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MACHINE LEARNING TECHNIQUES FOR THE
DETECTION OF ILLEGAL HUMAN ACTIVITY IN

AUDIO RECORDINGS FROM PROTECTED
AREAS

Abstract

Human activity is considered today as the primary reason for habitat loss for
a large number of Earth’s plant and animal species. This activity results to the
permanent loss of species and to the weakening of the ecosystems that are of
significant importance for the overall health of the planet and as a consequence,
to the quality of the human life. One key measure to protect habitats is the
establishment of protected areas where human activity is restricted. In these
areas, systems employing multiple cameras and microphones may offer a significant
assistance in monitoring the health of the ecosystem but also as the means to
prevent human intervention that is harmful to the environment.

This Thesis concerns the application of signal processing and machine learning
techniques to audio recordings acquired in protected areas in Greece, with the
aim to automatically detect sound events that are indicative of illegal human
activity such as illegal logging, grazing, hunting, etc. To collect and annotate
the data that is required for training such a scheme, we illustrate the usefulness
of a Voice Activity Detector (VAD) that is activated on the presence of harmonic
structure in the audio content. The VAD is used in order to automatically segment
hundreds of hours of audio recording into thousands of short duration audio clips
that potentially carry the underlying pattern of interest. Continuing, we perform
numerous experiments with the goal to find the optimal approach for (i) a binary
classification problem that focuses on the case of chainsaw sound and (ii) a six
class problem that includes additional patterns relating to illegal human activity.
Experimental results illustrate the superiority of Deep Neural Networks (DNN)
against other well-known conventional classifiers and furthermore, highlight choices
that are advantageous for the intended task in terms of the DNN architecture and
the type of acoustic features.





Χρήση τεχνικών μηχανικής μάθησης για τον

εντοπισμό ανθρωπογενούς δραστηριότητας από

ηχογραφήσεις σε προστατευόμενες περιοχές

Περίληψη

Η ανθρώπινη δραστηριότητα αποτελεί σήμερα τη σημαντικότερη αιτία εξαφάνισης

βιοτόπων μεγάλου αριθμού φυτών και ζώων στον πλανήτη. Αυτή η δραστηριότητα ο-

δηγεί αφενός στην ολική εξαφάνιση πολλών ειδών κι αφετέρου στη αποδυνάμωση των

οικοσυστημάτων, γεγονός που διαταράσσει τις ισορροπίες στον πλανήτη και την ποι-

ότητα ζωής του ανθρώπου. ΄Ενα μέτρο προστασίας είναι η θέσπιση προστατευμένων

περιοχών όπου η ανθρώπινη δραστηριότητα είναι περιορισμένη. Σε αυτές τις περιοχές,

συστήματα ασφαλείας αποτελούμενα από πολλές κάμερες και μικρόφωνα μπορούν να

συμβάλλουν σημαντικά στην παρακολούθηση της ισορροπίας του εκάστοτε οικοσυ-

στήματος καθώς και στην αποτροπή ανθρώπινης δραστηριότητας που αποτελεί απειλή

για το περιβάλλον.

Αυτή η εργασία επικεντρώνεται στην εφαρμογή τεχνικών μηχανικής μάθησης και

επεξεργασίας σήματος σε δεδομένα ήχου από προστατευόμενες περιοχές ανά την Ελ-

λάδα, με σκοπό τον αυτόματο εντοπισμό ηχητικών γεγονότων που σηματοδοτούν

παράνομη ανθρώπινη δραστηριότητα, όπως παράνομη υλοτομία, βόσκηση, κυνήγι κ.α.

Για τη συλλογή και κατηγοριοποίηση των δεδομένων που απαιτούνται για την εκπαίδευ-

ση των μοντέλων μηχανικής μάθησης, παρουσιάζουμε τη χρησιμότητα μιας μεθόδου

εντοπισμού φωνής που ενεργοποιείται με την ύπαρξη αρμονικής δομής σε ένα σήμα

ήχου. Η μέθοδος αξιοποιείται για την αυτόματη κατάτμηση εκατοντάδων ωρών ηχο-

γράφησης σε χιλιάδες μικρής διάρκειας ηχητικά αποσπάσματα που εν δυνάμει φέρουν

το υποκείμενο μοτίβο ενδιαφέροντος. Στη συνέχεια, εκτελούμε πολλαπλά πειράμα-

τα με στόχο την εύρεση της βέλτιστης προσέγγισης για (i) ένα πρόβλημα δυαδικής
ταξινόμησης που επικεντρώνεται την περίπτωση του ήχου του αλυσοπρίονου και (ii)
ένα πρόβλημα έξι κλάσεων που περιλαμβάνει πρόσθετα ηχητικά μοτίβα σχετικά με την

παράνομη ανθρώπινη δραστηριότητα. Τα αποτελέσματα που παρουσιάζουμε αναδει-

κνύουν την υπεροχή των Βαθιών Νευρωνικών Δικτύων έναντι γνωστών συμβατικών

προσεγγίσεων και αναδεικνύουν βέλτιστες επιλογές όσον αφορά τις αρχιτεκτονικές

των δικτύων και τον τύπο των ακουστικών χαρακτηριστικών ανάλογα με το πρόβλη-

μα ταξινόμησης που εξετάζεται.
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Chapter 1

Introduction

1.1 Motivation

Over the few past decades human have caused major destruction to the environ-
ment. Many species have been extincted, or are prone to be, due to illegal hunting,
illegal logging and deforestation. One major example of the harm that humans
cause to environment is deforestation. Estimates suggest the Earth has lost about
half of its forests in 8,000 years of human activity, with much of this occurring in
recent decades. However, because of the huge area that forests and protected nat-
ural environments cover, and the small manpower available, it is very difficult for
governments to effectively monitor these areas to tackle illegal human activities.
The solution for this problem is to develop surveillance technologies that automat-
ically detect illegal human activity and in that way assist relevant authorities in
monitoring protected natural environments and in taking measures for preventing
such actions.

Systems based on both audio and video technology have been proposed for
monitoring of protected environments. However, audio based systems can be less
power consuming, produce less data, and have a steady performance despite of the
different luminance levels during the day. Yet, a large number of acoustic sensors
has to be installed in order to cover a spatially extended region and the final system
should be able to detect acoustic patterns that have propagated long ranges. This is
not so trivial because depending on the distance between sound source and sensor,
sound patterns relating to illegal human activity can be submerged in excessive
amounts of noise. Such examples of noise include adverse weather conditions,
natural habitats of each natural environment or vehicles passing by close routes.

Many acoustic sensors, known as Autonomous Recording Units (ARUs), which
are lowcost, and power efficient have been placed in many forests and natural envi-
ronments all over the world to monitor some species and make observations. Data
gathered from these sensors can be used to develop technologies that focus on the
task previously described. However, an ARU is capable of recording continuously
for days or weeks. This means that huge amounts of audio data can be collected

1



2 CHAPTER 1. INTRODUCTION

in a short period of time, making it infeasible for humans to manually inspect the
entire collection of recordings. Therefore, apart from the research for an optimal
intrusion detection algorithm, it is also important to automate the tools that are
involved in the preparation of the data (e.g. collecting training data) and to de-
velop unsupervised ways for extracting useful information for further processing
and research. Clearly, this research introduces challenges that relate to the big
data regime, or to the so called audio analytics in terms of audio processing [32].

1.1.1 Contribution of this work

The main contributions of this work are the following;

We propose the use of a known Voice Activity Detector (VAD) for detecting
sounds with harmonic structure in an environmental audio recording. We exploit it
in order to automatically segment the raw audio data into multiple short duration
audio clips which can be easily annotated by a human. This way, we were able to
annotate hundreds of hours of audio recordings and thus produce a dataset that
is valuable for any research related to environmental sounds.

We highlight the usefulness of the so-called SRH-spectrogram, which is an inter-
mediate product of the aforementioned VAD, as a novel acoustic feature for sound
classification using DNN. To our knowledge, this acoustic feature is used for the
first time for environmental sound classification, showing competing performance
compared to other well known acoustic features.

Finally, we benchmark several choices and parameters relating to the use of
DNNs for environmental sound classification, with particular focus on the chainsaw
sound. To our knowledge, it is first time that such an extensive evaluation is
performed on chainsaw sound based on real field recordings.

1.2 Background-Previous Work

The field of audio event detection and classification has been investigated by several
researchers. In what follows, we present the previous work in the field with special
focus on research related to detection and recognition of acoustic events in natural
environments.

1.2.1 Applications

In [71] [57] [78] [92] researchers focused on the identification and classification of
bird callings and bird sounds in general. Apart from birds, insects [70] or whales
[87] are some additional targets in bioacoustics. Other researchers such as Piczak
[69], Lopatka et al [55] and Jeong-Sik et al [67] focused on a civil audio surveillance
task, that of recognizing hazardous situations in a civil environment, or emergency
situations in a home environment [80]. In [29] [77] [65] the target events occur in
urban, office or home environments. In similar environments, there have been
works on smart-home applications [45], hands free speech event detection [82]
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(home and residential), in speech-oriented event detection in real acoustic scenes
[61] and many more.

Concerning wildlife environments, target patterns usually consist of a set of
specific illegal human activities, depending on the needs of the location under
surveillance. In [86] [63] [41] [76] [37] researchers focused on classification of pat-
terns such as vehicles, gunshots, chainsaw, human speech etc, while in [15] Clavel
et al focused specifically on the creation of a robust gunshot detection system in
adverse conditions. Apart from gunshot detection, there has also been much re-
search on detection of illegal logging and chainsaw detection in wildlife [2] [39] [5],
where some researchers focused on light features and algorithms to create a system
more suitable for wireless sensor networks [19] [16] [20].

In addition, it is worth to mention Rainforest Connection (RFCx) [17], a
nonprofit organization that transforms recycled phones into autonomous, solar-
powered listening devices to monitor and detect logging activities in order to guard
rainforests. There is no published work of RFCx, but there are plans to make this
data available to academic researches and government agencies, which will be a
valuable contribution to the research community.

1.2.2 Standard classification techniques

Standard classification techniques on this field were predominantly Support Vector
Machines (SVMs) and Gaussian Mixture Models (GMMs) in combination with a
variety of spectral or temporal features [14]. When it comes to computing distances
between sounds, Mel Frequency Cepstral Coefficients (MFCCs) have advantageous
properties that contribute to this computations [62]. Thus, many researchers used
SVMs and GMMs fed with Mel Frequency Cepstral Coefficients (MFCCs), in ad-
dition to statistical measures of the signal in time or frequency space such as in [39]
[55]. Many works have used this approach as a baseline in addition to a proposed
pipeline [80] [78] [61].

Another standard approach was to incorporate the use of Hidden Markov Mod-
els (HMMs) in combination with GMMs [65] [15] [67], or with Non-Negative Matrix
Factorization (NMF) [93] [10]. An interesting approach to the detection step is
to model two GMM distributions, one for the target and one for the background
noise, building in this way multiple single-class detectors, one for each class. This
approach showed to be efficient in combination with Gabor filterbank features
[33]. Ntalampiras et al [64] [63], apart from temporal and spectral features along
with MFCCs, they also used wavelet coefficients for acoustic surveillance in real
world conditions, stating that parameters of different domains contribute to better
performance. Another approach for insect detection and identification was to use
Linear Frequency Cepstral Coefficients (LFCC) which are like MFCCs but in linear
scale fed to a GMM [70]. In [3] and [6] MFCCs were compared to Linear Predictive
Coefficients (LPCs) which were fed to an SVM and a GMM respectively. Apart
from SVM and GMMs, LPCs were also used in combination with Random Forest
classifier for detecting wildlife illegal human activities in [41] [40]. In [41] LPCs
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were fed to Random Forest classifier, in [3] MFCCs and LPCs were fed to SVMs
and in [6] MFCCs and LPCs were used in combination to a GMM. Finally, in [70]
the authors fed LFCCs into a GMM for detecting and identifying insect sounds.

1.2.3 Low-cost algorithms and features

In the development of detection and classification algorithms for audio surveillance
of protected environments, computational cost is of major concern. Sensors are
usually battery powered, and hence, algorithms developed to run on such devices
have to be as less computational demanding as possible, in order or consume the
least possible energy.

Acoustic features relying to the so-called TESPAR analysis have been used
by several scientists, mainly due to the low computational cost that they involve.
Fourier Transform takes O(n2) (or O(nlogn) in case of Fast Fourier Transform), au-
tocorrelation method takes (O(n2)), and TESPAR descriptors computation takes
O(n) [20]. TESPAR (Time Encoded Signal Processing and Recognition) is a sim-
ple way of describing a waveform in digital terms [47], usually as a 1D or 2D
array, and its based on statistical measures over zero crossing points of the wave-
form 1. One way TESPAR can be used is to be fed as a feature in classifiers.
Ghiurcau et al has used TESPAR matrices in this way, with SVMs and GMMs
[38] [37] in order to achieve low complexity on the feature extraction and clas-
sification system. Ghiurcau M. has also benchmarked the downsampling of raw
audio before processing and the filtering of very low and very high frequencies
to discard unwanted information, with positive results. As an attempt to further
reduce computational complexity, the authors in [86], [36] used a few TESPAR
descriptors as ”archetypes” and relied on distance measures in order to perform
classification. Another low complexity method is the use of autocorrelation (AuC)
based features in combination with a simple thresholding detector, even though
AuC complexity is relatively high in comparison with TESPAR or FFT. However
TESPAR is shown to be less computationally demanding and contributes to better
performance [20] [19].

Meeting similar requirements with respect to the computational cost, Ahmad
et al [2] have benchmarked some low complexity algorithm such as K-means clus-
tering, GMM and Principal Component Analysis (PCA) for classifying sounds
related to tree cutting detection. In other works, such as in [72], the authors used
simple thresholding to create a system able to perform chainsaw detection.

1More specific, some simple TESPAR coders make use of the duration of the signal between
two real zeros and the local maxima/minima between two consecutive real zeros. This method is
based on infinite clipping theory of Licklidder and Pollack, whose research focused on the effects
of amplitude clipping on the intelligibility of speech. In fact, a mean random-word intelligibility
score of 97% was achieved by removing all the amplitude information from a waveform, resulting
in a binary transormation which preserved only the zero crossings of the initial signal (the so
called infinite clipping format) [52]. This experiment demonstrated the potential power of the
zero crossings, which led to the discovery of TESPAR matrix.
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1.2.4 Use of Deep Neural Networks

On the other hand, when performance is more important than computational
cost, Neural Networks and especially Deep Neural Networks (DNNs) outperform
all standard classifiers with the use of suitable features. The last decades, DNNs
have gained much ground due to the fast and great development of the hardware
and the huge creation of data that is generated each moment. The features used
when DNNs are employed are usually different from the classic features mentioned
previously. Many variations and architectures have been tried and evaluated de-
pending on the exact task.

Convolutional Neural Networks (CNNs) were among the first DNN architec-
tures examined within the context of acoustic signals. Piczak [69] uses Convo-
lutional Neural Networks (CNNs) fed with mel-spectrograms to classify urban
sounds and Hyungui et al [53] use 1D Convolutional Neural Networks (CNNs) fed
with mel-spectrograms to detect and classify rare events. Using a different dataset,
Phan et al [68] trained a CNN model with 1D max pooling layers, fed with Spectro-
gram Image Features (SIF), which were initially introduced by Jonathan Dennis
et al in [24] [25] [23] [26]. Zhang et al [91] use CNNs with Power Spectrogram
and Mel-Spectrogram and they enhance features by applying some image process-
ing techniques, in order to achieve a reasonable performance in noisy conditions.
Other approaches with CNNs include MFCCs or mel energies [34] [93].

Apart from CNNs, Recurrent Neural Networks (RNNs) have been proposed
for time-series data, due to their ability to model time dependencies in the data.
Vanishing and exploding gradients is a well known issue related to the training
of RNNs and for this reason, LSTMs have been proposed as an alternative archi-
tecture that overcomes this problem [44]. In [43] [89], researchers use an LSTM
approach that showed to work better than standard approaches, such as SVMs,
both in clip and frame level. An interesting approach was that of Lu et al [58], who
proposed a multiscale RNN, that operates simultaneously on a fine and a coarse
scale to model both fine-grained and long-term dependencies, achieving better per-
formance than a single RNN approach. Hyungui et al use a mixed architecture of
CNN and LSTM Units in order to capture temporal dependencies in training data
as well [53].

In addition to the works discussed above, there has also been research in the
detection and classification of concurrent events [93]. In [11] the proposed tech-
nique focuses on filterbank learning through CNNs using mel on polyphonic event
detection. The same authors in [10] focus on the comparison between multiple
single-label CNNs and a single multi-label CNN for polyphonic event detection,
which were shown to have similar performance, giving more flexibility and choices
for further work.
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1.2.5 Noise and Enhancements

A big issue in wildlife audio event detection is the fact that sound propagates at
long ranges before reaching the sensors and therefore the sound patterns of interest
are observed at low SNR. In addition, losses due to air absorption [42] cause the
high frequency components to be attenuated at a higher proportion compared to
the lower frequency ones. Normalization techniques have thus been proposed as the
means to achieve robustness to background noise and to balance the gain between
low and high frequency bands. Wang et al proposed a frontend called Per Channel
Energy Normalization (PCEN) as an alternative of log mel spectrogram in order
to increase robustness to loudness variation [88]. PCEN combines a dynamic range
compression and an adaptive gain control, contributing to robustness to both noise
and channel distortions. While initially proposed for far field keyword detection
[88], its usage has recently been expanded also to bioacoustics. Moreover, the
positive impact of PCEN has been proven within a theoretical perspective in [56].
Further research of Lostanlen et al in PCEN, include marine bioacoustic patterns,
such as whale calls [87] where the importance of PCEN was demonstrated on both
near and far field recordings, and avian bioacoustic patterns, such as bird calls
[87, 57].

Another idea proposed in the literature concerning the number of classes and
the classification pipeline is the so-called hierarchical classification approach [15],
[6]. In a hierarchical classification approach, the target class has been split in a
few subclasses, and after training, the subclasses are merged into the one class of
interest to make a more general prediction, or the inverse, such as in [63], where
each test sample is first classified in a wider super-class, e.g., human/non human
sound, and afterwards it goes through a second phase of classification where it is
classified as a subclass of the initially selected / wider class.

Concerning the use of VAD algorithm is this field, Valenti et al [82] used a VAD
algorithm to detect onset and offset times on events occurring in the signal and then
fed each detection segment to a classifier. This two-step detection and classification
approach allows the audio event detection in unstructured audio signals.

1.2.6 Data augmentation

It is a well known fact in deep learning that the more the data the better the
performance. However data gathering is not always easy, thus data augmentation
techniques have been proposed in order to reduce overfitting. Related applica-
tions include bird species classification [78, 57], urban sound classification [77] etc.
In [77], [78] Salamon et al used a few types of data augmentation to widen the
dataset, such as pitch shifting, time stretching, dynamic range compression etc,
and contributed to a better performance compared to the model trained only on
the original data, or a dictionary learning model with the augmented dataset.
Lostanlen et al in [57], apart from pitch shifting and time stretching, used more
sophisticated augmentation methods which take into account the whole training
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data and occasionally the corresponding labels, to obtain augmented samples. For
example, as Lostanlen et al state, mixing audio clips in a sensor with a noisy clip
belonging to a different sensor leads to greater generalization of the model.
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Chapter 2

Classification Approaches

This section is split into two main subsections. In the first section, we will attempt
to present the general ideas behind DNNs, highlighting the facts that are relevant
to the architectures and structures used in the experimental section of this Thesis.
In the second section, the focus will be in more conventional machine learning
techniques and especially on those that that were used as a baseline for comparison
with DNNs in this Thesis.

2.1 Artificial Neural Networks

2.1.1 General

The idea of Artificial Neural Networks (ANNs) emerged from biology and in par-
ticular, from the brain neurons. They are computing systems consisting of neurons
and connections between them. The initial idea goes back to 1940s-1950s when
Warren McCulloch and Walter Pitts [59] (1943) opened the subject by creating
a computational model for neural networks. A decade later, Rosenblatt created
the perceptron [75], a system inspired by biological human brain neurons. At that
time, due to hardware and data limitations, ANNs did not receive much attention
and the field was frozen for years. Only the last decades ANNs have seen a major
increase in their use and popularity and have been shown to outperform the classic
machine learning approaches.

Two basic reasons contributed to this. The first is evolution of the hardware,
enabling low cost computers to face the high demand on computational power
that is required for training. The second reason is that today’s scientists have easy
access to massive amounts of all kinds of data which is required as input to the
ANNs during the training stage.

An artificial neural network can be as simple as a linear function; having an
input layer, an output layer and a hidden layer, or more complex having multiple
layers between input and output layer. In the latter case it is called Deep Neural
Network (DNN). DNNs are capable of learning abstract and hierarchical repre-
sentations from raw data, unlike traditional methods that rely upon hand-crafted

9
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features. Hence, DNNs are suited especially well for machine perception tasks,
where the raw underlying features are not individually interpretable. A compo-
nent that contributes to this, is the use of activation functions in each layer, which
make the models learn complex non-linear relationships. In this work, the archi-
tectures that will be used for the classification purposes are Convolutional neural
networks (CNN) and Recurrent Neural Networks (RNN).

2.1.1.1 Activation functions

An activation function is usually a non-linear mathematical function which trans-
forms the output of each neuron given the input. Non-linear activation functions
(or so called ”non linearities”) allow the network to model more complex relation-
ships between input/output pairs and, thus, to compute nontrivial problems using
only a small number of nodes [83]. Some examples of popular and widely used
activation functions are softmax, hyperbolic tangent, rectified linear unit, sigmoid
functions.

2.1.2 Convolutional Neural Networks (CNN)

Convolutional Neural Networks’ (CNNs) [51] architecture is profoundly one of the
most competitive architectures in the field of ANNs. CNNs were used mainly in
computer vision and image classification tasks, because of their ability to extract
distinguishing features from image data. However, their use has been extended to
other domains such as audio and speech processing, object recognition in image
data, recommendation systems e.t.c. Their power is based on stacking convolu-
tional and pooling layers resulting in an hierarchical decomposition of the initial
representation. In convolutional layers, the basic component of a CNN, the input
is convolved with a filter, called kernel, and the result of this convolution is the
output of the layer. This is similar to the response of a neuron in the visual cortex
of animals to a specific stimulus [46].

Each convolution neuron processes only a restricted area called receptive field,
in opposition to Feedforward Neural Networks (FFNN)(Fig. 2.1) where each neu-
ron is connected with all neurons in previous and next layers (Fig. 2.2). In the
latter case, a huge number of neurons would be required even for shallow architec-
tures, especially for image data where the dimensionality of the input is very high.
As a consequence feedforward neural networks lead to unnecessarily complex mod-
els (too many neurons/trainable parameters) especially when deeper architectures
are deployed.

In addition, in CNNs, each filter is replicated across the entire visual field,
allowing for patterns to be detected regardless of their position in the visual field.
All these replicated units, which form a feature map, share the same parameteri-
zation (weights and bias) (Fig. 2.3), increasing efficiency by reducing the number
of trainable parameters, and contributing to a better generalization of the model
on vision problems.
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Figure 2.1: Feedforward Neural Net-
work

Figure 2.2: Shared weights

Figure 2.3: CNN Feature Map

Another component that was included in the CNN architectures after intro-
duced by Yamaguchi et al in 1990 [77] was the pooling layer. In general, pooling
layers apply a specified size reduction filter to the subregions of the initial rep-
resentation. Specifically, maxpooling uses a max filter. In this way they lead to
models with less trainable parameters while increasing the model’s receptive field.

Two noteworthy architectures that made an impact in this field were Neocog-
nitron proposed by Fukushima et al (Fig. 2.4) [31] which served as the inspiration
for convolutional neural networks and AlexNet proposed by Krizhevsky et al (Fig.
2.5) [49] which is considered as one of the most influential papers in Computer
Vision.
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Figure 2.4: Neocognitron architecture proposed by Fukushima K. in 1980 [31]

Figure 2.5: AlexNet architecture proposed by Krizhevsky et al in 2012 [49]
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2.1.3 Recurrent Neural Networks (RNN)

A basic assumption of Feedforward Neural Networks (FFNNs), is that each sample
is independent, an assumption that does not hold in the case of time series data.
Hence, in spite of their importance, with this approach, after each example is fed
to the network, any information describing the state of the model is lost.

Recurrent Neural Networks (RNNs) are capable of addressing this problem by
processing one element at a time, like FFNNs, while passing information across
adjacent sequence steps, capturing temporal dependencies at the same time. As
Lipton et al stated, Recurrent neural networks (RNNs) are feedforward neural
networks augmented by the inclusion of edges that span adjacent time steps, intro-
ducing a notion of time to the model. [54] Mathematically expressed, at a timestep
t, nodes with recurrent edges receive input from the current data points x(t) and
from the network’s previous state, which is captured in hidden node values h(t−1).
The output ŷ(t) is calculated, given the hidden node values h(t). This procedure
can be summarized in two fundamental equations:

h(t) = σ(Wxhx(t) + Whhh(t−1) + bh) (2.1)

and

ŷ(t) = softmax(Whyh(t) + by) (2.2)

where Wxh , Whh, Why are respectively the conventional weight matrices be-
tween the input x and the hidden state h, the matrix of recurrent weights between
hidden states of the previous and the current time step, and the weight matrix
which pairs the hidden state h with the output y. The vectors bh and by, are bias
parameters which allow each node of the network to learn an offset.

Figure 2.6: Folded and unfolded Recurrent Neural Network. This figure was
adopted from [50]

The dynamics of the network across time steps can be visualized by unfolding
it as in Fig. 2.6. Given the latter figure, the network can be interpreted as a deep
network with one layer per time step and shared weights across time steps. RNN
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models can be trained using backpropagation, but with an altered version of the al-
gorithm introduced by Werbos, called backpropagation through time (BPTT). [90]
The aim of the training process, is to determine the weight parameters illustrated
in Eqs. (2.1-2.2), given the training examples. [54]

2.1.3.1 Long Short-Term Memory Units (LSTM)

Many variations of RNNs have been proposed over the years, with Long Short
Term Memory cell (LSTM) being among the most succesful ones. LSTMs were
introduced by Hochreiter & Schmidhuber in 1997 [44], primarily in order to tackle
the issue of vanishing gradients1. The general idea of LSTMs is the replacement
of a simple RNN node, with a unit that can model longer temporal dependencies
between samples, compared to vanila RNNs. This is done by replacing each stan-
dard RNN node by a so called “memory cell” (Fig. 2.8). Memory cells, contain
a self-connected recurrent edge of constant unit weight. This procedure aims to
prevent gradients from vanishing or exploding.

The intuition behind the term “long short-term memory” is well illustrated in
[54], where Lipton states that weights is the long-term memory of simple recurrent
neural networks, by changing slowly during training and encoding general knowl-
edge about the data. They also have short-term memory in the form of ephemeral
activations, which pass from each node to successive nodes. The LSTM model
introduces an intermediate type of storage via the memory cell.

Figure 2.7: LSTM cell. (Adopted from Wikipedia [84])

1 The so-called Vanishing & Exploding Gradients problem, first mentioned by Bengio et al
[7] is referred to a common, yet important issue when training an RNN. The vanishing gradient
problem occurs when a gradient is vanishingly small. Such gradients effectively prevent weights
from updating their values and ultimately make the network unable to train. The exploding
gradient problem describes the opposite case where the gradient increases progressively leading
to very large weight updates during training. Again, this causes the model to be unstable and
hence, unable to learn from training data.
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A common LSTM unit/cell consists of the following components:

• Input node: In this unit, notated as gc, the weighted sum of the activation
from input xt at the current time step and from the hidden layer at the
previous time step ht−1 is calculated, and passed through a non-linear ac-
tivation function. This activation function is typically a hyperbolic tangent
(tanh) or a sigmoid as presented in the original paper.

• Input gate (which information should enter the cell state) : Gates are a key
component of the LSTM approach. A gate is a sigmoidal unit that controls
the flow of information between past and following units by multiplying with
its value, the value of the input node; whether to enable or cut-off the flow
from a unit to another, by setting the value of the input gate equal to one
or zero respectively.

• Internal state(the long-term memory): This unit at the heart of each mem-
ory cell, is the component that effectively tackles the vanishing gradients
issue. The internal state hc has a self-connected recurrent edge which spans
adjacent time steps, with constant weight one, allowing the error to flow
across time steps without having extreme values (vanishing or exploding).
Mathematically formulated, the update for the internal state is:

s(t) = g(t)� i(t) + s(t− 1) (2.3)

• Forget gate (which decides which information should be forgotten from the
previous cell state): These gates fc, introduced by Gers et al in [35], provide a
method by which the network can learn to flush the contents of the internal
state. Adding forget gates, modified the update of the internal state as
following:

s(t) = g(t)� i(t) + f(t)� s(t− 1) (2.4)

• Output gate: The output value of a memory cell uc is the value of the internal
state, passed through a non-linear activation function and multiplied by the
output gate oc. Hence the output gate determines which information should
be moving to the next hidden state.

In a nutshell, the equations that describe any LSTM architecture are the fol-
lowing:

g(t) = φ(Wxgx(t) + Whgh(t− 1)) + bg

i(t) = σ(Wxix(t) + Whih(t− 1) + bi)

f(t) = σ(Wxfx(t) + Whfh(t− 1) + bf )

o(t) = σ(Wxox(t) + Whoh(t− 1) + bo)

s(t) = g(t)� i(t) + f(t)� s(t− 1)

h(t) = tanh(s(t))� o(t)

(2.5)
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Instead of tanh, any non-linear activation function can be used. However, tanh
is the typical activation used in this case. The following figure (Fig 2.8) gives an
optical illustration of the computations done inside an LSTM cell.

Figure 2.8: LSTM cell with optical explanation of the computations inside an
LSTM cell. This figure was adopted from [30]

2.2 Baseline Algorithms

2.2.1 Gaussian Mixture Models

Gaussian mixture models (GMMs) are probabilistic models that assume all the
data points are generated from a mixture of a finite number of Gaussians, whose
parameters are to be learnt during the training process. The aforementioned mix-
ture is a weighted sum of M component Gaussian densities as given by the equation:

p(x|λ) =
M∑
i=1

wi g(x|µi,Σi),

where x∈ RD is the data vector, each g(x|µi,Σi), i = 1, ...,M is a component
Gaussian density and wi, i = 1, ...,M , are the mixture weights which satisfy the
following constraint:

M∑
i=1

wi = 1

Each component density g ∈ RD is a function of the form,

g(x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

{
− 1

2
(x− µi)′ Σ−1i (x− µi)

}
(2.6)

with mean vector µi and covariance matrix Σi.
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The parameters needed for the description of a complete GMM, are mean
vector, covariance matrices, and mixture weights for each component. All these
parameters, are represented jointly by the notation:

λ = {wi,µi,Σi} i = 1, ...,M. (2.7)

Each of the components included in equation 2.7 can vary, and can be estimated
under some constraints. Parameters can be set to be shared or tied between all the
Gaussian components, and covariance matrices can be constrained to be diagonal
or spherical (diagonal with equal elements in the diagonal) instead of full rank
Depending on the amount of available data and the specific use of the GMM, one
can choose the model configuration, such as the aforementioned constraints and
the number of the gaussian components.

The learning process of a GMM consists of the estimation of the parameters λ
which best match to the distribution of a given set of training vectors. The two
most popular and well-established techniques for the estimation of the parameters
of a GMM are Maximum Likelihood (ML) Parameter estimation and Maximum
A Posteriori (MAP) Parameter Estimation. In this work, the focus will be on the
ML estimation, since this method is used in the following experiments. The goal
of ML estimation is to find the model parameters which maximize the likelihood
of the GMM given a set of training samples. In detail, given a sequence of M
training samples, x = {x1, ...,xM , and assuming data samples are independent2

of each other, GMM likelihood can be expressed as:

p(X|λ) =
T∏
t=1

p(xi|λ), (2.8)

Since the expression is a non-linear function, the parameters of Gaussian mix-
tures cannot be estimated in closed form. A widely used iterative process is ML
via the expectation-maximization (EM) algorithm [22]. The basic idea of the
EMm algorithm is, beginning with an initial model λ, to estimate a new model
λ̂, such that p(X|λ̂) ≥ p(X|λ). Then this step is repeated, by setting the initial
model equal to the new one, until convergence according to a given threshold (Fig
??). However, finite mixture modeling in general often suffers from convergence
to locally optimal solutions. Therefore, EM algorithm is sensitive to initialization,
since the initial model has to be given along with the data. Many initialization
techniques have been examined, such as random initialization and initialization
via vector quantization [79]. The formulas used on each iteration (Eqs. 2.9-2.11)
ensure a monotonic increase in the model’s likelihood values until convergence [22],
thus, despite of the sensitivity to initialization, the algorithm is deterministic and
given the same initialization setting and data, will produce the same results.

2The independence assumption is not always correct but it is necessary in order to make the
problem manageable.
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Mixture Weights ŵi =
1

T

T∑
t=1

Pr(i|xi, λ) (2.9)

Means µ̂i =

∑T
t=1 Pr(i|xi, λ) xt∑T
t=1 Pr(i|xi, λ)

(2.10)

Variances (diagonal covariance) σ̂2i =

∑T
t=1 Pr(i|xi, λ) x2

t∑T
t=1 Pr(i|xi, λ)

− µ̂2i (2.11)

where σ2i , xi and µi refer to arbitrary elements of the vectors σ2
i , xi and µi,

respectively.
Furthermore, the a posteriori probability for component i is given by

Pr(i|xt, λ) =
wi g(xt|µi,Σi)∑M

k=1 wk g(xt|µk,Σk)
(2.12)

Figure 2.9: Illustrative example of EM algorithm run



2.2. BASELINE ALGORITHMS 19

2.2.2 Support Vector Machines

Support Vector Machines (SVMs), introduced by Vapnick [18], are supervised
learning models used either for classification or regression analysis. Given a set
of training data, the SVM training algorithm builds a model that assigns new
examples to one of the two categories, making it a deterministic binary linear
classifier. With an SVM model data points are represented as points in the feature
space, classified so, that examples of separate categories are divided by a decision
boundary and margins, forming a clear gap, as wide as possible. Then, in testing
phase, new examples are predicted to belong to a category based on which side of
the decision boundary they belong to.

The problem of binary SVMs can be stated as follows: Given the training
samples (xi, di), i=1, ..., N where xi is an n-dimensional input feature vector and
di ∈ {−1,+1} represent the corresponding labels for the two classes of sounds, the
decision function is given by:

f(x,w, b) = sign(wTx+ b)

where w ∈ Rd is a weight vector and b ∈ R is a bias value. If the two classes are
linearly separable, the optimal hyperplane can be determined from:

minimize
1

2
||w||2

subject to di(wixi + b) ≥ 1, i=1, ..., N

When the data samples are not linearly separable, the SVM can be trans-
formed in a non-linear classifier by applying the so-called kernel trick3 , to con-
struct maximum-margin hyperplanes (Fig. 2.10) [9]. Kernel classifiers were first
introduced by Aizerman et al, whith the invention of the kernel perceptron [4].

Suppose we have data x,y ∈ X and a mapping φ : X → RN , a kernel k, where
k : X×X → R, is a function which takes as input two vectors x,y from the original
space and returns the dot product of the images of these vectors φ(x), φ(y) in the
destination feature space (typically higher dimensional).

k(x,y) = 〈φ(x), φ(y)〉 (2.13)

The optimization problem of Eq. 2.12 -2.13 can then be reformulated as:

minimize
1

2
||w||2 + C

N∑
i=1

i

subject to di(wixi + b) ≥ 1− ξi, ξi ≥ 0; i = 1, ..., N

3Kernel trick is referred to the fast computation of kernel functions over data points, where
instead of computing data coordinates in that space, it is sufficient to compute the inner product
between images of all pairs of data in feature space. The only restriction on the kernel function
is that 〈·, ·〉ν must be a proper inner product.
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where C is known as the regularization parameter. The decision function is given
by:

f(x) = sign
(
[
N∑
i=1

αidik(x, xi
)

+ b]

where αi are called Lagrange multipliers and k(x, xi) are the Kernel functions.

Figure 2.10: Illustrative example of decision boundary of an SVM model on a non
linearly separable dataset, after applying an RBF (Gaussian) kernel. Adopted
from [73].

Multi-class classification with SVM classifier is not straightforward, as it is
natively a binary classifier. One approach is to split the mutli-class dataset into
multiple binary datasets, and train a binary classification model on each sub-
problem. Two examples of this approach is the One-vs-One and the One-vs-Rest
strategy. In the One-vs-Rest strategy, a classifier is trained for each class, by merg-
ing all the rest classes into one. In this strategy, base classifiers need to produce a
real-valued confidence score, as discrete labels alone can lead to ambiguities, where
multiple classes are predicted for a single sample [8]. In the one-vs-one (OvO) re-

duction, the training requires K·(K−1)
2 binary classifiers for a multiclass problem of

K classes. Each of these classifiers, is trained to make predictions between a pair
of classes from the original training set. Then, at prediction time, a voting scheme
is applied, where all trained classifiers are deployed and the class with the highest
number of positive predictions gets predicted by the combined classifier [8].

2.2.3 Random Forests

First introduced by Ho [81] in 1995, Random Forests or Random Decision Forests
is a supervised learning algorithm, which can be applied both in classification and
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regression tasks. During training, an ensemble of decision trees is built, with the
use of the bagging4 method, and in order to make predictions, they output the most
popular class among the output of the trees consisting the forest. Decision trees
are prone to overfitting and underperforming in unseen data, but with Random
Forests, this issue is tackled up to a point, when a sufficent number of estimators is
used. Their disadvantage compared to decision trees is the lack of interpretability.

A decision tree is a tree which is built in such a way that each internal node is
labeled with an input feature, and represents a test on this attribute (e.g. whether
a coin flip comes up heads or tails) . Each of these nodes has a number of children
equal to the number of possible outcomes of this test (e.g. the possible values of
the input feature). In this way, each branch separates the dataset into smaller sets.
Finally, each leaf node5 is labeled with a class or a probability distribution over
the classes, meaning the data points included in current leaf have been classified
into a specific class.

The splitting of each node, is based on a the importance of each feature which
is derived from a chosen criterion. The free choice of that criterion makes it also
a parameter of the training. A widely used criterion is the information gain (or
mutual information), which is a special case of Kullback-Leibler (KL) divergence
(Eq. 2.14). Each split aims to maximize the mutual information between a feature
distribution and the label distribution, which is equivalent to minimizing entropy.
In other words, IG measures how much information a feature gives about the class
of a sample, and hence, the feature with highest information gain will be included
first in the tree.

IG(X;Y ) =
∑
x,y

p(x, y)log2
( p(x, y)

p(x)p(y)

)
= DKL(P (X,Y )||P (X)P (Y )) (2.14)

Using an importance criterion for the features, a feature ranking can be ob-
tained from the decision trees training (and hence random forests training), based
on their correlations and their relevance with the problem. This importance can
be obtained both as a scores vector, or directly from the tree graph; the closer
the split to the root of the tree, the higher the importance of the corresponding
feature. However, the impurity based ranking has some flaws. When the dataset
has correlated features, then the classifier chooses any of them as predictor with
no preference, resulting to the significant reduction of the rest correlated features
importance. This fact is not an issue when the target of feature selection is to
reduce overfitting, but it can lead to misinterpretation of the data if it is used in
exploratory research.

4The idea of the bagging method is that with a combination of learning models the overall
performance increases.

5A leaf node is a node without children
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Chapter 3

Dataset

The evaluation results shown in this Thesis are based on real acoustic data, cap-
tured in various protected areas in Greece. In this chapter our intention is to
describe how the original data was acquired and to provide a qualitative descrip-
tion of the background noise and the underlying sound patterns that exist in the
dataset. Moreover, approaches to augment the dataset are described as the means
to improve the classification performance.

3.1 Autonomous Recording Units (ARUs)

The dataset was developed by processing raw 24/7 recordings obtained from
SWIFT ARUs (Fig. 3.1a) developed by Cornell University’s Lab of Ornithol-
ogy (www.birds.cornell.edu/brp/swift/). Each ARU consists of an omnidi-
rectional analog microphone (PUI Audio Inc., Part Nr: POW-1644L-B-LW100-R,
see Fig. 3.1b) protected by a military high density windscreen (WindTech 10380,
see Fig. 3.1c). The above battery powered microphones have a signal to noise
ratio (SNR) of > 58 dB and a frequency response of 50Hz to 16kHz. The recorded
signals are in PCM format using 8kHz sampling rate and 16 bits of resolution.
Each ARU is connected to a specific location in Greece and to a specific period of
time when its data was acquired. More details can be seen in Table 3.1.

23

www.birds.cornell.edu/brp/swift/


24 CHAPTER 3. DATASET

(a) SWIFT ARU

(b) Microphone cap (c) Windscreen cap

Figure 3.1: ARU setup

ARU season year location

EVR spring 2019 Evros

PR winter 2016 Prespes

RP1 autumn 2019 Rhodope

RP2 summer 2019 Rhodope

RP3 summer 2019 Rhodope

RP4 summer 2019 Rhodope

RP6 summer 2019 Rhodope

RP10 summer 2019 Rhodope

RP11 summer 2019 Rhodope

RP14
summer,
autumn

2019 Rhodope

RP15 autumn 2019 Rhodope

SW1 autumn 2017 Maroneia

SW2 winter 2018 Evagelistria

DS autumn 2018 Crete

Table 3.1: Location, season and year for each one of the ARUs.
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3.2 Preprocessing and dataset creation

Recordings obtained from each ARU have duration of several hours and the sound
events of interest are sparsely distributed within them. This means that a human
subject would need to spend hundreds of hours to listen to the audio content in
order to discriminate sound portions with audio events that are meaningful for the
purpose of this research. To facilitate data collection, we propose the use of an
automatic segmentation process, described in more detail in Section 4.1.2. Using
this automated process, a long duration recording is reduced to a manageable
number of utterances, where each utterance last a few seconds. Then each of
these utterances was labeled manually into the 9 categories: ”saw”, ”vehicle”,
”aeroplane”, ”mammal”, ”insect”, ”bird”, ”dog”, ”bell”, ”other”. The first 6
categories were found to be representative of the acoustic content that mostly
triggered the voice activity detection algorithm in the automatic segmentation
process. The number and the categories of audio samples gathered from each
ARU can be seen in Table 3.2.

After the data gathering, each extracted sample was labelled manually into one
of the mentioned classes, in order to form a weakly labelled dataset.

Apart from the chainsaw sounds, several ”bell” instances were captured due
to grazing animals such as goats and sheep. Several detections were triggered by
aeroplanes and also by cars and tracks that happened to pass within the acoustic
range of each ARU. These instances were categorized generally as ”aeroplanes” and
”vehicles” respectively. Finally, there were several cases of human voice and also
events that it was not possible to distinguish if it was an animal, a human, a bird or
a dog. These cases were categorized as ”other”. In addition to the aforementioned
categories, one additional category ”empty” was added, characterized by the lack
of any foreground sound source and consisting mainly of background noise.

As we search for illegal human activity, and especially for illegal logging, the
choice of the above class labels was made based on the information that each class
provides for our task and on the plethora of samples of each class;

• saws −→ illegal logging,

• vehicle −→ possible illegal logging,

• mammal −→ if it’s human voice −→ human presence

• bell −→ illegal grazing

• dogs (+gunshot) −→ illegal hunting

• insect −→ harmonic structure much alike saw, so its important to include it
in order to guide the algorithm to distinguish between saw and insect.

• aeroplane −→ Many aeroplane occurences were segmented by the algorithm
that could form a single class.
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• bird −→ Many segments include bird sounds, that could form a single class

• other −→ All segments resulted from the VAD algorithm that had indistin-
guishable content, or seemed to have only background noise

3.2.1 Difficulties

Analyzing the dataset and comparing the number of samples for each ARU, the
amount of data is not equally distributed among ARUs neither among classes.
Hence, an imbalancement is introduced to the dataset. This may result to data
overfitting during the training of a classifier and lead to a model that does not
generalize well. In the latter case, the classifier may be biased towards the classes
with the most occurences.

In should be also noted that in several cases, sounds from more than two
categories could be heard simultaneously. In most cases, this was due to the
sound produced by airplanes, giving rise to long utterances. To handle cases of
simultaneously occurring patterns, we followed the rule that each utterance with
more than one categories should be categorized as the category with the highest
priority based on our detection task. The label priorities from high to low are the
following:

• 9 class case ”saw”, ”vehicle”, ”aeroplane”, ”mammal”, ”dog”, ”bell”, ”in-
sect”, ”bird”, ”other+empty”

• 6 classes case ”saw”, ”vehicle+aeroplane”, ”mammal+dog+bell”, ”insect”,
”bird”, ”other+empty”

• 3 classes case ”saw”, ”insect”, ”other”

• 2 classes case (Binary) ”saw”, ”other”

3.3 Data augmentation

Data augmentation is a technique to widen a dataset and increase the number of
samples. Especially when training Deep Neural Networks, the number of training
samples plays an important role in the performance, since it contributes to better
generalization. In the current dataset, the number of the original audio clips, i.e.
those without data augmentation, is 21782 (Table 3.2). This data was artificially
enriched using Matlab’s built-in function resample in order to downsample and
upsample each audio segment by 5%. Through this process, both the duration
and the pitch of the input audio segment is altered. This was preferred against
classical pitch shifting operation as it was observed that conventional pitch shift
introduced audible artifacts in the produced signals, a fact that can be possibly
explained by the low SNR in the audio recordings. Following the resampling
operation, two additional utterances are produced for each available audio segment
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(except utterances of class ”empty”), totaling in 62844 samples in the augmented
dataset. (Table 3.3)

ARU saw vehi- aero- mam- dog insect bird other bell emp- All
cle plane mal ty classes

DS 433 0 0 0 0 0 0 0 0 0 433
EVR 11 78 14 308 70 0 251 269 4 0 1005
PR 154 203 50 521 156 2 60 170 41 216 1573
RP1 0 0 129 0 0 344 2 6 6 0 487
RP2 0 0 75 1 0 51 1 0 0 0 128
RP3 78 30 496 36 3 961 617 141 0 0 2362
RP4 0 2 22 195 0 14 23 12 0 0 268
RP6 1747 0 190 436 8 67 43 0 388 0 2879
RP10 129 0 421 0 0 320 10 38 0 469 1387
RP14 126 0 40 3 5 24 40 17 8 374 637
RP15 46 110 23 0 60 2 149 49 14 192 645
SW1 0 42 660 125 62 102 48 0 683 0 1722
SW2 3921 94 1305 1548 795 141 82 123 247 0 8256

SUM 6645 559 3425 3173 1159 2028 1326 825 1391 1251 21782

Table 3.2: Original dataset

ARU saw vehi- aero- mam- dog insect bird other bell emp- All
cle plane mal ty classes

DS 1299 0 0 0 0 0 0 0 0 0 1299
EVR 33 234 42 924 210 0 753 807 12 0 3015
PR 462 609 150 1563 468 6 180 510 123 216 4287
RP1 0 0 387 0 0 1032 6 18 18 0 1461
RP2 0 0 225 3 0 153 3 0 0 0 384
RP3 234 90 1488 108 9 2883 1851 423 0 0 7086
RP4 0 6 66 585 0 42 69 36 0 0 804
RP6 5241 0 570 1308 24 201 129 0 1164 0 8637
RP10 387 0 1263 0 0 960 30 114 0 469 3223
RP14 378 0 120 9 15 72 120 51 24 374 1163
RP15 138 330 69 0 180 6 447 147 42 192 1551
SW1 0 126 1980 375 186 306 144 0 2049 0 5166
SW2 11763 282 3915 4644 2385 423 246 369 741 0 24768

SUM 19935 1677 10275 9519 3477 6084 3978 2475 4173 1251 62844

Table 3.3: Augmented dataset
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Chapter 4

Methodology

4.1 Voice Activity Detection (VAD) in chainsaw de-
tection

In the course of this research, we realized that there are several acoustic patterns
of interest with harmonic structure that would likely trigger the proposed VAD.
Chainsaw, insects, mamals, vehicles, birds and of course human voice are some
examples of such sounds. The VAD is exploited in order to create a tool to au-
tomatically segment a long duration audio recording into a large number of short
duration audio clips that potentially carry an acoustic pattern of interest. This
has a huge impact in the time required for collecting training data, since we can
directly assign a label to each extracted segment and we don’t need to listen to
the entire duration of the recording in order to spot interesting events. Moreover,
the automatic segmentation process can be used in the implementation phase in
order to filter our background noise and uninteresting content, thus reducing the
amount of data that has to be presented to the classifiers.

Our VAD is based on the Summation of Residual Harmonics method (SRH
method) [27], which is known for it’s ability to provide reliable voicing decisions
in noisy conditions. The outcome of the SRH approach that we utilize is a time-
varying metric of the voicing activity that is called Voicing Strength (VS). Voic-
ing activity is returned as a time-series in the form v(τ), where τ is the time-
frame index. This metric is calculated using the relevant function provided in the
COVAREP toolbox [21]. VS can give very accurate results for voiced/unvoiced
segments, using thresholding. Thus, we make use of some thresholds to get har-
monic/non harmonic decisions (in accordance to voiced/unvoiced). Furthermore,
in an intermediate step of the SRH algorithm, the algorithm calculates a spectro-
temporal representation of the pre-whitened signal, that may be directly used as
an acoustic feature for classification. We will refer to this feature as ”SRH spec-
trogram”.

29
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4.1.1 Summation of Residual Harmonics (SRH)

The residual harmonics method [27] is a well known approach in the context of
pitch tracking and voice activity detection. This method focuses on the residual
harmonicity and more specific on the spectrum of the residual signal, instead of
auto-correlation that other methods use. The procedure for calculating SRH is
the following:

1. Perform auto-regressive modeling of the spectral envelope for a specified
number of time-lags.

2. Perform inverse filtering with the auto regressive model in order to obtain the
residual signal e(t). This whitening process has the advantage of removing
the main contributions of both noise and possibly the ARU response (which
may be compared to the vocal tract resonances).

3. At each time-frame a hanning window is applied and the amplitude spec-
trum E(f) is computed. An important notice on E(f) is its relatively flat
envelope. For segments that have harmonic structure (for voiced segments
in terms of voice activity detection), peaks at the harmonics of the funda-
mental frequency F0 will appear. From this spectrum, and for each fre-
quency in the range |F0,min, F0,max| the SRH is computed as: SRH(f) =

E(f) +
∑Nharm

k=2 [E(k · f)−E((k− 1
2 · f)]. Considering only the term E(k · f)

in the equation, only the contribution of the first Nharm harmonics are taken
into account, and is expected to reach a maximum for f = F0. However,
this also holds for each of the harmonics present in the range [F0min, F0max].
Consequently, the subtraction by E(k 1

2 · f) is important to reduce the rel-
ative importance of the maxima of SRH at the even harmonics. Then, an
estimated pitch value F 0 is extracted for each residual frame is the frequency
that maximizes SRH(f) at that time.

The proposed criterion for detecting harmonicity is acknowledged for its robustness
to noisy conditions, which makes it a promising candidate for the intended task,
since sources with harmonic content are submerged in high levels of background
noise. In what follows, we explain how the SRH method is exploited in order to
automatically segment the audio recordings.

4.1.2 VAD-based segment selection procedure

Our dataset consists of 24 hr recordings that span many different days and many
different places (Table. 3.1). Thus the manual cropping and annotation of the
recordings is inefficient. The idea here us to use VS as a metric to detect au-
dio portions with harmonic structure in each recordings and present these short
duration segments directly to a human listener for annotation. The patterns of
interest that relate to illegal human activity and that exhibit a harmonic struc-
ture are chainsaw (illegal logging), vehicles (illegal trespassing), sheep bells (illegal
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grazing), human voice and dog barking (possibly illegal hunting). Due to the way
that the VAD algorithm works, other patterns that don’t imply human activity
but do have a harmonic structure are also expected to produce high VS values.
Such patterns are birds, insects, aeroplanes and various mammals that happen to
pass at a close distance from the ARU.

An important element of the process is that patterns like chainsaw or vehicles
or dog barking produce high VS values not in single isolated time-frames but along
continuous time frames, in contrast to e.g. gunshot sound that usually occurs in
single isolated time frames. Following this idea, audio clips are kept only if there
are at least Nca consecutive time frames with high VS values that are over a
threshold Tsrh. The procedure that is followed for the segment extraction in more
detail is;

1. Calculate VS in terms of v(τ) across the entire duration of the recording

2. Construct the collection of all the active time-frame indexes, where an active
time-frame is defined as any time-frame where condition v(τ) ≥ Tsrh holds.
In what follows, let us use the term utterance in order to refer to a collection
of consecutive active time-frames starting at time τ startu and ending at time
τ endu , where u is the time-frame index.

3. Keep only the utterances which are formed by more than Nca consecutive
time-frames, i.e., τ endu − τ startu > Nca holds.

4. If there are utterances with lengths smaller than Nd, extend their lengths to
become equal to Nd. Perform this operation by simply reducing τ startu and
increasing τ endu an equal number of time-frames.

Following this operation, several utterances of different lengths are produced
from each audio recording and the length of each utterance is at least Nd time-
frames. In general Nca < Nd holds, meaning that the number of active time-
frames observed from a certain event can be much less that the total number
of time-frames in the final extracted segment. Also, this condition will allow
temporal overlap between consecutive utterances. The reason for using a different
value for Nd and Nca is that a chainsaw revving may last several multiples of
Nca, but due to the high level of noise or due to the non-stationary nature of
the particular chainsaw instance, only a small portion of the event passes the
v(τ) ≥ Tsrh criterion. Additionally, the tactic to extend the acoustic representation
along time makes it easier for the listeners to annotate the data, possibly by
allowing them to better perceive the transitions at the beginning or end of the
extracted event.
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4.2 Feature extraction for DNN training

4.2.1 Selection of frequency range

The frequency range of the acoustic features is an important choice since it af-
fects the final features’ dimension and thus affects both the performance and the
computational cost of the implementation. The sampling rate of 8kHz, allows for
frequency analysis up to 4kHz, thus we examined several cases of frequency ranges,
depending on the feature. The analysis frequency range for the SRH method was
40Hz-2kHz, whereas in the extracted SRH-spectrogram the frequency range was
cropped to 40Hz-540Hz. Considering Mel-spectrogram, in the case of limited fre-
quency range, and especially up to 1kHz, mel filter would be approximate linear
and result in a slightly modified linear frequency axis. Thus, Mel-spectrogram
was tested in frequency range 0-4kHz, so mel filter would span in a wide fre-
quency range to result in a spectrogram with logarithmic mapping in frequency
axis. Power spectrograms were examined with frequency ranges 80Hz-4kHz and
150-2kHz. The following facts suggest that it might be advantageous not to con-
sider the entire frequency range but to limit the highest frequency in the analysis
well below the Nyquist rate;

• Chainsaw units rely mainly on an internal combustion engine which operates
at 6000-18000 rpm, which results in an acoustic signal with fundamental
frequency f0=100-300Hz and period of T0=3-10ms (26-80 samples for the
current dataset sampled at 8kHz) [66]. Thus, the frequencies with highest
energy are at the low and middle frequency range.

• Sound sources are most of the times located far from the ARU. Due to long
range acoustic propagation, the characteristic sound patterns are detected
within each recording at very low signal levels relative to background noise.
As a consequence, the higher frequency harmonics - which usually are weaker
than the lower harmonics and the fundamental frequency - are masked by
background noise and thus not detectable within the observed audio signal.

• During long range propagation, sound waves attenuate in quadratic propor-
tion to their frequencies [42]. As a consequence, high frequency components
often vanish and are not observable within the audio recordings.

4.2.2 Normalization of raw audio

Before feature extraction, normalization was used for each utternace for all features

(except SRH spectrogram) as snorm =
√
N
‖s‖2

s, where s is the PCM signal observed

in the utterance and N denotes the number of samples in each utterance. This
is a variation of the widely used normalization of dividing signal by its norm.
The square root of N was added in the nominator to adjust the normalization
depending on the length of the utterance. We note that that this process is not
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required for SRH feature thanks to the prewhitening process, resulting to a feature
that is neutralized with respect to the signal level.

4.2.3 Power Spectrogram and Mel-spectrogram

Power spectrogram and mel-spectrogram are two of the most common spectro-
temporal representations used as features for DNN. For constructing the power
spectrogram, the temporal parameters of frame-size and hopsize were empirically
tuned to values of 60 and 30 ms respectively. Each time-frame is windowed using
a Hann window, while the Fast Fourier Transform (FFT) is used with 2048 points,
resulting in a 1024 points spectrum. The squared magnitude of the spectrogram
was used a the final feature while the phase was disregarded. For the needs of this
Thesis, mel-spectrogram was constructed by multiplying the power spectrogram
with a mel filterbank that directly maps the linear frequency axis onto the mel
scale.

4.2.4 Per Channel Energy Normalization (PCEN)

PCEN has been proposed as a transformation of spectrotemporal features with
the goal to derive acoustic features that lead to better generalization during DNN
training. It is proposed as an alternative to log mel spectrogram or log spectro-
gram with the aim to increase robustness to channel distortion. PCEN combines
a dynamic range compression (DRC), which reduces the variance of foreground
loudness and an adaptive gain control (AGC) which is used to suppress station-
ary background noise. In contrast with log mel spectrogram which uses a static
log or root compression, a key component in PCEN is the replacement of this
compression with a dynamic compression. The PCEN operation can be written as

PCEN(t, f) =

(
E(t, f)

(ε+M(t, f))a
+ δ

)r
− δr, (4.1)

M(t, f) = (1− s)M(t− 1, f) + sE(t, f), (4.2)

where t and f are the time and frequency indices respectively, E(t, f) indicates
filterbank energy , M(t, f) is a smoothed version of E(t, f) traditionally computed
using a first-order auto regressive process defined in Eq. (4.2), with parameter s
used as a smoothing coefficient and ε used as a small constant for division stability.
Equation (4.1) can be broken up in two parts, where the first part implements a
form of feed-forward AGC with parameter α ∈ [0, 1] used for gain normalization
strength (Eq. 4.3) and the second part implements a stabilized root compression
with parameters δ (offset) and r(exponent), which further reduces dynamic range
(Eq. 4.4).

Tgn(t, f) =
E(t, f)

(ε+M(t, f))α
(4.3)
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Tcomp(t, f) = (Tgn(t, f) + δ)r − δr (4.4)

PCEN is applied on already extracted power spectrograms , in order to compare
its performance to the rest of the features. As parameters, we used a fixed set of
parameters, matching with the ones presented in the original paper, where s =
0.025, α = 0.98, δ = 2 and r = 0.5.

4.2.5 SRH spectrogram

The SRH method has been already described in Section 4.1.1 as an unsupervised
approach to detect patterns with harmonic structure in an audio recording. The
procedure followed in order to extract v(τ) at each time frame involves calculation
of a matrix that will be called from now on as the SRH spectrogram. This inter-
mediate product of the SRH method is the result of obtaining the spectrogram on
the prewhitened signal and then applying the summation of residual harmonics.
To our knowledge, SRH spectrogram is used for the first time as a potential acous-
tic feature for DNN classifiers in this Thesis. An illustrative example of the SRH
spectrogram is presented in Fig. 4.1, adopted from the original SRH paper [28].
It can be observed that due to the subtraction that takes place in the calculation,
SRH spectrogram consists of negative values apart from positive ones. We finally
note that the paremeters of 60 ms frame-length and 30 ms hop-size also hold for
the SRH spectrogram. A final limit concerns the upper frequency limit used for
construction of the SRH spectrogram which is set to 500 Hz. Due to the way that
higher frequencies are reflected upon the lower frequencies (see Section 4.1.1), it
should be realized that there is no one-to-one relation between frequency index
and natural frequency, rather each frequency index in the SRH spectrogram is
also representative of the energy contained in higher harmonics of that frequency
index.

Figure 4.1: SRH spectrogram for a segment of clean speech of a female speaker.
Adopted from the original paper of SRH [28]
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4.2.6 Final feature dimension

The acoustic features intended for DNN classification can be presented as two-
dimensional matrices where one axis is the time dimension and the other axis is
the frequency dimension. The frequency dimension is set to 500 bins for power
spectrograms and SRH-spectrogram. For the mel spectrogram the frequency di-
mension is equal to the number of mels (e.g. 128 bins for 128 mel spectrogram).
However, we need a fixed size also along the temporal dimension (especially for the
CNNs), and the value that was decided was 48 time-frames for all features. This
number of frames corresponds also to the minimum utterance duration produced
using the automatic segmentation process of Section 4.1. In order to achieve a fixed
feature dimension for utterances of longer duration, a downsampling procedure
was implemented. Specifically, assuming that Ntf is the number of time-frames
extracted from a specific utterance, a child feature is obtained by downsampling
along the temporal dimension with a factor equal to bNtf48 c. From the downsam-
pled spectrogram 48 frames around the center are kept, in this way, we can make
a spectrogram of any length fit into the desirable number of frames without zero
padding.

To provide an example, a 3 seconds utterance will result in a spectrogram
consisting of 100 frames. This spectrogram will be downsampled by a factor of
([100/48] =)2 to 50 frames, and 48 frames around center of the spectrogram will
be kept as feature, discarding 2 frames. Two extreme cases is the one that the
spectrogram consists of a number of samples which is an exact multiple of 48 and
the one that the spectrogram consists of a number of samples which is multiple
of 48 plus 47. In the first case, all the (downsampled) information available will
fit in the desired number of frames, without discarding any excessive frames. In
the latter case, more frames will be discarded in the last step. e.g. A spectrogram
consisting of 191 samples would be downsampled to 63 frames (by a factor of 3),
discarding 15 frames. In all cases, more than 50% of the information around the
center of the clip will be retained.

4.3 DNN architectures

Two main types of architectures where tested, namely :

• CNN - based.

• CNN+LSTM combined.

In both cases experiments where conducted using different number of layers and
units per layer, and 4 architectures were chosen to be presented. The optimization
algorithm used was Adam [48] and learning rate followed Early Stopping and
Reduce LR on plateau schemes. Reduce LR on plateau scheme reduces learning
rate during training by a factor of 0.2 when validation loss has stopped improving
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for five consecutive epochs1. Early stopping, terminates training procedure when
validation loss has stopped improving for 10 consecutive epochs. The procedure of
training and testing was completed using the Keras Deep Learning framework [13]
and the Tensorflow [1] framework as backend. To boost training time, we also used
the NVIDIA CUDA DNN library cuDNN library [12], which is a GPU-accelerated
library for Deep Learning. The hardware specifications of the underlying system
were an Intel i7-8550U CPU, an NVIDIA GeForce MX150 (2GB VRAM) GPU
and a 20GB RAM.

In all cases, the last activation layer is a softmax layer. Softmax layers in
general take N inputs and normalize them into a probability distribution consisting
of N probabilities. Expressed mathematically :

σ(z)i =
ezi∑N
j=1 e

zi

for i = 1 . . . N and z = (z1, z2 . . . zN ) ∈ RN [85]. Since we conduct experiments
for varying number of classes, the softmax layer consists of 2, 3, 6, or 9 inputs
/ outputs, matching the number of classes. In this context, each softmax layer
produces as many probabilities as the number of classes that sum to 1.

4.3.1 CNN based architectures

Convolutional layers in this Thesis are used with one-dimensional kernels that are
applied in the time domain. Multiple layers are stacked together, in some cases
combined with pooling and max pooling layers in between. Two alternatives are
examined in this Thesis, a so-called small and a large CNN architecture. Details
can be seen in the two Tables that follow.

Small CNN Architecture

Layer Type # Units # Trainable Parameters Output Shape

Conv1d 32 48032 (batch size, 46, 32)

Conv1d 64 6208 (batch size, 44, 64)

MaxPooling 1D – 0 (batch size, 22, 64)

Dropout – – (batch size, 22, 64)

Flattten – – (batch size, 1408)

Dense – 8454 (batch size, 6)

Sum of trainable params 62694

Table 4.1: Small CNN architecture (Input size 48x500)

1The train set fed to each DNN model, is split into a train (90%) and a validation set (10%).
The loss obtained based on the latter, is the validation loss.
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Large CNN Architecture

Layer Type # Units # Trainable Parameters Output Shape

Conv1d 32 80032 (batch size, 44, 32)

Conv1d 64 10304 (batch size, 40, 64)

Conv1d 128 24704 (batch size, 38, 128)

Conv1d 256 98560 (batch size, 36, 256)

Flattten – – (batch size, 9216)

Dense – 294944 (batch size, 32)

Dropout – – (batch size, 32)

Dense – 198 (batch size, 6)

Sum of trainable params 508742

Table 4.2: Large CNN architecture (Input size 48x500)

4.3.2 Mixed architectures (CNN+LSTM)

LSTM networks are significantly more computationally demanding than CNNs
even with the same number of trainable parameters. This is due to the unfolding
in time that is executed during training / testing of RNN based cells. However,
since audio data are time sequences, RNN based architectures may be more capable
of capturing the dependencies between different time intervals. In the tested archi-
tectures, LSTM layers follow different combinations of convolutional and pooling
layers with the hope to capture such long-term time dependencies. The idea of
using LSTM layers after CNNs is based on the ability of CNN layers to learn high
level visual features from each input sample in the hidden layers, at the same time
reducing the dimension of features passed to next layers. Thus, this combination
of CNN and LSTM layers leads to models with less trainable parameters.

Following these concepts, two mixed architectures (Mixed 1 and 2) are pro-
posed, detailed in the two Tables that follow.

Mixed 1 Architecture

Layer Type # Units # Trainable Parameters Output Shape

Conv1d 256 640256 (batch size, 44, 256)

Batch Normalization – 1024 (batch size, 44, 256)

Max Pooling 1D – – (batch size, 22, 256)

Conv1d 256 131328 (batch size, 21, 256)

LSTM 64 82176 (batch size, 10, 64)

Dense – 4160 (batch size, 10, 64)

Dropout – – (batch size, 10, 64)

LSTM 32 12416 (batch size, 32)

Dense – 198 (batch size, 6)

Sum of trainable params 871558

Table 4.3: Mixed 1 architecture (Input size 48x500)
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Mixed 2 Architecture (Similar to Large CNN + LSTM Layer)

Layer Type # Units # Trainable Parameters Output Shape

Conv1d 32 80032 (batch size, 44, 32)

Conv1d 64 10304 (batch size, 40, 64)

Conv1d 128 24704 (batch size, 38, 128)

Conv1d 256 98560 (batch size, 36, 256)

LSTM 64 82176 (batch size, 64)

Dense – 8320 (batch size, 128)

Dropout – – (batch size, 128)

Dense – 774 (batch size, 6)

Sum of trainable params 304870

Table 4.4: Mixed 2 architecture (Input size 48x500)

4.4 Number of classes

As it is obvious, the number of classes has an important role on the classification
accuracy. In this work, experiments were performed with a varying number of
classes and also with a different association between sound patterns to classes. In
particular, the problems considered are presented in the following figure: (Fig.
4.2).

Figure 4.2: Class labels for the considered binary, 3-class, 6-class and 9-class prob-
lems.
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Given a collection with multiple sound categories, it is obvious that these cat-
egories can be grouped in a different manner in order to construct a problem with
different number of classes. In the attempt to ”reduce” the number of classes the
explicit way is to assign the same label to two or more different sound patterns
and proceed by considering a number of classes equal to the number of labels. The
implicit way, is to train the classifier on a large number of classes and during the
implementation phase, to merge decisions for some of the classes together. One
example is the 3-class problem shown above, which is considered with the inten-
tion of detecting chainsaw events. The distinction between ”insect” and ”other” is
meaningless from a practical point of view, however, by considering a three class
problem we hope that our classification model will better learn to discriminate
insect from chainsaw sounds. These ideas are similar to the hierarchical classi-
fication problem referenced in [15, 6]. Our expectation is that training a model
with that hierarchical scheme, will conclude to higher performance than a simple
binary classification scheme.

4.5 Feature extraction for the baseline approaches

While the focus of this Thesis is mainly on deep learning, we cannot neglect some
of the most successful traditional machine learning approaches, namely, Support
Vector Machines (SVMs), Random Forests (RFs) and Gaussian Mixture Models
(GMMs). In what follows, we describe the acoustic features that were used in
combination with these classifiers.

For the baseline algorithms, some temporal and spectral features were extracted
and combined so as to form a single feature vector per utterance. In order to use
a 1D vector for each utterance, each clip is segmented into frames on which the
spectral and temporal features are computed. Then the mean and the variance
along all the frames of a clip are extracted to form two features of the 1D feature
vector. The features are mentioned below:

• Zero Crossing Rate (ZCR): it is a measure of the number of times the signal
value cross the zero axis. It is often an indication about the periodicity of the
signal. Periodic signals tend to have a small ZCR value, while noisy sounds
tend to have a high ZCR value.

• RMS: is the root mean square magnitude of the audio samples in each time
frame.

• Mel frequency cepstral coefficients (MFCCs): They are derived from a type
of cepstral representation of the audio clip using mel scale. They represent
the shape of the spectrum with very few coefficients.

• Spectral centroid: it is the center of gravity of the linear spectrum
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• Roll-off frequency (or spectral roll-off): is the frequency so that a specified
percentage (85 % in current experiments) of the signal energy is contained
below that frequency. It is correlated to the harmonic/noise cutting fre-
quency.

• Spectral flatness (or Wiener entropy or tonality coefficient): is a measure
of the noisiness of a spectrum. A high value of spectral flatness (close to
1) indicate flat spectrum which corresponds to a noise-like signal, similar to
white noise, whereas low values of spectral flatness indicates sinusoidality
and tonality of a spectrum.

• Spectral Contrast: it considers the spectral peak, the spectral valley, and
their difference in each frequency subband.

• F0: is the estimated fundamental frequency for each time frame sample ob-
tained from the SRH method, by observing the frequency that exhibits the
maximum value at each time frame.

• Voicing Strength (VS): it is the same metric used for the VAD (see Section
4.1).

All features mentioned above, except from F0 and VS, are calculated using the
librosa library [60]. By computing the mean and the variance along frames for all
the aforementioned features, a 272× 1 vector is obtained for each utterance. Such
a high-dimensional feature vector could result in unstable training or not achieve
convergence. Thus, apart from the original 272-feature vector, three additional
reduced-size feature vectors were examined. A feature vector of size 111 × 1 was
obtained by performing feature selection. More particularly, a recursive feature
elimination approach was performed using cross validation with a random forest
classifier. One of the additional feature vectors was of size 40× 1, consisted of 13
MFC coefficients (from 128 extracted) and the rest temporal and spectral features.
The smallest feature vector was of size 8 × 1, consisted only by the temporal
and spectral features. Standarization of the features, before proceeding to the
training, was also considered as an option, as the means to achieve a more stable
performance. The results presented for each baseline case in what follows are
the best ones achieved with respect to the aforementioned parameterization and
feature selection.

4.6 Cross Validation and Evaluation metrics

4.6.1 Cross Validation

Performance metrics presented in a later section are based on an outer Cross
Validation (CV) scheme that follows a ”leave-one-sensor-out” approach. More
particularly, all the utterances extracted from one ARU are put into test, while
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the data extracted from the rest ARUs is considered to be available for training.
As stated in [57], this validation approach will better reflect the system’s ability
to adapt to variations of background noise in time (e.g. dawn vs. dusk) and space
(i.e., different sensor location), as well as to variations in the characteristics of
different ARUs (e.g. frequency response). The test is repeated for 7 from the 14
ARUs (namely ’PR’, ’RP3’, ’RP6’, ’RP10’, ’RP14’, ’RP15’, ’SW2’), since it was
decided that ARUs which did not contain any chainsaw events would be used only
for training.

For training purposes, an additional inner CV loop is considered, in which case
the training set is further split. For DNN training, the data used for training is
split in two parts after being shuffled; a training set consisting of 90% of the data,
and a validation set consisting of 10% of the data. This inner split is repeated 5
times for each outer validation loop, and the scores reported for the specific ARU
are concatenated in a vector which is used to extract each evaluation metric. This
was done in order to compensate for the variability that characterizes the produced
DNN models due to the random selection of data samples in the training and in the
testing set. For the baseline machine learning approaches which are characterized
by some degree of randomness, such as Random Forests (selection of random sub
set of features on each predictor) or GMMs (random initialization on Kmeans at
the start of the training), we used a similar CV scheme. The data left for training
fed to the model as training set where again, the algorithm is trained 5 times
for each outer validation CV, obtaining a vector of all predicted scores for each
of test set samples. The SVM model was fed the whole training set once, and
prediction scores were extracted for each outer validation CV. Thus, by following
this procedure we obtain an (1x7) vector for each model consisting of a metric for
each ARU.
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Figure 4.3: Illustrative graph of the Cross-Validation scheme, where si is one of the
7 sensors, st the sensor left out for testing and sR denotes the remaining sensors
that are used only for training.

It should be also clarified (i) that testing is performed only for the original
audio samples extracted from the test-ARU and not on any audio samples that
were produced from data augmentation and (ii) the augmented dataset produced
from a specific ARU is not allowed to participate in the training set when that
ARU is put into test.

The proposed cross-validation scheme is expected to lead to performance met-
rics that are realistic and representative for the classification performance when
applied on data from new ARUs. Moreover, it is expected to reflect the impact on
variations of the background noise due to geographical location and due to season.

4.6.2 Evaluation Metrics

In the evaluation section, an average class accuracy will be used as the most
relative metric to accuracy because it incorporates the performance of each model
for all the classes. Since not all test ARUs have examples from every training class
and each test ARU has different number of examples, metrics such as balanced
accuracy or simple accuracy would be biased.

A widely used metric for binary classifications is the Receiver operating char-
acteristic (ROC) curve, which illustrates in a plot the classification performance
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of a binary classifier. Typically, the ROC curve is created by plotting the True
Positive Rate (TPR) against the false positive rate (FPR) using various decision
threshold settings. The Area Under the ROC Curve (ROC AUC) is the second
metric used in this Thesis. AUC reduces the information of ROC curve in a single
number with possible values between [0,1], where 0 indicates worst performance
and 1 indicates perfect performance. AUC scores will be used for evaluating in
chainsaw class, which is the main target class on this Thesis.
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5.1 Evaluation of VAD-based segment selection

This subsection presents results for the VAD-based segment selection algorithm,
with the intention to illustrate the algorithm’s sensitivity to the presence of har-
monic events. Two different types of evaluation were performed. The first focuses
solely on chainsaw events, while the second showcases the algorithms sensitivity
to harmonic sounds in general, as a function of some parameter values.

For this VAD implementation we employed the SRH method with a frame-size
of 90 ms rather than 60 ms that was used for calculation of the SRH spectrogram.
Moreover, we set Nca = 3 and Nd = 23 while threshold Tsrh was set to values of
0.08 in a first experiment and equal to 0.078 in a second experiment. Additional
parameters that should be reported concern those used to invoke the ”pitch srh”
function in COVAREP toolbox, that was necessary for calculation of VS. Note
that the proposed parameter values were empirically tuned and differ from the
default ones that are intended for speech detection; the frame-length and hop-size
for calculation of the SRH was 180 and 60 ms respectively, which means that the
length of an extracted utterance is ensured to be at least 1.5 s. The number of
harmonics was set to 4 and the minimum and maximum F0 values were set to 40
and 760 Hz respectively.

In the first experiment that was used in order to quantify the algorithms sen-
sitivity to chainsaw event, we used Praat in order to manually annotate audio
segments with chainsaw events in randomly selected portions from all 7 ARUs
that contained chainsaw events. Specifically, Praat was used in order to mark
the beginning and end of several chainsaw events in each recording and the total
duration of the marked regions in each recording. Each test recording was then
presented as input to the system and the audio portion detected by the algorithm
was compared against the ground truth (the manually annotated events). This
way, we were able to compare the total duration of chainsaw events detected by
the algorithm to those detected by the human listener. The results are shown in
the second row of 5.1. It can be seen that for Tsrh = 0.08 the algorithm detects
80.1% of the actual chainsaw events, while for Tsrh = 0.078, the chainsaw detec-
tion rate increases to 86.6%. To our opinion this proves that VS, although initially
designed for speech signals, is also appropriate for detecting the chainsaw pattern.

In a second experiment, we fed several randomly selected 12-hour recordings
from eight different ARUs and we counted the duration of the audio segments
extracted by the algorithm, for the aforementioned values of Tsrh. The general
detection rate is calculated by dividing the total duration of extracted segments
to the duration of the input recordings (96 hours) and the results can be seen in
the third row of Table 5.1. The results are indicative about the specificity of the
algorithm. It can be seen that even for the lowest threshold value of Tsrh = 0.078,
VAD-based segment selection lets less than 9% of the original data duration to pass
through. To our opinion this is a positive attribute for the algorithm, highlighting
it’s validity for the pre-processing of environmental sound recordings.
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Tsrh 0.08 0.078

Chainsaw detection rate 80.1% 86.6%

General detection rate 147.2 s/hour 313.9s/hour

Table 5.1: Chainsaw and general detection rate for the VAD-based selection algo-
rithm.

Figure 5.1: Classification performance for power spectrogram and PCEN spectro-
gram as a function of the frequency range.

5.2 Effect of Frequency Range

In Section 4.2.1 the discussion was whether the acoustic features should be de-
signed so as to include information from the entire frequency range or whether an
upper frequency limit should be applied. In Fig. 5.1 the classification performance
is illustrated when using power spectrogram and PCEN spectrogram for full fre-
quency range (80-4000Hz) and limited frequency range (150-2000Hz). The red
box plots represent the average AUC scores, considering the binary problem were
”chainsaw” is discriminated from the ”non-chainsaw” class, while the green boxes
represent the average accuracy results for the explicit 6-class problem (see Section
4.2). The box plots were chosen here as a more informative type of illustration,
since they reveal at the same time an indication of the variance1 (the red/green
bar), the mean (red/green vertical line) and the extremes (minimum/maximum)

1Specifically, each colored box reveals the interquartile range, where the middle 50% of the
data lies.
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of the distribution (thin red/green horizontal lines). The initials 2cl represent the
2-class problem where training was performed with only two labels, ”chainsaw” for
the Positive class and ”non-chainsaw” for the Negative class. On the other hand,
the initials 6cl represent the performance for the case where the Negative class is
comprised of 5 sub-classes.

In general, PCEN spectrogram achieves higher AUC scores compared to power
spectrogram and the same holds for 6cl against 2cl, however these comparisons are
investigated in more detail in the Sections that follow. For the moment, it is worth
to observe that limiting the highest frequency at 2 kHz results to an increase in the
performance for the binary problem, both for the case of power spectrogram and
PCEN spectrogram. This is probably an indication that higher harmonics of the
chainsaw sound are missing and therefore, higher frequencies do not add significant
information. Concerning the effect of frequency range for the 6-class problem, it
can be seen that this has a limited impact for the case of PCEN spectrogram, but
wider frequency range seems to slightly improve performance for the case of power
spectrogram. In what follows, results will be presented considering the limited
frequency range for power and PCEN spectrogram.

5.3 Comparison of features and DNN architectures

The four proposed DNN architectures are tested in this section for power spectro-
gram in Fig. 5.2, PCEN spectrogram in Fig. 5.3 and SRH-spectrogram in Fig. 5.4.
Results are presented for chainsaw as the target pattern for an explicit two-class
problem (2cl) and an implicit two-class problem (6cl) after merging the decisions
taken upon five ”non-chainsaw” classes into a single class. The average accuracy
for the 6-class problem is also plotted in corresponding plots.

Concerning the use of the different DNN models for the binary problem, it
can be seen that the mixed DNNs provide a significant improvement compared
to CNNs, with Mixed 1 slightly surpassing Mixed 2 in terms of average AUC.
Especially for the Mixed 1 and Mixed 2 models it may also be observed that the
6cl approach improves significantly compared to the 2cl, providing an increment
in average AUC up to 5% in some cases. Power spectrogram appears to be the
weakest acoustic feature, providing the lowest average AUC and highest variance
among ARUs compared to the other features. Inspection of Figs. 5.3 and 5.4
reveals that, in terms of average AUC, the best performance is achieved when
combining SRH spectrogram with model Mixed 1. Specifically, SRH spectrogram
achieves 0.859 and 0.878 average AUC for 2cl and 6cl respectively while for PCEN
spectrogram the corresponding values are 0.801 and 0.848. Also, SRH not only
achieves higher AUC scores than PCEN spectrogram (and of course than power
spectrogram) but smaller variance across the different ARUs as well.
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Figure 5.2: Classification performance of power spectrogram for different DNN
models.

Figure 5.3: Classification performance of PCEN spectrogram for different DNN
models.

In terms of the 6-class problem, the average accuracy varies much less as a
function of the DNN model and acoustic feature and is concentrated in all cases
around 50%. The best accuracy scores are observed for PCEN spectrogram and
especially by combining it with model Mixed 1, in which case the average accuracy
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is around 52.5%. In Fig. 5.5, the confusion matrix illustrates the classification
performance for the best case, i.e., PCEN spectrogram combined with model Mixed
1. This matrix is created by concatenating the predictions made with all seven
ARUs and all five repetitions of the training process. The matrix is illustrative
of the most typical errors that the classifiers perform, however it should be kept
in mind that there is a large variance in the number of samples in each class.
One interesting observation is that ”insects” represent the most common source
for confusion with ”chainsaw” and vice versa. The difference in the value of the
average accuracy (68.95% compared to 52.5%) can be explained by the fact that
when building the confusion matrix, ARUs with more utterances play a greater
role in the classification score. On the other hand, average accuracy shown in the
plots is averaged with respect to the ARUs, and therefore each ARU has an equal
significance in the final score.

Figure 5.4: Classification performance of SRH spectrogram for different DNN
models.
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Figure 5.5: Confusion matrix for six class problem using PCEN spectrogram com-
bined with model Mixed 1.

5.4 Comparison of DNNs and Baseline Algorithms

In Fig. 5.6 we illustrate the classification performance for the two best combi-
nations of features and DNN models and for three different baseline approaches,
SVM, RF and GMM. In terms of average AUC in the binary classification prob-
lem, it can be seen that the baseline approaches also achieve higher scores when
following the 6cl approach compared to the 2cl one. However, none of the baseline
approaches is able to surpass the two best DNN approaches consisting of model
Mixed 1 combined with PCEN spectrogram and SRH spectrogram. The best base-
line classifier appears to be the SVM, achieving an average AUC approximately
equal to 0.8 for the 6cl binary problem. However, in the case of the 6-class prob-
lem, RF achieves better average accuracy compared to SVM and it appears able
even to compete PCEN spectrogram and SRH spectrogram.
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BL1

Figure 5.6: Classification performance for selected DNNs and baseline approaches.

5.5 Number of Classes

While the previous results have already demonstrated the advantage gained by
following a hierarchical classification scheme (2cl versus 6cl), in this Section we
perform a more detailed comparison by considering a 3-class and a 9-class in ad-
dition to the 6-class approach. The 3-class approach represents a binary problem
with ”chainsaw” as the Positive class and ”insect” as an additional representative
of the Negative (”non-chainsaw”) class. On the other hand, the 9-class problem
includes eight different subclasses in the Negative class, as they were defined a
previous Section in Fig. 4.2. Results are shown for the DNN classifiers and partic-
ularly, for power spectrogram in Fig. 5.7, for PCEN spectrogram in Fig. 5.8 and
for SRH spectrogram in Fig. 5.9. Apart from average AUC scores, the average
accuracy is also plotted for the explicit 3-class, 6-class and 9-class problems.

Considering the effect of the number of subclasses for power spectrogram in Fig.
5.7, it can be observed that they have a small effect in performance, with the 3-class
providing a slight advantage compared to the other cases. For the case of PCEN
spectrogram in Fig. 5.8, the 6-class formulation provides the best performance for
model Mixed 1, however the 3-class approach is the optimal one for the case of
the small CNN. Finally, for SRH spectrogram in Fig. 5.9, the 3-classes performs
slightly better than the 2-classes for the case of model Mixed 1 while 6-class and
9-class approaches compete with very slight difference for the first place when the
small CNN is used. Overall, the results suggest than accounting for more than one
subclasses in the Negative class is beneficial for chainsaw detection, with 2 and 5
sub-classes (for a 3-class and 6-class problem respectively) representing the best
choice, depending on the DNN architecture.
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Figure 5.8: Effect of the number of training classes for PCEN spectrogram.

Figure 5.7: Effect of the number of training classes for power spectrogram.
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Figure 5.9: Effect of the number of training classes for SRH spectrogram.

5.6 Data Augmentation

To illustrate the effect of data augmentation, we plot in Fig. 5.10 the classification
performance with and without data augmentation for PCEN and SRH spectro-
gram in combination with model Mixed 1. Results for mel spectrogram are also
shown, considering a filterbank with 128 frequency centers spanning the entire
available frequency range (up to 4 kHz). Concerning the binary problem, data
augmentation appears to have a positive impact in performance. One exception is
the case of PCEN spectrogram with 6 classes, where the model trained with the
augmented data performs slightly worse in terms of average AUC. In all cases, the
improvement with the augmented dataset is more evident in the 2cl than in the 6cl
approach. Moreover, for 2cl and SRH spectrogram, data augmentation provides
an average AUC equal to 0.8835, which is the best result in terms of average AUC
in this Thesis. The improvement of data augmentation is quite significant for mel
spectrogram in the case of binary problem. However, mel spectrogram has much
inferior performance compared to PCEN and SRH spectrogram, which is one of
the reasons why it has been excluded from the previous analysis.
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Figure 5.10: Effect of data augmentation in classification performance
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Chapter 6

Conclusions & Future Work

6.1 Conclusions

Acoustic sensors in protected environments may offer a significant assistance in
monitoring the health of the ecosystem but also as the means to detect and pre-
vent human intervention that is harmful to the environment. In this Thesis, ma-
chine learning techniques have been studied as the means to automatically detect
sound events that are indicative of illegal human activity with special focus on the
chainsaw sound which cam be related to illegal logging.

Preparation of the data required for training was one of the main difficulties
that have to be handled. On one hand, DNNs are particularly demanding in
terms of training data and on the other hand, when dealing with environmental
recordings, the patterns of interest are sparsely distributed in the audio recording.
This means that one should spend enormous amounts of time listening to audio
recordings in order to prepare the training data. To assist in this task, we proposed
the use of a VAD-based segmentation process that automatically detects audio
portions with harmonic content within a long audio recording. Using this approach
to automatically segment a long audio recording, acoustic events that have a high
relevance to illegal human activity can be detected (e.g. chainsaw, vehicles, bells,
grazing animals) as well as acoustic events that relate to the natural inhabitants of
the environment. VAD-based segment selection provided a significant assistance
in collecting and annotating data from hundreds of hours of real-field recordings
in Greece, making the research presented in this Thesis possible.

Using the extracted data, this research examined the formulation of a single-
label classification problem with main focus on detecting sounds relating to illegal
human activity and with special focus on the chainsaw sound. In the Thesis, several
different DNN classifiers, as well as conventional classifiers were put into test,
alongside with different types of acoustic features. A novel acoustic feature named
SRH-spectrogram was also introduced, emerging as an intermediate product of
the SRH method that was used for constructing the VAD-based segment selection
process.

57
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Concerning the detection of chainsaw sound, in terms of a binary classification
problem, PCEN spectrogram and SRH spectrogram were shown to provide the
best classification performance, surpassing classical power spectrogram and mel-
spectrogram. Among different DNN architectures, combinations of the best two
features with the mixed DNN architectures, consisting of both convolutional and
LSTM layers, were shown to provide an advantage compared to the two CNN
architectures. An additional tactic that provided a benefit in terms of classification
performance was the formulation of an implicit 2-class problem (as opposed to an
explicit 2-class problem) that is based on training the Negative class on multiple
sub-classes and then merging the decisions of the Negative class together.

Results were also presented considering an explicit 6-class problem, however
the performance was relatively poor, nearly exceeding 50% in terms of average
accuracy in the best case. Probably this is an indication that additional data is
required in order to capture the variability within the additional classes. One way
for achieving this is with the annotation of additional data, especially if this can
be applied on recordings from new ARUs that have not participated in the dataset
yet, but also by directly inserting annotated data that can be found from other
open-access datasets. Moreover, additional data argumentation techniques can be
examined as the means for enriching the training set.

6.2 Future Work

The research presented in this Thesis can be extended along two main axes, one
concerning the improvement of the performance in the same problem as the one
examined, and one along the discovery of new applications and problems.

One major bottleneck in the research associated to this Thesis is the tuning of
parameter values associated to the different types of features and the different types
of architectures. For obvious reasons it is not possible to perform an exhaustive
research on all parameters combinations and one has to rely on trial and error on a
limited number of examples, possibly with the help of some personal intuition. One
approach to reduce the effort required for parameter tuning would be to integrate
PCEN and possibly SRH as a trainable frontend in the architecture of the neural
network, in order to eliminate heuristic parameters, and make as many parameters
as possible trainable. Furthermore, the research was limited to only one type of
data augmentation (resampling of the data) and it would be worth to investigate
additional types of data augmentation so as to better capture variability of not
only the underlying patterns of interest but also of the background noise which has
a dominant presence in the observed audio signals. Concerning the latter, audio
signal enhancement techniques might be also worth to investigating as the means
to derive ”cleaner” version of the audio signal before feeding it to the DNN.

The research presented in this Thesis focused on the chainsaw pattern and most
decisions taken were driven by the performance on that pattern and moreover, on
short duration audio clips extracted after the use of the VAD-based segmentation
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process. In the future, a more complete investigation should be implemented for
the performance of an end-to-end system that includes a VAD-based segmentation
process at the front-end and the DNN classifier(s) at the back end. The work
could then of course extend to additional sound patterns relating to illegal human
activity, as for example illegal grazing, taking into account classes such as bells
and mammals. Finally, it would be worth to investigate the transition from single-
class to a multi-label problem, in which case the classifiers would output decisions
concerning multiple classes that are active at the same time instant.
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[40] L. Grama, E. Buhuş, and C. Rusu. Acoustic classification using linear predic-
tive coding for wildlife detection systems. In 2017 International Symposium
on Signals, Circuits and Systems (ISSCS), pages 1–4. IEEE, 2017.

[41] Lacrimioara Grama, Elena Buhus, and Corneliu Rusu. Acoustic classification
using linear predictive coding for wildlife detection systems. pages 1–4, 07
2017.

[42] C. Harris. Absorption of sound in air versus humidity and temperature. The
Journal of the Acoustical Society of America, 40(1):148–159, 1966.

[43] Tomoki Hayashi, Shinji Watanabe, Tomoki Toda, Takaaki Hori, Jonathan
Le Roux, and Kazuya Takeda. Duration-controlled lstm for polyphonic sound
event detection. IEEE/ACM Transactions on Audio Speech and Language
Processing, 25, 08 2017.

[44] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9:1735–80, 12 1997.
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