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p . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Resolution analysis in the multiple frequency case . . . . . . . . . . . . . . . 88

4.2.1 Cross-range resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.2 Range resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 A result for partial aperture . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Numerical experiments with data generated by a full wave model 97

5.1 Numerical solution of the wave equation . . . . . . . . . . . . . . . . . . . . 97

5.1.1 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Square scatterer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.1 Comparison between screen and square - Full aperture . . . . . . . . 100

v



5.2.2 Partial aperture case . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Disc-shaped scatterer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Variable speed case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Imaging in a terminating waveguide 112

6.1 Problem setup and imaging methodology . . . . . . . . . . . . . . . . . . . 113

6.1.1 Imaging with a full-aperture array . . . . . . . . . . . . . . . . . . . 114

6.1.2 Imaging with a partial-aperture array . . . . . . . . . . . . . . . . . 119

6.2 Resolution analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.1 Single frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.2 Multiple frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3.1 Linearized Born scattered data . . . . . . . . . . . . . . . . . . . . . 131

6.3.2 Full wave scattered data . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3.3 Imaging with partial aperture . . . . . . . . . . . . . . . . . . . . . . 137

6.3.4 Imaging in a three-dimensional terminating waveguide . . . . . . . . 140

A The response matrix for model problems 144

A.1 Point scatterer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.2 Vertical screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.3 Semicircle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Bibliography 148

vi



Introduction

In this thesis, we consider the problem of detecting and imaging extended reflectors that

are embedded in a waveguide using acoustic waves. The term ‘extended’ refers to reflectors

that are comparable in size to the probing wavelength. A schematic of the problem setup

that we consider is illustrated in Figure 1. To image we use a vertical array of transducers

that records the response of the medium, i.e. the reflected echoes corresponding to one or

more known insonifications. These recorded data are subsequently used to create an image

that allows us to locate the reflector and retrieve its support. Imaging in waveguides is of

particular interest in underwater acoustics [14, 17, 21, 34, 36, 46, 50, 62] where one wants to

characterize sound speed inhomogeneities in shallow ocean environments with applications

in sonar, marine ecology, seabed imaging, etc. Moreover, imaging in waveguides also finds

applications in inspections of underground pipes using acoustic waves [43, 49] as well as in

non-destructive evaluation of materials where elastic wave propagation should be considered

[13].

z

x

Figure 1: Schematic of active imaging setup.

To be more specific, the vertical array that we consider in this thesis consists of N

transducers that can play the role of sources and receivers. The array may span the whole

cross-section of the waveguide, or part of it. One array element emits a pulse and the echoes

are recorded at all the receivers along the array. By repeating this process for all the array

1



2 INTRODUCTION

elements, acting as sources, an N ×N matrix is created. Let Π̂ denote this matrix and we

shall refer to it as the array response matrix. We work here with the array response matrix

for the scattered field created by subtracting the data for the incident field, i.e. the solution

of the wave equation in the absence of the reflector, from the total field, i.e. the associated

solution in the presence of the reflector. We assume here that the forward problems that

we need to solve in order to create the response matrix in each case are well-posed.

Assuming that we have in our disposal the data that are tabulated in the form of

the array response matrix, we want to create images of the medium that will assist us to

determine whether a reflector is present in it. The imaging process can be described as

follows: We select a bounded subdomain of the waveguide, called the search domain, which

we discretize using some grid. Next, we compute the values of an appropriate imaging

functional at each grid point of the search domain. Ideally, this functional should have the

property that its values, when graphically displayed, attain their maxima on the reflector.

Examples of widely used imaging methods include the Kirchhoff Migration (KM) (see [7,

§9]), thematched field (see [39]), the linear sampling [14,15,43] and the factorization method

[3].

We consider first the full aperture case, i.e. when the array spans the whole vertical

cross-section of the waveguide, and propose an imaging functional that consists in back-

propagating a weighted projection of the array response matrix on the propagating modes.

Let P̂ denote this projected array response matrix. The idea of formulating the inverse

scattering problem in terms of the propagating modes has been considered by several authors

in the past; indicatively we refer to the relatively recent works [14, 21, 48]. In [21] the

problem of reconstructing weak inhomogeneities located in an infinite strip is addressed

and the solution of the linearized inverse scattering problem is obtained using the spectral

decomposition of the far-field matrix. We note that in this case the measurements consist of

both the transmitted and the reflected (backscattered) field. In [48] the problem of selective

focusing on small scatterers in two dimensional acoustic waveguides is considered and the

spectral decomposition of the time-reversal operator is analyzed in this setting. In [14]

the authors establish a modal formulation for the Linear Sampling Method (LSM) [20]

for imaging extended reflectors in waveguides. The extension to the case of anisotropic

scatterers that may touch the waveguide boundaries is carried out in [43] where both the

LSM and the Reciprocity Gap Method (RGM) [19] are studied theoretically and numerically.

The case of imaging cracks in acoustic waveguides is considered in [15] using LSM and the
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factorization method [38]. In all the aforementioned works the waveguide geometry is

infinite in one-dimension.

Moreover, we consider the problem of selective imaging, i.e. creating images that focus

selectively on specific parts of the reflector. To do so we propose to back-propagate instead

of P̂, projections of P̂ onto selected subspaces created using its singular value decomposition.

We follow here the approach of [10], where the authors used the so-called subspace projection

method in order to perform selective imaging of extended reflectors in free space. We refer

also to [12] for selective imaging in clutter, i.e., propagation medium with inhomogeneities

that are unknown, cannot be estimated in detail, and, are modelled as random processes.

Note that the concept of selective imaging of extended scatterers has been motivated by

the concept of selective focusing, where for multiple point scatterers present in the medium,

we wish to create an image that focuses on a specific subset of them. Related works

include [51], where Prada and Fink introduced the well-known DORT method in order to

achieve selective focusing on individual scatterers, [46, 50]; see also [32] where DORT was

analysed with mathematical rigor in the free-space, and [48] for a waveguide problem.

The thesis is organized as follows. In Chapter 1, we present the two waveguide geometries

that we examine in this work: the infinite and the terminating waveguide. The infinite

waveguide refers to a waveguide that is infinite in the range direction (z → ±∞), while in

the terminating waveguide there is a vertical boundary on the right side of the waveguide

at z = R. We present the scalar acoustic wave equation which describes wave propagation

for our problem and derive the corresponding Green’s function. Finally, we present some

identities and properties that will prove useful in the course of the thesis. Specifically,

we present the Dirichlet-to-Neumann (DtN) map, the reciprocity property of the Green’s

function and the Kirchhoff-Helmholtz identity. Let us note that we will work in the infinite

waveguide setting in Chapters 2 to 5, while we will consider the terminating waveguide

problem in Chapter 6.

Next, in Chapter 2 we introduce the concepts of passive and active imaging and describe

the structure of the array response matrix in both cases. Then, we present the Kirchhoff

migration imaging functional, and introduce our imaging functional that is based on the

modal projection of the array response matrix. We close the chapter by presenting our

selective imaging methodology.

In Chapter 3 we consider a model problem where the scatterer is a ‘screen’, i.e. a

one-dimensional perfect reflector of length b that is vertically placed into an infinite strip
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with horizontal boundaries, and which is filled with a homogeneous medium. In this case

the array response matrix may be evaluated analytically using the Born approximation.

First, we consider an array that spans the whole vertical cross-section of the waveguide.

In this case, it turns out that the projected array response matrix at a single frequency

ω, P̂(ω), possesses the special structure of a Toeplitz-minus-Hankel matrix. Then we fully

characterize the spectral properties of P̂(ω) and exploit them in order to derive a relation

between the number of ‘significant’ singular values of P̂(ω) and the size of the screen.

Specifically, we show that this number, that may be seen as the effective rank of the matrix

P̂(ω), is roughly equal to [2b/λ], where λ is the wavelength. In other words, the number

of significant singular values of P̂(ω) equals the size of the scatterer divided by the array

resolution. This is known to hold in the free-space case, [10], but is a new result for

a waveguide. Moreover, we derive analytic expressions for the singular vectors of P̂(ω),

and for the selective imaging functional. In particular, we investigate the relation of the

matrix P̂(ω) with the well-known prolate matrix, and of its singular vectors with the so-

called discrete prolate spheroidal sequences. The latter are discrete analogues of the prolate

spheroidal wave functions, which have been studied in a series of papers by Slepian, Pollak

and Landau, [40, 41, 55, 56, 58]. The above ingredients allow us to conclude that when we

selectively image using the projection of P̂(ω) onto its first singular vector we get an image

that focuses at the midpoint of the screen, while by projecting P̂(ω) onto the singular vector

that corresponds to the last significant singular value the resulting image exhibits focusing

at the endpoints of the screen.

Next, we consider the more realistic case of an array with partial aperture, i.e. it covers

only part of the vertical cross-section of the waveguide. In this case, the main difficulty

lies in the definition of the weighted modal projection of the array response matrix, since

now the modes are no longer orthonormal along the array. We adequately modify the

construction of the matrix P̂(ω) in order to preserve all the good properties that we have

observed in the full-array case. Our numerical experiments indicate that our method allows

to successfully image the screen even with an array that spans just 10% of the vertical cross-

section of the waveguide. Moreover, we numerically assess the performance of our imaging

approach under the presence of additive noise, and for another one-dimensional scatterer

that has the shape of a semicircle. We close this chapter by formulating an algorithm that

we will use for imaging in both the full and partial array cases.

Chapter 4 is devoted to the resolution analysis of the proposed imaging functional, which
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is the study of the point spread function (PSF), i.e. the image that is created for a point

source or a point scatterer. As in the previous chapter, the waveguide is assumed to be a

homogeneous infinite strip. We first consider the case of a single frequency. The analysis is

carried out by deriving analytic expressions for the point spread function only for a point

source. This is enough, since it emerges that the imaging functional for a point scatterer is

the square of the functional for a point source. We end up with analytical expressions for

the resolution in range and cross-range that show that the image resolution is equal to 2λ

in range, and λ/2 in cross-range (λ being the wavelength). We also examine the effect that

the use of multiple frequencies brings upon the quality of the image. Our analytical results

show that the cross-range resolution does not depend on the bandwidth that we use, and is

in fact determined by the central frequency, while the Signal-to-Noise Ratio (SNR) of the

image improves as the bandwidth increases. As far as the range resolution is concerned,

numerical evidence indicates that both resolution and SNR are significantly improved as

the bandwidth increases. We close this chapter by proving a result that concerns the partial

array case and states that, under certain circumstances, the projected response matrix P̂

for the partial aperture case is the same as for the full aperture case.

In Chapter 5 we assess the robustness of the proposed imaging functional for more re-

alistic scatterer geometries with data that are generated by a full wave model. Specifically,

we consider two scatterer shapes: a square and a disc-shaped scatterer. In order to con-

struct the array response matrix for each case, we compute numerically the solution of the

related initial/boundary value problems for the wave equation. To this end, we use Mon-

tjoie [44], a high-order finite element C++ code developed at INRIA. At first, we consider

a single frequency and a full-aperture array, and we compare the results of the square and

the disc-shaped scatterers with their respective one-dimensional ones for the screen and

the semicircle. Although the analysis that we have performed in Chapter 3 concerns the

ideal model problem of the screen, our extensive numerical experiments indicate that the

properties that we have observed for the model problems carry over to these more realistic

examples. Next, we examine the partial array-aperture case and demonstrate the major im-

provement that the use of multiple frequencies brings upon the performance of the method.

For example, our numerical experiments suggest that we can obtain quite good images that

locate the position of the scatterer even if we use an array that spans only 5% of the verti-

cal cross-section of the waveguide. We conclude the chapter by briefly presenting numerical

results for a waveguide which has a cross-range dependent sound-speed profile.
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Lastly, in Chapter 6, we consider the problem of imaging extended reflectors in a ter-

minating waveguide. We consider this waveguide geometry to check whether we can obtain

more information about the support and the shape of the extended reflector compared to

the infinite waveguide geometry. As one may intuitively expect, the multiple-scattering re-

flections that bounce off the terminating boundary of the waveguide they should in principle

assist in providing multiple views of the reflector that are not in general available in the

infinite waveguide case. To benefit from this multipathing we need to know or determine

the boundary of the waveguide prior to imaging the reflector. Here, we consider that the

waveguide’s boundary is known. The case of a terminating waveguide as the one considered

here was first studied in our knowledge in [9] for electromagnetic waves in three dimensions.

In particular in [9] the forward data model was derived using Maxwell’s equations and two

imaging methods were formulated: reverse time migration (the corresponding one in the

frequency domain is phase conjugation) that is obtained by applying the adjoint of the

forward operator to the data, and an l1-sparsity promoting optimization method.

In this chapter we present the formulation of the problem for our current waveguide

geometry and describe our imaging methodology, that is inspired by phase conjugation,

for both passive and active imaging. We also carry out a resolution analysis for single

and multiple frequency imaging. Our analysis suggests that both range and cross-range

resolution is equal to λ/2. Moreover, when we use multiple frequencies, the resolution is

determined by the central frequency, while the bandwidth does not affect the resolution

but it markedly improves the SNR of the image. In all numerical experiments that we

consider in this chapter we verify a significant improvement in the reconstruction in the

terminating waveguide as compared to the infinite one. We also assess the robustness of

the proposed method for different array apertures that range from full to one fourth of the

waveguide’s vertical cross-section. Of course, the quality of the image deteriorates as the

length of the array decreases but our imaging results remain very satisfactory even with an

array-aperture equal to one fourth of the waveguide’s vertical cross-section. Moreover, we

test our method with synthetic array data that are obtained with a single transmit/receive

element. Although the data that now we have in our disposal is limited compared to those

contained in a multistatic array response matrix we again obtain good reconstructions of

the scatterer, albeit for larger array apertures that cover at least half of the waveguide’s

width in the vertical direction. Finally, we present some very promising preliminary results

of our approach in imaging of an extended scatterer in a three-dimensional terminating
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waveguide with a bounded rectangular cross-section.



Chapter 1

The forward problem

In this work, we consider the problem of detecting and imaging extended scatterers em-

bedded in a waveguide environment, using acoustic waves. Specifically, we will work in a

two-dimensional setup in Cartesian coordinates (z, x), where z denotes the range variable

and x the cross-range variable, which is taken to be positive downward. We assume that

in our waveguide, denoted by Ω, there exists a single extended scatterer O where the term

‘extended’ indicates that the typical size of the scatterer is comparable to the acoustic

wavelength.

In this chapter, we will introduce the waveguide environments that we will work in,

present the equations that govern the wave propagation in the medium in the time and in

the frequency domain and introduce useful identities and properties of the wave equation in

the waveguide. Namely, we will introduce the Dirichlet-to-Neumann map, the reciprocity

property of the Green’s function, and the Kirchhoff-Helmholtz identity.

1.1 The waveguide environment

We will consider two cases for our waveguide setup: the infinite and the terminating waveg-

uide.

The infinite waveguide allows waves to travel infinitely in both directions in range,

namely as z → ±∞. An example of an infinite waveguide containing an extended scatterer

is depicted in Figure 1.1. We define two points in range, z = L− and z = L+, and the

8
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subdomain ΩL of our waveguide Ω,

ΩL = {~x = (z, x) ∈ Ω : L− < z < L+}.

Let us note here that throughout this work, vectors representing points in Ω, are denoted by

boldface characters with an overscript arrow. A key assumption for the waveguide is that all

the inhomogeneities of the medium and the scatterer O, are contained in ΩL, while the rest

of the waveguide, i.e. Ω \ΩL, is composed of two semi-infinite strips of constant width that

are filled with a homogenous medium. We may relax the assumption of a constant wave

speed, by allowing the speed to depend on the cross-range variable x. However, throughout

this work we will consistently assume that Ω \ ΩL is filled with a homogeneous medium,

unless stated otherwise.

Figure 1.1: Schematic representation of an infinite waveguide.

The second type of waveguide geometry that we are going to deal with is the terminating

waveguide. In this case, as can be seen in Figure 1.2, we have an additional boundary on

the right side of the waveguide, thus the waves are allowed to propagate infinitely only as

z → −∞. Similarly to the infinite waveguide, we define two subdomains: the bounded

domain

ΩL+ = {~x = (z, x) ∈ Ω : z > L}

and the semi-infinite strip of constant cross-range width D,

ΩL− = {~x = (z, x) ∈ Ω : z < L, 0 < x < D}.

In this setup, we assume that all the inhomogeneities, including the scatterer, are included

in ΩL+ , while ΩL− is filled with a medium that is either homogeneous or it has a wave speed

that depends on x.
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Figure 1.2: Schematic representation of a terminating waveguide.

1.2 The wave equation

The propagation of waves in the waveguide Ω is described by the scalar acoustic wave

equation, which is given by

∆p(t, ~x)− 1

c2(~x)

∂2p(t, ~x)

∂t2
= f(t, ~x). (1.1)

Here ~x = (z, x) ∈ Ω is a point in the waveguide, c(~x) denotes the sound speed and f(t, ~x)

models a point-like source with time-harmonic dependence located at ~xs ∈ Ω. The equa-

tion is supplemented by homogeneous Dirichlet boundary conditions on the waveguide’s

boundaries and appropriate radiation conditions at infinity.

In the absence of a scatterer O, the acoustic pressure field, called the incident field,

satisfies the following initial boundary value problem,

∆pinc(t, ~x)− 1

c2(~x)

∂2pinc(t, ~x)

∂t2
= f(t, ~x), ~x ∈ Ω, t > 0

pinc(0, ~x) = 0, ~x ∈ Ω,

pinc(t, ~x) = 0, ~x ∈ ∂Ω,

pinc(t, ~x) is outgoing as z → ±∞.

(1.2)

In the presence of a scatterer O, the acoustic pressure field is called the total field, and is

denoted by ptot. In this work, we will impose a homogeneous Neumann boundary condition

on the boundary ∂O, to model a sound-hard impenetrable scatterer. Therefore, the total
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field satisfies the equation

∆ptot(t, ~x)− 1

c2(~x)

∂2ptot(t, ~x)

∂t2
= f(t, ~x), ~x ∈ Ω \ O, t > 0,

ptot(0, ~x) = 0, ~x ∈ Ω,

ptot(t, ~x) = 0, ~x ∈ ∂Ω,

∂

∂ν
ptot(t, ~x) = 0, ~x ∈ ∂O,

ptot(t, ~x) is outgoing as z → ±∞,

(1.3)

where ν is the outward-pointing unit normal vector.

We are interested in working with the scattered field, denoted by psc. If we know the

total and the incident field then we may create this field, simply by subtracting the incident

from the total field, i.e. psc = ptot − pinc.

1.3 The Helmholtz equation

In the previous section we presented the time-dependent wave equation. However, we are

interested in working in the frequency domain. To achieve that, we use the Fourier transform

p̂(ω, ~x) =

∫
eiωtp(t, ~x) dt,

on (1.1), and we obtain the Helmholtz equation

−∆p̂(ω, ~x)− k2η(~x)p̂(ω, ~x) = f̂(ω, ~x), (1.4)

where ω is the angular frequency, k = ω/c0 is the (real) wavenumber, c0 is the reference

wave speed and η(~x) = c20/c
2(~x) is the index of refraction.

Similar to the time domain equivalent, the incident field p̂inc(ω, ~x) in the frequency

domain comes as the solution of the following boundary value problem (BVP), supplemented
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with appropriate radiation conditions at infinity:

−∆p̂inc(ω, ~x)− k2η(~x)p̂inc(ω, ~x) = f̂(ω, ~x), ~x ∈ Ω,

p̂inc(ω, ~x) = 0, ~x ∈ ∂Ω,

p̂inc(ω, ~x) is outgoing as z → ±∞,

(1.5)

while the total field p̂tot satisfies

−∆p̂tot(ω, ~x)− k2η(~x)p̂tot(ω, ~x) = f̂(ω, ~x), ~x ∈ Ω \ O,

p̂tot(ω, ~x) = 0, ~x ∈ ∂Ω,

∂

∂ν
p̂tot(ω, ~x) = 0, ~x ∈ ∂O,

p̂tot(ω, ~x) is outgoing as z → ±∞.

(1.6)

Finally, as before, the scattered field is the difference between the total and the incident

field, that is p̂sc = p̂tot − p̂inc.

Remark 1 The initial/boundary value problems (1.2), (1.3) and the BVP’s (1.5), (1.6)

were presented for the infinite waveguide. In the case of the terminating waveguide as the one

described previously, see also Figure 1.2, the radiation conditions are adjusted accordingly,

stating that ‘p is outgoing as z → −∞’.

1.4 The Green’s function

Next, we will introduce the so-called Green’s function for the Helmholtz equation. The

Green’s function is the solution of (1.4), with the specified boundary and radiation con-

ditions, where we replace the source term f̂(ω, ~x) with a point source of unit strength,

described by a Dirac delta function δ(~x − ~xs), where ~xs = (zs, xs) is the location of the

source. We will denote with Ĝ(~x, ~xs;ω) the Green’s function for the Helmholtz equation

and the associated boundary and radiation conditions, which is the field recorded at a point

~x due to a point source located at ~xs ∈ Ω for a single frequency ω and is given as a solution
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to

−∆Ĝ(~x, ~x s;ω)− k2η(~x)Ĝ(~x, ~xs;ω) = δ(~x− ~xs). (1.7)

In the following subsection we present the derivation of the Green’s function in the case

where the waveguide is an infinite strip with homogeneous Dirichlet boundary conditions

on its boundaries.

1.4.1 The Green’s function for a homogeneous infinite waveguide

Let us assume that we have a waveguide that is an infinite strip, that is it has flat horizontal

boundaries and, therefore, has a constant width D, as shown in Figure 1.3 , filled with a

homogeneous medium, i.e. η(~x) = 1.

Figure 1.3: Schematic representation of an infinite strip.

As in the previous cases, we impose homogeneous Dirichlet boundary conditions on its

boundaries. Then, the Green’s function for this waveguide is given as a solution to the

equation

∆Ĝ(~x, ~xs) + k2Ĝ(~x, ~xs) = −δ(~x− ~xs), (1.8)

which satisfies the boundary and radiation conditions

Ĝ(z, 0) = Ĝ(z,D) = 0,

Ĝ is outgoing as z → ±∞.

Here, and for the rest of this work, whenever we refer to a single frequency, we suppress the

parameter ω to simplify the notation. The dependence on ω will be recalled when we are

going to use the Green’s function for multiple frequencies.

Under the previous assumptions, we may perform a separation of variables and write

the Green’s function as

Ĝ(~x, ~xs) = Z(z)X(x). (1.9)
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Substituting (1.9) into the homogeneous version of (1.8), we get

Z ′′(z)X(x) + Z(z)X ′′(x) + k2Z(z)X(x) = 0

and by separating the variables we get

Z ′′(z)
Z(z)

+ k2 +
X ′′(x)
X(x)

= 0.

From this we recover the vertical eigenvalue problem

X ′′(x) + µX(x) = 0, X(0) = X(D) = 0, (1.10)

whose solutions are the eigenfunctions

Xn(x) =

√
2

D
sin(

√
µnx), µn =

n2π2

D2
. (1.11)

Let us assume that there exists an index M such that

µM < k2 < µM+1.

The index M indicates the number of propagating modes in the waveguide. Having defined

the eigenpairs {µn,Xn}∞n=1, (1.9) can be written as

Ĝ(~x, ~xs) =

∞∑

n=1

Zn(z)Xn(x), (1.12)

which when substituted into (1.8) now gives

∞∑

n=1

Z ′′
nXn + ZnX

′′
n + k2ZnXn = −δ(~x− ~xs)

⇒
∞∑

n=1

Z ′′
nXn − µnZnXn + k2ZnXn = −δ(~x− ~xs)

⇒
∞∑

n=1

(
Z ′′
n + (k2 − µn)Zn

)
Xn = −δ(~x− ~xs).
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We multiply the previous relation by Xm and integrate with respect to x from 0 to D, to

get
∞∑

n=1

(
Z ′′
n + (k2 − µn)Zn

) ∫ D

0
XnXm = −δ(z − zs)

∫ D

0
δ(x − xs)Xm

Using the orthonormality of the eigenfunctions Xn along the cross-range and the sifting

property of the Dirac function, which states that
∫
δ(x− xs)f(x) = f(xs), we end up with

Z ′′
m + (k2 − µm)Zm = −δ(z − zs)Xm(xs). (1.13)

Therefore, we seek a continuous function Zl, whose derivative has a jump discontinuity of

magnitude Xm(xs) at z = zs. Hence

Zm(z) =
i

2βm
eiβm|z−zs|Xm(xs),

where

βm =

{ √
k2 − µm, m = 1, . . . ,M

i
√
µm − k2, m ≥M + 1.

(1.14)

Finally, we have that the expression for the Green’s function in our waveguide is given by

Ĝ(~x, ~xs) =
i

2

∞∑

m=1

eiβm|z−zs|

βm
Xm(x)Xm(xs). (1.15)

Let us note here that in the case of a wave speed that depends on the cross-range, i.e.

c = c(x), we can follow the same approach as before, i.e. use the separation of variables and

compute the eigenpairs (µn,Xm) of the corresponding (1.10) numerically and subsequently

determine the horizontal wavenumbers βm.

1.4.2 The Green’s function for a homogeneous terminating waveguide

In this subsection we present the derivation of the Green’s function Ĝ for the Helmholtz

operator when the waveguide Ω is a homogeneous (η(~x) = 1) semi-infinite strip of width

D, terminated by a vertical boundary at z = R. Specifically, Ω = (−∞, R) × (0,D), as

depicted in Figure 1.4 .

In order to derive an analytic expression for Ĝ(·, ~xs) we will use the method of images

[18]. With reference to Figure 1.5, we assume an infinite strip and we add a source at the
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Figure 1.4: Schematic representation of a semi-infinite strip.

point ~x′
s that is symmetric to ~xs with respect to ΓR, i.e. ~x

′
s = (2R − zs, xs).

ΓR

z = R

~xs = (zs, xs) ~x′

s
= (2R− zs, xs)

x = 0

x = D

z

x

Figure 1.5: Two sources placed symmetrically with respect to ΓR

We then compute the field at a point ~y = (z, x) ∈ Ω as

Ĝ(~y, ~xs) = Ĝ0(~y, ~xs)− Ĝ0(~y, ~x′
s), (1.16)

where Ĝ0(~y, ~xs) denotes the Green’s function for the infinite waveguide, given by (1.15).

Then, (1.16) implies that

Ĝ(~y, ~xs) =
i

2

∞∑

m=1

eiβm|z−zs|

βm
Xm(x)Xm(xs)−

i

2

∞∑

n=1

eiβn|z−2R+zs|

βn
Xn(x)Xn(xs)

=
i

2

∞∑

m=1

eiβm|z−zs| − eiβm|z+zs−2R|

βm
Xm(x)Xm(xs),

where z < R and 0 ≤ x ≤ D. Since z < R and zs < R it turns out that z + zs − 2R < 0,
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hence

Ĝ(~y, ~xs) =
i

2

∞∑

m=1

eiβm|z−zs| − e−iβm(z+zs−2R)

βm
Xm(x)Xm(xs)

=





∞∑

m=1

i

2βm

(
eiβm(z−zs) − e−iβm(z+zs−2R)

)
Xm(x)Xm(xs), z > zs,

∞∑

m=1

i

2βm

(
e−iβm(z−zs) − e−iβm(z+zs−2R)

)
Xm(x)Xm(xs), z < zs.

(1.17)

Notice that

eiβm(z−zs) − e−iβm(z+zs−2R) = eiβm(R−zs)
(
eiβm(z−R) − e−iβm(z−R)

)

= −2i eiβm(R−zs) sin βm(R − z),

and, similarly,

e−iβm(z−zs) − e−iβm(z+zs−2R) = −2i eiβm(R−z) sin βm(R− zs).

Therefore, (1.17) may also be written as

Ĝ(~y, ~xs) =





∞∑

m=1

1

βm
eiβm(R−zs) sin βm(R− z)Xm(x)Xm(xs), z > zs,

∞∑

m=1

1

βm
eiβm(R−z) sin βm(R− zs)Xm(x)Xm(xs), z < zs.

(1.18)

1.5 The Dirichlet-to-Neumann (DtN) map

In this section, we present the Dirichlet-to-Neumann (DtN) method [27] which consists

in reformulating a problem posed in an infinite domain, to an equivalent problem posed

in a bounded domain. The method relies on the introduction of artificial boundaries, on

which non-reflecting boundary conditions are imposed, called the DtN boundary conditions

because they make use of a map that connects the Dirichlet data with the Neumann data.
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1.5.1 The DtN map for an infinite waveguide

Let Ω be the infinite waveguide depicted in Figure 1.6. We define a subdomain ΩL of our

waveguide, such that ΩL = {~x = (z, x) ∈ Ω : L− < z < L+}. We assume that all the

inhomogeneities of the medium are contained in ΩL and that the wave speed is constant in

Ω \ ΩL.

Figure 1.6: Schematic representation of an infinite waveguide.

For any R− < L−, let ΓR− = {(R−, x) : 0 ≤ x ≤ D} be the corresponding cross-section.

Similarly, for R+ > L+ we define ΓR+ = {(R+, x) : 0 ≤ x ≤ D}. Now let us define the

bounded domain ΩR = {~x = (z, x) ∈ Ω : R− ≤ z ≤ R+}. Then, the eigenpairs {µn,Xn},
given by (1.11), allow us to define a Dirichlet-to-Neumann (DtN) map, denoted by T , such

that for each function u in a suitable function space

Tu(z, x) :=

∞∑

n=1

iβnun(z)Xn(x) = T1u(z, x) + T2u(z, x), (1.19)

where

T1u(z, x) = i

M∑

n=1

√
k2 − µn un(z)Xn(x), (1.20)

T2u(z, x) = −
∞∑

n=M+1

√
µn − k2 un(z)Xn(x), (1.21)

and

un(z) :=

∫ D

0
u(z, x)Xn(x) dx, (1.22)

are the Fourier coefficients of u with respect to the orthonormal basis {Xn}n=1,2,....
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Remark 2

1. On the artificial boundaries ΓR± we may define the following norms of fractional

order:

‖u‖Xs(Γ
R± ) :=

( ∞∑

n=1

(µn)
s|un(R±)|2

)1/2

<∞,

The spaces Xs(ΓR±), s ≥ 0, are then defined as the domain of (−d2/dx2)s/2, while the

space of negative order X−s(ΓR±) may be identified with the dual of Xs(ΓR±). The

notation is adopted from [5].

The function space Xs(ΓR±) coincides with Hs(ΓR±) for 0 < s < 1/2. For s = 1/2,

X1/2(ΓR±) may be identified with H
1/2
00 (ΓR±), the subspace of functions of H1/2(ΓR±)

which when extended by zero belong to H1/2(∂ΩR). For 1/2 < s ≤ 1, Xs(ΓR±) =
0

Hs (ΓR±), (see [5, 42]). Then T is a bounded linear operator from X1/2(ΓR±) to

X−1/2(ΓR±).

2. It is easy to show the following properties of the DtN operator. First,

∫

Γ
R±

Tu v =

∫

Γ
R±

Tv u, (1.23)

and second, letting

T ∗u(z, x) = T ∗
1 u(z, x) + T2u(z, x),

where T ∗
1 u(z, x) = −i∑∞

n=1

√
k2 − µn un(z)Xn(x),

(1.24)

it holds that

Tu = T ∗u. (1.25)

Now let Ĝ(·, ~xs) denote the Green’s function for the Helmholtz operator with Dirichlet

conditions on the boundary ∂Ω due to a point source located at ~xs = (zs, xs) ∈ ΩL for a

fixed single frequency. (Here we consider a single frequency so when we refer to the Green’s
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function we omit writing dependence on frequency.) Thus Ĝ(·, ~xs) solves the problem

−∆Ĝ(·, ~xs)− k2η(·) Ĝ(·, ~xs) = δ(· − ~xs) in ΩR, (1.26)

Ĝ(·, ~xs) = 0 on ∂ΩR \ ΓR± , (1.27)

∂νĜ(·, ~xs) = TĜ(·, ~xs) on ΓR± , (1.28)

where ν is the outward unit normal on ΓR± and the last boundary condition, which is

imposed on the artificial boundaries ΓR± , accounts for the radiation condition.

1.5.2 The DtN map for a terminating waveguide

Let us also consider the equivalent setup for a terminating waveguide, as shown in Figure 1.7.

We now define the domains ΩL+ = {~x = (z, x) ∈ Ω : z > L} and ΩR = {~x = (z, x) ∈
Ω : z > R−} and the artificial boundary ΓR− = {(R−, x) : 0 ≤ x ≤ D}. Then, Ĝ(·, ~xs)

solves the problem

−∆Ĝ(·, ~xs)− k2η(·) Ĝ(·, ~xs) = δ(· − ~xs) in ΩR, (1.29)

Ĝ(·, ~xs) = 0 on ∂ΩR \ ΓR− , (1.30)

∂νĜ(·, ~xs) = TĜ(·, ~xs) on ΓR− . (1.31)

Figure 1.7: Schematic representation of a terminating waveguide.

1.6 Reciprocity of the Green’s function

Having introduced the Dirichlet-to-Neumann map, we may prove the following proposition:
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Proposition 1 (Reciprocity relation) For any ~x1, ~x2 ∈ ΩR it holds that

Ĝ(~x1, ~x2) = Ĝ(~x2, ~x1). (1.32)

Here, we will present the proof of the reciprocity relation for the infinite waveguide case.

The proof for the terminating waveguide is completely analogous so we do not present it

here.

Proof. Let ~xi ∈ ΩR, i = 1, 2. Since Ĝ(·, ~xi) satisfies (1.26) we have for every ~y = (z, x) ∈ ΩR

that

∆Ĝ(~y, ~x2) + k2η(~y) Ĝ(~y, ~x2) = −δ(~y − ~x2),

∆Ĝ(~y, ~x1) + k2η(~y) Ĝ(~y, ~x1) = −δ(~y − ~x1).

We multiply the first equation by Ĝ(~y, ~x1), the second by Ĝ(~y, ~x2), subtract and integrate

the resulting equation over ΩR to obtain that

∫

ΩR

(
∆Ĝ(~y, ~x2) Ĝ(~y, ~x1)− Ĝ(~y, ~x2)∆Ĝ(~y, ~x1)

)

=

∫

ΩR

(
δ(~y − ~x1) Ĝ(~y, ~x2)− δ(~y − ~x2) Ĝ(~y, ~x1)

)

⇒
∫

ΩR

(
∆Ĝ(~y, ~x2)Ĝ(~y, ~x1)− Ĝ(~y, ~x2)∆Ĝ(~y, ~x1)

)
= Ĝ(~x1, ~x2)− Ĝ(~x2, ~x1).

Using the second Green’s identity, and the Dirichlet boundary conditions (1.27), the equa-

tion above may be written as

Ĝ(~x1, ~x2)− Ĝ(~x2, ~x1) =

∫

∂ΩR

(∂Ĝ
∂ν

(~y, ~x2)Ĝ(~y, ~x1)− Ĝ(~y, ~x2)
∂Ĝ

∂ν
(~y, ~x1)

)

=

∫

Γ
R−

(∂Ĝ
∂z

(~y, ~x2)Ĝ(~y, ~x1)− Ĝ(~y, ~x2)
∂Ĝ

∂z
(~y, ~x1)

)
dx

+

∫

Γ
R+

(∂Ĝ
∂z

(~y, ~x2)Ĝ(~y, ~x1)− Ĝ(~y, ~x2)
∂Ĝ

∂z
(~y, ~x1)

)
dx.
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Using the DtN conditions (1.28), we get that

∫

Γ
R−

(∂Ĝ
∂z

(~y, ~x2)Ĝ(~y, ~x1)− Ĝ(~y, ~x2)
∂Ĝ

∂z
(~y, ~x1)

)
dx

=

∫

Γ
R−

(
TĜ((R−, x), ~x2) Ĝ((R−, x), ~x1)− Ĝ((R−, x), ~x2)TĜ((R

−, x), ~x1)
)
dx

(1.23)
= 0

Similarly, we may prove that

∫

Γ
R+

(∂Ĝ
∂z

(~y, ~x2)Ĝ(~y, ~x1)− Ĝ(~y, ~x2)
∂Ĝ

∂z
(~y, ~x1)

)
dx = 0.

Hence Ĝ(~x1, ~x2)− Ĝ(~x2, ~x1) = 0. �

1.7 The Kirchhoff-Helmholtz identity

Now, by using the DtN map and the reciprocity relation of the Green’s function in the

waveguide, we are in a position to prove the following Kirchhoff-Helmholtz identity.

Proposition 2 (Kirchhoff-Helmholtz identity in the infinite waveguide) Let ~x1, ~x2 ∈
ΩR. Then

Ĝ(~x1, ~x2)− Ĝ(~x1, ~x2) =

∫

Γ
R−∪Γ

R+

(
Ĝ(~y, ~x1)∇Ĝ(~y, ~x2)− Ĝ(~y, ~x2)∇Ĝ(~y, ~x1)

)
· ν dx.

(1.33)

Moreover we can prove that,

Ĝ(~x1, ~x2)− Ĝ(~x1, ~x2) = 2i

M∑

n=1

βn Ĝn(R−, ~x1) Ĝn(R
−, ~x2)

+ 2i
M∑

n=1

βn Ĝn(R+, ~x1) Ĝn(R
+, ~x2), (1.34)

where Ĝn(R
±, ·), n = 1, . . . ,M , denote the first M Fourier coefficients of the Green’s func-

tion (which correspond to the propagating modes) with respect to the orthonormal basis of

L2(0,D) that is formed by the vertical eigenfunctions Xn, i.e.

Ĝn(R
±, ·) =

∫ D

0
Ĝ((R±, x′), ·)Xn(x

′) dx′. (1.35)
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Proof

Since Ĝ(·, ~x1) solves (1.26)–(1.28) it is immediate to show that Ĝ(·, ~x1) solves the problem

−∆Ĝ(·, ~x1)− k2η(·) Ĝ(·, ~x1) = δ(· − ~x1) in ΩR, (1.36)

Ĝ(·, ~x1) = 0 on ∂ΩR \ ΓR± , (1.37)

∂νĜ(·, ~x1) = T ∗Ĝ(·, ~x1) on ΓR± . (1.38)

Hence, for every ~y = (z, x) ∈ ΩR we have that

∆Ĝ(~y, ~x2) + k2η(~y) Ĝ(~y, ~x2) = −δ(~y − ~x2),

∆Ĝ(~y, ~x1) + k2η(~y) Ĝ(~y, ~x1) = −δ(~y − ~x1),

Now, we multiply the first equation by Ĝ(~y, ~x1), the second by Ĝ(~y, ~x2), subtract, and

integrate over ΩR to obtain that:

∫

ΩR

(
∆Ĝ(~y, ~x2)Ĝ(~y, ~x1)− Ĝ(~y, ~x2)∆Ĝ(~y, ~x1)

)

=

∫

ΩR

(
δ(~y − ~x1)Ĝ(~y, ~x2)− δ(~y − ~x2)Ĝ(~y, ~x1)

)
= Ĝ(~x1, ~x2)− Ĝ(~x2, ~x1).

Then, from the reciprocity property (1.32) we get that

∫

ΩR

(
∆Ĝ(~y, ~x2)Ĝ(~y, ~x1)− Ĝ(~y, ~x2)∆Ĝ(~y, ~x1)

)
= Ĝ(~x1, ~x2)− Ĝ(~x1, ~x2).

Using the second Green’s identity and the boundary conditions (1.27) and (1.37), we end

up with

Ĝ(~x1, ~x2)− Ĝ(~x1, ~x2) =

∫

∂ΩR

(
Ĝ(~y, ~x1)∇Ĝ(~y, ~x2)− Ĝ(~y, ~x2)∇Ĝ(~y, ~x1)

)
· ν dx,

and (1.33) is proven. Now, having proven (1.33), the DtN conditions (1.28) and (1.38) allow
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us to write

Ĝ(~x1, ~x2)− Ĝ(~x1, ~x2)

=

∫

Γ
R−

(
Ĝ((R−, x), ~x1)TĜ((R−, x), ~x2)− Ĝ((R−, x), ~x2)T

∗Ĝ((R−, x), ~x1)
)
dx

+

∫

Γ
R+

(
Ĝ((R+, x), ~x1)TĜ((R

+, x), ~x2)− Ĝ((R+, x), ~x2)T
∗Ĝ((R+, x), ~x1)

)
dx

(1.23)
=

∫

Γ
R−

(
TĜ((R−, x), ~x1)− T ∗Ĝ((R−, x), ~x1)

)
Ĝ((R−, x), ~x2) dx.

+

∫

Γ
R+

(
TĜ((R+, x), ~x1)− T ∗Ĝ((R+, x), ~x1)

)
Ĝ((R+, x), ~x2) dx. (1.39)

Therefore, in view of (1.20) and (1.24), we deduce that

TĜ((R±, x), ~x1)− T ∗Ĝ((R±, x), ~x1) = 2i

M∑

n=1

βn Ĝn(R±, ~x1)Xn(x).

Inserting the above in (1.39) we conclude that

Ĝ(~x1, ~x2)− Ĝ(~x1, ~x2) = 2i

∫ D

0

M∑

n=1

βn Ĝn(R−, ~x1)Xn(x) Ĝ((R−, x), ~x2) dx

+ 2i

∫ D

0

M∑

n=1

βn Ĝn(R+, ~x1)Xn(x) Ĝ((R+, x), ~x2) dx

= 2i

M∑

n=1

βn Ĝn(R−, ~x1)

∫ D

0
Ĝ((R−, x), ~x2)Xn(x) dx

+ 2i
M∑

n=1

βn Ĝn(R+, ~x1)

∫ D

0
Ĝ((R+, x), ~x2)Xn(x) dx

= 2i

M∑

n=1

βn Ĝn(R−, ~x1) Ĝn(R
−, ~x2)

+ 2i

M∑

n=1

βn Ĝn(R+, ~x1) Ĝn(R
+, ~x2),

which completes the proof. �

As with the reciprocity relation, the proof of the Kirchhoff-Helmholtz identity for the ter-

minating waveguide follows in a completely analogous manner to the infinite waveguide case,
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where again we only consider the integrals over ΓR− . Therefore, the Kirchhoff-Helmholtz

identity in the terminating case, states that

Proposition 3 (Kirchhoff-Helmholtz identity in the terminating waveguide) Let

~x1, ~x2 ∈ ΩA. Then we can prove that,

Ĝ(~x1, ~x2)− Ĝ(~x1, ~x2) = 2i

M∑

n=1

βn Ĝn(R−, ~x1) Ĝn(R
−, ~x2). (1.40)



Chapter 2

Imaging problem

The imaging problem that we consider in this dissertation consists in determining the sup-

port of an extended source or scatterer located in a waveguide environment. Wave propa-

gation is modelled using the scalar wave equation and our data is the acoustic pressure field

collected on an array of receivers that may or may not span the whole vertical cross-section

of the waveguide.

In this chapter, we first describe the data structures that are collected on the array and

depend on whether we search for a source or a scatterer. Then we present the well known

Kirchhoff migration imaging functional and introduce an alternative imaging functional

that is based on the projection of the data on the propagating modes. We also discuss

selective imaging and its implementation in a waveguide using both imaging functionals.

2.1 Array imaging data structures

In what follows we consider two different array setups for imaging: i) The passive case,

where we seek to locate a source. ii) The active case, where we seek to locate a scatterer.

2.1.1 Passive array setup

In the passive setup, the array records the pressure field generated by an extended source

located in the waveguide. Specifically, as shown in Figure 2.1, assume that an extended

source with support O is located in the waveguide. Every point in the support of the source

emits a delta-function pulse in time and the data are collected on a vertical array, denoted

26
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by A, located at z = za. The array consists of N receivers, that record the pressure field at

each receiver location ~xr = (zr, xr).

Then, for a single frequency ω, the data is an N × 1 vector called the array response

vector, denoted by Π̂ with components Π̂(~xr;ω), r = 1, . . . , N . The element Π̂(~xr;ω)

corresponds to the Fourier transform of the time trace of the pressure field recorded at the

receiver located at ~xr, evaluated at frequency ω.

A

~xr

x = 0

x = D

z = za

O

Figure 2.1: Passive imaging setup for an extended source.

2.1.2 Active array setup

The other setup we consider, is the active array case. Here, as shown in Figure 2.2, we wish

to image an extended scatterer which, slightly abusing notation, we denote again as O,

using again a vertical array A located at z = za. The array now consists of N transducers

that can act both as sources and receivers.

A~xr

x = 0

x = D

z = za

~xs

O

Figure 2.2: Active imaging setup in an infinite strip.

In the active case the data is the array response matrix for the scattered field. For a

single frequency this is an N × N matrix, whose element Π̂(~xr, ~xs;ω) corresponds to the

Fourier transform of the recorded time trace of the pressure field at receiver ~xr ∈ A, due

to a delta-function pulse send from the source located at ~xs ∈ A, evaluated at frequency

ω. As usual, the data for the scattered field are obtained by subtracting the incident field

from the total field.



28 CHAPTER 2. IMAGING PROBLEM

Remark 3 In this work, the array may span the whole, or part of the waveguide’s cross-

section. For the rest of this chapter we assume that the array spans the whole cross-section,

we refer to this case as the full-aperture array case. We will examine the partial-aperture

array case and make the necessary adjustments to our imaging methods in the next chapter.

2.2 Imaging functionals

Given the data for the passive or the active case as described in the previous section, we

now want to create an image of the waveguide that would assist us to decide whether a

source or a scatterer is present in it. We first define a search domain S, which is discretized

using a (usually rectangular) grid, as shown in Figure 2.3. Then, on each point ~y s ∈ S, we
compute the value of an appropriate imaging functional. It is expected that the values of

the imaging functional, when they are graphically displayed in the search domain, should

exhibit peaks that indicate the presence of the source or the scatterer.

A

x = 0

x = D

z = za

S
~y s

b

Figure 2.3: Search domain, discretized using a rectangular grid.

2.2.1 The Kirchhoff-migration imaging functional

The first imaging functional we will discuss, is the Kirchhoff migration functional [8, 11].

Kirchhoff migration is widely used in seismic imaging and exploration geophysics, applica-

tions for which the arrays are very large and so is the bandwidth. Although our final goal

is to image extended reflectors, we will first start with the passive imaging case for a point

source, to provide a derivation of the imaging functional that follows one’s intuition.

Passive case

Let us assume that a point source of unit strength, located at the point ~x ⋆ = (z⋆, x⋆) ∈ Ω,

emits a signal that is recorded on a vertical array A = {~xr = (za, xr)}Nr=1 as illustrated in

Figure 2.4. In this case, the array response vector has the form
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b

A

~xr

~x
⋆ = (z⋆, x⋆)

x = 0

x = D

z = za

Figure 2.4: Passive imaging setup for a point source.

Π̂(~xr;ω) = Ĝ(~xr, ~x
⋆), (2.1)

where Ĝ is the Green’s function.

The imaging functional that we propose to use is based on the concept of phase conju-

gation, which may be physically interpreted by virtue of the Huygen’s principle. As pointed

out in [35], Huygen’s principle states that a propagating wave may be viewed as superpo-

sition of wavelets reemitted from a fictitious surface with amplitudes proportional to those

of the original wave. In phase conjugation, which may be seen as the equivalent of time

reversal [25] in the frequency domain, the reemitted wavelets’ amplitudes are proportional

to the complex conjugate of the corresponding ones in the original wave. These remarks

lead naturally one to define the following imaging functional

I(~ys) =

∫

A
Π̂(~xr, ω)Ĝ(~y

s, ~xr)dx, (2.2)

where ~xr = (za, x) ∈ A, ~ys ∈ S and overline denotes complex conjugation.

The expression shown in (2.2) concerns an ideal case, where we have a continuous array.

However, as mentioned in our previous description of the array setup, we have a discrete

array that consists of N transducers. Therefore, instead of working with (2.2), we will use

its discrete analogue, namely we define the imaging functional

IKM(~ys, ω) =
N∑

r=1

Π̂(~xr;ω)Ĝ(~ys, ~xr), (2.3)

where we use the superscript KM as an abbreviation for Kirchhoff migration.
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Extension to active case

We now turn back to the active imaging problem, where we wish to image a scatterer, with

a setup as the one shown in Figure 2.2. Then, as stated earlier, our data may be cast in

the form of the array response matrix Π̂(~xs, ~xr;ω). As such, a natural generalization of

the imaging functional for the passive case given by (2.3), is the following active imaging

functional

IKM(~ys, ω) =

N∑

r=1

N∑

s=1

Π̂(~xs, ~xr;ω)Ĝ(~y
s, ~xr)Ĝ(~y

s, ~xs). (2.4)

We also define the imaging functional for multiple frequencies, as a simple addition over

frequencies, specifically

IKM(~ys) =
∑

ω
IKM(~ys, ω). (2.5)

Imaging Examples

In order to provide to the reader a sense of how IKM behaves, we will consider the simple

case of imaging in a homogeneous infinite waveguide that forms an infinite strip, i.e. Ω =

(−∞,∞) × (0,D). We will examine three simplified cases for the scatterers’ shapes: a

point scatterer, an one-dimensional vertical scatterer (which we will call the screen), and

a semicircular scatterer. In all cases, the response matrix Π̂ is computed by means of the

Born approximation.

Specifically, the array response matrix for a point scatterer is given by

Π̂(~xs, ~xr;ω) = k2Ĝ(~x ⋆, ~xs)Ĝ(~xr, ~x
⋆),

where Ĝ in the infinite strip is given by (1.15). In what follows we suppress the multiplicative

constant k2, hence we assume that

Π̂(~xs, ~xr;ω) = Ĝ(~x ⋆, ~xs)Ĝ(~xr, ~x
⋆). (2.6)

Next, if we view an one-dimensional extended scatterer T – which in our case is the

screen or the semicircle – as a collection of point scatterers, the response matrix is then

given by

Π̂(~xs, ~xr;ω) =

∫

T
Ĝ(~y, ~xs)Ĝ(~xr, ~y) d~y, (2.7)
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where ~y ∈ T .

The exact formulas for the response matrix in all three cases, are given in Appendix A.

Having an expression for the response matrix for each case, we may proceed in computing

the IKM image, which in this work is the modulus of equation (2.5).

We assume a reference wavenumber k0 = π/10 that corresponds to a reference wave-

length λ0, and take D = 10λ0. We use a bandwidth around a single central frequency fc that

corresponds to a wavenumber k = 0.975k0, with B ≃ 0.14fc, i.e. B = [fc −B/2, fc +B/2].

Finally our search domain is S = [11.5, 26.5] × [0, 10], where all distances are expressed in

terms of the reference wavelength λ0. Let us remark that since horizontal wavenumbers βn

appear in the denominator of the Green’s function and are descending in order, we have to

be careful not to divide by a very small number. Therefore, before computing an image for

each frequency, we check the minimum βn for that frequency and, if it lies below a certain

threshold, we exclude this frequency from the computations of our imaging functional. For

the creation of the IKM images, we have employed a threshold of 8 · 10−2.

In Figure 2.5, we plot the IKM image for a point scatterer, located at ~x ⋆ = (19, 5)λ0 in

the left subplot, a vertical screen of size b = 2λ0, centered at ~x ⋆ = (19, 5)λ0 in the middle,

and a semicircular scatterer centered at ~x ⋆ = (19, 5)λ0 with diameter b = 2λ0 in the right.

We seem to have a very good reconstruction for the point scatterer. For the screen, we

observe that the image has deteriorated in quality compared to the point scatterer but we

again have a quite good reconstruction of the scatterer’s support. One way to measure the

quality of an image is with what we call the peak to side lobe ratio, which is the maximum

value in the vicinity of the scatterer, divided by the maximum value in an area away from

it. Lastly, for the semicircle, the noise level of the image is relatively high, but we seem to

recover most of the scatterer’s support, while we do not reconstruct the upper and lower

edges of the semicircle.

2.2.2 An active imaging functional based on modal projection

The Kirchhoff migration imaging functional we just presented backpropagates our data, the

response matrix Π̂, from each receiver element of the array to a point in our search domain

and then back to a source element of the array. An alternative way to create an image in a

waveguide environment, is to backpropagate instead the propagating modes (see [14,21,48]).

A first step towards that is to project our data, the array response matrix Π̂, on the

vertical eigenfunctions Xn, that form an orthonormal basis of L2[0,D]. We thus define the
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Figure 2.5: Imaging with IKM for a point scatterer, located at ~x ⋆ = (19, 5)λ0 (left), a
vertical screen of size b = 2λ0, centered at ~x ⋆ = (19, 5)λ0 (middle) and a semicircular
scatterer centered at ~x ⋆ = (19, 5)λ0 with diameter b = 2λ0 (right). We use frequencies
f ∈ [fc −B/2, fc +B/2] with fc = 0.975k0 and B = 0.14fc.

matrix Q̂, whose mn−th element is given by

Q̂mn(ω) =

∫ D

0
dxs

∫ D

0
dxr Π̂(~xs, ~xr, ω)Xm(xs)Xn(xr), m = 1, . . . ,M, n = 1, . . . ,M,

(2.8)

whereM is the number of propagating modes in Ω\ΩL, for a waveguide as the one depicted

in Figure 1.1.

Moreover, we will use a weighted modal projection and define the matrix P̂ as

P̂mn = βmβn

∫ D

0
dxs

∫ D

0
dxr Π̂(~xs, ~xr, ω)Xm(xs)Xn(xr) (2.9)

= βmβnQ̂mn, m = 1, . . . ,M, n = 1, . . . ,M.

The matrix P̂ has nice properties regarding selective imaging as we will see in the next

chapter. We also need to introduce the projection of the Green’s function on the propagating

modes

Ĝn(za, ·) =
∫ D

0
Ĝ((za, x

′), ·)Xn(x
′) dx′, n = 1, . . . ,M (2.10)

and the weighted projection

G̃n(za, ·) = βn

∫ D

0
Ĝ((za, x

′), ·)Xn(x
′) dx′. (2.11)

= βnĜn(za, ·), n = 1, . . . ,M

The G̃n(za, ·), n = 1, . . . ,M , denote the first M Fourier coefficients of the Green’s func-

tion (which correspond to the propagating modes) with respect to the orthonormal basis
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of L2(0,D) that is formed by the vertical eigenfunctions Xn, weighted by the horizontal

wavenumbers βn.

Mimicking (2.4), we define the functional

ĨKM(~y s, ω) =

M∑

m,n=1

P̂mn(ω)G̃n(~xs, ~y
s)G̃n(~xr, ~y

s). (2.12)

We also define the multiple frequency version of ĨKM in the same way as we did for IKM,

namely we simply add over frequencies, hence

ĨKM(~y s) =
∑

ω

ĨKM(~y s, ω). (2.13)

Remark 4 A key assumption for the definition of the projected response matrix, is that

the array spans the whole vertical cross-section. In the case of partial array aperture, we

lose the orthonormality of the vertical eigenfunctions Xn along the array. The necessary

modifications to the projection and the imaging functional for the partial array case are

presented in the next chapter.

Imaging results

Now, let us compare the imaging results of IKM and ĨKM. On the top row of Figure 2.6

we display again the IKM images from Figure 2.5, while on the bottom row we show the

corresponding ĨKM images, for the same setup. As with the IKM case, the ĨKM images are

the modulus of (2.12).

First, on the left column, we consider the case of the point scatterer. Next, on the

middle column, we show the images for the vertical screen and on the right column we

consider the semicircular scatterer. In all cases, we observe a clear gain in terms of peak

to side lobe ratio when imaging with ĨKM. We also observe a slightly better resolution for

IKM in the range direction. The usual way to assess the quality of an imaging method,

is to perform a resolution and an SNR analysis. This is typically done by computing the

point-spread function (PSF), which is the analytical expression of the image obtained for a

point scatterer. A resolution analysis for ĨKM will be performed in Chapter 4.

As illustrated in the rightmost images, for the semicircle we obtain a rather poor re-

construction of the scatterer’s support, with the image being essentially supported in the
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central part (bulk) of the object. In hopes of recovering more information about the object’s

size and shape, we will use the concept of selective imaging, which will be discussed in the

next section.
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Figure 2.6: Imaging with IKM (top) and ĨKM (bottom) for a point scatterer (left), a vertical
screen (middle) and a semiricle (right), centered at ~x ⋆ = (19, 5)λ0. We use frequencies
f ∈ [fc −B/2, fc +B/2] with fc = 0.975k0 and B = 0.14fc.

2.3 Selective imaging

In this section, we will discuss the concept of selective imaging, in which we are interested

in reconstructing specific parts of the scatterer. It has been motivated by selective focusing,

where we have multiple point-like scatterers and we wish to create images that focus on each

scatterer separately. This can be achieved with the DORT method (DORT is an acronym for

‘decomposition of the time reversal operator’ in French), introduced by Prada and Fink [51].

DORT uses the singular value decomposition (SVD) of the array response matrix to achieve

selective focusing. Under the assumption that the scatterers are located far enough from

each other, the experimental results in [51] suggest that the number of non-zero singular

values equals the number of scatterers present in the medium. That means that there is

an one-to-one correspondence between the singular values and vectors of the array response

matrix and the scatterers. Therefore, we can create an image that focuses on a single

scatterer by back-propagating the projection of the response matrix on the space generated
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by the singular vector that corresponds to that scatterer. Related works include [46, 50].

To the best of our knowledge, the first rigorous mathematical justification of DORT has

been given in [32], where the propagation medium is the free space R3. For the analysis of

DORT in a waveguide environment we refer to the work of Pinçon and Ramdani [48].

The method that we will use for selective imaging of extended reflectors, is called the

subspace projection method [10], which, much like DORT, is based on the SVD of the array

response matrix. To present the general idea behind this method, we will denote the array

response matrix P, with P = Π̂ when using IKM and P = P̂ for ĨKM. The SVD of P is a

factorization of the form (see, for example, [29, §2.5])

P = UΣV∗,

where Σ is a matrix that contains the singular values σi along its diagonal in descend-

ing order, and U , V are unitary matrices containing the left and right singular vectors,

respectively. Also, V∗ denotes the complex conjugate transpose of the matrix V.
We may also write the SVD of P as a sum of the form:

P =

ρ∑

i=1

σi UiV∗
i ,

where ρ = rank(P), so that σ1 ≥ . . . ≥ σρ > σρ+1 = . . . = σN = 0, and Ui, Vi are the left

and right singular vectors.

As shown in [10] for the free space case, the reflections from the main body of an

extended scatterer correspond to the first (and larger) singular values, while the reflections

coming from the edges correspond to smaller singular values. Thus, since our goal is to

focus on specific parts of the scatterer, we will need to create an appropriate filtered version

of P. Having written the SVD of P as a sum, we may write a filtered version of the response

matrix as

D[P] =

ρ∑

i=1

diσi UiV∗
i .

The simpler choice is that the filter weights di may take only values 1 or 0, depending

on whether we will include the i-th singular vector in the filtered version of the response

matrix, or not.
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2.3.1 Selective imaging with IKM

Having created a filtered version of the response matrix, we will first define the selective

imaging functional for IKM, given by

IKM,f(~ys, ω) =
N∑

r=1

N∑

s=1

D
[
Π̂(~xs, ~xr;ω)

]
Ĝ(~ys, ~xr)Ĝ(~ys, ~xs), (2.14)

which is essentially Equation (2.4), derived by replacing the full response matrix by its

filtered version. Also, we introduce the functional

IKM
J (~ys, ω) =

N∑

r=1

N∑

s=1

(
σJ UJV∗

J

)
rs
Ĝ(~ys, ~xr)Ĝ(~ys, ~xs), (2.15)

which is derived from (2.14) when dJ = 1 and di = 0 for all i 6= J ; in other words, when we

consider projection on the single J-th singular vector of the array response matrix.

2.3.2 Selective imaging with ĨKM,f

We also introduce functionals for selective imaging using filtered versions of P̂, as we have

done in (2.14) and (2.15). Specifically, for a single frequency ω, we define

ĨKM,f(~y s, ω) =
M∑

m,n=1

(
D[P̂(ω)]

)
mn
G̃m(~xs, ~y

s)G̃n(~xs, ~y
s). (2.16)

and

ĨKM
J (~y s, ω) =

M∑

m,n=1

(
σJ UJV∗

J

)
mn
G̃m(~xs, ~y

s)G̃n(~xs, ~y
s), (2.17)

where by abusing slightly the notation we now denote by σJ UJV∗
J the projection on the

J-th singular vector of P̂.

2.3.3 Comparison between IKM
J and ĨKM

J

In this subsection, we will test how the two selective imaging functionals perform. We

consider the case of a semicircular scatterer, as the one shown in the previous section.

Recalling the results shown on the rightmost column of Figure 2.6, both IKM, shown on

top, and ĨKM on the bottom, locate the scatterer but fail to recreate its whole support. We
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will now use the selective imaging technique discussed earlier, in hopes of recovering more

information about the scatterer.

To recall the setup, we have a semiricular scatterer, of diameter b = 2λ0, centered at

x⋆ = (19, 5)λ0 and use a bandwidth around a single frequency fc that corresponds to a

wavenumber k = 0.975k0, with B ≃ 0.14fc. To give a sense of how the singular values of

the response matrix behave, we plot on Figure 2.7 the singular values (normalized by the

largest one), of the response matrix Π̂ on the left and of P̂ on the right, for the central

frequency fc. We have only a few singular values that are practically non-zero. In the next

chapter we will derive a relation between the size of the object and the number of non-zero

singular values of P̂ for the screen problem. Specifically, for the vertical screen problem we

will show that the number of significant sv’s is the size of the object divided by the size of

the point-spread function, or in other words, the array’s resolution length.
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Figure 2.7: Normalized singular values of Π̂ (left subplot) and P̂ (right subplot) for a
semicircular scatterer with diameter δ = 40 m, for the central frequency fc.

In Figure 2.8 we present the results of selective imaging with IKM
J on the top row and

ĨKM
J on the bottom row, for J = 1, 2, 3, 4, shown from left to right. For J = 1, IKM

J appears

noisy and has two main lobes near the leftmost part of the scatterer (which we will call

center) and two smaller ones close to the scatterer’s edges. On the other hand ĨKM
J , has

a clear focus on the center. For J = 2, we have two similar images for both functionals,

focusing close to the center. Next, for J = 3, imaging with IKM
J loses its target, as the

maxima are located away from the scatterer, while ĨKM
J has shifted its focus futher away

from the center. Lastly, for J = 4, IKM
J has a clear focus on the center of the scatterer,

while ĨKM
J towards the endpoints of the vertical diameter. We do not display any images

for the next singular vectors, since they do not carry any information about the object.



38 CHAPTER 2. IMAGING PROBLEM

As a first comment, note that selective imaging with ĨKM exhibits the behaviour pre-

sented in [10] for the free space case. Specifically, it was shown that when using a filtered

version of the response matrix that corresponds to the larger singular values, the resulting

image focuses mainly at the center of the scatterer, while as we use the lower singular values,

the focus of the image shifts towards the scatterer’s edges. This, however does not seem to

be the case when imaging with IKM
J .
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Figure 2.8: Imaging with IKM
J (top) and ĨKM

J (bottom) for a semicircle of diameter b = 2λ0,
centered at ~x ⋆ = (19, 5)λ0. We use frequencies f ∈ [fc − B/2, fc + B/2] with fc = 0.975k0
and B = 0.14fc. From left to right, we have J = 1, 2, 3, 4.

In order to get a clearer picture about the difference in behavior between the two imaging

functionals, we now consider a smaller semicircle, with diameter b = λ0. In Figure 2.9 we

plot the values of IKM
1 on the top row and ĨKM

1 on the bottom row. We have on the left a

single frequency with k = 0.988k0 and on the right k = 1.042k0. We observe that in both

cases, imaging with ĨKM
1 has a clear focus on the center of the scatterer, as opposed to IKM

1

that focuses on the center on the left image, while it shifts its focus to the edges on the

right image. This lack of robustness in the IKM images is what initially motivated us to

work with ĨKM.

For the rest of this work that concerns the infinite waveguide setup, we will only consider

imaging with ĨKM. In the next chapter, we will consider the imaging problem of a vertical

screen, in order examine in depth the properties of the projected response matrix P̂ and,

in turn, of the imaging functional ĨKM. From the analysis we will perform, we will also

understand and characterize the focusing behavior of ĨKM
J .
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Figure 2.9: Imaging with IKM
1 (top) and ĨKM

1 (bottom) for a semicircle of diameter b = λ0,
centered at ~x ⋆ = (19, 5)λ0. We use a single frequency with k = 0.988k0 (left) and k =
1.042k0 (right).



Chapter 3

Model problem: Imaging a vertical

screen

In the previous chapter, we described the imaging problem and presented a widely used

imaging method, the Kirchhoff migration, which we denoted by IKM. We also introduced an

alternative imaging method, based on the weighted modal projection of the array response

matrix, denoted by ĨKM, which seemed to outperform IKM, in terms of the image’s quality.

Furthermore, selective imaging with ĨKM allows us to better characterize the geometry and

shape of the reflector since projection on the first singular vector focuses the image at the

center of the reflector, while projection on subsequent singular vectors results in images

that are focusing towards the edges of the reflector.

In this chapter, we consider the model problem of imaging a vertical screen. We begin

with the full aperture case where the array covers the entire cross-section of the waveguide.

In this case we analyze the spectral properties of the projected response matrix P̂ and derive

a relation between its singular vectors and the prolate spheroidal wave functions, that were

studied in a series of papers by Slepian, Landau and Pollak, [40, 41, 55, 56, 58]. Second,

we use this analysis to adequately define ĨKM for an array that only partially covers the

waveguide’s aperture. We also examine the performance of ĨKM with full and partial data,

in another model problem where the scatterer is a semicircle.

40
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3.1 Full aperture case

In this section we examine a simplified model problem in order to gain some insight about

the properties of the projected response matrix P̂, see (2.9). In a homogeneous waveguide

that forms an infinite strip we assume that the array passes through the x axis, and that

N transducers that span the whole depth of the waveguide are located equidistantly at

depths xi = ih, 1 ≤ i ≤ N , where h := D/(N + 1). The scatterer T is a one-dimensional

vertical mirror, a ‘screen’, located at range z = L, see Figure 3.1. Let the coordinates of its

endpoints be (L,α) and (L, β), hence its width equals b = β − α.

z

x

A

(0, 0)

(L, α)

(L, β)

L

T b = β − α

x = D

Figure 3.1: Sketch of a one-dimensional vertical scatterer (‘screen’) T and basic notation.

3.1.1 The weighted projected response matrix P̂

As already seen in the previous chapter, the response matrix for the model problem is given

(see (2.7)) by

Π̂(~xs, ~xr;ω) =

∫

T
Ĝ(~y, ~xs)Ĝ(~xr, ~y) d~y. (3.1)

We insert the expression (1.15) for the Green’s function into (3.1) and we get that

Π̂(~xr; ~xs, ω) = −1

4

∞∑

m,n=1

eiβmL

βm
Xm(xs)Xn(xr)

eiβnL

βn

∫ β

α
Xm(x)Xn(x)dx. (3.2)

However, for L sufficiently large and m ≥M + 1 it holds that

eiβmL = e−
√

µm−k2L ≈ 0,
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therefore, in practice, in each one of the infinite series shown above, only the first M terms

are retained, hence Π̂ can be approximated by

Π̂(~xr; ~xs, ω) = −1

4

M∑

m,n=1

eiβmL

βm
Xm(xs)Xn(xr)

eiβnL

βn

∫ α

β
Xm(x)Xn(x)dx, (3.3)

where by abuse of notation we use the same symbol Π̂ for this approximate array response

matrix. Obviously Π̂ may be equivalently written as a matrix product of the form

Π̂ = −1

4
V Dβ QAM QDβ V

T , (3.4)

where

Dβ = diag(1/β1, . . . , 1/βM ), Q = diag(eiβ1L, . . . , eiβML), (3.5)

V is the N ×M matrix with

Vkℓ = Xℓ(xk), k = 1, . . . , N, ℓ = 1, . . . ,M, (3.6)

and AM is the matrix with entries

amn =

∫ β

α
Xm(x)Xn(x)dx, m, n = 1, 2, . . . ,M. (3.7)

Also, if we recall the expression for the weighted projected response matrix P̂,

P̂mn = βmβn

∫ D

0
dxs

∫ D

0
dxr Π̂(~xs, ~xr, ω)Xm(xs)Xn(xr), (3.8)

we may approximate the double integral by a composite trapezoidal rule to the partition

of [0,D] that is induced by the transducers’ depths xi, i = 1, . . . , N . Hence, in the discrete

level, we define the weighted projected response matrix P̂ as

P̂ = h2D−1
β V T Π̂ V D−1

β . (3.9)

3.1.2 Unitary equivalence between P̂ and AM

In this subsection, we want to examine the spectral properties of the projected response

matrix P̂. We start with the following proposition:
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Proposition 4 Let V be the N × M matrix defined in (3.6), with N ≥ M and h =

D/(N + 1) be the inter-element distance. Then it holds that

hV TV = IM . (3.10)

Proof. To prove (3.10), it suffices to show that

h

N∑

k=1

Xm(xk)Xn(xk) = δmn, ∀m,n = 1, . . . ,M

2h

D

N∑

k=1

sin
(mπxk

D

)
sin
(nπxk

D

)
= δmn, ∀m,n = 1, . . . ,M (3.11)

where xk = kh, 1 ≤ k ≤ N , and h := D/(N + 1). We add the point x0 = 0 in the

discretization, hence (3.11) is equivalent to

2

N + 1

N∑

k=0

sin

(
mπk

N + 1

)
sin

(
nπk

N + 1

)
= δmn. (3.12)

The left-hand side of (3.12) may be seen as a discrete sine transform or, equivalently, as

the imaginary part of a discrete Fourier transform (DFT) and therefore (3.12) results from

the well-known orthogonality property of the DFT. �

Following this, if we insert (3.4) into (3.9), we have that P̂ is related to the matrix AM

as follows

P̂ = −1

4
QAMQ. (3.13)

It is trivial to check that Q, given by (3.5), is a unitary matrix, i.e. Q∗Q = QQ∗ = IM .

Hence, up to a multiplicative constant, P̂ is unitarily equivalent to AM . Therefore, the

spectral properties of AM play an important role in understanding the behavior of the

imaging functional ĨKM.

3.1.3 Spectral properties of AM

Having proven the unitary equivalence between P̂ and AM , we wish to examine the spectral

properties of AM , in order to gain more insight on the behavior of ĨKM and ĨKM
J . In this

subsection, we will show that AM has a special structure; it is a Toeplitz-minus-Hankel

matrix. This allows us to study the distribution of its singular values and its relation with
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the size of the scatterer.

The Toeplitz-minus-Hankel structure

For ℓ,m = 1, . . . ,M , and in view of the simple trigonometric identity 2 sin a sin b = cos(a−
b)− cos(a+ b), it holds that

aℓm =

∫ β

α
Xℓ(x)Xm(x)dx =

2

D

∫ β

α
sin

ℓπx

D
sin

mπx

D
dx

=
1

D

∫ β

α
cos

(ℓ−m)πx

D
dx− 1

D

∫ β

α
cos

(ℓ+m)πx

D
dx

=
1

(l −m)π

(
sin

(l −m)πβ

D
− sin

(l −m)πα

D

)

− 1

(l +m)π

(
sin

(l +m)πβ

D
− sin

(l +m)πα

D

)
, (3.14)

where, of course, it is understood that for l = m the term 1
(l−m)π

(
sin (l−m)πβ

D − sin (l−m)πα
D

)

takes the value (β − α)/D.

Hence

AM = TM −HM , where TM := (tℓ−m)Mℓ,m=1, HM := (tℓ+m)Mℓ,m=1,

and

tm =
1

D

∫ D

0
1T (x) cos

mπx

D
dx, (3.15)

where 1T (x) is the indicator function of T . Note that 1T (x) is the so-called generating

function of the matrices AM , TM and HM . One may immediately recognize TM as a (real

symmetric) Toeplitz matrix, i.e., a matrix with constant entries along the diagonals, and

HM as a Hankel matrix, i.e., a matrix with constant skew-diagonals (these are the diagonals

that are perpendicular to the main diagonal). Hence AM has a special structure: It is a

Toeplitz–minus–Hankel matrix.

Distribution of the singular values of AM

As we shall briefly discuss next, the spectral properties of AM are determined by the Toeplitz

part TM . This can be seen, for example, by modifying appropriately the proofs in the work

of Fasino [24], who studies the spectral properties of Toeplitz-plus-Hankel matrices, or by
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tracing back to the work of Trench [59], who studies the spectral properties of the real

symmetric Toepliz matrix

Tn = (tr−s)
n
r,s=1, where tr =

1

π

∫ π

0
f(x) cos rx dx,

and the generating function f ∈ L2[0, π].

Now, in the following definition we introduce some notation that is fairly standard, see

e.g. [2, 59].

Definition 1 Let J be the flip matrix (i.e. the matrix that has ones on the secondary

diagonal and zeros elsewhere). Then, a vector x ∈ Rn is called symmetric if Jx = x and

skew-symmetric if Jx = −x. Moreover, an eigenvalue ν of a matrix T is defined to be even

(odd) if T has a symmetric (skew-symmetric) ν–eigenvector.

Now, let λ(n)

1 ≤ λ(n)

2 ≤ · · · ≤ λ(n)
n be the eigenvalues of Tn, and let ν(n)

1 ≤ ν(n)

2 ≤ · · · ≤ ν(n)
n

be the eigenvalues of An. Since, in our case, the generating function f of the matrices An,

Tn, and Hn, is the indicator function of T , its essential lower and upper bounds are simply

0 and 1, respectively. A result of Szegő [31, pp. 64-65], guarantees that:

(i) 0 ≤ λ(n)

i ≤ 1 for all i = 1, . . . , n,

(ii) for any fixed integer k, λ(n)

k → 0, λ(n)

n−k → 1 as n→ ∞, and

(iii) if G is any continuous function defined in [0,1], we have

lim
n→∞

1

n

n∑

i=1

G(λ(n)

i ) =
1

D

∫ D

0
G(f(x))dx. (3.16)

Moreover, the following theorem specializes results stated in [59] to our case, where we

work on [0,D], the entries of our matrix are given in (3.15), and f = 1T .

Theorem 1 (a) The odd eigenvalues κ(2n+1)

1 ≤ κ(2n+1)

2 ≤ · · · ≤ κ(2n+1)
n of T2n+1 are the

eigenvalues of An [59, Thm. 2].

(b) Since f is bounded, the sets {λ(n)

i }ni=1 and {κ(2n+1)

i }ni=1 are absolutely equally distributed

[59, Def. 1, Th. 5], i.e.

lim
n→∞

1

n

n∑

i=1

∣∣∣G
(
κ
(2n+1)
i

)
−G

(
λ
(n)
i

)∣∣∣ = 0.
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(c) Since f is bounded, (3.16) also holds for ν(n)

i instead of λ(n)

i . Moreover, if for ǫ > 0

C(ǫ, 1− ǫ, n) is the cardinality of the set {i : ǫ ≤ κ(2n+1)

i ≤ 1− ǫ}, then

lim
n→∞

1

n
C(ǫ, 1− ǫ, n) = 0

[59, Lem. 2 and Thm. 6].

Relation between the number of ‘significant singular values’ and size of the

object

Summarizing, the eigenvalues of the matrix An (which are the odd eigenvalues of T2n+1)

are clustered near 0 and 1, and considering the function G to be the identity on [0, 1], we

immediately see that

lim
n→∞

1

n

n∑

i=1

ν(n)

i =
1

D

∫ D

0
1T (x) dx =

b

D
.

This indicates that asymptotically, as n → ∞, the ratio of the nonzero eigenvalues of An

to the total number of eigenvalues is equal to b/D. In our case, where n is equal to the

number of propagating modes M =
⌊
2D
λ

⌋
, it is expected that the number of ‘significant’

singular values for our matrix AM is

[
M

b

D

]
≈
[
2b

λ

]
, (3.17)

where λ is the wavelength.

Therefore, we have shown that the number of nonzero singular values is related to the

size of the object. In particular, by performing a standard resolution analysis (see Chapter

4), one may deduce that the cross-range resolution is λ/2, hence the rank of the matrix

AM and, consequently, of P̂, is roughly equal to the size of the object divided by the “array

resolution.” The same result has been obtained in the free-space case (see [10, §4.5.2]).
Moreover, if u = (u1, . . . , uM )T is an orthonormal eigenvector of AM that corresponds

to an eigenvalue ν, then

v = 2−1/2




−Ju

0

u


 = 2−1/2(−uM , . . . ,−u1, 0, u1, . . . , uM )T (3.18)
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is an orthonormal skew-symmetric ν–eigenvector of T2M+1, and vice versa. We shall say that

eigenvectors that correspond to eigenvalues that are close to 1 comprise the signal subspace,

those that correspond to eigenvalues that are close to 0 comprise the noise subspace, and,

finally, the eigenvectors that correspond to intermediate eigenvalues form the transient

subspace.

3.1.4 Properties of ĨKM
J at the correct range

Next, we consider the imaging functional ĨKM
J evaluated at a search point ~y s = (L, xs) that

is located at the correct range L. Note that the subscript J indicates that for selective

imaging only the J-th singular vector is employed in the approximation of the matrix P̂.

Using the fact that AM is a real symmetric matrix and by evaluating (2.17) at the

correct range, we have that

ĨKM
J (~y s) = σJ

(
1

4h

M∑

n=1

uJnXn(x
s)

)2

= (8Dh2)−1σJ

(
M∑

n=1

uJn sin
nπxs

D

)2

, (3.19)

where uJ = (uJ1 , u
J
2 , . . . , u

J
M )T is the singular vector of AM that corresponds to the singular

value σJ . Hence, the ĨKM
J functional at the correct range is in fact, up to a constant, the

square of the trigonometric polynomial

pJ(x) =
M∑

n=1

uJnXn(x) = (2/D)1/2
M∑

n=1

uJn sin
nπx

D
. (3.20)

Moreover, we may prove the following proposition:

Proposition 5 The trigonometric polynomial p1 that corresponds to the first singular vec-

tor u1 and, consequently, the associated image computed at the correct range L, exhibits the

largest fractional concentration of energy in (α, β), among all polynomials pJ , J = 1, . . . ,M .



48 CHAPTER 3. MODEL PROBLEM: IMAGING A VERTICAL SCREEN

Proof:

‖pJ‖2L2[α,β]

‖pJ‖2L2[0,D]

=

∫ β

α
p2J(x) dx

∫ D

0
p2J(x) dx

(3.20)
=

∫ β

α

(
M∑

n=1

uJnXn(x)

)2

dx

∫ D

0

(
M∑

n=1

uJnXn(x)

)2

dx

=

M∑

m=1

M∑

n=1

uJmu
J
n

∫ β

α
Xm(x)Xn(x) dx

M∑

m=1

M∑

n=1

uJmu
J
n

∫ D

0
Xm(x)Xn(x) dx

︸ ︷︷ ︸
=δmn,due to orthonormality

(3.7)
=

M∑

m=1

uJm

M∑

n=1

(AM )mn u
J
n

M∑

m=1

(uJm)2

=

σJ

M∑

m=1

(uJm)2

M∑

m=1

(uJm)2

= σJ .

�

3.1.5 Connection between the singular vectors of AM and the prolate

spheroidal wave functions

Now we are in a position to scrutinize the form of the singular vectors of the matrix AM .

In [61] we have derived some analytic expressions for those singular vectors which correspond

to singular values that are close to 1. In the remaining part of the section we provide explicit

characterizations for the singular vectors of AM depending on the various positions of the

screen.

A screen attached on the top of the waveguide

Proposition 6 Assume that the screen is attached on the top of the waveguide, i.e. T =

{(L, x) : x ∈ [0, b]}. Then the eigenvectors of the matrix AM may be recovered from

the skew-symmetric discrete prolate spheroidal sequence (DPSS), [56], (also known as a

Slepian sequence), where we remind that skew-symmetry, according to Definition 1, implies

that uJ−i = −uJi , i = 1, . . . ,M .



3.1. FULL APERTURE CASE 49

Proof: Equation (3.14) implies that in the case where the screen is attached on the top of

the waveguide, i.e. α = 0 and β = b, the matrix AM has entries

amn =
1

(m− n)π
sin

(m− n)πb

D
− 1

(m+ n)π
sin

(m+ n)πb

D
, (3.21)

that obviously manifest its Toeplitz-minus-Hankel structure. Therefore, from the discussion

below Theorem 1, we deduce that its eigenvectors are recovered from the skew-symmetric

eigenvectors of the (2M + 1)× (2M + 1) Toeplitz matrix T2M+1, which satisfy

M∑

n=−M

1

(m− n)π
sin

(m− n)πb

D
uJn = νJu

J
m, m = −M, . . . ,M.

Skew-symmetry implies that uJ−i = −uJi , i = 1, . . . ,M , therefore {uJi }Mi=−M is identified as

a skew-symmetric discrete prolate spheroidal sequence (DPSS), see [56, Section 2.2], (also

known as a Slepian sequence). �

Let us remark here that this DPSS is a discrete analog of the prolate spheroidal wave

function (PSWF) ψ2J−1, [58]. Specifically, ψn is the eigenfunction that corresponds to the

n-th eigenvalue of the Fredholm integral equation

∫ 1

−1

sin c(x− y)

π(x− y)
ψn(y) dy = νnψn(x), x ∈ [−1, 1], (3.22)

where, in our case, the so-called bandwidth parameter is c = 2πb/λ = bk, k being the

wavenumber. The PSWFs possess many interesting properties, see e.g. [45,57,58]. Here we

just name two:

(i) The eigenvalues are discrete and form a decreasing sequence ν0 > ν1 > . . . that tends

to zero as n→ ∞, and

(ii) the corresponding eigenfunctions ψn(x) are even or odd with n.

Remark 5 The trigonometric polynomial pJ(x) defined in (3.20) behaves like the PSWF

ψ2J−1 apart from a horizontal stretching.

Proof: Consider the trigonometric polynomial pJ(x) = (2/D)1/2
∑M

n=1 u
J
n sin

nπx
D , x ∈

[0,D], J = 1, 2, . . . ,M . Letting yn = λn
2D (λ is the wavelength), we may interpret the
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trigonometric polynomial pJ as a Riemann sum that approximates the integral

2
√
2D

λ

∫ 1

0
ψ2J−1(y) sin(ξy) dy =

√
2D

iλ

∫ 1

−1
ψ2J−1(y)e

iξy dy

= γ2J−1ψ2J−1

(x
b

)
, x ∈ [0,D],

where ξ := 2πx/λ = kx. Note that the first equality holds since ψ2J−1 is an odd function in

[−1, 1], while the second equality reflects the interesting property that the Fourier transform

of a PSWF restricted to [−1, 1] is invariant except for a horizontal stretching, [57, Eq. (24)];

also notice that γ2J−1 is independent of x. �

In order to illustrate these conclusions assume a reference wavenumber k0 = π/10 that

corresponds to a reference wavelength λ0 and we consider a waveguide with depth equal to

D = 10λ0 and constant sound speed c0. We use a single frequency with associated wavenum-

ber k = 0.975k0 and the screen’s width equals b = 2λ0. Then, M = 19 modes propagate in

the waveguide and according to (3.17) we expect AM to possess four ‘significant’ singular

values. Indeed, the first three lie close to 1, the fourth is approximately 0.62, the fifth one

is approximately equal to 0.04, while the rest are less than 4 × 10−4 and decrease rapidly

to zero. In Figure 3.2 we superimpose the graph of the trigonometric polynomial (pJ(x))
2

on the graph of the PSWF
(
ψ2J−1

(
x
b

))2
, both normalised with respect to their maximum

values, for x ∈ [0,D], and for J = 1, 2, . . . , 6.

As expected, these functions for J = 1 to 4 are mainly supported in [0, b] = [0, 2λ0],

while for J = 5 and 6 they are mostly supported in the exterior of [0, b].

A screen attached on the bottom of the waveguide

In this case let T = {(L, x) : x ∈ [D − b,D]}. Then it is easy to check that the entries of

the matrix AM satisfy

amn =

∫ D

D−b
Xm(x)Xn(x) dx = (−1)m+n

∫ b

0
Xm(x)Xn(x) dx,

and, consequently, if u =
(
ui
)M
i=1

is a ν-eigenvector of AM when the screen is attached

on the top of the waveguide, then one may show that v :=
(
vi
)M
i=1

=
(
(−1)i+1ui

)M
i=1

is a ν-eigenvector of AM when the screen is attached on the bottom of the waveguide.

Moreover, let us denote, for the moment, ptopJ (x) =
∑M

n=1 u
J
nXn(x) to be the trigonometric
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Figure 3.2: The graph of (pJ(x))
2 (dashed line printed in blue) superimposed on the graph

of
(
ψ2J−1

(
x
b

))2
(solid line printed in red), for x ∈ [0, 10λ0]. (Both are normalised with

respect to their maximum values.) Top row: J = 1, 2, 3, bottom row: J = 4, 5, 6. The
wavenumber k = 0.975k0, and the width of the screen b = 2λ0.

polynomial for a screen attached on the top of the waveguide, and pbotJ (x) =
∑M

n=1 v
J
nXn(x)

to be the corresponding trigonometric polynomial for a screen attached on the bottom of

the waveguide. Then it is easy to show that

pbotJ (x) = ptopJ (D − x),

which implies that the image created by the imaging functional ĨKM
J , at the correct range

L, is determined by the graph of the PSWF
(
ψ2J−1

(
D−x
b

))2
, x ∈ [0,D].

A screen located in the interior of the waveguide

In this case let T = {(L, x) : x ∈ [α, β] ⊂ [0,D]}. Following the same steps as in the

proof of Proposition 6, we have that the eigenvectors of AM are determined through the

skew-symmetric eigenvectors of the matrix T2M+1, and (3.14) suggests that they now satisfy
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the system of equations

M∑

n=−M

1

(m− n)π

(
sin

(m− n)πβ

D
− sin

(m− n)πα

D

)
uJn = νJu

J
m, (3.23)

for m = −M, . . . ,M . Equation (3.23) may be viewed as the discrete analog of the following

integral equation

K1u(x) :=

∫ 1

−1

1

π(x− y)

(
sin

2πβ

λ
(x− y)− sin

2πα

λ
(x− y)

)
u(y) dy = νu(x), (3.24)

for x ∈ [−1, 1], where we have suppressed the index J for notational convenience. Note

that the kernel in (3.24) is more complicated than the sinc kernel appearing in (3.22)

that concerns the limiting case where the screen is attached on the top of the waveguide.

Equation (3.24) has been studied in [53] where the authors consider a time–frequency con-

centration problem for signals that have a prescribed bandwidth of the form |w| ∈ [a, b] for

0 < a < b; thus the frequency interval is not connected any longer. Moreover, for general

values of α and β (α < β) the work of Morrison [47], and SenGupta et al. [53], indicates

that there cannot be found a second or fourth-order self-adjoint linear differential operator

with polynomial coefficients that commutes with the integral operator K1 defined in (3.24).

The fact that in the case of Section 3.1.5 the corresponding integral operator commutes

with a quite simple second-order differential operator is crucial for the analysis conducted

by Slepian and his colleagues at Bell Laboratories, [40, 41,55,56,58].

Therefore we are not able to characterise completely the eigenfunctions of (3.24), as was

the case with the the eigenfunctions of (3.22) that were identified as PSWF’s. Nevertheless,

the integral operator K1 is a compact symmetric operator from L2[−1, 1] to L2[−1, 1],

hence its eigenvalues ν0 ≥ ν1 ≥ · · · ≥ νn ≥ · · · → 0, as n → ∞, while its corresponding

eigenfunctions are complete in L2[−1, 1], [53].

Working as in Section 3.1.5 we may view the trigonometric polynomial

pJ(x) = (2/D)1/2
M∑

n=1

uJn sin
nπx

D



3.1. FULL APERTURE CASE 53

as an approximation of the integral

√
2D

λ
i

∫ 1

−1
eiξyu(y) dy, ξ = 2πx/λ = kx,

where u is an odd eigenfunction of the integral equation (3.24) that corresponds to the

eigenvalue σJ . Interestingly enough, one may follow the lines of SenGupta et al. in [53], in

order to prove that ∫ 1

−1
eiξyu(y) dy = Cv(x), x ∈ [0,D],

where v is a σJ–eigenfunction of the integral equation

K2v(x) :=

∫

J

sin k(x− y)

π(x− y)
v(y) dy = νv(x), (3.25)

for x ∈ J := [−β,−α]∪ [α, β]. Here we stress the fact that in (3.25), J is the disconnected

interval [−β,−α] ∪ [α, β], while the kernel is a sinc function with bandwidth parameter

equal to the wavenumber. Note that K2 is also a compact symmetric operator from L2(J )

to L2(J ), that has the same eigenvalues with (3.24), and its corresponding eigenfunctions

are complete in L2(J ), [53].

Hence, the output of the imaging functional ĨKM
J when it is evaluated at the correct

range (see (3.19)) is recovered by the graph of the eigenfunction of (3.25) that corresponds

to the eigenvalue σJ . Note that the domain of the eigenfunctions v is extended for values of

x outside J , as usual, by using the left hand side of (3.25), that is well defined for x ∈ J ,

in order to define v for values of x that lie outside J . Specifically, let

v(x) =
1

ν

∫

J

sin k(x− y)

π(x− y)
v(y) dy, x 6∈ J .

These remarks are illustrated in Figure 3.3 where we superimpose the graph of p2J(x) on

the graph of the square of the corresponding eigenfunction of (3.25), both normalised with

respect to their L∞–norms. All the physical parameters are the same as those used in

Figure 3.2, while the ordinates of the screen’s endpoints are α = 3λ0, β = 5λ0, thus the

width of the screen is again b = 2λ0.

As one may immediately verify there is very good agreement between the graphs of

p2J(x) and the corresponding eigenfunctions of (3.25) squared. Moreover, notice that, for

example, p21(x) that corresponds to the largest eigenvalue (approximately equal to one)
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Figure 3.3: The graph of (pJ(x))
2 (dashed line printed in blue) superimposed on the graph

of the square of the corresponding eigenfunction of (3.25) (solid line printed in red), for
x ∈ [0, 10λ0]. (Both are normalised with respect to their maximum values.) The ordinates
α = 3λ0 and β = 5λ0 are printed in green dashed lines. Top row: J = 1, 2, 3, bottom row:
J = 4, 5, 6. The wavenumber k = 0.975k0, and the width of the screen b = 2λ0.

exhibits a peak around the midpoint of the screen, p24(x) that corresponds to an eigenvalue

≈ 0.640 peaks near the endpoints of T , while p26(x) that corresponds to an eigenvalue

≈ 0.025 is practically supported in the exterior of T .

Remark 6 We close this section with a discussion concerning possible generalizations of

the theory presented here:

1. The theory for the considered model problem can be generalized to the three-dimensional

case for a waveguide with a bounded rectangular cross-section. In this case, to allow

for exploiting tensor product expressions the array should be planar and the equivalent

of the one-dimensional screen would be a two-dimensional rectangular planar screen.

Both the array and the screen should be perpendicular to the horizontal direction which

is assumed to be the direction of propagation.

2. Considering a general reflector geometry is more challenging. Indeed, we can always

write the matrix P̂ in the form of (3.13). This means that P̂ can be always decomposed
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as a product of a unitary propagator matrix Q that transfers the field from the array

to the range of the reflector times the matrix AM that carries information about the

reflector, times the same unitary matrix Q that now transfers the scattered field from

the reflector to the array. Therefore, the matrix P̂ is unitarily equivalent to the ma-

trix AM and information about the reflector can be obtained from the singular value

decomposition of P̂. Although, the structure of the matrix AM does not have in gen-

eral the exact Hankel-minus-Toeplitz form observed for the screen model problem, we

expect that the conclusions drawn from the model problem carry over to more general

reflector’s geometries. In particular, as our numerical results suggest, information

about the reflector’s location and shape can be obtained from the singular vectors that

correspond to the largest and intermediate singular values with the first ones focusing

to the bulk of the reflector and the second ones focusing to its boundary.

3.2 Partial aperture case

We have spent the previous section reviewing and analyzing the performance of the imaging

functional ĨKM for the screen model-problem under the assumption that the array spans

the whole depth of the waveguide. However, in this section we aim at imaging extended

reflectors with a partial array. In what follows, we therefore consider the screen model-

problem with an array that does not span the whole [0,D]. Then the vertical eigenfunctions

Xn are no longer orthonormal along the array, and one may immediately check that P̂ as

defined in (2.9) is no more unitarily equivalent to AM . This of course affects the efficiency

of ĨKM
J in selective imaging in the sense that we lose the usual ‘ordering’ of images which

implies that projection of P̂ on its first singular vector exhibits focusing at the center of

the reflector, while projecting on subsequent significant singular vectors results in images

that focus at the endpoints of the reflector, [10, 61]. Even if we cast aside selectivity and

concentrate in creating images with ĨKM we will soon discover, as one would expect, that

the efficiency of ĨKM deteriorates as we decrease the length larr of the array. We illustrate

this with the following example. We consider a constant sound speed c0, the reference

frequency is f0 and corresponds to a reference wavelength λ0 and an associated wavenumber

k0 = π/10. All the experiments shown here are performed for a single frequency with

k = 0.975k0, at which M = 19 modes propagate. The scatterer, i.e. the screen, is centered

at (L, x0) = (22.5, 5)λ0 and its length is b = 2λ0. The inter-element array distance h = λ0/8,
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unless stated otherwise. In the leftmost subplot of Figure 3.4 we show the image we obtain

with ĨKM for full array, while the other three subplots from left to right are created with

array length larr = 0.9D, 0.7D, and 0.5D m, respectively. In all cases the length of the

array is reduced symmetrically from both ends. Moreover, to assess the noise level of an

image, we define the Signal-to-Noise Ratio (SNR) by,

SNR =
max
~xs∈R

|ĨKM(~x s)|

max
~xs∈S\R

|ĨKM(~x s)|
,

where R is a subset of our search domain S that contains the reflector. In our tests we

define R as a 6λ0 × 6λ0 box with the scatterer lying at its center. The SNR value can

be used as a quantitative measure that corroborates the qualitative characteristics of the

image. In Figure 3.4, and in what follows, the boundary of R is drawn in red. As it is

evident from Figure 3.4, and the associated SNR values shown in the title of each subplot,

the quality of the image deteriorates as larr decreases.
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Figure 3.4: Imaging with ĨKM for the screen. The length of the array from left to right is
larr = D, 0.9D, 0.7D, 0.5D, respectively, the wavenumber k = 0.975k0 and the width of
the screen b = 2λ0.

Let us remark here that this is not a limitation of the particular imaging functional and,

in general, a deterioration of the imaging results is expected as the array aperture decreases.

Similar results not shown here are also obtained with the classical IKM imaging functional.

Next, we will propose an alternative definition of the matrix P̂ in order to preserve the nice

properties that we have observed in the full array case to the case of the partial-aperture

array as well.
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3.2.1 Weighted projection of the array response matrix for the partial

array case: Motivation

Now, we shall present a way to construct a weighted projection of the array response

matrix in the case of the partial-aperture array. Our observations in Section 3.1 regarding

the band-limited nature of the trigonometric polynomials with coefficients the eigenvectors

of the matrix AM lead us to consider the M ×M matrix with entries

(Aarr)mn =

∫

A
Xm(x)Xn(x)dx, m, n = 1, . . . ,M. (3.26)

Aarr is a real, symmetric Toeplitz-minus-Hankel matrix and possesses all the nice properties

that were described in Section 3.1. Let νj, j = 1, . . . ,M , be its eigenvalues and w
j =

(wj
1, w

j
2, . . . , w

j
M )T be the corresponding orthonormal eigenvectors. Moreover, let W be the

M ×M orthogonal matrix W = (w1,w2, . . . ,wM), and sj be the trigonometric polynomial

sj(x) =

M∑

i=1

wj
iXi(x), j = 1, 2, . . . ,M, (3.27)

where wj
i are as above.

Next, we project the array response matrix Π̂ on the M trigonometric polynomials sn,

rather than on the first M vertical eigenfunctions Xn. Specifically, let Ŝ be the M ×M

matrix with entries

Ŝmn =
1

νmνn

∫

A
dxs

∫

A
dxr Π̂(~xs, ~xr, ω) sm(xs) sn(xr), (3.28)

where m,n = 1, . . . ,M . It is immediate to verify that

∫

A
sk(x)Xm(x)dx = νk w

k
m, k,m = 1, . . . ,M. (3.29)

Replacing (3.3) and (3.27) into (3.28), and in view of (3.29), we arrive at the following

matrix identity

Ŝ = −1

4
W TDβ QAM QDβW. (3.30)

As a final step, note that W is an orthogonal matrix hence if we define

P̂ = D−1
β W ŜW TD−1

β . (3.31)
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we may check that

P̂ = −1

4
D−1

β W W T
︸ ︷︷ ︸

IM

DβQAMQDβ W W T
︸ ︷︷ ︸

IM

D−1
β = −1

4
QAMQ. (3.32)

So, by following the steps described above, one may end up with a matrix P̂ that (up to

the multiplicative constant −1/4) is unitarily equivalent to AM . Let us also note that in

the full array case the orthonormality of the Xn’s implies that Aarr is the identity matrix,

sj(x) = Xj(x) and W = IM , thus we recover the previous definition of P̂, see (2.9).

3.2.2 Implementation aspects

We feel that the previous approach may be useful for theoretical purposes mainly. The

main reason for that hinges on the fact that the data that we have in our disposal is the N2

values tabulated in Π̂. Hence the integrals over A in (3.28) and (3.29) have to be evaluated

numerically whereas the validity of (3.32) relies crucially on the fact that (3.29) holds. In

practice, (3.29) holds only approximately due to inherent errors in the course of numerical

integration; as a result those errors ‘pollute’ (3.32) as well.

In order to avoid these difficulties we propose the following implementation of our

method in order to work on the matrix level. To this end we consider the real, symmetric

matrix h(V TV ), where V is the N ×M matrix with entries

Vmn = Xn(xm), m = 1, . . . , N, n = 1, . . . ,M, (3.33)

and we let S to be the M ×N matrix with

Sij = si(xj), i = 1, . . . ,M, j = 1, . . . , N, (3.34)

where xk, k = 1, . . . , N , are the elements of the now-truncated array, and si(xj) is the

i–th trigonometric polynomial defined in (3.27) evaluated at the cross-range of the j–th

transducer. Now, by abusing slightly the notation, νj and w
j = (wj

1, w
j
2, . . . , w

j
M )T are

the eigenvalues and corresponding orthonormal eigenvectors of the Gram matrix h(V TV ).

Notice that the scaling factor h is used here just to push the νi’s to cluster near one and

zero (instead of near h−1 and zero) as we shall see later.
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It is easy to show that

SV = h−1DνW
T , where Dν = diag(ν1, . . . , νM ),

(a matrix equivalent of (3.29)), and since W is orthogonal we deduce that

WD−1
ν SV = h−1IM .

Therefore, if we define the matrix P̂ as

P̂ = D−1
β W D−1

ν S Π̂ST D−1
ν W T D−1

β ,

we get that

P̂ = −1

4
D−1

β W D−1
ν S V︸ ︷︷ ︸

h−1IM

DβQAMQDβ V
T ST D−1

ν W T

︸ ︷︷ ︸
h−1IM

D−1
β = − 1

4h2
QAMQ,

so P̂ is again unitarily equivalent to AM (up to the multiplicative constant −1/(4h2)). We

summarize these in the following definition

Definition 2 Given the array response matrix Π̂ for the scattered field, we first consider

the M ×N matrix

S̃ = D−1
ν S, (3.35)

where

Sij = si(xj), i = 1, . . . ,M, j = 1, . . . , N, and Dν = diag(ν1, . . . , νM ),

and next, we define P̂ by

P̂ = D−1
β W S̃ Π̂ S̃T W T D−1

β . (3.36)

Then we use P̂ in ĨKM (as defined in (2.12)), i.e.,

ĨKM(~y s, ω) = − 1

4h2

M∑

m,n=1

e−i(βm+βn)|za−zs|Xn(x
s)Xm(xs)P̂mn(ω),

for imaging.



60 CHAPTER 3. MODEL PROBLEM: IMAGING A VERTICAL SCREEN

In order to assess the performance of ĨKM, as defined above, we apply our methodology

in the test case that we have considered in the beginning of the present section. In the

leftmost subplot of Figure 3.5 we show ĨKM images for full array, while the other three

subplots correspond to array lengths larr = 0.9D, 0.7D, 0.5D, respectively. In all cases the

length of the array is reduced symmetrically from both ends. We observe that there is no

loss of information, even when we use an array with half of its original length. This falls

in line with the theory, which suggests that the projected array response matrix P̂ for the

partial aperture array, as it is defined for example in (3.30) and (3.31), is identical to the

projected matrix for an array that spans the whole vertical cross-section [0,D]. Of course,

as we have already remarked, this holds under the assumption that all computations are

exact and there is no need for regularization in our calculations, as will be the case for

smaller array lengths, which we will examine in the next subsection.
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Figure 3.5: Imaging with ĨKM for the screen, when larr = D, 0.9D, 0.7D, 0.5D, for k =
0.975k0.

Next, in Figure 3.6, we plot selective imaging results obtained with the functional ĨKM
J ,

for J = 1, 2, 3, 4, when larr = 0.9D. Selective imaging with ĨKM
J performs as if we were

using the full-aperture array; all four images are very good with high SNR > 1.9, and

projection on the first singular vector results in focusing on the middle of the screen while

projection on the second to fourth singular vectors provides information about the location

of its edges. These images remain identical until we reduce by half the length of the array

(symmetrically from both ends).
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Figure 3.6: Imaging with ĨKM
J for the screen, for J = 1, 2, 3, 4 when larr = 0.9D, for

k = 0.975k0.

The results in Figures 3.5 and 3.6 are in perfect agreement with the theory in this

ideal case; they are excellent and in some sense counter intuitive, since there is no loss of

information despite the fact that we decrease the array length. Note that this is certainly

not true for the functional that we have used to create the images in Figure 3.4, where the

quality of the images deteriorates as the array aperture decreases.

3.2.3 Numerical experiments: Partial-aperture array imaging for the

model problem

The noiseless data case

So far we have seen that for the screen model problem and under the assumption that all

arithmetic operations are exact (i.e. they are performed with infinite precision), the spectral

properties of P̂ (as defined by (3.36)) are determined by those of AM , thus we expect ĨKM

to perform in exactly the same way as if we were using a full-aperture array. However,

in practice we use finite precision arithmetic so we have to examine whether and how this

affects the performance of our method.

A quite obvious cause of potential numerical instabilities is the presence of the reciprocals

ν−1
i of the eigenvalues of the matrix h(V TV ) in the definition of S̃, see (3.35). Hence it

is important to examine the behavior of the νi’s, and how it is related to the length of

the array A. An important remark in this direction is that h(V TV ) may be considered as

an approximation of the M ×M matrix Toeplitz-minus-Hankel matrix Aarr. Therefore we

would expect νi to cluster near 0 and 1 and, specifically, roughly [larr/(λ/2)] of them to lie

near 1, and the rest M − [larr/(λ/2)] to approach zero. Moreover, as larr decreases, more

singular values tend to zero, and in fact h(V TV ) will become practically singular as soon

as its minimum eigenvalue νmin falls below a certain threshold.

In some cases there do exist theoretical bounds for the minimum eigenvalues of Toeplitz
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matrices. For example, Serra in [54] shows that if T is an (n+1)× (n+1) Toeplitz matrix

with generating function a real integrable function on [−π, π], which is strictly positive in a

closed interval J ⊂ I and zero elsewhere, then for n sufficiently large, and for any ǫ ∈ (0, t),

its minimum eigenvalue λmin is bounded as

c1 (t− ǫ)n(n+1)/2 < λmin < c2 t
n,

where c1, c2 are positive constants (independent of n), and t is a constant less than one that

depends on the width of the interval J ; specifically t = sin2(|J |/4), see also [52]. In our

case, we may apply these bounds in the case where the array is attached on the top of the

waveguide. Then the generating function of the Toeplitz-minus-Hankel matrix Aarr is the

indicator function 1J̃(x) of J̃ = [−larr, larr], and the minimum eigenvalue of Aarr is equal to

the minimum odd eigenvalue of its associated (2M + 1) × (2M + 1) Toeplitz counterpart.

Hence, we expect its minimum eigenvalue to decrease to zero like τ2M , where

τ = sin2
(
πlarr
2D

)
.

As already said, we expect that the eigenvalues of h(V TV ) behave like those of Aarr. In

Figure 3.7 we plot (using a logarithmic scale on the vertical axis) the minimum eigenvalue

νmin of the M ×M matrix h(V TV ) (computed in MATLAB) and the values predicted by

the bounds τ2M and τ2M(2M+1)/2 as larr decreases. As an indication of the relative error

due to floating point arithmetic we use the so-called machine epsilon ε (implemented in

MATLAB and printed as a blue dashed line in the figure). Here, we have k = 0.975k0,

M = 19 modes propagate, and the array pitch is h = 2.5 m ≃ λ/8. The results shown in

Figure 3.7 suggest that the minimum eigenvalue of h(V TV ) drops below ε when the length

of the array is less than 0.6D.
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Figure 3.7: The minimum eigenvalue of h(V TV ) (blue circles) vs. τn (red asterisks) and
τn(n+1)/2 (black diamonds) for k = 0.975k0 and n = 2M , when we decrease the length of
the array from below.

In Figure 3.8 we plot the minimum eigenvalue of h(V TV ) as we decrease larr and for

various values of the array pitch h. In the left subplot the length of the array is reduced

symmetrically with respect to the mid-width of the waveguide, while in the right one the

lower part of the array is cut off. The different markers (also typed in different colors) shown

in Figure 3.8 correspond to arrays with different densities; the value of h that corresponds

to each marker is reported in the legend of the figure in terms of the reference wavelength

λ0. We observe that the decay rate is much faster in the non-symmetric case (right subplot)

than in the symmetric one (left). Moreover, the density of the array seems to affect the rate

at which νmin drops below ε; these results indicate that the magnitude of νmin is stabilized

with an inter-element array distance of approximately λ0/8.
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Figure 3.8: Behavior of νmin when we decrease the length of the array symmetrically from
both ends (left subplot) and just from below (right subplot), for k = 0.975k0.

By inspecting the plots in Figure 3.8 we expect no loss in image resolution or signal

to noise ratio (SNR) in our images with ĨKM as long as νmin stays above some threshold

ε+. However, as νmin approaches machine ε, most likely one will experience numerical

instabilities. As a regularization procedure we may try the following filtering:

Consider some threshold ε+.

Then if νc > ε+ > νc+1, for some c ∈ {1, . . . ,M}, we set 1/νi = 0, for i ≥ c+ 1.

Notice that the reciprocals ν−1
i of these small eigenvalues, which are in fact very big,

multiply the lower (M − c)×N part of the matrix S; let us call it Sc. Intuitively we expect

the entries of Sc to be very small since, for example, the j-th row contains the values of the

trigonometric polynomial sj calculated on the receivers’ depths, and recall that our results

in Section 3.1 suggest that when νj is small then sj is mainly supported on the exterior

of A (see, for example, Figures 3.2 and 3.3 that exhibit the behavior of the trigonometric

polynomials with coefficients the eigenvectors of the matrix AM defined in (3.7), and recall

that the matrix h(V TV ) approximates Aarr defined in (3.26) which is of the same form as

AM ). Indeed, it is not hard to prove that

‖Sc‖2F = (

M∑

i=c+1

νi)/h < (M − c)ε+/h,

where ‖ · ‖F is the Frobenius matrix norm, to give grounds to the proposed regularization

technique. Of course, in the case we employ this filtering technique we do not expect a
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unitary equivalence relation between P̂ and AM to hold any more.

We clarify the above by giving some examples. We decrease the length of the array at

larr = 0.3D (symmetrically from both ends ), i.e. the array covers 30% of the waveguide

depth. In order to form P̂ we use a threshold ε+ = 10−15 that forces the reciprocals

of the last three eigenvalues of h(V TV ) to be equal to zero. One may verify the good

quality of the image shown on the top right corner of Figure 3.9 that is obtained with the

proposed filtering. On the top left corner we plot the singular values of P̂. The bottom

row in Figure 3.9 shows the corresponding results when we do not use any filtering and

demonstrates the catastrophic effect of roundoff errors during the computation of P̂.
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Figure 3.9: Top: The singular values of P̂ (left) and the associated ĨKM image (right) that
we obtain with threshold ε+ = 10−15. Bottom: The same as in the top row but without
using ε+. Here larr = 0.3D, h = λ0/8 and k = 0.975k0.

Figure 3.10 depicts selective imaging results with ĨKM
J , where again in the course of

constructing P̂ we employ the threshold ε+ = 10−15. Here, selective imaging with ĨKM
J fails,

in the sense that the usual ordering in focusing does not hold anymore. To be precise,

this means that we lose the property that when we project on the singular vector that

corresponds to the largest singular value we get an image that provides information about

the bulk of the object, while projection on the singular vectors that correspond to smaller

singular values carry information about its edges. This is something to be expected since
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filtering prevents to establish a unitary equivalence relation between P̂ and AM. However,

the images for J = 2, 3 and 4 still have good SNR and provide useful information about

the object.
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Figure 3.10: Imaging with ĨKM
J for the screen with ε+ = 10−15, for J = 1, 2, 3, 4, when

larr = 0.3D, for h = λ0/8 and k = 0.975k0.

In order to push ĨKM to the limit for this model problem we decrease (symmetrically)

the length of the array to be equal to larr = λ0 (this is just 10% of the total waveguide

depth). In this case, we make the array denser by setting the pitch h = λ0/20. The image

shown in Figure 3.11 is generated with a threshold equal to ε+ = 10−15 that removes the

reciprocals of the last 8 singular values of h(V TV ). We observe that the ĨKM image gives

us very good information about the object, although its SNR value is quite low, about 1.2,

due to the presence of the small artifact that is visible on the right side of the image.
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Figure 3.11: Imaging with ĨKM for the screen with ε+ = 10−15 when larr = 0.1D, for
h = λ0/20 and k = 0.975k0.

We close this paragraph with a few remarks.

Remark 7 1. In all results that we have shown thus far we have reduced the length of

the array symmetrically from both ends and we have placed the screen centered in the
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mid-depth of the waveguide. We have experimented with various other configurations

altering the way we reduce the array and/or the position of the screen. Our results

suggest that in some cases we may have to use filtering for larger array lengths than

before. For example, when we reduce the length of the array from below the eigenvalues

of h(V TV ) decrease towards zero much faster, see Figure 3.8, and indeed in this case

we have to employ some threshold ε+ for larger arrays than those reported in the

examples shown here.

2. One may try different approaches to construct a weighted projection of the array re-

sponse matrix in the partial array case. For example, we may define

P̂ = D−1
β V + Π̂ (V T )+D−1

β ,

where V + is the Moore-Penrose pseudoinverse of V . Then it is immediate to check

that in the screen model problem, and under the assumption that all computations are

performed with infinite precision, P̂ is unitarily equivalent to AM . However, as we

decrease the length of the array we still have to use a regularized pseudoinverse that

treats as zero any singular values of V less than some suitable threshold.

3. So far we have seen that when we decrease larr beyond some level and we employ some

thresholding to the ν−1
i the nice ‘ordering’ property of the selective imaging functional

ĨKM
J does not hold. However, in a post-processing stage, one may still have some

benefit in imaging using the functional ĨKM,f, see (2.16), where in the filtered version

of P̂ we may take into account those of its singular vectors that correspond to ‘good’

ĨKM
J images.

Adding noise to the data

In the previous subsection, we found that ĨKM seems to work very well under ideal conditions

that allow us to derive Π̂ analytically in the special form (3.4). Now we shall examine the

performance of our method under the effect of measurement noise. Specifically, we model

measurement noise, as in [10], adding a noise matrix W (ω) with zero mean uncorrelated

Gaussian distributed entries with variance ǫpavg, i.e. Wr,s(ω) ∼ N (0, ǫpavg). Here the
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average power received per source and receiver is given by

pavg =
1

N2
‖Π̂(ω)‖2F,

where ‖ · ‖F is the Frobenius matrix norm. The expected power of the noise W (ω) over all

receivers and sources is

E
[
‖W (ω)‖2F

]
= ǫN2 pavg.

Since the total power of the signal received over all receivers and sources is N2 pavg, the

normalized noise power in dB is −10 log10 ǫ.

In Figure 3.12 we superimpose the singular values of Π̂ and Π̂ +W when we add noise

of 10 dB to our data, and the array is reduced symmetrically to have length equal to

larr = 0.7D. We use a linear scale for the y-axis in the left subplot and a log10 scale in the

right one. As one may immediately verify the largest singular values of Π̂+W remain close

to those of Π̂, while the noise severely affects the smaller ones.
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Figure 3.12: The singular values of Π̂ and Π̂ +W using a linear scale for the y-axis (left)
and a log10 scale (right). Here larr = 0.7D and k = 0.975k0.

Next, we present the outcome of some of the experiments that we have performed with

noise power 10 dB, keeping the rest of the parameters the same as in the previous sections.

We begin with an array with larr = 0.7D. In Figure 3.13 we plot the singular values of

h(V TV ) using a linear scale for the vertical axis in the left subplot and a log10 scale in

the right one. Note that the smallest singular value is greater than 10−6, hence all the

singular values of h(V TV ) are well above the threshold ε+ = 10−15 that we have used so
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far. However, as one may see in the top left subplot of Figure 3.14 the SVD of P̂ does not

follow the usual pattern. Specifically, the first singular value of P̂ is 53.7, the second 33.15,

while the rest are less than 1. This is an indication that something goes wrong and, indeed,

the corresponding image shown in the bottom left subplot is just noise. In order to improve

this unsatisfactory result we employ some threshold ε+ during the computation of S in

order to remove gradually those ν−1
i that correspond to the smaller νi’s, one at a time. The

ĨKM images obtained by removing those ν−1
i that correspond to the smallest one, or two,

νi are also very bad and we do not show them here. In the middle subplots of Figure 3.14

we present the singular values of P̂ (top) and the corresponding ĨKM image (bottom) for a

threshold ε+ = 10−2; with this value we treat as zero the ν−1
i that correspond to the smaller

three νi’s, see Figure 3.13. Things are also well by choosing ε+ = 5 · 10−2, thus setting one

more ν−1
i equal to zero.
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Figure 3.13: The singular values of h(V TV ) using a linear scale for the y-axis (left) and a
log10 scale (right). Here larr = 0.7D and k = 0.975k0.
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Figure 3.14: Singular values of P̂ (top row) and ĨKM images (bottom row) for the screen,
without a threshold (left subplots) and with a threshold ε+ = 10−2 that removes 3 (middle
subplots) and ε+ = 5 ·10−2 that removes 4 (right subplots) of the smallest ν−1

i , respectively
(compare with Figure 3.13). Here larr = 0.7D m, and k = 0.975k0.

Looking once again at Figure 3.13, and recalling the results of Section 3.1, we realise

that the choice of the threshold value ε+ = 5 · 10−2 does in fact dictate to project the array

response matrix Π̂ just on the trigonometric polynomials that are supported on A; also

recall that their number is expected to be roughly larr/(λ/2). Keeping this in mind, we next

examine whether in order to obtain good images for various lengths of the array it suffices

to compute P̂ using a threshold ε+ that excludes those trigonometric polynomials with

coefficients the eigenvectors of Aarr that belong to the noise subspace; these are supported

on the exterior of A. To this end, we plot in Figure 3.15 the singular values of h(V TV ) (top

line) and the corresponding ĨKM images (bottom line) for the screen, with larr = 0.6D (left

subplots), larr = 0.5D (middle subplots), and larr = 0.45D (right subplots). In all cases we

take ε+ = 5 · 10−2 that removes 6, 8 and 8 of the smallest ν−1
i , respectively. As one may

see, and as it is expected, the quality of the images deteriorates as we decrease the length

of the array but it remains acceptable even if we place symmetrically in the waveguide an

array that covers more or less the half of its depth.
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Figure 3.15: Singular values of h(V TV ) (top row) and ĨKM images (bottom row) for the
screen, with larr = 0.6D (left subplots), larr = 0.5D (middle subplots), and larr = 0.45D
(right subplots). In all cases ε+ = 5 · 10−2 that removes 6, 8 and 8 of the smallest ν−1

i ,
respectively.

Finally, on both subplots of Figure 3.16, instead of using the whole matrix P̂, as it is

obtained with thresholding with ε+ = 5 · 10−2, we project on certain of its singular vectors.

On the left subplot larr = 0.5D and we project on the second and third singular vectors of

P̂, while on the right one larr = 0.45D and we project just on the second singular vector.

Both images exhibit better SNR compared to their counterparts in Figure 3.15, albeit with

a worse range resolution.
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Figure 3.16: ĨKM,f images for the screen, with larr = 0.5D where we project on the second
and third singular vectors of P̂ (left subplot) and larr = 0.45D where we project on the
second singular vector. In both cases P̂ was derived with ε+ = 5 · 10−2.
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3.3 A semicircular scatterer

So far, we have analyzed our proposed imaging method for the case of a vertical screen, where

we have explored the good properties of the projected response matrix P̂ and established

a connection between its singular vectors and the prolate spheroidal wave functions. Now,

we want to see whether the properties that we have observed for the screen model problem

carry over for different scatterer geometries. Specifically, we wish to examine if the relation

between the number of ‘significant’ singular values and the size of the object still holds

and if the usual ordering in focusing is preserved when we use selective imaging, i.e. do

our images still focus on the bulk of the object when we deploy the singular vectors that

correspond to singular values in the signal subspace, and towards the edges when we use

singular vectors that correspond to singular values that lie in the transient subspace? We

are also going to assess the performance of imaging with a partial array-aperture for this

shape of the reflector.

To this end, we assume that the reflector is a semicircle, in a setup as the one shown

in Figure 3.17. As it can be seen in Appendix A.3, the array response matrix Π̂ for the

semicircle problem may be written as

Π̂ = −1

4
V Dβ QBM QDβ V

T , (3.37)

where the matrices Dβ, Q, V are the same as in (3.5) and (3.6), and BM is given by

(BM )mn =

∫ π

0
ei(βm+βn)ρ(1−sin t)Xm(x0 − ρ cos t)Xn(x0 − ρ cos t) ρ dt, m, n = 1, 2, . . . .

Note that BM does not possess the special Toeplitz-minus-Hankel structure, as was the case

for AM in the screen problem. Although we cannot find explicit expressions for the singular

vectors of BM , we are going to experiment with ĨKM through some numerical examples.

A

~xs

x = 0

x = D

z = za

~xr

T

b
ρ ~y ⋆

Figure 3.17: Active imaging setup for a semicircle, in an infinite strip.
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As in the previous section, we assume a reference wavenumber k0 = π/10 that cor-

responds to a reference wavelength λ0 and we consider a waveguide with depth equal to

D = 10λ0 and constant sound speed c0. We use a single frequency with associated wavenum-

ber k = 0.975k0. The diameter of the semicircle is taken equal to b = 2λ0 and is centered

at ~y ⋆ = (22, 5)λ0. In Figure 3.18 we plot the imaging results for ĨKM, for the semicircle.

We observe again that our image mainly focuses on the leftmost side of the reflector.
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Figure 3.18: Values of ĨKM for the semicircle, for b = 2λ0, and k = 0.975k0.

In Figure 3.19, we plot the normalized singular values of P̂ for the semicircle. Now

we see that the first 3 singular values are above 0.7 and there are also 2 singular values

slightly above 0.3. Recall that for the screen model problem the special structure of AM

allowed us to obtain a theoretical estimate for the number of significant singular values; it

was approximately equal to [2b/λ], where b was the length of the screen. Unfortunately, we

cannot prove something like that in the case of the semicircle. However, using the formula

[2b/λ] as ‘a rule of thumb’ for the typical length b = 2λ0, that corresponds to the diameter

of the semicircle, we would expect to have roughly 4 significant singular values. This is a

quite good ‘guess’ since the number of significant singular values appears here to be equal

to 3. Therefore, it seems that a similar relation between the size of the object and the

number of significant singular values like the one we have for the screen model problem is

still valid for this geometry.
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Figure 3.19: Normalized singular values of P̂ for the semicircle, for b = 2λ0 and k = 0.975k0.

In Figure 3.20 we present the results for selective imaging with ĨKM
J for the semicircle,

for J = 1, 2, 3, 4. We see that the selective imaging results in this case follow the same trend

with those obtained for the screen case, i.e. when we project on the first singular vector we

locate the center of the target, while projection on subsequent singular vectors results in

images that are focusing towards the edges of the object.

Notice that, in this case, the use of selective imaging is more helpful than in the screen

case in the sense that, apart from enabling us to focus on specific parts of the reflector, we

have the added benefit of getting images that provide information for parts of the object

that are not illuminated in the images that we get when we use the full matrix. We see that

although in Figure 3.18 we recover the leftmost part of the scatterer, when we do selective

imaging with ĨKM
J we achieve focusing towards the edges of the vertical diameter of the

object for J = 2, 3. This illustrates the benefits of selective imaging that allows us to focus

on the edges of the object and, therefore, to obtain more information about its shape and

size.

16 18 20 22 24 26 28 30

0

2

4

6

8

10
16 18 20 22 24 26 28 30

0

2

4

6

8

10
16 18 20 22 24 26 28 30

0

2

4

6

8

10
16 18 20 22 24 26 28 30

0

2

4

6

8

10

Figure 3.20: Values of ĨKM for the semicircle, for b = 2λ0, and k = 0.975k0, for J = 1, 2, 3, 4.

The last results showed us that despite not having the special Toeplitz-minus-Hankel

form for the scattering matrix BM for the semicircle we still get the desired selective focusing

behavior.
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Lastly, we assess the performance of partial-aperture imaging for the semicircle. To this

end, we first want to check whether we can extract results that display the same behavior

as the one in Figure 3.5. Therefore, in Figure 3.21, we use the same parameters and indeed

we see that as long as the minimum singular value νmin stays above machine epsilon (see

Figure 3.8), the images that we obtain with a partial array-aperture are the same as if we

were imaging with a full array-aperture.
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Figure 3.21: Imaging with ĨKM for the semicircle, when larr = D, 0.9D, 0.7D, 0.5D, for
k = 0.975k0.

In Figure 3.22 we present three cases where some of the smaller singular values fall below

machine epsilon. Here, as we also saw in the screen case, we have to employ a threshold ε+

that removes the reciprocals of those singular values. Specifically, we have larr = 0.4D in

the left subplot, 0.3D in the middle, and 0.2D in the right. We observe that as the array

length decreases and we have to remove more and more singular values that fall below the

machine epsilon, the quality of the image deteriorates in terms of both reconstruction and

SNR.
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Figure 3.22: Imaging with ĨKM for the semicircle with ε+ = 10−15 when larr = 0.4D (left),
0.3D (middle) and 0.2D (right), for k = 0.975k0.

Lastly, in Figure 3.23 we present the limiting case where, similar to the result shown

in Figure 3.11, we have that larr = 0.1D and a reduced h = λ0/20. We again recover

information about the object, even after removing 90% of the array’s original size.
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Figure 3.23: Imaging with ĨKM for the semicircle with ε+ = 10−15 when larr = 0.1D, for
h = λ0/20 and k = 0.975k0.

Remark 8 In (3.4) and (3.37) we can split the array response matrix Π̂ into three parts.

First, the product V Dβ Q forms a matrix that describes the propagation of the field from the

array to the scatterer’s location. This then interacts with a matrix that contains information

about its geometry; this is the matrix AM for the screen problem and BM for the semicircle.

Then, the field is propagated back to the array with the transpose of the propagating matrix.

This structure is important since it allows us to relate directly the properties of the projected

matrix P̂ with those of the scattering matrices AM and BM . Let us also note that we expect

that all results shown in this section still hold for scatterers whose array response matrix

may be written in a form such as (3.37), i.e. under the Born approximation.

3.4 Algorithm for imaging

To close this chapter, we summarize the process for imaging with partial arrays, in the form

of an algorithm. First, let us recall the basic components of our imaging method.

• We first compute the eigenvalues νj, j = 1, 2, . . . ,M , and the corresponding orthonor-

mal eigenvectors w
j = (wj

1, w
j
2, . . . , w

j
M )T of the M ×M Gram matrix h(V TV ), and

we form the M ×M orthogonal matrix W = (w1, . . . ,wM ) and the diagonal matrix

Dν = diag(ν1, . . . , νM ).

• Then we construct the trigonometric polynomials

sj(x) =
M∑

i=1

wj
iXi(x), j = 1, 2, . . . ,M,
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and we consider the M ×N matrix

S̃ = D−1
ν S, (3.38)

where

Sij = si(xj), i = 1, . . . ,M, j = 1, . . . , N.

• Next, given the array response matrix Π̂ for the scattered field,we define P̂ by

P̂ = D−1
β W S̃ Π̂ S̃T W T D−1

β . (3.39)

• Finally, we use P̂ in ĨKM (as defined in (2.12)), i.e.,

ĨKM(~y s, ω) = − 1

4h2

M∑

m,n=1

e−i(βm+βn)|za−zs|Xn(x
s)Xm(xs)P̂mn(ω), (3.40)

for imaging.

Now, we are in a position to present our algorithm for imaging with ĨKM.

Algorithm 1 1. We compute the matrix S̃ in (3.38), and filter the matrix D−1
ν , by

setting 1/νi = 0 for those indices i that correspond to eigenvalues νi that are below a

certain threshold ε+.

2. Given the N ×N array response matrix Π̂, we compute the M ×M weighted projected

response matrix P̂ by means of (3.39).

3. We compute the imaging functional ĨKM, given by (3.40) for each point of our search

domain S and graphically display its modulus.

To summarize, in this chapter we examined the properties of the weighted projected

response matrix P̂ for the vertical screen model problem by deriving a relation between

P̂ and the Toeplitz-minus-Hankel matrix AM that describes the scattering of the screen.

Through this, we found a link between the singular vectors of AM and prolate (or prolate-

like) spheroidal wave functions, which allowed us to characterize the behavior of the selective

imaging functional ĨKM
J . We also derived a relation between the size of the screen and the

number of significant singular values of AM . We also tested the performance of our imaging
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method for a semicircular scatterer and observed that the properties of ĨKM and ĨKM
J seem

to hold in general for different scatterers’ geometries and not only for the screen. This will

be further illustrated with more examples of different scatterers’ geometries in Chapter 5.



Chapter 4

Resolution analysis

In this chapter we present the resolution analysis of our imaging method that is based on

the evaluation of the functional ĨKM in points of the search domain. The analysis relies on

the study of the behavior of the point spread function (PSF), that is the behavior of the

proposed imaging functional for a point source (passive case) or a point scatterer (active

case). The PSF is a fundamental measure of the quality of an imaging functional since it

determines its resolution. Specifically, we are going to examine the passive case since, as

we will show, it turns out that the imaging functional for a point scatterer is the square of

the functional for a point source.

This chapter is organised as follows: we first perform a resolution analysis for a single

frequency. Next, we examine the ‘response’ of the proposed imaging functional to the use of

multiple frequencies. We close this chapter with a result that concerns the partial-apreture

array case.

4.1 Single frequency resolution analysis

In this section we consider a single frequency and we are interested in analyzing the behavior

of ĨKM for a point scatterer. However, as we are going to show in a while, it suffices to

examine the passive imaging case, i.e. the way the imaging functional behaves in the case

of a point source.

79
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Passive case

We consider the problem of imaging a point source placed at ~x ⋆ = (z⋆, x⋆), using an array

A that is vertically placed at a range equal to z = za and spans the whole width of the

waveguide. As we have seen in Chapter 2 (see (2.1)), the data that we have in our disposal,

for a single frequency ω, come in the form of the N × 1 array response vector Π̂(~xr;ω),

where

Π̂(~xr;ω) = Ĝ(~xr, ~x
⋆). (4.1)

Next, we define the projected response vector P̂ for the passive case, in a similar way as in

the active case (see (2.9)),

P̂n(ω) = βn

∫ D

0
dxr Π̂(~xr, ω)Xn(xr). (4.2)

Then, we define ĨKM (see (2.12)) for the passive case, which we denote hereinafter by ĨKM
p ,

as

ĨKM
p (~y s, ω) =

M∑

n=1

P̂n(ω)G̃n(za, ~y
s), (4.3)

where G̃n are the weighted projections of the Green’s function on the propagating modes,

as in (2.11).

Inserting (4.1) into (4.2), we get that

P̂n(ω) = βn

∫ D

0
dxr Ĝn(za, ~x

⋆)Xn(xr) = G̃n(za, ~x
⋆). (4.4)

Therefore, the passive imaging functional for a point source, is given by

ĨKM
p (~y s, ω) =

M∑

n=1

G̃n(za, ~x
⋆)G̃n(za, ~y

s). (4.5)

Active case

Now, let us “consider” the active imaging case, where we now try to image a point scatterer

placed at ~x ⋆ = (z⋆, x⋆). We will show that the active imaging functional ĨKM is simply the

square of the passive imaging functional ĨKM
p . Indeed, as stated in (2.6), the array response
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matrix in this case is given by

Π̂(~xs, ~xr;ω) = Ĝ(~x ⋆, ~xs)Ĝ(~xr, ~x
⋆). (4.6)

Similar to what we just did for the passive case, it is easy to show that the projected

response matrix P̂ is given by

P̂mn(ω) = G̃m(za, ~x
⋆)G̃n(za, ~x

⋆). (4.7)

Therefore, we have that for a point scatterer, the imaging functional ĨKM has the form

ĨKM(~y s;ω) =

M∑

m,n=1

G̃m(za, ~x
⋆) G̃n(za, ~x

⋆)G̃m(za, ~y
s)G̃n(za, ~y

s)

=

(
M∑

n=1

G̃n(za, ~x
⋆)G̃n(za, ~y

s)

)2

=
(
ĨKM

p (~y s, ω)
)2
.

Having this in mind, we perform the resolution analysis for ĨKM
p , instead of performing

it for ĨKM. Hence, for the rest of the chapter, we assume that the array is placed at za = 0

and we seek a point source placed far enough from the array at ~x ⋆ = (z⋆, x⋆). Then, if

we replace the expression for the Green’s function given by (1.15) into (4.1), taking into

account only the propagating modes since we have assumed that z⋆ is large enough, we get

Π̂(~xr;ω) =
i

2

M∑

k=1

eiβkz⋆

βk
Xk(xr)Xk(x

⋆). (4.8)

We also have that

P̂n(ω) = G̃n(0, ~x
⋆) = eiβnz⋆Xn(x

⋆). (4.9)

Hence, in view of the above relation, (4.3) reduces to

ĨKM
p (~y s, ω) =

i

2

M∑

n=1

eiβn(z∗−zs)Xn(x
∗)Xn(x

s) (4.10)
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4.1.1 Cross-range resolution for ĨKM
p

To examine the resolution in cross-range, we assume that the wavelength λ is much smaller

than the depth (λ ≪ D) and that the search point is located at the correct range, i.e.,

zs = z⋆. Then, recalling (1.11), (4.10) simplifies to

ĨKM
p (~y s;ω) =

i

D

M∑

n=1

sin
nπx⋆

D
sin

nπxs

D
. (4.11)

Then we prove the following:

Proposition 7 (Cross-range resolution) Assume that the search point is located at the

correct range, i.e., ~y s = (z∗, xs). Then

ĨKM
p (~y s;ω) ≈ i

λ

[
sinc

(
2

λ
(x∗ − xs)

)
− sinc

(
2

λ
(x∗ + xs)

)]
, (4.12)

where the sinc function is defined as

sinc(x) :=
sin(πx)

πx
. (4.13)

Proof: Letting ξn = λn/(2D) we may view the right-hand side of (4.11) as a Riemann

sum that approximates an integral. Therefore, from (4.11) we have

ĨKM
p (~y s;ω) ≈ 2i

λ

∫ 1

0
sin

(
2πx∗ξn
λ

)
sin

(
2πxsξn
λ

)
dξn

=
i

λ

∫ 1

0

[
cos

(
2π(x∗ − xs)

λ
ξn

)
− cos

(
2π(x∗ + xs)

λ
ξn

)]
dξn

=
i

λ

[
sinc

(
2

λ
(x∗ − xs)

)
− sinc

(
2

λ
(x∗ + xs)

)]
.

�

Now we are going to check the validity of these expressions and illustrate the PSF for

a specific numerical example. To this end, we consider a reference wavelength λ0 with a

corresponding wavenumber k0 = π/10 and we assume that our waveguide has width D =

10λ0, constant sound speed c0, and a source placed at x∗ = 4λ0. We use a single frequency

with a corresponding wavenumber k = 0.975k0. In Figure 4.1 we plot the normalized

absolute values of (4.11) with a solid blue line and (4.12) with a dashed red line. We
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confirm good agreement between the two expressions. We observe a clear focusing on the

true location of the source and the presence of side lobes that decay as we move further away

from the source. Defining the resolution as the width of the main lobe at its mid-height,

we obtain here λ/2 resolution depicted in the plot with a green segment.
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Figure 4.1: The absolute value of (4.11) (blue line) and (4.12) (dashed red line) for D =
10λ0, k = 0.975k0, x

⋆ = 4λ0. The green segment indicates length equal to λ/2.

In Figure 4.2 we also compare the cross-range resolution of ĨKM
p given by (4.12), shown

in a solid blue line, with the resolution of ĨKM, which is simply its square, plotted with a

dashed red line. As expected, we observe an increase in the SNR of the image. There also

appears to be no significant change in the resolution of the image, which remains equal to

λ/2 for both the passive and the active case.
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Figure 4.2: Cross-range resolution of ĨKM
p (blue line) and ĨKM(dashed red line) forD = 10λ0,

k = 0.975k0, x
⋆ = 4λ0. The green segment indicates length equal to λ/2.
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4.1.2 Range resolution for ĨKM
p

In order to estimate the resolution in range we assume that the search point is located at

the correct depth, i.e. at ~y s = (zs, x⋆), so (4.10) becomes

ĨKM
p (~y s, ω) =

i

D

M∑

n=1

eiβn(z∗−zs) sin2
(
nπx⋆

D

)
. (4.14)

If we follow the same process as we did for the cross-range case in order to derive an

analytical expression for the range resolution, we end up with an expression that is too

complex and proves too hard to analyze. In an effort to simplify that expression, we assume

that the source is placed at half the width of the waveguide, i.e. xs = x⋆ = D/2. Then,

(4.14) has the form

ĨKM
p (~y s, ω) =

i

D

⌈M
2
⌉−1∑

n=0

ei β2n+1(z∗−zs). (4.15)

For this special case, we may prove the following:

Lemma 1 Assume that the point source is placed at half the width of the waveguide and

the search point is located at the correct cross-range, i.e., ~y s = (zs, x∗), x∗ = D/2. Then

ĨKM
p (~y s, ω) ≈ i

λ

[
1− π

2
H1

(
2π

λ
(z∗ − zs)

)
+ i

π

2
J1

(
2π

λ
(z∗ − zs)

)]
, (4.16)

where J1(x) and H1(x) denote the Bessel and Struve functions of order one, respectively.

Proof: Let
(
n+ 1

2

)
λ
D = ξn. Then β2n+1 =

2π
λ

√
1− ξ2n and the sum in the right-hand side

of (4.15) may be seen as a Riemman sum that approximates the integral

ĨKM
p (~y s, ω) ≈ i

λ

∫ 1

0
ei

2π
λ
(z∗−zs)

√
1−x2

dx. (4.17)

We let α = 2π(z∗ − zs)/λ, hence we want to evaluate the integral
∫ 1
0 eiα

√
1−x2

dx. To this

end, letting x = sin θ we have

∫ 1

0
eiα

√
1−x2

dx ≈
∫ π/2

0
eiα cos θ cos θ dθ

=

∫ π/2

0
cos(α cos θ) cos θ dθ + i

∫ π/2

0
sin(α cos θ) cos θ dθ =: I1 + i I2.
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In I2 we change variables θ = π
2 − x to obtain

I2 =

∫ π/2

0
sin(α sinx) sin x dx =

π

2
J1(α),

where the integral is found in [30, (3.715.2)].

For I1 we integrate by parts

I1 =

∫ π/2

0
cos(α cos θ) (sin θ)′ dθ = 1− α

∫ π/2

0
sin(α cos θ) sin2 θ dθ = 1− π

2
H1(α).

For the last integral above see [30, (3.716.16)]. Finally, we have that

ĨKM
p (~y s, ω) ≈ i

λ

(
1− π

2
H1(α) + i

π

2
J1(α)

)
. (4.18)

�

Next, similar to what we did in the cross-range case, we illustrate (4.15) and its approx-

imation (4.16) for a specific example. In Figure 4.3 we plot the modulus of the imaging

functional (4.15) with a blue line and the modulus of (4.16) with a dashed red line, normal-

ized with respect to their maximum values, using the same values for the parameters D, k0

and k as in the cross-range case, and assuming that a source is placed at (z⋆, x⋆) = (22, 5)λ0.

We observe that while the theoretical expression given by (4.16) fails to describe the oscil-

lations away from the source’s location in range, it captures the behavior of the main lobe

really well. Also, similar to what we did for the cross-range case, we plot a green segment at

the mid-height of the main lobe to indicate the resolution in range. In this case, its length

is 2λ.
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Figure 4.3: The modulus of (4.15) (blue line) and (4.16) (dashed red line) for D = 10λ0,
k = 0.975k0, (z

⋆, x⋆) = (22, 5)λ0. The green segment indicates length equal to 2λ.

Having seen that we may describe the resolution in range by a theoretical expression

for the special case where the source is in the middle of the waveguide, we want to make

sure that the resolution is the same for other cross-range locations of the source. Therefore,

in Figure 4.4 we plot the modulus of (4.14) for the case where x⋆ = 5λ0 with a blue line,

x⋆ = 8λ0 with a dashed red line and x⋆ = 2.5λ0 with a dash-dotted black line. We see that

in all cases the behavior of the main lobe is very similar, despite the fact that the oscillations

far from the source differ. Let us note that this test is not necessary for the cross-range

case since when we are at the correct range, the exponential term in (4.10) vanishes and,

therefore, the result we get does not depend on z⋆.
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Figure 4.4: The absolute value of (4.14) for D = 10λ0, k = 0.975k0, z
⋆ = 22λ0 and for

x⋆ = 5λ0 (blue line), 8λ0 (dashed red line) and 2.5λ0 (dash-dotted black line). The green
segment indicates length equal to 2λ.

Lastly, in Figure 4.5 we compare the range resolution of ĨKM
p , shown in a blue line and

ĨKM plotted with a dashed red line. The green segment has width 2λ and the black segment

has width λ. Therefore, aside from the expected SNR gain for the active case which, as

already stated, is the square of the passive case, we also seem to have a better resolution in

range.
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Figure 4.5: Range resolution of ĨKM
p (blue line) and ĨKM(dashed red line) for D = 10λ0,

k = 0.975k0, x
⋆ = 4λ0. The green segment indicates length equal to 2λ and the black

segment length equal to λ.

Remark 9 As a summary of this section, let us note that the plots in Figures 4.2 and 4.5
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show the point spread function (PSF) of ĨKM
p and ĨKM as a function of cross-range and

range, respectively. We observe that the PSF is centered at the correct location and the

resolution of the imaging method can be determined using these plots. If we define, for

example, the resolution as the width of the PSF at half its maximal value we obtain a cross-

range resolution of λ/2 for both ĨKM
p and ĨKM (see Figure 4.2) and a range resolution of 2λ

for ĨKM
p case and λ for ĨKM (see Figure 4.5).

4.2 Resolution analysis in the multiple frequency case

In this section, we investigate the performance of ĨKM
p when we use multiple frequencies.

Recalling the definition given in (2.13), the multiple frequency version of ĨKM
p is simply an

addition over frequencies, hence

ĨKM
p (~ys) :=

Nf∑

l=1

ĨKM
p (~ys; fl) (4.19)

where fl, l = 1, . . . , Nf are discrete frequencies that span the available frequency interval

[fmin, fmax]. For the purposes of this chapter, we will assume that we have a continuous

spectrum of frequencies, covering the interval [fmin, fmax]. Then, we may replace the sum

in (4.19) with an integral, and write

ĨKM
p (~ys) :=

∫ fmax

fmin

ĨKM
p (~ys; f) df (4.20)

We call the length of the interval B = fmax − fmin the bandwidth and we assume that

fmin = fc −B/2 and fmax = fc +B/2, where fc = (fmin + fmax)/2 is the central frequency.

Let us note here that in (4.20) we use the frequency f as an argument instead of the angular

frequency ω.

4.2.1 Cross-range resolution

First, we start with the behavior of ĨKM
p in the cross-range direction. As shown in (4.12),

the expression for the resolution in cross-range is

ĨKM
p (~y s;ω) ≈ i

λ

(
sinc

(
2

λ
(x∗ − xs)

)
− sinc

(
2

λ
(x∗ + xs)

))
, (4.21)
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where sinc(x) = (sin(πx))/(πx).

In fact, we may further simplify (4.21), by ignoring the second sinc function, since we

expect that it takes values that are approximately zero, due to its large argument (∼ 4x∗/λ)

for values of xs near the source location. Therefore we can write that the resolution in cross-

range is determined by

ĨKM
p (~y s;ω) ≈ i

λ
sinc

(
2

λ
(x∗ − xs)

)
. (4.22)

We can verify this numerically, as shown in Figure 4.6, where we plot the absolute values

of (4.21) with a blue line and (4.22) with a dashed red line. It is immediate to see that the

two lines are in excellent agreement and, therefore, we may use (4.22) for our computations.
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Figure 4.6: The absolute value of (4.21) (blue line) and (4.22) (dashed red line) for D =
10λ0, k = 0.975k0, x

⋆ = 4λ0.

Using (4.22), when imaging with multiple frequencies, we may prove the following:

Lemma 2 For multiple frequencies fl, l = 1, . . . , Nf , that span the frequency range [fmin, fmax],

the imaging functional ĨKM
p (defined in (4.19)) evaluated at the correct range is approximated

by

ĨKM
p (~y s)≈Bfc

2c0
sinc

(
B

c0
(x⋆ − xs)

)
sinc

(
2fc
c0

(x⋆ − xs)

)
, (4.23)

where B is the bandwidth and fc is the central frequency.

Proof: As a first step, we will perform some additional calculations and re-write (4.22) in
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terms of f , instead of λ:

ĨKM
p (~y s; f) ≈ 1

2λ
sinc

(
2

λ
(x∗ − xs)

)
(4.24)

=
1

4π(x⋆ − xs)
sin

(
2π

c0
f(x⋆ − xs)

)
. (4.25)

To get from (4.24) to (4.25) we simply replaced the expression for the sinc function given

earlier in (4.13) and the fact that λ = c0/f .

To investigate the PSF behaviour with multiple frequencies, we integrate (4.22) with

respect to frequency f over an interval with bandwidth B. We slightly abuse notation by

letting ĨKM
p (x;B) denote the PSF for multiple frequencies at the correct range. Then we

have

ĨKM
p (x;B) =

∫ fmax

fmin

ĨKM
p (z⋆, x; f)df ≈

∫ fmax

fmin

1

4π(x⋆ − xs)
sin

(
2π

c0
f(x⋆ − xs)

)
df

=
1

2

∫ fmax

fmin

1

αx
sin

(
αx

c0
f

)
df, (4.26)

where

αx := 2π(x∗ − xs).

Then, we get that (4.26) becomes

ĨKM
p (x;B) ≈ c0

2α2
x

[
cos

(
αx

c0
fmin

)
− cos

(
αx

c0
fmax

)]
. (4.27)

Using the trigonometric identity

cos a− cos b = −2 sin
a− b

2
sin

a+ b

2

where a = αx

c0
fmin and b = αx

c0
fmax, as well as the fact that

fmin − fmax

2
= −B/2 and

fmin + fmax

2
= fc,
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we finally get that

ĨKM
p (x;B) ≈ c0

α2
x

sin

(
B

2c0
αx

)
sin

(
fc
c0
αx

)

=
Bfc
2c0

sinc

(
B

c0
(x⋆ − xs)

)
sinc

(
2fc
c0

(x⋆ − xs)

)
. (4.28)

�

In Figure 4.7 we examine how (4.28) behaves for various bandwidths. We consider a

reference wavelength λ0 with a corresponding wavenumber k0 = π/10 and we have that our

waveguide has widthD = 10λ0, while our source is placed in cross-range at x⋆ = 4λ0. In our

experiment, we have a central frequency fc with a corresponding wavenumber kc = 0.975k0

and we consider three different bandwidths: B = 0.1fc, shown with the blue line, B = 0.5fc

shown in red, and B = fc shown in the black line. We observe that when we increase the

bandwidth the amplitudes of the side lobes decrease, thus resulting in an SNR increase.
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Figure 4.7: Cross-range resolution for ĨKM
p for multiple frequencies for a source placed at

x⋆ = 4λ0 and B = 0.1fc (blue line), B = 0.5fc (red line) and B = fc (black line), with
kc = 0.975k0.

Specifically, we may quantify the SNR gain in each image by computing the ratio of the

maximum value to the second taller peak. The maximum value is taken at xs = x⋆, while

the latter is a root of d
dx

(
ĨKM

p (x;B)
)
= 0 for x 6= x⋆. In Table 4.1 we present the SNR values

for the cases we examined in Figure 4.7, where the numerical values were extracted from

the associated graphs. We observe that we have a slight increase in SNR between B = 0.1fc

and B = 0.5fc, while when we take the bandwidth equal to the central frequency the SNR

increases by a factor of two compared to the bandwidth B = 0.5fc.
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B SNR

0.1fc 4.6468

0.5fc 5.7143

fc 11.6063

Table 4.1: SNR values in cross-range for various bandwidths.

Let us also note that the results shown in Figure 4.7 suggest that the resolution of our

imaging method remains the same, regardless of the bandwidth we choose and is in fact

determined by the central frequency.

4.2.2 Range resolution

Next, we move to the case where we are located at the correct cross-range and, specifically,

we assume that x⋆ = D/2. Then the expression of ĨKM
p evaluated at the correct cross-range

is given by

ĨKM
p (~y s, ω) ≈ 1

2λh

(
1− π

2
H1(

2π

λ
(z⋆ − zs)) + i

π

2
J1(

2π

λ
(z⋆ − zs))

)
. (4.29)

Lemma 3 For multiple frequencies fl, l = 1, . . . , Nf , that span the frequency range [fmin, fmax],

the imaging functional ĨKM
p (defined in (4.19)) evaluated at the correct cross-range is ap-

proximated by

ĨKM
p (~y s) =

Γ (5/2) (4π + 24)− 3
√
πα2

96c0Γ(5/2)

{
f2max − f2min

− f4max 2F3

(
1, 2;

3

2
,
5

2
, 3;−α

2f2max

4

)
+ f4min 2F3

(
1, 2;

3

2
,
5

2
, 3;−α

2f2min

4

)

+i

[
αf3max 1F2

(
3

2
; 2,

5

2
;−α

2f2max

4

)
− αf3min 1F2

(
3

2
; 2,

5

2
;−α

2f2min

4

)]}
, (4.30)

where pFq is called a Generalized Hypergeometric Series [4] and has the formula

pFq (α1, α2, . . . , αp; ρ1, . . . , ρq; z) =
∞∑

n=0

(α1)n(α2)n · · · (αp)n
n!(ρ1)n(ρ2)n · · · (ρq)n

zn,

and

(a)n = a(a+ 1)(a + 2) · · · (a+ n− 1), (a)0 = 1.



4.2. RESOLUTION ANALYSIS IN THE MULTIPLE FREQUENCY CASE 93

The values αi, i = 1, . . . , p are called the numerator parameters, while ρj, j = 1, . . . , q are

the denominator parameters.

Proof: First, let us write (4.29) with respect to f :

ĨKM
p (~y s, f) ≈ f

2c0
− πf

4c0
H1

(
2πf

c0
(z⋆ − zs)

)
+ i

πf

4c0
J1

(
2πf

c0
(z⋆ − zs)

)
. (4.31)

We want to integrate (4.31) over f , hence

ĨKM
p (~y s) =

∫ fmax

fmin

f

2c0
− πf

4c0
H1

(
2πf

c0
(z⋆ − zs)

)
+ i

πf

4c0
J1

(
2πf

c0
(z⋆ − zs)

)
df (4.32)

and we will perform the integration part by part, so

ĨKM
p (~y s) =

∫ fmax

fmin

f

2c0
df −

∫ fmax

fmin

πf

4c0
H1

(
2πf

c0
(z⋆ − zs)

)
df

+ i

∫ fmax

fmin

πf

4c0
J1

(
2πf

c0
(z⋆ − zs)

)
df

:= I1 − I2 + iI3

The computation of

I1 =

∫ fmax

fmin

f

2c0
df

trivially gives

I1 =
f2max − f2min

4c0
. (4.33)

Next, we wish to compute

I2 =

∫ fmax

fmin

πf

4c0
H1

(
2πf

c0
(z⋆ − zs)

)
df. (4.34)

Following [16, 1.4.1.1], for ν = λ = 1 and α = 2π(z⋆ − zs)/c0, we have that

I2 =

√
πα2

32c0Γ(5/2)

[
f4max 2F3

(
1, 2;

3

2
,
5

2
, 3;−α

2f2max

4

)
− f4min 2F3

(
1, 2;

3

2
,
5

2
, 3;−α

2f2min

4

)]
.

(4.35)
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Lastly, we compute

I3 =

∫ fmax

fmin

πf

4c0
J1

(
2πf

c0
(z⋆ − zs)

)
df, (4.36)

which, evaluated by Mathematica, gives us

I3 =
π

24c0

[
αf3max 1F2

(
3

2
; 2,

5

2
;−α

2f2max

4

)
− αf3min 1F2

(
3

2
; 2,

5

2
;−α

2f2min

4

)]
. (4.37)

By combining (4.33), (4.35), and (4.37), we end up with (4.30). �

Remark 10 Although (4.30) offers an analytic expression for the behavior of ĨKM
p in the

range direction when we use multiple frequencies, this expression is rather complicated.

Therefore, for this case, we will extract our information by its graphical representation.

In Figure 4.8 we examine how the modulus of (4.30) behaves for various bandwidths. We

consider the same setup as in Figure 4.7, while our scatterer is placed at ~x ⋆ = (22, 5)λ0. We

observe that for the smallest bandwidth B = 0.1fc, plotted with a blue line the main lobe

seems very wide and has no roots in our imaging window. As we move to larger bandwidths

we observe an improvement in resolution and a significant increase in SNR. Let us also note

that for B = 0.5fc and B = fc we seem to have a sinc-like behavior which reminds us of

the cross-range plots, albeit with a worse resolution.

16 18 20 22 24 26 28
0

0.2

0.4

0.6

0.8

1

Figure 4.8: Range resolution for ĨKM
p for multiple frequencies for a source placed at x⋆ = 4λ0

and B = 0.1fc (blue line), B = 0.5fc (red line) and B = fc (black line), with kc = 0.975k0.
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4.3 A result for partial aperture

In this section, we will prove that in the case of a point scatterer, the projected response

matrix P̂ created by (3.30) and (3.31) for the partial aperture case, is the same as for the

full-aperture case.

Proposition 8 Let a single point scatterer of unit reflectivity be located at ~x ⋆ = (z⋆, x⋆).

We assume that the array A is at range z = za, and far enough from the scatterer so that

the evanescent part of the wave field may be neglected. Then the projected array response

matrix P̂ defined by (3.30) and (3.31) for a partial aperture array is equal to the projected

matrix P̂ for an array that spans the whole vertical cross-section [0,D].

Proof: For a single point scatterer the (s, r) entry of the array response matrix Π̂ is given

by

Π̂(~xs, ~xr;ω) = Ĝ(~x ⋆, ~xs)Ĝ(~xr, ~x
⋆). (4.38)

Moreover, note that for each ~x far enough from ~x ⋆, the Green’s function may be written as

Ĝ(~x, ~x ⋆) ≈
M∑

i=1

CiXi(x), (4.39)

since the evanescent modes can be neglected for large propagation distances. Obviously

Ci = Ĝi(z, ~x
⋆), where Ĝi(·, ~x ⋆) is defined in (2.10).

In the full-aperture array case, using (2.11) and (4.7), it is immediate to see that

P̂nm = βnβmCnCm.

If the array has partial aperture, then using (4.38) in (3.30) we get

Ŝnm =
1

νnνm

∫

A

∫

A
Ĝ(~x∗, ~xs) Ĝ(~xr, ~x

∗) sn(xs) sm(xr) dxsdxr

=
1

νnνm

M∑

k=1

M∑

l=1

CkCl

∫

A
sn(xs)Xk(xs)dxs

∫

A
sm(xr)Xl(xr)dxr

(3.29)
=

M∑

k=1

Ckw
n
k

M∑

l=1

Clw
m
l .
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Hence

P̂nm
(3.31)
= (D−1

β W ŜW TD−1
β )nm = βnβm

M∑

j=1

wj
n

M∑

i=1

sjiw
i
m

= βnβm

M∑

j=1

wj
n

M∑

i=1

M∑

k=1

M∑

l=1

CkClw
j
kw

i
lw

i
m = βnβm

M∑

k=1

M∑

l=1

CkCl

M∑

j=1

wj
nw

j
k

M∑

i=1

wi
lw

i
m

= βnβm

M∑

k=1

M∑

l=1

CkCl(WW T )nk(WW T )lm = βnβmCnCm,

where the last equality holds since W is orthogonal. �

Remark 11

(a) An analogous result to that stated in Proposition 8 is expected to hold also for extended

scatterers under the linearized Born approximation.

(b) In practice, Proposition 8 holds only as long as all relevant computations are performed

exactly, i.e. with infinite precision. However, as we already saw in Section 3.2.3,

numerical instabilities occur when the length of the array decreases and some of the

smaller in magnitude eigenvalues νj drop below some small threshold ǫ. In these cases,

one may resort to a regularizing procedure like the one described in Section 3.2.3 in

order to compensate the apparent loss of information compared with the full aperture

array case.



Chapter 5

Numerical experiments with data

generated by a full wave model

In the previous chapters we have theoretically analyzed the proposed imaging methods

and we have numerically examined their behavior in simplified model problems with data

generated under the Born approximation. In this chapter we want to assess the performance

of our methods in more realistic scatterer geometries with data that are generated by a full

wave model. Specifically, we will examine two scatterer shapes: a square and a disc-shaped

scatterer. We will present how imaging with ĨKM and ĨKM
J work for these scatterers, compare

the results with their respective 1-D model problems and see that there are significant

similarities that allow us to understand very well what we see. Then, we will examine

the partial aperture case and demonstrate the major improvement that the use of multiple

frequencies brings upon the performance of the method.

5.1 Numerical solution of the wave equation

Throughout this chapter, we will present numerical experiments for two scatterer geome-

tries: a square and a disc shaped scatterer. In order to construct the array response matrix

for each case, we compute numerically the solution of the wave equation problems (1.2) and

(1.3). To this end, we use Montjoie [44], a high-order finite element C++ code developed

at INRIA, which is designed to solve problems that arise in wave propagation phenomena.

97
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5.1.1 Numerical setup

Following the setup that was presented in the previous chapters, we consider a homogeneous

infinite waveguide of width D that forms an infinite strip, i.e. Ω = (−∞,∞) × (0,D). We

assume a reference wavenumber k0 = π/10 that corresponds to a reference wavelength

λ0, and take D = 10λ0. The vertical array is placed at za = 2λ0 and consists of N = 39

transducers uniformly distributed in the water column with a pitch h = λ0/4, thus spanning

the whole depth of the waveguide. Let us note that in the partial array-aperture case the

related array response matrix is extracted from the matrix that corresponds to the full

aperture array, by removing the appropriate lines and columns.

The originally infinite (in the z-direction) domain is truncated by introducing two per-

fectly matched layers (PML) [6, 26], as shown in Figure 5.1. Each PML has a width of

5λ0, which was enough to absorb the waves efficiently so that there are no discernible wave

reflections occurring from the PML. The resulting bounded computational domain has size

[0, 25]λ0 × [0, 10]λ0 and is discretized, in general, with quadrilaterals on which the usual

basis functions of the Qn family are used, where

Qn = span{xℓym, 0 ≤ ℓ,m ≤ n}.

Specifically, for the square scatterer we discretize our domain using squares of side λ/2 and

we use Q8 polynomials, while for the disc we use quadrilaterals in a neighborhood of the

scatterer, and squares with side λ elsewhere; in this case, we useQ12 polynomials. Numerical

quadrature in space is based on Gauss-Lobatto rules, while for the time discretization, we

use a fourth–order leapfrog scheme.
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Figure 5.1: Schematic representation of a waveguide truncated near and far from the array
with two perfectly matched layers.
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In the previous chapters, we presented results that were based on the assumption that

the sources used to generate the wavefield were point sources, both in space and time, hence

f(t, x) = δ(~x− ~xs)δ(t),

where ~xs is the location of the source. For the solution of (1.2) and (1.3) with Montjoie,

we simulate point sources by considering the source term to be of the form

f(t, ~x) = h(t) g(~x; ~xs).

Here h(t) is a Ricker function of time, given by

h(t) =
√
2f0

[
1− 4π2f20 (t− tc))

2
]
exp

{
−[

√
2πf0(t− tc)]

2
}
,

where f0 is the central frequency of the pulse and tc is the time at which the source attains

its maximum. Here, we take tc = 0.01 s and the final computation time is taken equal to

T = 4 s.

The function g(~x; ~xs) is a Gaussian, given by

g(~x; ~xs) =
√
α/π exp(−α|~x− ~xs|2),

where α = ln(106)/r2; r determines the support of the Gaussian and is taken equal to λ0/2.

In Figure 5.2, we plot snapshots of the solution (total field) in our waveguide, for a

disc-shaped scatterer of diameter δ = 2λ0, centered at ~x ⋆ = (22, 3)λ0. In these results the

emitting source is the twentieth array element, i.e. ~x20 = (2, 10)λ0. On the top left subplot

we have the solution at t = 3.75 · 10−2 s, slightly after the source’s emission. On the top

right, we have t = 1.625 · 10−1 s and we observe a wavefront, followed by the reflections of

the wave on the horizontal boundaries, propagating towards the scatterer. On the bottom

left at t = 3.125 · 10−1 s the wave is scattered by the disc, while on the bottom right at

t = 5.125 ·10−1 s we see the reflections traveling towards the array where they get recorded.

Finally, let us note that the solution is computed with Montjoie in the time domain, so,

in turn, we use the fast Fourier transform (FFT) to obtain the array response matrix Π̂ for

the scattered field in the frequency domain.
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Figure 5.2: Total field solution for a disc-shaped scatterer with diameter δ = 2λ0, centered
at ~x ⋆ = (22, 3)λ0 and for the 20th source element. From left to right and top to bottom:
t = 3.75 · 10−2, 1.625 · 10−1, 3.125 · 10−1, 5.125 · 10−1 s.

5.2 Square scatterer

In this section, we will illustrate imaging results for the square scatterer. In fact, this was

one of the first problems that we have dealt with, and it was the need of gaining a deeper

understanding on this problem that motivated us to consider the screen model problem,

which we have studied in detail in Chapter 3. To be more precise, we have considered the

screen model problem in order to simulate the left side of a square scatterer like the one

shown in Figure 5.3. Therefore, we will start this section with a comparison between the

screen and square scatterers and see that the behavior we have observed in the screen case

carries over to the square. We will also examine the partial aperture case and see how

multiple frequencies improve the performance of the imaging method.

As before, we assume a reference wavenumber k0 = π/10, that corresponds to a wave-

length λ0. The waveguide’s geometry is as described in the previous section, where we

now have a square scatterer of side b = 2λ0 centered at ~x ⋆ = (23.5, 3.5)λ0 , as shown in

Figure 5.3. Lastly, our search domain is S = [17, 30]λ0 × [0, 10]λ0.

5.2.1 Comparison between screen and square - Full aperture

We start with a comparison between the screen and the square. We assume that the screen

and the left side of the square are located at the same place, specifically we take them both
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Figure 5.3: Active imaging setup for the square scatterer.

centered at ~x ⋆ = (22.5, 3.5)λ0 . On the top row of Figure 5.4 we plot the singular values

of the matrix P̂ for the screen (left subplot) and for the square scatterer (right subplot),

for a single frequency that corresponds to a wavenumber equal to k = 0.973k0. They are

both normalized by their maximum values. Based on the theory that we have presented in

Chapter 3 and, specifically, using (3.17) for the current frequency and size of the object, we

expect to have 4 ‘significant’ singular values for the screen. This is confirmed by the top-left

plot, where we identify 3 singular values clustered close to 1, and one more that is above

0.6, as well as a ‘transient’ singular value that is slightly below 0.3. A similar behavior can

also be observed on the top-right plot for the square, where now the three larger singular

values are less clustered near 1 and the fourth is above 0.4.

On the bottom row of Figure 5.4, we also plot the modulus of ĨKM for the screen in the

left subplot and for the square in the right subplot. We see that we recover the left side of

the square; this fact follows our intuition since it is this side that faces our array. Lastly,

both images display a high SNR. As a reminder, we define SNR as

SNR =
max
~xs∈R

|ĨKM(~x s)|

max
~xs∈S\R

|ĨKM(~x s)|
,

where R is a subset of our search domain S that contains the reflector. In our tests we

define R as a 6λ0 × 6λ0 box around the scatterer.
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Figure 5.4: Top: Normalized singular values of P̂ for the screen (left) and square (right).
Bottom: Modulus of ĨKM for the screen (left) and for the square (right), for b = 2λ0 and
k = 0.973k0.

Next, in Figure 5.5, we plot imaging results when we use ĨKM
J for the screen on the top

row, and the square on the bottom. Going from left to right, we use J = 1, 2, 3, 4. We

observe that selective imaging for the square follows our theoretical results for the screen,

i.e. the image focuses on the center of the illuminated edge for J = 1, while when moving to

the next singular vectors, we observe a focusing that progressively moves towards the edges

of the object. Additionally, we have a clear focusing on the scatterer for both the screen

and the square, with the exception of J = 4 for the square, where some strong artifacts,

especially one on the bottom left of the image, lower its SNR to around 1.
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Figure 5.5: Modulus of ĨKM
J for the screen (top) and square (bottom), for b = 2λ0 and

k = 0.973k0, for J = 1, 2, 3, 4.

5.2.2 Partial aperture case

Next, we examine the partial aperture case for the square scatterer. As a reminder, we have

seen that for the screen model problem, as long as we do not need to employ a threshold ε+

in the computation of P̂ (see Section 3.4), we create images that are identical to those that

we obtain with a full array-aperture. For the data that comes from the Born approximation,

this was true up until |A| = 0.5D; for these results, we refer to Figure 3.5. However, for

the square scatterer, we need to employ a threshold for an array length that equals 0.8D.

For all partial aperture results for the square, shown in this section, we take ε+ = 0.1.

In Figure 5.6, we plot the partial aperture results for the square scatterer, for an array

with length |A| = 0.8, 0.6, 0.4, 0.3 D, as we move from left to right, respectively. In all

cases the array is centered at the midpoint of the vertical cross-section of the waveguide.

We observe that for the first two images we get a good reconstruction of the object, with

high SNR. In the case where |A| = 0.4 D, we observe an increased background noise, which

lowers the image’s SNR to roughly 1.4, while when |A| = 0.3 D the noise is almost as large

as the values of the image on the object.
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Figure 5.6: Modulus of ĨKM for a square with b = 2λ0 and k = 0.973k0, for |A| =
0.8, 0.6, 0.4, 0.3 D

Using multiple frequencies

At this point, there are two comments regarding Figure 5.6, that are worth mentioning.

First, by using only a single frequency, we are able to create a good quality image that

indicates the presence of a scatterer, with an array that spans only 40% of the waveguide’s

vertical cross-section. Secondly, despite the high level of background noise in the last case,

we can see that our image indeed focuses on the scatterer. Using this fact, and following the

results of our resolution analysis in Section 4.2, we will proceed to use multiple frequencies,

in order to improve the SNR of the image and to create images with even smaller arrays.

In Figure 5.7 we now employ the use of multiple frequencies. Specifically, we consider our

previous single frequency as a central frequency, i.e. kc = 0.973k0, and we use a bandwidth

equal to B = 0.92fc. The images shown in Figure 5.7 from left to right correspond to array

lengths equal to |A| = 0.3, 0.2, 0.1, 0.05 D, respectively. Once more, in all cases, the array

is centered at the midpoint of the vertical cross-section of the waveguide. It is immediate

to see the vast improvement of the leftmost image of Figure 5.7, when it is compared with

the rightmost image of Figure 5.6 that corresponds to the same array length. What is also

extraordinary, is the fact that even with an array that spans just 5% of the waveguide’s

width (see the rightmost image) we are still able to create an image that focuses on the

scatterer and has a high SNR. Let us note here that an array with pitch h = λ0/4 that

spans 5% of the width of the specific waveguide, as a matter of fact, consists of just three

transducers.
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Figure 5.7: Modulus of ĨKM for a square with b = 2λ0 and kc = 0.973k0 and B = 0.92fc,
for |A| = 0.3, 0.2, 0.1, 0.05 D

5.3 Disc-shaped scatterer

We also consider a disc-shaped scatterer and the corresponding semicircle model problem.

We expect to observe similar results as the ones shown before for the square and screen

problems. We present these results to indicate that the behavior we observe for the vertical

screen and the square, it also holds for more general scatterer geometries. Aside from

the disc that we will show here, similar results have been obtained for a rhombus shaped

scatterer, which will not be shown here, for brevity.

The disc and the semicircle that we consider they both have diameter δ = 2λ0 and

are centered at ~x ⋆ = (22, 5)λ0. The waveguide’s characteristics remain the same as in

the previous section, while now we have slightly shifted the search domain to be S =

[15.5, 28.5]λ0 × [0, 10]λ0.

Following the format of the previous section, we begin by comparing the disc and the

semicircle. On the top row we plot the normalized singular values of P̂ for the semicircle

on the left and the corresponding ones for the disc on the right. The singular values are

distributed in a somewhat similar manner to the screen/square case, where now we may

distinguish three significant singular values. On the bottom we have the ĨKM images which

show great agreement, and they both focus on the leftmost part of the scatterer.
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Figure 5.8: Top: Singular values of P̂ for the screen (left) and square (right). Bottom:
Modulus of ĨKM for the screen (left) and for the square (right), for b = 2λ0 and k = 0.973k0.

Let us remark here that in the case of the square scatterer, selectivity did not offer, in

general, any important additional information in the sense that, for example, as one may

verify in Figure 5.4 the whole left side of the square is recovered without using any selective

technique. However, this is not the case for the disc, where the ĨKM image is focused on the

leftmost part. As we shall see immediately, the use of selective imaging functionals helps us

to recover additional information about the scatterer. In Figure 5.9, we plot the imaging

results for a single frequency with a corresponding wavenumber k = 0.973k0, when we use

ĨKM
J for the semicircle, shown on top, and the disc at the bottom, for J = 1, 2, 3. In all

images we observe a very good agreement between the semicircle and disc results, as well

as the expected focusing order when using ĨKM
J , with the first singular value focusing in the

leftmost part of the scatterer, and the next ones moving towards the upper and lower edges

of the scatterer.
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Figure 5.9: Modulus of ĨKM
J for the semicircle (top) and disc (bottom), for b = 2λ0 and

k = 0.973k0, for J = 1, 2, 3.

Next, in Figure 5.10 we test the performance of our imaging functional ĨKM in locating

the disc-shaped scatterer when we use a partial-aperture array centered at the midpoint

of the vertical cross-section of the waveguide. We use a single frequency, and we plot our

images from left to right for array lengths equal to |A| = 0.8, 0.6, 0.4, 0.3 D, respectively.

We see that as we move to smaller arrays the focus of the image is mainly on the leftmost

part of the scatterer, while for |A| = 0.3 D we have an image that focuses in the center of

the scatterer.
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Figure 5.10: Modulus of ĨKM for a disc with δ = 2λ0 and k = 0.973k0, for |A| =
0.8, 0.6, 0.4, 0.3 D

Finally, in Figure 5.11 we again use multiple frequencies, and specifically with a central

frequency that corresponds to the wavenumber kc = 0.973k0 and a bandwidth B = 0.92fc,

we image using arrays with length |A| = 0.3, 0.2, 0.1, 0.05 D. Again, the use of multiple

frequencies significantly improves the quality of the image, and if we look at the rightmost

plot we see again that even with an array that spans only 5% of the waveguide’s cross-
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section, we create an image with a very clear focusing on the scatterer.
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Figure 5.11: Modulus of ĨKM for a disc with δ = 2λ0 and kc = 0.973k0 and B = 0.92fc, for
|A| = 0.3, 0.2, 0.1, 0.05 D

5.4 Variable speed case

Lastly, in this section, as a step towards a more realistic environment, we assume that the

sound speed is a function of the cross-range variable x, i.e. c = c(x). In this case, we

no longer have an analytic expression for the eigenvalues and the vertical eigenfunctions

Xn. We obtain them by numerically solving the associated vertical eigenvalue problem.

However, the Xn’s still form an orthonormal basis of L2[0,D]. Therefore, the theoretical

results that we have proven for the homogeneous case carry over to this case, thus we expect

that the results of the numerical experiments that we have presented in the previous section

to carry over as well. The sound speed profile that we consider in our experiments is shown

in Figure 5.12, and is adapted from [33] to fit the current waveguide setup.
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Figure 5.12: Variable speed profile for our waveguide.

We consider a square scatterer of side b = 2λ0, centered at ~x ⋆ = (23.5, 5)λ0 . In this
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section, we will compare imaging results between the homogeneous waveguide and the

waveguide with a variable wave speed, as we just described. The results for the disc are

very similar so we do not present them, for the sake of brevity. First, in Figure 5.13 we plot

on the top row the normalized singular values of P̂ and on the bottom the ĨKM image, for

a single frequency with a corresponding wavenumber k = 0.973k0. On the left column we

have the homogeneous waveguide, while on the right we have the variable speed case. We

observe that the distribution of the singular values in both cases is very similar, while the

ĨKM images seem visually identical, and the corresponding SNR values are very close.
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Figure 5.13: Normalized singular values of P̂ (top) and modulus of ĨKM (bottom) for the
square in a waveguide with constant (left panel) and variable (right panel) wave speed, for
b = 2λ0 and k = 0.973k0.

Next, in Figure 5.14 we present selective imaging results for the homogeneous waveguide

plotted on top, and for the variable speed case shown on the bottom. As before, both cases

show an excellent agreement, with their only difference being apparent at the rightmost

image, for J = 4, where the artifacts that are the causes of a low SNR-value on the

homogeneous case seem to be less pronounced in the variable speed case, thus the SNR of

the image increases.
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Figure 5.14: Modulus of ĨKM
J for square in a waveguide with constant (top) and variable

(bottom) wave speed, for b = 2λ0 and k = 0.973k0, for J = 1, 2, 3, 4.

In Figure 5.15 we consider the partial aperture case, with |A| = 0.8, 0.6, 0.4, 0.3 D.

Again, the results between the homogeneous and variable speed case are similar, with the

image for |A| = 0.4D having a focus on the left side of the square but a relatively low SNR

and when |A| = 0.3D we have an image with SNR close to 1 for both cases.
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Figure 5.15: Modulus of ĨKM for a square in a waveguide with constant (top) and variable
(bottom) wave speed, for b = 2λ0 and k = 0.973k0, for |A| = 0.8, 0.6, 0.4, 0.3 D

Finally, in Figure 5.16 we use multiple frequencies to improve the performance of the

imaging functional, having kc = 0.973k0 and B = 0.92fc. Here we observe the only signif-

icant difference between the homogeneous waveguide and our current case, where for the
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limiting case at |A| = 0.05D the quality of the rightmost bottom image seems to deteriorate,

compared to the corresponding image on the top.
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Figure 5.16: Modulus of ĨKM for a square in a waveguide with constant (top) and
variable (bottom) wave speed, for b = 2λ0 and kc = 0.973k0 and B = 0.92fc, for
|A| = 0.3, 0.2, 0.1, 0.05 D

To summarize, in this chapter we assessed the performance of our imaging method for

more realistic scatterer geometries with data that were generated by a full wave model. First,

we compared the model problems for the one-dimensional scatterers with the problems for

their two-dimensional counterparts and we have observed an excellent agreement. We also

examined the partial array-aperture case. There, we saw that for a single frequency we

are able to create good images with 40% of the original array, while when we use multiple

frequencies we are able to push our method way past that length and we are able to locate

the scatterers using an array with length |A| = 0.05D. Lastly, we examined a more realistic

case where the wave speed depends on the cross-range variable x, we have compared the

results with the corresponding ones for the homogeneous case, and we have verified that

our method works equally well in this cross-range dependent wave speed environment.



Chapter 6

Imaging in a terminating

waveguide

In this chapter, we consider the problem of imaging extended reflectors in a terminating

waveguide, as the one depicted in Figure 6.1. The main reason we consider this waveg-

uide geometry is because, as we will see, more information about the extended reflector’s

support/shape can be obtained in this case compared to the infinite waveguide geometry.

This is due to multiple-scattering reflections that bounce off the terminating boundary of

the waveguide providing multiple views of the reflector that are not available in the in-

finite waveguide case. To benefit from this multipathing we need to know or determine

the boundary of the waveguide prior to imaging the reflector. Here, we consider that the

waveguide’s boundary is known.

z

x

z = Lz = za

A

O

S

x = 0

x = D

ΩL+ΩL−

Figure 6.1: Schematic representation of the semi-infinite waveguide.

The main body of this chapter has been the object of publication [60]. Here, we es-

sentially present the contents of this publication. Specifically, in Section 6.1 we present

112
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the formulation of the problem and describe our imaging methodology inspired by phase

conjugation for both the passive and active imaging. In Section 6.2 we carry out the res-

olution analysis for single and multiple frequency imaging and in Section 6.3 we illustrate

the performance of our approach with numerical simulations in two and three dimensions.

6.1 Problem setup and imaging methodology

In this section, we briefly describe our problem and introduce our imaging methodology.

The terminating waveguide Ω consists of two subdomains: the semi-infinite strip ΩL− =

(−∞, L)× (0,D) and a bounded domain in R2 denoted by ΩL+, see Figure 6.1. Let us also

assume that all the inhomogeneities of the medium are contained in ΩL+ while the medium

is homogeneous in the semi-infinite strip ΩL− , i.e. the wave speed may depend on range

and cross-range in ΩL+, and varies smoothly to the constant value that has for z ≤ L. Note

that the assumption of a constant wave speed in ΩL− may be relaxed by requiring the speed

to depend on the cross-range variable x. However, to facilitate the presentation we assume

here that ΩL− is filled with a homogeneous medium.

As with the infinite waveguide case, we have an active vertical array A in ΩL− , composed

of N transducers, that may span the whole vertical cross-section of the waveguide or part

of it. Our data are stored in the N ×N response matrix Π̂ for the scattered field, which is

determined by subtracting the incident field from the total field. The incident and scattered

fields are the solution of (1.5) and (1.6) respectively with the radiation conditions adjusted

accordingly, stating that ‘p is outgoing as z → −∞’.

We assume here that these BVPs are well-posed. For example, in the case where η(~x) =

1 everywhere in Ω, it has been proved in [28] that the problem for the incident field is

well-posed under the assumption that k2 6∈ Λ ∪ {µn}∞n=1, where Λ is the point spectrum of

the negative Dirichlet Laplacian acting on L2(Ω). This set Λ, which may be empty in some

cases, is known to be at most countable, with no finite accumulation point, see [37]. For the

total field there are examples in infinite waveguides that suggest existence of the so-called

trapped modes, i.e. nonzero localized solutions of the associated homogeneous problem, see

e.g. [23].
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6.1.1 Imaging with a full-aperture array

Now, let us present the imaging method we will use for this waveguide geometry. We shall

first consider the easier case where the array spans the whole vertical cross-section of the

waveguide. Moreover, although we are interested in imaging extended reflectors we will first

examine the so-called passive imaging problem in order to motivate the use of the imaging

functional that we will introduce next.

Passive Imaging

So, let us assume that a point source of unit strength, located at the point ~xs = (zs, xs) ∈ Ω,

emits a signal that is recorded on a vertical array A located in ΩL− . Moreover, we assume

that the array A = {~xr = (za, xr)}Nr=1, (za < L), spans the whole vertical cross-section of

the waveguide as illustrated in Figure 6.2. Our aim is to find the location of the source. In

this case the array response matrix Π̂ at frequency ω reduces to a N × 1 vector, whose r-th

component equals the Green’s function evaluated at receiver ~xr due to the source ~xs, i.e.

Π̂(~xr;ω) = Ĝ(~xr, ~xs;ω). (6.1)

In what follows we consider a monochromatic source and to simplify the notation we sup-

press parameter ω from the imaging functional and the Green’s function. The dependence

on ω will be recalled in Section 6.2.2, where imaging with multiple frequency data is con-

sidered.

z = Lz = za

A

x = 0

x = D

ΩL+

~xr

~xs

Figure 6.2: Passive imaging setup in a terminated waveguide.

The imaging functional that we propose to use is based on the concept of phase conju-

gation, which may be physically interpreted by virtue of the Huygen’s principle. As pointed

out in [35], Huygen’s principle states that a propagating wave may be viewed as superpo-
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sition of wavelets reemitted from a fictitious surface with amplitudes proportional to those

of the original wave. In phase conjugation, which may be seen as the equivalent of time

reversal in the frequency domain, the reemitted wavelets’ amplitudes are proportional to

the complex conjugate of the corresponding ones in the original wave. These remarks lead

naturally one to define the following classical phase conjugation imaging functional

Ipc(~ys) =

∫

A
Ĝ(~xr, ~xs)Ĝ(~ys, ~xr)dx, (6.2)

where ~xr = (za, x) ∈ A and ~ys ∈ S. However, if we assume for a moment that apart from

recording the value of the field on the array we would be able to record its normal derivative

as well, then we may define the following imaging functional, which as we will show next

has very nice theoretical properties. So let

I(~ys) :=

∫

A

(
Ĝ(~xr, ~xs)∇Ĝ(~xr, ~y

s)− Ĝ(~xr, ~y
s)∇Ĝ(~xr, ~xs)

)
· ν dx, (6.3)

where ν is the outward-pointing unit normal vector to A. Of course this functional is more

complicated than phase conjugation but the following proposition shows that in order to

compute I(~ys) in a terminating waveguide it is required to know only the values of the

wave field on the array and not its derivatives. Let us remark here that the form of the

integral that appears in the right-hand side of (6.3) is also met in the context of the so-called

reciprocity gap method, see, e.g., [19, 43].

Proposition 9 (Kirchhoff-Helmholtz identity) Assume that a point source is located

in the terminating waveguide that we have described in Section 6.1 (see, also, Figure 6.2),

and that a vertical array A, which spans the whole vertical cross-section of the waveguide,

is located in ΩL−. Then, the imaging functional that we have defined in (6.3) satisfies the

following Kirchhoff-Helmholtz identity:

I(~ys) = Ĝ(~ys, ~xs)− Ĝ(~ys, ~xs) = 2iIm Ĝ(~y s, ~xs). (6.4)

Moreover, we can show that,

I(~ys) = 2i
M∑

n=1

βn Ĝn(za, ~xs) Ĝn(za, ~y
s), (6.5)
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where Ĝn(za, ·), n = 1, . . . ,M , denote the first M Fourier coefficients of the Green’s func-

tion (which correspond to the propagating modes) with respect to the orthonormal basis of

L2(0,D) that is formed by the vertical eigenfunctions Xn, i.e.

Ĝn(za, ·) =
∫ D

0
Ĝ((za, x

′), ·)Xn(x
′) dx′. (6.6)

Proof. See Section 1.7. �

The passive imaging functional Motivated by Proposition 9 we define here our imaging

functional for the passive case. Assuming that the array elements are dense enough, so that

we may think of the array as being continuous, we define

Q̂n =

∫ D

0
Π̂
(
~xr;ω

)
Xn(x) dx, n = 1, . . . ,M, (6.7)

to be the projection of the recorded field on the firstM eigenfunctions Xn, n = 1, . . . ,M , of

the vertical eigenvalue problem (1.10). Let us remark here that the definition of Q̂n in (6.7)

entails an idealized continuous array; this is convenient mainly for theoretical purposes. In

practice, we work with arrays that consist of discrete elements and then we may define

Q̂n := h
N∑

r=1

Π̂
(
(za, xr);ω

)
Xn(xr), n = 1, . . . ,M,

where h is the array inter-element distance.

Notice that using (6.1), Qn may be written as

Q̂n =

∫ D

0
Ĝ
(
(za, x), ~xs

)
Xn(x) dx = Ĝn(za, ~xs).

In view of (6.5) we define our imaging functional as:

Ip(~ys) :=
M∑

n=1

βnQ̂n Ĝn(za, ~y
s). (6.8)

Note that the evaluation of Ip(~ys), for ~ys ∈ S, requires only recordings of the wave
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field. Moreover, (6.4) and (6.5) ensure that

Ip(~ys) = Im Ĝ(~y s, ~xs). (6.9)

This last equation is a very interesting result, and says that the quality of the focusing in

the image is determined by the imaginary part of the Green’s function in our waveguide.

Therefore, a resolution analysis for Ip will entail the study of the behaviour of Im Ĝ.

Example 1: (Imaging a point source) In order to provide to the reader a sense of

how Ip(~y s) behaves, we consider the simple case of imaging a source in a homogeneous

terminating waveguide that forms a semi-infinite strip, i.e. Ω = (−∞, R) × (0,D). We

assume a reference wavenumber k0 = π/10 that corresponds to a reference wavelength λ0,

and take D = 10λ0 while the vertical (terminating) boundary is placed at R = 27.5λ0. In

Figure 6.3, we plot the modulus of equation (6.8), for a source placed at ~xs = (19, 5)λ0

(shown in the plot as a white asterisk) and for a single frequency f that corresponds to a

wavenumber k = 0.973k0. This results to a number of propagating modes M = 19. Finally

our search domain is S = [11.5, 26.5] × [0, 10], where all distances are expressed in terms of

the reference wavelength λ0.
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Figure 6.3: Normalized modulus of Ip for a point source located at ~xs = (19, 5)λ0 and for a
single frequency corresponding to k = 0.973k0. Imaging on the whole search domain (left),
for search points fixed at the correct range z = zs (middle) and at the correct cross-range
x = xs (right). The green arrowed segment indicates length equal to λ/2 and a red asterisk
points to the location of the source.

We observe that the Ip(~y s) image, despite the presence of relatively high secondary

peaks, displays a clear peak around ~xs, which is a key property for an imaging functional.
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Active Imaging

As a step forward to the general case of an extended scatterer, we will now deal with the

active imaging problem where we are interested in locating a single point scatterer of unit

reflectivity that is situated at ~x∗ = (z∗, x∗), while the array A is like the one in the passive

imaging case as illustrated in Figure 6.4.

z = Lz = za

A

x = 0

x = D

ΩL+

~xr

~xs

~x∗ = (z∗, x∗)

Figure 6.4: Active imaging setup in a terminated waveguide.

Then, the (s, r) entry of the array response matrix:

Π̂(~xs, ~xr;ω) = k2Ĝ(~x∗, ~xs;ω)Ĝ(~xr, ~x
∗;ω),

corresponds to the scattered signal received at ~xr when the point reflector at x∗ is illumi-

nated by a unit amplitude signal emitted at frequency ω from a point source located at ~xs.

In what follows we suppress the multiplicative constant k2, hence we assume that

Π̂(~xs, ~xr;ω) = Ĝ(~x∗, ~xs;ω)Ĝ(~xr, ~x
∗;ω). (6.10)

In the mutiple-frequency case we can also remove this factor by rescaling the data matrix

Π̂(~xs, ~xr;ω) to be equal to k−2Π̂(~xs, ~xr;ω).

Assuming again that the array is continuous we define the projected response matrix Q̂

as

Q̂nm =

∫ D

0

∫ D

0
Π̂(~xs, ~xr;ω)Xn(xs)Xm(xr) dxs dxr, n,m = 1 . . . ,M, (6.11)

where Xn, n = 1 . . . ,M , are the first M eigenfunctions of problem (1.10) as before.
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The active imaging functional A natural generalization of the imaging functional that

we have proposed in the passive case (see (6.8)), is the following active imaging functional

Ia(~y s) :=

M∑

n=1

M∑

m=1

βnβmQ̂nm Ĝn(za, ~y
s) Ĝm(za, ~y

s), (6.12)

defined for each point ~y s in the search domain S.

Note that by replacing (6.10) into (6.11) and using the expression of Ĝn given in (6.6),

it is easy to show that

Q̂nm = Ĝn(za, ~x
∗) Ĝm(za, ~x

∗). (6.13)

In turn, (6.12) now becomes,

Ia(~y s) =

M∑

n=1

βn Ĝn(za, ~x
∗) Ĝn(za, ~y

s)

M∑

m=1

βm Ĝm(za, ~x
∗) Ĝm(za, ~y

s),

and Proposition 9 ensures that

Ia(~y s) =
(
Im Ĝ(~y s, ~x∗)

)2
. (6.14)

Thus we deduce that the imaging functional (6.12) for a point scatterer behaves like the

square of the imaginary part of the Green’s function.

Example 2: (Imaging a point scatterer) To illustrate how Ia(~y s) behaves we consider

a point scatterer in the homogeneous terminating waveguide that we have described in

Example 1. The scatterer is placed at ~x∗ = (19, 5)λ0 while all the other parameters are the

same as in the previous example. In Figure 6.5 we plot the modulus of (6.12). As one may

immediately verify this image has better signal-to-noise (SNR) ratio than the one shown in

Figure 6.3. This is something to be expected since Ia is just the square of Ip.

6.1.2 Imaging with a partial-aperture array

We now turn our attention to the case where the array does not span the whole vertical

cross-section of the waveguide. In Section 3.2, we have presented a way to construct a

projection of the array response matrix that is well suited to the infinite waveguide case.

Here we briefly repeat the basic idea and necessary notation, in order to apply them in our

current setup.
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Figure 6.5: Normalized modulus of Ia for a point scatterer located at ~x∗ = (19, 5)λ0 and
for a single frequency corresponding to k = 0.973k0. Imaging on the whole search domain
(left), for search points fixed at the correct range z = z∗ (middle) and at the correct cross-
range x = x∗ (right). The green arrowed segment indicates length equal to λ/2 and a red
asterisk points to the location of the scatterer.

Let Aarr be the M ×M matrix with entries

(Aarr)mn =

∫

A
Xm(x)Xn(x)dx, m, n = 1, . . . ,M, (6.15)

where M is the number of propagating modes in ΩL− . We have shown that Aarr is a

real, symmetric Toeplitz-minus-Hankel matrix and its eigenvalues νj , j = 1, . . . ,M , are

clustered near 0 and 1. Let, also, wj = (wj
1, w

j
2, . . . , w

j
M )T be the corresponding orthonormal

eigenvectors, which turn out to be discrete prolate (or prolate-like) spheroidal sequences,

and W be the M ×M orthogonal matrix W = (w1,w2, . . . ,wM ). Then we introduce the

trigonometric polynomials

sj(x) =

M∑

i=1

wj
iXi(x), j = 1, 2, . . . ,M. (6.16)

Next, we project Π̂ onto the first M trigonometric polynomials sn, n = 1, . . . ,M instead of

projecting onto the eigenfunctions Xn. Specifically, we define Ŝ to be the M ×M matrix

with entries

Ŝmn =
1

νmνn

∫

A

∫

A
Π̂(~xs, ~xr, ω) sm(xs) sn(xr) dxs dxr, m, n = 1, . . . ,M. (6.17)
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It is easy to check that

∫

A
sk(x)Xm(x) dx = νk w

k
m, k,m = 1, . . . ,M. (6.18)

Finally, we define Q̂ as

Q̂ =W ŜW T . (6.19)

As in the infinite waveguide case, for a full aperture array, we recover the definition of Q̂

given in (6.11). Let us also note that the results and proof shown in Section 4.3 carry over

in an analogous fashion; for a single point scatterer, the projected array response matrix Q̂

defined by (6.17) and (6.19) for a partial aperture array is equal to the projected matrix Q̂

for the full aperture case.

In the case of passive imaging with a partial-aperture array our methodology is modified

as follows: We first construct the vector Ŝ with entries

Ŝn =
1

νn

∫

A
Π̂(~xr) sn(xr) dxr, n = 1, . . . ,M, (6.20)

and then we define the vector

Q̂ =W Ŝ, (6.21)

where the matrix W is as before. It is straightforward to show that the projected array

response vector Q̂ for a continuous array that spans the whole vertical cross-section [0,D]

is equal to the vector defined by (6.20) and (6.21) in the case of a partial-aperture array.

We conclude this section by proposing the following imaging algorithms for imaging one

or more extended sources or scatterers located in ΩL+ .

Algorithm 2 (Passive imaging) (a) Given the N×1 array response vector Π̂ we com-

pute the M × 1 projected vector Q̂ by means of (6.20) and (6.21) .

(b) Next, we compute the imaging functional Ip given in (6.8) for each point of a prede-

fined search domain S and we display graphically the modulus of these values.

Algorithm 3 (Active imaging) (a) Given the N×N array response matrix Π̂ we com-

pute the M ×M projected matrix Q̂ by means of (6.17) and (6.19).

(b) Next, we compute the imaging functional Ia given in (6.12) for each point of a prede-

fined search domain S and we display graphically the modulus of these values.
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In practice, we follow the same steps as Algorithm 1, where we now create the matrix Q̂

instead of P̂.

We close this section with a remark

Remark 12 The intuitive definition of the imaging functionals Ip and Ia, as well as their

nice resolution properties may raise the question as to why the same methodology was not

used in the infinite waveguide case. To clarify this, we refer to Section 1.7, where the proof

for the Kirchhoff-Helmholtz identity is given. The proof relies on second Green’s identity

which involves a boundary integral over a closed curve. For the terminating waveguide, that

curve consists of the waveguide’s boundaries and a single array on the left side. For the

infinite waveguide case, the curve consists of the horizontal boundaries of the waveguide and

two arrays on either side of the scatterer. So in order to use the same methodology in the

infinite waveguide we need to record the scattered field on two arrays. Our objective in the

previous chapters however, was to examine how well we can image an extended scatterer

using a single array.

6.2 Resolution analysis

In this section we present a detailed resolution analysis for the imaging functionals Ip and Ia

defined in (6.8) and (6.12), respectively. As usual, this amounts in studying the behaviour of

the point spread function (PSF), which is the imaging functional for a point source (passive

case) or a point scatterer (active case). In fact, we are going to examine only the case of

a point source since the results of the previous section ensure that the PSF for a point

scatterer is just the square of the PSF for a point source.

Specifically, we restrict ourselves in the simple case of a homogeneous waveguide (η(~x) =

1) which forms the semi-infinite strip (−∞, R) × (0,D). The Green’s function in this

waveguide, hereafter denoted by ĜR, may be found analytically; the derivation is given in

Section 1.4.2. We have that for each ~y s = (z, x) ∈ Ω,

ĜR(~ys, ~xs) =





∞∑

m=1

1

βm
eiβm(R−zs) sin βm(R− z)Xm(x)Xm(xs), z > zs

∞∑

m=1

1

βm
eiβm(R−z) sinβm(R − zs)Xm(x)Xm(xs), z < zs

, (6.22)

where the point source is located at ~xs = (zs, xs), the vertical eigenpairs (µn,Xn) are equal
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to

µn = (nπ/D)2, Xn(x) =
√

2/D sin(
√
µnx), n = 1, 2, . . . , (6.23)

and the horizontal wavenumbers βn are defined as

βm =

{ √
k2 − µm, m = 1, . . . ,M

i
√
µm − k2, m ≥M + 1.

(6.24)

Then, as (6.9) suggests, the PSF for a point source is

Ip(~y s) = Im ĜR(~y s, ~xs) =

M∑

n=1

1

βn
sin βn(R − zs) sin βn(R − z)Xn(x)Xn(xs)

=
1

2

M∑

n=1

1

βn

(
cos βn(z − zs)− cos βn(2R− z − zs)

)
Xn(x)Xn(xs). (6.25)

6.2.1 Single frequency

The analysis in this subsection is carried out for a monochromatic source. The following

two propositions provide analytical estimates of the PSF when we fix range or cross-range

to that of the point source and look at a cross-section in the other direction.

Proposition 10 (Cross-range resolution) Assume that the search point is located at the

correct range, i.e., ~y s = (zs, x). Then, for M sufficiently large, it holds that

Ip(zs, x) ≈
1

4

[(
J0(αx)− J0(βx)

)
−
(
J0(
√
α2
x + γ2x)− J0(

√
β2x + γ2x)

)]
, (6.26)

where

αx =
2π(x − xs)

λ
, βx =

2π(x+ xs)

λ
, γx =

4π

λ
(R − zs). (6.27)

Proof. For ~y s = (zs, x), and in view of (6.23), (6.25) becomes

Ip(zs, x) =
1

D

M∑

n=1

1

βn

(
1− cos(2βn(R− zs))

)
sin

nπx

D
sin

nπxs
D

. (6.28)

Letting ξn = nλ/(2D) we may view the right-hand side of (6.28) as a Riemann sum

approximation of the integral

1

π

∫ 1

0

1√
1− ξ2n

(
1− cos

(4π
λ
(R− zs)

√
1− ξ2n

))
sin
(2πx
λ
ξn

)
sin
(2πxs

λ
ξn

)
dξn.
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Hence, using the simple trigonometric identity sinA sinB = 1
2(cos(A − B) − cos(A + B))

we may approximate Ip as:

Ip(x) ≈ 1

π

∫ 1

0

1√
1− ξ2n

(
1− cos

(4π
λ
(R − zs)

√
1− ξ2n

))

× 1

2

(
cos
(2π(x− xs)

λ
ξn
)
− cos

(2π(x+ xs)

λ
ξn
))
dξn,

where we have slightly extended the notation and used here Ip as a function of a single

variable (cross-range). Now, with αx, βx and γx given by (6.27), Ip can be written as

Ip(x) ≈ 1

2π

∫ 1

0

1√
1− ξ2n

(
1− cos

(
γx
√

1− ξ2n
))(

cos(αxξn)− cos(βxξn)
)
dξn

=
1

2π

∫ 1

0

1√
1− ξ2n

cos(αxξn) dξn − 1

2π

∫ 1

0

1√
1− ξ2n

cos(βxξn) dξn

+
1

2π

∫ 1

0

1√
1− ξ2n

cos(αxξn) cos
(
γx
√

1− ξ2n
)
dξn

− 1

2π

∫ 1

0

1√
1− ξ2n

cos(βxξn) cos
(
γx
√

1− ξ2n
)
dξn

=: I1 − I2 + I3 − I4. (6.29)

The integrals Ii, i = 1, . . . , 4, in (6.29) may be evaluated analytically. We look at each term

separately. For example, it is known, [30, (3.753.2)], that

∫ 1

0

1√
1− ξ2n

cos(αxξn) dξn =
π

2
J0(αx),

where J0(·) is the Bessel function of the first kind of order 0. Therefore,

I1 =
1

4
J0(αx) and I2 =

1

4
J0(βx).

Next, in order to evaluate I3 we change variables, letting θ = arcsin ξn, and use the fact

that J−1/2(t) =
√

2
πt cos(t) (see, e.g., [22, (10.16.1)]) to write I3 as

I3 =
1

4

√
αxγx

∫ π/2

0
J−1/2(αx sin θ)J−1/2(γx cos θ)(sin θ)

1/2(cos θ)1/2dθ.
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Then, according to [30, (6.683.2)], I3 = 1
4J0(

√
α2
x + γ2x). Similarly, I4 = 1

4J0(
√
β2x + γ2x)

and the proof is complete. �

Proposition 11 (Range resolution) Assume that the search point is located at the cor-

rect cross-range, i.e., ~y s = (z, xs). Then, for M sufficiently large, it holds that

Ip(z, xs) ≈
1

4

[(
J0(αz)− J0(βz)

)
−
(
J0(
√
α2
z + γ2z )− J0(

√
β2z + γ2z )

)]
, (6.30)

where now

αz =
2π(z − zs)

λ
, βz =

2π(2R − z − zs)

λ
, γz =

4πxs
λ

. (6.31)

Proof. Since ~ys is placed at the correct cross-range we now let x = xs in (6.25). Thus, by

a slight abuse of notation, Ip(z) as a function of the range variable equals to

Ip(z) =
1

D

M∑

n=1

1

βn

(
cos βn(z − zs)− cos βn(2R− z − zs)

)
sin2

nπxs
D

. (6.32)

As in the proof of Proposition 10, we let ξn = nλ/(2D) and approximate the right-hand

side of (6.28) by an integral. Specifically, if αz, βz, γz are as in (6.31), and if we use that

sin2A = 1
2 (1− cos 2A), we may deduce that Ip(z) is approximated as

Ip(z) ≈ 1

2π

∫ 1

0

1√
1− ξ2n

(
cos(αz)

√
1− ξ2n)− cos(βz

√
1− ξ2n)

)

×
(
1− cos(γzξn)

)
dξn. (6.33)

The integral of the various terms of (6.33) are of the same type as those in (6.29) and they

can be evaluated analytically resulting to (6.30). �

A first remark is that the approximate formulas (6.26) and (6.30) for the PSF when range

or cross-range, respectively, is fixed at the correct location of the point-source suggest that

the term that mainly contributes in defining the resolution in the vicinity of the source is

J0(αx) or J0(αz), respectively. To illustrate this, in Figure 6.6 we superimpose the graphs of

(6.26) multiplied by 4 (typed in blue) and of J0(ax) (red dashed line), for a source located at

(zs, xs) = (19, 5)λ0 and for a single frequency corresponding to k = 0.973k0. The reference

wavenumber is k0 = π/10.

Hence, if we define the resolution to be the width of the PSF at its half maximum, it is
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Figure 6.6: Comparison between (6.26) multiplied by 4 (blue line) and J0(ax) (red dashed
line), for a source located at (zs, xs) = (19, 5)λ0 and for a single frequency corresponding
to k = 0.973k0, where the reference wavenumber is k0 = π/10. The green arrowed segment
indicates length equal to λ/2.

immediate to check that both cross-range and range resolution are approximately equal to

λ/2.

Next, we plot in Figure 6.7, the absolute values of (6.26) (left subplot) and (6.30)

(right subplot) for a point source located at (zs, xs) = (19, 5)λ0. As before, the reference

wavenumber is k0 = π/10 and results are shown for a single frequency that corresponds

to k = 0.973k0. The analytical expressions we have derived for the cross-range and range

resolution capture the behaviour of the imaging functional as we may check by comparing

the plots in Figure 6.7 with the two rightmost subplots of Figure 6.3. The images shown

in Figures 6.3 and 6.7, peak at the right position of ~xs and as predicted by the theoretical

analysis they have a resolution of λ/2 in both range and cross-range directions. We observe

however that they are quite oscillatory and their SNR is not very satisfactory.

6.2.2 Multiple frequencies

In this subsection we show that the SNR in our images can be significantly improved using

multiple frequencies. For most practical purposes this is something feasible since in many

applications sources are not monochromatic but they rather emit pulses. The multiple

frequency version of the imaging functional defined in (6.8) is simply the summation over
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Figure 6.7: Normalized absolute value of (6.26) versus cross-range (left subplot) and nor-
malized absolute value of (6.30) versus range (right subplot) for a point source located at
(zs, xs) = (19, 5)λ0. Here the reference wavenumber is k0 = π/10 and results are shown for
a single frequency that corresponds to k = 0.973k0. The green arrowed segment indicates
length equal to λ/2 and a red asterisk points to the location of the source.

frequencies of the corresponding monochromatic one

Ip(~ys) :=

Nf∑

l=1

Ip(~ys; fl) =

Nf∑

l=1

Ml∑

n=1

βn(fl)P̂n(fl) Ĝn(za, ~y
s; fl) (6.34)

where fl, l = 1, . . . , Nf are the discrete frequencies that span the available frequency in-

terval [fmin, fmax] in our data. Note that Ml depends on the index l since the number of

propagating modes depends on the frequency fl. The definition of the corresponding active

imaging functional for multiple frequencies follows similarly.

Let us first look at the cross-range direction. To investigate the PSF behaviour with

multiple frequencies in the ideal setting that we have examined thus far, we integrate (6.26)

with respect to frequency f over an interval with bandwidth B. Specifically, letting Ψ(x;B)
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denote the PSF for multiple frequencies at the correct range, we have

Ψ(x;B) =

∫ fmax

fmin

Ip(zs, x; f)df

≈ 1

4

∫ fmax

fmin

[(
J0(αx)− J0(βx)

)
−
(
J0(
√
α2
x + γ2x)− J0(

√
β2x + γ2x)

)]
df

≈ 1

4

∫ fmax

fmin

J0(αx) df, (6.35)

where now the parameters αx, βx and γx (given in (6.27)) are written in terms of the

frequency f as

αx =
2π

c0
(x− xs)f, βx =

2π

c0
(x+ xs)f, γx =

4π(R− zs)

c0
f,

where c0 is the constant wave speed, fc is the central frequency, and [fmin, fmax] = [fc −
B
2 , fc+

B
2 ]. Note that we have numerically verified the validity of the last approximation in

(6.35) at least in the frequency range that we have examined. Now, let ζx := 2π
c0
(x − xs).

Then, [1, 11.1.7],

Ψ(x;B) ≈ 1

4

∫ fmax

fmin

J0(ζxf) df =
1

4ζx

(
Λ0

(
ζxfmax

)
− Λ0

(
ζxfmin

))
, (6.36)

where

Λ0(s) := sJ0(s) +
πs

2

(
J1(s)H0(s)− J0(s)H1(s)

)
, (6.37)

Jn(·) is the Bessel function of the first kind of order n, and Hn(·), is the Struve function of

order n, respectively. (For the definition of the Struve function see e.g. [1, Ch. 12].)

Let us consider a specific example. Assume a point source located at (zs, xs) = (19, 5)λ0,

a reference wavenumber equal to k0 = π/10 and a central frequency fc corresponding to

kc = 0.973k0. In Figure 6.8 we superimpose the modulus of the right-hand side of (6.36)

for three different bandwidths that are equal to B = 10%, 50% and 100% of the central

frequency fc. All three are normalized with respect to their maximum value which, as may

be immediately inferred from (6.36), is equal to B/4. Moreover, we observe that resolution

is determined by the central frequency while SNR is improved as the bandwidth increases.

Specifically, when B = 0.10fc the SNR seems to be of the same order as in the single
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Figure 6.8: Modulus of (6.36) for bandwidth equal to B = 0.10fc (dash-dot blue line),
B = 0.50fc (dashed red line) and B = 1.00fc (solid black line). The point source is placed
at (zs, xs) = (19, 5)λ0, the reference wavenumber is k0 = π/10 and the central frequency fc
corresponds to k = 0.973k0.

frequency case (compare the blue dashed-dotted line with the one shown in the left plot in

Figure 6.7), it is slightly improved when B = 0.50fc and it is considerably improved by a

factor of 2 for the larger bandwidth B = fc. Let us quantify these observations. Obviously

the global maximum of |Ψ(x;B)| is attained at x = xs and is equal to B/4. Then, for the

bandwidths considered in the example referring to Figure 6.8, SNR is determined as the

ratio of the maximum value to the second taller peak; assume that the latter is attained

at ρ(B). Hence (6.36) and (6.37) imply that ζρ := 2π
c0
(ρ(B) − xs) satisfies the following

equation

fmax

(
J1(ζρfmax)H0(ζρfmax)− J0(ζρfmax)H1(ζρfmax)

)

−fmin

(
J1(ζρfmin)H0(ζρfmin)− J0(ζρfmin)H1(ζρfmin)

)
= 0. (6.38)

Moreover, it is immediate to check that since ζρ is a root of (6.38) then

Ψ(ρ(B);B) =
1

4

(
fmaxJ0(ζρfmax)− fminJ0(ζρfmin)

)
,

hence SNR = B/|fmaxJ0(ζρfmax)− fminJ0(ζρfmin)|.
We compute numerically ρ(B) for the various bandwidths reported above and our results

are summarized in table 6.1.
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Table 6.1: SNR in cross-range for various bandwidths.

B ρ(B) SNR

0.10fc 5.62521λ0 2.4981
0.50fc 5.61865λ0 2.9097
1.00fc 5.59433λ0 5.1513

The situation in the range direction is completely similar so we do not present it here.

We observe the same behaviour when we work with the actual imaging functional Ip. For

example, in Figure 6.9 we plot the modulus of Ip(~y s) for a point source located (as before)

at (zs, xs) = (19, 5)λ0, a reference wavenumber equal to k0 = π/10 and a central frequency

fc that corresponds to kc = 0.973k0. The left image is obtained when the bandwidth B ≈
0.15fc, in the middle one B ≈ 0.51fc, and the one on the right corresponds to B = 0.92fc.

The advantage of using multiple frequencies is evident when we compare these images with

the one shown in the left plot of Figure 6.3. Moreover, using a bandwidth of the same order

as the central frequency greatly improves the SNR in the image.
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Figure 6.9: Imaging with Ip for multiple frequencies for a point source placed at (zs, xs) =
(19, 5)λ0. The reference wavenumber equals k0 = π/10 and the central frequency fc corre-
sponds to kc = 0.973k0. Left image: Bandwidth B = 0.15fc, Middle image: B = 0.51fc,
Right image: B = 0.92fc.

Finally, in Figure 6.10, we plot the (Im ĜR(~y s; ~xs))
2 which, as (6.14) suggests, is equal

to Ia(~y s). We examine the same cases as in Figure 6.9 and, while the noise levels are lower

even at the single frequency case (compare with the left plot in Figure 6.5), again we have

a clear SNR improvement as the bandwidth increases. As we will see in the next section,

this effect is of greater importance when one deals with extended scatterers.

To summarize, in this section we derived analytical formulas that approximate the PSF
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Figure 6.10: Imaging with Ia for multiple frequencies for a point scatterer placed at
(zs, xs) = (19, 5)λ0. The central frequency fc is the same as in Figure 6.9. Left image:
Bandwidth B = 0.15fc, Middle image: B = 0.51fc, Right image: B = 0.92fc.

for a point source in cross-range and range. We have concluded that both range and

cross-range resolution equal to λ/2 in the monochromatic case. Moreover, we addressed

the improvement in SNR that brings upon the images the use of multiple frequencies, and

we have shown that the resolution in the multiple frequency case is λc/2, where λc is the

wavelength that corresponds to the central frequency of the available bandwidth. Let us

note that the resolution analysis carries over to the partial aperture case at least for array

apertures such that the minimum eigenvalue νmin of Aarr is larger than ǫ.

6.3 Numerical experiments

In this section we focus on the active imaging case and assess the performance of Ia for

imaging extended reflectors in terminating waveguides. We start with a model problem for

which the scattered data are computed using the linearized Born approximation and then

consider several extended reflectors for which the scattered data are computed by solving

the full wave equation. In all cases we will show imaging results obtained using Ia with

multiple frequencies. We first show numerical results for a full aperture array and then

consider the more challenging case of a partial aperture array.

6.3.1 Linearized Born scattered data

We consider a one-dimensional scatterer C, which is a semicircle placed in a homogeneous

waveguide with flat horizontal boundaries and a vertical terminating boundary at z = R,

i.e. Ω = (−∞, R)× (0,D). The response matrix is computed using the Born approximation
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and is given by

Π̂(~xs, ~xr;ω) =

∫

C
ĜR(~x, ~xs;ω)Ĝ

R(~xr, ~x;ω)d~x, (6.39)

with ĜR(~x, ~y;ω) as in (6.22). Note that in (6.39) we have suppressed the multiplicative fac-

tor k2 that usually appears in its right-hand side. As already mentioned in section 6.1.1, this

can be performed in practice by rescaling the data matrix Π̂(~xs, ~xr;ω) as k
−2Π̂(~xs, ~xr;ω).

Recall also that our imaging functional Ia is given by

Ia(~y s) =

Nf∑

l=1

Ml∑

n=1

Ml∑

m=1

βn(fl)βm(fl)Q̂nm(fl) Ĝ
R
n(za, ~y

s; fl) Ĝ
R
m(za, ~y

s; fl), (6.40)

where Q̂ is the projected array response matrix (see (6.17) and (6.19)) and ĜR
n, n = 1, . . . ,Ml

is the projection of the Green’s function on the first Ml vertical eigenfunctions, cf. (6.6).

To demonstrate the effect of the terminating boundary of the waveguide on imaging, we

compare the results obtained when the same reflector is placed in a terminating and in

an open-ended (infinite-strip) waveguide. For both the open ended and the terminating

waveguide the array is placed at za = 0 and spans the whole vertical cross-section of the

waveguide. The semicircular scatterer C is centered at (z∗, x∗) = (19, 5)λ0 with diameter

b = 2λ0 and we use frequencies f ∈ [fc − B/2, fc + B/2], where the central frequency fc

corresponds to the wavenumber kc = 0.975k0, the reference wavenumber, as before, equals

k0 = π/10, and the bandwidth is equal to B = 0.92fc. For the terminating waveguide, the

vertical boundary is placed at R = 27.5λ0.

To compute the data and the image for the open ended waveguide, we simply replace

ĜR(~y, ~xs;ω) in (6.39) and (6.40) by the Green’s function for the infinite waveguide, hereafter

denoted by Ĝ0(~y, ~xs;ω). Recall that Ĝ
0 is given by (see e.g. (1.15))

Ĝ0(~y, ~xs;ω) =
i

2

∞∑

m=1

1

βm
eiβm|z−zs|Xm(x)Xm(xs), (6.41)

where ~y = (z, x) ∈ Ω and ~xs = (zs, xs), the vertical eigenpairs (µn,Xn) are as in (6.23),

and the horizontal wavenumbers βn are defined in (1.14).

In Figure 6.11 we plot the modulus of Ia for the case of an open-ended waveguide (plots

shown in the first and third columns), and a terminating waveguide (second and fourth

columns). We have used two different bandwidths. The images shown in the first two

columns were obtained with bandwidth B = 0.51fc, while B was taken equal to B = 0.92fc
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Figure 6.11: Multiple frequency imaging with Ia of a semicircular reflector centered at
(z∗, x∗) = (19, 5)λ0. Specifically, f ∈ [fc − B/2, fc + B/2] with kc = 0.975k0, k0 = π/10.
For the first two columns the bandwidth is equal to B = 0.51fc, while a larger bandwidth
B = 0.92fc is used for the two columns on the right. The images shown in the first and and
in the third column correspond to the open-ended waveguide while those depicted in the
second and fourth to the terminating waveguide. On the top row we plot the modulus of
the image normalized by its maximum value, while on the bottom row we use a threshold
that sets to zero the values of the image with normalized modulus less than ℓ = 0.4.

for the images shown in the third and fourth columns. These results are in perfect agreement

with our theoretical analysis that suggests that SNR improves as we increase the bandwidth.

In the remaining part of this section we fix the bandwidth to B = 0.92fc. In all plots, the

image is normalized with respect to its maximum value. Looking carefully at the images

shown in Figure 6.11, we observe that these in the open ended waveguide exhibit a lower

noise compared to the corresponding ones in the terminating waveguide, while the latter

offer a better reconstruction of the entire scatterer shape compared to those in the infinite

waveguide which focus mainly around the midpoint of the semicircle. This can be seen

more clearly in the images displayed on the bottom row, where we threshold the normalized
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modulus of the values of the image that are less than ℓ = 0.4. From now on we will refer to

this process as thresholding with parameter ℓ.

6.3.2 Full wave scattered data

Next, we want to test our approach in imaging extended scatterers without using any

simplifying approximation for the forward model. To this end, we now construct the array

response matrix Π̂ by solving the wave equation (1.3) numerically, with the aid of the

high-order finite element C++ code Montjoie [44], which was developed at INRIA. The

originally semi-infinite waveguide is truncated with a perfectly matched layer (PML), as

shown in Figure 6.12, that ranges between −5λ0 and 0, a width sufficient to absorb waves

propagating to −∞. We discretize the finite computational domain using quadrangles, in

which we use Q12 polynomials (Qn = span{xlym, 0 ≤ l,m ≤ n}), while we use a fourth-

order leapfrog scheme for the time domain discretization.

z = Lz = za

A

O

S

x = 0

x = D

ΩL+

P
M

L

Figure 6.12: Sketch of a waveguide that is truncated near the array with a PML.

The array imaging setup is similar to the one used in the previous subsection, with the

exception that now our vertical array is placed at za = 2λ0 and has a pitch h = λ0/4.

First, we consider the case of the semi-infinite strip, i.e. Ω = (−∞, R)× (0,D), where now

the terminating vertical boundary is located at R = 28λ0 and a disc-shaped scatterer of

diameter b = 2λ0 is centered at (z∗, x∗) = (20.5, 5)λ0 . A Neumann condition is imposed on

the circular boundary of the scatterer. In the right subplot of Figure 6.13(a) (second image

in the panel) we plot the modulus of Ia normalized by its maximum value. As one may

immediately verify, even though the SNR of the image is a bit low, the location, size and

shape of the scatterer are fully recovered. For the image in the left subplot (first image in

the panel) we pretend that we are not aware of the fact that the waveguide has a closed

end, and we back propagate the same data with the “wrong” Green’s function, i.e. the one
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for the open-ended waveguide. We implement this by replacing in (6.40) the terms ĜR
m,

ĜR
n by Ĝ0

m, Ĝ0
n, respectively, i.e., by the Fourier coefficients of the Green’s function for the

infinite waveguide (see (6.41)) with respect to the orthonormal basis {Xn}∞n=1 of L2(0,D).

As a result, only the left part of the scatterer is recovered. In an attempt to improve the

SNR of these images we plot in Figure 6.13(b) the corresponding images after thresholding

with ℓ = 0.4.
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(a) No threshold used.

18 20 22 24

0

1

2

3

4

5

6

7

8

9

10
18 20 22 24

0

1

2

3

4

5

6

7

8

9

10

(b) Threshold equal to 0.4.

Figure 6.13: Imaging with Ia of a disc-shaped scatterer centered at (z∗, x∗) = (20.5, 5)λ0 , for
kc = 0.9733k0, k0 = π/10 and B = 0.92fc. (a) Data are back propagated with the Green’s
function for the open ended (left subplot) and the terminating waveguide (right subplot),
where we do not use thresholding. (b) Same setup as in (a) but we use thresholding with
ℓ = 0.4.

As a second example, we place in the previously described waveguide a rhombus-shaped

scatterer of diameter b = 2λ0, centered at (z∗, x∗) = (20.5, 3)λ0. Figure 6.14 is the analogous

of Figure 6.13. As before, on the left subplot of each subfigure we present the image obtained

when we back propagate our data with the Green’s function for the open-ended waveguide;

again we observe that only the left part of the scatterer can be reconstructed. When we

use the correct Green’s function, the corresponding images on the right subplots of each

subfigure exhibit a good reconstruction of the scatterer.

Finally, to demonstrate the robustness and the generality of our imaging approach we

consider a waveguide Ω with a more complex geometry. Specifically, the waveguide has

constant width in the cross-range direction equal to 10λ0 until z = 17λ0 and, then, it

expands vertically by 2λ0 on both sides and keeps a new constant width of 14λ0 until it

is terminated by a vertical boundary located at z = 28λ0. The geometry of part of the

waveguide is depicted in the imaging results shown in Figure 6.15. A disc-shaped scatterer
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(a) No threshold used.
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(b) Threshold equal to 0.4.

Figure 6.14: Imaging with Ia of a rhombus-shaped scatterer centered at (z∗, x∗) =
(20.5, 3)λ0 , for kc = 0.9733k0 , k0 = π/10 and B = 0.92fc. (a) Data are back propagated
with the Green’s function for the open ended (left subplot) and the terminating waveguide
(right subplot), where we do not use thresholding. (b) Same setup as in (a) but we use
thresholding with ℓ = 0.4.

with diameter b = 2λ0 is centered at (z∗, x∗) = (22.5, 7)λ0 and is depicted in Figure 6.15

with a white continuous line.

For this waveguide geometry, we do not have an analytic expression for the Green’s

function Ĝ(~ys, ~xs), which is needed to form the image, hence we compute it numerically.

To be more precise, Ĝ(~ys, ~xs) is obtained by solving the wave equation in Ω in the absence

of the scatterer for all sources’ locations ~xs, s = 1, . . . , N and the solution is stored for

all search points ~ys in the imaging window. The computations are performed in the time

domain and we use FFT to transform the data in the frequency domain.
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Figure 6.15: Imaging with Ia for a disc scatterer centered at (z∗, x∗) = (22.5, 7)λ0, for
kc = 0.9733k0, k0 = π/10 and B = 0.92fc. On the left we use no threshold, while on the
right we have a threshold ℓ = 0.4.
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The imaging results are shown in Figure 6.15 where we plot on the left the normalized

modulus of Ia without a threshold, and on the right using a threshold ℓ = 0.4. The

reconstruction is successful since it provides good estimates for the size and shape of the

reflector.

6.3.3 Imaging with partial aperture

We consider now the more challenging problem of imaging a reflector with an array that

does not span the entire vertical cross-section of the waveguide. As we have described in

algorithm 3, our imaging method requires the evaluation of the functional Ia in each point

of the search domain. Recall that in the case of multiple frequencies Ia is given in (6.40)

and let us remark that this expression applies for any array aperture size. What alters

is the way we construct the Ml × Ml modal projected matrix Q̂, which in the case of a

partial-aperture array uses the trigonometric polynomials sj, j = 1, . . . ,Ml, as in (6.17)

and (6.19) that account for the partial array aperture through the eigenvectors of the array

matrix Aarr.

We show in Figures 6.16 and 6.17 imaging results obtained for the same configurations

as in Figures 6.13 and 6.15, respectively. The difference is that here we consider array

apertures |A| = 0.75D, 0.5D and 0.25D where D is the total width of the waveguide in

the cross-range direction. As illustrated in these figures the image quality deteriorates as

the array aperture decreases but rather moderately. Indeed, comparing these images with

the corresponding ones in Figure 6.13, one may confirm that the images for |A| = 0.75D

are almost indistinguishable from the full aperture ones, and they are still quite good for

|A| = 0.25D!

Next, we present an example of the performance of our algorithm under the effect of

measurement noise. Specifically, we consider the waveguide environment and the circular

scatterer that concern the results shown in Figure 6.13. We model measurement noise as

in [10], by adding to the response matrix Π̂ a noise matrix W (ω) ∈ CN×N with entries that

are normally distributed with mean zero and variance ǫpavg. Here ǫ is a positive constant

and pavg denotes the average power received per source, receiver, and frequency. Then it

turns out that the normalized noise power in dB is equal to −10 log10 ǫ. For details of the

implementation we refer to [61]. In Figure 6.18, we present our results for two noise levels:

10 dB, shown on the top row, and 0 dB, shown on the bottom. The length of the array

decreases from full-aperture (leftmost column panel) to |A| = 0.25D (right column panel).
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Figure 6.16: From left to right: Imaging with Ia for a disc scatterer centered at (z∗, x∗) =
(21.5, 5)λ0 , for different array apertures |A| = 0.75D, 0.5D and 0.25D, for kc = 0.9733k0 ,
k0 = π/10 and B = 0.92fc. On the top row plots we use no threshold, while for the plots
in the bottom row we have a threshold ℓ = 0.4.

On all plots we use a threshold ℓ = 0.4. Comparing these images with the analogous in

Figure 6.16, where there is no noise, we observe that noise for both levels does not seem to

affect the quality of the images. Remark that the 0 dB level corresponds to very noisy data

since in this case the power of the noise is equal to the power of the signal. These results

illustrate the robustness of the proposed imaging methodology to uncorrelated measurement

noise. For similar results concerning the case of an infinite waveguide with a full aperture

array we refer to [61].

To synopsize, our numerical results indicate that the imaging method based on Ia can

be used for reconstructing extended scatterers that are located in terminating waveguides

of complex geometry. The data used is the usual array response matrix which may cover

only part of the vertical cross-section of the waveguide. The array response matrix is then

projected on the propagating modes in an adequate way using the trigonometric polynomials

on the array aperture as in (6.17) and (6.19). We note that the same procedure can be
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Figure 6.17: From left to right: Imaging with Ia for a disc scatterer centered at (z∗, x∗) =
(22.5, 7)λ0, for different array apertures |A| = 0.75D, 0.5D and 0.25D, for kc = 0.9733k0,
k0 = π/10 and B = 0.92fc. On the top row plots we use no threshold, while for the plots
in the bottom row we have a threshold ℓ = 0.4.

followed for synthetic aperture data collected by a single transmit/receive element. In the

latter case the data consist only of the diagonal entries of the array response matrix. We

have numerically observed that the image resolution remains the same in this case while

the SNR is worse; this is expected since the number of measurements is reduced to N for

the synthetic aperture instead of N2 that are tabulated in the array response matrix. As

an example, we show in Figure 6.19 full and partial aperture imaging results for the same

imaging configuration as in Figure 6.16 but with a synthetic aperture that is formed with

a single transmit/receive element.

Note that to form the image with Ia we need the Green’s function in the semi-infinite

waveguide, which can be computed numerically assuming that the geometry and background

velocity in the waveguide are known. This is necessary for complex geometries and/or

propagation media in which case it is not possible to derive an analytical expression for the
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Figure 6.18: From left to right: Imaging with Ia for noisy measurements for a disc scatterer
centered at (z∗, x∗) = (21.5, 5)λ0 , for different array apertures |A| = D, 0.75D, 0.5D
and 0.25D, for kc = 0.9733k0 , k0 = π/10 and B = 0.92fc. The normalized noise power
−10 log10 ǫ is equal to 10 dB on the top row, and 0 dB on the bottom row. On all plots, we
have a threshold ℓ = 0.4.

Green’s function. We have also assessed the performance of the imaging method with fully

non-linear scattering data and in the presence of additive uncorrelated measurement noise.

6.3.4 Imaging in a three-dimensional terminating waveguide

We finally consider the problem of imaging an extended reflector in a three-dimensional

terminating waveguide with a bounded rectangular cross-section. The imaging setup is

illustrated in Figure 6.20. We denote as before, with z the range variable and with x, y

the two cross-range variables. The vertical cross-section of the waveguide (xy-plane) is the

rectangle (0,D)× (0, Y ) and the terminating boundary is at z = R. Homogeneous Dirichlet

boundary conditions are imposed on all of the waveguide’s boundaries.

For a homogeneous waveguide with a simple geometry as the one depicted in Figure 6.20,

the analytic expression for the Green’s function in the waveguide may be retrieved in
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Figure 6.19: From left to right: Imaging with Ia for a disc scatterer centered at (z∗, x∗) =
(20.5, 5)λ0, using a synthetic aperture array with length |A| = D, 0.75D and 0.5D, for
kc = 0.9733k0, k0 = π/10 and B = 0.92fc. On the top row plots we use no threshold, while
for the plots in the bottom row we have a threshold ℓ = 0.4.

straightforward way from the analogous two-dimensional expressions. Consequently, the

linearized scattered acoustic field may be computed on the array of receivers A that span

the bounded cross-section of the waveguide. Imaging is performed by the functional Ia as

in (6.12) with the projected response matrix Q̂ defined by adequately modifying (6.11) so

that the integrals are taken over the two-dimensional array aperture.

Without giving the details of the computations we present as a proof of concept in

the following figures some preliminary results that illustrate how this imaging methodology

performs in the three-dimensional case. In Figure 6.21 we show the reconstruction for a point

reflector located at ~x∗ = (19, 5, 10)λ0 . The vertical cross-section has size [0, 10λ0]× [0, 20λ0]

and the terminating boundary is placed at z = 28λ0. This is a single frequency result for

k = 0.973k0 (k0 = π/10), and essentially depicts the point spread function of Ia in three

dimensions. We observe that the resolution is λ/2 in all directions as expected from our

resolution analysis.
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Figure 6.20: Schematic representation of the imaging setup in a three-dimensional waveg-
uide.
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Figure 6.21: Modulus of Ia for the zx-plane (top left), yx-plane (bottom left) and zy-plane
(middle), for a single frequency k = 0.973k0, k0 = π/10, for a point reflector placed at
~x∗ = (19, 5, 10) λ0. On the right plot we show the three dimensional reconstruction of the
point reflector.

In Figure 6.22 we display the modulus of Ia for a square-shaped screen reflector. We

observe that the reconstructions are very good and the shape of the reflector can be retrieved

with accuracy.

A more challenging example is considered in Figure 6.23 where we seek to reconstruct a

hemisphere with diameter b = 2λ0, centered at ~x∗ = (19, 5, 10)λ0 . The reconstruction shown

on the right plot is very close to the true reflector’s geometry shown on the left plot. These

preliminary three-dimensional results are very promising. Of course, more experiments with

full wave scattered data and noise should be carried out to fully assess the performance of

the method in three-dimensions. Also, we leave for future work the adequate modification

of the imaging functional for the partial-aperture case in three dimensions.
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Figure 6.22: Modulus of Ia for the zx-plane (top left), yx-plane (bottom left) and zy-plane
(middle), for a single frequency k = 0.973k0 for a square reflector [9, 11]λ0 × [4, 6]λ0 placed
at z = 19λ0. On the right plot we show the three dimensional reconstruction of the square
reflector.

Figure 6.23: Imaging a hemisphere with diameter b = 2λ0, centered at ~x∗ = (19, 5, 10)λ0 .
The true reflector is shown on the left. The modulus of Ia for a single frequency kc =
0.9733k0 is on the right plot.



Appendix A

The response matrix for model

problems

A.1 Point scatterer

Consider a homogeneous infinite waveguide that forms an infinite strip, i.e. Ω = (−∞,∞)×
(0,D) and a point scatterer placed at ~x ⋆ = (z⋆, x⋆), as shown in Figure A.1. Then, as

mentioned previously, the response matrix in this case is given by

Π̂(~xs, ~xr;ω) = Ĝ(~x ⋆, ~xs)Ĝ(~xr, ~x
⋆), (A.1)

where Ĝ is given by the formula

Ĝ(~x, ~xs) =
i

2

∞∑

m=1

eiβm|z−zs|

βm
Xm(x)Xm(xs). (A.2)

b

A

~xs

~x
⋆ = (z⋆, x⋆)

x = 0

x = D

z = za

~xr

Figure A.1: Active imaging setup for a point scatterer, in an infinite strip.

If we replace the expression (A.2) into (A.1), we get that the analytic expression for the

144
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response matrix Π̂ for a point scatterer in the homogeneous strip is given by

Π̂(~xr, ~xs, ω) = −1

4

M∑

m,n=1

eiβmL

βm
Xm(xs)

eiβnL

βn
Xn(xr)Xm(x⋆)Xn(x

⋆), (A.3)

where L = z⋆ − za is the distance between the scatterer and the array and is considered

large enough, so that we only consider the propagating modes in the computation of the

Green’s function.

A.2 Vertical screen

Next, we consider a vertical screen T , located at range z = z⋆, see Figure A.2. Let the

coordinates of its endpoints be (z⋆, α) and (z⋆, β), hence its width equals b = β − α.

A

~xs

x = 0

x = D

z = za

~xr

T

(z⋆, α)

(z⋆, β)

Figure A.2: Active imaging setup for a vertical screen, in an infinite strip.

Then, the response matrix is given by

Π̂(~xs, ~xr;ω) =

∫

T
Ĝ(~y, ~xs)Ĝ(~xr, ~y) d~y. (A.4)

Again, by replacing the expression for the Green’s function given by (A.2) into (A.4) and

considering L large enough, we get

Π̂(~xr; ~xs, ω) = −1

4

M∑

m,n=1

eiβmL

βm
Xm(xs)Xn(xr)

eiβnL

βn

∫ α

β
Xm(x)Xn(x)dx, (A.5)

or, equivalently, as a matrix product of the form

Π̂ = −1

4
V Dβ QAQDβ V

T , (A.6)
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where

Dβ = diag(1/β1, . . . , 1/βM ), Q = diag(eiβ1L, . . . , eiβML), (A.7)

V is the N ×M matrix with

Vkℓ = Xℓ(xk), k = 1, . . . , N, ℓ = 1, . . . ,M, (A.8)

and A is the matrix with entries

amn =

∫ β

α
Xm(x)Xn(x)dx, m, n = 1, 2, . . . ,M. (A.9)

A.3 Semicircle

Lastly, we assume that the target T is a semicircular arc (with diameter parallel to the

x axis) of radius ρ, centered at ~y ⋆ = (z⋆, x⋆). Let us also denote ~y ⋆
1 = (z⋆, x⋆ − ρ) and

~y ⋆
2 = (z⋆, x⋆ + ρ) the endpoints of the arc.

A

~xs

x = 0

x = D

z = za

~xr

T

b
ρ ~y ⋆

Figure A.3: Active imaging setup for a semicircle, in an infinite strip.

We parametrize T as follows. Let

z = z⋆ − ρ sin t, x = x⋆ − ρ cos t.
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Then the line integral (A.4) with respect to arc length equals

Π̂(~xr, ~xs, ω) =

∫ π

0
Ĝ
(
(z⋆ − ρ sin t, x⋆ − ρ cos t), (za, xr)

)

× Ĝ
(
z⋆ − ρ sin t, x⋆ − ρ cos t), (za, xs)

)
√(

dz

dt

)2

+

(
dx

dt

)2

dt

= −1

4

∫ π

0

∞∑

m=1

∞∑

n=1

1

βm
eiβm(L+ρ(1−sin t))Xm(x⋆ − ρ cos t)Xm(xr)

× 1

βn
eiβn(L+ρ(1−sin t))Xn(x

⋆ − ρ cos t)Xn(xs) ρ dt

= −1

4

∞∑

m=1

∞∑

n=1

1

βm

1

βn
Xm(xr)Xn(xs)

×
∫ π

0
ei(βm+βn)(L+ρ(1−sin t))Xm(x⋆ − ρ cos t)Xn(x

⋆ − ρ cos t) ρ dt

= −1

4

∞∑

m=1

∞∑

n=1

1

βm

1

βn
Xm(xr)Xn(xs)

×
∫ π

0
eiβm(L+ρ(1−sin t))Xm(x⋆ − ρ cos t) eiβn(L+ρ(1−sin t))Xn(x

⋆ − ρ cos t) ρ dt

where L = z⋆ − za − ρ is the distance between the array and the leftmost part of the

semicircle. Passing the terms eiβmL and eiβnL outside the integral we get

Π̂(~xr, ~xs, ω) = −1

4

∞∑

m=1

∞∑

n=1

eiβmL

βm

eiβnL

βn
Xm(xr)Xn(xs)

×
∫ π

0
ei(βm+βn)ρ(1−sin t)Xm(x⋆ − ρ cos t)Xn(x

⋆ − ρ cos t) ρ dt.

Now, let B be the matrix with entries

Bmn =

∫ π

0
ei(βm+βn)ρ(1−sin t)Xm(x⋆ − ρ cos t)Xn(x

⋆ − ρ cos t) ρ dt, m, n = 1, 2, . . . .

Then Π̂ may be written as

Π̂ = −1

4
V Dβ QBQDβ V

T , (A.10)

where the matrices V,Dβ , Q are the same matrices as in (A.6), which describes the scattered

field for the screen.
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[31] U. Grenander and G. Szegő. Toeplitz forms and their applications. Chelsea Publishing

Co., New York, second edition, 1984.

[32] C. Hazard and K. Ramdani. Selective acoustic focusing using time-harmonic reversal

mirrors. SIAM J. Appl. Math., 64:1057–1076 (electronic), 2004.

[33] J.-P. Hermand and P. Gerstoft. Inversion of broad-band multitone acoustic data from

the yellow shark summer experiments. IEEE J. Ocean. Eng., 21:324–346, 1996.

[34] M. Ikehata, G. N. Makrakis, and G. Nakamura. Inverse boundary value problem for

ocean acoustics using point sources. Mathematical Methods in the Applied Sciences,

27(12):1367–1384, 2004.

[35] D. R. Jackson and D. R. Dowling. Phase conjugation in underwater acoustics. J.

Acoust. Soc. Amer., 89(1):171–181, 1991.



BIBLIOGRAPHY 151

[36] F.B. Jensen, W.A. Kuperman, M.B. Porter, and H. Schmidt. Computational Ocean

Acoustics. Modern Acoustics and Signal Processing. Springer, 2011.

[37] D. S. Jones. The eigenvalues of ∇2u+λu = 0 when the boundary conditions are given

on semi-infinite domains. Mathematical Proceedings of the Cambridge Philosophical

Society, 49(4):668–684, 1953.

[38] A. Kirsch. Characterization of the shape of a scattering obstacle using the spectral

data of the far field operator. Inverse Problems, 14:1489–1512, 1998.

[39] W.A. Kuperman and D. Jackson. Ocean acoustics, matched-field processing and phase

conjugation. Topics in Applied Physics, pages 43–97. Springer Berlin / Heidelberg,

2002.

[40] H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, fourier analysis and

uncertainty – II. Bell System Technical Journal, 40(1):65–84, 1961.

[41] H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, fourier analysis

and uncertainty – III: The dimension of the space of essentially time- and band-limited

signals. Bell System Technical Journal, 41(4):1295–1336, 1962.

[42] J.L. Lions and E. Magenes. Non-homogeneous boundary value problems and applica-

tions. Number v. 3 in Non-homogeneous Boundary Value Problems and Applications.

Springer-Verlag, 1972.

[43] P. Monk and V. Selgas. Sampling type methods for an inverse waveguide problem.

Inverse Problems and Imaging, 6(4):709–747, 2012.

[44] Montjoie user’s guide, http://montjoie.gforge.inria.fr/.

[45] I. C. Moore and M. Cada. Prolate spheroidal wave functions, an introduction to the

Slepian series and its properties. Appl. Comput. Harmon. Anal., 16(3):208–230, 2004.

[46] N. Mordant, C. Prada, and M. Fink. Highly resolved detection in a waveguide using

the D.O.R.T. method. J. Acoust. Soc. Amer., 105:2634–2642, 1999.

[47] J. A. Morrison. On the eigenfunctions corresponding to the bandpass kernel, in the

case of degeneracy. Quart. Appl. Math., 21:13–19, 1963.



152 BIBLIOGRAPHY
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