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Abstract

In this thesis, we study Molecular Dynamics simulations, a scientific field that fo-
cuses on the physical motion of atoms on a very small order of magnitude. Today,
many chemical and biological processes, such as protein interactions, can be modeled
through MD simulations with aim of analyzing their properties. The challenging part
of studying MD simulations of complex systems refers to an as-accurate-as-possible
prediction of the structure-property relationship at the microscopic level and the ex-
pensive calculations of the dynamic quantities due to the wide range of length and time
scales. By decreasing the number of degrees of freedom, the new system can be used
with fewer variables. This method, known as Coarse-Graining, maps the atomistic
particles into mesoscopic particles such as ”superatoms”.

There exists a variety of methods to obtain the total force of the mesoscopic sys-
tem, either parametric or non-parametric models. In this thesis, the Gaussian process
regression model, a flexible non-parametric family of models capable of approximating
functions using relatively small data sets, is applied to a simple system, a methane
system, and its results are compared with two more straightforward approximations.
One with a parametric pair potential, the Lennard-Jones potential, and another with
the Linear B-splines representation. We learn the approximate force fields, with the
Force Matching criterion of loss, which minimizes the average distance between the
atomistic forces and the approximate CG forces.
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Notation

Atomistic Description

q = (q1,q2, · · · ,qN) Atomistic particles’ position

N # of microscopic particles

q ∈ R3N ,qi ∈ R3

Coarse-grained description

Q = (Q1,Q2, · · · ,QM) Coarse-grained particles’ position

M # of CG-particles

Q ∈ R3M ,Qi ∈ R3

Π(q) = Q,Π : R3N → R3M Mapping function

Minimization Parameters

a = (á, â, a∗) Minimization parameters

á = (á1, á2, · · · ) parameters for the Wmono

â = (â1, · · · , ânp) parameters for the Wdimer

np # of minimization parameters (dimer)

a∗ = (a∗1, · · · , a∗np
∗) Parameters for the Wtrimer

np
∗ # of minimization parameters (trimer)

ái, âi, a
∗
i ∈ R

x = (x1, x2, ..., xnp) Basis points

ns # of samples(configurations)
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1 Introduction

Complex molecular materials, from colloids and hybrid nanocomposites to biomolecular sys-
tems, are used in a variety of biological and chemical applications. The theoretical and
computational modeling of such systems is a very intense research area. The main challenge
in these models is finding a direct quantitative relationship between microscopic and meso-
scopic levels. Our goal is to approximate as accurately as possible the chemical structure
and the measurable quantities over a wide range of length and time scales.

At the most detailed level, the atomistic level, the scientific region that describes a
molecular system and atoms’ movement, is known as Molecular Dynamics (MD), ref. [11,
34]. In a chemical system, the Potential of Mean Force (PMF) is the most significant
quantity to estimate, and it needs complicated and costly computations to approximate
it. MD simulations numerically integrate Newton’s equations of motion, providing valuable
information about the physical properties of molecular systems.

A way to decrease the computational cost of simulations, and so to explore a larger range
of space and time regions, is by applying Coarse-Graining (CG) methods. The idea of CG
relies on reducing the dimensions of the molecular system by averaging out the details of the
atomistic system at the molecular level by representing groups of atoms with a single CG
particle. There are many ways to define CG ”mappings”. For example, define a CG particle
as part of a molecule e.g., a number of monomers or long molecules represented as one CG
particle. The choice of the degree of coarse-graining is based on the complexity of the current
system. In scientific computing and applied statistics, the subject of CG methods is a very
active research topic. Ref. [2, 3, 1, 32, 35, 36]

The systematic CG modeling for a given system, based on detailed microscopic data, is
shortly described through the following stages:
(a) execution of microscopic simulations on small model systems,
(b) selection of a CG map (transformation from the atomistic to the CG description),
(c) development of a CG effective interaction potential,
(d) execution of the CG MD simulations.

The main issue we need to handle concerns the choice of technique to describe all CG
particle forces. There are several methods to approximate a parametric or non-parametric
model under different minimization principles. In this thesis, our goal is to solve the Force
Matching (FM) problem that refers to the minimization problem between two quantities,
the target forces and the approximated CG forces.

A promising new tool to describe the energy of complex systems is via the adoption of
Machine Learning tools, such as artificial Neural Networks [10, 3, 32, 33], Gaussian kernels [3,
19, 20, 7, 8], and Gaussian processes. Here, we focus on Gaussian Process Regression (GPR)
models, a nonlinear, non-parametric Bayesian probability method, able to approximate an
unknown function f(x) as a sum of basis functions multiplied by the minimization parameters
and based on a common kernel function. The advantage of GPR relies on its representation
flexibility and inherent uncertainty measures over predictions.

The results of this method are compared to two other methods, the Linear Basis method
and the Lennard-Jones (LJ) method. In all three methods, a linear problem arises. We solve
the minimization problem by applying the normal equations to the final linear system.

This thesis consists of four main chapters. In chapter 2, we introduce Molecular Dy-
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namics. This groundbreaking method allows us to study classical many-body systems, and
we affiliate it with the Coarse-Graining method to reduce the computational cost. The
next chapter presents the field of Machine Learning and the theory of Gaussian Process
Regression, which is capable of approximating functions using observed data. In order to
understand how the Gaussian Process Regression is connected with the Kernel Ridge Regres-
sion that we applied in our methane system, we present a benchmark toy problem. The next
step is to define the Force Matching problem by applying the above techniques. In chap-
ter 4, we construct a cost (loss) function that corresponds to the Force Matching problem
and is a minimization expression between the atomistic target forces and the approximate
Coarse-grained particles’ forces of a molecular system. In the last chapter 5, we describe the
methane system and according to this system, we learn the Coarse-Grained model with the
Gaussian Process Regression method, and present the results of our study.
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2 Multi-scale Dynamics

2.1 Introduction

The studying of physical phenomena on a molecular level is necessary for the investigation
of scientific challenges and technological applications. From a theoretical point of view, the
main question in complex molecular systems is the linking of the chemical structure of a
microscopic (atomistic) level and that of a mesoscopic (molecular) level over a wide range
of time and length scales. The solution to such challenges can contribute to a wide range
of potential applications in nanotechnology, the pharmaceutical industry biotechnology, cos-
metics, etc., and generally in the designing of new materials, [1, 4].

In both microscopic and mesoscopic systems, we can study the behavior of the constituent
species of a system. However, the main difference is that the former refers to atoms and the
mesoscopic to molecules. Methods that study such systems are called ”molecular dynamics
methods” and are represented by Monte Carlo (MC) and molecular dynamics (MD) methods.

MD is a deterministic simulation method responsible for the interaction and motion of
particles in a many-body system. These microscopic particles follow Newton’s law and have
defined trajectories and material structures. In contrast, MC, known as random sampling
or statistical test method, is a stochastic simulation method used to estimate the possible
outcomes of an uncertain event and is consistent in approximating the actual process of the
physics. MC methods show a strong ability to analyze thermodynamic equilibrium but are
unsuitable for investigating dynamical phenomena. Thus, the advantage of MD is its ability
to study a system in both thermodynamic equilibrium and non-equilibrium states. For the
above reasons, we will examine the MD technique in the next section.

2.2 Molecular Dynamics

As we mentioned, MD simulation is a technique for studying the movement of atoms in a
classical many-body system. The word ”classical” means that the particle’s motion obeys
the laws of classical mechanics, Newton’s law. It is necessary to know the trajectory (position
and velocity) along with the energy for all particles and the system’s density in each step.
Compared to real experiments, the advantage of MD lies in its ability to repeat, stop or
restart the process with the required initial conditions at a much lower cost. Additionally,
mock experiments are more beneficial if they involve dangerous substances than real ones
where there is a potential for physical harm.

MD simulations are approximations of the actual experiments at the level of atomic or
molecular detail. First, we choose a data set of particles with initial positions and velocities
and solve Newton’s equations of motion until the system reaches equilibrium. After that,
we do the actual measurement. During the process, we aim to avoid mistakes such as not
having enough samples or preparing an incorrect data set.

In simulated systems, the MD method studies a model consisting of N particles that
interact with each other based on the present forces. The problem of predicting the trajectory
of each interacting atom and/or molecule is known as the N -body problem, where N is the
total number of particles in the simulated system. To calculate the desired quantities of each
particle, i.e. its position and velocity, we numerically solve the classical equations of motion
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applied to each particle, considering all the interactions between them.

2.2.1 Equations of Motion

In order to solve the N-body problem, we numerically solve the equations of motion. Consider
a system of N interacting atoms that obey Newton’s second law

F = M
d2q

dt2
(1)

where M is the mass matrix of particles given by M = diag[m1, · · · ,mN ] and F ∈ R3N is the
total force applied to each atom’s position q(t) ∈ R3N at time t. Thus the N-body equations
of motion arise,

M
d2q

dt2
= −∂U(q)

∂q
(2)

where U is the potential energy of the system.
In a molecular system, the trajectory is given by the generalized positions q(t) and

momenta p(t) ∈ R3N of the particles and are used in the calculation of the Hamiltonian
equations of motion

q̇ = Hp, ṗ = −Hq (3)

dqi
dt

=
∂H(p,q)

∂pi
,

dpi
dt

= −∂H(p,q)

∂qi
, i = 1, ...N (4)

where H = H(q,p) = K(p) +U(q) is the Hamiltonian where the kinetic energy K depends
on the momentum p and the potential energy U on the position q Ref. [11]. The kinetic
energy is given by the form K(p) = 1

2
pM−1p and the momentum vector is defined as

p = Mdq
dt
.

Thus we have the following equations to solve,

q̇ =
∂H

∂p
=

∂K

∂p
=

p

m
(5)

ṗ = −∂H

∂q
= −∂U

∂q
. (6)

An important property of the equations of motion is that the Hamiltonian quantity H
is conservative, meaning it does not depend on time Ḣ = dH

dt
= 0. Another property is that

Hamilton’s equations are time-reversible, which means that by changing the signs of the
velocities, the molecules change their trajectory and move backward. The above properties
must also be taken into account by computer-generated molecular systems.

For an N-body system, where N can be a large number, the Hamiltonian equations of
motion are 6N differential equations. To study the system evolution, we need to integrate the
equations, through a computational procedure. The computational cost is huge, thus a solu-
tion is to reduce the number of atoms M < N and, by extension, reduce the computational
cost. A useful theory to achieve our goal is statistical mechanics, where the microscopic
properties of atomistic particles can be related to the macroscopic bulk properties of mate-
rials.
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2.2.2 Numerical Solutions of the Equations of Motion

There are many methods for solving the classical equations of motion, especially Newton’s
equations, so that information about the positions and velocities of the atoms can be ob-
tained. We will present the two most common methods Ref. [9, 11].

Verlet Algorithm

The simplest and usually preferred method to integrate Newton’s equations of motion is
the Verlet Algorithm. First, we apply a Taylor Expansion of the coordinate of a particle,
around time t,

q(t+∆t) = q(t) + q̇(t)∆t+
q̈(t)

2
∆t2 +

...
q (t)

3!
∆t3 +O(∆t4) (7)

and

q(t−∆t) = q(t)− q̇(t)∆t+
q̈(t)

2
∆t2 −

...
q (t)

3!
∆t3 +O(∆t4) (8)

where q̇(t) = v(t),v(t) ∈ R3N is the particles’ velocity and q̈(t) = a(t), a(t) ∈ R3N accelera-
tion. After summing the above equations we have the form

q(t+∆t) + q(t−∆t) = 2q(t) + a(t)∆t2 +O(∆t4). (9)

When evaluating the new positions, the error is of order ∆t4, where ∆t is the time step.
As we noticed in eq. 9 we do not use the velocities, so we can derive them by subtracting

the eq.8 from eq.7.

q(t+∆t)− q(t−∆t) = 2v(t)∆t+O(∆t3)

v(t) =
q(t+∆t)− q(t−∆t)

2∆t
+O(∆t2) (10)

Velocity-Verlet Algorithm

Here we will present an alternative to the Verlet algorithm, a scheme that uses positions
and velocities computed at equal times. For the particles’ positions, we apply the usual
Taylor expansion

q(t+∆t) = q(t) + q̇(t)∆t+
q̈(t)

2
∆t2, (11)

whereas velocities are calculated through

v(t+∆t) = v(t) +
dt

2
[q̈(t) + q̈(t+∆t)]. (12)

2.2.3 MD Algorithm
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We present a flow diagram of the MD
algorithm. The procedure we follow for
constructing an MD algorithm has sev-
eral steps. The first step of the molecu-
lar model construction is to initialize each
particle’s position and velocities. After es-
timating the total force (intermolecular and
intramolecular) on each particle, we pro-
ceed to the integration of the motion equa-
tions. We repeat Nk times the integration
of the equations until the system reaches
equilibrium. Also, it is needed to store the
accurate positions, velocities, and forces at
every step. As we can see in figure 1, the
MD algorithm is terminated by calculating
the averages of the measured quantities and
the desired properties.

Figure 1: A Flow diagram of MD algorithm

Also, the pseudocode of the Velocity-Verlet integrator is shown in Algorithm 2.1.

Algorithm 2.1 A sample of Velocity-Verlet Algorithm

1: Initialize:
q,v, f

2: for i = 1, · · · , Nk do
3: q(i) = q(i) + dt · v(i) + dt · dt/2 · f(i) ▷ Update positions and velocities at t+dt
4: v(i) = v(i) + dt/2 · f(i) ▷ using velocities and forces at t
5: end for
6: function Get Forces(f)
7: Newton’s law
8: end function
9: for i = i, Nk do
10: v(i) = v(i) + dt/2 · f(i) ▷ update velocities at t+dt using forces at t+dt
11: end for

2.3 Molecular Force Field

As we mentioned, according to Newton’s law the total force is calculated by the form:

FI = −∇qI
U(q), I = 1, 2, · · · , N (13)
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where q = (q1,q2, · · · ,qN) is the positions of the atoms. In most cases, the potential energy
consists of potentials with 2-body, 3-body, or/and 4-body interactions

U(q) =
∑
ij

Uij(qi,qj) +
∑
ijk

Uijk(qi,qj,qk) +
∑
ijkl

Uijkl(qi,qj,qk,ql). (14)

In a molecular system there are different types of interactions between atoms. Thus,
another way of expressing the potential energy is by the sum of the bonded and non-bonded
interactions.

U(q) = Ubonded(q) + Unon−bonded(q) (15)

According to ref [13], bond stretching, bond rotation, and angle bending, appear in
bonded forces (see figure 2). These forces involve intramolecular interactions between atoms
bound by covalent bonds, and the computational cost of the bonded forces is O(N), whereas,
at non-bonded forces, there are intermolecular interactions between neighboring atoms that
are not connected. The electrostatic potential and Lennard-Jones potential due to van der
Waals forces, which is the combination of dispersive and repulsive forces, appear at non-
bonded forces and can be computed in O(N2) time. To reduce the computational cost,
we can apply several techniques, such as cut-off and tail corrections, periodic boundary
conditions, and minimum image convention, ref. [12, 13].

Figure 2: Bonded and non-bonded forces consider in MD simulations.Ref. [13]

Lennard-Jones Potential

The Lennard-Jones potential is a more common choice in molecular simulations and it
can accurately model weak van der Waals bonds. It is given by

14



ULJ(rij) = 4ϵ
[( σ

rij

)12

−
(

σ

rij

)6 ]
(16)

where rij = |qi − qj| is the Euclidean distance between two particles,

rij =
√

(qi,x − qj,x)2 + (qi,y − qj,y)2 + (qi,z − qj,z)2,

(17)
ϵ is the depth of the potential well and σ
is the distance at which the intermolecular
potential between the two particles is zero.

The term ( σ
rij
)6 describes the attrac-

tion between two atoms while the term
( σ
rij
)12 describes the repulsion force as two

atoms cannot approach each other when
they come closer than their atomic radii σ. Figure 3: Lennard-Jones potential Ref. [14]

2.3.1 Cut-off and tail corrections

The most time-consuming procedure in an MD simulation is the calculation of all particles’
interactions. For a particular configuration, we take each pair of particles and estimate
the energies or/and the forces. Therefore, it is necessary to restrict the number of particle
pairs, to decrease the computation time. An important characteristic in molecular systems
is that the potential energy decreases as the distance between two particles increases. This
’maximum’ distance is known as the cut-off distance rc, ref. [4].

Let us assume a system of N particles in a box that interact via a pair interaction
Lennard-Jones potential. The energies depend on the local chemical environment of the par-
ticles, according to a cut-off radius rc of choice. This means that each particle’s contribution
is dependent on a number of neighboring particles that interact with the central particle ex-
amined. The outside-of-the-cut-off-radius particles do not interact with the central molecule.
Otherwise, their contribution is minor, as shown in figure 4. This means that the calculation
of the interactions is done by

ULJ(r) =

{
4ϵ
[(

σ
r

)12 − (σ
r

)6]
if r <= rcut

0 if r > rcut
(18)

2.3.2 Periodic Boundary Conditions

The number of particles in systems can be very large. So, in order to overcome this problem,
we need to specify the simulation box and the periodic boundary conditions. Figure 4
illustrates the use of periodic boundary conditions in two dimensions. The central simulation
box is surrounded by its periodic images. When a moving particle leaves the simulation box
at one boundary, one of its images simultaneously enters the simulation box at the opposite
boundary. Therefore, the total number of particles in the system is conserved. In order to
prevent incorporating spurious interactions between the periodic images of the particles into
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the force calculation, the interaction range must be less than the half length of the simulation
box — the so-called minimum-image convention Ref. [16].

Figure 4: A two-dimensional periodic system with the minimum image convention. Ref. [15]

2.3.3 Minimum Image Convention

The minimum-image convention is a common form of Periodic Boundary Conditions, where
each particle in the simulation box interacts with the closest image of the remaining particles
in the system. For example, according to the central atom i, we want to compute the
minimum distance with respect to a neighboring atom j. So, in every direction of the three-
dimensional space, the image of the neighboring atom is obtained according to:

rij,x ≤ L

2
, rij,y ≤

L

2
rij,z ≤

L

2
(19)

where rij is the distance between the i-atom and the j-atom, rij =
√

r2ij,x + r2ij,y + r2ij,z,

whereas the parameter L stands for the length of the simulation box.

2.4 Coarse Graining

At the microscopic (atomistic) level, simulating molecular systems can be a time-consuming
process due to the detailed calculations between all the atoms. Therefore, it is not feasible
to apply methods, such as Molecular dynamics or Monte Carlo, to large realistic systems or
molecules of complex structure. A way to handle these challenges is to model the systems on
the mesoscopic level, which means that we study coarse-grained particles instead of atoms,
to decrease the length and time scales accessible by simulations. Ref. [2, 3]

At the mesoscopic level, the CG particles are atoms mapped into small batches, also
known as superatoms. Through the procedure of mapping from the atomistic level to the
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CG level, the degrees of freedom of the N -atoms are reduced as the new system is consisted
of M -particles (M < N). During the mapping process, we need semi-empirical functional
forms taken from prior knowledge and with a lot of physical intuition to describe the particle
motion.

Figure 5: Levels of multiscale dynamics.
Multiscale modeling can be defined as the technology by which problems, such as the calculation of
material properties or system behavior, are solved at one level using information from different levels
of different time and space scales. There are four distinguished levels: level of quantum mechanical
models, level of molecular dynamics models (atomistic), coarse-grained models (mesoscopic), level
of continuum models, and level of materials.

In coarse-grained modeling, there are several steps to build a molecular simulation. First,
we consider a small model system of rather low molecular weight atoms. After choosing a CG
map, representing a function capable of transforming the atomistic system into a CG model,
we proceed to estimate the potential energy or CG force field. Then, we run the simulation
taking into account the missing atomistic degrees of freedom in the CG structures.

2.4.1 Atomistic Level

Let us assume a system of N atoms in a box of volume V and at temperature T . These N
particles, with position vector qi, i = 1, ..., N , obey Newton’s Second Law, that is

F = M
d2q

dt2
.
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Obtaining the N-body equations of motion, we have

F(q) = −∇qU(q) = −(∇q1U(q), · · · ,∇qNU(q)) (20)

M
d2q

dt2
= −∇qU(q), (21)

where F (q) = (F1(q), .., FN(q)), F ∈ R3N is the total potential energy and F1(q) =
−∇q1U(q), F1(q) ∈ R3. According to statistical mechanics, the Gibbs canonical measure
gives the probability of a state q as:

µ(dq) = Z−1e−βU(q)dq (22)

where Z =
∫

R3N

e−βU(q)dq is the partition function and β = 1
KBT

, KB the Boltzmann constant.

Next, we will apply the principles of the field of statistical mechanics, a tool that is used
to relate the microscopic properties of individual atoms to the macroscopic bulk properties
of materials.

2.4.2 Coarse-Grained Level and CG Mapping

The new CG coordinates are calculated through a mapping function Π

Π : R3N → R3M (23)

q 7→ Π(q) = Q,

where Q = (Q1,Q2, ..,QM), Q ∈ R3M (M < N) the new CG coordinates. Commonly,
the mapping function has a linear form

Qi = Πi(q1, q2, ..., qN) =
N∑
j=1

wijqj, i = 1, 2, ..,M. (24)

The parameters wij are non-negative weights that determine whether the j-atom will
contribute to the i-molecule.

The probability of a state Q is as well given by the Gibbs measure

µ̄(Q) =

∫
A(Q)

µ(q)dq. (25)

Thus,

µ̄(Q) = Z−1

∫
A(Q)

e−βU(Q)dQ, (26)

where A(Q) = {q ∈ R3N : Π(q) = Q}.
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Figure 6: System of the two-body bulk methane.

2.4.3 Potential of Mean Force

The corresponding free energy of eq.26 defines the M-body potential of the mean force
(PMF),

ŪPMF (Q) = − 1

β
ln

∫
A(Q)

e−βU(Q)dQ. (27)

Accordingly, the mean force F̄ PMF : R3M → R3M is

F̄ PMF
i (Q) = −∇QiU

PMF (Q), i = 1, 2, ..,M. (28)

The calculation of the function (27) is computationally costly due to the high dimension-
ality of the integral. Therefore, we seek to approximate the PMF in the most efficient manner
and calculate approximate interaction potentials Ūeff (Q; θ). These may be parametrized by
θ ∈ Θ. Now, we can write the probability given by the canonical Gibbs measure of the CG
state Q using the effective potential Ūeff

µ̄(dQ; θ) = Z̄−1

∫
A(Q)

e−βŪeff (Q;θ)dQ . (29)

In principle, the M-body potential energy of mean force consists of the contributions of two-
body, three-body e.t.c interactions. Let the term rij = ∥Qj −Qi∥, i, j = 1, 2, ...,M denote
the distance between the particle i and j. Thus,

ŪPMF (Q) =
∑
i,j

u2(rij) +
∑
i,j,k

u3(rij, rik, rjk) + ... . (30)

It is common to estimate the PMF with the two-body contributions.

ŪPMF (Q) ≈
∑
i,j

U(rij) = Ūeff (Q; θ) . (31)

The next step is to present the numerical methods that can approximate the CG potential.
These methods are:

• the Boltzmann inversion, (BI), Iterative BI (IBI), and Inverse Monte Carlo (IMC) Ref.
[21, 22, 29],

• the force matching (FM) Ref. [2, 23, 17, 24, 25] and

• the relative entropy (RE) Ref. [2, 26, 27, 28].
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Boltzmann Inversion

The BI is a family of numerical methods, such as the direct inverse Boltzmann, the iterative
inverse Boltzmann, and the inverse Monte Carlo. In all these cases, the n-body PMF is
defined by

Ū (n),PMF (Q(n)) = − 1

β
log g(n)(Q(n)) ,

and the n-body distribution (correlation) function

g(n)(Q(n)) =
M !

(M − n)!ρn

∫
q∈R3N :Πq=Q

µ(q)dq ,

where Q(n) = (Q1,Q2, ...,Qn), of n(< M) particles. All methods use the pair correlation
function g(2)(Q(2)) =: ḡ(R), where R is the pairwise distance between two CG particles, thus
the CG effective interaction is

Ūeff (R) = − 1

β
log ḡ(R) .

Specifically, in iterative inverse Boltzmann (IBI) methods, the CG potential is refined at the
iteration (i+ 1) according to

Ū
(i+1)
eff (R) = Ū

(i)
eff (R) + ckBT log

ḡ(i)(R)

ḡ(ref)(R)
,

where c is a constant to ensure the stability of the iterative process. In each iteration,
convergence is examined to determine whether the CG non-bonded distribution function
matches the atomistic one, within the numerical accuracy. The scheme is analogous for
both bonded and non-bonded pair potentials, and it can be shown that the two-body pair
potential of mean force converges to the reference PMF.

Force Matching

The FM method is applied to more complex and non-linear CG maps and matches the
average force on pseudoatoms in the CG system to the expected force from the all-atom
system. It determines a CG effective force F̄ (Q; θ) as the solution of the mean-least square
minimization:

min
θ∈Θ

Eµ[∥h(q)− F̄ (Π(q); θ)∥2] ,

where Eµ[·] averages with the respect to dµ(q) and h(q) ∈ R3M is the local mean force.

Relative Entropy

The RE method’s goal is to minimize the

R(µ|µθ) = Eµ[log
µ(q)

µθ(q)
] ,
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where µ(q) is the microscopic Gibbs measure and µθ(q) a back-mapping of the approximate
CG measure µ̄(Q). This method can approximate the PMF due to the properties of RE and
the definition of the PMF µ̄(Q). Therefore, the minimization has the following form:

argmax
θ∈Θ

{βEµ[Ūeff (Π(q); θ)− U(q)]− [logZθ − logZ]},

where Zθ =
∫
R3

e−βŪeff (Q;θ)dQ. The RE minimization problem can be defined either directly

on the path or on the equilibrium ensemble.
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3 Introduction to Machine Learning and Gaussian Ap-

proximation Methods

Over the past years, the field of machine learning has been increasingly developing. In
this section, we will be acquainted with terms, such as machine learning and its categories.
Gaussian process regression models have been used in machine learning applications because
of their representation flexibility and inherent uncertainty measures over predictions. In this
thesis, they are used in order to approximate the forces of a CG system.

3.1 Machine Learning Theory

Machine learning is a branch of artificial intelligence. Machine learning algorithms are able
to learn from previously gained data in order to predict or decide without being programmed
to do so. There are many ways for the algorithms to work with the training data and also
for the algorithms to be constructed. There are three major categories of machine learning
[30]:

• Supervised learning algorithms try to identify and model the connection between
the output and the input. This category includes regression and classification problems.
Cases such as the digit recognition example, in which the aim is to assign each input
vector to one of a finite number of discrete categories, are called classification problems.
If the desired output consists of one or more continuous variables, then the task is called
regression.

• Unsupervised learning algorithms are using the input data to detect patterns and
group them. The main algorithm types of this category are the clustering algorithms,
which aim to discover groups of similar examples within the data. Other algorithms
are the density estimation algorithms, where the goal is to determine the distribution
of data within the input space, and the algorithms that refer to projecting the data
from a high-dimensional space down to two or three dimensions for the purpose of visu-
alization. During recent years, unsupervised learning (a.k.a. self-supervised learning)
has been used along with deep neural networks for representation learning.

• Reinforcement learning methods use trials and errors so as to discover the ”best”
output by continuously learning from the experiences of the environment. Applications
that we can find in this category are computer chess games or self-driving cars.

3.2 Gaussian Process Regression Theory

Gaussian Process Regression (GPR) is a nonlinear, non-parametric regression that helps
interpolate between data points scattered in high-dimensional input space ref. [7]. The
method is based on Bayesian probability theory and is related to other regression techniques,
such as kernel ridge regression (KRR) and linear regression with radial basis functions. It is
based on a large amount of data and a flexible function that fits the data and then makes
predictions.
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Kernel is a measure of similarity between two data points, x, x′, usually denoted k(x, x′).
A detailed discussion will be given in the next section.

Let y denote an unknown function which maps inputs x ∈ Rd to outputs, y : Rd → R.
And let x1:ns = (x1, . . . , xns)

tr, xi ∈ Rd denote the known ns independent input observations
and output yi = y(xi), i = 1, ..ns of value xi ref. [19]. The goal is to use the data values xi

to create an estimator and to predict the continuous function y(x) as accurately as possible,
considering the expected error of the prediction. Two approaches will be presented: the
weight-space and the function-space views of the GPR.

3.2.1 Introduction to Stochastic Processes

Stochastic processes describe a dynamical system that does not behave deterministically in
time. Ref. [5] Let T be an ordered set, (Ω,F ,P) a probability space and (E , C) a measurable
space. A stochastic process is a collection of random variables X = Xt , t ∈ T such that for
each fixed t ∈ T,Xt is a random variable form (Ω,F ,P) to (E , C). The set Ω is known as
the sample space, where E is the state space of the stochastic process Xt [5].

A one-dimensional continuous-time Gaussian processXt ∼ GP(m(x), k(x, x′)) is a stochas-
tic process for which E = R and all the finite-dimensional distributions are Gaussian,
i.e., every finite-dimensional vector (Xt1 , Xt2 , · · · , Xtk), for any choice of distinct values
t1, · · · , tk ∈ T has a multivariate normal distribution with mean vector mk := EX and
covariance matrix Kk = Cov (X,X), symmetric non-negative definite matrix. That is, the
random vector X follows the Gaussian distribution N(m,K) and has a Gaussian probability
distribution function given by

fX(xk) = (2π)−n/2(detK)−1/2 exp

[
−1

2
< K−1(x−m),x−m >

]
(32)

where x = (x1, · · · , xk).
In the context of observations, we consider that y = y(x) is a one-dimensional continuous-

time Gaussian process, i.e., Xt ≡ yi, corresponding to the output observations.

y(x) ∼ GP(m(x), k(x,x′)). (33)

The mean value reflects the expected function value at input x,

m(x) = E[y(x)].

The covariance function k(x,x′), the kernel of the Gaussian process, models the dependence
between the function values at different input points x and x′,

k(x,x′) = E[(y(x)−m(x))(y(x′)−m(x′))].

Covariance is a measure of the relationship between two data values, y(x) and y(x′), usually
expressed as a function of the distance between x and x′. When data are uncorrelated, then
their covariance approximates zero.
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3.2.2 Regression

Assume a training data set comprising ns observations xn, where n = 1, 2, · · · , ns with
the corresponding target values {t̃n}, our aim is to predict the value of y, following the
observation equation

t̃ = y(x) + ϵ (34)

for a new value of x. Here ϵ is the observation error, usually following a zero mean Gaus-
sian. We choose a suitable loss function to minimize and to model the conditional dis-
tribution p(t̃|x), which expresses the uncertainty about the value of t̃ for each value of
x1:ns = (x1, · · · ,xns)

tr Ref. [6]. The most common model for regression is the linear model
with the form

y(x) = atrϕ(x), (35)

where a = (a1, · · · , ans)
tr is the ns-dimensional weight vector and ϕ(x) is a vector of ns fixed

nonlinear basis function with input vector x.
In the Bayesian linear regression, we consider a prior distribution over a given by an

isotropic Gaussian of the form Ref. [6]

p(a) = N(0, β−1I), (36)

where β is the hyper-parameter (precision of the distribution). The probability distribution
over a induces a probability distribution over functions y(x) corresponding to eq.35. This
equation also can be written as

y = Φa, (37)

where Φ is the design matrix with elements Φij = ϕj(xi). As we notice, the joint distribu-
tion of the function y = (y(x1), · · · , y(xns))

tr, which is a linear combination of Gaussian
distribution values, a, follows the Gaussian distribution too. Therefore, the mean and the
covariance of the probability distribution of y have the forms:

E[y] = ΦE[a] = 0, Cov [y] = E[yytr] = ΦE[aatr]Φtr =
1

β
ΦΦtr = K (38)

where K is the Gram matrix with elements

Kij = k(xi,xj) =
1

β
ϕ(xi)

trϕ(xj) (39)

and k(x,x′) is the kernel function. In most applications, there is no prior knowledge about
the mean of the Gaussian stochastic process y(x); hence, by symmetry, it can be equal to
zero. This is the same as choosing the mean of the prior over the weight values p(a) to be
zero in the basis function viewpoint.

3.2.3 Modelling functions: the weight space view

According to a Bayesian viewpoint, we model functions with linear regression. We assume
that the output of a linear function of the inputs also includes the noise of the observed
target values: Ref. [6, 19]

t̃n = y(xn) + ϵn (40)
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where y(xn) = atrϕ(xn) = a0 + a1xn, the linear form, and ϵ is a random noise n-dimensional
vector with independent variables. Assume that the noise process has a Gaussian distribution

ϵn ∼ N(0, λ) and t̃n|yn ∼ N(yn, λ), where λ the precision of the noise. (41)

Hence, the joint distribution conditioned on y for X = x1:ns is given by

p(t̃|y) = p(t̃|X, a) = N(y, λIns) = N(Xtra, λIns), (42)

then this posterior distribution is Ref. [19]

p(a|t̃,X) ∝ p(t̃|X, a)p(a) = N(λ−1A−1Xt̃,A−1) (43)

where A = βI + λ−1XXtr. For the non-linear case with ϕ(x), A = βI + λ−1K, with
Kij = ϕ(xi)ϕ(xj). As inference is performed over the weights, this is called “the weight
space view of regression.” To predict a new output t̃∗ of a new point x∗, we can average out
the noise term and then concentrate on the function y∗ = t̃∗ − ϵ∗. The marginal distribution
for y

p(y∗|x∗,X, t̃) =

∫
p(y∗|x∗, a)p(a|t̃,X)da

= N(λ−1xtr
∗ A

−1Xt̃,xtr
∗ A

−1x∗). (44)

Thus, we generate this posterior predictive distribution over y∗ by first sampling weights
from the posterior distribution over weights and then using these sampled weights to generate
predictions for the new input points.

Example of Modelling functions: the weight space view

Let y denote an unknown function which maps inputs X to outputs t̃: y : X → Y, according
to Ref. [19].

Inputs and corresponding outputs

n xn t̃n
1 0.9 0.1
2 3.8 1.2
3 5.2 2.1
4 6.1 1.1
5 7.5 1.5
6 9.6 1.2

Our goal is to predict the output of a new input point, eg. x∗ = 3. We construct the
linear regression form,

t̃n = y(xn) + ϵn

= a0 + a1xn + ϵn or

t̃n = xtr
n a+ ϵn
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where the vectors xn, a are defined as

xn =

[
1
xn

]
a =

[
a0
a1

]
To estimate the output of the new input x∗, we estimate the weights from the previous
observations

X =


1 0.9
1 3.8
...
1 9.6

 t̃n =


0.1
1.2
...
1.2


A−1

n =

[
0.08 −0.01
−0.01 0.002

]
Assume that the weight vector takes the value of the mean. So, if x∗ = [1.0, 3.0] and
y(x∗) = xtr

∗ a, the value of y(x∗) is equal to y(x∗) = 0.9037. If we take an uninformative
prior, i.e. large variance Σ, then the solution of this method is equivalent to the solution
of the least squares problem. For this problem, according to the matrix An = XXtr and
a = A−1

n Xt̃n, we have the value y(x∗) = 0.9039. The code of these examples can be found
in Appendix.A.

3.2.4 Modelling functions: the function space view

In the weight space view of the previous section, we focus our interest on distributions over
weights. As each set of weights implies a particular function, a distribution over weights
implies a distribution over functions. In Gaussian process regression, we focus directly on
such distributions over functions.

A Gaussian process defines a distribution over functions such that if we take any two
pairs of input-output points in a function, then the values of the outputs follow a joint
Gaussian distribution. In this case, we also have the eq.40, where the noise term is a random
variable that follows a particular distribution and reflects the inherent randomness in the
observations. Thus, we have the function y(x) as a Gaussian process:

y(x) ∼ GP(m(x), k(x,x′)) (45)

where the mean function m(x) models the expected function value at input, m(x) = E[y(x)].
The prior mean function is often set to m(x) = 0 to avoid expensive posterior computations.
On the other hand, the covariance function reflects the dependence between the function
values at different input points x and x′, k(x,x′) = E[(y(x)−m(x))(y(x′)−m(x′))], known
as the kernel function. If a kernel function is chosen, it is easy to draw a priori function
values using the Gaussian process and posterior function values conditional upon previous
observations.

First, we start by selecting a data set of input points to construct the kernel matrix for
the Gaussian process. Let X be a matrix denoting the data set. We set the mean function
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to zero and calculate the covariances between all inputs k(xi,xj), i, j = 1 · · ·ns. Thus, the
marginal distribution for y according to (38)

y ∼ N(0, K(X,X)) ∼ N(0,K), (46)

where y = [y(x1), · · · , y(xns)].

The kernel function that determines K is typically chosen to express the property that,
for points xi and xj that are similar, the corresponding values y(xi) and y(xj) will be more
strongly correlated than for dissimilar points. To calculate the marginal distribution p(t̃),
considering the input vector (x1, · · · ,xns), we integrate over y.

p(t̃) =

∫
p(t̃|y)p(y)dy = Ey[p(t̃|y)] = N(0,C) (47)

where the covariance matrix C has elements

C(xn,xm) = k(xn,xm) + λδnm. (48)

Analytical calculation of p(t̃)

According to the following equations:

p(t̃|y) = 1

(2π)
ns
2

(|λ−1Ins|)
1
2 e−

1
2
(t̃−y)tr(λ−1Ins )(t̃−y) (49)

p(y) =
1

(2π)
ns
2

1

(|K|) 1
2

e−
1
2
ytrK−1y (50)
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p(t̃) =

∫
1

(2π)
ns
2

|λ−1Ins|
1
2 e−

1
2
(t̃−y)tr(λ−1Ins )

−1(t̃−y) 1

(2π)
ns
2

1

|K| 12
e−

1
2
ytrK−1ydy

=
1

(2π)ns

[
1

|Σ||K|

] 1
2
∫

e−
1
2
[(t̃−y)trΣ−1(t̃−y)+ytrK−1y]dy

=
1

(2π)ns

[
1

|Σ||K|

] 1
2
∫

e−
1
2
[t̃trΣ−1t̃−ytrΣ−1t̃−t̃trΣ−1y+ytr(Σ−1+K−1)y]dy

A=(Σ−1+K−1)
=

1

(2π)ns

[
1

|Σ||K|

] 1
2
∫

e−
1
2
[t̃trΣ−1t̃−ytrAA−1Σ−1t̃−t̃trΣ−1A−1Ay+ytrAy]dy

(MIL)
=

1

(2π)ns

[
1

|Σ||K|

] 1
2
∫

e−
1
2
[t̃trΣ−1t̃+(y−A−1Σ−1t̃)trA(y−A−1Σ−1t̃)+t̃trΣ−1A−1Σ−1t̃]dy

=
1

(2π)ns

[
1

|Σ||K|

] 1
2
∫

e−
1
2
[(y−A−1Σ−1t̃)trA(y−A−1Σ−1t̃)+t̃tr(Σ+K)−1t̃]dy

=
1

(2π)ns/2

[
1

|Σ||K||Σ−1 +K−1|

] 1
2

et̃
tr(Σ+K)−1t̃

(λIns=Σ)
=

1

(2π)ns/2

[
1

|λIns||K||λ−1Ins +K−1|

] 1
2

et̃
tr(λIns+K)−1t̃

=
1

(2π)ns/2

[
1

|λ−1InsKλIns +KK−1λIns|

] 1
2

et̃
tr(λIns+K)−1t̃

=
1

(2π)ns/2

[
1

|K+ λIns|

] 1
2

et̃
tr(λIns+K)−1t̃ (51)

(52)

where we applied the Matrix Inversion Lemma (MIL) B−1 = Σ − Σ(Σ +K)−1Σ (eq.3.45-
Bishop)

t̃trΣ−1t̃− t̃trΣ−1B−1Σ−1t̃ = t̃trΣ−1t̃− t̃trΣ−1(Σ−Σ(Σ+K)−1Σ)Σ−1t̃ (53)

= t̃trΣ−1t̃− t̃trΣ−1t̃+ t̃tr(Σ+K)−1t̃

= t̃tr(Σ+K)−1t̃

As we mentioned, the goal of the regression is to predict the target variable t̃ns+1 for
a new input vector xns+1, thus the evaluation of the predictive distribution p(t̃ns+1|t̃ns) is
needed, which is conditioned on the variables x1, · · · ,xns and xns+1. Thus, from eq. 47 we
have

p(t̃ns+1) = N(0,Cns+1) (54)

where t̃ns+1 = (t̃ns , t̃ns+1) and we partition the covariance matrix Cns+1 as follows

Cns+1 =

(
Cns k
ktr c

)
, c = k(xns+1,xns+1) + λ−1 (scalar) . (55)
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The second-order statistics, namely the mean and covariance, is given by
t̃ns+1|t̃ns ∼ N(m(xns+1), σ

2(xns+1))

m(xns+1) = ktrC−1
ns
t̃ (56)

where k is the vector with elements k(xi, xns+1), i = 1, · · · , ns.

σ2(xns+1) = c− ktrC−1
ns
k. (57)

In order to calculate p(t̃ns+1|t̃ns), the Bayes’ theorem is applied:

p(t̃ns+1|t̃ns) =
p(t̃ns , t̃ns+1)

p(t̃ns)
, where p(t̃ns , t̃ns+1) = p(t̃ns+1), (58)

according to Ref. [6]

p(t̃ns+1|t̃ns) =
(det(Cns+1))

− 1
2 e−

1
2
t̃trns+1(Cns+1)−1t̃ns+1

(det(Cns))
− 1

2 e−
1
2
t̃trns

(Cns )
−1t̃ns

. (59)

The second-order statistics, i.e., the mean and the covariance, are determinants for the
Gaussian process regression definition, as it seems that the regression depends on the mean
and covariance of xns+1, due to function k ∈ R(ns+1).
An expansion in radial basis function of eq.56 gives the following form:

m(xns+1) =
ns∑
n=1

ank(xn,xns+1) (60)

where an is the nth of C−1
ns
t̃.

Example of Modelling functions: the function space view

As in the previous example, the data of the model are the same according to Ref. [19]. The
vectors xn, t̃n are defined as

n ↶n t̃n
1 0.9 0.1
2 3.8 1.2
3 5.2 2.1
4 6.1 1.1
5 7.5 1.5
6 9.6 1.2

In this method, we can calculate the weights a = [K+λI]−1t̃n. Also, we have the parameters
λ = 0.1, δ = 1, θ = 1.1. and the new input point ↶∗ = 3. Thus,

30



n xn t̃n an k(xn, x∗) ank(xn, x∗)
1 0.9 0.1 0.08 1.6e-01 1.3e-02
2 3.8 1.2 0.20 7.6e-01 1.5e-02
3 5.2 2.1 2.47 1.3e-01 3.3e-01
4 6.1 1.1 -1.23 1.8e-03 -2.3e-02
5 7.5 1.5 1.48 2.3e-04 3.4e-04
6 9.6 1.2 0.87 1.5e-08 1.3e-08

y(x∗) =
∑6

n=1 ank(xn, x∗) : 0.48

If the hyperparameters take different values, y(x∗) also changes, e.g. for θ = 2.2 → y(x∗) =
0.92. By changing the set of hyperparameters, the y(x∗) value changes, and by applying the
optimal set we can better approximate the value of the least square problem (0.9039). The
code of this example can be found in Appendix.A

3.2.5 Switching back to the weight view

We want to approximate y(x) by f(x) expressed as a linear combination of ns basis functions.
As mentioned, we can rewrite the eq.56.

f(x) = m(xn) =
ns∑
i=1

aik(x,xi). (61)

One very popular choice of a kernel is the radial basis function kernel, which is defined as

k(x,xi) = δ2 exp

(
−|x− xi|2

2θ2

)
(62)

where each xi is a previously observed input value in X and the weights are collected in the
vector

a = [K+ λI]−1t̃n. (63)

where λ is the regularization parameter and the matrix K+λI corresponds to the matrix Cns

of the eq.56 and eq.55. This equation shows that Gaussian process regression is equivalent to
a linear regression model using basis functions k to project the inputs into a feature space.
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Figure 7: The prediction of a GPR model.Ref. [7] (1) observations of an unknown function at a
number of locations, (2) basis functions centered at the data locations, (3) an estimation, ỹ, defined
by the set of coefficients and the corresponding basis functions; this is the prediction of the GPR
model.

The basis function, k (symmetric and positive semidefinite), is placed at arbitrary ns

locations in the input space, xi, and ai are the weights. TheKmatrix is positive semidefinite,
if for an arbitrary set of inputs xn, the function Knn = k(xn,xn) is positive semidefinite. The
length scale hyperparameter, θ, affects how quickly the model converges to the real data.

Hyperparameter is a parameter whose value controls the learning process and the behav-
ior of the fit. Hyperparameters are estimated from experience or iteratively optimized using
data. A detailed discussion will be given in the section 3.4.

3.3 Relation to Kernel Ridge Regression

The fitting of the Gaussian process regression model can also be written as a (kernel) ridge
regression problem. That is, to find a by minimizing the loss (or cost) function

L =
ns∑
n=1

[yn − f(xn)]
2

σ2
i

+ λR, (64)

where R is the regularization parameter. The relative importance of individual data points
is controlled by the parameters σi. In the sequel, we choose σi = 1 reflecting the equal
importance of the input data.
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The regularization terms that we work with in this thesis are:

R =
ns∑
n,n′

ank(xn, xn′)an′ = atrKnsnsa (65)

and

R =
ns∑
n,n′

anan′ . (66)

The key difference between kernel ridge regression and Gaussian process regression is the
interpretation of regularization. In KRR, an empirical regularization parameter λ needs to
be optimized. In the Bayesian framework of Gaussian process regression, the regularization
parameter can be identified with the variance of noisy observations, λ = σ2, i.e., it is a
physical quantity that is an inherent property of the data.

In the loss function, the goal of the first term is to achieve a close fit to the data points,
and the second term ensures that the coefficients remain small to avoid overfitting. The
parameters {σ}ns

i ( with the hyperparameters θ) adjust the balance between accurately
reproducing the fitting data points and the overall smoothness of the estimator. The loss
function:

L = (y −Knsnsa)
trΣ−1(y −Knsnsa) + λatrKnsnsa (67)

where Σ is a diagonal matrix of size ns, collecting all the σi values, with Σii = σ2
i . We

differentiate the last equation to minimize L. ∇atrL = 0.

−KnsnsΣ
−1y +KnsnsΣ

−1Ktr
nsns

a+ λKnsnsa = 0. (68)

3.4 Hyperparameters

The covariance of y(x) given any two values of x is evaluated by the kernel function

E[y(xn), y(xm)] = k(xn,xm). (69)

In the Gaussian process model, the forecast depends on the choice of the covariance
function. In practice, it is preferred to use a parametric function, where the fitting values
of the hyperparameters, such as the length scale of the correlations and the accuracy of the
noise, are chosen according to the data. In principle, in big data models, if they were not
computationally expensive, these parameters could be optimized from the data itself Ref. [8].

The regularization term λ from eq.(105) solves the overfitting problem by forcing the
coefficients to remain small Ref. [7]. Also, it handles the noisy data and adjusts the balance
between the exact reproduction of the fitting data points and the overall smoothness of the
estimator.

According to the Bayesian theorem

Bayes’ Rule: Posterior =
Likelihood× Prior

Evidence
p(Θ|q) = p(q|Θ)× p(Θ)

p(q)
(70)
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which uses the conditional probabilities

p(Θ|q) = p(q,Θ)

p(q)
p(q|Θ) =

p(Θ,q)

p(Θ)
(71)

where Θ includes the knowledge of the data’s hyperparameters, we observe that the influence
of the prior decreases for a larger amount of training data.
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4 Coarse-grained molecular models with Gaussian ap-

proximation methods

In this section, we analyze the framework of our method, involving many-body interactions
from training data of all CG particles. Every minimization problem begins with defining the
minimization function, known as the cost function. Therefore, we constructed this function
according to prior knowledge of previous sections. Our priority is to approximate the many-
body PMF using local multi-body terms, based on ’descriptors’. We define the total force as
a sum of local terms. We mention two ways to parameterize our model. The first approach
refers to a system where we apply only pair interactions of CG particles, while in the second,
we have interactions between two and three CG particles.

4.1 Minimization Problem

As we mentioned, there are numerical parameterization methods where the corresponding
CG model is constructed, and they can approximate the properties of the microscopic model
based on principles of statistical mechanics. These methods examine the optimization of
the proposed parametric model corresponding to different minimization principles. The
optimization problem that occurs involves a cost function L of pre-selected observable Φ and
the minimization over a parameter set a

min
a

L(Φ; a) (72)

In the Force Matching (FM) approach the analytical form of the optimization problem
is

min
a

Eµ

[
||(FoΠ)(·)− FCG(·; a)||23M

]
(73)

where (FoΠ) is known from samples and the second term FCG contains the approximated
values.

Here, we have observations/samples {qi,Fi}ns
i=1, from the all atom simulations. From

there we evaluate, according to the CG map the Q = Πq,

min
a

1

ns

ns∑
l=1

M∑
I=1

||(FoΠI)(q
(l))− FCG,I(Πq

(l); a)||23 (74)

where the force is calculated by

FCG,I(Q; a) = −∇QI
UCG(Q; a), FCG,I(Q; a) ∈ R3. (75)

The minimization problem eq.74 is in analogy to the one with the loss function eq.64, where
yn corresponds to the term (FoΠI)(q

(l)) and f(xn) with the term FCG,I(Πq
(l); a). The term

λI in eq.64 corresponds to the regularization approach, which we do not include here in
eq.74.

The parametrized CG potential that describes the free energy surface UCG is in principle
a many-body potential of the 3M CG coordinates (UCG(Q; a) ∈ R) and a = (a1, a2, · · · , aM),
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the optimization parameters.

UCG(Q1,Q2, ...,QM ; a) =
∑
j

Wmono(Dmono(Qj,α); á)

+
∑
j<k

Wdimer(Ddimer(Qj,{α},Qk,{β}); â)

+
∑
j,k,l

Wtrimer(Dtrimer(Qj,{α},Qk,{β},Ql,{γ}); a
∗) (76)

where letters i, j, k, l iterate over molecules, α, β, γ iterate over CG sites within each molecule,
and parameter a = (á, â, a∗) and Wmono,Wdimer,Wtrimer denote the corresponding potential
function according to the type of interaction. The monomer, dimer, and trimer descriptors
D are constructed from all pairwise distances between the involved CG sites. The monomer,
for example, is defined by the set of all intramolecular distances:

Dmono(Qj,{α}; á) = {Djj
αβ|α = 1, ...,m; β = α + 1, ..,m} (77)

where Djk
αβ = |Qj,α−Qk,β| is the distance between site α in molecule j and site β in molecule

k and m is the number of CG sites within a monomer.
In our case, i.e., the methane system, we have only one type of CG sites within a molecule,

so we don’t need Wmono,

UCG(Q; a) =
∑
j,k

Wdimer(Ddimer(Qj,Qk); â) +
∑
j,k,l

Wtrimer(Dtrimer(Qj,Qk,Ql); a
∗) (78)

=
M∑
j=1

M∑
k=j+1

Wdimer(Ddimer(Qj,Qk); â) +
M∑
j=1

M∑
k=j+1

M∑
l=k+1

Wtrimer(Dtrimer(Qj,Qk,Ql); a
∗),

where Ddimer(Qj,Qk) = D(Qj,Qk) ∈ R, j, k = 1, 2, · · · ,M is the Euclidean distance
between two CG particles, and

D(Qj,Qk) = rjk =
√

|Qj1 −Qk1|2 + |Qj2 −Qk2|2 + |Qj3 −Qk3|2. (79)

The trimer descriptor Dtrimer(Qj,Qk,Ql) can have different forms, and it’s designed to
preserve the physical symmetries of the coarse system. The trimer descriptor, which we
applied, is given in section 4.3.

4.2 Application of Gaussian Process Regression - Only Dimer De-
scriptor

In this work, we constructed two models; one includes only the dimer descriptors and the
second consists of the dimer and trimer descriptors. This section describes the total force,
including only pair contributions.

According to eq. 62, the quantity f(x), where x is a scalar quantity, represents the value
of the pair force. Using the eq.62 and eq.78, the pair force is equal to the derivative of the
W function.

f̂(x) =
dWdimer(x)

dx
where x = D(Qj,Qk) = |Qj −Qk|, j, k = 1, 2, . . . ,M (80)
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The goal in an active learning setting is to learn an unknown function as accurately and
quickly as possible. According to 3.2.4 theory, making predictions involves only a finite sum
over all past observations, i.e., all particle pairs and system configurations. Such an approach
is computationally expensive. Thus, we choose a sparser model with far fewer kernel basis
functions than the input data points where the locations of these basis functions (which we
call the representative set) need not coincide with the input data locations. Thus,

f̂(|Qj −Qk|)
eq(62)
=

np∑
i

α̂ik̂(xi, |Qj −Qk|) (81)

where np is the number of basis points and xi takes values of a grid, specifically from the
minimum distance between two CG particles rmin − ϵ to rcut, where ϵ > 0. The kernel
function of including only the dimer descriptor has the following form:

k̂(xi, x) = δ̂2 exp

(
−|x− xi|2

2θ̂2

)
. (82)

The utility function that is used to optimize ai parameters is based on the forces involving
the dimer descriptors D representing the pair interactions, FCG,i(Q; a) ≈ F̂i(Q; â) according
to eq. 74:

F̂i(Q; â) = −∇Qi
UCG(Q; â) = −∇Qi

(
M∑
j=1

M∑
k=j+1

Wdimer(D(Qj,Qk)))

= −
M∑
j=1

M∑
k=j+1

dWdimer(D(Qj,Qk))

dD(Qj,Qk)
∇Qi

D(Qj,Qk)

= −
M∑
j=1

M∑
k=j+1

f̂(|Qj −Qk|)∇Qi
D(Qj,Qk)

= −
M∑
j=1

M∑
k=j+1

np∑
l=1

âlk̂(xl, |Qj −Qk|)∇Qi
(|Qj −Qk|)

(83)

where F̂i is the total force exerted on a particle and the gradient of each descriptorD(Qj,Qk) =
|Qj −Qk| is calculated by

• i = k → ∇Qi
D(Qj,Qk) = ∇Qi

(|Qj −Qi|) = − Qj−Qi

|Qj−Qi|

• i = j → ∇Qi
D(Qj,Qk) = ∇Qj

(|Qj −Qi|) = Qj−Qi

|Qj−Qi|

• i ̸= k, j → ∇Qi
D(Qj,Qk) = (0, 0, 0)

Thus, the final expression of the force exerted on a particle for one sample is

FCG,I(Q; a) ≈ F̂CG,I(Q; â) = −
M∑
j<k

np∑
i=1

âik̂(xi, rjk)∇QI
rjk. (84)
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For the minimization problem, we need to solve a linear equation. Specifically, the
analytical form of the minimization problem is given by

min
â

1

ns

ns∑
l=1

M∑
I=1

||F(Ql
I)−

M∑
j<k

np∑
i=1

âik(xi, |Ql
j −Ql

k|)(−∇QI
D(Ql

j,Q
l
k))||23 (85)

where Ql
I = (Πql)I and the term

∑M
j<k

∑np

i=1 aik̂(xi, rjk)(−∇QI
rjk) corresponds to the linear

term K̂â.
According to the expression

y = K̂â, (86)

the y ∈ R3M ·ns denotes the target forces of each CG particle in all three dimensions and
for all the configurations of the model. The second term K̂â approximates the y dataset
corresponding to the dimer Kernel matrix and the optimization parameters.

y =



(FoΠ)1,x(q
1)

(FoΠ)1,y(q
1)

(FoΠ)1,z(q
1)

...
(FoΠ)M,z(q

1)
(FoΠ)1,x(q

2)
...
...

(FoΠ)M,z(q
ns)


=



F1,x(Q
1)

F1,y(Q
1)

F1,z(Q
1)

...
FM,z(Q

1)
F1,x(Q

2)
...
...

FM,z(Q
ns)


(87)

The parameter â is the vector with length np, â ∈ Rnp , and the K̂ matrix, including the

values of the distance gradient, has size (3M · ns)× np, K̂ ∈ R(3M ·ns)×np .

â =


â1
â2
...

ânp

 ∇Qi
rjk =


drjk
dQi,x
drjk
dQi,y
drjk
dQi,z

 rjk = |Qj −Qk| (88)

And

K̂ =



∑M
j<k k̂(x1, r

(1)
jk )(−

dr
(1)
jk

dQ
(1)
1,x

)
∑M

j<k k̂(x2, r
(1)
jk )(−

dr
(1)
jk

dQ
(l)
1,x

) · · ·
∑M

j<k k̂(xnp , r
(1)
jk )(−

dr
(1)
jk

dQ
(l)
1,x

)∑M
j<k k̂(x1, r

(1)
jk )(−

dr
(1)
jk

dQ
(1)
1,y

)
∑M

j<k k̂(x2, r
(1)
jk )(−

dr
(1)
jk

dQ
(l)
1,y

) · · ·
∑M

j<k k̂(xnp , r
(1)
jk )(−

dr
(1)
jk

dQ
(l)
1,y

)

...
. . . . . .

...∑M
j<k k̂(x1, r

(l)
jk )(−

dr
(l)
jk

dQ
(l)
I,β

)
. . . . . .

∑M
j<k k̂(xnp , r

(l)
jk )(−

dr
(l)
jk

dQ
(l)
I,β

)

...
. . . . . .

...∑M
j<k k̂(x1, r

(ns)
jk )(− dr

(ns)
jk

dQ
(ns)
M,z

)
∑M

j<k k̂(x2, r
(ns)
jk )(− dr

(ns)
jk

dQ
(ns)
M,z

) · · ·
∑M

j<k k̂(xnp , r
(ns)
jk )(− dr

(ns)
jk

dQ
(ns)
M,z

)


(89)
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4.3 Application of Gaussian Process Regression - Dimer and Trimer
Descriptors including

Here, we present a model where dimer and trimer descriptors are included. There are two
forms for the quantity f(x) (eq. 62), one function refers to the approximation of the total
force only with the description of the dimer and has the well-known form as k̂(x, xi) =

δ̂2 exp
(
− |x−xi|2

2θ̂2

)
, with scalar x, xi, and the other one refers to the trimer descriptor Ref.[20].

k∗(x,x′) = δ2∗ exp
[ 3∑

i=1

(−|xi − x′
i|2

2(θi∗)
2

)
]

(90)

where x,x′, θ∗ are vectors, x is the three-body descriptor and x′ denote the basis points
vector. Also, the θ∗ = [θ1∗, θ

2
∗, θ

3
∗] is a vector and δ∗ a scalar quantity. The elements of the

symmetrized three-body descriptor x = [d1, d2, d3] are defined as

d1 = rij + rik, d2 = (rij − rik)
2 and d3 = rjk, (91)

which ensures invariance to rigid rotations and translations as well as swapping the indices of
j and k while providing a bijective mapping between atomic coordinates and the descriptor
elements.

The basis point x′ = [x′
1, x

′
2, x

′
3] is a 3d vector, and each element takes values of a

different grid. Specifically, x′
1 takes values from the 2rmin − ϵ distance to 2rcut, where rmin

is the minimum distance between two CG particles and ϵ > 0. The second element x′
2 takes

values from 0 to (rcut − rmin)
2, and the third element x′

3 from rmin − ϵ to rcut. All grids have
the same size.

Using the eq.62, eq.90 and eq.78, the total force has two terms, the dimer, and the
trimer contributions, and the derivative of the functions Wdimer and Wtrimer function have
the following forms

f̂(x) =
dWdimer(x)

dx
where x = D(Qj,Qk) = |Qj −Qk|, but (92)

f ∗(x) = Wtrimer(x) where x = D(Qj,Qk,Ql) = (rjk+rjl, (rjk−rjl)
2, rkl) and rjk = D(Qj,Qk)

(93)
Also here, we will choose a sparser model with far fewer kernel basis functions. Thus,

f ∗(D(Qj,Qk,Ql))=

np
∗∑

I

α∗
Ik

∗(xI , D(Qj,Qk,Ql)) (94)

where np
∗ = (·, ·, ·) is a vector with the number of basis points in each dimension and

xI is a vector and each element takes values of a different grid. I is a multi-index I =
(i, j, k), i, j, k = 1, . . . , n∗

p and takes n∗
p = #np

∗ different values in total, e.g. if we choose
3 basis points for each element, then the multi-index I takes n∗

p = 27 values: np
∗ =

(1, 1, 1), (1, 1, 2), · · · , (1, 3, 3), (2, 1, 1), · · · , (3, 3, 3).
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The utility function that is used to optimize âi, a
∗
I parameters can be based on the forces

based on the dimer and the trimer contributions. The dimer term is calculated by the eq.83.
The corresponding trimer term can be approximated by

F∗
i (Q; a∗) = −∇Qi

UCG(Q; a∗)

= −∇Qi
(

M∑
j=1

M∑
k=j+1

M∑
l=k+1

Wtrimer(D(Qj,Qk,Ql)))

eq.91
= −∇Qi

[ M∑
j<k<l

Wtrimer(d1(Qj,Qk,Ql), d2(Qj,Qk,Ql), d3(Qj,Qk,Ql))
]

= −
M∑

j<k<l

[∂Wtr(d1, d2, d3)

∂d1
∇Qi

d1(·) +
∂Wtr(d1, d2, d3)

∂d2
∇Qi

d2(·) +
∂Wtr(d1, d2, d3)

∂d3
∇Qi

d3(·)
]

eq.93
= −

M∑
j<k<l

np
∗∑

I

α∗
I

[∂k∗(xI , (d1, d2, d3))

∂d1
∇Qi

d1(·) +
∂k∗(xI , (d1, d2, d3))

∂d2
∇Qi

d2(·)

+
∂k∗(xI , (d1, d2, d3))

∂d3
∇Qi

d3(·)
]

= −
M∑

j<k<l

np
∗∑

I

α∗
I

3∑
z

∂k∗(xI , (d1, d2, d3))

∂dz
∇Qi

dz(·)

(95)

where Fi(Q; â, a∗) = F̂i(Q; â)+F∗
i (Q; a∗) is the total force exerted on a particle. Analytical

calculation of the above equations can be found in Appendix B.
Thus, the final expression of the force exerted on a particle for one sample is

FCG,I(Q; â, a∗) = F̂i(Q; â) + F∗
i (Q; a∗)

= −
M∑
j<k

np∑
i=1

âik̂(xi, D(Qj,Qk))∇QI
D(Qj,Qk)

−
M∑

j<k<l

np
∗∑

I

α∗
I

3∑
z

∂k∗(xI , (d1(·), d2(·), d3(·)))
∂dz(·)

∇Qi
dz(Qj,Qk,Ql)

(96)

In this case, the minimization problem has the analytical form

min
â,a∗

1

ns

ns∑
s=1

M∑
I=1

||(F(Qs
I) −

M∑
j<k

np∑
i=1

âik(xi, r
s
jk)(−∇QI

rsjk)

−
M∑

j<k<l

np
∗∑

i

α∗
i

3∑
z

∂k∗(xi, (d1(·), d2(·), d3(·)))
∂dz(·)

(−∇QI
dz(Q

s
j ,Q

s
k,Q

s
l ))||23

(97)
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where Qs
I = (Πqs)I , the second term is equal to the linear form K̂â, and the third term

corresponds to the linear form K∗a∗.
The equation

y = Ka, K = [K̂ K∗] and a =

[
â
a∗

]
(98)

denotes the forces of each CG particle in all three dimensions and for all the configurations
of the model y ∈ R3M ·ns . The vector y has the form as in eq.87.

The parameter a is the vector with length np + np
∗, a ∈ Rnp+np

∗
, and the K matrix has

size (3M · ns)× (np + np
∗), K ∈ R(3M ·ns)×(np+np

∗).

a =



â1
...

ânp

a∗1
...

a∗n∗
p


and (99)

∇Qi
rjk = ∇Qi

D(Qj,Qk) =


∂D(Qj ,Qk)

∂Qi,x
∂D(Qj ,Qk)

∂Qi,y
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where
∂D(Qj ,Qk)

∂Qi,x
∈ R, ∂dz(Qj ,Qk,Ql)

∂Qi,x
∈ R3. For the kernel matrix K, the dimer kernel matrix

K̂ has been calculated in eq.89,thus the trimer kernel matrix K∗ has the following form:

K∗ = −
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(101)

4.4 The normal equations

According to eq. 85 and eq. 97, a linear problem arises. The quantity FCG,I(Q; a) = F from
eq.75 is described as

F = K · a (102)

Use normal equations AtrAx = Atrb to solve eq.86, where b = F, A = K and x = a.
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In general, we want to minimize g(x) = ||b − Ax||22, which corresponds to the eq. 73,
where b is equivalent to the term (FoΠ)(·) and Ax to FCG(·; a).

g(x) = ||b−Ax||22 = (b−Ax)tr(b−Ax) = btrb− xtrAtrb− btrAx+ xtrAtrAx (103)

If x is a global minimum of g, then its gradient ∇g(x) is the zero vector. Let’s take the
gradient of g remembering that

∇g(x) =


∂g
∂x1
∂g
∂x2
...
∂g

∂xnp

 , ∇
(
xtrAtrb

)
= Atrb ∇

(
btrAx

)
= Atrb ∇

(
xtrAtr

)
Ax = 2AtrAx

Thus,

∇g(x) = 2AtrAx− 2Atrb = 0 (104)

AtrAx = Atrb

At this point, we present two techniques to solve the linear problem to avoid overfitting.
See also the discussion in section 3.3, where we relate the Gaussian process regression to the
KRR applied here.

The regularization parameter

According to the eq.64, we add the regularization parameter that can be equal to a scalar
parameter λ with the identity matrix, i.e.

(AtrA+ λI)x = Atrb

For our system, we solve the normal equation

(Ktr ·K+ λI) · a = Ktr · F (105)

The regularization matrix

In this case, for the regularization parameter, we choose a different matrix,

(AtrA+ λR)x = Atrb

where R =
∑np

n,n′ ank(xn, xn′)an′ and xn, xn′ take value of the basis points. Thus, for our
system, we solve the normal equation

(Ktr ·K+ λR) · a = Ktr · F (106)
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4.5 Hyperparameters tuning

The optimal forecast of a Gaussian process model depends on the selection of the hyperpa-
rameters on the kernel function. There are various techniques in order to learn hyperparam-
eters. There are three approaches to learning the hyperparameters: (a) a grid search, (b)
maximizing the likelihood, and (c) with a Bayesian approach. For our project, we applied
the grid search. Although, we will present the theoretical part of the likelihood technique.

The most straightforward technique suggests maximizing the log-likelihood function p(t|θ),
where θ denotes the set of hyperparameters. An efficient way to maximize the log-likelihood
function with respect to θ, includes the implementation of gradient-based optimization al-
gorithms such as conjugate gradients.

The log-likelihood function for a Gaussian process regression model is given by

ln p(t|θ) = −1

2
ln|Cns| −

1

2
ttrC−1

ns
t− ns

2
ln(2π).

For nonlinear optimization, we also use the gradient of the log-likelihood function with
respect to θ

∂

∂θi
ln p(t|θ) = −1

2
Tr

(
C−1

ns

∂Cns

∂θi

)
+

1

2
ttrC−1

ns

∂Cns

∂θi
t,

where ln p(t|θ) is a nonconvex function, and thus there can be multiple maxima.

The grid search method is not the optimal choice because it may be computationally
more costly than the other choices. Although, it is straightforward and easy to implement.
Grid search builds a model for every combination of hyperparameters specified and evalu-
ates each model. Because the value of the hyperparameter has to be set before the learning
process begins, we choose the following parameters for our model:

For the model with only the dimer descriptor:

• Number of basis points: 15, 20, 48.

• Parameter δ : 1.0, 2.0, 6.0.

• Parameter θ : 2.5, 3.5, 5.0.

• Parameter λ : 0.0, 0.1, 0.01, 0.001.

4.6 Other representations of the pair potential

Lennard-Jones Model

The Lennard-Jones potential models soft repulsive and attractive interactions. This is a
straightforward, parametric way to approximate the total force of the system.

uLJ(x) = 4ϵ
[ (σ

x

)12

−
(σ
x

)6 ]
= 4

[(A

x

)12

−
(
B

x

)6 ]
. (107)
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The total force for i-th particle is computed by

Fi = −∇Qi
UCG(Q; a)

= −
M∑
j=1

M∑
k=j+1

∇Qi
uLJ(D(Qj,Qk); a)

= −
M∑
j=1

M∑
k=j+1

duLJ(D(Qj,Qk); a)

dD
∇Qi

D(Qj,Qk) (108)

where here the parameters a are the LJ parameters A,B, i.e. a = (A,B) and Fi ∈ R3.

We calculate the term
duLJ (D(Qj ,Qk);a)

dD

duLJ(D(Qj,Qk); a)

dD
= 4

d
[
(A
D
)12 − (B

D
)6
]

dD

=

{
4
[
− 12A12

D13 + 6B6

D7

]
if D ≤ rcut

0 if D > rcut
. (109)

and also, the term ∇Qi
D(Qj,Qk) = (

∂D(Qj ,Qk)

∂Qi,x
,
∂D(Qj ,Qk)

∂Qi,y
,
∂D(Qj ,Qk)

∂Qi,z
).

Linear splines Basis Model

A simple linear model for regression leads to spline functions ref. [31]. A spline model is
referred to as a representation of the pair potential u(x) with piecewise linear functions,

gi(x) =

{
x−xi−1

∆x
xi−1 < x ≤ xi

xi+1−x
∆x

xi < x ≤ xi+1

(110)

where xi is a basis point, ∆x = xi+1−xi is the distance between two consecutive basis points
and x is the distance of two CG particles. That is

u(x) =

np∑
l

αlgl(x).

The total force for i-th particle is computed by

Fi = −∇Qi
V (Q; a)

= −
M∑
j=1

M∑
k=j+1

∇Qi
u(D(Qj,Qk); a)

= −
M∑
j=1

M∑
k=j+1

np∑
l

αlgl(|Qj −Qk|)∇Qi
D(Qj,Qk) (111)

where here the parameters a = (a1, a2, · · · , anp) are the minimization parameters.

44



4.7 Quality of the model

When we estimate a regression model, the differences between the actual and ”predicted”
values for the dependent variable can be measured by different measures. In this work, we
report the chi-square error and a probability metric. There are a lot of metrics available
to quantify the difference between two probability measures. In our case, we applied the
Wasserstein metric, as it takes into account the metric space. In both cases, the metric’s
and Chi-Square distance meanings can interpret hard numbers, and both of them raise
questions about our model’s quality Ref. [18].

Wasserstein metric

Regarding the convergence of measures, a challenge is the choice of probability metric. In
our case, it is very important to quantify that convergence in terms of some probability
metric.

Let Ω denote a measurable space with σ-algebra B. Let M be the set of all probability
measures on (Ω,B). Let µ, ν denote two probability measures on Ω. Let h and g denote their
corresponding density functions assuming they are defined. At Wasserstein metric, where
Ω = R, let H,G denote their corresponding distribution functions. Also, X ,Y will denote
random variables on Ω such that Law(X ) = µ and Law(Y) = ν.

Definition of Wasserstein (or Kantorovich) metric

For Ω = R, if H,G are the distribution functions of µ, ν, respectively, the Kantorovich
metric is defined by

dW (µ, ν) :=

∫ ∞

−∞
|H(x)− G(x)|dx

=

∫ 1

0

|H−1(t)− G−1(t)|dt (112)

where H−1,G−1(t) are the inverse functions of the distribution functions. If the metric space
is separable, then the eq.112 is equivalent to

dW (µ, ν) := sup{|
∫

zdµ−
∫

zdν| : ||z||L ≤ 1}, (113)

the supremum being taken over all z satisfying the Lipschitz condition |z(x)−z(y)| ≤ d(x, y)
where d is the metric on R. The Wasserstein metric assumes values in [0, diam(Ω)], where
diam(Ω) is the diameter of the metric space (Ω, d), and also measures weak convergence on
spaces of bounded diameter.
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Chi-squared error

The form of the χ2−error is adjusted for the number of coordinates, samples, and particles.
It is defined as:

χ2 =
1

3 ∗M ∗ ns

||(FoΠ)(·)− FCG(·; a)||2

=
1

3 ∗M ∗ ns

((FoΠ)(·)− FCG(·; a))tr((FoΠ)(·)− FCG(·; a)) (114)

where (FoΠ)(·) known from samples and the second term FCG(·; a) are the approximated
values.
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5 Simulation of methane system

In this section, we describe the bulk methane system, for which we learn the CG model with
the GPR method. Specifically, we implement the GPR as the equivalent KRR problem.
Next, we present the results for different values of the chosen kernel parameters. The results
presented below explain how effective the KRR method is according to the pair forces’
behavior.

5.1 Bulk methane system

To check how accurately the model can approximate the pair force of CG particles, we
examine a more realistic system, of a bulk methane liquid. Methane is the simplest alkane
and its chemical formula is CH4.

Our system has 512 CH4 methane molecules at the NVT ensemble at 100K temperature
and its density was calculated after equilibrating the system in the NPT ensemble for 5ns
(ρ = 0.38g/cm3). The time step was 0.5fs and a cut-off distance of 10 Angstroms was
used. The calculations have been performed using the all-atom Dreiding force field. For the
coarse-grained representation of CH4, we have used a one-site representation with a pair
potential. We performed the various CG procedures using these trajectories. In total, 7400
frames (observations) were collected.

Figure 8: Example of two (a) and three (b) methane molecules in atomistic and coarse-grained
description

5.2 Results with Dimer Descriptor only

In this section, we present some figures corresponding to the different simulations that we
have executed. In fig.9 and fig.10, we present the models with the optimal combinations of
the model parameters i.e. the number of grid points, the kernel parameters eq. 62, and the
regularization parameter λ. The best models were derived by finding the minimum value of
the chi-square error and the Wasserstein distance for the different forms of the regularization
matrix. We also present the corresponding measurements of the LJ model and the linear-
splines model for comparison.
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The training of the CG methane model was performed for: three different choices for
the number of basis points, three values for each parameter; δ, θ, and four values for the λ
parameter. In total, there are 108 different trained models. Moreover, as we mentioned in
section 4.4, we applied two regularization matrices: the first one consisted of the param-
eter λ and the identity matrix I, and the second one of the parameter λ and the kernel
matrix R of the basis points. Thus, the total number of different models has been summa-
rized to 189: the models for λ = 0 in both techniques give us the same minimization function.

Figure 9: Pair Forces plot for the methane system (100 samples)

In fig. 9, the values of the pair forces of the model with splines and the two KRR models
with the optimal Chi-square value give the same results. This is not surprising if we consider
that the cost function is the same as the Chi-square measurement and the linear basis method
has been proved to have a good fitting Ref. [2]. Only the results using the LJ basis slightly
deviate.

Moreover, the above conclusions can be observed in fig. 10. In this figure, the derived
potential, through numerical integration of the forces, is shown.
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Figure 10: Potential plot according to the Pair Forces values for the methane system (100 samples)

Note that for all models we considered the same data set. Initially, the first 100 samples
were used, but 90% of this amount is referred to the training dataset and the remaining 10%
is the test dataset. In figures 9 and 10, we notice by observing the values for small distances
r of the pair force and the pair potential, that the values differ. This happens because in
this region we have little data. What matters, in this case, is the minimum distance between
two CG particles which is around 3.27.

Table 1 Models with minimum values of Chi-Square error and Wasserstein distance for 100
samples

(basis points, δ, θ, λ) Wasserstein train Wasserstein test Chi-Square train Chi-Square test
λI (20 2.0 5.0 0.0) 0.09 0.10 1.33 1.36
λI (20 1.0 2.5 0.0) 0.23 0.24 0.77 0.80

Kmn (48 2.0 5.0 0.01) 0.07 0.07 1.73 1.73
Kmn (48 6.0 2.5 0.1) 0.23 0.24 0.77 0.80

Splines 48 0.23 0.25 0.76 0.80
LJ 0.25 0.27 0.78 0.81

In the above table 1, we have the exact values of the two measurements for each of the
models. We notice that among the best models, parameters and measure values do not
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repeat. For the models with the minimum Wasserstein value (the first and third models),
the Chi-square values seem to increase quite a bit, while the opposite does not seem to be
the case. Of course, it can be explained as the training is based on the Chi-square error,
not the Wasserstein metric. Also, the number of samples does not suffice to draw a valid
conclusion.

(a) λI (20 2.0 5.0 0.0) (b) Kmn (48 6.0 2.5 0.1) (c) Splines 48

(d) λI (20 1.0 2.5 0.0) (e) Kmn (48 2.0 5.0 0.01) (f) LJ

Figure 11: Scatter plots for 100 samples. The x-axis denotes the Ftarget and the y-axis the Fapprox.

In fig.11, we present a scatter plot of the training dataset’s forces. A scatter plot uses
dots to present values for two different numeric variables: the target forces Ftarget, and the
approximated forces according to the KRR method, the LJ method, and the linear basis
method. The dots refer to all three dimensions Fx, Fy, Fz. Scatter plots are used to observe
relationships between variables. In our case, the goal is for the dots to be closer to the
trend line. This indicates a strong correlation relationship between the variables and a good
fitting. According to the figures, the two models which Fapprox seem to fail to approximate
well, are the models that have the minimum value for the Wasserstein metric ( λI (20 2.0
5.0 0.0), Kmn (48 2.0 5.0 0.01) - fig.11a and fig.11e ).
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(a) λI (20 2.0 5.0 0.0) (b) Kmn (48 6.0 2.5 0.1) (c) Splines 48

(d) λI (20 1.0 2.5 0.0) (e) Kmn (48 2.0 5.0 0.01) (f) LJ

Figure 12: Probability density function

According to the Wasserstein values at
table 1, the models with parameters λI (20
2.0 5.0 0.0) and

Table 2 Models with a Regularization pa-
rameter for 100 samples

#basis point δ θ λ Wtr Wte χ2
tr χ2

te

Wtr

20 2.0 5.0 0.0 0.09 0.10 1.33 1.36
48 2.0 5.0 0.0 0.14 0.13 2.02 2.01
20 2.0 3.5 0.0 0.15 0.16 0.92 0.95
20 1.0 5.0 0.0 0.15 0.16 1.18 1.20
48 1.0 2.5 0.0 0.16 0.17 0.89 0.92

Wte

20 2.0 5.0 0.0 0.09 0.10 1.33 1.36
48 2.0 5.0 0.0 0.14 0.13 2.02 2.01
20 2.0 3.5 0.0 0.15 0.16 0.92 0.95
20 1.0 5.0 0.0 0.15 0.16 1.18 1.20
48 1.0 2.5 0.0 0.16 0.17 0.89 0.92

χ2
tr

20 1.0 2.5 0.0 0.2318 0.2439 0.7756 0.8078
48 6.0 2.5 0.0 0.2319 0.2440 0.7758 0.8083
20 2.0 2.5 0.0 0.2318 0.2437 0.7759 0.8079
15 6.0 2.5 0.0 0.2311 0.2432 0.7759 0.8081
15 1.0 2.5 0.0 0.2305 0.2425 0.7762 0.8089

χ2
te

20 1.0 2.5 0.0 0.2318 0.2439 0.7756 0.8078
20 2.0 2.5 0.0 0.2318 0.2437 0.7759 0.8079
15 6.0 2.5 0.0 0.2311 0.2432 0.7759 0.8081
48 6.0 2.5 0.0 0.2319 0.2440 0.7758 0.8083
15 1.0 2.5 0.0 0.2305 0.2425 0.7762 0.8089

Kmn (48 2.0 5.0 0.01) seem to have bet-
ter results in terms of the probability den-
sity function. Although, this is not evident
in the corresponding figures, 12a and 12e,
because they do not differ from the rest
probability density function (pdf) figures.
All models’ pdf of the approximate data
is very close to the pdf of the target data
but with larger differences around the mean
value.

Even though 100 samples is a small
number to draw valid conclusions, we will
try to understand if there is any pattern
to the parameters of the best models ac-
cording to the two measurements. In the
tables 2 and 3, we present the first five best
models that were tested for two different
regularization matrices. Specifically, table
2 depicts the models that give better re-
sults with respect to the Wasserstein metric
(both the training set Wtr and the testing
set Wte). These have λ equal to zero and
the value of δ equal to two (red color) or
equal to one (green color). Respectively for
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the Chi-square error, the parameters that
appear frequently are the θ equal to 2.5 and
λ equal to 0. For both metrics, the number
of basis points varies.

In table 3, the minimum values of the
Wasserstein measure of the datasets (train-
ing set and test set), are found in the models
with the initially preferable number of basis
points 48 and secondary 20. For the rest of
the parameters, we do not observe any pat-
tern. The same conclusion for the number
of base units applies to models with a mini-
mum Chi-square value. In addition, in this
case, the optimal choice for the parameter
θ is 2.5, and for the parameter δ, first, it is
the value 6.0, and second, 1.0. Although, in
the case of the regularization matrix, we do
not observe any pattern for the parameter
λ.

The performance of different values for
each parameter can be viewed in Appen-

dices C and D. There is no further dis-
cussion because each time every model has
different behavior depending on the vari-
able parameter. We must also mention that
there is no specific behavioral pattern.

Table 3 Models with a Regularization ma-
trix for 100 samples

# basis point δ θ λ Wtr Wte χ2
tr χ2

te

Wtr

48 2.0 5.0 0.01 0.07 0.07 1.73 1.73
48 1.0 3.5 0.001 0.09 0.09 1.20 1.24
20 2.0 5.0 0.0 0.09 0.10 1.33 1.36
48 6.0 3.5 0.1 0.11 0.12 1.08 1.09
48 2.0 2.5 0.001 0.12 0.12 1.06 1.10

Wte

48 2.0 5.0 0.01 0.07 0.07 1.73 1.73
48 1.0 3.5 0.001 0.09 0.09 1.20 1.24
20 2.0 5.0 0.0 0.09 0.10 1.33 1.36
48 2.0 2.5 0.001 0.12 0.12 1.06 1.10
48 6.0 3.5 0.1 0.11 0.12 1.08 1.09

χ2
tr

48 6.0 2.5 0.1 0.2318 0.2440 0.7752 0.8077
48 6.0 2.5 0.001 0.2319 0.2444 0.7755 0.8073
20 1.0 2.5 0.0 0.2318 0.2439 0.7756 0.8078
48 6.0 2.5 0.0 0.2319 0.2440 0.7758 0.8083
20 1.0 2.5 0.001 0.2317 0.2437 0.7758 0.8078

χ2
te

48 6.0 2.5 0.001 0.2319 0.2444 0.7755 0.8073
48 6.0 2.5 0.1 0.2378 0.2440 0.7752 0.8077
20 1.0 2.5 0.0 0.2318 0.2439 0.7756 0.80783
20 1.0 2.5 0.001 0.2317 0.2437 0.7758 0.80784
20 1.0 2.5 0.01 0.2318 0.2436 0.7759 0.80786

5.2.1 Results for more samples

In this section, we tested the optimal models for more samples. We chose to use 4000 samples
of the 7400 in total due to the computationally cost. In table 4 we observe that almost all
the models present similar results. Also, in this case, the first model with parameters λI (20
2.0 5.0 0.0), the third one with parameters Kmn (48 2.0 5.0 0.01), and the LJ model have the
maximum value for the Wasserstein and Chi-square metrics. The rest three models present
better results. Between the Gaussian models, the minimum value of Chi-square gives the
model λI (20 1.0 2.5 0.0) (except the spline model) and the minimum Wasserstein value the
model Kmn (48 2.0 5.0 0.01). The observations of the figures 13 and 14 (of 4000 samples)
present similar quality with the corresponding figures 9 and 10 of 100 samples.

Table 4 Models with minimum values of Chi-Square and Wasserstein distance for 4000
samples

Method & Samples Wasserstein train Wasserstein test Chi-Square train Chi-Square test
λI (20 2.0 5.0 0.0) 0.27 0.27 0.97 0.97
λI (20 1.0 2.5 0.0) 0.23 0.23 0.78 0.78

Kmn (48 2.0 5.0 0.01) 0.23 0.22 0.89 0.89
Kmn (48 6.0 2.5 0.1) 0.23 0.23 0.78 0.78

Splines 48 0.24 0.23 0.77 0.77
LJ 0.26 0.26 0.79 0.78
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Figure 13: Pair Forces plot for the methane system (4000 samples)

Figure 14: Potential plot according to the Pair Forces values for the methane system (4000
samples)
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5.3 Implementation of the model

The implementation of the two models was accomplished in Python. The codes of both the
dimer and the trimer Gaussian models, constructed from scratch and are linked in
https://github.com/VassiaKyr/Master Thesis.git. The results we present refer to the model
with only dimer descriptors because the method with trimer descriptors has a computational
cost that did not allow us to test it for many samples.

5.4 Comments on the computational cost of the methods

All methods except the Lennard-Jones method, which were studied in this work, are compu-
tationally demanding. As a result, parallel calculations are mandatory for the FM problem.
The heavy workload makes it difficult to experiment with different parameters.

As it is observed, we present the results of the FM problem with only the dimer descriptor.
The code of the FM problem with the trimer descriptor has been programmed, but the
computational cost prevents us from the training, even though we perform a parallel code.
To understand the time required, for a single sample with as few as possible, five basis
points in each dimension (a total of 53 = 125 basis points), the kernel matrix preparation
process can take half a day. At this point, we should clarify that in this code we only calculate
Ftrimer = F∗ applying in the training part not Ftarget but the difference between this quantity
and the values of the forces Fdimer of the best FM dimer model, i.e. Ftrimer − Fdimer.

The FM problem with only the dimer descriptor faces the same challenge on a different
scale. The needed time to complete a training depends on the value of the number of basis
points. Specifically, the code for 100 samples may take from a half hour to three hours for
one combination of parameters corresponding to a specific value of the basis point. In the
case of a model with 4000 samples, it took two days approximately for 48 basis points to
reach and complete the training part.

5.5 Conclusion and Future Work

In molecular systems, the goal is to study atoms’ movement on a very small order of mag-
nitude. The main challenge here is the expensive calculations of the dynamic quantities due
to the wide range of length and time scales and their as-accurate-as-possible approximation.
The CG method facilitates the computational cost challenge by decreasing the number of
degrees of freedom and the number of variables.

We studied the Gaussian process regression methods and applied them in the equivalent
form, the Kernel Ridge Regression method to address the Force Matching (FM) problem.
The FM is the minimization problem of the average distance between the forces calculated
from atomistic simulations and the corresponding approximate CG forces. To understand
the results of the method we also applied the Lennard-Jones method and the Linear B-splines
representation. For each case, the measurements of Chi-square error and Wasserstein metric
facilitate the interpretation of the results.

We observe that the Gaussian kernel models produce results of similar quality to the
splines method. In a simple molecular system like the methane one, both Gaussian and
Splines models require an almost equal computational cost. In the Gaussian method, the set
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of hyperparameters is a determining factor in the construction of a fitting model, in contrast
to the Splines method, which only contains the value of the basis points as a hyperparameter.
The metrics that we evaluate each time, provide a measure to test the models. Both of them
are significant, although, for a small dataset, the Chi-square error seems to have better
results.

Nevertheless, the construction of the KRR model can be improved. Firstly, instead of
the grid search which is applied so that we learn the hyperparameters, another option is the
maximization of the likelihood function, so it will be more likely to yield the optimal set
of hyperparameters. Secondly, except for the Wasserstein metric we can test the results for
another probability density distance.

In molecular systems, the more samples used, the more optimal the models are. There-
fore, we need to test our models for more samples and also for more complex systems in
order to see how they behave.

Last but not least, the trimer term for the representation of the total force must be
included. In this case, we can apply a cut-off function to reduce the complexity of the algo-
rithm as suggested by ref.[7]. The same technique can be also applied to the dimer kernel
matrix.

56





Appendices

A Example Algorithm

Here there are the codes of the Gaussian model examples.

1 import numpy as np

2

3 #------------data --------------------------

4 X = np.array ([[1 ,0.9] , [1,3.8], [1,5.2], [1,6.1], [1,7.5], [1 ,9.6]])

5 t = np.array ([0.1 ,1.2 ,2.1 ,1.1 ,1.5 ,1.2])

6 S = [[0.1 , 1.1], [1.1, 0.1]]

7 x_new = np.array ([1.0 ,3.0])

8 beta_inv = 0.1

9

10 #----------model of weight space view -------

11 print(’Model of weight space view ’)

12 A = np.linalg.inv(S) + (beta_inv **(-1))*np.dot(X.T,X)

13 a = (beta_inv **(-1)*(np.dot(np.dot(np.linalg.inv(A),X.T),t.T) ))

14 print(’mean = ’, a)

15 print(’A^(-1) = ’,np.linalg.inv(A))

16 y_new = np.dot(x_new.T,a)

17 print(" y_new", y_new)

18 print()

19

20 #----------least squares model model -------

21 print(’Least squares model model ’)

22 A = np.dot(X.T,X)

23 a = np.dot(np.dot(np.linalg.inv(A),X.T),t.T)

24 y_new = np.dot(x_new.T,a)

25 print(" y_new", y_new)

26 print()

27

28 #----------model of function space view -------

29 print(’Model of function space view ’)

30 x = np.array ([0.9 , 3.8, 5.2, 6.1, 7.5, 9.6])

31 delta = 1.0

32 theta = 2.2

33 x_n = 3.0

34 K = np.zeros ((6,6))

35 for i in range (6):

36 for j in range (6):

37 k = (delta **2)*np.exp(-(np.abs(x[i]-x[j])**2) /(2* theta **2))

38 K[i][j] = k

39 a = np.dot(np.linalg.inv(K+beta_inv*np.identity (6)), t.T)

40 print(’a = ’, a)

41

42 kn = np.array([ (delta **2)*np.exp(-(np.abs(x_n -x[i])**2) /(2* theta **2)) for

i in range (6)])

43 print(’kn = ’, kn)

44 akn = np.array([a[i]*kn[i] for i in range (6)])

45 print(’akn = ’, akn)

46 print(" y_new",sum(akn))
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B Analytical Calculation of Trimer Terms

• Analytical calculation of
∂k∗(xI ,(di,dj ,dk))

∂(dj)

∂k∗(xI , (d1, d2, d3))

∂(dj)
=

∂
[
δ2∗ exp

∑3
i=1(−

|xI,i−di|2
2(θi∗)

2 )
]

∂(dj)

= δ2∗

∂
[
exp

(
− |xI,1−d1|2

2(θ1∗)
2 − |xI,2−d2|2

2(θ2∗)
2 − |xI,3−d3|2

2(θ3∗)
2

)]
∂(dj)

= δ2∗

∂
[
exp

(
− |xI,1−d1|2

2(θ1∗)
2 − |xI,2−d2|2

2(θ2∗)
2 − |xI,3−d3|2

2(θ3∗)
2

)]
∂(dj)

= k∗(xI , (d1, d2, d3))
∂(− |xI,1−d1|2

2(θ1∗)
2 − |xI,2−d2|2

2(θ2∗)
2 − |xI,3−d3|2

2(θ3∗)
2 )

∂(dj)

= − 1

(θj∗)2
k∗(xI , (d1, d2, d3))|xI,j − dj|

∂(|xI,j − dj|)
∂(dj)

= − 1

(θj∗)2
k∗(xI , (d1, d2, d3))|xI,j − dj|(−

xI,j − dj
|xI,j − dj|

)

=
xI,j − dj

(θj∗)2
k∗(xI , (d1, d2, d3))

(115)

• Analytical calculation of ∇Qi
dj(·) according to 4.2

1. If j=1:

∇Qi
d1(·) = ∇Qi

(rjk + rjl)

= − Qj −Qk

|Qj −Qk|
δik −

Qj −Ql

|Qj −Ql|
δil + (

Qj −Qk

|Qj −Qk|
+

Qj −Ql

|Qj −Ql|
)δij

(116)

2. If j=2:

∇Qi
d2(·) = ∇Qi

((rjk − rjl)
2)

= 2(rjk − rjl)∇Qi
(rjk − rjl)

= 2(rjk − rjl)(−
Qj −Qk

|Qj −Qk|
δik +

Qj −Ql

|Qj −Ql|
δil + (

Qj −Qk

|Qj −Qk|
− Qj −Ql

|Qj −Ql|
)δij)

(117)
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3. If j=3:

∇Qi
d3(·) = ∇Qi

rkl =
Qk −Ql

|Qk −Ql|
δik −

Qk −Ql

|Qk −Ql|
δil (118)
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C Plots of the Dimer model - Regularization parame-

ter

(a) #P1: W = 0.24, χ2 = 0.89,
#P2: W = 0.09, χ2 = 1.33,
#P3: W = 0.14, χ2 = 2.02

(b) #P1: W = 0.23, χ2 = 0.77,
#P2: W = 0.23, χ2 = 0.77,
#P3: W = 0.16, χ2 = 0.89

Figure 15: Different values of the number of basis points

(a) δ1: W = 0.15, χ2 = 1.18,
δ2: W = 0.09, χ2 = 1.33
δ3: W = 0.24, χ2 = 0.88

(b) δ1: W = 0.23, χ2 = 0.77,
δ2: W = 0.23, χ2 = 0.77
δ3: W = 0.23, χ2 = 0.77

Figure 16: Different values of δ
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(a) θ1: W = 0.23, χ2 = 0.77,
θ2: W = 0.15, χ2 = 0.92
θ3: W = 0.09, χ2 = 1.33

(b) θ1: W = 0.23, χ2 = 0.77,
θ2: W = 0.20, χ2 = 0.82
θ3: W = 0.15, χ2 = 1.18

Figure 17: Different values of θ

(a) λ1: W = 0.09, χ2 = 1.33,
λ2: W = 0.42, χ2 = 1.11
λ3: W = 0.40, χ2 = 1.06
λ4: W = 0.36, χ2 = 1.02

(b) λ1: W = 0.23, χ2 = 0.77,
λ2: W = 0.30, χ2 = 0.91
λ3: W = 0.27, χ2 = 0.86
λ4: W = 0.25, χ2 = 0.83

Figure 18: Different values of λ
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D Plots of the Dimer model - Regularization matrix

(a) #P1: W = 0.22, χ2 = 0.91,
#P2: W = 0.25, χ2 = 0.90,
#P3: W = 0.07, χ2 = 1.73,

(b) #P1: W = 0.23, χ2 = 0.77,
#P2: W = 0.23, χ2 = 0.77,
#P3: W = 0.23, χ2 = 0.77

Figure 19: Different values of the number of basis

(a) δ1: W = 0.18, χ2 = 1.03,
δ2: W = 0.07, χ2 = 1.73
δ3: W = 0.25, χ2 = 0.88

(b) δ1: W = 0.22, χ2 = 0.78,
δ2: W = 0.22, χ2 = 0.78
δ3: W = 0.23, χ2 = 0.77

Figure 20: Different values of δ
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(a) θ1: W = 0.29, χ2 = 2.40,
θ2: W = 0.21, χ2 = 0.82
θ3: W = 0.07, χ2 = 1.73

(b) θ1: W = 0.23, χ2 = 0.77,
θ2: W = 0.11, χ2 = 1.08
θ3: W = 0.25, χ2 = 0.88

Figure 21: Different values of θ

Different values of λ

(a) λ1: W = 0.14, χ2 = 2.02,
λ2: W = 0.21, χ2 = 0.96
λ3: W = 0.07, χ2 = 1.73
λ4: W = 0.23, χ2 = 0.91

(b) λ1: W = 0.23, χ2 = 0.77,
λ2: W = 0.23, χ2 = 0.77
λ3: W = 0.19, χ2 = 2.00
λ4: W = 0.23, χ2 = 0.77

Figure 22: Different values of λ
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