 

 (termed as eigentriple grouping). We will group   where 

  and  , so the resultant matrix associated with the group   can be defined as:            

                                                   .                                             (30)

 The components which form structured time series can be considered for the grouping.  

Subsequently, the grouping of the elementary series in Equation (29) results in the following 

decomposition: 

                                                                                                     (31)

In the fourth step, we have the reconstruction of the original time series by applying 

diagonal averaging to the m subsets of the grouped elementary matrices from Equation (31). We 

will assume that G is a matrix L x K with elements  , where 

Yn = {yt}n
t=1 = Sn + En Sn

En

Vi =
XTUi

λi

X = X1 + X2 + . . . Xd

Xi = λiUiVT
i

λi, Ui, Vi

I1, I2, . . . , Im IK = {ik,1 + . . . ik,p}

1 ≤ k ≤ m 1 ≤ p ≤ d IK

XIk = {Xik,1
+ . . . + Xik,p

}

X = XI1 + XI2 + . . . XIm

gij ,1 ≤ i ≤ L , 1 ≤ j ≤ K
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  and  . Applying the diagonal averaging 

procedure to the matrix G, the series   produced as in the following 3 cases:

• If   , then     .                                              (32)

• If   , then   .                                                  (33)

• If  ,  then     ,                                           (34)

where   if   and   otherwise.

In Equations (32-34), we averaged the matrix elements along the diagonal  . 

From the above diagonal averaging procedure of the resultant matrix in Equation (30), a sub-

series   with length n is produced. Finally, the original time series 

  we considered in the beginning, can be reconstructed by summation over the 

produced sub-series  . 

The reconstructed series are represented as follows:

                                                            ,                                                          (35)

where   represents the reconstructed series. After the above 4 steps, we can proceed with 

the predictions with the method of Vector SSA or the method of Recurrent SSA. We will proceed 

to the method of the Vector SSA which is more widely applied and the basic condition for 

predicting the reconstructed time series is that the series follows a Linear Recurrent Formula 

(LRF).

L* = min(L , k), K* = ma x(L , k) n = L + K − 1

f = f1, f2, . . . , fn

0 ≤ k ≤ L* − 1 fk+1 =
1

k + 1

k+1

∑
m=1

g*m,k−m+2

L* − 1 ≤ k ≤ K* fk+1 =
1

L*

L*

∑
m=1

g*m,k−m+2

K* ≤ k < n fk+1 =
1

n − K

n−K*+1+1

∑
m=k−K*+2

g*m,k−m+2

g*ij = gij L < K g*ij = gji

i + j = k + 2

f k = ( f k
1 , f k

2 , . . . , f k
n )

Yn = (y1, y2, . . . , yn)

f k = ( f k
1 , f k

2 , . . . , f k
n )

Ỹn =
m

∑
k=1

f n
n

Ỹn
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3.13 Evaluation of models

Time series models are evaluated through forecasting errors to compare accuracy and 

measure how well they fit actual data, using metrics and visual comparisons. Choosing the model 

with the lowest forecasting error increases accuracy and informs decision-making. In models that 

require the selection of the number of lags such as ARIMA, the AIC/BIC criteria can be used, but 

we will continue by using the BIC criterion.

3.13.1 Akaike Information Criterion and Bayesian Information Criterion

The Akaike Information Criterion (AIC) is a statistical measure that we can use to see the 

relative quality of a model and also to compare different models for their relative quality. It 

measures the quality of the model in terms of its goodness of fit to the data, its simplicity, and 

how much it depends on tuning parameters. The formula for AIC is given by

                                                ,                                                        (36)

where k is the number of model parameters and   is the logarithm of the maximum 

value of the model's likelihood function. The Bayesian Information Criterion (BIC) Equation is 

defined as:

                                            .                                                      (37)

BIC is similar to AIC but is more strict when we have a large number of observations and 

is more robust to increasing degrees of lags. The criteria are useful not only for evaluating a 

model but also for comparing models with different numbers of parameters. The lower the value 

of the criteria, the better the model. We must note that for the comparison of models, we must use 

the same data set because these measures depend on the sample size.

AIC = 2k − 2ln(L̂)

ln(L̂)

BIC = kln(n) − 2ln(L̂)
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3.13.2 Forecasting errors

The forecasting error represents the difference between predicted and actual values. To 

evaluate the accuracy of our electricity price forecasting models, we utilize various forecasting 

error metrics. These metrics allow us to compare the performance of different models and 

measure how well they fit the actual price data. We have to note that the difference between the 

below simple means and the absolute means is that the absolute means are resistant to extreme 

values.

    3.13.2.1 Mean absolute error

The mean absolute error (MAE) is a measure of forecast error calculated as the mean 

absolute difference between the actual values and the predicted (or estimated) values i.e. it is the 

sum of the absolute differences between the predicted and actual values divided by the number of 

predictions. It measures the average size of the errors in a set of estimates or forecasts without 

regard to their direction. The MAE metric is widely used because it is easy to understand and 

interpret and is a relatively insensitive measure to outliers. However, it does not take into account 

the relative size of the errors. The formula for MAE is given by 

                                            ,                                                      (38)

where   is the prediction of  . The absolute difference between the predicted and actual 

values is taken to ensure that positive and negative differences are treated equally and the sum of 

the absolute differences is then divided by the number of observations to obtain the average 

magnitude of the errors.

MAE =
∑n

i=1 |yi − ̂yi |

n

̂yi yi
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    3.13.2.2 Mean percentage error 

The mean percentage error (MPE) is expressed as a percentage of the true value and is 

calculated by taking the average of the percentage error in a set of predictions or observations. 

However, MPE has a limitation when actual values are close to zero, as small errors can result in 

large percentage errors.  The formula for MPE is given by

                                       .                                                     (39)

Again the lower the measure i.e. here the MPE the better the fit of our model to the real 

data.

    3.13.2.3 Mean squared error

The mean square error (MSE) is calculated as the average of the squared differences 

between the actual and predicted values. It is a common metric for evaluating the performance of 

regression models but is sensitive to outliers, and unusually large or small errors and can be 

affected by the scale of the data. It is defined as the average of the squared differences between 

the predicted and actual values over all observations as follows: 

                                                  .                                                (40)

    3.13.2.4 Root mean square error 

Root mean square error (RMSE) is a useful metric because it is expressed in the same 

units as the original data, which makes it easier to interpret. Furthermore, RMSE is sensitive to 

large errors. It is defined as the square root of the mean of the squared differences between the 

predicted and actual values over all observations as follows: 

                                                   .                                                     (41)

MPE =
100 %

n

n

∑
t=1

yt − ̂yt

yt

MSE =
1
n

n

∑
t=1

(yi − ̂yi)2

R MSE = (MSE )
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  3.13.2.5 Mean absolute percentage error

Mean absolute percentage error (MAPE) is robust to outliers because it has the absolute 

value, but it can be difficult to interpret when actual values are close to zero as the error rate 

becomes infinite. MAPE represents by

                                                 .                                             (42)MAPE =
1
n

n

∑
t=1

yt − ̂yt

yt



	 	   47

CHAPTER 4: NORD POOL MARKET TIME SERIES ANALYSIS

4.1 Data Preprocessing

Before analyzing our time series we should mention that in cases where data were missing 

for an observation we used the mean of the intermediate observations to fill in the blank. Also, we 

fixed the problem where in some cases we had double observations at the same time. Our data 

concern the price of electricity and the predicted consumption in the Nordic countries, namely 

Norway, Sweden, Finland, and Denmark. Our prices refer to the System prices where according 

to Nord Pool the System prices for each hour are based on the intersection of the total supply and 

demand curves that represent all the offers in the entire Nordic market. The system price is the 

main component for tradable long-term Nordic financial contracts. Regarding the intended 

consumption we mean according to the needs of the consumer what the consumption will be.

4.2 Peak time selection

We will present the statistics for each hour separately from 2019 through 2020, namely 

the mean value and the standard deviation so that we can decide what time of the day it is the 

peak hour. In Table 4.1 we have the statistics for the consumption measured in megawatt-hour 

and in Table 4.2 we have the statistics for the price of electricity with currency in euro. From the 

data in Table 4.1 we conclude that the peak time is at 10 in the morning since at this time we 

observe the highest consumption.
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 Table 4.1: Statistics for forecasted consumption in the Nord Pool market for the years 
2019-2020.

Table 4.2: Statistics for the electricity price in the Nord Pool market for the years 2019-2020.

TIME MEAN STANDARD DEVIATION TIME MEAN STANDARD DEVIATION

00:00 39095.11 6350.72 12:00 46325.25 7268.98

01:00 38231.04 6360.63 13:00 45911.38 7245.93

02:00 37871.35 6394.96 14:00 45783.44 7355.28

03:00 37858.34 6511.36 15:00 45849.02 7636.57

04:00 38254.05 6795.77 16:00 46223.90 8006.15

05:00 39650.61 7253.52 17:00 46844.94 8190.30

06:00 42380.11 7987.87 18:00 46747.71 8044.53

07:00 45071.57 8570.11 19:00 46052.67 7691.08

08:00 46276.34 8265.45 20:00 44900.59 7263.80

09:00 46685.33 7812.87 21:00 43965.23 6922.07

10:00 46901.00 7570.46 22:00 42485.16 6537.58

11:00 46716.33 7392.86 23:00 40564.07 6335.64

TIME MEAN STANDARD DEVIATION TIME MEAN STANDARD DEVIATION

00:00 22.59 15.50 12:00 26.12 16.21

01:00 21.90 15.31 13:00 25.75 16.20

02:00 21.41 15.17 14:00 25.44 16.16

03:00 21.25 15.11 15:00 25.46 16.24

04:00 21.45 15.22 16:00 26.04 16.52

05:00 22.66 15.60 17:00 26.86 16.88

06:00 24.29 16.10 18:00 27.04 16.76

07:00 26.23 16.65 19:00 26.69 16.42

08:00 27.52 17.00 20:00 25.85 16.18

09:00 27.32 16.69 21:00 25.16 16.00

10:00 26.98 16.50 22:00 24.33 15.90

11:00 26.56 16.38 23:00 23.07 15.63
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4.3 Analysis of time series for the price of electricity

We will first present in Figure 4.1 how the forecasted consumption fluctuates during peak 

hours for the period from January 2019 to December 2020 and then how the price of electricity 

fluctuates for this period.

Figure 4.1: Electricity price and forecasted consumption for 2019-2020.

In both time series, we conclude that there is no stationarity there is no constant statistical 

properties over time such as constant mean and variance. Firstly, for the predicted consumption, it 

is obvious that consists of the characteristics of the same seasonality every year. Provided that the 

colder temperatures during the winter season typically from November to March increase the 

electricity demand, particularly for heating purposes, electricity prices tend to be highest during 

the winter season. In addition, the shorter daylight hours during winter also increase the demand 

for lighting which further contributes to the higher prices. On the other hand predicted 

consumption tends to be lower during the summer months, typically from June to August, due to 
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reduced energy demand for heating and lighting and also to the availability of renewable energy 

sources, such as wind and solar, which can help to bring down electricity prices.

In terms of price, there is a decrease in Nord Pool Nordics electricity prices in 2020 

compared to 2019 which may have been caused by several factors. One of the most significant 

factors was the reduction in electricity demand due to the COVID-19 pandemic. The restrictions 

imposed in many countries, particularly during the second quarter of the year, resulted in a 

decrease in electricity consumption by businesses and industries. As a result, the supply of 

electricity was higher than the demand, leading to lower electricity prices. Another reason for the 

lower electricity prices in 2020 was the increase in renewable energy capacity in the Nordics, 

particularly in hydroelectric power where the increase in wind power capacity also contributed to 

the reduction in electricity prices. When renewable energy sources are producing more electricity, 

it can reduce the demand for other sources of electricity and lower prices. Also, a role in lowering 

electricity prices in 2020 played the decrease in fossil fuel prices such as natural gas or coal 

which are used to generate electricity in many regions.  Finally, the Nord Pool electricity market 

is highly competitive, with prices determined by the balance of supply and demand. Increased 

competition or changes in market dynamics in 2020 may have also led to lower prices. Overall, 

the reduction in Nord Pool Nordics’ electricity prices in 2020 was likely influenced by a 

combination of these and other factors. It may reflect both short-term changes in market 

conditions and longer-term trends in the energy sector.

Applying the ADF and KPSS test for the predicted consumption and price of electricity 

we have the following results in Table 4.3, left and right respectively.
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Table 4.3: ADF and KPSS tests for the Nord Pool.

In the ADF test, the null hypothesis in our test is non-stationarity or that the time series is 

dependent on time, i.e. it has a unit root, while the alternative hypothesis is the existence of 

stationarity or no dependence on time. In both cases, the p-value is greater than 0.05 and thus we 

accept the null hypothesis, so we have non-stationarity or our series can be reproduced by a unit 

root. Furthermore, the KPSS test helps us determine exclusively whether our time series is 

stationary so the null hypothesis in our test is the existence of stationarity, while the alternative 

hypothesis is the non-stationarity of our time series. In both cases, the p-value is less than 0.05 

and thus we reject the null hypothesis, so we do not have stationarity.

4.4 Transformations

As we mentioned above, to proceed to the model estimation and forecasting for our time 

series we need to make our time series stationary, so we try to stabilize the variation of the time 

series and eliminate a possible trend by applying certain transformations to the data. The basic 

transformations which we can try are: 

• Logarithmic transformation.

• Method of first differences.

We will present the transformed time series and we will apply stationarity tests to our 

transformed time series so that we can see the results of the transformations. First, we will test the 

Logarithm transformation and secondly the Method of first differences.

 
Predicted consumption Price 

Level  Lag p-value Level  Lag p-value 

ADF Test  -1.995 9 0.58  -2.491 9 0.37

KPSS Test 0.955 6 0.01 7.668 6 0.01
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4.4.1 Logarithm transformation

The Logarithm transformation is a special case of the Box-Cox transformation where λ=0. 

In Table 4.4 we represent the KPSS test for the logarithm of the forecasted consumption and the 

logarithm of the price of electricity and after that, we represent Figure 4.2 which shows our time 

series with the logarithm transformation.

Figure 4.2: Logarithm transformation of forecasted consumption and electricity price for 
2019-2020.

Table 4.4: KPSS tests for the Logarithm of our time series for 2019-2020.

We conclude that in the KPSS test for both time series, the p-value is less than 0.05 and 

thus we reject the null hypothesis, so we do not have stationarity. Also, in the plots for both time 

 KPSS test-statistic   lag parameter p-value
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series, there is no constant mean or variance so the logarithm transformation does not give us 

stationarity and we have to try the Method of first differences.

4.4.2 Method of first differences

In Table 4.5 we represent the KPSS test for the predicted consumption and price of 

electricity with the first differences and after that, we represent Figure 4.3 which shows our time 

series with the first differences. From the results, we conclude that in the KPSS test in both time 

series, the p-value is more than 0.05 and thus we do not reject the null hypothesis, so we have 

stationarity.

Figure 4.3: Forecasted consumption and electricity price first differences for 2019-2020.
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Table 4.5: KPSS tests for the first difference of the time series for 2019-2020.

As for the specific models we will run in our analysis (seasonal or not) in which we will 

use the original data: ARIMA and mixed ARIMA-GARCH, we expect that our best model in 

each case will have d=1 (which is the number of differences representing the number of times the 

data has been differenced to be stationary).

4.5 ACF plot of our data after the transformation 

In Figure 4.4 we present the ACF of our data with the first difference before running any 

model so that we understand the characteristics of our data. This will help us to identify if there is 

any trend or pattern in our data that must be addressed subsequently in the modeling process that 

we will apply.

Figure 4.4: ACF for forecasted consumption and electricity price for 2019-2020.

 KPSS test-statistic   lag parameter p-value

Forecasted consumption 0.077 6 0.1

Electricity price 0.001 6 0.1
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Although our series with the first difference led to stationarity, moving to the ACF plot we 

observe that there are out-of-bounds lags in specific periods. For the price of electricity, we see a 

lag beyond limits at every multiple of 7, so we see seasonality that seems to be weekly. In the 

forecasted consumption we see the same cycle of seasonality, where there is an out-of-bounds lag 

in every multiple of 7 (weekly seasonality where the length of the seasonal cycle s is 7) but also 

in the 2nd and 5th lag of each cycle. This makes sense because, for data such as the electricity 

price, the weekly seasonality is common, as demand patterns tend to vary depending on the day 

of the week. For example, electricity prices may be higher on weekdays when commercial and 

industrial demand is highest and lower on weekends when demand is lower. So in addition to the 

ARIMA, we must also try the SARIMA model to see if using seasonality with frequency=7 in 

our model we get better results.
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CHAPTER 5:  APPLICATION OF MODELS IN NORD POOL

The purpose of the following chapter is to apply in-sample estimation and out-of-sample 

forecasting models for the price of electricity in the Nord Pool market. We will proceed with the 

performance of our models, where the ACF plots for the estimations are presented so that we can 

assess the quality of our model and examine whether there is autocorrelation present in our time 

series. As we said before, this way will help us to determine if our model has adequately captured 

the patterns or trends we found by applying the ACF charts to our data before performing any 

model and thus we will examine for any remaining autocorrelation in the model residuals. Then 

we will make predictions out-of-sample for the peak time in the days of 2020.

5.1 Parametric models

5.1.1 Simple linear regression model 

The first model we will use is the SLR which is a model with only one explanatory 

variable. That is, it takes one independent variable and one dependent variable and finds a linear 

function (a non-vertical straight line) that predicts as accurately as possible the values of the 

dependent variable as a function of the independent variable. First, we estimate using the least 

squares method for the period from 1 January 2019 to 31 December 2019. The function applied 

by the model is: 

 , 

where   is a constant,   is the coefficient for the Δpredicted consumption,   is 

the electricity price with the first difference, and  the first 

difference of predicted consumption. 

From the application of the model, we have the following results in Table 5.1, where df 

represents the degrees of freedom.

ΔPricet = β0 + β1ΔPredictedConsumpt iont + εt

β0 β1 ΔPricet

ΔPredictedConsumpt iont
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Table 5.1: Results for the coefficients of the SLR model.

Table 5.2: Results of the quality of the SLR model.

 From the statistical inference Table 5.1, the function is written as follows: 

 .

First, we observe the estimates for the coefficients, where the constant   is -0.003 and  , 

i.e. the coefficient for the Δpredicted consumption is 0.001. We see that there is a statistically 

significant correlation (since we have a p-value lower than 0.05) for the Δpredicted consumption 

and affects the price of electricity but no statistically significant correlation for the constant. 

Continuing with the quality of the linear regression fit, we will first analyze the RSE which is 

equal to 3.094 and means that the observed values deviate from the true regression line by about 

3.094 units on average, so it is considered average to bad (as first difference of electricity price 

has prices from scale almost 20 to -20). Next, we will analyze the adjusted   which is close to 0 

(since it is 0.452), and shows us that the regression model does not explain much of the 

variability in the results. Finally, the F-statistic gives us the overall significance of the model and 

estimates whether at least one predictor variable has a non-zero coefficient. A large F-statistic 

corresponds to a statistically significant p-value (< ) and in the model F-statistic equals 365.5 

which produces a p-value of 0.001, which is highly significant. The F-test is identical to the t-

squared test:  . 

ΔPr i cet = − 0.003 + 0.001ΔPr ed i c t edCon s u m pt i ont

β0 β1

R2

0.05

301.4 = (17.361)2

Coefficients Estimation SE t value p-value
Intercept -0.003 0.162 -0.2231 0.824

ΔPredicted consumption 0.001 0.001 17.361 0.001

RSE F-statistic  p-value
3.094 on 362 

DF
0.4543 0.4523 301.4 on 1 and 362 DF, 0.001

Multiple  R2 Adjusted  R2
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Subsequently, we want to convert our SLR results for the first difference of price to the 

actual data of price and plot the estimations of the above SLR model in actual data. Converting 

the Function from   to  , it is written as: 

 ,

 ,

 . 

Next, we will present Figure 5.1 with the in-sample estimations of the electricity price 

(not with the first difference). The actual and estimated observations move together when we 

have sharp changes and have a little deviation in the remaining observations. Also, from the 

quantitative characteristics of the estimations of our time series, we get the following forecasting 

errors in Table 5.3.

Table 5.3: In-sample forecasting errors with SLR.

Figure 5.1: Estimation of the electricity price in 2019.
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Next, we have to look at the residuals through the ACF and PACF and the Ljung-Box test 

which tests whether a time series contains autocorrelation. Looking at the autocorrelation and 

partial autocorrelation diagrams for the residuals we notice that we have lags out of bounds so we 

do not have white noise.

Figure 5.2: ACF and PACF respectively for in-sample estimations through the SLR model for 
2019.

Looking at the diagrams for the residuals in Figure 5.2, we notice that we have lags out-

of-bounds and are not characterized by white noise as they should be to be a good prediction 

model. We can confirm this with the Ljung-Box test in Table 5.4, where the null hypothesis is that 

the residuals are independently distributed and the alternative hypothesis is that they are 

correlated. Furthermore, the lag in each test is the same as the degrees of freedom. In the test 

from the 1st to the 10th lag, our p-value is 0.001, so we reject the null hypothesis and there is a 

correlation between the residuals.
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Table 5.4: Ljung-Box test of the SLR model estimations.

Proceeding to out-of-sample forecasting with a rolling forecast, we expect that we will not 

get good forecasts. Applying the one-step-ahead forecasts for all of 2020 we get the actual and 

predicted data in Figure 5.3, where again the actual and estimated observations move together 

when we have sharp changes and have a little deviation in the remaining observations. Finally, in 

Table 5.5 we present the results for the out-of-sample forecast errors.

Figure 5.3: Electricity Price Prediction out-of-sample by the SLR model.

Table 5.5: Out-of-sample forecasting errors with the SLR model.
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5.1.2 Autoregressive Integrated Moving Average model

Next, we will apply the ARIMA model but first, we have to choose the best ARIMA 

model by testing different models with drift or not. The BIC from each ARIMA model order is 

presented in Table 5.6. We want to choose the ARIMA with the minimum value of BIC, so we 

will continue with the ARIMA model with order: p=1, d=1, and q=2. After we proceed to the 

estimation of the best model, we will show the results of the estimated coefficients in Table 5.7 

wherein in the first row we have the coefficients and in the second row we have the SE of the 

coefficients.

Table 5.6: BIC for each ARIMA order.

Table 5.7: Coefficients and their SD for ARIMA(1, 1, 2).

We want to accurate the estimates in-sample for 2019, so we will present Figure 5.4 

which represents the actual data for electricity prices in 2019 and the estimated by ARIMA(1, 1, 

ORDER BIC ORDER BIC

 ARIMA(2, 1, 2) with drift 2014.217  ARIMA(2, 1, 1) with drift 2014.262

 ARIMA(0, 1, 0) with drift 2074.985  ARIMA(2, 1, 3) with drift 2015.967

 ARIMA(1, 1, 0) with drift 2059.228  ARIMA(1, 1, 2) 2011.587

 ARIMA(0, 1, 1) with drift 2045.169  ARIMA(0, 1, 2) 2016.876

 ARIMA(0, 1, 0) 2072.983  ARIMA(1, 1, 1) 2011.968

 ARIMA(1, 1, 2) with drift 2012.996  ARIMA(2, 1, 2) 2012.963
 ARIMA(0, 1, 2) with drift 2018.667  ARIMA(2, 1, 1) 2012.948
 ARIMA(1, 1, 1) with drift 2013.186  ARIMA(1, 1, 3) 2013.415
 ARIMA(1, 1, 3) with drift 2014.793  ARIMA(0, 1, 1) 2043.244
 ARIMA(0, 1, 3) with drift 2020.186 ARIMA(0, 1, 3) 2018.396

AR(1) MA(1) MA(2)
0.1470 -0.5015 -0.2075
0.1877 0.1852 0.1125
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2). Also, we will show Table 5.8. with the results from the forecasting errors for the estimated 

period.

Figure 5.4: Estimation with ARIMA(1, 1, 2).

Table 5.8: In-sample forecasting errors with ARIMA(1, 1, 2).

We notice that the actual and estimated values move together with little deviation when 

there are large fluctuations, so the ARIMA(1, 1, 2) described well the data of electricity price. 

Next, we have to look at our residuals through the autocorrelation plot in Figure 5.5 and the 

Ljung-Box test which tests whether a time series contains autocorrelation in Table 5.9 in which 

we test for the lags separately up to the 8th lag and if we reject the null hypothesis our residuals 

will not be characterized by white noise. The null hypothesis is that the residuals are 

independently distributed and the alternative hypothesis is that the residuals are not 

independently distributed and show a serial correlation.
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Figure 5.5: ACF from the regression with the ARIMA(1, 1, 2).

Table 5.9: Ljung-Box for the ARIMA(1, 1, 2).

 From the results in Table 5.9 we do not have white noise because, in the Ljung-Box test, 

we have a correlation of the residuals. Furthermore, from Figure 5.5 we have statistically 

significant autocorrelation outside the confidence limits for the 7th, 14th, and 21 lags, so as we 

said before, we are thinking that maybe there is a weekly seasonality, so we have to test the 

SARIMA.

We will proceed to the rolling forecast for 2020 through rolling windows for 1 step 

forward and the range of our window will be equal to one year so since we want to forecast 2020 

we will use the data from 2019. Applying the rolling forecast, we can see in Figure 5.6 our actual 

data for 2019-2020 and the predicted data for the year 2020. Furthermore, we show Table 5.10 

which includes the forecasting errors out-of-sample.
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Figure 5.6: Rolling forecast for 2020 with ARIMA(1, 1, 2).

Table 5.10: Out-of-sample forecasting errors with ARIMA(1, 1, 2).

5.1.3 Seasonal Autoregressive Integrated Moving Average model

Next, we will try the SARIMA model but firstly we have to denote the frequency equal to 

7 (for weekly seasonality as we saw in the lags of ACF plots). Denoted seasonal = True, the best 

model is the ARIMA(4, 1, 1)(2, 0, 0)[7]. So the introduction of seasonality in our data, change the 

optimal ARIMA replacing it with SARIMA with p=4, d=1, q=1, seasonal P=2, D=O, and Q=0 

with frequency=7. After we proceed to the regression of the best model, we will show the results 

of the regression coefficients in Table 5.11.

Table 5.11: Coefficients and SE for SARIMA.

We want to check the accuracy of the estimates in-sample for 2019, so we will present 

Figure 5.7 which represents the actual data for electricity prices in 2019 in black color and the 
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estimated by SARIMA in red color. Also, we will show the table with the results from the 

forecasting in-sample errors for the estimated period in Table 5.12. 

Figure 5.7: Forecasting in-sample with SARIMA.

Table 5.12: In-sample forecasting errors with SARIMA.

We notice that the results are similar to the ARIMA(1, 1, 2) with minimal better in-sample 

forecasting errors. Next, we have to look at our residuals through the autocorrelation plot in 

Figure 5.8 and the Ljung-Box test which tests whether a time series contains autocorrelation in 

Table 5.13 in which we test for the lags separately up to the 10th lag and if we reject the null 

hypothesis our residuals will not be characterized by white noise.
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Figure 5.8: ACF from the regression with SARIMA.

Table 5.13: Ljung-Box for SARIMA.

From the results in Table 5.13 and Figure 5.8, we have no correlation of the residuals 

because in the Ljung-box we have a p-value larger than 0.05 for all lags and in the ACF plot we 

don’t have lines outside the blue bar (except lag 21), so the SARIMA(4, 1, 1)(2, 0, 0) describes 

very well the electricity price. 

We will proceed to the rolling forecast for 2020 through rolling windows for 1 step 

forward and the range of our window will be equal to one year so since we want to forecast 2020 

we will use the data from 2019. Applying the forecast, we can see in Figure 5.9 our actual data 

for 2019-2020 and the forecasted rolling window data for the year 2020. Furthermore, we show 
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Table 5.14 which includes the out-of-sample forecasting errors which are similar to the 

forecasting errors from the ARIMA(1, 1, 2).

Figure 5.9: Out-of-sample forecast with SARIMA.

Table 5.14: Out-of-sample forecasting errors with SARIMA(4, 1, 1)(2, 0, 0).

5.1.4 Autoregressive/Generalized Autoregressive Conditional Heteroskedasticity

The model we used to decide whether we need to apply the ARCH or GARCH model is 

the SARIMA that we applied above. Applying the steps for checking for GARCH in SARIMA 

we get the information about the squared residuals of SARIMA, the ACF, and PACF plots in 

Figure 5.10. In summary, ACF and PACF plots have significant lags out of the limits (at 1st and 

3rd lag), and in the squared residuals plot, there are signs of volatility. So the residuals show 
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some patterns that need to be modeled. Then, Table 5.15 shows the application of the ARCH test 

to the residuals, where the null hypothesis is homoscedasticity and the alternative hypothesis is 

heteroscedasticity in the residuals. The p-value is equal to 0.008, so we reject the null hypothesis, 

and the residuals for SARIMA are characterized by ARCH heteroscedasticity up to lag 2. 

Consequently, we will proceed to find the appropriate ARCH/GARCH model and in Table 5.16 

we present the results for the different orders of the GARCH model.

Figure 5.10: Analysis of squared residuals of SARIMA.

Table 5.15: ARCH test on residuals of SARIMA.
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Table 5.16: Results for GARCH model orders. 

The GARCH(p, q) model includes p terms from ARCH and q terms from GARCH. The 

optimal model we will use is GARCH(0, 3) which has the smallest AIC with relative function 

convergence. In Table 5.17 we present the results for the coefficients of GARCH(0, 3) where in 

the first column we have the intercept and the parameters from Equation (23), in which the 

intercept and parameter   are statistically significant. Also, in Table 5.18 we present the results 

for the residuals Ljung-Box test of GARCH(0, 3), where the p-value is 0.666 and we cannot 

reject the null hypothesis that the autocorrelation of residuals is equal to 0. The model thus 

adequately represents the residuals.

Table 5.17: Results for the coefficients of the GARCH model.

Table 5.18: Ljung-box test for the squared residuals of the GARCH model.

a3

MODEL AIC CONVERGENCE RESULTS

GARCH(0, 1) 1906.162 RELATIVE FUNCTION CONVERGENCE

GARCH(0, 2) 1895.38 RELATIVE FUNCTION CONVERGENCE

GARCH(0, 3) 1856.6 RELATIVE FUNCTION CONVERGENCE

GARCH(0, 4) 1865.918 FALSE CONVERGENCE

GARCH(1, 0) 1924.125 FALSE CONVERGENCE

GARCH(1, 1) 1892.865 FALSE CONVERGENCE

GARCH(1, 2) 1885.757 FALSE CONVERGENCE

GARCH(2, 1) 1900.858 FALSE CONVERGENCE

Coefficients 
Estimation SE t value p-value

Intercept 6.238 0.442 14.096 0.001
0.077 0.040 1.908 0.056
0.038 0.035 1.077 0.281
0.368 0.050 7.327 0.001

 a2
 a3

 a1

 Lag p-value

1 0.185 0.666

 X2
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Subsequently, we will present in Figure 5.11 the in-sample forecasting  where our actual 1

data move with the estimated data so our model is very good. In Table 5.19 we present the 

forecasting errors. Then, we will show in Figure 5.12 the Q-Q plot of the residuals of GARCH 

which shows that the residuals are normally distributed while there are some outliers.

Figure 5.11: In-sample forecast with GARCH.

Table 5.19: In-sample forecasting errors with GARCH.

Figure 5.12: Q-Q plot of GARCH residuals.
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Finally, we will proceed to forecast out-of-sample for 2020 through rolling windows for 1 

step ahead and the range of our window will be equal to one year. In Figure 5.13 we present the 

predictions  for the forecasting out-of-sample where the black color represents the real data and 2

the red color the out-of-sample forecasted data. Our actual data move near the predicted data but 

not as well as in the in-sample forecasts. Finally, in Table 5.20 we present the out-of-sample 

forecasting errors.

Figure 5.13: Out-of-sample forecast with GARCH.

Table 5.20: Out-of-sample forecasting errors with GARCH.
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5.2.1   Singular Spectrum Analysis Model 

After the parametric models, follows the application of the non-parametric SSA model 

which does not require stationarity or other characteristic and so applied to the original data. 

Firstly, we will make an in-sample estimate of the price of electricity in the Nord Pool market for 
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estimates are with this model. Next, using a rolling window we shall make an out-of-sample 

forecast for the electricity price for all days of the year 2020 and we will use the actual data for 

2020 to evaluate the accuracy of the model.

 It is important to note that the best value of L depends on the goals of the analysis and the 

characteristics of the data, so it may be useful to experiment with different values of L to see how 

they affect the results of the analysis. Using the daily data, N is equal to 365 days since we have 

observations every day for 1 year. It has been shown that the appropriate window length L is the 

median, or slightly less than half of N. In Table 5.21 we have the execution of SSA.

Table 5.21: SSA for 2019.

To decide the number of eigentriples we need for the reconstruction step we will study the 

eigenvalue diagram, the eigenvector diagram, and the correlation matrix. The required number of 

eigentriples is determined by the characteristics of the voltage and harmonic components, which 

provide us with information and must remain, while the noise components must remove from the 

reconstruction process.

Figure 5.14 shows the first eight eigenvectors, where we can identify a trend and periodic 

components and the absence of noise components. We notice that the first eigenvector has almost 

constant coordinates and therefore corresponds to pure smoothing, while the following have 

fluctuations. Then, Figure 5.15 presents the result of reconstruction by each of the eight 

eigentriples. Both figures confirm that the behavior of the eigentriples is interpreted as a trend 

(1st eigentriple) and harmonic components (the rest eigentriples). The first eigenvector has a large 

percentage (97.79%), the second eigenvector 0.76%, the third 0.25%, the fourth 0,19%, and the 

rest have smaller percentages.

 Series length Window length

365 182



	 	   73

Figure 5.14: Eigenvectors for L = 182.

 

Figure 5.15: Elementary reconstructed series for L = 182.
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Figure 5.16: Eigenvalues for L = 182 in the original series.

Figure 5.17: Correlation matrix for L = 182 in the original series.

From Figure 5.16 we can see several steps produced by approximately equal eigenvalues 

until the 22 eigenvalues  (except for the first 4 eigenvalues and the pair {7,8}), where each step is 3

likely to be yielded a pair of eigenvectors. After the leading 22 singular values, we have a gap 

and then there is a slowly decreasing sequence of the remaining singular values without clear 

pairs or eigenvectors. Then, the correlation matrix in Figure 5.17 can equally show us the pairs to 

do the appropriate grouping, as well as the separability analysis. It has a scale of 20 colors from 
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black to white with values from 1 to 0, respectively. On both sides with the black line, we 

note the same point which is again in the 22 eigenvalues and we can separate the noise 

components on the right square of each correlation matrix.

Subsequently, we have to reconstruct the trend and the useful components that give us 

pieces of information, so we will use the first 22 components and the result presents in Figure 

5.18, where the black color represents the actual data and the red color the trend (and useful 

components) line. Also, the time represents the 365 days of 2019. The next stage after we have 

extracted the trend is the extraction of seasonality from the residuals. We will use again the 

eigenvalues which are present in Figure 5.19 and the correlation matrix w of the main 

components in Figure 5.20.

Figure 5.18: Trend and harmonic components reconstruction.
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Figure 5.19: Eigenvalues for L = 182 after trend and harmonic components reconstruction.

Figure 5.20: Correlation matrix for L = 182 after trend and harmonic components reconstruction.
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eigenvalues (as in Figure 5.19) and we can separate the noise components in the right square of 

each side. So the required eigenvalues for the grouping option to establish the seasonality is 8. 

Therefore, we will examine whether our non-parametric model provides a good estimate of the 

price of electricity. Thus we would present in Figure 5.21 the in-sample forecasts with SSA, 

where we see that SSA has the best in-sample forecast as the estimated electricity prices move 

together with the actual data except for a few observations. The results for the in-sample 

forecasting errors are presented in Table 5.22.

Figure 5.21: In-sample forecast with SSA.

Table 5.22: In-sample forecasting errors with SSA.

Finally, we will proceed to forecast the electricity price out-of-sample for 2020 through 

rolling windows for 1 step ahead and the range of our window will be equal to one year so since 

we want to predict 2020 we will use the data of 2019. Figure 5.22 presents the forecasts and the 
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results for the evaluation measures are as follows in Table 5.23. As in the in-sample forecast, we 

see that SSA has the best out-of-sample forecast as the estimated electricity prices move together 

with the actual data.

Figure 5.22: Out-of-sample forecast for 2020 with SSA.

Table 5.23: Out-of-sample forecasting errors with SSA.
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CHAPTER 6: COMPARING THE RESULTS

After the analysis of the models, we will proceed with the comparison of them. Firstly, we 

will compare the evaluation of the forecasts in-sample for 2019 and after that, we will compare 

the evaluation of the forecasts out-of-sample for 2020. The common forecasting errors we can get 

from all models are the following: MAE, RMSE, MAPE, and MSE. The key difference between 

simple error and the absolute error is that absolute error provides a more accurate measure of the 

magnitude of the error, while simple error only tells you whether the prediction was too high or 

too low. Therefore, the forecasting errors from the above that we will use to compare the results, 

are the MAE and MAPE. In Table 6.1 we will present the results of the forecasting errors in-

sample, i.e. for 2019, and in Table 6.2 we will present the results of the forecasting errors out-of-

sample, i.e. for 2020 using rolling forecasts. 

6.1 Comparison of the in-sample forecasts

Table 6.1: Results of the in-sample forecasting errors.

We noticed that the best model for the estimations in-sample is SSA, which has the 

smallest values in all evaluation errors, and after that is GARCH.  In the optimal model, the MAE 

which is calculated as the mean absolute difference between actual and estimated values and is 

relatively insensitive to outliers equals 0.7392 which is very small. Also, the RMSE which is 

calculated as the root mean square error between the predicted and actual values equals 0.954. 

MAE RMSE MAPE MSE
SLR 2.012 2.819 0.0501 7.951

ARIMA 2.707 3.822 0.0691 14.609
SARIMA 2.252 3.347 0.0569 11.203
GARCH 1.564 2.423 0.038 5.872

SSA 0.7392 0.954 0.0190  0.911
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The MAPE which is calculated as the mean absolute error between predicted and actual values 

divided by the actual value multiplied by 100 equals 0.019. Finally, the MSE which is calculated 

as the average of the squared differences between the actual and predicted values equals 0.911.

6.2 Comparison of the out-of-sample forecasts

Table 6.2: Results of the out-of-sample forecasting errors.

We noticed that the best model for forecasting out-of-sample is the SSA, as in the case of 

forecasting in-sample, and after that is SLR (different result from the in-sample forecasts). In the 

optimal model, the MAE equals 0.738 which has again a small value so the actual data have no 

significant difference from the estimated. Also, the RMSE equals 0.953, the MAPE equals 0.160 

and the MSE equals 0.908. 

MAE RMSE MAPE MSE

SLR 1.976 2.770 0.5531 7.677
ARIMA 2.995 4.529 0.3387 20.512

SARIMA 2.979 4.516 0.3310 20.402

GARCH 2.455 3.861 0.261 14.912

SSA 0.7381 0.953 0.160 0.908
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SUMMARY 

The master thesis aimed to evaluate and compare the predictions about the price of 

electricity in the Nord Pool market using both parametric and non-parametric models. The 

analysis included the forecast in-sample and out-of-sample electricity prices using time series 

data from January 2019 to December 2020 and focusing on the peak hour of each day, which was 

10:00 AM. Before the application of the models, we checked if there is stationarity in our time 

series, and since the result was negative, we ended up with the first difference transformation 

which made our time series stationary.

In the thesis, we applied various parametric models: SLR, ARIMA, SARIMA, and 

ARCH/GARCH, and a non-parametric model: SSA. The thesis was structured in a way that we 

first estimated the electricity price through the above models for the period from January 2019 to 

December 2019 (in-sample estimation) and then forecasted the electricity price for January 2020 

to December 2020 (out-of-sample forecast). For the out-of-sample forecasts for short-term 

electricity prices for one day-ahead, we used rolling forecasts with a rolling window of one year. 

Finally, we used the forecasting errors to compare the results and find out the models' predictive 

ability.

In conclusion, using the forecasting errors from the various models, we found out that the 

best predictions in and out-of-sample were given by the non-parametric SSA model, where the 

forecasts were moving together with the actual electricity price data, so we are able to predict 

very well the electricity price.
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APPENDICES

R programming language Commands

#install the packages: 

install.packages("PerformanceAnalytics")

library(PerformanceAnalytics)

install.packages("quantmod")

library(quantmod)

install.packages("dplyr")

library(dplyr)

install.packages("tidyverse")

library(tidyverse)

install.packages("tseries")

library(tseries)

install.packages("rugarch")

library(rugarch)

install.packages("xts")

library(xts)

install.packages("lubridate")

library(lubridate)

 install.packages("Metrics")

 library(Metrics)

install.packages("forecast")

 library(forecast)

install.packages(“datetime")

library(datetime)                   

install.packages("Rssa")

library(Rssa)
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#Read the data:

dat<-read.csv(“nordic1.csv”, header=T)

dd10<-subset(dat,(dat[,2]=="10:00:00 AM"))

dd10<-dd10[ , c(1, 3, 4)] 

qxts <- xts(dd10[,-1], order.by=as.Date(dd10[,1],"%d/%m/%Y")) 

consumption<-qxts[,1] 

price<-qxts[,2]

Price<-price[1:731]

Price2019<-price[1:365]

Price2020<-price[366:731]

Consumption<-consumption[1:731]

Consumption2019<-consumption[1:365]

Consumption2020<-consumption[366:731]

logarithmOfPrice<-log(price)

logarithmOfconsumption<-log(consumption)

 #time series & trasformations:

 par(mfcol=(c(2,1)))  

 plot(Consumption,main="Forecasted consumption for 2019-2020",ylab="Forecasted 

consumption “,cex = 0.3) 

 plot(Price,main="Electricity price for 2019-2020",ylab="Electricity price”,cex = 0.3) 

adf.test(Consumption)

adf.test(Price)

kpss.test(Consumption)

kpss.test(Price)

logarithmofconsumption<-log(Consumption)

logarithmofprice<-log(Price)

 par(mfcol=(c(2,1)))  

 plot(logarithmofconsumption, main=“Logarithm of forecasted consumption for 

2019-2020",ylab="Logarithm of forecasted consumption “,cex = 0.3) 
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 p l o t ( l o g a r i t h m o f p r i c e , m a i n = " L o g a r i t h m o f e l e c t r i c i t y p r i c e f o r 

2019-2020",ylab="Logarithm of electricity price”,cex = 0.3) 

kpss.test(logarithmofconsumption)

kpss.test(logarithmofprice)

Firstdifferenceofprice<-diff(Price,diff=1)

Firstdifferenceofconsumption<-diff(Consumption,diff=1)

kpss.test(Firstdifferenceofprice)

kpss.test(Firstdifferenceofconsumption)

 par(mfcol=(c(2,1)))  

 plot(Firstdifferenceofconsumption, main=“First difference of forecasted consumption for 

2019-2020",ylab="First difference of forecasted consumption “,cex = 0.3) 

 plot(Firstdifferenceofprice,main="First difference of electricity price for 

2019-2020",ylab="First difference of electricity price”,cex = 0.3) 

par(mfcol=(c(2,1)))  

acf(Firstdifferenceofconsumption[2:731],main="ACF for First difference predicted 

consumption for 2019-2020",ylab="ACF First difference of predicted consumption",cex = 0.3) 

acf(Firstdifferenceofprice[2:731],main="ACF : First difference of electricity price for 

2019-2020",ylab="ACF First difference of electricity price",cex = 0.3)

# SLR model:

#Estimation period with SLR:

slr<-lm(formula = Firstdifferenceofprice[2:365] ~ Firstdifferenceofconsumption[2:365], 

data = dat)

summary(slr)

slr_fit= Firstdifferenceofprice[2:365]-residuals(slr)

mycolors<-c(“black","red")

x<-(Price2019)[-365]

plot(Price2019[2:365],main=“In-sample forecast",ylab="Electricty price")

 lines(x+ slr_fit,col=“red")

addLegend("topleft", legend.names = c("Electricity price", "Estimation"), lty = 1, col = 

myColors)
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 AIC(slr)

BIC(slr)

mae(Price2019[2:365],x+ slr_fit[1:364])

mape(Price2019[2:365],x+ slr_fit[1:364])

mse(Price2019[2:365],x+ slr_fit[1:364])

rmse(Price2019[2:365],x+ slr_fit[1:364])

acf(slr$residuals, lag.max=10)

pacf(slr$residuals, lag.max=10)

Box.test(slr$residuals, lag=1, type="Ljung-Box")

Box.test(slr$residuals, lag=2, type="Ljung-Box")

….

 Box.test(slr$residuals, lag=10, type="Ljung-Box")

par(mfcol=(c(2,1)))  

 acf(slr$residuals, lag.max=10,main="Residuals from the SLR")

 pacf(slr$residuals, lag.max=10,main="Residuals from the SLR”)

#Rolling forecast with SLR:

 fslr <- c()

 for (i in 1:366) {   training_price <- as.numeric (Firstdifferenceofprice[(1+i):(364+i)])

   training_consumption <- as.numeric(Firstdifferenceofconsumption[(1+i):( 364+i)])

   refit <- lm(formula = training_price ~ training_consumption)

  forecast <- predict(refit, h=1,newdata = data.frame(training_consumption =fslr[1:366]))

  fslr <- c(fslr, forecast) }

fslr<-fslr[2:length(fslr)]

  error<-Firstdifferenceofprice[366:length(Firstdifferenceofprice)]-fslr[1:366]

 predictedslr=Firstdifferenceofprice-error 

x1<-(price[365:731])[-365]

 plot(price[366:731],main="Out-of-sample forecast",ylab="Electricity price")

 lines(x1+ predictedslr,col=“red")

addLegend("topleft", legend.names = c("Electricity price", "Forecast"), lty = 1, col = 

myColors)

mae(x1+ predictedslr,price[366:731])
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mape(x1+ predictedslr,price[366:731])

rmse(x1+ predictedslr,price[366:731])

mse(x1+ predictedslr,price[366:731])

# ARIMA model:

#Estimation period with ARIMA:

ARIMA<-auto.arima(Price2019,trace=TRUE)

RESIDUALSARIMA<-residuals(ARIMA) 

residualsARIMA2019<-RESIDUALSARIMA[1:365]

ARIMAFIT<-Price[1:365]-residualsARIMA2019

plot(Price[1:365],main=“Electricity price for estimate period 2019",ylab="electricity 

price")

points(ARIMAFIT,col="red",lty=2)

summary(ARIMA)

acf(residualsARIMA2019)

pacf(residualsARIMA2019)

Box.test(residualsARIMA2019, lag=1, type="Ljung-Box")

Box.test(residualsARIMA2019, lag=2, type="Ljung-Box")

….

 Box.test(residualsARIMA2019, lag=10, type="Ljung-Box")

mae(Price[1:365],ARIMAFIT[1:365])

rmse(Price[1:365],ARIMAFIT[1:365])

mse(Price[1:365],ARIMAFIT[1:365])

mape(Price[1:365],ARIMAFIT[1:365])

#Rolling forecast with ARIMA:

w_size = 365

n_windows =366  #total data - year 19

f1<-0

for (i in 1:n_windows) {training<-Price[(i):(w_size+i-1)]
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refit <- Arima(training, order=c(1,1,2), method="ML")

f1<-cbind(f1,as.numeric(forecast(refit, h=1)$mean))}

f1<-f1[2:length(f1)]

ferror<-Price[366:731]-f1

forecastprice=Price[366:731]-ferror

myColors <- c("black","red") 

plot(x = Price, xlab = "Time", ylab = "electricity price",main = "Rolling forecast with ARIMA(1, 

1, 2) for 2020 ", major.ticks= "months", minor.ticks = TRUE,col="black") 

lines(x = forecastprice, col = "red") 

addLegend("topleft", legend.names = c("electricity price”, "forecast"), lty = 1, col = myColors)

mae(Price[366:731],forecastprice)

mape(Price[366:731],forecastprice)

mse(Price[366:731],forecastprice)

rmse(Price[366:731],forecastprice)

# SARIMA model:

#Estimation period with SARIMA:

Price7<-ts(Price2019,frequency=7)

ARIMAseasonal<-auto.arima(Price7,trace=TRUE,seasonal=TRUE)

residualsseasonal2019<-residuals(ARIMAseasonal) 

ARIMAseasonalFIT<-Price7-residualsseasonal2019

plot(Price[1:365],main=“Electricity price for estimate period 2019",ylab="electricity  

price")

points(ARIMAseasonalFIT,col="red",lty=2)

summary(ARIMAseasonal)

acf(residualsseasonal2019)

pacf(residualsseasonal2019)

Box.test(residualsseasonal2019, lag=1, type="Ljung-Box")

Box.test(residualsseasonal2019, lag=2, type="Ljung-Box")

….

 Box.test(residualsseasonal2019, lag=10, type="Ljung-Box")
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mae(Price[1:365],ARIMAseasonalFIT[1:365])

mape(Price[1:365],ARIMAseasonalFIT[1:365])     

mse(Price[1:365],ARIMAseasonalFIT[1:365]) 

rmse(Price[1:365],ARIMAseasonalFIT[1:365])

#Rolling forecast with SARIMA:

w_size = 365

n_windows =366  #total data - year 19

f1<-0

for (i in 1:n_windows) {training<-Price[(i):(w_size+i-1)]

r e fi t < - 

Arima(training,order=c(4,1,1),seasonal=c(2,0,0),include.drift=FALSE,method="ML")

f1<-cbind(f1,as.numeric(forecast(refit,h=1)$mean))}

length(f1)

f1<-f1[2:length(f1)]

ferror<-Price[366:731]-f1

forecastprice=Price[366:731]-ferror

myColors <- c("black","red") 

plot(x = Price, xlab = "Time", ylab = "electricity price",main = "Rolling forecast with seasonal 

Arima for 2020", major.ticks= "months", minor.ticks = TRUE,col="black") 

lines(x = forecastprice, col = "red") 

addLegend("topleft", legend.names = c("electricity price”, "forecast"), lty = 1, col = myColors)

mae(Price[366:731],forecastprice)

 mape(Price[366:731],forecastprice)

 mase(Price[366:731],forecastprice)

 rmse(Price[366:731],forecastprice)

mse(Price[366:731],forecastprice)

# ARCH/GARCH 

#Estimation period with ARCH/GARCH:



	 	   89

arch.test(residualsseasonal2019)

 squared.res.arima1<-residualsseasonal2019^2

ts_data <- ts(squared.res.arima1, start = c(2019,1,1), frequency = 365)

 par(mfcol=c(3,1));plot(ts_data,main="Squared residuals of SARIMA 

residuals",ylab="Squared residuals");acf.squared.res.arima=acf(squared.res.arima,main="ACF of 

squared 

residuals",lag.max=20,ylim=c(-0.5,1));pacf.squared.res.arima=pacf(squared.res.arima,main="PA

CF of squared residuals”,lag.max=20,ylim=c(-0.5,1))

GARCH03<-garch(residualsseasonal2019,order=c(0,3)) ;AIC(GARCH03)

summary(GARCH03)

ht.arch03=GARCH03$fit[,1]^2

 loglik03=logLik(GARCH03)

fit03<-fitted.values(ARIMAseasonal)

archres<-residualsseasonal2019/sqrt(ht.arch03)

fit032019<-fit03[1:365]

fit03PLUS<-fit032019+ archres

 ts.plot((Price[4:365]),ylab="Electricity price")

lines(x = fit03PLUS[4:365], col = “red")

qqnorm(archres)

qqline(archres)

#Rolling forecast with ARCH/GARCH:

w_size = 365

n_windows =366

 f1<-0

m<-0

for (i in 1:n_windows) { training<-Price[(i):(w_size+i-1)]

 refit<-

Arima(training,order=c(4,1,1),seasonal=c(2,0,0),include.drift=FALSE,method=“ML”)

 f1<-cbind(f1,as.numeric(forecast(refit, h=1)$mean))

m<-cbind(m,residuals(refit)) }

residuals(refit)
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resref<-residuals(refit)

f1<-f1[2:length(f1)]

ferror<-Price[366:731]-f1

forecastprice=Price[366:731]-ferror

m1<-m[2:length(m)]

 squared.reSARIMA<-resref^2

GARCHFORECAST<-garch(resref,order=c(0,3))

summary(GARCHFORECAST)

ht.arch03f=GARCHFORECAST$fit[,1]^2

fit03f<-fitted.values(refit)

garchresf<-resref/sqrt(ht.arch03f)

fit03final<-forecastprice+ garchresf

plot(fit03final)

 lines(Price[369:731],col="red")

mae(Price[366:731],forecastprice)

mape(Price[366:731],forecastprice)

mse(Price[366:731],forecastprice)

rmse(Price[366:731],forecastprice)

#SSA 

#Estimation period with SSA:

Price7<-ts(Price,frequency=7)

s1<-ssa(Price7[1:365],L=182) 

plot(s1,type=“vectors",groups=as.list(1:8))

 plot(s1,type="series",groups=as.list(1:8))  

plot(s1,type="series",groups=as.list(1:182))  

ws1<-wcor(s1,groups=as.list(1:182))

plot(ws1)

ws1_<-wcor(s1,groups=as.list(1:50))

plot(ws1_)

res1<-reconstruct(s1,groups=list(1:22))
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trend<-res1$F1

 res.trend<-residuals(res1)

 spec.pgram(res.trend,detrend=FALSE,log="no")

plot(res1$trend)

plot(res1,add.residuals=FALSE,plot.type="single",col=c("black","red"),lwd=c(1,2))

s2<-ssa(res.trend,L=182) 

plot(s2)

 plot(s2,type="paired",idx=1:10,plot.contrib=FALSE) 

plot(s2,type="series",groups=as.list(1:182))

w<-wcor(s2,groups=as.list(1:50))

plot(w)

w1<-wcor(s2,groups=as.list(1:182))

plot(w1)

res2<-reconstruct(s2,groups=list(1:8))

 seasonality<-res2$F1

  res<-residuals(res2)

 plot(res2,add.residuals=FALSE)

summary(s2)

plot(Price7[1:365])

  lines(Price7[1:365]-seasonality,type=“l”,col=“red”)

mae(Price7[1:365],Price7[1:365]-seasonality)

 mape(Price7[1:365],Price7[1:365]-seasonality)

 mse(Price7[1:365],Price7[1:365]-seasonality)

rmse(Price7[1:365],Price7[1:365]-seasonality)

#Rolling forecast with SSA:

w_size = 365

n_windows =366  #total data - year 19

f1<-0

m<-0

for (i in 1:n_windows) {training<-Price[(i):(w_size+i-1)]

res1<-reconstruct(s1,groups=list(1:22))
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 res.trend<-residuals(res1)

s2<-ssa(res.trend,L=182) 

res2<-reconstruct(s2,groups=list(1:8))

 seasonality<-res2$F1}

 plot(price[366:731],main="Out-of-sample forecast”,ylab=“Electricity price”)

lines(price[366:731]-seasonality ,col=“red")

mae(price[366:731]-seasonality,price[366:731])

mape(price[366:731]-seasonality,price[366:731])

rmse(price[366:731]-seasonality,price[366:731])

mse(price[366:731]-seasonality,price[366:731])
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