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1

Introduction

Living tissues are not made up solely of cells. A substantial part of their

volume is extracellular space, which is largely filled by a network of macro-

molecules, constituting the extracellular matrix (ECM). The extracellular

matrix is composed of two major classes of biomolecules: glycosaminogly-

cans, and fibrous proteins (fibers) which include collagen, elastin, fibronectin,

and laminin. These components are secreted locally and assembled into the

organized meshwork that is the extracellular matrix. Cells are connected

with these fibers, hence when cells contract and change shape, they deform

the fibers, and therefore the extracellular matrix. Thus, cell contraction in-

duce matrix displacements. Cells can detect and respond to substrate strains,

created by matrix displacements, which is known as cellular mechanosensing

[23] [5]. This response is dependent on matrix stiffness[8] [20] [12] [24] [22].

Therefore, neighboring cells can detech each other through the displacements

of extracellular matrix.

Since matrix displacements are important for cellular mechanosensing,

finding the decay of these displacements would be essential. If we sup-

pose that the extracellular matrix is composed of linear elastic material, we

can use Linear Elasticity to find the decay. According to Linear Elasticity,

cell-induced matrix displacements decay with order O(r−1). Unfortunately,

experiments [17] [15] [16] that have been held using confocal microscopy

and digital volume correlation [6], revealed that cell-induced displacements

scale as u(r) ∼ r−n, where n is in the range 0.2-0.5. This finding indicates

that cell-induced matrix displacements decay slower that linear elasticity

predicts(r−1). We believe that this discord between experimentally observed
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Figure 1: Drawing of the cellular microenvironment. Cells (fibroblasts) are

connected with the fibers of ECM. [4]

displacement scaling and the prediction of linear elasticity, is a result of the

buckling of fibers under compression [15]. In order to check if the aforemen-

tioned findings are closely related, we construct a constitutive model, which

describes a material that buckles in compression, and provide much better

agreement between theory and experiments [21].

It is well known from Euler that a macroscopic rod of length L and bend-

ing rigidity k, undergoes a buckling instability (buckles) if the compressional

force F exceeds a certain threshold value which is k
L2 , because the rod can

no longer support the compressive force and buckles. Buckling means that if

one pushes the ends of the rod towards each other, the rod bends (buckles)

easily without resisting compression load.

Such buckling instabilities also play a role in biological systems, whenever
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Figure 2: Displacement of a point in the ECM when cell contracts.

semiflexible polymers, such as fibers, are under a compressive load. [11] [2]

[10] This compressive load is formed by cell contraction. Direct visual ob-

servations and analysis of the 3D structures of fibrin networks at different

compressive strains showed buckling of filaments along the direction of com-

pressive load. Each filament has very low resistance to buckling. Compressive

loads can be generated by the polymerization of filaments or by molecular

motors. Both processes can generate forces in the piconewton range. Upon

buckling, filaments become more compliant, and as a result, the elasticity

of the network gradually decreases with compression. [2]. Thus, buckling of

filaments can change the mechanical response of the network, causing a loss

of stiffness under compression.

In what way cells exploit this long-range propagation range of matrix
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Figure 3: Traction forces applied by cells induce deformation to the 3D cell

substrate and are balanced by reaction stresses within the substrate (not

shown for clarity) [18]

Figure 4: Buckling of a fiber due to cell contraction.(A). The fiber is fairly

straight before the application of the load, and (B). it buckles under com-

pressional load. The scale bar is 2mm. [14]
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displacements to detect each other? Experiments [15] have shown that cells

whose distance from each other is of the order of 10 cell diameters, form

bonds (tethers) consisting of aligned and densely packed matrix fibres, which

extend far beyond the cell’s protrusion. It is believed that tethers are the

mechanism cells use to detect or even approach their neighbors.
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2 Constitutive Model

2.1 Constitutive Law

To begin with, we consider small deformations. Mathematically [7] [1], a

body is deformed via a mapping f that carries each material point x into a

point

y=f(x).

Now, the vector

u(x)=f(x)-x (2.1.1)

represents the displacement of x. (Fig.2).

Figure 5: Displacement of x.

If we apply the gradient with respect to x to the above Equation (??),

we get that

∇f(x) = ∇x+∇u(x) (2.1.2)
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which is equivalent to

F = I +∇u (2.1.3)

Small deformations are considered when the displacement gradient | ∇u | is

small. If | ∇u | is small, then F ' I. The deformation gradient tensor F

characterizes all geometric changes, i.e. deformations of lengths, rotations,

angles, etc. Thus, all the deformations of lengths, rotations, angles, are small.

We model the cell plus the matrix as a system that occupies the whole 2D

space R2. We firstly consider that the matrix is composed of linear elastic

homogeneous isotropic material, in order to use Linear Elasticity. Therefore,

the displacement field is u : R2 → R2.

The infinitensimal strain tensor is

E =
1

2
(∇u +∇uT ), (2.1.4)

and its components are

Eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.1.5)

The stress - strain relation for linear elastic isotropic material, which

models the matrix, for infinitensimal deformations is

S = λ(trE)1 + 2µE (2.1.6)

where λ and µ are the Lame constants and 1 is the identity tensor.

The stress - strain relation for Linear Elasticity in components is written

as follows

Sij = λEkkδij + 2µEij (2.1.7)

The Einstein summation convention is used.
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Symmetric E and S have 2 eigenvalues ε1, ε2 and σ1, σ2 and two corre-

sponding eigenvectors υ1, υ2, which are called principal directions of E and

S, respectively. The particular basis consisting of the eigenvectors is called

principal basis for E or S. Thus, the component matrix of tensor E in its

principal basis is

E =

 ε1 0

0 ε2


and the component matrix of tensor S in its principal basis is

S =

 σ1 0

0 σ2


So, we can write Eq.(2.1.3) as

S =

 σ1 0

0 σ2

 = λ(ε1 + ε2)

 1 0

0 1

+ 2µ

 ε1 0

0 ε2

 (2.1.8)

It is apparent that

σ1 = (λ+ 2µ)ε1 + λε2, (2.1.9)

σ2 = (λ+ 2µ)ε2 + λε1 (2.1.10)

Therefore, we can summarize that

σi = Cijεj, (2.1.11)

where

C =

 α β

β α

 ,

α = λ+ 2µ, β = λ
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In order to check the positive definiteness of C, we calculate the eigenval-

ues λ and we find that

λ1 = α + β, (2.1.12)

λ2 = α− β (2.1.13)

We want all the eigenvalues to be positive, so for α > |β| the C is positive

definite.

According to the Spectral Theorem, one can express the strain tensor E

using tensor’s eigenvalues and eigenvectors as follows:

E = ε1(υ1 ⊗ υ1) + ε2(υ2 ⊗ υ2) (2.1.14)

Thus, 2.1.6 can be written as

S = λ(ε1 + ε2)1 + 2µ[ε1(υ1 ⊗ υ1) + ε2(υ2 ⊗ υ2)] (2.1.15)

Remember that the eigenvectors of the stress tensor S are νi and the

eigenvectors of the strain tensor E are υi, i = 1, 2. Let’s apply inner product

between 2.1.6 and the eigenvector υ1 of the strain tensor E. We conclude that

Sυ1 = λ(trE )υ1 + 2µEυ1, (2.1.16)

But we know that Eυ1 = ε1υ1, so we can write 2.1.16 as

Sυ1 = [λ(trE) + 2µε1]υ1 (2.1.17)

We know that

σ1 = λ(trE) + 2µε1 (2.1.18)
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Thus, υ1 is common eigenvector of tensor E and tensor S.

Sυ1 = σ1υ1 (2.1.19)

Doing the same procedure as before, using the eigenvector υ2 of the strain

tensor E this time, we find that

Sυ2 = σ2υ2 (2.1.20)

These findings show that eigenvectors υi of the strain tensor E, are com-

mon for both E and stress tensor S.

Recalling that we would like to construct a constitutive law for a material

(fibrin) that loses stiffness in compression [21] due to microbuckling, we con-

struct a piecewise linear function which expresses the nonlinearity as shown

in 2.1 Specifically,

Zρ(x) =

x, x ≥ 0

ρx, x < 0,

(2.1.21)

where

0 ≤ ρ ≤ 1

is the constant compression stiffness ratio. The graph of Zρ is the curve 2.1.

The stress-strain relation for Linear Elasticity in 1D has the following

form

σ = αε

,where α is am elastic modulus. We choose for our model the Stress-strain

relation to be:

σ = Zρ(αε)

12



Figure 6: Stress-strain curve in one dimension for a material that loses stiff-

ness in compression. The 1D stress-strain relation is σ = Zρ(αε), where σ

is the principal stress, ε is the principal strain and α is an elastic constant.

Here we choose ρ = 0.1. Horizontal axis: strain ε in percent. Vertical axis:

σ
α

.

using our piecewise function Zρ.

Thus,

σ = αZρ(ε) =

αε, ε ≥ 0

ραε, ε < 0

(2.1.22)

Principal stress is a piecewise linear function of the principal strain in a

way that expresses the non linear behavior of 2.1.

Now, we want to find a Strain Energy function W (ε), such that σ =

∂W/∂ε. Strain Energy function W (ε) expresses the energy stored (internal

energy) in the structure which is equal to the work done by external load.

The latter is expressed by Complementary Energy function U(σ) and has the

property that ∂U(σ)
∂σ

= ε. In the case of linear elasticity, the strain energy and
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Figure 7: The stress strain diagram. The area enclosed by the inclined line

and the vertical axis is called the complementary strain energy. For a linearly

elastic material the complementary strain energy and elastic strain energy are

the same.

its complementary counterpart are equal.

Strain energy density and its complementary are given by

W (ε) =

∫ ε

0

σ(η)dη, (2.1.23)

U(σ) =

∫ σ

0

ε̂(η)dη. (2.1.24)

We choose our 1D stress - strain relation to be σ = αZρ(ε), where α is a

modulus. We continue calculations to find W:

W (ε) =

∫ ε

0

αZρ(η)dη (2.1.25)

and using 2.1.22 we conclude that

W (ε) =


1
2
αε2, ε ≥ 0

1
2
α(
√
ρε)2, ε < 0,

(2.1.26)
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Also, one can see that

Z√ρ(ε) =


ε, ε ≥ 0

√
ρε, ε < 0,

(2.1.27)

while

Z2√
ρ(ε) =


ε2, ε ≥ 0

(
√
ρε)2, ε < 0,

(2.1.28)

Therefore, Strain Energy function for a compression-weakening material

in 1D takes the following form

W (ε) =
1

2
Z2√

ρ(ε). (2.1.29)

U(σ) is the Legendre Transform of W (ε):

U(σ) = σε−W (ε), (2.1.30)

where ε = ε̂(σ) is the strain-stress relation. We continue calculations to find

U:

From the 1D stress - strain relation we have that

σ =


αε, ε ≥ 0

αρε, ε < 0

(2.1.31)

So,

ε =


α−1σ, σ ≥ 0

α−1ρ−1σ, σ < 0

(2.1.32)
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Now this can be re-written as

ε = α−1Zρ−1(σ) (2.1.33)

and is called the Strain - Stress Relation.

Now using 2.1.32 and that U ′(σ) = ε, we have that

U(σ) =

∫ σ

0

α−1Zρ−1(η)dη, (2.1.34)

which is equivalent to

=


1
2
α−1σ2, σ ≥ 0

1
2
α−1( 1√

ρ
σ)2, σ < 0

(2.1.35)

One can note that

Z2
1√
ρ
(σ) =


σ2, σ ≥ 0

1
ρ
σ2,

(2.1.36)

Thus, Complementary Strain Energy function for a compression-weakening

material in 1D has the following form

U(σ) =
1

2
α−1Z2

1√
ρ
(σ) (2.1.37)

Let’s examine 2D now. Strain Energy function W (ε1, ε2) has the property

that

σi =
∂W

∂εi
(2.1.38)
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Also, Complementary Energy Density U(σ1, σ2) has the property that

∂U(σ1, σ2)

∂σi
= εi (2.1.39)

Suppose a curve C that begins from point A(0, 0) and ends at point B(ε1, ε2).∫
C[A,B]

σ1(η1, η2)dη1 + σ2(η1, η2)dη2

=

∫
C[A,B]

∂W (η1, η2)

∂η1
dη1 +

∂W (η1, η2)

∂η2
dη2

=

∫
C[A,B]

∇W · (dη1, dη2)

=

∫
C[A,B]

W (B)−W (A)

= W (ε1, ε2)

where ∇W =
(
∂W (η1,η2)

∂η1
, ∂W (η1,η2)

∂η2

)
. Thus, the Strain Energy function is

written as

W (ε1, ε2) =

∫
C[A,B]

σ1(η1, η2)dη1 + σ2(η1, η2)dη2 (2.1.40)

Also, ∫
C[A,B]

ε1(η1, η2)dη1 + ε2(η1, η2)dη2

=

∫
C[A,B]

∂U(η1, η2)

∂η1
dη1 +

∂U(η1, η2)

∂η2
dη2

=

∫
C[A,B]

∇U · (dη1, dη2)

=

∫
C[A,B]

U(B)− U(A)

= U(ε1, ε2)

where ∇U =
(
∂U(η1,η2)

∂η1
, ∂U(η1,η2)

∂η2

)
. Therefore, the Complementary Energy

function is written as

U(σ1, σ2) =

∫
C[A,B]

ε1(η1, η2)dη1 + ε2(η1, η2)dη2 (2.1.41)
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The stress - strain relations are invertible to the form εi = ε̂(σ1, σ2) and

again U is the Legendre transform of W:

U(σ1, σ2) = σiεi −W (ε1, ε2) (2.1.42)

The linear elastic Stress - Strain relation in 2D is

σi = Cijεj, i, j = 1, 2. (2.1.43)

Multiplying the above equation by C−1 results in

C−1ki σi = C−1ki Cijεj (2.1.44)

which is equivalent to

C−1ki σi = δkjεj =⇒ C−1ki σi = εk (2.1.45)

where δ is the Kronecker delta.

And if we set k=i and i=j, we have that:

εi = C−1ij σj (2.1.46)

Therefore, if we substitute 2.1.46 into 2.1.42, we conclude that

U(σ1, σ2) = C−1ij σiσj −W (ε1, ε2) (2.1.47)

In the case of Linear Elasticity, U has the following form:

U(σ1, σ2) =
1

2
C−1ij σiσj, (2.1.48)

Let’s now use our piecewise function 2.1.21 in our findings and replace σi

by Z 1√
ρ
(σi). Then, the Complementary Energy will be

U(σ1, σ2) =
1

2
C−1ij Z 1√

ρ
(σi)Z 1√

ρ
(σj) (2.1.49)

18



which can be written as

U(σ1, σ2) =
1

2
C−111 Z

2
1√
ρ
(σ1) +

1

2
C−122 Z

2
1√
ρ
(σ2) + C−112 Z 1√

ρ
(σ1)Z 1√

ρ
(σ2) (2.1.50)

But there is a problem here. Despite the fact that Z2
1√
ρ

(σ) is continuously

differentiable in σ, Z 1√
ρ
(σ) is not. Thus, the third term of 2.1.50 turns out to

be problematic, because it is not continuously differentiable and we should

replace it. The term Z 1√
ρ
(σ1)Z 1√

ρ
(σ2) can take 3 different values, which are

Z 1√
ρ
(σ1)Z 1√

ρ
(σ2) =


σ1σ2, σ1 ≥ 0, σ2 ≥ 0

ρσ1σ2, σ1 ≥ 0, σ2 < 0 or σ1 < 0, σ2 ≥ 0

ρ2σ1σ2, σ1 < 0, σ2 < 0

(2.1.51)

We choose the simplest coupling σ1σ2, so the Complementary Energy Density

for our constitutive model is:

Uρ(σ1, σ2) =
1

2
M11Z

2
1√
ρ
(σ1) +

1

2
M22Z

2
1√
ρ
(σ2) +M12σ1σ2 (2.1.52)

where M components depend on σi signs. U is piecewise quadratic, contin-

uously differentiable and its partial derivative with respect to σi, (εi = ∂U
σi

)

depends on σi in a piecewise linear fashion, with a change of slope when σi

changes sign.

M =
1

α2 − β2

 α −β

−β α

 =

 M11 M12

M21 M22


When σi change sign, the matrix M has different components. There are

4 different combinations of different signs of σi, so M can take 4 different
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values.

 M11 M12

M21 M22

 ,

 M11

ρ
M12

M21 M22

 ,

 M11

ρ
M12

M21
M22

ρ

 ,

 M11 M12

M21
M22

ρ


(2.1.53)

Using 2.1.52, 2.1.39 and noting that M11 = M22, we get the Strain - stress

relations:

εi = M11Z 1√
ρ
(σi) +M12σj (2.1.54)

In a similar way, we find the Strain Energy Density W for a compression-

weakening material:

Wρ(ε1, ε2) = M−1
ij εiεj −

1

2
M−1

ij εiεj =
1

2
M−1

ij εiεj. (2.1.55)

To give an example, let’s find the Stress - strain relation for a compression-

weakening material when σ1 > 0 and σ2 < 0. For this case:

U(σ1, σ2) =
1

2
M11σ

2
1 +

1

2
M22

σ2
2

ρ
+

1

2
M12σ1σ2 and (2.1.56)

So, M matrix will have the following form: α β

β α
ρ


The corresponding Strain Energy function is

W (ε1, ε2) =
1

2
M−1

ij εiεj (2.1.57)

where M−1 has the following form

M−1 =
(α2 − β2)ρ

α2 − β2ρ

 α
ρ

β

β α
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Also, we know that
∂W

∂εi
= σi

So, if we differentiate the first equation twice, firstly with respect to ε1 and

after with respect to ε2, we get the Stress-Strain relation for a compression-

weakening material:

σ1 =
(α2 − β2)ρ

α2 − β2ρ

(
αε1
ρ

+ βε2

)
, σ2 =

(α2 − β2)ρ

α2 − β2ρ

(
βε1 + αε2

)
(2.1.58)

Furthermore, using our Constitutive Law, we can form the Tensor Stress-

Strain Relations. Specifically, we know that

σ̂i(ε1, ε2) =
∂Wρ(ε1, ε2)

∂εi
(2.1.59)

Also, using Spectral Representation the Strain Tensor E can be written as

E =
2∑
i=1

εivi ⊗ vi. (2.1.60)

If σ̂i(ε1, ε2) are the eigenvalues of tensor Ŝ(E), then Ŝ(E) can be written as

Ŝ(E) =
2∑
i=1

σ̂i(ε1, ε2)vi ⊗ vi, (2.1.61)

with the same eigenvectors as Stress tensor. Thus the Tensor Stress-Strain

relation is

S = Ŝ(E) (2.1.62)

Also,

ε̂i(σ1, σ2) =
∂Uρ(σ1, σ2)

∂σi
(2.1.63)
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using Spectral Representation the Stress Tensor S can be written as

S =
2∑
i=1

σivi ⊗ vi, (2.1.64)

So, from 2.1.63 and 2.1.64 we conclude that

Ê(S) =
2∑
i=1

ε̂i(σ1, σ2)vi ⊗ vi, (2.1.65)

so the Tensor Strain Stress relation is

E = Ê(S). (2.1.66)
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2.2 Mechanical Behavior

Now we will examine the mechanical behavior of our model. Specifically, an

isotropic linear elastic material is described in general by the following set of

equations in 2D using linearized theory of elasticity (Hooke’s Law):

ε1 =
1

E
(σ1 − νσ2) (2.2.1)

ε2 =
1

E
(σ2 − νσ1) (2.2.2)

ε12 =
σ12
2G

(2.2.3)

where E is the Young’s Modulus, ν is the Poisson’s Ratio and G = E
2(1+ν)

is the shear modulus. Specifically, Young’s modulus is a measure of stiffness

of an elastic material and is defined as the ratio of stress (force per unit

area) along an axis to strain (ratio of deformation over initial length) along

that axis. Also, Poisson’s ratio is the negative ratio of transverse to axial

strain (fraction of expansion divided by the fraction of compression). When

a material is compressed in one direction, it usually tends to expand in the

other direction perpendicular to the direction of compression (2D). This phe-

nomenon is called the Poisson effect. Poisson’s ratio ν is a measure of this

effect. Shear modulus is is defined as the ratio of shear stress to the shear

strain and describes the material’s response to shear stress.

In case of Uniaxial Stress, where σ2 = 0, σ12 the general Hooke’s Law equa-

tions specialize to:

σ1 = Eε1, (2.2.4)

ε2 = − ν
E
σ1 = −νε1 (2.2.5)
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Using our piecewise function Zρ 2.1.21, one could write 2.2.4 as:

σ1 = Zρ(Eε1) =

Eε1, Eε1 ≥ 0

ρEε1, Eε1 < 0,

(2.2.6)

where 0 ≤ ρ < 1. When ε1 < 0, i.e compression, the Young’s Modulus has

lower value than in tension. So, there is a loss of stiffness in compression.

Similarly, 2.2.5 can be written as:

ε2 = Zρ(−νε1) =

−νε1, −νε1 ≥ 0

−ρνε1, −νε1 < 0,

(2.2.7)

Again, when in compression ε1 < 0, the Poisson’s ratio has lower value

than in tension. So, again the loss of stiffness in compression is confirmed.

Let’s see what’s happening in 2D simple shear. For a homogeneous deforma-

tion the displacements in simple shear are [13]

u1(x) = γx2, u2(x) = 0 (2.2.8)

where γ is the amount of shear. The Strain Tensor E is defined as

Eij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
, (2.2.9)

so in this case of simple shear we have that

E11 = 0, E12 =
γ

2
, E21 =

γ

2
, E22 = 0 (2.2.10)

which form the following matrix

E =

 0 γ
2

γ
2

0

 .
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The eigenvalues of the matrix above are:

ε1 =
γ

2
, ε2 = −γ

2
(2.2.11)

Thus, principal strains always have different signs. Specifically, when γ >

0,the principal strains lie in the fourth sector of the principal strain plane,

while for γ < 0 the principal strains lie in the second sector. For these 2

cases, different values of the M matrix are used for calculating the energy

function. For σ1 > 0 and σ2 < 0, the Stress-Strain relation is: 2.2.5

σ1 =
(α2 − β2)ρ

α2 − β2ρ

(
αε1
ρ

+ βε2

)
, σ2 =

(α2 − β2)ρ

α2 − β2ρ

(
βε1 + αε2

)
(2.2.12)

One can calculate the components of Stress Tensor S, in the same basis as

Strain Tensor E. The eigenvectors of E are

[1 1], [1 − 1]

Thus, Stress Tensor S will be formulated from the following product:

S =

 1 1

1 −1

 σ1 0

0 σ2

 1 1

1 −1

−1 (2.2.13)

After calculations, Stress Tensor Matrix takes the following form

S =

 α(α2−β2)(1−ρ)γ
4(α2−β2ρ)

(α2−β2)[α−βρ+(α−β)ρ]γ
4α2−β2ρ)

(α2−β2)[α−βρ+(α−β)ρ]γ
4α2−β2ρ)

α(α2−β2)(1−ρ)γ
4(α2−β2ρ)

 (2.2.14)

where S11=S22 are the normal stresses and S12=S21 are the shear stresses. If

G is the Shear modulus and γ the amount of shear:

G =
S12

γ
(2.2.15)

Thus,
(α2 − β2)[α− βρ+ (α− β)ρ]γ

4α2 − β2ρ)
= Gγ (2.2.16)
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which is equivalent to

G =
(α2 − β2)[α− βρ+ (α− β)ρ]

4α2 − β2ρ)
(2.2.17)

Also, if N is the Normal stress modulus, then

N =
S11

γ
(2.2.18)

Thus,

N =
α(α2 − β2)(1− ρ)

4(α2 − β2ρ)
(2.2.19)

In Linear Elasticity Theory the normal stresses S11, S22 in simple shear

are zero. In our case, when ρ = 1 the normal stresses vanish and they are in

agreement with the Linear Elasticity. But in the case of ρ < 1 normal stresses

are not negligible, so the Poynting Effect, which is defined next, occurs.

The positive Poynting effect occurs when the sheared faces tend to spread

apart, and hence a compressive stress S11 < 0 is necessary to counteract

this tendency and maintain the deformation. A good example is the wet

sand. The tendency of wet sand (a compacted granular material) is to dilate

(expand in volume) as it is sheared. This occurs because the grains in a

compacted state are interlocking and therefore do not have the freedom to

move around one another. When stressed, a lever motion occurs between

adjacent grains, which produces a bulk expansion of the material. That’s why

when a person walks on the beach, the wet sand apperas to dry up around

his foot. The deformation caused by the foot expands the sand under it and

the water in the sand moves to fill the new space between the grains. On

the other hand, the negative Poynting effect (or reverse Poynting effect) is

obtained when the sheared faces tend to draw together.(move closer together)

Thus, a tensile stress S11 > 0 is required to counteract this tendency and
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maintain the deformation.

Here for ρ < 1 the normal stresses are positive, so our case belongs to the

second category, which is the Negative Poynting Effect. There have been

conducted many experiments on semiflexible biopolymer gels, i.e. networks

that make up the cytoskeleton of cells and the extracellular matrix, whereby

the reverse of the usual (positive) Poynting effect was observed. [3]
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3 The Contracting Cell Problem in 2D

3.1 Geometric Model of Cell

In our two-dimensional problem, a cell takes up the shape of a disk with

radius α. We model an annulus that surrounds the cell with its bigger radius

A, which represents the matrix. Also, x is the position vector and r = |x| is

the radial distance from the center of the cell.

For axial symmetry, displacement fields are

u(x) = u(r)
x

r

There are no shear stesses and shear strains in the case of axial symmetry, so

we seek only definitions for the radial and hoop strains. The radial strain is

the derivative of radial displacement with respect to radial direction. There

is established a definition for the hoop strain in an axisymmetric situation,
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as the ration between the change in circumference and the original circum-

ference. With a radial displacement of ur at a radius r, this is

Eθθ =
2π(r + ur)− 2πr

2πr
=
ur
r

(3.1.1)

Therefore, the Radial and Hoop Strain Components are:

Erθ =
dur
dr

, Eθθ =
ur
r
, Erθ = 0. (3.1.2)

3.2 Equilibrium Equations

In order to formulate the equilibrium equations, we will need the partial and

second partial derivatives for polar coordinates with respect to x and y. To

begin with we know that:

x = r cos θ r =
√
x2 + y2 (3.2.1)

y = r sin θ θ = arctan
(y
x

)
(3.2.2)

Thus,

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
=

2x

2
√
x2 + y2

∂

∂r
+
∂θ

∂x

∂

∂θ
=
r cos θ

r

∂

∂r
+

∂

∂x
arctan

(y
x

) ∂
∂θ

∗ = cos θ
∂

∂r
+
(
− y

x2 + y2
) ∂
∂θ

= cos θ
∂

∂r
− r sin θ

r2
∂

∂θ
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
.

(3.2.3)

* In order to calculate ∂
∂x

arctan
(
y
x

)
, we set α = arctan(β), where β = y

x
.

Then,

∂α

∂x
=
∂α

∂β

∂β

∂x
=

1

1 + β2

(
− y

x2
)

=
1

1 +
(
y
x

)2 (− y

x2
)

= − y

x2 + y2
. (3.2.4)
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Also, with respect to y:

∂

∂y
=
∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ
=

2y

2
√
x2 + y2

∂

∂r
+
∂θ

∂y

∂

∂θ
=
r sin θ

r

∂

∂r
+

∂

∂y
arctan

(y
x

) ∂
∂θ

∗ = sin θ
∂

∂r
+

x

x2 + y2
∂

∂θ
= sin θ

∂

∂r
+
r cos θ

r2
∂

∂θ
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
.

(3.2.5)

* Working as before with respect to y, we have that

∂α

∂y
=
∂α

∂β

∂β

∂y
=

1

1 + β2

(1

x

)
=

1

x(1 + β2
=

1

x
(
1 +

(
y
x

)2 =
x

x2 + y2
. (3.2.6)

Now, let’s find the Second Partial Derivatives:

∂2

∂x2
=
(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

)(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

= cos θ
∂

∂r

(
cos θ

∂

∂r

)
− cos θ

∂

∂r

(sin θ

r

∂

∂θ

)
− sin θ

r

∂

∂θ

(
cos θ

∂

∂r

)
+

sin θ

r

∂

∂θ

(sin θ

r

∂

∂θ

)
= cos2 θ

∂2

∂r2
+ sin2 θ

( 1

r2
∂2

∂θ2
+ sin2 θ

( 1

r2
+

∂2

∂θ2
+

1

r

∂

∂r

)
+ sin 2θ

( 1

r2
∂

∂θ
− 1

r

∂2

∂r∂θ

)
.

(3.2.7)

∂2

∂y2
= sin2 θ

∂2

∂r2
+ cos2 θ

(1

r

∂

∂r
+

1

r2
∂2

∂θ2
)
− sin 2θ

( 1

r2
∂

∂θ
− 1

r

∂2

∂r∂θ

)
. (3.2.8)

∂2

∂x∂y
= − sin θ cos θ

(
− ∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
)
−cos 2θ

( 1

r2
∂

∂θ
−1

r

∂2

∂r∂θ

)
. (3.2.9)

The General Equations of Equilibrium in cartesian 2D are:

∂Sxx
∂x

+
∂Sxy
∂y

= 0 (3.2.10)

Syx
∂x

+
∂Syy
∂y

= 0 (3.2.11)
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where

Sxx = Srr cos2 θ + Sθθ sin2 θ − Srθ sin 2θ (3.2.12)

Syy = Srr sin2 θ + Sθθ cos2 θ + Srθ sin 2θ (3.2.13)

Sxy = sin θ cos θ(Srr − Sθθ) + Srθ cos 2θ (3.2.14)

Therefore, applying these and 3.2.3, 3.2.5 to the 2D Equations of Equilibrium,

we have that:

cos θ[
∂Srr
∂r

+
1

r

∂Srθ
∂θ

+
1

r
(Srr−Sθθ)]−sin θ[

∂Srθ
∂r

+
1

r

∂Sθθ
∂θ

+
2Srθ
r

] = 0 (3.2.15)

sin θ[
∂Srr
∂r

+
1

r

∂Srθ
∂θ

+
1

r
(Srr−Sθθ)]+cos θ[

∂Srθ
∂r

+
1

r

∂Sθθ
∂θ

+
2Srθ
r

] = 0 (3.2.16)

which is similar to the system:

∂Srr
∂r

+
1

r

∂Srθ
∂θ

+
1

r
(Srr − Sθθ) = 0 (3.2.17)

∂Srθ
∂r

+
1

r

∂Sθθ
∂θ

+ 2
Srθ
r

= 0 (3.2.18)

So, the above system represents the Equilibrium Equations in Polar Coordi-

nates. However, in our case we have that Srθ = 0, so the above system can

be written as follows:

∂Srr
∂r

+
1

r
(Srr − Sθθ) = 0 (3.2.19)

(rSrr(r))
′ = Sθθ(r) (3.2.20)
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3.3 Formulation of the Equation

We suppose that the cell shrinks, so the first boundary condition is

u(α) = −u0 (3.3.1)

where u0 is a positive constant. Also, we suppose that the outside boundary

of the matrix is traction free, so we have a second boundary condition

Srr(A) = 0. (3.3.2)

The solution of the corresponding linear elastic problem, for ρ = 1, has the

property that

Srr > 0, Sθθ < 0 (3.3.3)

. for a ¡ r ¡ A. We adopt these inequalities for our compression - weakening

material and we will verify them later.

Substituting Err = u′(r) and Eθθ = u(r)
r

into the Stress - Strain Relations

2.2.5, and the result into the Equilibrium 3.2.20 we have that(
r
h(ρ)αu′(r)

ρ
+
rh(ρ)βu(r)

r

)′
= h(ρ)βu̇(r) + h(ρ)α

u(r)

r
(3.3.4)

After calculations, the above Equation is similar to a 2nd order Linear ODE

for u(r):

r2u′′(r) + u′(r)r − u(r)ρ = 0 (3.3.5)

where α < r < A.
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3.4 Solution of the ODE

After calculations we find that rξ and r−ξ are solutions of the ODE(78). Also,

the Wronskian of these two solutions is

Wronskian(rξ, r−ξ) =

 rξ r−ξ

ξrξ−1 −ξr−ξ−1

 = −2rξξ
r−ξ

r
6= 0

Thus, rξ and r−ξ are linearly independent solutions of the ODE 3.3.5 and

the general solution has the following form

u(r) = C1r
−ξ + C2r

ξ (3.4.1)

where ξ =
√
ρ.

Now, we turn to the Boundary Conditions. From the first one, we have that

C1α
−ξ + C2α

ξ = −u0 (3.4.2)

Also, from the second boundary condition we get that

C1 = C2
−αξAξ − βρAξ

βρA−ξ − ξαA−ξ
(3.4.3)

Substituting 3.4.3 into 3.4.3 we get that:

C1 = −u0
A2ξαξ(α + βξ)

α2ξ(α− βξ) + A2ξ(α + βξ)
, (3.4.4)

C2 = −u0
αξ(α− βξ)

α2ξ(α− βξ) + A2ξ(α + βξ)
. (3.4.5)

Therefore, the radial displacement u(r) is written as follows:

u(r) = −u0

(
α + βξ

)(
r
A

)−ξ
+

(
α− βξ

)(
r
A

)ξ
(
α + βξ

)(
α
A

)−ξ
+

(
α− βξ

)(
α
A

)ξ (3.4.6)
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Also, the radial and hoop stress are, respectively:

Srr(r) = (
u0
α

)
ξ(α2 − β2)[( r

A
)−ξ−1 − ( r

A
)ξ−1]

(α + βξ)( α
A

)−ξ−1 + (α− βξ)( α
A

)ξ−1
(3.4.7)

Sθθ(r) = (−u0
α

)
ξ2(α2 − β2)[( r

A
)−ξ−1 + ( r

A
)ξ−1

(α + βξ)( α
A

)−ξ−1 + (α− βξ)( α
A

)ξ−1
(3.4.8)

where a < r < A.

In order to check if the radial stress σr(r) > 0 and the hoop stress σθ(r) <

0 3.3.3, we can simplify the form of radial stress by multiplying the term

Aξ−1aξ+1 with the above form of radial stress. After calculations we conclude

that

ur(r) =
u0ξa

ξ(α2 − β2)r−ξ−1(A2ξ − r2ξ)
a2ξ(α− βξ) + A2ξ(α + βξ)

. (3.4.9)

Doing the same calculations for the hoop stress, we conclude that

uθ(r) = −u0ξ
2aξ(α2 − β2)r−ξ−1(A2ξ + r2ξ)

a2ξ(α− βξ) + A2ξ(α + βξ)
. (3.4.10)

We know that u0 > 0 since the solution is the contractile displacement(contraction)

and that α = λ + 2µ, β = λ, so we conclude that α ± βξ > 0. Also, since

a ≤ r ≤ A, we conclude that A2ξ± r2ξ ≤ 0. Lastly, we remember that ρ < 1.

Based on the above inequalities, we conclude that the radial stress σr(r) > 0

and that the hoop stress σθ(r) < 0, so 3.3.3 is verified.

In the special case of ρ = 1 (Linear Elasticity), the displacement takes

the form

u(r) = C1r
−1 + C2r (3.4.11)

which is equivalent to the final form

u(r) = −u0
(α + βξ)( r

A
)−1 + (α− βξ)( r

A
)

(α + βξ)( a
A

)−1 + (α− βξ)( a
A

)
, (3.4.12)

where again a ≤ r ≤ A.
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Also, the stresses in case of Linear Elasticity take the following forms

Srr(r) = u0
a(α2 − β2)r−2(A2 − r2)
a2(α− β) + A2(α + β)

, (3.4.13)

Sθθ(r) = −u0
a(α2 − β2)r−2(A2 + r2)

a2(α− β) + A2(α + β)
. (3.4.14)
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3.5 Decay of displacements

Let’s remember the general solution 3.4.1

u(r) = C1r
−ξ + C2r

ξ

where ξ =
√
ρ. We want to find with what order the displacements decay,

but the general solution is somewhat confusing. As r increases, the term

(C1r
−ξ) decreases, while the term (C2r

ξ) increases. So, what will happen for

larger r? Also, the constants C1 and C2 depend on A, where α ≤ r ≤ A.

Specifically, C2 increases when A increases and in the case of an infinite ma-

trix, i.e. A→∞, the constant C2 → 0. From the other hand, when A→∞,

we cannot make predictions about the constant C1 in this limit, because it

contains A both in its numerator and denominator.

Let’s now find a lower bound for the displacements. Specifically, we know

that u0 > 0 and that α+ βξ > 0, α− βξ > 0. Also, since α = λ+ 2µ, β = λ

and ξ =
√
ρ < 1, we conclude that α + βξ > α− βξ.

Thus, if we replace term (α− βξ) with the term (α + βξ), we get

| C1 |= −C1 ≥ u0
aξA2ξ(α + βξ)

a2ξ(α + βξ) + A2ξ(α + βξ)

= u0
aξA2ξ

a2ξ + A2ξ
. (3.5.1)

Also, we know that a < A, so we get that

−C1 ≥ u0
aξ

2
(3.5.2)
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So,we conclude that

| u(r) |= −u(r) ≥ 1

2
u0(

r

a
)−ξ (3.5.3)

Therefore, the above is the lower bound of the displacements.

Now, one could easily find an upper bound for the displacements. If we

multiply 3.4.1 by the term aξAξ we have that

u(r) = −uo
A2ξ( r

a
)−ξ + a2ξ(α− βξ)( r

a
)ξ

a2ξ(α− βξ) + A2ξ(α + βξ)
, (3.5.4)

where a ≤ r ≤ A. If we subtract a2ξ(α − βξ) from the denominator of 3.5.4

we get that

| u(r) |≤ u0
A2ξ( r

a
)−ξ + a2ξ(α− βξ)( r

a
)ξ

A2ξ(α + βξ)

which is equivalent to the following form

| u(r) |≤ u0

(r
a

)−ξ
+ u0

a2ξ(α− βξ)( r
a
)ξ

A2ξ(α + βξ)
. (3.5.5)

We know that 0 < r ≤ A, so we have that( a
A

2ξ)
≤
(a
r

)2ξ
. (3.5.6)

One could replace the term ( a
A

)2ξ of 3.5.5 with term (a
r
)2ξ resulting in

| u(r) |≤ u0

(r
a

)−ξ
+ u0

(a
r

)2ξ(r
a

)ξ (α− βξ)
(α + βξ)

= u0

(
r
a

)−ξ
(α + βξ + α− βξ)
α + βξ
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which is equivalent to

| u(r) |≤ u0

(r
a

)−ξ 2α

α + βξ
. (3.5.7)

So, the above is the upper bound for the displacements. Therefore, we con-

clude that
1

2
u0

(r
a

)−ξ
≤| u(r) |≤ u0

2α

(α + βξ)

(r
a

)−ξ
. (3.5.8)

We observe that the bounds are independent of the outside radius A and that

the displacements decay with order O(r−ξ) = O(r−
√
ρ), where ρ < 1, despite

the fact that the general solution contains a growing term. Thus, the de-

cay of the displacements induced by a contracting cell in a matrix composed

of compression weakening material is slower than in a linear elastic matrix

where the displacements decay as O(r−1).

In fact, in order to compare the decay of displacements in the compression

weakening matrix and in the linear elastic one, we only use the lower bound

of the displacements. That is to say, when we want to prove that a term x

decays slower than another term y, i.e. has bigger value, we want to check

its lower bound. If the value of the lower bound of x has bigger value than

the term y we compare with, then it is true that the term x decays slower

than the term y. We needed the upper bound in order to find the decay of

the displacements. Let’s now find bounds for the stresses. We have radial

and hoop stress, so we will calculate the stress norm. Specifically,

S(r) =
√
S2
rr(r) + S2

θθ(r)

Substituting 3.4.13, 3.4.14 into the above equation we conclude that

| S(r) |=
u0ξa

ξ(α2 − β2)r−ξ−1
√

(A2ξ − r2ξ)2 − ξ2(A2ξ + r2ξ)2

a2ξ(α− βξ) + A2ξ(α + βξ)
(3.5.9)
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Figure 8: Graph of displacement u(r) vs radial distance r. Blue line is

without buckling and purple line is with buckling. The compression stiffness

ratio is ρ = 0.1 here.

Since a ≤ r ≤ A, we know that A2ξ + r2ξ ≤ 2A2ξ. After calculations we find

that(u0
a

)ξ2(α2 − β2)

2(α + βξ)

(r
a

)−ξ−1
≤| Sr |≤

(u0
a

)2ξ(α2 − β2)

α + βξ

(r
a

)−ξ−1
(3.5.10)

We note that the lower bound of the stresses decays with order O(r−ξ−1),

while the stresses in a linear elastic matrix decay with order O(r−2). Thus,

we conclude that stresses induced by a contracting cell in a matrix composed
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of compression weakening material, decay slower than in a linear elastic ma-

trix. Again, there is no need to check the upper bound since the lower one

decays slower than its linear elastic counterpart.

Figure 9: Graph of stresses vs radial distance r. Blue line is without buckling

and purple line is with buckling. The compression stiffness ratio is ρ = 0.1

here.
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3.6 Infinite matrix

Let’s now examine the case of an infinite matrix, i.e. when A→∞. In this

limit, the displacements take the following form:

u(r) = −u0(
r

a
)−ξ, (3.6.1)

where again ξ =
√
ρ. Also, when A→∞, the stresses are convertible to the

following form :

Srr(r) = ξ(
u0
a

)ξ(
r

a
)−ξ−1

α2 − β2

α + βξ
, (3.6.2)

Sθθ(r) = −ξ2(u0
a

)(
r

a
)−ξ−1

α2 − β2

α + βξ
(3.6.3)

We note that Sθθ(r) = −ξSrr(r).

Therefore, in the limit of a infinite matrix, where A → ∞, the displace-

ments decay again with order O(r−ξ), while in a linear elastic matrix the

displacements decay with order O(r−1) in this limit. So, displacements in-

duced by a contracting cell in an infinite matrix composed of compression

weakening material, decay slower than the displacements in a infinite linear

elastic matrix. Also, we note that stresses decay with order O(r−ξ−1) when

A→∞, while in a linear elastic matrix the stresses decay with order O(r−2).

So, we conclude that stresses induced by a contracting cell in an infinite ma-

trix composed of compression weakening material, decay slower than stresses

in a infinite linear elastic matrix.
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3.7 Zero compression stiffness ratio

Let’s see what’s happening when compression stiffness ratio ρ = 0. We have

set ξ =
√
ρ, so ξ = 0. Using the Constitutive Law we created in section 2

2.2.5, and setting ρ = 0, we get that:

Srr(r) =
α2 − β2

α
Err(r), (3.7.1)

Sθθ(r) = 0. (3.7.2)

The equilibrium equation takes the following form:

(rSrr(r))
′ = 0 (3.7.3)

Substituting 3.7.1 into 3.7.3 we have that:

(r
α2 − β2

α
Err(r))

′ = 0 (3.7.4)

since the term α2−β2

α
is independent of r we can omit it, because the above

derivative is with respect to r. Thus,

(rErr(r))
′ = 0

Also, since Err(r) = u′(r) we conclude that

(ru′(r))′ = 0. (3.7.5)

The general solution of 3.7.5 is

u(r) = C1 log r + C2. (3.7.6)

Now, u′(r) = C1

r
, so the radial stress takes the form

Srr(r) =
α2 − β2

α

C1

r
(3.7.7)
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In order to satisfy the boundary conditions u(α) = −u0 since the cell shrinks,

and Srr(A) = 0 because we consider the outside boundary of the matrix to

be traction free,the values of constants C1 and C2 must be:

C1 = 0, C2 = −u0 (3.7.8)

Therefore, the radial displacement takes the form:

u(r) = −u0. (3.7.9)

If we take the limit as A→∞ (infinite matrix), we have only one boundary

condition u(α) = −u0, (C2 = −u0) since the matrix has no outside boundary.

Thus, the radial displacement takes the form:

u(r) = C1 log r − u0. (3.7.10)
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4 The Expanding Cell Problem in 2D

Let’s examine an expanding cell instead of a contracting one. The first thing

that changes is the first boundary condition, since the cell expands. Thus,

we have that

u(a) = −u0, (4.0.1)

where now u0 < 0. Again we assume that:

Srr(r) < 0, Sθθ(r) > 0. (4.0.2)

and we will verify them later. Therefore, from the above equations, we are

moving to the second quadrant of the principal stress plane. This quadrant

is the opposite of the one that we used in the precious case of a contracting

cell, the fourth quadrant. Now, a different quadratic branch of the energy

function is in force. The Strain Energy function is

W (E1, E2) =
1

2
M−1

ij EiEj,

where now M−1 matrix is the inverse of the second M matrix 2.1.53 and has

the following form:

M−1 =
(α2 − β2)ρ

α2 − β2ρ

 α β

β α
ρ

 (4.0.3)

Again, ∂W
∂Ei

= Si, so if we differentiate the first equation twice, firstly with

respect to E1 and after with respect to E2, we get the following Stress-Strain

relation:

S1 =
(α2 − β2)ρ

α2 − β2ρ
(αE1 + βE2), (4.0.4)

S2 =
(α2 − β2)ρ

α2 − β2ρ
(βE1 +

αE2

ρ
). (4.0.5)
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The principal strains are:

Err(r) = u′(r), Eθθ(r) =
u(r)

r
(4.0.6)

Also, the equilibrium equations take the following form:

(rSrr(r))
′ = Sθθ(r) (4.0.7)

Thus, substituting 4.0.4, 4.0.5, 4.0.6 into 4.0.7 we get that:

(rαu′(r) + βu(r))′ = βu′(r) +
αu(r)

ρr
(4.0.8)

which results in a 2nd order linear ODE for u(r):

r2u′′(r) + ru(r)− ρ−1u(r) = 0, (4.0.9)

where a < r < A. After calculations, we find that r−
1
ξ and r

1
ξ are solutions

of the ODE 4.0.9. Also, the Wronskian of these two solutions is

Wronskian(r
1
ξ , r−

1
ξ ) =

 r
1
ξ r−

1
ξ

1
ξ
r

1
ξ
−1 −1

ξ
r−

1
ξ
−1


= −1

ξ
r−1 − 1

ξ
r−1 = −2

ξ
r−1 6= 0

Thus, r−
1
ξ and r

1
ξ are linearly independent solutions of the ODE 4.0.9 and

the general solution has the following form:

u(r) = C1r
− 1
ξ + C2r

1
ξ . (4.0.10)

We have the first boundary condition because the cell expands

u(a) = −u0,

where u0 < 0. Also, we suppose that the outside boundary of the matrix is

traction free, so the 2nd boundary condition is:

Srr(A) = 0, (4.0.11)
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where a < r < A. We know that Srr(r) = (α2−β2)ρ
α2−β2ρ

, and that strains are

Err(r) = u′(r), Eθθ(r) = u(r)
r

. Thus, the second boundary condition can be

written as:
α

ρ
u′(A) + β

u(A)

A
= 0 (4.0.12)

Thus, the general solution u(r) should obey the boundary conditions. From

the first one, we have that

C1a
− 1
ξ + C2a

1
ξ = −u0 (4.0.13)

Also, from the second we get that

C1 = C2

( 1
xi
α + βρ)A

1
ξ

1
ξ
αA−

1
ξ − βρA−

1
ξ

(4.0.14)

Now, substituting 4.0.14 into 4.0.13 we get that:

C1 = −u0
(1
ξ
α + βρ)A

1
ξ

(1
ξ
α + βρ)( a

A
)−

1
ξ + (1

ξ
α− βρ)( a

A
)
1
ξ

(4.0.15)

and

C2 = −u0
(1
ξ
α− βρ)A−

1
ξ

(1
ξ
α + βρ)( a

A
)−

1
ξ + (1

ξ
α− βρ)( a

A
)
1
ξ

(4.0.16)

Therefore, if we substitute 4.0.15, 4.0.16 into the general solution 4.0.10, we

conclude that the radial displacement takes the form:

u(r) = −u0
(1
ξ
α + βρ)( r

A
)−

1
ξ + (1

ξ
α− βρ)( r

A
)
1
ξ

(1
ξ
α + βρ)( a

A
)−

1
ξ + (1

ξ
α− βρ)( a

A
)
1
ξ

(4.0.17)

For an infinite matrix, the displacement takes the form

u(r) = −u0(
r

a
)−

1
ξ

We note that since 0 < ρ < 1, we have that 1
ξ
> 1. Also, when ρ → 0, we

have that 1
ξ
→ ∞. After calculations, we find that the displacements decay
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with order O(r−
1
ξ ) and that the stresses decay with order O(r−

1
ξ
−1). Thus,

both decay faster than their linear elastic counterparts, which are O(r−1)

and O(r−2). respectively. We conclude that displacements and stresses in-

duced by an expanding cell in a matrix composed of compression weakening

material, decay faster than in a linear elastic matrix.
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5 Discussion

5.1 A Constitutive Model for Fibrin

The first step in our attempt to test the hypothesis that displacements in-

duced by a contracting cell in a matrix composed of compression weakening

material, decay slower than in a linear elastic matrix, is done in subsection

2.1. Here, we construct a constitutive model for fibrin networks. Fibers

buckle under compression, and they become more compliant. As a result,

the elasticity of the fibrin network gradually decreases, i.e. there is a loss of

stiffness in compression. Thus, the main thing that we want our model to

capture, is buckling of fibers. We set a compression-stiffness ratio ρ which is

0 < ρ < 1 for a compression-weakening material that buckles, and ρ = 1 for

a linear elastic material without buckling. We create a special nonlinearity,

in which each principal stress is a piecewise linear function of the princi-

pal strains in a way that clearly separates the behavior of a compression-

weakening material in tension and in compression. 2.1 shows exactly this

buckling behavior.

In subsection 2.2 we examine our model under homogeneous deformations.

Firstly, we consider Uniaxial Stress. We find that the Young’s modulus has

lower value in compression than in tension, so the uniaxial stress-strain rela-

tion is the same as 2.1. Furthermore, we find that Poisson’s ratio has lower

absolute value in compression than in tension. Specifically, we find that

νc
νt

= ρ, where νc is the Poisson’s ratio in compression and νt is the Poisson’s

ratio in tension. Again 0 < ρ < 1. In other words, there is a weakening

of the Poisson effect in uniaxial compression. Simulations of a discrete fiber

network model agree with this weakening. Specifically, this network consists
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of fibers, each of them behaves as in 2.1. Simulatios for different values of

compression stiffness ratio ρ = 0.1, 0.3, 0.5, 0.7, showed that the ratio of the

Poisson’s ration in compression to the Poisson’s ratio in tension is νc
νt

= 0.74ρ.

So, there is a weakening of the Poisson effect in compression and is in quali-

tative agreement with the ratio of our model.

Next, we consider Simple Shear. We observe that for a compression weak-

ening material (ρ < 1), there are normal stresses present, according to our

model. These normal stresses vanish in absence of buckling, i.e. for a lin-

ear elastic material (ρ = 1). This existence of normal stresses in simple

shear agrees with experiments for fibrin, whereby the Negative Poynting Ef-

fect (opposite of the Poynting Effect [19]) was observed [9]. Specifically, the

negative Poyting effect is obtained, when the sheared faces tend to move

closer together, i.e. under compression. Then, a hydrostatic tension must

be applied to counteract the tendency of drawing together and maintain the

deformation. The basic underlying mechanism of this model is the buck-

ling of filaments [3], which behave as in 2.1, i.e. like compression weakening

material.
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5.2 Displacements induced by a contracting cell

In Section 3 we model the contracting cell as a disk with radius a, plus the

matrix to be the annulus a < r < A. The matrix is consisted of fibers that

buckle in compression, so it is composed of compression weakening material.

Therefore, we consider that it is governed by our constitutive law that we

constructed in Section 2. We find that the radial displacement takes the

form u(r) = C1r
−ξ +C2r

ξ, where ξ =
√
ρ. In Subsection 3.2 we find that the

displacements decay with order O(R−ξ, despite the presence of the second

growing term. In [15] Notbohm et al. developed a FE-based microstructural

model consisting of a network of linear elements representing fibres. Buckling

of fibers will refer to elements (fibers) obeying a stressstrain relation where

the stiffness (slope) in compression is smaller than the stiffness under tension

(Fig.2). The compression stiffness ratio is ρ = 0.1 in the simulations. Also,

the fibrin networks have low connectivity, i.e. small value of coordinator

number C, which is defined as the average number of fibers meeting at a node.

Fibrin has often a value of C = 3, a fact that renders it a floppy network,

since the critical value of rigidity for 2D networks is 4. [25] Simulations were

performed for connectivities in the range 2.5 ≤ C ≤ 8.

The displacement u(r) was find to decay with order O(r−n). Displace-

ments are plotted for different connectivities (Fig.8). All curves show long-

range propagation of displacements with slopes ≈= −0.5, except one case.

Specifically, for the critical value of connectivity, C=4, displacements exhibit

spatial inhomogeneities resulting in fluctuations. Furthermore, The findings

reveal that generally the decay power n for networks composed of fibers that

buckle, has lower value (by at least 0.4) than for networks consisted of fibers

that resist buckling (Fig.9). Again there is the exception of the critical value

of connectivity, C=4. For this value, findings showed that n = 0.6 for both
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Figure 10: Left: Randomized fibrin network with C=8. Right: Fibrin net-

work with C=3. [15]

networks with buckling or not.

Let’s now compare the findings in [15](discrete model) with our continuum

model. We remember that our term ξ =
√
ρ.

Comparison of the decay power ξ of our model with the decay power n of simulations.

ρ ξ =
√
ρ n

0.03 0.173 0.226

0.3 0.548 0.532

0.1 0.316 0.337

Therefore, we conclude that the predictions of our model about the decay

power are generally in agreement with the results of simulations. The dis-

placements induced by a constracting cell in a matrix which consists of fibers

that buckle (compression weakening material), decay slower than in a linear

elastic matrix.
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Figure 11: Displacements are plotted for simulations that used different con-

nectivities. The radial displacement and the radial distance are normalized

with radius a. [15]
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Figure 12: Decay power n versus connectivity C. Solid black symbols repre-

sent fibres that resist buckling(ρ = 1), while open symbols represent fibres

that buckle (ρ = 0.1). Circles show fits to u = Ar−n while squares show fits

to u = Ar−n +Brn. [15]
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5.3 Cells exploit slower decay of displacements

Experiments [15] have shown that cells whose distance from each other is of

the order of 10 cell diameters, form bonds (tethers) consisting of aligned and

densely packed matrix fibres, which extend far beyond the cell’s protrusion

5.3.

Figure 13: Pairs of cells spread toward one another along tethers.

54



5.4 Displacements induced by an expanding cell

In Section 4 we model an expanding cell as a disk with radius a, plus the

matrix to be the annulus a < r < A. The matrix is cosisted of fibers that

buckle in compression, so it is composed of compression weakening material.

Therefore, we consider that it is governed by our constitutive law that we

constructed in Section 2. We find that the radial displacements decay with

order O(r−
1
ξ ), where ξ =

√
ρ. Thus, displacements induced by an expanding

cell in a matrix composed of compression weakening material, decay faster

than in a linear elastic matrix. This finding is in agreement with a numerical

calculation in [17]. Specifically, it was observed that when a cell expands, the

displacements decay faster in a matrix composed of compression weakening

material than in a linear elastic matrix. This provide additional explanation

why cells prefer to contrant and not expand.

Let’s compare the findings of simulations [15] with our model. We notice

that our term now is 1
ξ
.

Comparison of the decay power 1
ξ

of our model with the decay power n of simulations.

ρ 1
ξ

n

0.03 5.77 5.17

0.3 1.83 1.87

0.1 3.16 3.16

Therefore, we conclude that the predictions of our model about the decay

power are generally in agreement with the results of simulations. The dis-

placements induced by an expanding cell in a matrix which consists of fibers

that buckle (compression weakening material), decay faster than in a linear

elastic matrix. Thus, expanding cells would not facilitate mechanosensing,

since there would not be a chance for long ranged cell induced deformations
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of the matrix, that would form bands (tethers) between cells. This povide

additional explanation why cells prefer to contract and not to expand.
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