Havemaotyuio Kpijtyg
2yoin Octikwv Emotyumv
Tunjua Emotnung Yroloyietawv

2yeotaon kot Yiomoinon og FPGA
EVOS YPOVOTTPOYPUUUATICT] KIVIGTG
ABR yw évav petayoyéa ATM

I'e@pyrog Hoamwadaxkng

Merantvyiaxny Epyacia

Hpakiero
Noéupfpnc 2001

Hepiinyn

H «xivnon tomov ABR &ivor pio xopnAng mpotepatdtnTog KAGST LANPESING TMV SIKTOMOV
ATM. Tlopéyer eyydnon eldyiome owapetoywynsg kelmv (cell bandwidth), odAdd oyt
€YYUNOELS Yo KaBvotépnon N dtakvpavon Kabvotépnone. Ztoyevel otnv a&lomoinon Tov
gvpovg (dvne, To omoio dev yprnolonoteitan amd v kivrnon twmov CBR ka1t VBR. Avto
apopd toco TV kivinomn mov dev decpevetal yio CBR kot VBR, 660 ko avti Tov decpeveton
oAAG Oev ypnotpomoteital. To devtepo €idoc dev elvar mhvia piktd vo, aflomombel kot n
npoonabelo yio a&lomoinom Tov umopei va odnynoet oe Head of Line Blocking (HLB). Avto
ovppaiver 6tav Torlramiol cvvdeopol e£6d0v ypnotponototyv ko FIFO ya va Aappdvouov
KEMQ, OTOTE €£VOC GUVOEGLOC e GLUPOPNOT UTOPEL Vo TPOKOAEGEL TV VTOYPNCLLOTOINGN
TV VIoAoiTOV. AVTd 1 TOTOAOYIO VTAPYEL OTO OEOOUEVO LETAYWOYEN, O OTOT0G YPNOLOTOLEL
OPYLTEKTOVIKT S1OUOPalOUEVOD dLodAOL Kol TOToOETEL TOALUTAOVGC GUVIEGOVG ££000V oM
omd o cvoKeELN] TOL OLOAOL. XyedldcaLE TOV Y¥POVOTPOYPUUUATIOT ¢ Kivnong ABR
wote va givar katdAAnAoc vy viomoinon oe FPGA. H viomoinon oe FPGA 0¢rtet
TEPLOPICUOVG OTNV EPIKTI TAXDTNTA KOl GTOVG SL0BECIIUOVG TOPOVG OTOV TNV GVYKPIVOVUE LE
avtv og ASIC. TTapdra avtd , 0 XPOVOTPOYPAUUATIOTHG UITOPEL Vo a&loToGEL Kot To, 600
eion bandwidth kot ovyypdveg va amoedyel to eowvopevo HLB. Avtd ta emttuyydvet
opadomowwvtag Tic poég ABR oe opddec powv, axpiéotepa ypnolponolel pion opdda ovd
ouvoecpo e£0oov. H ouykekpipévn viomoinon ypnolionotel (o diuepng oxediaon, 1 oroia
oev vrootnpilel eyyvnoelg ehayiotov bandwidth (MCR). Xpnowomoiwvtag pordt twv 50
MHz pmopet va eEumnpetiost uéypt 128 ocvvdéopovg twv 155 Mbps. To oyédo pmopei va
tpomomon0el mote vo vrootnpitel ko eyyvnoelg Tomov MCR. Avtd pmopet va yivel pe v
mpoctnKn opddwv pomv ot omoieg &yovv bandwidth 66o to dBpocpa twv MCR t@v pomv
oL SLUUETEYOLY oty opdda. H vmoompitn MCR Oa peidoetr tov péyisto aplbud omd
GULVOEGUOVE OV TO cVGTNUO. UTopel va vrootnpitel, avtd e€aptdtor omd 10 aplBpd TV
opadmv mov givar aBpoiouéveg katd MCR. Emumiéov peiwvovtog tov appud tov cuvoicumy
€E600V UTOPOVV va VITOSTNPLYOOVY LYNAITEPES TAXDTNTES Y10, TOVS GLVOIEGLOVG.

Abstract

ABR traffic is a low priority service class for ATM networks. It has a minimum cell
rate guarantee per contract, but no guarantee for cell delay and cell delay variance. It
aims at exploiting the bandwidth that is not utilized by CBR and VBR traffic. This
applies for two types of bandwidth, that not reserved by CBR and VBR contracts and
that reserved but not actually used. The second type of bandwidth is not always
possible to exploit and attempting to do so, can lead to Head of Line Blocking. This
occurs when multiple output links are using a single output FIFO, so a congested link
can lead to underutilization of the others. This is the case for our ATM network
switch, which utilizes shared bus architecture and features multiple physical links
behind a single bus device. We designed a scheduler for ABR traffic, which is
suitable for FPGA implementation. Although the FPGA implementation poses limits
on the available resources and achievable speed, compared to an ASIC one, our
scheduler can potentially exploit both types of bandwidth while avoiding Head of
Line Blocking. We achieve the above through aggregation of the ABR connections
into flow groups, one per physical output link. Our scheduler’s FPGA implementation
employs a decoupled design which does not include support for minimum cell rate
guarantees (MCR). When using a 50 MHz clock it is able to serve up to 128 physicals
operating up to 155 Mbps each. The design can be modified to support minimum cell
rate guarantees by adding MCR aggregated flow groups. MCR support will reduce the
maximum number of installable physicals; this depends on the number of MCR
aggregated flow groups inserted into the system. Also, by reducing the maximum
number of physicals, higher speed rates can be attained by each of the physical links.

Iivaxkog [epreyopévov

ABSTIRACT ...ceeeeeeeeeeeeeceeeeseess 4
TIEPTAHWHeeeeeeeeceeeerereaneeeeessecsses 3
1. EIZAT QAT H ... ceeeeeeeeeeneeeeceeenreessssesssassssssssssses 7
1.1 H KINHZH TYTIOY ABR KAIH XPHEIMOTHTA AYTHE ... eeeeeeeeeeeeeeeeeeeeeeeeennns 7
1.2 ATKTYA ATV e e e e et e e e e e e e e eraeaaeen 7

a. APYITEKTOVIKE DITHPEGLIDV ...ttt e s 7

b. H KAGON YTNPEGIOG ABR ..ot 8

1.3 YHOXTHPIEH KINHZHE ABR ZE METATQIEIZ ATM ..o 10
1.4 ANTIKEIMENO THE EPTATTIAT .. oottt e e eeee e e e e e e e e eeeeeeeeeaeeeeeaaeeeenenanns 10

2. EIIIZKOITHYH METATQITEA ..ooeeeeecceeereereeeeeseessecsessessssssssssssssssssssssssssssssssses 11
2.2 KENTPIKOZ EAETXOZ TOY METATOQITEA «.ceeeneeeeeeeee et e eeeeeeeeeeeeeeeeaaeeaees 12
2.3 O EEYITHPETHTHE KINHIHE ABR ..o eeeee e eeeae e 13

3. IOAITIKH KAI XXEATAYXH XPONOIIPOTPAMMATIZEMQOY ...cceeeeeeereeee 14
3.1 E1AH AIAGEZIMOY BANDWIDTH I'TA KINHZSH ABR .covviieeieeee e, 14
3.2 MHXANIZEMOZ OMAAOITOTHIHE «..eneeeeeeeee et e e e e e e eeee e e e e e e e e eeaeeeeeenenns 15
3.3 AIMEPHE XXEATAZH XPONOITPOTPAMMATIEMOTY ..ceueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenenns 16
IMAPAPTHMA (ATTAIKH META®PAXH) ..cccovuerecrsrnnnecssssnnsecssssasssssssassscssssassases 18
1. INTRODUCGCTION...cuuuueeeeceerereeeeseeeesccss 18
1.1 ABR TRAFFIC AND ITS IMPORTANCEccotttuueeeeeeeeeetimieeeeeeeeeeernmaneneesseseerssmnnnnnns 18
1.2 ATIM NETWORKS .o eeeeeee ettt e e e eee e e et e e e e eaee e e e eeaeeeeeaaeeeenanans 18

A. ATM SCHVICE AFCRITCCTUFC ..ottt 18

D. ABR SEIVICE CALCZOTYc.vveeveeeeieeeeeee e 20

1.3 SUPPORTING ABR TRAFFIC IN ATM SWITCHESccttvuuueeeeeeeeeeeieeieeeeeeeeerennnnnnnns 22
104 THIS THESIS . ettt et e e e e e et e e e e e e e e e e e e e e e e e e eaaeeeenananns 22

2. SWITCH OVERVIEW ...cceeeennreeeeeneesssccssssesses 23
2.1 SWITCH ARCHITECTURE ...cetuttetttee et e e e e et eeeeeeeeeeeeeeeeeeeaeeeeeeenaeeeeenaeaaees 23
2.2 SWITCH MAIN CONTROL ..cetttttiueeeeeeeetteeeeeeeeeeeeetesaeeeeseeesseessnenaeesesssersmnnaaeseees 24
2.3 ABR SERVER CARD ...euuitiitieee et e e e et e e e e e e e e e eeeeeseeaaeeeeeaaeesaeaaaeaaees 25

3. SCHEDULING POLICY AND DESIGN 26
3.1 TYPES OF AVAILABLE BANDWIDTH FOR ABR TRAFFICceeeveeeeeeieeeeeeeeeeeeennn 26
3.2 AGGREGATION MECHANISMotttuueeeeeeeeettreeeeeeeeeeettmmeeeeeseeeseremmnsaeesssssssssmmnnnnns 27
3.3 DECOUPLED SCHEDULER DESIGNititiiiteieee et e e e 28

4. SCHEDULER MODULE 29
4.1 IMPLEMENTATION ALTERNATIVES ...eetneeettteeeeeeeeeeeeeeeeeeeeeeeeeneeeeeeeaeeeenneenaees 29

a. Systolic-buffer SCheduler....................cccccoiviiiiiiiiiiiieieeeeee e 29

b. Heap-like SCRedULerccceeeiiiiiiiiieiiiiecie e 30

4.2 THE POLLING-LIKE SCHEDULERccottttuuuieeeeeeeetetteieeeeeeeeeeesmneneeeseeesessmmnneseees 31

A. MeMOTY COMPONEHLScoeeeiieeeeiiee et et 31

b. Eligible FIFO...........ccccooiiiiiieeeee et 32

C. The 4-stage Pipeline [0GicC.............cc.ccceecuieiiiiiiiiieeeeeeeee et 33

d. Putting it Qll tOGEINEYc.oooveeeeeiiieeeeeeie e 33

4.3 SERVICE INTERVALSoiiiiiiitiieeee ettt e e e e eeeteaaeeeeeeeseeeeeesananaeeseeseessnaaaaesees 35
4.4 SERVICE ELIGIBILITY eruuteetunoeeeeeeeeeeeeeeeeeeteeeeeeeeaeseeeaaeeeeneneesesnnneesesennaeseeenaeeenes 36
4.5 CONGESTION AND NEGATIVE ACKNOWLEDGE HANDLING ...ccvuuueeeeeeeeeerrrinnnee. 36

5. SENDER MODULLEcoutteettueeeieeeereeeesseeeessas 37
5.1 OVERVIEW ettt ettt e e e e ettt eee e e e e e e e e taaaaeeaeeseeeeeteaaaaeessseeeeensaannnas 37
5.2 SENDER MODULE INTERFACES ...eenetttteeee ettt e e eeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeenanns 40
Interface with Scheduler moduleccccccooviiiiiiiiiiiiiiiiieieeeeee e, 40
Interface with Queue Manager moduleccccccovevvieeeiiieeiiiieniieeeieeennn 40
Interface With fOrwarderccoucoiiiiiiiiiiiiieeiieeieee e 40

5.3 THE FORWARDER IMODULEcctttnitteeeee ettt e e e e eeeeeeeeeeeeeeeeeeeeeeeenanns 41
5.4 SENDER MODULE MAIN COMPONENTS ...ctvtuuueeeeeeettrtiieeeeeeeeeeremmnseeesesesssesmmnnnnns 41
TRE SEATUS TEIMOTY ...t e e et e et e e e e e snaeeesnseeennsaeens 41
Free cell pointer FIFQ..............ccccoooiiiiiiiiiiiieeie et 42

Cell HiStOTY FIFO...........oocceieeieeeeie e 42

5.5 POLICY FOR DATA AND CONTROL CELLS .vvvuuuueeeteeeettetiueeeeeeeeeeremmnseeeseeeeseesnnnnnnns 42

6. MODULE INITIALIZATIONccceeeeeeeeueeeecceceeeessseesssssessssssssesssssssssssssssssssssssssssss 43
T. UTOPIA INTERTFACES .o etetetererereresesesesesesss 44
8. IMPLEMENTATION RESULTS coeeetettuueeceeeeeereeeseessesscssssssssssssssssssssssssssssssssssssss 48
9. FUTURE WORK AND ENHANCEMENTS ..ttttttttteeeeeceeesesssesesesesesssssssssssssssases 49
9.1 REMOVING THE THROTTLING EFFECT «..vuueteetetee et e et e e e e eeeeeeeeeeeeeeeeenenns 49
9.2 ADDING MCR SUPPORT TO THE SENDERuuueviiitetiiiiiieeeeeeeeeremnnneeeseeseeeesnnnnnnns 50
10. DISCUSSION AND CONCLUSIONS 51
REFERENCES oeeettcieeeeereeeereeessssscssas 52

1. Evoayoym

1.1 H xivnon tomov ABR kot 1 ypnopotnte ovte

Kotd v tedevtaio dekaetio yivope paptupes piog ekpnktiknig avénong oty
xpnom tov oladiktoov (Internet) , n omoia 0dnyNnoe oe avaykeg bandwidth ot omoleg
dumhactdlovtor mepimov kdbe 6 pnves. To dwdiktvo eivar Paciopévo oty otoifa
npwtokOAwv TCP/IP. To mpwtdkoiro IP mapéyel vanpecio tomov best-effort, 1o
omoio onpaivel 6Tt To diktvo Ba TpooTabNGEL va TapEyEL Eva «dikalo» KOUUATL amd
to bandwidth mov eivar dwbéoipo oty (petaforidopevn) owdpoun TV omoia
axolovBovv ta makéta IP. Agv mapéyovtar GAleg eyyonoels. Apketol OU®G XPNOTES
yperdlovion eyyvnoelc ywo. bandwidth ko kabvotépnon kot dev pmopovv va Tig £xovv
TapOAO OV JaTIBEVTAL VO TANPOGOVY Y10l VO, AVTEC.

Ta diktva ATM dwbétovv KAAGES vanpesiag ot omoieg eival KATAAANAES GYEOOV
v Ka0e ypnon. Mdaiota 1 kKAdon vanpesioc ABR opowaletl pe v best-effort pdon
TOV SLdIKTVOV G0 aPopd TNV «dikan» dtavoun tov dabécipov bandwidth, aAid
ovYXpoOvmG Tapéyel kol pio eyyonoelg eiayiotov bandwidth avéd pon. Apa
petapépovrog [P kivnon méve and ABR pmopodpe va dtoetnprnoovpe v best-effort
@0OOMN TOL SOIKTVOV KOl GLYYPOVAOS VO TOPEYOVUE KOl VO, YPEDGOVUE EYYLNOELS
elayiotov bandwidth.

Axolovbel pia cuvToun e1l0ay®Yn 6TV APYLTEKTOVIKN VANPESI®V Tov ATM Ko pia
ovVTOUN TTEPLYPOPN TNG KAAoNG vnpeciog ABR.

1.2 Aiktva ATM

a. APYLTEKTOVIKI] VTN PECLOV

H apyttextovikn vanpeciodv mov mapéyetal and 1o eninedo tov ATM amoteieiton
amd T1g €€NGg 6 Kot yopieg vINpeciag:

e CBR Constant Bit Rate

rt-VBR Real-Time Variable Bit Rate
nrt-VBR Non-Real-Time Variable Bit Rate
ABR Available Bit Rate
UBR Unspecified Bit Rate
GFR Guaranteed frame rate

Avtég o1 KAdoelg vnpeciog oyetiCouv ta {nrodueva YopoKTNPIoTIKA Kivnong pe
TNV GUUTEPLPOPE TOV dIKTOOV. Agltovpyieg OTmG dpopnorodynon, ‘Eleyyog Amodoyng
Kioewv (Call Admission Control) kot 6écpevon ToOpv yeviKd yivovTal S1aQOPETIKE
v kdBe KAdon. Ov khdoelg vanpesiog olyopiloviol G€ TPOYUOTIKOD KO UN
TPOAYLOTIKOV YPOVOU.

v kotnyopio Tov mpoypoatikod ypoévov avikovv ot CBR kot rt-VBR «ot
Swywpilovror pe peta&d toug and 10 av mEPLypapag dkTOHoL mepExel povo to Peak
Cell Rate 1} To PCR «at to Sustainable Cell Rate (SCR) avtictotya. Toéco 1o CBR 6060
kot to rt-VBR mapéyovv eyyvmoeig yio v pé€yiom kabuotépnon oAAd kot yio v
péylomn JSkOHOvVeN oVTNG TG Kabvotépnong. ZTiG Un TPAYUATIKOD YpOVOL
vrnpeocieg vrdyovion ot nrt-VBR, ABR kot UBR, avtéc dev mpoc@épovv yyunocelg
OYETIKEG pe TNV KaBvoTtépnon 1N TV dtaKOHaven avtie. Atapépovy Hetalhd Toug oTIg
€YYUNGELS OV TO JikTLOo divel Yo To bandwidth kot T0 TOG00TO amMAENG KEMDV
KaBMOG Kol GTOVG UNYAVIGHOVS TOL VAOTOIOVVTOL GTOVG HETAYWYEIS KOl GTO AKPA Y10l
va vrootnpryBovv. H ewodva 1 delyver v owavouny tov bandwidth avd kidon
vanpeciog tov ATM.

(bandwidth not utilized by ABR)

= —— —————
- -
- -
-
-

Time

Ewoéva 1. Alovoun tov bandwidth og diktva ATM

b. H xAhdon Ynnpeoiog ABR

H ABR givat 1 pévn vmpecia tov diktvov ATM yuo v omtoio 1) GUUTEPLPOPA TOV
dkTOov umopel v aAlager petd v eykabidpvon g obvoeons. o avtd T0 AdYO
etvan kKot M pdvn vanpecia mov vrdkeEWTAL G EAEYYXO PONG, O 0mOi0¢ Umopel va yivet
TPELG OLOLPOPETIKOVG UNYOVIGLOVG. AVTOL S1APEPOVY GTNV TAXVTNTO TPOGUPLOYNS TOL
pLOUOL petdooonc, otV mapeXOUEVT OKPIPED KOL GTO LTOAOYIGTIKO KOGTOG 7OV
amoutel 1) vAoToino™ Tovg,.

u— L LA S I H— B
i ATM i ATM i Destination
i SWITCH ' SWITCH |
______ O o - B | g
S Lo ' N)
™ data cell “RM cell

Ewova 2. Keld dedopévov kot keald eréyyov (RM)

H mnpogopia tov eAéyyov pong petagépetor amd €01K0H TOTOL KEAA, TA KEAMA
RM (Resource and Management). Avtd dnpuovpyovviot amd Ty Tnyn, Toipvovv ard
OAOVG TOVG PETAYMYELS TNG OLOOPOUNG KOl KATOANYOUV GTOV TPOOPIGHUD, O 0moiog Ta
npowbel wiocw ommv myn [Ewova 2].01 evoibpecol kOppot evnuep®vouy avtd to
KeMA elte pe Bétovtag akpiPdg tov pvbud porg, eite Bétovrag 2 bits, ta CI
(Congestion Indication) ko1 NI (No Increase). To npdto Aéyetar Explicit Rate (ER)
KOl TTPOGOEPEL YPNYOPN Kot oKPlP] TPocapuoyn oAAd €lvar VITOAOYIOTIKA akpPo
otV vAomoinon tov. To odevtepo ovoudletar Relative Rate (RR) xou mpoooépet
pétplo ToyhTNTO. TPOCOPHOYNG KOl IKOUVOTOMTIKY okpifele, eved mapdAAnia m
vAomoinom Tov dev givar vwoloyioTikd akpiPr]. TéAog vdpyel Kot 0 d1801k0g EAEYYOG
pong, cOLemva pe Tov omoio ot petaywyeic Bétovv to EFCI bit (Explicit Forward
Congestion Indication) ota keAld dedopuévov yio va dei&ovv oTov TPoopioud Otl
npénel va Béoetl 1o CI bit ota avtictoryo keld RM [Ewova 3]. O punyaviopds avtdg
elvar apyog kol dgv mpoopépel axpifela aAld eivor edkorog kol @ONVOS Yoo va
vAomonOet.

-

- Destination uses the EFCI bit of the data T
N cells to update the CI field of the RM cells 3 »
<eee !_1:::::‘4 __________ [0 :ZZZZ::L___!___
i ATM | i ATM | o
! ! ! ! Destination
' SWITCH ' SWITCH
[I I I]
_____ ______l___________|____________ ______|___________|________>
AN I 1 AN I 1
N data cell . RM cell
4 4
EFCI CI | NI ER

Ewéva 3. Mnyavicpoi eAéyyov pong o€ kivnon ABR

1.3 Yrootmpiin kivnong ABR o¢ petaymysic ATM

H vroompién xivnong ABR a6 tovg petaywyeic kot to dxpa (end systems) eivon
apKETE o SVOKOAN cuykpwvoOuevn pe v vrootpiEn vy kivnon CBR kot VBR.
Av16 givor AMdym tov 6t 01 poéc Tumov ABR egivat 1o povo €100g podv mov vdkevTon
o€ EAeyX0 pong, ONAadN omotteital amd AVTEG VoL TPOGOPUAOGOVV TNV TAYVTNTO TOVG LE
Baon v emotpepouevn TAnpoeopio awd 1o diktvo (keAd RM). Avtd dev 1oyvet yia
115 poég CBR kot VBR o1 omoieg amAdg aoTUVOUEDOVTOL GTO GNUEID ELGOYWYNG TOVG
010 OikTvOo (ingress point) Kol 6T GLVEXELWN TO. KEAMA TOLG TTpowOovvTol amd TOLG
LETAYOYELS YPNOYWOTOIOVTOG WIKPY TOcOTNTO Tpocmpvig pviung (buffering).
EmnAéov 10 diktvo mpémer va mapéyel otig poég ABR éva «dikao» koppdrtt tov
bandwidth kot cvyypdveg vo eyyvdtor YopNnAn OTOAEW KEAIDV GE POEG TOL
CUUUOPPAOVOVTOL TPOG TOV EAEYYO PONG.

Ot televtaiec 600 OMOUTNCES GE GLVOLOGUO E TNV OMOLTNON Y. €YYUNnUEVO
eldyioto bandwidth, kabiotovv ™V vroompiEn kivnong ABR éva un tetpyupévo
0éna yio toug petaymyelg diktoov ATM. T va pmopésovv ot poég ABR va
EKUETOAAEVTOVV duvapkd To dbéoipo bandwidth mpémel va ypnoiponomOei apket
UVAUN OTOVG pHeTaywYeElc. AVTd elval amopoitnTo Yoo vo KPATIETOL £VOG ETOPKNG
apBpdc amd keMd ABR péypt o éheyyog pong va ewdomomoet yoo adEnon g
TaHTNTOG TPV Ol OLPEG TV POV adedoovy. O YDPOg aVTAC givorl amapaitnTog Kot
Y. T0 ovtioTpo®o ONAadN Vo UTOpOvHE Vo amofnkevovpe KeMA yopig vo
VIEPYEMOEL 1 VUM HEYXPL O EAEYYOG PONG VO EWOOTOMGCEL TNV TNYN VO UEIDGCEL
toyuto. BéPoia Bo mpémer va ypnoipomolovpe TOGN UVAUN OGO TPOYHOTIKG
YPEWALETON Y10TL EKTETAUEVO CVGOMPELGT KEAMMY 00MYElL 68 avENUEveg kabvotepnoelg
YOPic cVYXPOVEOS va emTvyydvovpe KoAvTepN a&lomoinomn Tov bandwidth. AnAadr Oa
nmpémel 10 PEyehog TG ovpag mov TPOSTaHOVE VO TETVYOVUE Vo, Elval avaAoyo Tov
xpovo Round Trip (nnyn — tpoopiopudc - nyn).

1.4 Avtikeipevo ¢ gpyociog

H epyacio avt) oamoteleiton amd v oyedioon kot vAomoinon oe FPGA twv
povadwv “scheduler” kot “sender”, ot omoieg VAOTOOUV TOV YPOVOTPOYPOLLATICUO
¢ kivnong ABR vy tov petayoyéa mov KoTOOKELAGTNKE OTO TAAICLOL TNG TOL
npoypdaupotog AIMOAO. O e&vmmpetntig kivijong ABR koatookevdotnke omd 10
LIL. tov FORTH kot 1o Tpqpo Emetiung Yroloyiotdv tov mavemotiuov Kpnng.

H avapopdg ovt) eivar opyavouévn oe 4 kepdrowa: «l. Ewoyoyn», «2.
Emokdénnon Metaymyéan, «3. TToMtikr] Ko 6yediaocn ypovoTpoypaULOTICHOLY, «4.
Movada Scheduler», «5. Movada Sender», «6. Apywonoinon Movadwvy, «7
Atenagég Utopiay, «8. Amoteléopoto YAomoinong», «9. Melloviikn epyacio kot
BeAtivoeigy, «l10. Xyoho ot ovumepdopoatan.To kepdlowo 2 eodyst v
OPYLITEKTOVIKT] TOV UETOYMYEN KOl TOPEXEL L0 OPKETE AETTOUEPT) TEPLYPAPT] TOV
E&umpemt «ivnong ABR. To kepdAioio 3 mpaypoatedetal TV TOMTIKY KOl TOV
unyovicud ypovompoypopupatiopov. To xepdiow 4,5 kor 6 meprypdeovv v
TopoVGo VAOTOINGT Y10 TO XPOVOTpPoypappaticud g kiviniong ABR. To kepdiato 7
nmapovotdlel Tig 4 demapéc utopia g FPGA. AkoAiovbel 10 kepdioto 8 to omoio

10

acyoAeitonl pe TIC dvvoTdTNTEG TNG VAOTOINONG , €V TO KePAAaio 9 meprypdopet
emBuunTég aAlay€g Ko emekTdoelg OTme 1 vrootnpiEn eyyvnoewv MCR. H avaeopd
AT OAOKANPOVETOL LE HEPIKA OO0 Kot cuumepdcpata 6to kKepdiato 10.

2. Emokonmon Metaymyéa

[Ipwv meprypa@el N TOATIKN YPOVOTPOYPUUUATIGLOV, £ivar onuovTikd va, 0o0el pio
oUVTOUN OAAG TEPLEKTIKT EIGAYMYN OTNV OPYITEKTOVIKY Tov petaywyéa [Ewova 4].
Avtd elvol amopaitnto Yo Vo HITOPEGOLHIE VO OIKOLOAOYNCOLUE VTOOEGE Kot
cuupipdoipovg oty oxedioomn ToL YPOVOTPOYPULUATICTY.

T T T T T T T g
I ABR Server :
|
|
i LF [**Lcru [+ M [F j[CPu M |
| 3 |
! ‘ Y | ATM 155
| = = ATM ||
| £t 4 qE cp ohy | " Mbps Link
| ‘ '
' o] ne Cara [|
i Line Card :
| _ATM Switch Main Control I
| [F |~[cru M F [«*[CPU M|, |
.............. ; v I
“"’: e 5 , =—" ypsL2
VDSL2 o lprie | [. Z ople_ = mbps
Mbps | ::| e1s = “— O —>[|—I» Links
Links I E ﬁ] I
= i . L) T
| i Line Card Line Card :
i |
: |T|<—> (épU M Iii‘" CPU M i
L= A
I | : |
<—|—>_:|4— ‘—} | I
VDSL 2 | g ‘ = = : il | ATM 155
Mbps | [Ccp 2 3 CcP phy | " Mbps Link
Links ~1 ¢ i b H |
- . -
: H Line Card Line Card l
I |

Ewova 4. Apytextovikn petayoyéa ATM

Onwc oelyver n ewovoa 4, o petayoyéag ATM ypnowomolel opyltekToviKn
Stopolpalopevoy SHAOD Yol TV OVTOAAAYY] KEMOV ovapesa otig Kaptec. H kdbe
Képta {NTdel Ko amoKTAEL TO OILAO Yo LETAOOOT TOL KADE €10EPYOUEVOL KEAOD
TOV 01010 0 cVVOEGHOG ££000V BpiokeTol Ge dPOPETIKY KApTa. Mia amd Tig kbpTeg

11

opiletar va eivar o drntg 0 omoiog dwavépel To bandwidth tov davrov. Ao kdOe
ovuvoeopo eloépyetan Kivnon tomov CBR, VBR ka1 ABR. Ka0g kdpta dpoporoyei ta
KkeMd tov cuvoécemv CBR kot VBR oty avtictoym képta pe Tov obvoespo e£6d0v.
Ola ta kel tOmov ABR dpoporoyovvian otov e&ummpent) ABR (ABR server),
OOV amodNKEVOVTOL KOl XPOVOTPOYPOUUATICOVTOL YO AVaLYDPNOT).

H xd0e xépta nepiéyet eite 4 ovvdéopovg VDSL eite éva odvdéeopo ATM ota 155
Mbps. H topivi] viomoinon vroomnpiler uéypt 16 tétoteg kdpteg. H apyrrektovikn
dwaporpalopevov dtaviov mov ypnowponoteitor eivar to CellBus, oyediacpévo amod
mv etoupeia Transwitch. H ovokevég npdofaong otov dlavio eivan too Cubit Pro
chips ta omoia emiong oyedidomkay and v Transwitch. O kevtpukdg Ereyyog KGO
Képta yivetar and tov eneEepyaoty Motorola 860, evd to oynua CP mov ¢aiveton
napanave eivar o Cell Processor me92501 eniong amd v Motorola. Avtd to chip
oTéAVEL Ko O0€yetal KeAd amd tovg ovvoécpovg E/E, kot mapdAinio xdaver tnv
petdoppaon twv VP/VC. Tlpoapetikd o Cell Processor mov Ppioketar oty Kkdpta
tov eéummpetnt ABR pmopei va kdvel v eneéepyacio tov keAwv RM. To CellBus
Kot To keMd eivor avoPabpiowo pe ovuPoatd oe eminedo pins chips yio va
vrootnpryOel CellBus apxetdv ko links twv 622 Mbps.

2.2 Kevipikdg £heyy0g TOV pETAY®YEQ,

Omnowadnrote kapto extdg omd Tov EEummpemnt) ABR umopel va kdvel tov kevipikd
éleyyo tov petayoyéo. H xopro vBdvn ovtnig g kdptoag eivon va devepyel tov
«EAeyyo Amodoync Kinong» (Call Admission Control) yia ké0e gioepydpevn aitnon
ovvdeonc, ONAad Vo OmOdEXETAL, VO TPOTOTOLEL 1] KOl VO OTMOPPITTEL GUVOEGELS
ocvpemva pe 1o oabéoo bandwidth ko dAlovg mOpovg tov petaywyéa. Emmiéov,
avt M kapta eivor vrevBovvn yuo va gwdomotel tov E&ummpemty ABR yio kde
ovvoeon ABR mov avoiyer 1| wkheiver kobmdg ot yuo Tic aAlayéc oto Olabéoiuo
bandwidth tov k46e cuvdéopov e£6dov [Ewova 5]. T avtodg Toug cLVOEGHOLS Ot
omoiot 6ev popdalovrat TV cvokevn tpocPaong oto CellBus givon povo amapaitnto
va gwomomBel o e&ummpetng kivnong ABR pia opd povo yio v taydnto tov
OLYKEKPIUEVOL OLVOEGHOV €EO000V. AVTO YaTi O YPOVOTPOYPOUUOATIOTNS UTOPEl
duvapkd va mpocappootel oto ekdotote odwbéowo bandwidth péow tov
TANPoPopiag Yo cuuedpnomn mov Epyeton amd 1o avtictoyo Cubit Pro g kdprtog
OV PEPEL TOV GVVOESHO EOOOV.

1. New ABR connection

ABR Server 2. Close ABR connection Switch Main Control Card
3. Transport link available
CPU | ol bandwidth update ' » [CPU —
v
i 3 —[
- ' 5= ‘—" ¢ éP P —{ |
CP [«>|; : = ‘—} =
LGN A 3]]
: —[|
SDRAM Line Card

Ewova 5. ITAnpogopieg mov mapéyoviar otov EEumnpetn ABR

12

2.3 O E§ummpetntig kiviiong ABR

To owbypoppa tov e&umnpemt| ABR @aivetar ot swdéva 6. Avty n kdpta
OLYKEVIPMVEL Kol Y¥POVOTpoypappatilel OAn v kivion ABR tov petayoyéa kou
EMOUEVMG €YEL OPKETN UVAUN YL Vo OToONKeDoel OeKAdES YIAMOGTO TOV
devteporénton Yo Kébe ovvoeon ABR. T'a to oxomd avtd ypnoipomotel o peydio
amofnkevtikd yodpo thmov SDR SDRAM (éva 64-bit DIMM 1tmv 256 MB).

RS232 |
T Motorola
chip > 860 CPU < »| Flash Memory
(op. sys & software)
‘ T
CI;UI §Scheduler 4-»: Sender |
FPGA | LT F "ot
- : |
Man r 11 icong,acki¢l---—- 5
%ueue anage <~ || handler !
sdre. : :
RM cells 1 Ly
3 - vy I —
Cell P P Cubit ' '
Processor ’—D:II Ny P ; Pro
<—|_ <+«—— DeMux §<_§Utop1a4 >
Utopia2 | |
3 RM cells
Y | 64 bits
SDcl;lApM 4 Data cells
ABR SDRAM SDRAM
Server Card control § o dama
| SDRAM DIMM |

Ewoéva 6. O ESunpet g xivnong ABR

Ot Aettovpyleg TOL YPOVOTPOYPOUUOTICUOD KOL TOV OlYEIPIONG TOV OVPOV
vAomoovvton o€ pia FPGA g etanpeiog Altera kot mo cvykekpiuéva To HLOVTEAO
EPF10K200EBC600-2 g owoyévelng FLEX10KE. EmmAéov otmmv FPGA avtiv
vdpyovv 4 demagéc utopia o1 omoieg ypNoUeELOVY Yo TV emkowvovia pe Ta Cubit
Pro ot Cell Processor. Axpiéotepa, ot demagég mov cuvopthovv pe tov Cell
Processor ypnoipomotodv 8-bit mhdtog kol mpocopoidvovv to eminedo ATM tov
utopia, evd ot JIETAPES OV GLVOUIAOLYV e To Cubit Pro ypnotpomolovv 16-bit mAdtog
KOl TPOCOLOLMVOLV TO PUCIKO eMimedo Tov utopia. Ymhpyet ko pio TEUMTN SIETAPN M
omoia ypnotpevet Yo Tov pikpoenesepyaotr). Avt vioroteitol ot povado CPUI kot
emrpénel otig povaodeg scheduler ko QM va emkotvavovv pe tov enelepyaotn, o
scheduler AoauBdver T1c €womomoelg ywoo v petaforiopeveg TaxdTMTEG TOV

13

ocuvdéopmv €600V, evdd 0 QM AapPdvel eviolég 6mwg to dvorypo kot KAEIGULO
ovvoéoewv ABR. EmimAéov pécm avtig g dlemapng umopel va mopoakoiovdeital n
Aertovpyio Tov povadwv g FPGA.

Ta apyBovpeva kehMd omd 1o utopia3 diayepilovror amd v povade DeMux n
omoio. mpoarpeTikd mepva To. keMd RM oto utopial yw va doBovv octov Cell
Processor, evd ta keMd dedopévmv gtodyovtatl otnv 64-bit Cell Enqueue FIFO yuo va
ypaeovv oty SDRAM. O dwyeprotig ovpov (QM) avayvopiler ta KEMA TOL
Bpiokovtar otnv Cell Enqueue FIFO kot to mpocBétel oty katdAAnAn ovpd oty
SDRAM. H &&epyduevn kivnon etvar gite evnuepopéva keAtd RM and to utopia2 eite
KeMA dedopévav amd v 64-bit Cell Dequeue FIFO, n omoio amobnkevel o keAd
mov épyovian amd v SDRAM. H povéoa forwarder eivor vmebOvovn vy va
npowbnoel v e&epydpevn kivnorn oto utopia4, to omoio pe v cepd tov Bo TO
dmoet oto Cubit Pro yua petddoon névew oto CellBus.

H Aertovpyia Tov Ypovompoypappaticpov yivetal and m povada scheduler, n onoia
divel avayvoploTiKd opdd®mv podv Tov dikalovvTol eELaNPETNoN ot povada sender.
H povada sender, apod mpoaypatomocel opiopévoug eAEyyovs, (ntdel and tov QM
éva keAl amd KatdAAnin ovvdeon ABR. O QM dwPdlel, dtav yiver dtubéoipog Eva
keAl and v SDRAM «xat 1o giodyel otnv Cell Dequeue FIFO. H teievtaio pali pe
v Cell Enqueue FIFO emtpénovv otov QM va ypdoet kot va dafdlel katd putég to
keMd and to SDRAM DIMM. Ilapdio mov avtég ot FIFO elvar axpipés va
viomomBovv otv FPGA, 1 yprion Toug NTov amapaitntn yio vo unv Teplopicovue
ONUOVTIKA TIG EMOOceLg TG SDRAM.

3. IToATiKN KOl 6YE6LOOT YPOVOTPOYPUUNUTIGHOV

3.1 Eidn 6wbéopov bandwidth yra kivnon ABR

o va yiver o ypovompoypappaticpnos g kivinong ABR, eivon amapaitmro va
vroAoyiletoaw 10 pn ypnowomolovuevo bandwidth tov kédbBe ocvvdéopov. Avtiy n
voypémon Popaivert v povado mov deEdyst to ‘Eleyyo Amodoyng Kinoewv
(CAC). H povéoa avt) eivor mdvta gviuepn vy 1o bandwidth 1o omoio dev €yet
amodobel oTic S1POP®V THTWV GLVIECELS, OVTO TNG EIval ovayKOiO TPOKELLEVOL VO
UTOPEL VO ATOPUGIGEL TNV ATOd0YN 1 TPOTOTOINGN TWV EIGEPYOUEVOV OITNCE®V Y10
dvorypo ovvdeon. IMapdro avtd doev eivor Opm¢ amapoaitnto vo vwoloyilel To
bandwidth 10 omoio éye1 decpevtel oAAd Oev alomoteitan, YTl oVTO €xel UKpn
xpNooTNTa Yoo TNV dtevépyeta Tov CAC pog Kot agopd poévo tov Tmptvo xpovo Kot
dev dtvel kdmowo eyydmon yuw to kovive péAhov. Emmiéov yia va vroAoyiotel avtod
10 €idog bandwidth eivan avaykaio vo mwapakorovBodvtar duvapukd ot ££odot, M va
yivetar kdmowo «EEumvny» eKTiumom, kot to. 000 givor OVOKOAM pHE TNV TopovoA
apytekTovikn. Me v mpoimdBeon 6tt 1 povado scheduler evmuepdverar pe to
dBpotopa tov 6vo dmv bandwidth, -onAadn pe to dbpoioua TOV PN GECUELIEVOL
bandwidth pe avt6 TOVL decpELUEVOL OAAG [N XPNCLOTOLOVUEVOL — Eivorl EPIKTO Vo
a&lomomBovv mApwg GAoL o1 chHvoespol €600V akOuO KOl avTol Tov polpdlovtal
v 61 cvskevn Cubit pro.

14

Av 10 devTEPO PéPOG TOL aBpoicpatog eivor dyveooto, Tote 1 povada scheduler
VIOYPEOVTOL VO PACIOTEL LOVO OTN YVMDOT] TOV TPMOTOL HEPOS, KOl £TGL VO OTOPVYEL
™mv epedavion tov oavopévov HLB (Head of Line Blocking). Avtd 10 @oavopevo
epneavifeton 6tav vrdpyovv moAloamiol cvvoespor e£6dov miocw amd pio FIFO. H
EMewyn g yvoong tov devtepov bandwidth dev givor mpoPAnpa yio Tovg
oLVOECUOVG Tov Ogv Tpoodotovvtal oamd Kowoypnotn FIFO. Xe avtovg toug
oLVOEGOVG pmopel va emtevyBel TANpNG a&lomoinomn YPNOYLOTOIMVTAS TOV EAEYYO
pong mov mapéyovv ot cvokevég Cubit Pro. H povéda scheduler ypeidleton va Eépet
YL VTOVG LOVO TNV UEYLOT YOPNTIKOTNTO TOVG.

3.2 Mnyoviopdc opadomoineng

IMa va givor oyedaotel £vag eQIKTOG YPOVOTPOYPOUUATICTAS Eival amapaitnto va
anopBeybel o ypovompoypappaTicpudg o emimedo ponc. Eva kotdAinio oymupo
oLuvabpoIGHOY YPNOLHOTOLEITOL Y1o. TOV OKOTO avTdV. OUadomOloVpE TIG POEG OE
OUAOEG POMV Kol £TGL TETVYOIVOVUE VO LELWGOVUE TOV aPlOUO TOV OVTIKEIEVOV TOV
ypovompoypappatitoviat. H cuvabpoion tov podv yivetar pe Pdon tov cOHvOoesuo
eEdoov kot ypnowonoteitor Weighted Round Robin ywo tov ypovompoypappotiocpod
TOV TPOKLATOVI®OV OLAS®OV PODV.

Kdabe opdda podv gvog cuvoéspov e£60ov mov dev popdletar tov FIFO (oniaon
v ovokevn Cubit Pro) g pe dAAn opdda, ypovompoypappotiletor og toyhTnTa
oo™ O0M £lvorl 1 YOPNTIKOTNTO TOL GLVIESUOL, Kot OTAV TOPOVGLALETOL GLUPOPNON
oto avtiototyo Cubit Pro, tote mpaypotomoteiton «omcboydpnon» (Back Off).
XpNoomolov e omsfoydpnon Yo Vo amo@evyfovy un arapaitnteg LETAOOCELS Kot
étol onatdAn bandwidth oto CellBus kabdg kot emiBdpuven Toug SloyepLoT OVPMV.
Otav pio opado po®v ypNCUOTOLEL OVTIGTOLYEL 0 GUVOEGHO O omoiog polpdletal
TNV GLOKELY] OLWAOL HE BAAOVS (TOAAaTAOL GUVdESHOL €£600V GtV KAPTA), TOTE M
povada scheduler evnuepdvetor dvvopkd yioo to owbéoipo bandwidth térowwv
ouvoéoHmY. Avtd oToYevEL GtV amoPuyn Tov eatvopévov Head of Line Blocking
[Ewcova 7], pe v mpotimdeon PEPata OTL 01 EVIUEPDGELS EIVOL GMOTEC KOl YPYOPES.

Cubit’s Cell outlet FIFO in split mode

| Line |

! control CBR VBR ABR Card !

i D B \ |

| D C C A ‘\\:k Head of Line

| C C D C \L Blocking for B
! i and A due to C
| A B C D

i ' Transport

i < i Links

Ewova 7. Head of Line Blocking

15

Elvan xpico va emivBodv ta ocvuPdavta HLB 660 to dvuvatd toyvtepa, yio to
oKOTO aVTO YPNOIUOTOLEITOL EKOETIKN TOMTIKY] 0TIGHoYDPNONG KOl OTOKATACTOONG
Yo TIG OUAOEG POMY TTOL ERPAVICOLY cVUEOPNON. AvTd onuaivel 6Tt pio opdda podv
n omoia PAEmel copopnomn Ba omchoympnoel Ypryopa MOGTE VO, OIEVKOAVVEL TNV
emilvomn Tov HLB. ®uoikd 6Aeg 01 Opddes podv Tov SEPYOVTOL OO TO GLUPOPTUEVO
Cubit Pro Ba dovv v cvpuedpnon kot Bo omicboympricovy TapoLlo mov UTOpEl va
v ATav ouTég Tov TV mpokdiecay. ESd yiverar n vmdbeon 6t n opdda (1 opdadeg)
po®V Tov TpokdAecav To @avopevo HLB Ba evnuepwboiv civiopo oty ocmoti
ToYOTNTA, Kot T0 eovopevo Ba avalpedel. H exbetikny moAtiky| amokatdotaong g
TayvTNTOg TOV poddv Ponbdel va unv tipopnBodv mepattépm o1 AOuEG OUAdES, Ot
omoieg 0ev NTaV LIEVOVVEG Y10l TNV EUPAVIOT TOL PALVOUEVOD.

3.3 Awugpnig Xyeoiacm (povomTpoypoUpRATIGHOD

Mo tov ypovompoypappatiopd g kivinong ABR ypnowonoleitor €va dyuepég
o010, T0 omoio amoteAeitor amd T1g povaodeg «scheduler» kol «sender». H povéoa
scheduler vAomoiei v moltucég ypovompoypappaticpnd (WRR) kot omoBodpdponc
(exBetikn) yio TiG opdoeg powv. H povada sender eival vmevBovn yia vo 0MGEL TIg
KatdAAnAeg outnoglg otov daxeploty ovpav (QM), va yeplotel TIg
EMOVOLETAOMGELS, VO avoyvopioel Tig eAehBepeg el LVAUNG Yo KEAD KO val
oteilel To KeEMA Y10 petdooon oto Cubit Pro.

IMa va Agttovpynoel 1 cuvadpolon TOV PO®V Ve GUVOEGHO, O OLOYEPLOTNHG OVPDV
dwtnpel o KokMkn Aloto amd TG un Gdgleg poéc tov kébe cvvoéspov (opdoa
powv). Kdébe @opd mov pia opdda dtkorovtar e&ummpétnon 1 povado scheduler
glodyel 10 avayvoplotiko g oe pio FIFO v moia ovopdlovpe Eligible FIFO. H
povada sender e€dyetl avoyvoplotikd and avty v FIFO kot apod mpoypatonomcst
OPLOUEVOVG EAEYYOVG OlvEL aiTNOMN OTOV OLUYEIPIOTI] OLPOV Yo Vo KEAL TOL OVNKEL
otV dedopévn opdoa. O dayeplot)g ovpwv mpaypatonotel arid Round Robin (RR)
aVALESH OTIC UM GOEIEC POEG TIC OUAdES Kol JlAEYEL éva KeEA amd KdaOe pon mpv
TPOYMPNGEL GTNV EMOUEVT).

IMo kéBe kel mov emyetpeiton va petadobel mave amd to CellBus, n povada sender
dwtnpel éva dgiktn otn B€on pvnun 6mov givon amobnievpévo. Avtod yiveran yati o
JLXEPIoTNG oVp®V To eEAyel amd v ovpd ¢ avtictoyn ponc. 'Etol, av pia
HETAO00N TAV® amd TO OlovAo amotvyel, tOte o sender umopel va mOPEYEL GTOV
JXEPIOTN OVP®Y AVTOHV TOV JelKTN TNV €NOUEVT POPE TTov 1 d1o opdda podv o
dwaovtan eEumnpétnon. Eivan Aoyikd va vroBéocovpe ot pia petddoon oto CellBus
Oo amotdyert moAL omdvie Aoyw oedipa tomov CRC, dpa oxeddv Oiec ot
amotuynuéveg petaddoelg Ba oeethovtar oty yepdtn FIFO oto Cubit Pro
TPOOPIoHOoV. Ba doVUE 0TO KEPAANLO 9 TG UTOPOVLE VO EKUETOAAEVTOVUE OVTO Yl
va BeAtidoovpe v povdoa sender.

Anhaon M povada sender TpowOel 6TOV SLEPLOTH OVPDOV OVO EWMOV UTNOELS, Eite
ntéet eaywyn KeAlo0 Kot TopEYEL £Vl OVOyVOPLOTIKO opddog, site (ntaet dSdfacua
KEAMOV Kot TapEYEL TOV avtiotolyo deiktn uvnune. Av pio petddoon sival emttoyng o
JYEPIOTNG OLPOV €1d0ToLElTAL OTL 1| GLYKEKPLUEVN BEom pmopel va tpootebel oty
Mota ehevbépawv Bécewv. Avtd yiveton péocm piog pikpng FIFO ehevbépwv deiktodv n
omoia ypagetal and tov sender Kot dStofAleTon amd TOV S10YEIPLOTH OVPDV.

16

e avt T oyediaomn Kavape v vrdBeon 6t kébe ovvdoeon ABR (ntder (1 o CAC
10 emPdiet) undevikny eyyomon ehayiotov bandwidth (MCR=0). Av pia epappoyn
aroutel eyybmon MCR 16te Ba mpémer va v mapel péow evog cvpPoraiov CBR 1
VBR. H oygdiaon pnopet va alhaydet dote va vrootptyfodv eyyvnoeig tomov MCR
pnécm opddwv mov cuvabpoilovv 1o bandwidth twv eyyvicewv MCR. T yiver avto 1
povado sender TPEMEL VOL VITOGTEL ONUOAVTIKES OAAAYES, evd 1 povada scheduler dev
yYPEBLeTON EAAYLIOTEG OV O)L KAOOAOV, avTd 0QEIAETOL GTNV OUEPT] OPYLITEKTOVIKY| LLOG.

17

Hopaptnpa (Ayyiwkn Metagpaon)
1. Introduction

1.1 ABR traffic and its importance

During the last decade we have witnessed an explosive growth in Internet usage,
which has resulted in bandwidth needs that double every six-months. Internet is based
on the TCP / IP protocol stack. The IP protocol provides best effort service, meaning
the user gets its “fair” share [15] of whatever bandwidth is available along the route
that the IP packets follow, no other guarantees are provided. This has the undesired
effect that users who need bandwidth and latency guarantees and are willing to pay
for them, are unable to get them. ATM Networks feature service categories that are
suitable for almost any usage. In particular, the ABR Service resembles the best-effort
nature of the Internet in that the user gets a fair share of whatever bandwidth is
available, but it can also provide a minimum bandwidth guarantee, if one is required.
So, by transferring IP traffic over ABR connections we can retain the best-effort
behavior of Internet, while at the same time charge and provide minimum bandwidth
guarantees. Following is short introduction into ATM Service architecture and a short
description of the ABR service category.

1.2 ATM Networks

a. ATM service Architecture

The service architecture provided at the ATM layer consists of the following six
service categories [12]:

¢ CBR Constant Bit Rate
rt-VBR Real-Time Variable Bit Rate
nrt-VBR Non-Real-Time Variable Bit Rate
ABR Available Bit Rate
UBR Unspecified Bit Rate
¢ GFR Guaranteed frame rate

These service categories relate traffic characteristics and QoS requirements to
network behaviour. Functions such as routing, Call Admission Control (CAC) and
resource allocation are in general structured differently for each service category.
Service categories are distinguished as being either real-time or non-real-time. For
real-time traffic there are two categories, CBR and rt-VBR, distinguished by whether
the traffic descriptor contains only the Peak Cell Rate (PCR) or both PCR and the
Sustainable Cell Rate (SCR) parameters. Both CBR and rt-VBR have guarantees for
cell delay and cell delay variance. The non-real-time categories include nrt-VBR,
ABR, and UBR, these services categories do not offer cell delay guarantees. They
differ as to the nature of the bandwidth and cell loss ratio guarantees provided by the
network and the mechanisms that are implemented in the end-systems and network to
support them.

18

Selection of an appropriate service category is application specific. Real time
service categories may be used by applications such teleconferencing. Audio
teleconferencing would use CBR, while video teleconferencing would use rt-VBR
since video has a more bursty nature than audio and its higher bandwidth demands
prevent us from using an expensive and unnecessary high bandwidth CBR contract.
The nrt-VBR service class is suitable for use by applications that do video or audio
streaming, since they require bandwidth guarantee and produce bursty traffic but
don’t need delay guarantees since with an appropriate initial amount of buffering at
the destination, the stream playback will have no hic-ups. ABR service category
provides an optional minimal cell rate guarantee per contract and potentially low cell
loss ratio, so it is suitable for web browsing and file transfer since such usage is not
sensitive to bandwidth and cell delay variations. UBR offers no guarantees
whatsoever, it just allows the bandwidth that the above service categories do not use
to be utilized by applications that are not very sensitive to cell loss, such as new
groups broadcasting and email. GFR (Guaranteed Frame Rate) resembles CBR in that
it has a bandwidth guarantee, but this applies to frames rather than cells. GFR has no
flow control and if the bandwidth guarantee is exceeded complete frames will be
discarded if network can not transmit any cell of the frame. This service is useful for
relaying higher level packets in GFR frames, e.g. IP packets, since if just one cell of
the frame is discarded it’s of no use to transmit the remaining cells of the frame.
Bandwidth partitioning per service category is depicted in figure 1.

(bandwidth not utilized by ABR)

———— —-———
- =~ - ~
-

-

Time

Figure 1. Bandwidth partitioning in ATM Networks

19

b. ABR service category

ABR is an ATM layer service category for which the limiting ATM layer transfer
characteristics provided by the network may change subsequent to connection
establishment. ABR traffic is the only ATM traffic that is subject to flow control [14].
Several mechanisms of feedback are available to control the source rate in response to
changing bandwidth and network resources:

e Explicit Rate (ER)

Feedback is conveyed to the source through specific control cells called
Resource Management Cells, or RM cells. The source interleaves a small
amount of RM cells in its data stream containing the desired transmission rate.
These cells are updated along the network route and eventually they return
back to the source [Figure 2]. In particular, the intermediate switches and the
destination update a field in the RM cells called the Explicit Rate field (ER) to
match the current bandwidth that they can sustain. Each of them updates this
field only if it requires a lower rate. They are also allowed to insert new RM
cells in either direction, so that dropped RM cells due to congestion can be
replaced. Updating backward RM cells achieves faster feedback. So it is
usually preferable to update only backward RM cells in order to avoid wasting
computational resources. This mechanism is fast and exact in adjusting the
transmission rate according to the changing network conditions, yet it is
usually too demanding to be implemented for high speed transport links.

- [| R
—————————— T——————————T——————————————————r——————————':'—————————
 ATM [ALl Destination
' SWITCH ! ' SWITCH !
B []! [
_________ B e ____ﬂ__________ﬂ_______'»
N (. 1 N (. 1
™ data cell “RM cell

Figure 2. Data and control (RM) cells in ABR traffic

e Relative Rate (RR)

The destination and intermediate switches use two bits in RM cells to send
feedback to the source. The explicit rate field in the RM cells is left untouched,
instead the bits CI (Congestion Indication) and NI (No Increase) of the RM
cells are used to notify the source about network condition. The source adjusts
its rate by additive increase and decrease according to these bits. The NI bit
indicates that the rate should not be increased, while the CI dictates that rate
should be decreased. If both bits are cleared the source is allowed to increase
its rate. This mechanism offers medium speed and satisfactory accuracy for
adapting the transmission rate to network conditions. Furthermore it is rather
easy to implement since it only requires two thresholds to be examined per
ABR flow queue, one to set the No Increase bit and one to set the Congestion
Indication bit. As we said before it is preferable to set the fields in backward
rather than forward RM cells to achieve faster feedback.

20

¢ Binary Mode (EFCI)

The intermediate switches use the EFCI bit in data cells to send forward
congestion indications (i.e. to the destination). The destination uses this bit to
update the CI field of the backward RM cells that it sends to the source [Figure
3]. The EFCI mechanism offers slow and coarse-grain adaptation to network
congestion, but it is easy to be implemented since the intermediate switch can
set EFCI in the data cells by just using one or two thresholds per ABR flow
queue, no need to identify and process backward RM cells.

The ABR service has no guarantees for the delay or the delay variation experienced
by a given connection, thus is not intended to support real-time applications. During
connection establishment, the end-system specifies to the network both the maximum
and minimum required bandwidth. These are called peak cell rate (PCR) and
minimum cell rate (MCR) respectively. The MCR may be specified as zero. The
bandwidth available from the network may vary, but is guaranteed not to become less
than MCR. PCR is usually specified as the maximum capacity of the route.

-

S~o -

ATM ATM

SWITCH SWITCH Destination

. data cell . RM cell
P P

EFCI CI | NI ER

Figure 3. Combining the flow control mechanisms

An end-system that adapts its traffic according to the feedback is expected to
experience low cell loss ratio and obtain a fair share of the available bandwidth. Fair
share depends on the allocation policy of each network. Here we must note a problem
related to RR and EFCI mechanisms. The fact that a specific rate is not provided
makes policing at the ingress point difficult yet feasible. Without such policing at the
ingress point some users, either unintentionally or maliciously, can ignore the
network's congestion indications and continue to transmit at the same rate. This will
effectively punish the conforming users while at the same time will give additional
network resources to the non conforming users. Of course, the problem involves only
ABR traffic, the VBR and CBR traffic use reserved resources per connection, thus
non-conforming ABR users won’t effect them.

21

1.3 Supporting ABR traffic in ATM switches

Supporting ABR traffic in a network switch is much harder than supporting CBR
and VBR. This is due to the fact that ABR connections are the only kind of ATM
connections that are subject to flow control and are required to adapt their rate
according to the available bandwidth. This is not the case for CBR and VBR
connections that are simply policed once at their ingress point (the point that they
enter the ATM network), subsequently the traffic is just forwarded through the
network switches using minimal buffering. Furthermore the network is required to
provide all ABR connections with a fair share of the available bandwidth, while at the
same time avoid dropping any ABR cells of flows that conform to flow control.

The above two requirements and the guarantee of a minimum bandwidth per
connection makes support for ABR traffic a challenging issue in ATM network
switches. In order to exploit the available bandwidth dynamically sufficient buffering
capabilities need to be added to the switches. However, extensive buffering should not
be employed, since it won’t increase the throughput of the ABR connections and may
lead to unnecessary increased average delays for the ABR cells. Buffering should be
analogous to the roundtrip time of the network to avoid such delays, while providing
enough time to the source to adjust its transmission rate according to the feedback.

ATM network switches have been commercially available for more than six years.
The initial ATM switches immediately supported CBR and VBR service categories.
The support for ABR has grown steadily the last couple of years, now most switches
support ABR traffic with ER flow control.

1.4 This Thesis

This thesis consists of the design and FPGA implementation of the scheduler, sender
sub-systems and the utopia interfaces of an ABR server card developed by L.C.S
F.O.R.T.H. and C.S.D. of the University of Crete. The ATM network switch [1][2]
that hosts this card was developed for the project DIPOLO, other members of the are
the N.T.U.A. university and INTRACOM corporation.

The thesis is organized in 10 chapters: “1. Introduction”, “2. Switch Overview”, “3.

Scheduling Policy and design”, “4. Scheduler module”, “5. Sender module”, “6.
Module Initialization”, “7. Utopia Interfaces”, “8. Implementation Results”, “9.
Future work and enhancements”, “10. Discussion and Conclusions”.

Chapter 2 introduces the architecture of our ATM network switch and gives a
detailed description of our ABR server card. Chapter 3 discusses and justifies our
scheduling policy and design choices. Chapters 4,5 and 6 describe our current
implementation of ABR traffic scheduling. Chapter 7 presents the 4 utopia interfaces
of the FPGA. Chapter 8 discusses the capabilities of the current design, while chapter
9 describes desirable modifications and enhancements such as the support for MCR
guarantees. We conclude with a short discussion of this work in chapter 10.

22

e
VDSL 2 <+>::|4_ cp E
Mbps | 0 3
Links I B
| B i Line Card
|
| CPU
L= Y
==
VDSL2 i pije— o =
Mbps N elF E
Links | :jl i
|] Line Card
|

2. Switch Overview

Before we introduce our scheduling policy, it is important to provide a short but
concrete introduction into the switch architecture. This is necessary so that we can
justify our assumptions and explain the trade-offs in our scheduler design.

2.1 Switch architecture

ABR Server

|i| CPU M

Cubit

T ATM 155

|
|
|
|
|
|
|
i
phy . Mbps Link
i
|
|
|
|
|
|
|

CpP

VDSL 2

Cubit

Line Card

|
“—™ Mbps
<= Links

<—=—>

M S Y) I

CPU

A

CP

Line Card

Cubit

ATM 155
Mbps Link

Figure 4. ATM switch architecture

As the figure 4 depicts, our ATM switch utilizes shared bus architecture for
switching cells between line cards. Each card requests and obtains the bus for the
transmission of every arriving cell whose output link is located in a different card.
One of the line cards is designated to act as the arbiter, who is responsible for
distributing bus bandwidth. From each transport link CBR, VBR, and ABR traffic
arrives. Each line card routes the arriving cells that belong to CBR and VBR

connections to the appropriate output line card over the shared bus. All ABR cells are
forwarded to the ABR Server Card [7], where they are stored and scheduled for
departure.

Each line card may contain up to four VDSL modems or one ATM Link operating
at 155 Mbps. Our current implementation supports up to 16 line cards. The shared bus
architecture used is the CellBus by Transwitch with a maximum throughput of 1
Gbps. The bus devices are the Cubit Pro chips also manufactured by Transwitch. The
main control of each line card is done by Motorola 860 microprocessor, while the CP
block shown above is the Cell Processor mc92501 also by Motorola. This chip
forwards and accepts traffic to and from the physical links and does the VP/VC
translation, optionally the cell processor on the ABR server card can process the ABR
RM cells. The CellBus and the bus devices are upgradeable. The cubit pro can be
replaced with pin compatible chips to support a multi-gigabit CellBus and 622 Mbps
ATM links.

2.2 Switch main control

Any of the line cards, other than the ABR server, can be assigned as the switch’s
main control card. Its main responsibility is to perform the Call Admission Control
(CAC) for each connection request, accepting, modifying and rejecting connections
according to available bandwidth and other switch resources. Also, this card is
responsible for notifying the ABR Server Card for every new or deprecated ABR
connection as well as for every change of unused bandwidth in the output transport
links [Figure 5]. For those output links that do not share their bus device, it is only
necessary to notify the ABR server card once about their transmit capacity, since the
ABR scheduler can dynamically adapt to their available bandwidth through the
backpressure information provided by the corresponding bus device of the line card
that carries the output link.

1. New ABR connection

ABR Server 2. Close ABR connection Switch Main Control Card
3. Transport link available
CPU| |- bandwidth update __________ ' » [CPU .
v
m—
7, Je—E @ 0
=
S S []
SDRAM Line Card |

Figure 5. Status information conveyed to ABR server

24

2.3 ABR server card

The block diagram of the ABR server card is depicted by figure 6. This card
concentrates and schedules all ABR traffic of the switch, thus it has sufficient storage

capacity to store several tens of milliseconds of traffic for every ABR connection. For
this reason it includes a large SDRAM storage (a 64-bit DIMM of 256 MB).

RS232 |
e Motorola
chip |<—> R < »| Flash Memory
. (op. sys & software)
. A
CI;UI Scheduler «» Sender
FPGA | (% 1 1
v 110
] I
Manaoer i1 1 icong,acki¢f-——- 5
[.._dy_gge = <~ | handler !
SAre : ! :
""""""""""""""""" RM cells 1 R 2
|

A

Utopial : — !
= B — g IR I s B
’%:I:D_EForwarderé—ﬁ Utopia3

Cell DR T— Cubit ‘ '
Processor i p % Pro
<—|_ >_|_|_|_|:— DeMux @_;Utop1a4 >

Utopia2 | |

A RM cells
A | 64 bits
SDcllTil:)M 4 Data cells
ABR SDRAM SDRAM
trol t
Server Card cotml
| SDRAM DIMM |

Figure 6. ABR Server Architecture

The scheduling and queuing functions of the ABR Server are implemented in an
Altera FPGA, specifically the model EPF10K200EBC600-2. Also four utopia
interfaces are implemented in this FPGA for talking to the Cubit Pro and Cell
Processor chips. In particular, the interfaces talking to the Cell Processor feature an 8-
bit width and emulate the ATM layer side of a utopia transceiver, while the interfaces
talking to the cubit feature a 16-bit width and emulate the Physical Layer side of a
utopia transceiver. There exists a fifth interface for talking to the CPU. This interface
is implemented by module CPUi and allows the processor to control the scheduling
and queuing functions of the ABR Server. In particular, it allows the scheduler and
queue manager modules to communicate with the CPU, the scheduler receives its link
speed updates while the queue manager receives commands such as setting up or
discarding queues of ABR connections. Also through this interface the CPU can
monitor and profile the queuing and scheduling mechanisms.

25

Incoming cells arrive from utopia3 are handled by the DeMux module, which
optionally passes RM cells to the utopial for transmission to the Cell Processor, while
the data cells to the 64-bit Cell Enqueue FIFO for writing them to the external
SDRAM device. The queue manager recognizes the cell stored in the Cell Enqueue
FIFO and adds it to the appropriate queue in the SDRAM. Outgoing traffic is either
updated RM cells or data cells coming from memory. The RM cells come from
utopia2 while data cells come from the 64-bit Cell Dequeue FIFO, which stores the
cells that are read from memory. The forwarder module is responsible for passing the
outgoing traffic to the utopia4, which in turn will hand it over to the Cubit Pro for
transmission over the CellBus.

The scheduling of outgoing ABR traffic is handled by the scheduler module, which
gives eligible for service flow group ids to the sender module. The sender, after
performing some checks, requests the queue manager for a cell of an appropriate ABR
connection. The queue manager will read, at its convenience, a cell from memory and
store in Cell Dequeue FIFO. This FIFO along with the Cell Enqueue FIFO allows the
queue manager to use bursts for reading and writing cells. Despite the fact that these
FIFOs are expensive to implement in the FPGA, their usage was necessary in order to
avoid crippling the SDRAM performance.

3. Scheduling policy and design

3.1 Types of available bandwidth for ABR traffic

In order to schedule ABR traffic, we need to calculate the unutilized bandwidth of
each output link, but this is not really the job of the scheduler. This burden belongs to
the entity performing Call Admission Control (CAC). CAC entity is always aware of
the output link bandwidth not allocated to CBR, VBR and ABR connections, because
it needs it in order to accept or reject an incoming connection. However, it is not
necessary to explicitly calculate the part of output link bandwidth allocated but not
actually used, because this has little usefulness for performing CAC, since it involves
current time and thus no certainty that it will apply during the near future.
Furthermore for this kind of bandwidth to be calculated it is required dynamic
monitoring of output links, or some other smart estimation mechanism, both are quite
difficult with our current architecture. Provided that the scheduler is dynamically
notified of the sum of both types, that is the sum of the unallocated bandwidth and
that allocated but not used, it is feasible to fully exploit all output links even when
multiple ones that use the same Cubit pro device.

If the second part of the sum is unknown, the scheduler is forced to rely only on the
knowledge of the first part for scheduling transmissions, and thus to avoid head of
line blocking that can occur when multiple output links are using a single FIFO. Lack
of knowledge of the second part is not a problem for output links that do not share
their FIFO. For these links full utilization can be achieved by using the backpressure
from the corresponding bus device and employing a suitable back off policy. The
scheduler only needs to know the maximum transmission bandwidth of each such
link.

26

-

3.2 Aggregation mechanism

In order to construct a feasible design, scheduling per connection is avoided. An
appropriate aggregation scheme is adapted to achieve this goal. We group the ABR
connections into flow groups and thus reduce the number of scheduled objects. The
aggregation of the connections is done per output link and Weighted Round Robin
(WRR) algorithm is deployed for scheduling the resulting flow groups.

For every flow group of an output link that does not share its output FIFO (i.e. its
bus device), we schedule it at the bandwidth capacity of the output link and back off
as necessary when congestion occurs at the Cubit-Pro. We employ back off for these
flow groups to avoid unnecessary retransmissions, thus wasting shared bus bandwidth
and unnecessarily burdening the queue manager. When a flow group corresponds to a
link that does share its bus device (i.e. there are multiple links on its line card), the
scheduler is dynamically notified of the available bandwidth of the link. This aims to
avoid Head of Line Blocking [Figure 7], assuming these updates are correct and fast.

Cubit’s Cell outlet FIFO in split mode

Line |
control CBR VBR ABR Card :
D B | v |
D C C A v\\i Head of Line
C C D C \L Blocking for B
i and A due to C
A B C i
i Transport
< } Links

Figure 7. Head of Line Blocking

Because it is critical to resolve HLB occurrences quickly, we decided to use
exponential back off / restore policies for modifying the service speed of flow groups
that experience congestion. This means that a flow group that sees congestion at its
output link FIFO will quickly back off, so as to facilitate the removal of the HLB. Of
course, all flow groups that go through the congested Cubit Pro will see the
congestion and will back off, although they may not be the ones that caused it. We
make the assumption that the flow group(s) that caused the HLB to the output FIFO
resulting in congestion (FIFO almost full or full) will be soon updated to their correct
speeds, thus the HLD occurrences that led to FIFO congestion will be resolved. The
exponential restore policy helps to avoid further unnecessary punishment of the non
offending flow groups.

27

3.3 Decoupled Scheduler Design

Our scheduler features a decoupled design, which consists of the “scheduler” and
“sender” modules. The scheduler module performs the actual scheduling and employs
back off when congestion occurs. The sender module is responsible for issuing
commands to the queue manager, handling retransmissions, identifying free cells
locations and sending data and control cells to the Cubit Pro (bus device).

For the link-aggregation to work, the queue manager maintains a round linked list of
the non-empty connections of every output link. Each time a flow group is entitled
service, the scheduler enqueues it to a FIFO called the Eligible FIFO. The sender
module dequeues from this FIFO and after performing some checks, it issues a service
request to the queue manager for a cell of a connection that belongs to the particular
flow group. The queue manager [4] performs RR (round robin) between non-empty
connections inside the flow group, choosing one cell from every flow before
advancing to the next one.

For every cell that we attempt to transmit over the CellBus, the sender maintains a
pointer to its memory location. This is done because the queue manager dequeues the
cell from its corresponding queue. Thus, if the transmission over the shared bus fails,
then the sender can provide the queue manager with this pointer when the flow group
becomes eligible for service again. It is reasonable to assume that transmission
failures over the CellBus will rarely occur due to CRC error, and that almost all
transmission failures will be due to full FIFO at the destination Cubit Pro. We will see
at chapter 9 how we can take advantage of this to improve the sender module.

So, the sender issues 2 types of requests to the QM, either a dequeue request for a
particular flow group and provides a flow group id, or a cell read request and provides
the appropriate memory pointer. If a transmission is successful, the queue manager is
notified that the memory location can be added to the free list. This is done through a
small Free Cell pointer FIFO inside the sender module, which is written by the sender
and read by the QM.

In this design we made the assumption that each ABR connection requested (or the
CAC forced it) a zero Minimum Cell Rate (MCR=0). If an application requires a Cell
Rate guarantee, it must get through a CBR or VBR connection. This design can be
modified to support MCR through the use of MCR-aggregated flow groups. For this
purpose the sender module must go under major changes while the scheduler module
needs only minimal changes, this is thanks to our decoupled architecture.

28

4. Scheduler module

4.1 Implementation alternatives

The scheduler module implementation features 5 small dual-ported memories with
one dedicated input port and one dedicated output port. These memories hold all the
necessary information for the execution of the scheduling algorithm, and are
implemented using Embedded Array Blocks (EABs), found in the FPGA (Altera
Flex10KE FPGA family). Also, the scheduler module utilizes a four-stage fixed
length pipeline, which is traversed for every flow group that we want to examine for
service eligibility. One such examination is performed per clock cycle and each
examination requires three cycles to complete. So, the required time to check N flow
groups for service eligibility is N cycles. The number N is defined as our virtual time
unit. This polling-like implementation was preferred over other alternatives due to
speed and cost concerns. The two other alternatives [3][6][10][11][13] that we
considered were a systolic-buffer [5][8] and a heap-like scheduler [9].

a. Systolic-buffer scheduler

The systolic buffer [5][8] is very demanding of logic cells. A experimental
implementation [Figure 8] of systolic-buffer scheduler module showed that for 64
flow groups it requires more than twice the logic cells and achieves half the clock
frequency when compared with our current one. The increased demand for logic cells
is due to the fact that our scheduler is non-work conserving, thus the time field must
be large to achieve the required accuracy. This means increased demand for logic
cells to hold the time values and for logic cells to implement the comparator in each
systolic buffer. The reduced clock frequency comes as a result of the shared bus, and
although there are suggestions how to remove this limitation they do not deal with the
increased demand for logic cells.

Eligible for service

Systolic buffer .
/ flow group id \
ID field . ID field _ ID field _ ID field _
________ ID.time |-—————__ | ID.time_|_—______| ID.time_|________| ID. time
time field |~ " | time field |~ "\ time field |~ " | time field
control |- control “-- control “-- control “--
! | | |
compare| | compare| | compare| | compare| |
i ! ! !
! | | |
I R S N R L ___operation _

New {ID. time!}

Figure 8. Systolic-buffer scheduler

29

b. Heap-like scheduler

Our other option was a heap-like implementation [Figure 9]. Examination has
shown that such an implementation is feasible using about the same number of EABs,
nevertheless it would only yield better results for 128 or more flow groups [9],
because this is the point that our polling-like implementation starts to feel the burden
of continuously checking every flow group for service eligibility. But also at this
point the maximum capacity of the EABs is reached, so we would have resort in
external srams. In such a case the heap-like implementation would be indeed
necessary.

For a heap-like implementation we can exploit the fact that we have a predefined
number of flow groups, to drop a main characteristic of the heap its dynamic memory
allocation. We can allocate each flow group entry statically according to its id
number, e.g. to use the id number as the address of the sram memory location
containing the flow group entry. Two flow group ids stored in each such entry can be
used to depict the left and right children. Furthermore, the fact that the flow groups
are usually all active, shows us that we can choose to support only two operations on
the heap, the GET _MINIMUM and UPDATE HEAD operations. No DELETE or
INSERT NEW would be necessary, instead the flow groups would always be
positioned inside the heap. A second SRAM is anyway needed to keep the Back-off
information, this SRAM could also be used to hold empty, congestion and nack flags.
The empty and acknowledge flags, along with the back off information, can be used
to indicate whether the GET MINIMUM has returned an eligible for service flow

group.
18 bits 7 bits 7 bits 8 bits 8 bits Ibit 1bit 1bit
V.time | Leftid | Rightid Back Off amount | Back Off counter | empty | cong | nack
Heap Eligibility
sram .
A A
Y
»| prioritize requests,
Read & update emulate masking
back-off info A A
Read other flags ack, cong
y flag updates
ack, nack, cong
scheduler sender <«from Cell Bus
empty flag updates
Queue Manager FPGA

Figure 9. Heap-like scheduler

30

The heap-like implementation would offer good results but there is little to gain in
implementing it using EABs, since it would only shows it potential for large number
of flow groups, that is 128 or more. In fact for 32 flow groups or fewer it performance
is lacking compared to the polling-like scheduler.

4.2 The Polling-like scheduler
a. Memory components

We called this scheduler polling-like because it examines all flow groups one by
one for service eligibility. In order to understand how this scheduler works, we need
to describe the utility of each of the five dual-ported memories it uses:

= Service Interval memory

Holds the time interval between two successive services of the flow group.
This effectively defines the speed at which each flow group is served. The
interval is maintained in virtual time rather than actual time. A single
virtual time unit is N clock cycles, where N is the maximum number of
flow groups the scheduler can serve. The interval values stored in this
memory may be decimal and in general they are in order to achieve a fine
grain scheduling accuracy.

= Service Time memory
Holds the time at which each flow group becomes eligible for service,
while it is in non congested condition. In order to decide whether a flow
group is entitled service, the integer part of its service time is compared to
the current virtual time. The virtual time progresses in integral time units.
For every flow group that its service time is reached, the new service time
(NewServiceTime) is computed as follows:
(OldServiceTime + Servicelnterval) mod MaxServiceTime.

® Back Off memory

For every flow group this memory holds the current “back-off amount”,
which shows the number of times we have backed off the normal speed and
the “back-off counter”. Every time the service time is reached, the back off
counter, if not already zero, is decremented by one till it reaches zero, then
the particular flow group becomes eligible for service. The way we update
the back off amount defines our back off policy. We have decided to use
exponential back off and restore, since it overall gives the best results.

= Empty Memory
Holds information about which flow groups are “empty”, meaning that
none of the connections that belong to the particular flow group have
currently any cells for transmission. In case that this memory is not quickly
enough updated with empty flow groups, the scheduler may issue service
requests for empty flow groups to the Queue Manager. In this case the
Queue Manager should just ignore them.

31

= Congestion and Negative Acknowledge memory
This memory holds information about which flow groups are experiencing
congestion and / or failed to transmit a cell over the shared bus. Every time
a flow group becomes eligible for service while having congestion, the
back-off amount is doubled, else it is halved. We note that a particular flow
group can become eligible for service when it is either non-empty or have a
failed transmission attempt.

b. Eligible FIFO

Our design also features a FIFO which holds the ids of the flow groups that are
entitled service, this is called the “eligible FIFO” and depending on its size, it might
be necessary to implement it in an EAB. We don’t expect this FIFO to get full due to
service time synchronization, since we have further reduced this probability by
randomly selecting the low order bits of the service intervals. Nevertheless the FIFO
can get full if the aggregate speed of all flow groups surpasses the maximum capacity
of the Queue Manager. Should such a situation occur, we think that the flow groups
should be punished proportionally to their speed. So instead of dropping service
requests and just punishing some flow groups, we choose to stall the scheduler and
thus achieve a “fair” punishment to all flow groups.

10 Stall threshold Stall the scheduler,
9 » punish all flow groups
8 proportionally to their speed.
7
6 o e e
5 initiate threshold p Initiate the scheduler
4
3
2
1

i i " Queue |

. sender ! !

i i . Manager |

Figure 10. Stall and Initiate Thresholds

32

For stalling and reinitiating the pipeline we define 2 thresholds, the stall threshold
and the initiate threshold [Figure 10]. Let k be the size of the eligible FIFO. We
defined k-1 as the stall threshold and k/2 as the initiate threshold. Although we stall at
k-1 the next flow group check is not discarded so the FIFO may get full. For example
if the flow groups I and I + 1 are service eligible at a particular virtual time and the
enqueue of I in the eligible FIFO triggers the stall threshold, the flow group I+ 1 will
be enqueued before pipeline is stalled and flushed.

c. The 4-stage Pipeline logic

As we have said previously the scheduler module utilizes a four-staged, fixed-length
pipeline. At stage one all memories are read using the same address. This address is a
flow group id which at every positive clock edge is incremented by the flow group
counter. By saying read we mean that the read address is registered in by the memory
components. The results will be latched out at the next clock edge. So at the third
stage the results latched out by the memories are used to evaluate the service
eligibility of the current flow group. Also part of the new values of the service interval
and back off memories are prepared.

At final stage (e.g. stage 3), the service time and back off memories are updated, and
the flow group id is enqueued in the eligible FIFO, provided of course that it is
eligible. These operations could not be performed at stage three or they will increase
the clock cycle period. Stage three already contains the output delay of the memories
and delay of some combinational logic, so it is preferable to locate the multiplexers
and the setup delay of the memories and the eligible FIFO at a fourth stage.

As we have said above the pipeline is stalled when the Stall threshold is reached by
the eligible FIFO. While being in this state both the virtual-time and the flow group
counters cease to advance. As real time progresses all flow groups receive a
punishment proportional to their speed. As soon as the Initiate threshold is passed the
these counters start to operate again and scheduling algorithm continues as if the
pipeline has never been stalled.

d. Putting it all together

The block diagram of the scheduler is shown in figure 11. This block diagram
consists of the 4 stages of the pipeline, the memory components and the eligible fifo.
Also, this figure shows the four modules that interface with the scheduler. The CPUi
module provides the service interval updates which are calculated by the CPU
software. The sender and queue manager modules update the congestion/nack and
empty flag memories respectively. Of course the sender module also controls the read
port of the eligible FIFO.

33

wrdata

Flow rdaddr < = >
o 1 St || i
Al Lal] La la «— || .l wradia
— %\«}n}?w : k M
rddata m&Wack | || L T
Flag Memory |
wraddr,
| _| wrdata
- . Sender
o —
h 4 h 4
Combinational | ' ,| | | Combinational
Logic A Logic
v rdreq
e
SCHEDULER Eligible FIFO

Figure 11. Polling-like scheduler

34

4.3 Service Intervals

The time intervals were chosen to be non-integer for solving two problems. The first
one concerns the accuracy of the scheduler in high speeds. Should we have chosen to
use integer time intervals, the accuracy of the above scheduler in high speeds would
be disappointing. This is because such a scheme would only be able to distinguish
multiples of the N clock cycles. So, the fastest service interval that a particular flow
group could attain would be 1, effectively having 1*N clock cycles as service time
interval. The immediately slower attainable service interval would be 2, since the flow
group would have to be scheduled at 2*N clock cycles as service time interval.

The second issue that we are able to solve by employing non-integer time units is
that of service time synchronization. Although this would rarely occur, it is a problem
once it occurs, since it leads in many flow groups becoming eligible for service at the
same virtual time. This results in a full Eligible FIFO, which effectively stalls the
scheduler and punishes all flow groups. It also introduces further delays for the
departing cells since they do not require the queue manager when it is idle but when it
is pretty busy. So we need to avoid this synchronization to prevent the scheduler from
stalling.

By using decimal time intervals we are able to schedule the flow groups at an
accurate enough speed. Although we only use the integer part of a service time to
decide that a flow group is eligible for service, the decimal part is not discarded but
instead used to calculate the next service time. Thus a flow group can now attain any
speed not just multiples of N clock cycles. Furthermore, the low significant bits of the
decimal part could be chosen randomly to make the probability of service time
synchronization even smaller. The fact that we effectively alternate between two
integral service intervals for a flow group doesn’t pose any problem since our flows
are ABR flows and the flow group could alter speed many times before a complete
round of all connections is completed. Figure 12 shows an example of a flow group
scheduled at 2.3 time units, having 4 non-empty flows A, B, C and D. The arrows
show the virtual time at which the flow group is serviced, while the numbers above
the arrows are the scheduled service times. The top row depicts the flows being
serviced.

>

B C D A B C D A
1

N
w

NN —g—

R

HERERE BEERERRRR
3 45 7 8 910 12 14 16 18 20 21

o_
—

Figure 12. Flow group schedule example

4.4 Service eligibility

In order for a flow group to become service eligible and thus enqueue its id in the
eligible FIFO, some conditions, other than just a matching service time must hold.
Figure 13 shows the service eligibility scheme that decides if “current” flow group
should be enqueued in the eligible FIFO.

A FGid

nack I O

-

integer part

of service -

back off -

Figure 13. Service eligibility scheme

As the above figure shows a flow group is considered eligible for service if its
service time has been reached and any pending back off has finished. Furthermore,
the flow group must be non-empty or have a failed cell transmission. A non-empty
flow group is one having at least one non-empty flow. The back off of a congested
flow group is considered finished when its back off counter has reached zero.

4.5 Congestion and Negative Acknowledge handling

A congestion indication is returned to the source bus interface when a cell
transmitted over the shared bus (CellBus) causes the FIFO of the destination bus
interface (Cubit-Pro) to become almost full. This congestion indication is matched
with a flow group id by the sender module and the scheduler is notified that the
particular flow group is experiencing congestion. The same process takes place when
we have a transmission failure over the shared bus. In fact, for every transmission the
sender matches both signals with a flow group id and the scheduler is notified of the
status of the transmission. This is so that the previous congestion and negative
acknowledge bits can be cleared.

36

5. Sender module

5.1 Overview

Prior to issuing dequeue requests to the Queue Manager, an additional check needs
to take place to decide whether it is a new transmission or a retransmission of a failed
one. This is the responsibility of the sender module. It is this module that issues
dequeue or cell read requests to the queue manager, sends cells to the Cubit-Pro for
transmission over the CellBus, and interprets the responses of the Cell Bus. Should
we have included these tasks to the scheduler module it would have been unnecessary
more complex and difficult to design. The sender module communicates with four
modules, the scheduler, the queue manager, the forwarder and the cong-ack handler
modules. The block diagram of the sender module along with its interfaces are
depicted in figure 14. The components and interfaces of this figure are explain in the
subsequent paragraphs of this chapter.

The FSM transitions are shown in figure 15. What makes this FSM more even
complex is the fact we need to perform read-modify-write in two occasions. This is
because each cell pointer is stored in two consecutive words, the low 16 bits take one
memory word while the high order are stored along with the pointer status bits. This
despite the fact that it makes the FSM of the sender more complex it does reserve one
EAB to be used by other modules. This choice was made because at the time of the
sender design it was unknown if the number of EABs would suffice for all modules.
Summarizing the usage of EABs we note that the scheduler uses 7 EABs for its
memories possibly one more is needed for the eligible FIFO. This because if the
eligible FIFO is implemented with logic cells it cannot be larger than 7 entries or it
would limit clock speed. This also applies to the Cell Free FIFO and Cell History
FIFO used by the sender. Also each of the four utopia interfaces utilizes one EAB.
Furthermore the queue manager module uses three, while the each of the 2 SDRAM
fifos takes four EABs. These make a total of 24 EABs, which is the number of EABs
in our FPGA.

Following we will describe the interfaces of the sender, provide a short description

of the forwarder module, and explain in detail the tasks that the sender module
performs, along with justification of for our implementation choices.

37

clear

16 | | — | Vo
din 1
1 —> Status ale
: i Memory fwstart
2nx 16
dout m} Cell
16 History
status i FIFO
ptrHigh ptrLow k+1
cell
)\ 1 type
pad
contro Free Cell @
pir FIFO x
v v v v
—’@avaﬂ | op | | FgidPtr flags
:__V_ ——————— Yo | AR e ——— clear @
i Queue opvalid] lopdond
Manager tommmmseee- ! 1

Scheduler < cong,ack
ligibl
eligible foid K

FIFO| |

! FG <

1

v
pad, status

[Fustatus

—

avail

Figure 14. Sender block diagram

38

4

cltvne

unfinished

finished

2.
[Serve eligible FG]

1.

[Invalidate memory]

P4

QMOP pending == 0

P 2 eligible non-empty

P3

Status unknown == 1

3 L]
[Forwarder, CellBus]

status unknown

status known

control
cell
data
cell
; Clear ptr avail. Flag
QMOP pending €0
ptr valid
|| gmop=new
ack 15

CB signals
available

9.

Dequeue Cell History
Clear CB avalil. flag

Dequeue ptr
available
Forwarder

ready

P2

Control Cell
14. available
Write (ptr low, status) FOrrZ:lE(lir;ier

ptr invalid
&& qmop=new

P1
16.

Enqueue cell history
Start forwarder

Write (ptr high)
Start forwarder
nqueue Cell Histor

Figure 15. FSM of the Sender module
39

5.2 Sender Module Interfaces
Interface with Scheduler module

Sender dequeues flow group ids from the eligible FIFO output port, and after
checking the status of the particular flow group issues a command to the queue
manager. The interface with the scheduler also includes the updates for the status of a
flow group. There is one such update per cell transmission of the flow group. The
information conveyed to the scheduler module is the congestion and negative
acknowledgement signals of the cell bus. Of course these signals are passed to the
scheduler along with the corresponding flow group id. These signals may be provided
to the scheduler at any time as they become available.

Interface with Queue Manager module

The interface with queue manager is somewhat more complex. The sender may
issue two types of different commands to the queue manager. The first type is the
dequeue request, which is used for new cell transmissions. While the second type is
the cell read request, which is used for cell retransmissions.

The dequeue request is made by setting the opavail flag, setting the op register to
“dequeue” and providing a flow group id in the Fgid / Ptr register. When the queue
manager has executed the operation, it sets the DegPtr register to the pointer of the
newly dequeued cell. It also sets the opdone flag to indicate that the operation has
completed and the opvalid flag to indicate that the operation was successful and the
cell pointer is valid. The queue manager may clear the opavail flag at any time but
prior or concurrently with setting opdone flag. Also the sender module clears the
opdone flag at its convenience but prior to setting opavail flag.

The cell read request is similar to the dequeue request. The opavail flag is set, the
op register is set to “read” and a cell pointer is provided in the Fgid/Ptr register.
When the queue manager has served the request it sets the opdone flag. The opvalid
flag and the DegPtr register are ignored as a cell read request may not fail and the cell
pointer is already known.

Interface with forwarder

The forwarder is a simple module that forwards either data or control and RM cells
to utopia module talking to the cubit pro device. The forwarder provides the fwready
flag to notify the sender that it is available. The sender starts the forwarder through an
Sfwstart pulse, which also clears the fwready flag. Along with the fwstart pulse the
cltype signal indicates whether the forwarder is to handle a data or control/RM cell.
The forwarder will set the fwready flag as soon as it finishes the operation.

40

5.3 The Forwarder Module

The data cells come from the 64-bit Cell Dequeue FIFO, which is necessary for
reading a cell from memory using burst transfer, while the control/RM cells come
from a 8-bit FIFO of a utopia interface talking to the cell processor. The outgoing
utopia interface talking to the cubit pro device uses a 16-bit FIFO. The forwarder
module does the necessary buffering to adjust between these different widths and
controls the timing of the above FIFOs appropriately.

5.4 Sender Module Main Components
The status memory

After dequeueing a flow group id from the eligible FIFO, we need to decide what
type of command we should issue to the queue manager, this is done by indexing the
status memory using the flow group id. The status memory holds a 2-bit status and a
22-bit cell pointer value for every flow group. These make a total of 24-bits. Since the
number of EABs in our FPGA is limited and the maximum width of an EAB is 16
bits, we choose to use only one EAB to implement this memory, thus we store the 24
bits in 2 consecutive addresses. This made our design more complex. In order to read
the pointer we must read 2 memory locations, also modifying the status may require
to read the pointer bits first, effectively doing a read-modify-write sequence, when we
would prefer to do just a write operation.

The status bits may indicate 3 different states of the pointer bits; these are valid,
invalid and unknown. An invalid status indicates that last cell transmission of the flow
group succeeded, meaning that the pointer is invalid and a new cell should be
dequeued. A valid status indicates that last cell transmission of the flow group failed
so the cell should read again and retransmitted. The state could also be unknown,
meaning that the cell has not yet been transmitted over the CellBus. In this case we
wait for the cell to be transmitted and get the result of the transmission, the alternative
is not to serve the flow group and continue with the next one.

The situation where a flow group becomes eligible for service and its id is dequeued
from the eligible FIFO before its last cell gets transmitted over the CellBus is quite
problematic since we do not know what type of command to issue to the queue
manager. Waiting for the CellBus outcome means that sender will stall, effectively
throttling the speed of the flow group. Moreover the eligible FIFO may eventually get
full and thus stall the scheduler and punish all the flow groups. This situation may
occur only for the faster flow groups, how fast depends on the latency to get a cell
from memory to the CellBus. There is no easy way to deal with this problem, but
there is a solution that we will suggest later. Anyway its preferable that when this
problem occurs we do not serve the flow group and instead dequeue the next flow
group id, this prevents the eligible fifo from getting full but doesn’t remove the
throttling effect.

41

Free cell pointer FIFO

For every successful transmission of a cell over the CellBus the corresponding cell
pointer must be added to the free cell pointer list maintained by the queue manager.
Because we may have more than one pointer freed in a relatively short period of time
we use a FIFO to hold them. The queue manager dequeues from this FIFO to add the
pointer to the free list or perform a bypass enqueue. The sender reads the pointer from
the status memory updates the status bits to invalid and enqueues the pointer in the
free cell pointer FIFO. The FIFO must be large enough so as not to get full. A full
FIFO means that the next free cell pointer will be lost and thus the corresponding
memory words will be rendered unusable until the system is reset. On the other hand
we wouldn’t want the queue manager to be too aggressive when adding cell pointers
to the free list because such a policy would do a small number of bypass enqueues.

Cell History FIFO

We do not know the exact time that a cell will be actually transmitted on the
CellBus. This is because a particular cell is transmitted on the CellBus after reaching
the front of the cubit pro FIFO and when the particular cubit pro gets the CellBus by
the arbiter. At that time we receive through the cubit pro two signals, a congestion
indication and a negative or positive acknowledge. We need to hold appropriate
information so as to match these signals with a particular flow group. For this purpose
we maintain the Cell History FIFO, which stores the ids of the latest flow groups that
have transmitted a cell. For every departing cell we enqueue the corresponding flow
group id in this FIFO, and for every pair of CellBus signals that we receive, we
dequeue an id and match it with the CellBus signals. Following we update the status
memory and issue a notification to the scheduler module.

Controls cells are not subject to retransmissions so we need to ignore them. For this
reason the Cell History FIFO is one bit wider, and the extra bit is used as a flag to
indicate whether this is a data or a control/RM cell entry. CellBus signals matched
with a control/RM cell are ignored. This will be corrected since the correct behavior is
to only ignore the negative acknowledge because these cells are not retransmitted.
However the congestion information is desirable to reach the scheduler.

5.5 Policy for data and control cells

Control cells are given higher priority than data cells. So while control cells are
available the sender module will always direct the forwarder to handle them instead of
data cells. We choose this policy because the number of control cells is relatively
small and most likely contains important information. We do not support
retransmissions for the control cells since it is unlikely that their transmission will fail
due to full FIFO, however the retransmission of RM cells is desirable although not
implemented. We leave the responsibility of handling a lost control cell to the
software.

42

6. Module Initialization

The scheduler module does self-initialization. The processor only needs to raise the
aclr (asynchronous clear) signal for one clock cycle, and wait for a specified amount
of time before issuing speed updates to the scheduler. The time needed by the
scheduler to self-initialize depends on the number N of groups the scheduler is
configured to serve. This time is N+3 complete cycles after the clock cycle that the
aclr signal was high. Speed, congestion, and non-empty updates issued to the
scheduler before the above time are ignored. The 3 additional cycles are due to the
pipelined architecture.

During initialization all flow groups are marked as empty, not congested, with
positive acknowledge. The back-off counters are set to zero, while the service
intervals are initialized to maximum speed, and the service times to zero. We choose
to do this so that the first service interval updates after every reset will take immediate
effect., since for a new service interval to take effect the service time for the particular
flow group must be reached. The time required by sender module to initialize is not
greater that of the scheduler and only requires the same aclr signal. During
initialization the sender module invalidates the pointer status field of the status
memory. Figure 16 shows the initial values of all memory components.

Service Interval Service Time Empty Flag CONG NACK
Memory Memory Memory Memory
0001.00 0000.00 true false false
0001.00 0000.00 true false false
0001.00 0000.00 true false false
0001.00 0000.00 true false false

Sender’s Status

Memory
Pointer low false
TS ~ LTS - Pointer high
/ Service intervals ™, / Nodelayto ™\ Pointer low false
« e . \ . \
(initialized at ! { nextService ! Pointer hich
_ maximum speed N time Y ointer hig
S 7 S~ - - Pointer low false
Pointer high

Figure 16. Initial values of all memory components

43

7. Utopia interfaces

The FPGA of the ABR server uses four utopia interfaces. More specifically the
FPGA utilizes:

» One 16-bit Physical Layer Utopia Transmitter.
This is used to forward outgoing ABR traffic to the Cubit-Pro for transmission
over the CellBus.

» One 16-bit Physical Layer Utopia Receiver.
This used to receive incoming ABR traffic from the Cubit-Pro coming from
the CellBus.

» One 8-bit ATM Layer Utopia Transmitter.
Used to forward RM cells to the Cell Processor for updating the flow control
fields.

» One 8-bit ATM Layer Utopia Receiver
Used to receive updated RM cells from the Cell Processor.

The utopia interfaces were implemented to conform with the utopia-2 standard.
Figure 17 and 18 show two timing diagrams for transmitting cells according to the
utopia standard. Figures 19 and 20 show the block diagram of the 16-bit Physical
Layer Utopia Transmitter xou 16-bit Physical Layer Utopia Receiver respectively.

Each block includes two counters, the word counter and the cell counter. The first
one counts the words (either 8-bit or 16-bit) of each cell being transmitted or received,
this depends on type of the utopia interface. The second counter counts the cells that
are present in the interface FIFO, and is used to perform flow control with the internal
module of the FPGA, e.g. the Forwarder and DeMux modules. For example the
Physical Layer Utopia Transmitter, produces the signals cellspc (cell space) and
ciclav. The signal cellspc, is used to inform the Forwarder module that there is
available space in the FIFO for at least one cell, while the ciclav signal allows or
prevents the transmission of cell to the opposite utopia interface which is located in
the cell processor. The cell counter changes its value when the word counter indicates
a complete cell receipt or transmission, or when a celldec or cellinc pulse appears
from the Forwarder, DeMux modules.

The interfaces support different clock for transmitting / receiving cells over the
utopia than that used for internal operation. The synchro and synchro pulse sub-
modules are used to perform the necessary synchronization. The first one just
synchronizes its input to the clock of its output, while the second one produces a pulse
when it detects a change from 0 to 1. For the utopia interfaces that transmit we use
Cut-Through policy while so as to minimize the time require to output the cells, while
for receiving we employ store-and-forward. Cut-through means that we start
transmitting the cell as soon as its first bytes are available in the FIFO, while store-
and-forward requires that the receipt of the cell is complete before it is forwarded.

44

e S e o o o

COENB*
COSOC

XX X X)
XX X X))

DATA(7-0){
DATA(7-0)(

Figure 17. Utopia timing diagram, coclav prevents the transmission of a second cell

COENB*
COSOC

X X XX X)

' X P40 X P42 X P44 X P46 X P4s X

DN TR

X

A x)

KX

| X P39 X pat X P43 X P4s X P41 X X

DATA(7-0)(

X3 X

e

X

DATA(7-0)(

Figure 18. Utopia timing diagram, coclav allows two consecutive cell transmissions

45

word_accept

|
|
|
v
. ntrol
cell decrease cell increase @

| i
i :
: |
| ;
| ;
| ;
i o A ;
i | reset 1 : reset :
= l L ! !
: i i v v ! i v i
! ! cell_ent | aclr i d } word cnt aclr i |
; | 7 | counter i “~77%1 modulo i
_ | 4 : 5 i
i i /|\ | counter /|\ |
i ! ! :
i i ciclk i coclk :
L Coonend S i
! i ——— * :
| : i coenb ! ciclk
! | ! i
! i cell_available i |
! i i <+— cell ent —» control | ciclav
; i synchro 4___C_‘3_11:S_13§Ee___ir___ word cnt — . I
: ! ' |
! | A aclr A : e
: | ! | cisoc
| ek — T Lciclk | ! >
: i reset ! reset | i
| | 1 :
: [! sk |aclr |t anh*
| i synchro | dly cienb - cienb
! ! > pulse cell increase E |
i i A aclr A i '
: i Ik i [i1k ciclk I cidata
cellspc! 1 © cie ciclav |
B — ; reset i i
| | :
: 1 |
cellinc! i @ i
e [control . i
: | word_accept |
ok ! JI |
; word cnt |
! - rdreq i
reset | c1k| reset rdempty |
| l :
: !
data : 16 V 16 i
: L I
! A |
wrreq T | |
: - wrreq ClClk I
I

Figure 19. 16-bit Physical Layer Utopia Transmitter

46

coenb* cosoc

cell cnt , l i

cell_increase cell decrease control

i
i
i
i
!
i N b 0
i | reset | i i reset
| : IS |
! i celLent | aclr i d | word cnt aclr sclr i
; 7 counter i <77% modulo
i i 4 A i S counter A
; | | i |
i i coclk i coclk
| | — |
; T ____4_'_: coenb*
| i DEELLLLS
| ' cell_available i _
! v ! cell_cnt __g _,- | coclav
; synchro i word cnt ——¢—>» I
I A aclr A i
: clk —| T L coclk i
! reset |
' |
' synchro !
! »| pulse cell_decrease |
cellav | T
¢ AN word cnt cosoc
i clk — T L coclk -
celldec, N reset l
D
; | ¢
socerr | synchro So¢ error aclr 1d
< I pulse - vy Vv
: y —
ok | A_aclr A aclr2 5 control
— olk — T L coclk |
! reset reset coclk
reset | clk reset | wrreq
| |
i \ 4
data | 16 V 16
- : <
i A
rdreq A |

Figure 20. 16-bit Physical Layer Utopia Receiver

47

8. Implementation Results

The maximum transmission speed that our scheduler module achieves depends on
the number (IN) of flow groups that it is required to serve, and whether MCR support
is included. The maximum attainable clock for the FPGA implementation of the
scheduler module was 66 to 75 MHz depending on the number of flow groups.
Nevertheless a 50 MHz clock is used because this is the speed that other modules of
the FPGA can operate, thus this is the clock available in our system.

Without support for minimum rate guarantees the scheduler can reach the following
speed per output link:

bits per cell
clock cycle time * N
N Clock Frequency Maximum Transmission Speed
16 50 MHz 1325 Mbps
32 50 MHz 662 Mbps
64 50 MHz 331 Mbps
128 50 MHz 165 Mbps
While the maximum speed of the scheduler itself is:
N
Max Speed of i
bits per cell ; P :
clock cycle N

Which in all cases is 21.200 Gbps. But what is really important is that the above
table shows that our scheduler module is able to sustain 128 OC-3 links (155 Mbps
each) or 32 OC-12 links (620 Mbps each). This means that the scheduler is not likely
to become the bottleneck in our system. Instead the sender and even more the queue
manager are potential bottlenecks. This problem could be solved by adding a second
instance of the queue manager and also using a second SDRAM device. This however
would definitely require a larger FPGA.

Adding support for MCR by using K different MCR-aggregated flow groups
reduces our effective scheduling capacity. Following are the new maximum speeds
per output link attainable by the scheduler.

N Clock Frequency K Maximum Transmission Speed
16 50 MHz 16 662 Mbps
16 50 MHz 112 165 Mbps
32 50 MHz 96 165 Mbps
64 50 MHz 64 165 Mbps

48

From the above results we can see that when MCR support is added the scheduler
module is able to sustain 32 OC-3 links (155 Mbps each) when having 96 MCR-
aggregated flow groups or 16 OC-12 links (620 Mbps each) when having 16 MCR-
aggregated flow groups.

We have said previously that above that the aggregate speed of the scheduler is 20
Gbps and noted that this is not really important. The reason is that the sender and
queue manager modules can not match it. In particular the sender requires 15 clock
cycles for every departing cell, this includes 6 cycles to issue an appropriate command
to the queue manager, 6 cycles to interpret the response from the CellBus and 3 cycles
to initiate the forwarder module. Every of the above jobs needs to be done once for
every cell. So the maximum speed of the sender module allows 1.33 Gbps of outgoing
ABR traffic. The queue manager restricts our capabilities even further, since it
requires on average a little more than 40 cycles for every cell, this includes about 20
cycles to enqueue it and about 20 cycles to dequeue it. So the maximum ABR traffic
is reduced to about 0.5 Gbps. Nevertheless there is potential for improvement for both
modules the sender module could avoid the read-modify-write to save a few cycles
and the queue manager could use a faster and more advanced memory controller.

9. Future work and enhancements

As the previous chapter showed the scheduler module is no bottleneck for our
system, since the specifications of the project require less that 16 OC-3 links, so the
heap-like implementation suggested in paragraph 4.1, may be desirable but not really
necessary, moreover it hardly needs any change to support MCR-aggregated flow
groups. However the sender module has several points that can be improved. One is
support for MCR flow groups, an other is the removal of the throttling effect
described in paragraph 5.4.

9.1 Removing the throttling effect

The FIFO used by each cubit pro device to accept cells from the bus is operated in
split mode. This means that each type of traffic is allocated in a different sub-fifo. In
particular the ABR traffic FIFO has a size of 32 cells with the congestion threshold
fixed at the 28 cells. We can safely assume that failed transmissions over the CellBus
will rarely occur due to CRC-failure, thus the only failed transmissions will be the
ones that failed due to a full destination FIFO. We can exploit this fact to allow the
sender to have five cell transmissions on-the-fly per cubit pro device, thus effectively
removing the throttling effect. For this to work the output link aggregated flow groups
must have an id that shows the corresponding cubit pro device, e.g. a part of each
flow group id is a cubit pro id. In this way the output links corresponding to a
particular cubit pro can share a pool of five allowable unacknowledged cell
transmissions. Of course here we note that one wouldn’t put four OC-3 links behind a
single cubit pro device. Actually our system uses either one OC-3 link or four VDSL
modems on every line card.

49

When the pool of five is emptied the pointer of the sixth cell is kept in the status
memory of the sender, so that it can be retransmitted if necessary. Should we ever
need to have seven unconfirmed cells for a cubit pro the corresponding service
request is ignored. When we receive a congestion indication for a cell transmission
the pool of the cubit pro does not grow by one, only non-congested confirmations are
allowed to grow the pool. Of course once the FIFO of the output cubit pro is full there
is no point in worrying about flow groups being throttled because of the CellBus
delayed responses.

This scheme has the added advantage that once find out that a cubit pro is
congested, the other flow groups of the particular cubit pro will be notified as soon as
a service request for them reaches the sender, instead of attempting the transmission
and waiting the result from the CellBus to indicate the congestion. Moreover once we
discover that the ABR FIFO of a cubit pro is almost full we could decide to drop all
service requests that want to send it a cell, unless the a carry a flag that indicates that
the particular request was produced by the back off mechanism.

9.2 Adding MCR support to the Sender

In order to add MCR support to the above scheme, we need to device a way so that
the MCR-aggregated flow groups can use the unacknowledged cell pool. We can
achieve this if for every cell belonging to an MCR-aggregated flow group we are
notified which is the next cubit pro that this MCR-aggregated flow group will
transmit to. So when the queue manager serves an MCR-aggregated flow group it
checks the next ABR flow that will be served to identify the cubit pro it uses and
gives this information to the sender. We use the second part of the status memory to
hold this information. The MCR-aggregated flow groups are not subject to back off,
and in the case that the pool is completely empty the service request is dropped.

Pool | Pending | cong nack | Ptr (high part)
Address: Pool | Pending | cong nack | Ptr (high part)
00 + cubit id Pool | Pending | cong nack | Ptr (high part) Removal
Pool | Pending | cong nack | Ptr (high part) of throttling
Pointer to cell location (low part) effect
Address: Pointer to cell location (low part)
01 + cubit id Pointer to cell location (low part)
Pointer to cell location (low part)
Cubit id
Cubit id
Cubit id MCR
Address: iti
1+ MCR FGID gﬁgit ij support
Cubit id
Cubit id
Cubit id

Figure 21. Sender’s status memory with MCR support and no throttling effect

50

10. Discussion and Conclusions

We have presented a design of an ABR traffic scheduler design that is suitable for
FPGA implementation. Although limited by the FPGA implementation the scheduler
has met the performance requirements of the system in which it operates. It is able to
saturate the output links as well as the shared bus. Also we are able add support MCR
guarantees without seriously degrading the performance of the overall scheduler
design.

Nevertheless the results regarding support of MCR guarantees are valid when two
assumptions hold. The first assumption is that the number of different MCR speed
rates is not high. This is rather safe assumption to make since the intermediate MCR
can be rounded by the CAC to the predefined MCR speeds. The second assumption is
that the number of ABR connections requiring a particular MCR speed is relatively
small. If this assumption does not hold, then it is possible that the some MCR-
aggregated flow groups will be oversubscribed above their scheduling capacity. This
means that we may have to use more than one flow group for some MCR speeds. This
would have a considerable but tolerable impact not on the scheduling performance but
rather at the complexity of the queue manager. Here we must note again that the
FPGA implementation introduces limits in both speed and available resources for the
ABR server design. So, for higher speed links and better MCR support an ASIC
implementation is preferable to satisfy such needs.

51

References

[1] D. Towsley, Performance Evaluation of Computer and Communication Systems,
Springer, Berlin, 1993, pp. 560-586.

[2] C.M. Aras, J.F. Kurose, D.S. Reeves, H. Schulzrinne, Real-time communication in
packet-switched networks, Proc. IEEE 82 (1994) 122—139.

[3] R. Brown, Calendar queues: a fast O (1) priority queue implementation for the
simulation event set problem, Commun. ACM 31 (10) (1998) 1220-1227.

[4] J. Chao, A novel architecture for queue management in the ATM network, IEEE J.
Selec. Areas Commun. 9 (7) (1991) 1110-1118.

[5] C.E. Leiserson, Systolic priority queues, CalTech. Conference on VLSI, 1979, pp.
200-214.

[6] D. Picker, R. Fellman, A VLSI priority packet queue with inheritance and
overwrite, IEEE Trans. VLSI 3 (2) (1995) 245-252.

[7] H.J. Chao, N. Uzun, Sequencer chip for ATM traffic shaper and queue
management, IEEE J. Solid-State Circuits 27 (11) (1992) 1634—-1643.

[8] P. Lavoie, D. Haccoun, Y. Savaria, Systolic architecture for fast stack sequential
decoders, IEEE Trans. Commun. (1994) 324-334.

[9] S.W. Moon, K.G. Shin, J. Rexford, Scalable hardware priority queue architectures
for high-speed packet switches, IEEE Real-time Technology and Applications
Symposium, 1997, pp. 203-212.

[10] M.R. Hashemi, A. Leon-Garcia, The single queue switch, INFOCOM’97, 1997,
pp. 533-540.

[11] M.R. Hashemi, A. Leon-Garcia, A general cell sequencer/scheduler for ATM
switches, INFOCOM’97, 1997, pp. 29-37.

[12] J.M. Tsai, C.Y. Lee, Novel architecture for ATM QoS management, IEEE Proc.
Commun. 144 (6) (1997) 412-418.

-[13] H.J. Chao, H. Cheng, Y.R. Jenq, D. Jeong, Design of a generalized priority
queue manager for ATM switches, IEEE J. Selec. Areas Commun. 15 (5) (1997) 867—
879.

[14] A.K. Parekh, R.G. Gallager, A generalized processor sharing approach to flow
control in integrated services networks, IEEE INFOCOM’93, 1993, pp. 521-530.

[15] S.J. Golestani, A self-clocked fair queuing scheme for broadband applications,
IEEE INFOCOM’94, 1994, pp. 636—646.

52

	Ðåñßëçøç
	Abstract
	1. ÅéóáãùãÞ
	Ç êßíçóç ôýðïõ ABR êáé ç ÷ñçóéìüôç
	1.2 Äßêôõá ÁÔÌ
	a. Áñ÷éôåêôïíéêÞ õðçñåóéþí
	b. Ç êëÜóç Õðçñåóßáò ABR

	1.3 ÕðïóôÞñéîç êßíçóçò ABR óå ìåôá�
	1.4 Áíôéêåßìåíï ôçò åñãáóßáò

	2. Åðéóêüðçóç ÌåôáãùãÝá
	2.2 Êåíôñéêüò Ýëåã÷ïò ôïõ ìåôáãùã�
	2.3 Ï ÅîõðçñåôçôÞò êßíçóçò ABR

	3. ÐïëéôéêÞ êáé ó÷åäßáóç ÷ñïíïðñï
	3.1 Åßäç äéáèÝóéìïõ bandwidth ãéá êßí
	3.2 Ìç÷áíéóìüò ïìáäïðïßçóçò
	3.3 ÄéìåñÞò Ó÷åäßáóç ÷ñïíïðñïãñáì

	ÐáñÜñôçìá \(ÁããëéêÞ ÌåôÜöñáóç\)
	1. Introduction
	1.1 ABR traffic and its importance
	1.2 ATM Networks
	a. ATM service Architecture
	b. ABR service category

	1.3 Supporting ABR traffic in ATM switches
	1.4 This Thesis

	2. Switch Overview
	2.1 Switch architecture
	2.2 Switch main control
	2.3 ABR server card

	3. Scheduling policy and design
	3.1 Types of available bandwidth for ABR traffic
	3.2 Aggregation mechanism
	3.3 Decoupled Scheduler Design

	4. Scheduler module
	4.1 Implementation alternatives
	a. Systolic-buffer scheduler
	b. Heap-like scheduler

	4.2 The Polling-like scheduler
	a. Memory components
	b. Eligible FIFO
	c. The 4-stage Pipeline logic
	d. Putting it all together

	4.3 Service Intervals
	4.4 Service eligibility
	4.5 Congestion and Negative Acknowledge handling

	5. Sender module
	5.1 Overview
	5.2 Sender Module Interfaces
	Interface with Scheduler module
	Interface with Queue Manager module
	Interface with forwarder

	5.3 The Forwarder Module
	5.4 Sender Module Main Components
	The status memory
	Free cell pointer FIFO
	Cell History FIFO

	5.5 Policy for data and control cells

	6. Module Initialization
	7. Utopia interfaces
	8. Implementation Results
	9. Future work and enhancements
	9.1 Removing the throttling effect
	9.2 Adding MCR support to the Sender

	10. Discussion and Conclusions
	References

