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Abstract

In the present dissertation we discuss a theory of the ultrafast nonlinear
optical response of the quantum Hall system. Our theory focusses on the role
of the low energy collective electronic excitations of the cold, strongly cor-
related, two–dimensional electron gas (2DEG) present in the ground state.
It takes into account ground state electron correlations and Pauli exchange
and interaction effects between the photoexcited excitons and the collective
electron gas excitations. Our formulation addresses both the initial coherent
regime, where the dynamics is determined by exciton and 2DEG polariza-
tions and quantum mechanical coherences, and the subsequent incoherent
regime, dominated by population dynamics. We discuss the manifestations
of intraband and interband coherences induced by the collective 2DEG ex-
citations in the coupled photocarrier–quantum Hall system and compare to
transient three–pulse four–wave–mixing experiments. In addition, we apply
our theory to the case of an undoped quantum well in a magnetic field and
describe the creation of intraband and interband coherences therein, created
by the photoexcited carriers.
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Chapter 1

Introduction

1.1 Motivation

The quasiparticle concept is a cornerstone of modern condensed matter
physics. To first approximation, the properties of many physical systems
can be described in terms of non–interacting quasiparticles and elementary
excitations, which may differ substantially from the strongly interacting bare
electrons [1]. However, beyond the first order, residual interactions among
the quasiparticles remain. In many cases, the quasi–static, thermodynamic,
linear, and ground state properties do not depend critically on the residual
interactions. On the other hand, these interactions determine the dynam-
ics in the system. For example, correlations among quasiparticles due to
interactions create quantum coherences among the many–body states, but
also lead to decoherence and dephasing and limit the lifetime of the collec-
tive excitations [2, 3]. Understanding the dynamics of a many–body system
requires to go beyond the non-interacting quasiparticle picture. Moreover,
from a technological point of view, understanding the coherent dynamics is
essential for building the new generation of controllable quantum coherent
devices in the future. In that sense, “clean” and well–characterized many–
body systems, such as the quantum Hall system of interest here, provide an
ideal laboratory for testing new ideas that may be useful for implementing
such quantum coherent devices. From a fundamental physics point of view,
the role of many–body interactions on the quantum dynamics during the
very early time scales where the many–body system has not yet relaxed and
where quantum mechanical coherences created by the interactions have not
yet decayed presents a frontier of modern condensed matter physics. This
very early temporal regimes typically lasts for hundreds of femtoseconds and
can be explored by using ultrafast nonlinear spectroscopy.
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1. Introduction

Ultrafast nonlinear optical spectroscopy is a powerful tool to study both
coherent and incoherent dynamics. Over the past decade, it has been used
extensively to study the dynamics of photoexcited carriers in undoped semi-
conductors [2, 3]. To analyse such experiments, theories such as the Dynam-
ics Controlled Truncation Scheme (DCTS) [4–6], the correlation expansion
[7], or the Keldysh Green function technique [8, 9] have been developed.
These studies revealed the important role of Coulomb correlations among
the photoexcited electron–hole pairs. For example, in two–pulse four–wave–
mixing (FWM) experiments [10, 11], Pauli blocking or phase space filling
(PSF) effects do not contribute for negative time delays [12], while exciton–
exciton (X–X) interactions dominate [2]. The time–dependent Hartree–Fock
treatment of X–X interactions [8] predicts an asymmetric FWM temporal
profile, with a negative time delay signal decaying twice as fast as the pos-
itive time delay signal [2, 3, 13]. The observation of strong deviations from
this asymmetric temporal profile was interpreted as the signature of X–X
correlations in undoped semiconductor quantum wells [2, 3].

In understanding the results of such experiments, one need not take into
account correlations with the ground state. In undoped semiconductors, the
lowest electronic excitations are high energy interband transitions that can
react almost instantaneously to photoexcited carriers [14, 15]. Then the
ground state can be considered as rigid, merely providing the band structure
and dielectric screening. On the other hand, in doped semiconductors, the
situation is quite different because of the presence of low energy excitations
that can interact with photoexcited carriers. Several interesting systems
fall in this category, like high temperature superconductors [16, 17], and
the quantum Hall system [18–20]. The fundamental reaction time of these
systems, typically the period of one oscillation of the lowest excited state,
is slow and they respond unadiabatically to photoexcitation. The nonlinear
response is then strongly influenced not just by the dynamics of photoexcited
carriers, but also by the quantum dynamics of the entire system. For the
quantum Hall system, the presence of strong many–body correlations in the
ground state itself leads to the quantum Hall effects [21–24]. Naturally, one
expects these strong many–body correlations to produce interesting dynamics
as well, which in turn influence the nonlinear response of the system. Such
dynamics was not studied until very recently.

In addition, the theories used to describe the nonlinear response of un-
doped semiconductors, like the DCTS [4–6], break down for doped semi-
conductors, like the quantum Hall system [25]. The DCTS truncates the
hierarchy of density matrices generated by the interactions based on the
fact that, in the undoped system, all Coulomb interactions occur between
photoexcited e–h pairs and are thus dynamically generated by the optical
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1.1. Motivation

excitation, treated with an expansion in terms of the optical field. It also
assumes the absence of free carriers in the ground state [6], a condition that
does not hold in the quantum Hall system. Thus, the almost unexplored
dynamics of strongly correlated systems whose ground state electrons inter-
act unadiabatically with the photo–excited e–h pairs raises very fundamental
questions. In the doped system, the direct X–X interactions are screened,
and the nonlinear response is mainly determined by the Fermi sea and elec-
tron gas excitations [26–32]. The presence of collective low energy electronic
excitations and the resulting non-Markovian dynamics and memory effects,
as well as the strongly correlated ground state, raise formidable theoretical
difficulties for describing the non-linear optical dynamics of the quantum
Hall and doped semiconductor system. For example, standard diagrammatic
expansions and DCTS factorizations that assume a Hartree–Fock reference
state break down. In addition, the theory must address the quantum effects
due to the Pauli correlations between the collective electronic excitations
and the photoexcited carriers. One must thus develop sophisticated theoret-
ical techniques and overcome fundamental issues in order to understand the
nonlinear response to photoexcitation.

As our quantum Hall system we consider a GaAs quantum well doped
with electrons, which form a two–dimensional electron gas (2DEG). In the
presence of a large perpendicular magnetic field, this is a well known quantum
Hall system [33, 34]. The confinement in the z–direction due to the quan-
tum well structure and the quasi–confinement in the x–y plane due to the
magnetic field exacerbate the quantum properties of the system. This con-
finement results in discrete, equally spaced, equally degenerate eigenstates
known as Landau levels (LL) [21], which in the ground state are partially
filled with the 2DEG. The ratio of occupied states to LL degeneracy gives
the filling factor ν. The LL degeneracy increases with magnetic field, and
above a threshold value (ν ≤ 2), the ground state electrons only occupy the
lowest LL (LL0) states; all the higher LLs (LL1, ...) are then empty in the
ground state. The coupling of the degenerate LL states by the Coulomb in-
teraction results in a strongly correlated incompressible quantum liquid, with
low energy collective excitations such as the magnetoplasmons (MP) and the
magnetorotons (MR) [35–37], whose properties depend on the filling factor.
Exchange Coulomb interactions can stabilize a ground state with polarized
electron spins for certain integer values of ν or certain fractional values of
ν = 1/m, where m is an integer [21, 22].

The study of the ultrafast nonlinear optical dynamics of the quantum Hall
system transcends across the boundaries of two communities largely discon-
nected up to now. Indeed, the transient optical properties of this system are
governed by (i) the interband (exciton (X)) excitations (with the 2DEG at

3



1. Introduction

rest), which consist of 1 e–h, 2 e–h, ... pairs created in the LLs (studied by the
nonlinear optics community), and (ii) the intraband 2DEG excitations (with
unexcited quantum well and full valence band), e.g. the 1–MP, 2–MP, ... and
incoherent pair excitations (studied by the quantum Hall community). The
ensemble of states that determine the nonlinear optical spectra to (2ℓ−1)–th
order in the optical field consist of products of up to ℓ e–h pairs and n 2DEG
excitations. One can then draw an analogy with the X+phonon states that
determine the ultrafast optical dynamics in undoped semiconductors [6, 7, 9].
However, there are some important differences. In the quantum Hall system,
the 2DEG excitations are electronic in nature, and therefore subject to Pauli
correlations with the photoexcited excitons, while the ground state electrons
are strongly correlated. On the other hand, in the undoped system, the X
operators commute with the collective excitation (phonon) operators, while
the ground state correlations can be neglected. Thus the theoretical formula-
tions used to study the nonlinear optical response in undoped semiconductors
must be extended in order to treat correlations in the doped system. Despite
the impressive work in the past on the ultrafast nonlinear optical response
of undoped semiconductors and the properties of the quantum Hall system,
so far these two fields are disconnected. The recent ultrafast wave mixing
experiments on the quantum Hall system and the quantum coherent ultar-
fast dynamics that they reveal, which must be attributed to the many–body
interactions, point out the need to develop a theoretical formulation that
treats the effects of both intreband and intraband collective excitations in
the very early coherent temporal regime.

Recent time–resolved four–wave–mixing experiments have shed new light
into the dynamics of this strongly correlated system [25, 38–48]. The 2DEG
correlations and collective electronic excitations dominate the dephasing of
the photoexcited excitons for low photoexcitation intensities [25, 38–48],
while the time and frequency dependence of the FWM spectra revealed new
dynamical features that could not be explained within the random phase
approximation (RPA). Of particular interest is the dynamics of the quantum
Hall system during time scales comparable to the characteristic time it takes
the cold 2DEG “bath” system to react to the introduction of photoexcited
excitons. The dephasing times of the two lowest LL excitons in the quan-
tum Hall system range from a few picoseconds (LL0) to a few hundreds of
femtoseconds (LL1), while the 2DEG responds to the X–2DEG interactions
within a time interval comparable to the period of its low energy excitations.
The period of the lowest inter–LL magnetoplasmon collective modes [21, 49]
is TMP = 2π~/ΩM , where ΩM ∼ 15 − 20 meV is the MP excitation energy.
Therefore, TMP is of the order of a few hundreds of femtoseconds, longer than
the duration of the ∼100fs optical pulses used to probe this system. As a
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result, strong quantum kinetic effects in the ultrafast non-linear optical dy-
namics are expected in this regime, and well–established pictures such as the
semiclassical Boltzmann picture of dephasing and relaxation (which assumes
instantaneous X–2DEG scattering) and the Markov approximation need to
be revisited [2, 3, 7, 9, 50, 51].

This thesis is the result of a close collaboration with the experimental
group of Daniel Chemla at the University of California Berkeley, who per-
formed the first ultrafast four wave mixing experiments in the quantum Hall
system. To interpret these experiments, a new theoretical formulation had
to be developed, which extends the previous theoretical treatments of the
ultrafast coherent dynamics of excitons in undoped semiconductors to in-
clude the collective excitations and ground state correlations of the quan-
tum Hall system. The work presented here is the first theoretical attempt
that addresses these problems. As we discuss in more detail later on, the
comparison with the experiments allowed us to develop approximations from
the full theoretical formulation that highlight the important non–equilibrium
many–body physics that these experiments were able to access for the first
time. Our theoretical formulation describes the ultrafast third–order non-
linear optical response of the quantum Hall system at zero temperature and
addresses both the coherent and incoherent regimes. Our approach is based
on the projection of the exciton states and the separation of the uncorrelated
contributions to the third–order nonlinear optical response from the contri-
butions due to correlations among the interband and intraband elementary
excitations. Similar to the DCTS [4–6], we use an expansion in terms of
the optical field in order to eliminate the number of independent dynamical
variables that need to be considered. The X–2DEG correlations however do
not allow the complete factorization of the intraband density matrix into
products of interband coherences as in the case of the DCTS. We were able
to separate out the correlated contributions, which lead to the incoherent
effects, without assuming a Hartree–Fock ground state, as in the case of the
DCTS. Although our theory can be used to treat the general case, we are in-
terested is the spin–↑ polarized LL0 2DEG, motivated by recent three–pulse
FWM experiments [45–47, 52]. We derive an average polarization model
from the full theoretical formulation to explain the experimental results, and
show we can access the interband and intraband dynamics of the system.
We also discuss a microscopic treatment of the scattering between of X+MP
and X+MR states. As a special case, we also apply our theory in the case
of an undoped semiconductor quantum well, where our approach reduces to
the DCTS.
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1.2 Structure of Thesis

In Chapter 2 we present the background scientific material that is nec-
essary to understand the ultrafast nonlinear optical response of the quan-
tum Hall system. We first review the quantum Hall system. We discuss
the GaAs band structure and the creation of a 2DEG in a GaAs/AlGasAs
heterostructure. We then discuss the energy spectrum of a doped GaAs
quantum well in a large magnetic field, i.e. the eigenstructure of the quan-
tum Hall system, as well as its low energy collective excitations, which are
important in the system’s nonlinear optical response. In the second part of
this chapter, we discuss ultrafast nonlinear optical spectroscopy and review
three–pulse four–wave–mixing, in order to understand the experimental re-
sults that we will present at a later stage. We also study four–wave–mixing
in a non–interacting ensemble of two–level systems, which when compared to
our many–body theory will allow us to distinguish the experimental features
of the many–body interactions. We finish by discussing Coulomb interactions
in undoped semiconductors, and describing the theories used for this study:
the semiconductor Bloch equations and the DCTS.

In Chapter 3, we present our theoretical formulation that describes the
ultrafast third–order nonlinear optical response of the quantum Hall system.
We first setup the general problem and discuss the nature of the exciton and
magnetoplasmon states that determine the optical spectra. We then present
the equations of motion for the nonlinear polarizations and photoexcited
carrier populations and identify the contributions due to the many–body
correlations. We then present a decoupling scheme for treating the inter-
action effects, which is motivated by a decomposition of the photoexcited
many–body states that separates out the uncorrelated and excitonic con-
tributions from the correlated and incoherent contributions. We use this
approach to devise a factorization scheme and identify the intraband and in-
terband correlated contributions to the density matrix. We also discuss the
linear absorption spectra. We finish by briefly discussing the coherent X–X
interactions and scattering effects.

In Chapter 4 we apply the above theoretical framework to derive an aver-
age polarization model and explain a recent three–pulse FWM experiment on
the quantum Hall system [45]. We first briefly describe the experiment and
the experimental results. We then present the average polarization model,
with which we calculate the FWM signal for the excitation conditions of the
experiment. We also show that we can access the dynamics of both interband
and intraband excitations of the system. We then present simple analytical
solutions of our model, which will give us an intuitive picture about the dom-
inant physical mechanisms in the ultrafast dynamics of the system. Finally,
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we present full numerical calculations of the spectrally resolved FWM signal,
which when compared with the experiment, will allow us to identify the trace
of X–X+MP coherences and put an upper bound on their dephasing rate.

In Chapter 5, we apply our theory in the special case of an undoped
quantum well in a perpendicular magnetic field, motivated by a very recent
FWM experiment on this system [53]. In this case, our approach reduces
to the DCTS if phonons are included. We begin by describing the main
experimental results of a recent FWM and presenting an average polarization
model derived from our theory. We then discuss some simple analytical
solutions of the model, which by comparing to the experiment, will allow us
to identify the signature of a Raman coherence and will extract its dephasing
rate. We finish by discussing our numerical calculations and explaining the
contributions of the different physical mechanisms to the nonlinear response
of the undoped quantum well.

In Chapter 6 we return to the quantum Hall system and discuss in more
detail the role of X+MP states in its linear and nonlinear response for filling
factor ν = 1. We first discuss the linear response and derive the equations of
motion for the linear polarizations. We also study the energy dispersion of
the X+MP states. We then calculate the linear absorption spectrum and we
show that it is strongly affected by X+MP states with non–zero momentum
and by rescattering many–body processes. We also discuss the nonlinear
response by deriving the equations of motion for the nonlinear polarizations,
which are coupled to X–X, X–X+MP and X+MP–X+MP coherences. We
end by calculating the FWM signal and discussing the role of X+MP states
therein.

Finally, in Chapter 7, we summarize our work and discuss its perspectives.

1.3 Related Publications

Parts of this dissertation have been published in the following journals:

• I. E. Perakis, E. G. Kavousanaki, Theory of ultrafast exciton dynamics
in the Quantum Hall system, Chemical Physics 318, 118-136 (2005);
arXiv:cond-mat/0508322.

• K. M. Dani, J. Tignon, M. Breit, D. S. Chemla, E. G. Kavousanaki,
and I. E. Perakis, Dynamics of the collective excitations of the quantum
Hall system, Physica E 34, 206-209 (2006).

• E. G. Kavousanaki, K. M. Dani, J. Tignon, D. S. Chemla and I. E.
Perakis, Correlation Effects in the Ultrafast Dynamics of the Quantum
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Hall System close to ν = 1, Phys. Stat. Sol. (b) 243, No. 10, 2397-
2404 (2006).

• K. M. Dani, E. G. Kavousanaki, J. Tignon, D. S. Chemla and I. E.
Perakis, Nonlinear Optical studies of the Transient Coherence in the
Quantum Hall System, Solid State Communications 140, 72-82 (2006);
arXiv:cond-mat/0607550.

• K. M. Dani, J. Tignon, M. Breit, D. S. Chemla, E. G. Kavousanaki
and I. E. Perakis, Ultrafast dynamics of coherences in a quantum Hall
system, Phys. Rev. Lett. 97, 057401 (2006); arXiv:cond-mat/0607545.

This article was selected for the September 2006 issue of Virtual Journal
of Ultrafast Science.

• K. M. Dani, I. A. Cotoros, J. Wang, J. Tignon, D. S. Chemla, E. G.
Kavousanaki, I. E. Perakis, Observation of Inter-Landau-level Quantum
Coherence in Semiconductor Quantum Wells, in preparation.
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Chapter 2

The quantum Hall system

& ultrafast nonlinear optics

2.1 Outline

In this chapter, we briefly discuss the background scientific material that
is necessary to understand the nonlinear optical response of the quantum
Hall system. We begin by reviewing the physics of the quantum Hall system.
We first discuss the band structure of GaAs, and explain how a 2DEG is
created in a GaAs/AlGaAs heterostructure. We also discuss the 2D exciton
eigenstates and calculate the energy spectrum of a 2D electron in a perpen-
dicular magnetic field. We then study the 2DEG in a magnetic field and
review its low energy collective excitations.

In the second part of this chapter, we explain the ultrafast nonlinear
spectroscopic technique of four–wave–mixing. We then discuss an ensemble
of two–level systems, which will give us a good sense of the physics that is
probed by FWM experiments, but also, when compared to our results in the
following chapters, will show the effects of many–body interactions. Finally
we discuss theories that have been developed to treat the nonlinear response
of semiconductors: the semiconductor Bloch equations and the Dynamics
Controlled Truncation Scheme. We end by discussing the limits of the DCTS
and by explaining why we need to extend it in order to understand the
nonlinear optical response of the quantum Hall system.

9



2. The quantum Hall system & ultrafast nonlinear optics

Figure 2.1: Schematic of the band structure of GaAs around the Γ point.
Eg = 1.519 eV and Eso = 0.34 eV at low temperature. From [54].

2.2 The quantum Hall system

2.2.1 GaAs quantum wells

Today, GaAs and GaAs/AlGaAs heterostructures can be grown with re-
markable purity using molecular beam epitaxy, leading to sharp resonances
and long lifetimes for transitions. Such systems are excellent venues for
studying thr ultrafast many-body correlations in semiconductors.

The band structure of bulk GaAs near the Γ-point is well described by
the effective mass approximation (Fig. 2.1). There are 2 degenerate s-like
conduction bands, and 6 p-like valence bands. The low temperature bandgap
is Eg = 1.519 eV. The total angular momentum is a good quantum number,
and thus the bands can be labeled by |J,mJ〉. The lowest lying valence
bands, |1/2,±1/2〉, called the split–off bands, are seperated from the other
valence bands by the splin–orbit coupling. The large splitting between these
bands and the other valence bands (≈ 0.34 eV at low temperature) allows
us to neglect the split–off bands altogether. The J = 3/2 bands are called
the heavy hole (hh, mJ = ±3/2) bands and light hole (lh, mJ = ±1/2)

10
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Figure 2.2: (a) Schematic of the GaAs/AlGaAs altentative layers. (b) Confine-
ment of the 2DEG at the GaAs/AlGaAs interface.

bands. In bulk GaAs, they are degenerate at k = 0, but they have different
curvature and therefore different energies away from the zone center. Within
the effective mass approximation, this simply means that heavy holes and
light holes have different effective masses: m∗

hh = 0.5me, m
∗
lh = 0.082me,

where me is the bare effective mass. The conduction bands have S = 1/2,
mS = ±1/2 and m∗

e = 0.0665me.

An important advantage of GaAs/AlGaAs heterostructures is that while
the band gap for AlGaAs is much higher than that of GaAs, the lattice con-
stants for the two compounds is almost identical. As a result, alternating
layers of GaAs and AlGaAs can be grown on top of one another with very
little strain induced at the interfaces. By sandwiching a layer of GaAs be-
tween two layers of AlGaAs, a quantum well, i.e. a finite potential well is
created in the growth direction (Fig. 2.2a). Moreover, if donors are added in
the AlGaAs layer, known as modulation doping, the electrons get trapped in
a small area at the interface of the two compounds, as shown in Fig. 2.2b. As
a result a quasi–two dimensional electron gas is created with the additional
advantage of being spacially seperated from the charged impurities.

The electronic states of the quantum well are modified from that of bulk
GaAs by the confinement potential. To first approximation, we can think of
the confinement potential as an infinite quantum well along the z-direction.
Consequently, this discretizes the kz momentum states. Since the discrete
energy levels of a particle in a box depend on the mass, the degeneracy of
the heavy–hole and light-hole bands is lifted and the hh-conduction band
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2. The quantum Hall system & ultrafast nonlinear optics

transition is at a lower energy than the lh transition.
In addition to the continuum of states of the band structure, there are

also excitonic eigenstates just below the band edge. These states comprise
of an electron in the conduction band and a hole in the valence band with
energy the energy of the band gap minus the binding energy of the exciton.
The latter is due to Coulomb attraction between the electron and the hole.
To obtain the energy levels of a 2D excitonic state, we solve the relative
Schrödinger equation for a 2D electron–hole pair:

[

p2

2m
− e2

ǫr

]

φn(r) = Enφn(r) (2.1)

where r = |re −rh| is the electron–hole separation, p−pe −ph is the relative
momentum and m is the reduced mass, 1/m = 1/m∗

e + 1/m∗
h. The energy

levels En are given by

En = Eg −
R

(n+ 1/2)2
, n = 0, 1, ... (2.2)

and the wavefunction for the lowest exciton state (1s) is

φ1s(r) =

(

2

π

)2
2

α
e−2r/α (2.3)

where R = me4/2ǫ2~2 is the 3D Rydberg energy and α = ǫ~2/me2 is the
Bohr radius.

In our study we will consider the quantum well as an ideal 2D system,
although this is not the case, as the band gap of AlGaAs is larger than that
of GaAs but not infinite. This implies that in the z–direction, the electron
and hole wavefunctions are not entirely confined within the quantum well,
but rather they penetrate into the barrier regions. Also, the quantum well
itsself has a finite thickness in the z–direction. In our study we will treat the
quantum well as purely two–dimensional, although there are effects due to
deviations from this ideal picture.

2.2.2 2D Electron in a magnetic field

We will begin with the problem of a free electron (with effective mass m∗
e)

in a uniform magnetic field B = Bz, which is described by the Hamiltonian

H =
1

2m∗
e

(

−i~∇ +
e

c
A

)2

=
1

2m∗
e

(

Π2
x + Π2

y

)

(2.4)
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2.2. The quantum Hall system

where A is the vector potential related to the magnetic field as B = ∇×A,
and Π the kinetic momentum. It is straightforward to verify that the x and
y componets of Π do not commute:

[Πx,Πy] = −ie~B
c

(2.5)

In analogy with the harmonic oscillator, one may define operators a and a†

as a linear compination of Πx and Πy, for which
[

a, a†
]

= 1:

a =

√

c

2e~B
(Πx − iΠy) (2.6)

a† =

√

c

2e~B
(Πx + iΠy) (2.7)

Using these ladder operators, Eq. (2.4) becomes the same as in the harmonic
oscillator:

H = ~Ωc

(

a†a+
1

2

)

(2.8)

where

Ωc =
eB

m∗
ec

(2.9)

is the cyclotron energy. Thus, the eigenenergies are discrete states, known
as Landau levels:

En = ~Ωc

(

n+
1

2

)

, n = 0, 1, 2, ... (2.10)

By choosing the Landau gauge, for which A = Bxy, the Hamiltonian
becomes

H =
1

2m∗
e

[

p2
x +

(

py +
eB

c
x

)2
]

(2.11)

The variables are easily separable and the eigenfunction is written as

ψ = eikyχ(x) (2.12)

where ~k is the eigenvalue of the py operator, taking into account that
[py, H ] = 0. The function χ(x) is the eigenfunction of the time-independent
Schrödinger equation,

− ~
2

2m∗
e

χ′′ +
1

2
m∗

eΩ
2
c(x− xk)

2χ = Eχ(x) (2.13)
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Figure 2.3: (a) The energy spectrum of a 2D electron in a perpendicular mag-
netic field consists of discrete, equally spaced and highly degenerate Landau levels.
(b) The conduction and valence bands in a two–band quantum well in a magnetic
field are split seperately into Landau levels for electrons and holes respectively.
The inter–LL energy ~Ωc is different for electrons and holes due to the difference
in masses. A magnetoexciton Xn is optically excited by creating a LLn electron
and a LLn hole.

where xk = −kℓ2, and ℓ the magnetic length (cyclotron radius),

ℓ =

√

~c

eB
(2.14)

Eq. (2.13) is easily recognised as the Schrödinger equation corresponding to
a harmonic oscillator of spring constant ~Ωc = ~

2/m∗
eℓ

2, with equilibrium
point at xk. Thus, the eigenfunction (ignoring the normalization factor) is

ψnk(x, y) = eikyHn [(x− xk)/ℓ] e
−(x−xk)2/2ℓ2 (2.15)

where Hn the Hermite polynomial. The functions are extended in the y
direction and localized in x.

When the system is confined in a square cell of side L, the degeneracy of
each Landau level (i.e. the number of allowd states) is the number of allowed
values of k, such that the center xk lies between 0 and L. Using periodic
boundary conditions we get k = 2πm/L, with m an integer. The allowed
values of m are then determined by the condition

xk =
2πm

L
ℓ2, 0 < xk < L (2.16)
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The degeneracy N of each Landau level is

N =
L2

2πℓ2
(2.17)

The above equation can also be expressed in terms of the magnetic flux
Φ = BL2 and the flux quantum Φ0 = B2πℓ2 = hc/e as

N =
e

hc
Φ =

Φ

Φ0
(2.18)

Thus, the Landau level degeneracy is the total number of flux quanta in the
external magnetic field. Another important quantity is the dimensionless
density of the electrons expressed as the filling factor of the Landau level,

ν =
Ne

N
= 2πℓ2ne (2.19)

where Ne (ne) is the number (density) of electrons in the system.

2.2.3 Quantum well in a magnetic field

To understand the effect of a magnetic field applied to a quantum well
structure, we will first consider a two–band semiconductor quantum well
that has just a conduction and valence band with effective masses m∗

e and
m∗

h respectively. If we ignore the Coulomb interaction between the carriers in
the system, the application of a magnetic field simply splits each band into
its own series of Landau levels (Fig. 2.3b). The only difference between the
conduction band and the valence band LLs is the inter–LL spacing: because
of the different effective masses, the cyclotron energy, Eq. (2.9), is ~Ωc

c =
eB/m∗

ec for the former and ~Ωv
c = eB/m∗

hc for the latter. As a result and
due to the large hole mass in GaAs, the valence band LLs are much closer
to each other than the conduction band LLs, as illustrated in Fig. 2.3b.

When an incoming photon is absorbed, a LLn electron and a LLn hole
are created, because of the Coulomb attraction, form a bound electron–hole
pair, i.e. an exciton (also called a magnetoexciton to denote the existence
of the magnetic field). The strength of the e–h Coulomb interaction may be
characterized by the 3D Rydberg energy R and the Bohr radius α, and that
of the magnetic field by the cyclotron energy ~Ωc and the magnetic length
ℓ. The dimensionless parameter traditionally used to compare the relative
importance of these two energy and length scales is λ = (α/ℓ)2 = ~Ωc/2R, i.e.
the ratio of the magnetic and Coulombic zero–point energies. For λ≪ 1, the
Coulomb interaction dominates; one may think of the electron and hole being
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2. The quantum Hall system & ultrafast nonlinear optics

closer to each other than the radius of their cyclotron obrits. For λ ≫ 1,
the distance between the electron and hole is large enough to not affect the
individual obrits significantly, and thus the magnetic field dominates. In
GaAs, the cross–over field where λ = 1 is B ≃ 3.5 T, and consequently both
regimes are easily accessible.

When λ ≪ 1, the magnetic field acts as a perturbation to the excitonic
states. In this case, the energy levels of the exciton system depend quadrat-
ically on the applied field [55],

En ≈ − R

(n+ 1/2)2
+

~
2e2

8mc2
〈r2〉nB2 +O(B4) (2.20)

When λ≫ 1, the Coulomb interaction can be thought as a perturbation
of the Landau level spectrum. In this case,

En ≈ ~Ωc(n+ 1/2) + A
π

2

√
R

√

~Ωc +O(B0) (2.21)

where A a dimensionless constant [55]. The Coulomb correction increases
like

√
B, so that for large magnetic fields, we asymptotically approach the

bare energies of the Landau levels. In our study we will consider the high
magnetic field limit, where the carriers can be thought of as being in their
particular Landau levels.

In the realistic system, multiple bands exist and there is a strong cou-
pling of different valence band spin states in a magnetic field. Moreover, the
confinement at the interfaces of the quantum well structures changes the cou-
pling between the bands. Many authors have treated these topics in detail
[55–64].

For the s–like conduction band states, the interaction between the elec-
tron spin and the magnetic field does not change the picture significantly. The
Zeeman Hamiltonian is HZeeman = g∗µBS·B where g∗ is the electron g–factor
in the material. In the conduction band we can seperate the wavefunction
ψ(r, σz) = φ(r)χ(σz), and the Zeeman splitting can be super–imposed over
the Landau level structure.

However, the valence band structure is more complicated. There is a
doubly degenerate pair of p–like bands at the Γ–point in the bulk material.
Luttinger [65] introduced a Hamiltonian with the full symmetry of the heavy–
hole and light–hole bands and exact to second order in k and first order in
the magnetic field, which provides an accurate description of the dispersion
of the valence band for energies significantly smaller than the split–off energy
(0.34 meV). The Luttinger Hamiltonian is

H = Hh +Hm (2.22)
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Figure 2.4: Selection rules for optical transitions of a GaAs quantum well in a
magnetic field. Transitions are only made from h–LLn to e–LLn and must satisfy
∆mj = ±1. For given n, only one possible transition is allowed with σ+ polarized
light.

where

Hh = − γ1

2m0

k2

+
γ2

m0

[(

J2
x − 1

3
J2

)

k2
x +

(

J2
y − 1

3
J2

)

k2
y +

(

J2
z − 1

3
J2

)

k2
z

]

− 2
γ3

m0
({ky, kz}{Jy, Jz} + {kz, kx}{Jz, Jx} + {kx, ky}{Jx, Jy}) (2.23)

is the kinetic term, and

Hm = β4 (BxJx +ByJy +BzJz) + β5

(

BxJ
3
x +ByJ

3
y +BzJ

3
z

)

(2.24)

is the magnetic term, and {Ja, Jb} are symmetrized products of operators.
The parameters β and γ describe the effective masses and magnetic field
dispersion of the valence band. For bulk material in the absence of a amgnetic
field, the Hamiltonian can be diagonalized to give the exact eigenvalues and
eigenvectors of the valence band. For a zinc–blende semiconductor such as
GaAs, the energy levels are

E = − 1

m0

[

1

2
γ1K

2 ±
√

γ2
2k

4 + 3(γ2
3 − γ2

2)(k
2
yk

2
z + k2

zk
2
x + k2

xk
2
y)

]

(2.25)
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Often, the simplifying assumption that the band structure is isotropic within
the plane, called the axial approximation, is made. This is accomplished by
setting γ2 = γ3 in the above equations. We can then find solutions at finite
magnetic fields. The wavefunctions in the valence band will be a combination
of the different heavy–hole and light–ole subbands, with a different Landau
level associated with each spin subband [64]. The eigenvectors take the 4–
component spinor form (F3/2,n−2, F1/2,n−1, F−1/2,n, F−3/2,n+1), where the first
subscript is the z–component of the angular momentum mJ , and the second
is th eharmonic oscillator index which describes the nature of the Landau
level associated with that mJ state. The solution of this system is a tedious
numerical calculation, which must be carried out for the specific samples
used. The selection rules require ∆mj = ±1. Given angular momentum
considerations from the Landau level wavefunctions of electrons and holes, a
photon can couple only states with the same Landau level index n. Fig. 2.4
shows the optical transitions into the lowest conduction band Landau level,
LL0 [64]. All valence band states shown are heavy hole states at B = 0.
We see that there are several transitions excited by σ− polarized light, but
only one excited by σ+ light. Thus, in the case of right–circularly polarized
light, we only need to consider the |J,mj〉 = |3/2,−3/2〉 band of the four
valence bands. In this case, the optical field excites spin–↓ electrons into
the |J,mj〉 = |3/2,−3/2〉 conduction band. The experiments we will discuss
in the following chapters are performed with right–circularly polarized light
and consequently, we will be able to describe them adequately by making a
two–band approximation.

2.2.4 2DEG in a magnetic field

In §2.2.1 we discussed the formation of a 2DEG in a modulation doped
aAs/AlGaAs heterostructure: because of the larger band gap of AlGasAs
as opposed to GaAs, the doped electrons get traped in a small area in the
GaAs quantum well and form the 2DEG. When a large magnetic field is
applied perpendicular to the 2DEG plane, the conduction and valence bands
split into Landau levels, which are now populated by the 2DEG. For non–
interacting electrons, the ground state of the system is obtained by putting
each electron in the lowest available energy state. So first we fill all LL0 spin–
↑ states, followed by the LL0 spin–↓ states. As we continue filling in more
electrons, they start occupyning states in LL1 and so on. The filling factor
ν, defined as the ratio of the number of doped electrons to the degeneracy of
the LLs, Eq. (2.19), shows the percentage of occupied states. For ν = 1, all
LL0 spin–↑ states are occupied; for ν = 2 all LL0 spin–↑ and spin–↓ states
are occupied, etc.
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Figure 2.5: Filling factor decreases with increasing magnetic field: As the
magnetic field is increased, the degeneracy of each Landau level increases and
more electrons fit into the lower Landau levels.

As shown in Eq. (2.19), the filling factor can be changed not only by
changing the number of doped electrons at a fixed magnetic field, but also by
changing the magnetic field for a fixed doping concentration. By increasing
the magnetic field, the degeneracy of the Landau levels is larger and more
electron can fit in the lower LLs (Fig. 2.5). In our calculations, we will
consider the filling factor to be ∼ 1, i.e. the 2DEG resides in LL0 and mostly
in the |1/2, 1/2〉 states, with spin–↑.

When taking into account Coulomb interactions, the above discussion is
valid in the large magnetic field limit, since cyclotron energy inceases linearly
to B, while the characteristic Coulomb interaction energy, e2/ǫℓ, increases as√
B. As a result, for large enough magnetic fields, Landau level mixing

due to Coulomb interactions is negligible and the non–interacting picture
described above is valid. However, the presence of Coulomb interactions are
important for the low energy collective excitations of the 2DEG, which affect
its ultrafast nonlinear optical response.

2.2.5 Collective Excitations

The typical low energy collective excitation of the quantum Hall system
are the intra- and inter-Landau level excitations. The spectrum due to these
excitations has been studied theoretically [35, 66, 67]. However, only a few
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experiments in electron tunneling or Raman scattering [68–70] have success-
fully accessed this information.

The intra-Landau level excitations exist entirely within a single Landau
level. It has been shown [66] that the same theory used by Feynman to
explain the excitations of liquid Helium [71] can also be used to explain the
intra-Landau level excitations of the 2DEG in a large field. The dispersion
curve for these excitations exhibits a minimum at a characteristic energy, in
parallel with the roton mode made in superfluid helium [66]. In the quantum
Hall community, these objects are called magnetorotons, and can be thought
of as an excitation in which the electron density remains essentially constant,
but there is a circular modulation built up from the phase of the single
electron orbits.

The more relevant excitations for the experiments of interest here, will be
the inter-Landau level excitations. At high field, when the Landau levels are
well separated from one another, it costs an energy ∼ Ωc to create an inter-
Landau level excitation. These excitations are known as magnetoplasmons.

Promoting an electron from a full Landau level to the next highest empty
level costs energy Ωc. However, the removal of an electron leaves behind a
hole in first level, which can interact with the promoted electron, similar to a
magnetoexciton. This interaction must be taken into account to understand
the structure of the excitation. The dispersion curve when LL0 is full (ν = 1)
has been calculated in Ref. [67].

The theory of intra-Landau level excitations has been extended to the
calculation of the magnetoplasmon dispersion at partial filling [35]. If we
think of the full level case as the creation of an electron-hole pair, similar to
a magnetoexciton, than in a partially full level of magnetoplasmon is like an
electron–hole pair accompanied by a shake–up of the electron gas.

For all filling factors, the excitation energy at long wavelength approaches
the cyclotron energy. This is Kohn’s theorem [72], a direct consequence of
the translational invariance of the system in the x–y plane.

2.3 Ultrafast Nonlinear Optical Spectroscopy

Optical spectroscopy is a powerful tool for investigating the electronic
and vibrational properties of a variety of systems, like atoms, molecules and
solids. In semiconductors, the techniques of absorption, reflection, lumines-
ence, and light-scattering spectroscopies have provided invaluable informa-
tion about such diverse aspects as the electronic band structure, phonons,
single particle excitation spectra of electrons and holes, and properties of
defects, surfaces and interfaces.
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Figure 2.6: Schematic of a 2–pulse and 3–pulse FWM experiment.

However, optical spectroscopy has unique stengths since it can provide
information about the non–equilibrium and nonlinear properties of semi-
conductors, in combination with picosecond and femtosecond laser pulses.
It provides the best means of determining the non–equilibrium distribution
functions of excitations created by the optical field. Moreover, optical tech-
niques provide the ability to investigate the nonlinear properties, including
coherent effects, in semiconductors, and thus provide insights into different
aspects of semiconductors, such as many–body effects, coherent effects and
dephasing phenomena.

Typical linear spectroscopic measurements are absorption, photolumines-
cence, etc. Standard nonlinear optical experiments are pumb–probe, four–
wave–mixing, six–wave–mixing, etc. In the following, we will focus on the
four–wave–mixing technique, which is relevant to the experiments of interest
[45, 52].

2.3.1 Four–Wave–Mixing Spectroscopy

In a FWM experiment, we study the third order response of the system.
Three optical pulses excite the ssystem under investigation. Two of the
pulses create a second order excitation, and the third pulse is scattered by
the excited state in a new direction. Thus this scattered pulse, which is
the FWM signal, reflects the third–order nonlinear response of the system.
The signal can be studied in different ways. For example, one may study
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the intensity of the signal versus the time delays between the pulses, or can
study the spectrum of the signal, etc. A FWM experiment can be done with
two pulses (two–pulse FWM) or three pulses (three–pulse FWM), as shown
in Fig. 2.6.

In two–pulse FWM, two pulses impinge on the sample in directions k1

and k3. The signal is measured in the background free direction 2k1 − k3,
and one can study the signal as a function of the time delay between the
two pulses. In three–pulse FWM, the system is excited with three pulses
that propagate in directions k1, k2, and k3. The signal is measured in the
direction k1+k2−k3 and can now be studied as a function of two time delays
in the system: ∆t12 betweeen pulses k1 and k2, and ∆t13 between pulses k1

and k3.
In the experiments we will discuss in the following chapters, three–pulse

FWM is performed on the samples under investigation and the FWM signal
is measured in the k1 + k2 − k3 direction in two different cases: (i) when
pulses k1 and k2 arrive together, i.e. ∆t12 = 0, which will be called “the
∆t13 axis”, since the signal in this case depends only on the ∆t13, and (ii)
when pulses k1 and k3 arrive together, i.e. when ∆t13 = 0, which will be
called “the ∆t12 axis”, as the signal now depends only on ∆t12. Later on, we
will show that the ∆t13 axis accesses the interband dynamics in the system,
while the ∆t12 axis accesses the intraband dynamics.

In the following section, we will discuss the FWM signal in an ensemble
of two–level systems, which will give us an intuition about the physics that
is probed with such experiments.

2.3.2 An ensemble of independent two–level systems

The coherent phenomena in atoms and molecules are generally analyzed
for an ensemble of independent two–level systems. The independent two–
level model assumes that the photon is nearly resonant with the transition
between |a〉 and |b〉 and far off resonance with respect to all other transi-
tions. It further assumes that there is no interaction between various two–
level atoms or molecules making up the ensemble. The electronic states in
a semiconductor are considerably more complicated than those in atoms.
However, each exciton in a semiconductor can be considered as a two–level
system in the simplest approximation. For this reason, we will now discuss
the predictions of the independent two–level model.

The quantum mechanics of transition probabilities in a two–level system
by a near–resonant excitation is well known. If the wavefunctions of the two
states are known, then one can describe the transition probabilities as bilinear
combinations of transition amplitudes. Since the expectation value of any
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observable involves such bilinear combinations, the density matrix method
dealing directly with the bilinear combinations has been developed. The
density matrix formalism facilitates the treatment of interacting quantum
systems. We are interested not in a single two–level system but an ensemble
of two–level systems. In such cases, the wavefunction of the ensemble of
two–level systems is generally not known but certain statistical properties
of the ensemble may be known. Such statistical properties are conveniently
described in terms of the general density matrix operator:

ρ =
∑

j

Pj |Ψj〉〈Ψj| (2.26)

where Pj is the fraction of the systems which has the state vector |Ψj〉. The
density matrix obeys the Liouville variant of the Schrödinger equation,

i~ρ̇ = [H, ρ] (2.27)

where H is the Hamltonian operator of the system given by

H = H0 +Hint +HR (2.28)

H0 is the Hamiltonian of the isolated two–level system, Hint is the Hamilto-
nian that describes the interaction between the radiation field and the two–
level system, and the relaxation Hamiltonian HR describes all the processes
that return the ensemble to thermal equilibrium. The expectation value of
an operator Ô is given by

〈Ô〉 = Tr{Ôρ} (2.29)

For a two–level system with the ground state with state vector |a〉 and energy
Ea and an excited state with the state vector |b〉 and energy Eb the density
operator is written as

ρ =

[

ρbb ρba

ρab ρaa

]

(2.30)

The diagonal elements of the density matrix represent the probability of
finding the system in the two energy eigenstates, i.e. the populations in the
two eigenstates. The off–diagonal elements represent the coherence intrinsic
to a superposition state.

In a closed two–level system, the diagonal components are related by

ρaa + ρbb = 1 (2.31)

since the sum of the populations in the lower and upper states is constant.
Because of the complexity of electronic states in a semiconductor, the as-
sumption of a closed system may be difficult to satisfy in a semiconductor.
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The unperturbed Hamiltonian

The state vector |Ψj〉 obeys the time dependent Schrödinger equation

i~|Ψ̇j〉 = H|Ψj〉 (2.32)

For an isolated two–level system in the absence of any interactions H = H0,
and H0 has no explicit time dependence so that for the system at position R

Ψk(R, t) = uk(R)e−iEkt/~ (2.33)

where k = a, b. Thus the unperturbed Hamiltonian H0 is given by

H0 =

[

Eb 0
0 Ea

]

(2.34)

For an ensemble of two–level systems, the state vector of the j–th system is

|Ψj(t)〉 = Caj |a〉 + Cbj|b〉 (2.35)

and the density matrix can be written in the more familiar form

ρ =
∑

j

Pj

[

|Cbj |2 CbjC
∗
aj

CajC
∗
bj |Caj |2

]

(2.36)

where Pj is the probability of being at the state j. If the state vectors for all
j’s are identical (i.e. Caj and Cbj are the same for all j’s), but the phases of
the coherent superposition are radomly distributed between 0 and 2π, then
the off–diagonal elements vanish and there is no coherence in the ensemble.
On the other hand, if there is a well defined phase relationship for different
j, the ensemble has coherence.

The Interaction Hamiltonian

For an electric dipole allowed transition, one generally neglects the electric
quadrupole and magnetic dipole interactions (since they are smaller by the
fine structure constant ∼ 1/137) in the interaction Hamiltonian. In this
dipole approximation,

Hint = −d · E(R, t) (2.37)

where d is the dipole moment operator and E(R, t) the electric field of the
light. The components of the dipole moment operator are given by

dnm = −e
∫

dV u∗nrum = −ernm (2.38)
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where r is the electron coordinate with respect to the location of the nucleus
at R. The components of Hint are

∆nm = −dnm ·E(R, t) (2.39)

The diagonal components of dnm and ∆nm are zero because d is an odd
parity operator.

For a monochromatic plane wave at angular frequency ω0 and linearly
polarized in the direction ε̂, the electric field can be written as the sum of
two fields

E(R, t) = E+(R, t) + E−(R, t) (2.40)

where

E+(R, t) = ε̂E0e
i[q·R−(ω0t+φ)], E−(R, t) = E+∗(R, t) (2.41)

where E0 is the (real) electric field amplitude and φ a phase factor. In calcu-
lating the transition probabilities, one generally makes the rotating–wave ap-
proximation in which the term with the rapidly varying phase factor ei(ω0+Ω)t

(where ~Ω = Eb − Ea) and the large denominator ω0 + Ω, corresponding to
d · E− is neglected. In this approximation,

∆ba = ~χRe
i[q·R−(ω0t+φ)] = ∆∗

ab (2.42)

where ~χR = erba · ε̂E0 is the Rabi energy at resonance ω0 = Ω. The matrix
form of Hint can thus be written as

Hint =

[

0 ∆ba

∆∗
ba 0

]

(2.43)

The linear and nonlinear response of the system to the electromagnetic
field is determined by the macroscopic polarization, which is connected to
the macroscopic dielctric polarization density as

P = NTr{dρ} (2.44)

where N is the number density in the ensemble.

The Relaxation Hamiltonian

The processes which bring the ensemble back to thermal equilibrium in-
clude recombination, collisions with phonons and interaction with other elec-
tronic states. The relative time scales of these processes, and their relation
to other characteristic times in the system such as the laser pulse duration,
determine the correct treatment of these relaxation processes.
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The most general approach to the description of non–equilibrium prop-
erties of semiconductors excited by laser pulses is the quantum kinetic equa-
tions approach based on non–equilibrium Green’s functions [73]. These meth-
ods have been applied to the description of excitation and relaxation pro-
cesses in laser–excited semiconductors. Numerical solutions of these equa-
tions have shown that non–Markovian behavior becomes important for time
scales that are small compared to the dephasing times, a condition that is
easily achieved for femtosecond photoexcitation not too far from resonance.
Under these conditions, the interband polarizations do not follow the pulse
adiabatically and the dephasing time is not an instantaneous function of its
environment but depends on the “history” of the environment.

A simpler approach to the problem is to make the Markovian approxima-
tion under which the relaxation times are determined by the instantaneous
distribution and polarization functions, and hence are time dependent. This
approximation forms the basis for the classical Boltzmann equation approach
to transport in semiconductors.

The simplest approach to the problem is to assume that the dynamical
self energies in the non–equilibrium Green’s function approach can be re-
placed by constant phenomenological transverse and longitudinal relaxation
rates for the relevant relaxation processes in the problem and simplify the
relaxation Hamiltonian accordingly. Analysis of most coherent experiments
and the semiconductor Bloch equations are based on this assumption. In
this approach, one approximates the relaxation Hamiltonian by

[HR, ρ]bb = −ρbb/T1 and [HR, ρ]ba = −ρba/T2 (2.45)

where T1 is the lifetime of the state b and 1/T2, the transverse relaxation
rate, is the sum of the recombination rate 1/T1 and the pure dephasing rate.
One can think of T2 as the lifetime of the coherent superposition state.

The relaxation time approximation is valid in the limit that the response
of the medium in which the system under study is embedded is either very
fast or very slow compared to the system–medium interaction. It can be
shown that the linear absorption shape is a Lorentzian (corresponding to
a homogeneously broadened line) in the limit of very fast response of the
medium, and a Gaussian (corresponding to an inhomogeneously broadened
line) in the limit of very slow response of the medium.

Optical Bloch equations

The coupled equations of motion for the polarization and the population
of an ensemble of independent two–level systems are known as the optical
Bloch equations, in analogy with the equations first derived by Bloch for the
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spin systems. For simplification, we introduce a new notation and substitute
n = ρbb, 1 − n = ρaa, and p = ρba. Using the Liouville equation and the
above definitions, one gets

ρ =

[

n p
p∗ 1 − n

]

(2.46)

iṅ = − i
1

T1
n +

1

~
(∆bap

∗ − p∆∗
ba) (2.47)

iṗ =

(

Ω − i
1

T2

)

p+
1

~
∆ba(1 − 2n) (2.48)

Eqs. (2.47) and (2.48) are known as the optical Bloch equations and form the
basis for analyzing coherent transient experiments in independent two–level
systems.

The coupled optical Bloch equations cannot be solved analytically in the
general case. One generally resorts to expanding the density matrix into a
Taylor series in the incident field amplitudes and obtains a solution to the
desired order. Numerical techniques have to be employed in the general case.
We formally write the density n and polarization p as

n =n(0) + n(1) + n(2) + n(3) + ... (2.49)

p =p(0) + p(1) + p(2) + p(3) + ... (2.50)

with n(0) = 0 and p(0) = 0. For the usual initial conditions of n = 0 and
p = 0, it can be shown that the odd powers of n and the even powers of p
are zero. The low order components of n and p are given by

iṗ(1) =

(

Ω − i
1

T2

)

p(1) +
1

~
∆ba (2.51)

iṅ(2) = − i
1

T1
n(2) +

1

~
(∆bap

(1)∗ − p(1)∆∗
ba) (2.52)

iṗ(3) =

(

Ω − i
1

T2

)

p(3) − 2
1

~
∆ban

(2) (2.53)

Analysis of a three–pulse FWM experiment

As discussed in §2.3.1, in a three–pulse FWM experiment the sample is
excited by three pulses travelling in directions k1, k2 and k3 respectively,
with time delay ∆t12 = t1 − t2 between pulses 1 and 2 and ∆t13 = t1 − t3
between pulses 1 and 3, and create a FWM signal in the ks = k1 + k2 − k3
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direction. Assuming that the first pulse arrives at the sample at time t = 0,

E(R, t) =E(R, t)ei(k1·R−ω0t) + E(R, t+ ∆t12)e
i(k2·R−ω0t)

+ E(R, t+ ∆t13)e
i(k3·R−ω0t) (2.54)

where E(R, t) is the electric field pulse shape at R, and ω0 corresponds to
the peak of the mode–locked laser spectrum. For this electric field,

∆ba/~ =(e/~)rbae
−iω0t ×

[

E(R, t)eik1·R+

E(R, t+ ∆t12)e
ik2·R + E(R, t+ ∆t13)e

ik3·R
]

≡ie−iω0tf(t) (2.55)

If we define p(1) = p(1)(t)e−iω0t, then

ṗ(1)(t) +Gp(1)(t) = f(t) (2.56)

which has the solution

p(1) =

∫ t

−∞

dt′e−G(t−t′)f(t′)e−iω0t (2.57)

where G = 1/T2 + i(Ω − ω0). The signal along ks = k1 + k2 − k3 results
either from the diffraction of pulse 1 from a grating created by pulses 2 and
3, or from the diffraction of pulse 2 from a grating created by pulses 1 and
3 i.e., it is related to either p

(3)
123 or p

(3)
213. We therefore need to calculate only

the k2 − k3 and k1 − k3 components in the density n(2), i.e., n
(2)
23 and n

(2)
13

which using Eq. (2.47), can be shown to be given by

n
(2)
i3 =

∫ t

−∞

dt′′e−(t−t′′)/T1fi3(t
′′) (i = 1, 2) (2.58)

where

f13(t) =
e2|rba|2

~2
ei(k1−k3)·R

[

E(R, t)

∫ t

−∞

dt′E(R, t′ + ∆t13)e
−G∗(t−t′)

+ E(R, t+ ∆t13)

∫ t

−∞

dt′E(R, t′)e−G(t−t′)

]

(2.59)

f23(t) =
e2|rba|2

~2
ei(k2−k3)·R

[

E(R, t+ ∆t12)

∫ t

−∞

dt′E(R, t′ + ∆t13)e
−G∗(t−t′)

+ E(R, t+ ∆t13)

∫ t

−∞

dt′E(R, t′ + ∆t12)e
−G(t−t′)

]

(2.60)
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The third order polarizations p
(3)
123 and p

(3)
213 can be obtained from Eq. (2.48)

p
(3)
123 = − 2i(e|rba|/~)3e−iΩte−t/T2

∫ t

−∞

dt′′′
∫ t′′′

−∞

dt′′
∫ t′′

−∞

dt′eGt′′′e−(t′′′−t′′)/T1

× E(R, t′′′)
[

E(R, t′′ + ∆t12)E(R, t′ + ∆t13)e
−G∗(t′′−t′)

+E(R, t′′ + ∆t13)E(R, t′ + ∆t12)e
−G(t′′−t′)

]

(2.61)

p
(3)
213 = − 2i(e|rba|/~)3e−iΩte−t/T2

∫ t

−∞

dt′′′
∫ t′′′

−∞

dt′′
∫ t′′

−∞

dt′eGt′′′e−(t′′′−t′′)/T1

× E(R, t′′′ + ∆t12)
[

E(R, t′′)E(R, t′ + ∆t13)e
−G∗(t′′−t′)

+E(R, t′′ + ∆t13)E(R, t′)e−G(t′′−t′)
]

(2.62)

In order to determine the signal at a given point in space and time, the
Maxwell’s propagation equations have to be solved in general. However, for
an optically thin sample with thickness small compared to the wavelength of
light, the signal diffracted signal along ks can be approximated by

P
(3)
ij3 = NTr{dρ} (2.63)

with appropriate order and component of ρ.
These equations can be numerically integrated to obtain the spectrally–

resolved FWM signal (SR–FWM) in the ks direction

S
(3)
ij3(∆t12,∆t13, ω) = |

∫ ∞

−∞

P
(3)
ij3 (t)eiωtdt|2 (2.64)

and the time-integrated (TI–FWM) signal

I
(3)
ij3(∆t12,∆t13) =

∫ ∞

−∞

|P (3)
ij3 (t)|2dt (2.65)

as a function of the time delays ∆t12 and ∆t13.

Analytic Solutions for Delta Pulses.

The iterative equations can be solved numerically for a given pulse shape.
However, we consider in this section a simpler case of pulses that can be
described by the Dirac δ-functions in time, i.e. E(R, t) = E0δ(t). We also
assume that the sample is thin and the propagation effects can be neglected.
In this case, Eq. (2.56) gives

p(1) =
erba

i~
E0

[

e−Gtθ(t) + e−G(t+∆t12)θ(t+∆t12) + e−G(t+∆t13)θ(t+∆t13)
]

eiωt

(2.66)
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where θ(t) is the Heaviside step function, and we recall that G = (1/T2) +
i(Ω− ω0). Thus, at resonance (Ω = ω0), the first order polarization is a sum
of three damped oscillations at ω0 displaced by the time delays ∆t12 and
∆t13.

Similarly, Eq. (2.58) can be integrated and give e.g. for n
(2)
13

n
(2)
13 =

e2|rba|2
~2

E2
0

[

θ(t)θ(∆t13)e
−t/T1e−G∗∆t13

+θ(t+ ∆t13)θ(−∆t13)e
−(t+∆t13)/T1eG∆t13

]

(2.67)

There are two terms of which only one is non-zero for a given ∆t13: the first
term is non-zero only when ∆t13 > 0, i.e., for positive time delays, whereas
the second term is non-zero only for negative time delays (∆t13 < 0). This
equation simply states that, after the arrival of the second pulse (pulse 1 if

∆t13 > 0, and pulse 3 if ∆t13 < 0), n
(2)
13 decreases exponentially with ∆t13.

For a given ∆t13, n
(2)
13 decreases with the population decay constant T1 as a

function of time. Similar results are obtained for negative ∆t13, as well as
for n

(2)
23 .

This process can be repeated to obtain an expression for the third–order
polarization in the ks direction from Eq. (2.62). For example, for p

(3)
213 we

obtain

p
(3)
213 = − i

e3|rba|3
~3

E3
0e

−iωte−t/T2ei(k1+k2−k3)·Rθ(t+ ∆t12)e
−G∆t12

×
[

θ(∆t13)θ(−∆t12)e
∆t12/T1e−G∗∆t13

+θ(−∆t13)θ(∆t13 − ∆t12)e
(∆t12−∆t13)/T1e−G∆t13

]

(2.68)

from which we obtain the decay of the third–order polarization for given time
delays ∆t12 and ∆t13.

2.4 Coulomb correlations in semiconductors

Semiconductors are a highly complex, interacting many-body system. In-
coming photons excite electrons and holes. If we neglect the Coulomb inter-
actions between them, we can treat each state in k-space as a separate two
level system. Optical experiments in semiconductors have been explained
using multi-level models (see e.g. Refs. [74, 75]). However, the Coulomb
interaction has drastic effects even on the linear optical properties of the
semiconductor. Ignoring these interactions, or including them in a ad hoc
manner, is a poor way to explain the nonlinear results.
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To account for the interactions between photo–excited electrons and holes,
we begin from the Hamiltonian for the electron-hole subsystem of the semi-
conductor [9]:

Htot =
∑

k

[Eckê
†
kêk + Evkĥ

†
kĥk]

+
1

2

∑

k 6=k′

vq[ê
†
k+qê

†
k′−qêk′ êk + ĥ†k+qĥ

†
k′−qĥk′ ĥk − 2ê†k+qĥ

†
k′−qĥk′ êk]

−
∑

k

[µcvE(t)ê†kĥ
†
−k + µ∗

cvE
∗(t)ĥ†−kê

†
k], (2.69)

where Eck (Evk) gives the dispersion of the conduction (valence) band, ê†k
(ĥ†k) is the creation operator of an electron in the conduction band (hole in
the valence band) with wavevector k, vq is the Coulomb potential in k–space,
and µcv is the dipole moment. The first line of Eq. (2.69) gives the single
particle energies of the electrons and holes, the second line describes e–e, h–h
and e–h Coulomb interactions, while the last line describes the optical field–
semiconductor interaction. We consider the band dispersions to be parabolic,
and given by the effective mass approximation (~ = 1):

Eck = Eg +
k2

2m∗
e

and Evk =
k2

2m∗
h

. (2.70)

The band gap Eg contains the Coulomb interaction of the full valence band.
The polarization is given by

~P =
∑

k

µ∗〈P̂k〉 =
∑

k

µ∗〈ĥ†−kê
†
k〉 (2.71)

If we write the Heisenberg equation of motion for the operator P̂k, we find
that in addition to being driven by other two–particle correlations (polar-
izations and electron or hole populations), the Coulomb interaction couples
the two–particle correlations to four–particle correlations (products of four
operators). To solve our equation, we must then solve equations of motion
for these four-particle correlations. These are in turn driven by six-particle
correlations, and so on in an infinite hierarchy. We thus must make some
approximations which truncate this hierarchy and give a closed set of equa-
tions.

2.4.1 The semiconductor Bloch equations

The most common method for dealing with this problem has been to fac-
torize the four-particle correlations into products of two-particle correlations,
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2. The quantum Hall system & ultrafast nonlinear optics

and then make the random phase approximation (RPA), which neglects the
terms which oscillate rapidly due to large momentum differences. The RPA
is also called the time-dependent Hartee-Fock approximation. This leads to a
closed set of equations for the two-particle density matrix elements (ne,k, nh,k

and Pk), well known as semiconductor Bloch equations (SBE) [76], given here
within the relaxation time approximation:

i
∂

∂t
Pk =(Ec,k + Eh,k − iγ)Pk −

∑

q 6=k

Vk−qPq − µcvE(t)[1 − ne,k − nh,k]

+
∑

q 6=k

Vk−q[Pq(ne,k + nh,k) − Pk(ne,q + nh,q)] (2.72)

∂

∂t
nj,k = − 2Im

{

P ∗
k [µcvE(t) +

∑

q 6=k

Vk−qPq]

}

− 1

T1

nj,k (j = e, h) (2.73)

The density matrix elements in Eqs. (2.72) and (2.73) are driven by both
the electric field of the laser and a term due to the polarization from all other
k states. The SBE have been quite successful in explaining many experiments
in semiconductors, such as the AC stark effect [77, 78], time–rsolved FWM
effects [79], and photon echoes from continuum states [80, 81].

One very important effect of the Coulomb interaction is the existence of a
FWM signal for ∆t < 0, seen in experiments on GaAs quantum wells [82, 83].
The prediction of rise time of T2/4 is a general result of the SBE, independent
of the excitation or the material, assuming the system is homogeneously
broadened. For an inhomogeneous system there is a weaker signal for ∆t < 0
[84].

It is possible to transform the SBE from k-space into the exciton basis [3].
A useful model can be extracted by averaging over the lowest lying exciton
states, and generating an equation of the motion for a single average polar-
ization P . The average polarization model was first introduced to clarify the
RPA theory of FWM, since it captured the essential physics while simplifying
the equations to keep the interpretation transparent [83]. In addition to the
averaging, we will make the assumption that we are in the coherent regime,
and that the length of the Bloch vector is constant n ≈ |P |2. We then have
only a single equation to solve perturbatively:

i
∂

∂t
P (t) = (Ω − iγ)P (t) − µE(t)[1 − |P (t)|2

P 2
s

] + V P (t)|P (t)|2 (2.74)

Here, Ps is a saturation parameter and V is an effective Coulomb coupling
parameter. It is straightforward to generalize Eq. (2.74) to include several
levels [3], for example the different hole states. The average polarization
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2.4. Coulomb correlations in semiconductors

model has been useful in explaining a number of experiments at the RPA level
[83? ? ]. However, for a quantitatively accurate simulation of experiments,
it is necessary to use the full numerical solutions of the SBE, including all
band structure and selection rules.

We can also apply the RPA factorization technique in the case of a mag-
netic field applied to the sample. We start by expanding the magnetoexciton
states in terms of the Landau levels, and generate a set of equations for Pn

and nn, the polarization and excited population of LLn respectively [85]:

i
∂

∂t
Pn =(En − 2

∑

n′

Vn,n′nn′)Pn − (1 − 2nn)(µcvE(t) +
∑

n′

Vn,n′Pn′) (2.75)

∂

∂t
nn =2Im

{

Pn(µ∗
cvE

∗(t) +
∑

n′

Vn,n′P ∗
n′)

}

(2.76)

The Coulomb interaction Vn,n′ couples different Landau levels together.
Eqs. (2.75) and (2.76) have been solved numerically for up to 1000 Landau
levels [85, 86]. An average polarization model can be generated from this
system as well, by keeping only the few Landau levels which are directly
excited.

2.4.2 The Dynamics–Controlled Truncation Scheme

Over the past several years, numerous experiment effects have been mea-
sured which require a theoretical description beyond the RPA, such as the
contribution of biexcitons to the nonlinear optical response [87–89]. The
correct interpretation of these experiments requires a formalism in which
the Coulomb interaction is accounted for consistently, and to arbitrary or-
der. One such formalism which naturally extends the SBE is the Dynamics–
Controlled Truncation Scheme (DCTS) [4–6].

Calculating the optical response starts, as before, with the many-body
Hamiltonian, Eq. (2.69), and the equation of motion for the polarization.
However, unlike the RPA treatment, the four–particle correlations are not
factorized, The results of the DCTS theory are several mathematical theo-
rems which show that certain higher correlations contribute to higher order
in the electric field and can thus be neglected for a calculation of the optical
response to a given order [4, 90]. This can be accomplished because of the
correspondence between the number of electron-hole pairs in the system and
the sequence of photon absorption and emission. The theory systematically
includes all correlations which contribute to a specific order. In the limit of
third order processes (χ(3)–truncation), and within the coherent limit, there
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2. The quantum Hall system & ultrafast nonlinear optics

is only one four–particle correlation function which must be taken into ac-
count, the biexciton creation operator B [90, 91]. The effects of additional
four–particle correlations, such as the exciton density, and correlations which
contribute to fifth order in the electric field, have been investigated as well
[92, 93].

The necessary four–particle correlation Behe′h′

= 〈êĥê′ĥ′〉 − 〈êĥ〉〈ê′ĥ′〉 +
〈êĥ′〉〈ê′ĥ〉, gives the biexcitonic structure, both the bound and unbound
states. By subtracting the factorized components, we let B characterize the
deviation from the RPA theory [91]. The DCTS equations will then contain
several driving terms: (1) the Pauli blocking nonlinearity present even in the
atomic systems, (2) the Coulomb interaction of the RPA theory, and (3) a
new source term which describes the coupling between excitons and the full
spectrum of two-exciton states. This final driving term is beyond the RPA,
and has a dramatic effect on the FWM signal.

To understand the effect of this correlation, we can update the average
polarization model to include higher order correlations, based on the DCTS
microscopic theory [91, 94]. For the case of co-circularly polarized laser pulses
(which cannot excite a bound biexciton), the new equation of motion for the
polarization is [94]:

i
∂

∂t
P (t) = (Ω − iγ)P (t) − µE(t)[1 − |P (t)|2

P 2
s

] + V P (t)|P (t)|2 + VBB(t)P ∗(t)

(2.77)
where the function B is an effective four–particle correlation function describ-
ing the continuum of unbound biexciton states, and satisfying the equations

i
∂

∂t
B(t) = (2Ω − iΓ)B(t) + P (t)2 (2.78)

Unlike the Pauli blocking nonlinearity which exists only for ∆t > 0, or
even the mean-field X–X nonlinearity for which the rise time is half of the
decay time, a new source term due to exciton-exciton correlations grows in
a non-exponential fashion, and for ∆t < 0 can dominate the signal.

These equations can easily be generalized to include the four Zeemman–
split heavy hole and light hole transitions in a magnetic field [95]. This model
has also been used to explain the effects of the bound biexciton on the pump–
probe spectrum of ZnSe QWs and microcavities [96, 97]. The functional form
of the model is directly related to the full microscopic theory, which makes
it qualitatively different from a simple multi–level scheme.

Several different formalisms have been developed which are able to ac-
count for the higher order correlations, and many are in fact equivalent to
the DCTS [98–101]. Recently, a theory has been presented which bridges
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the gap between the DCTS and theories based on Green functions which
explain the build-up of screening effects [102]. Within this theory is possible
to simulate with remarkable accuracy the results of FWM in bulk GaAs in
a high magnetic field.

Limits of the DCTS

The DCTS is successful because in many semiconductor systems, there
is a correspondence between the number of electron-hole pairs in the system
and the absorption of photons. In semiconductor systems where this scheme
is applicable, we have been able to explain the experimental results with
incredible accuracy. However, if this correspondence breaks down, the DCTS
fails. This is the case, for instance, in modulation doped quantum wells where
a high mobility 2DEG exists in the sample before excitation, and can react to
photons and photo-excited carriers. In the following chapter, we will develop
a theory that extends the DCTS and addresses the nonlinear response of
systems with such a strongly correlated ground state.

2.5 Conclusions

In this chapter, we reviewed the background scientific material that is
necessary to study the ultrafast nonlinear optical dynamics of the quantum
Hall system. We first over-viewed the properties of GaAs quantum wells and
discussed the physics of the 2DEG in a magnetic field. We then discussed
ultrafast nonlinear spectroscopic experiments, and in particular four–wave–
mixing experiments. To illustrate the physics that can be accessed with
such experiments we also discussed the case of a two–level system. We then
reviewed the theoretical methods that have been used to explain such experi-
ments and more specifically we discussed the Semiconductor Bloch equations
and Dynamics–Controlled Truncation Scheme. We concluded by pointing
out that the DCTS cannot be applied in systems with a strongly correlated
ground state, such as the quantum Hall system.
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Chapter 3

Theoretical framework

3.1 Outline

As discussed in Chapter 2, the nonlinear optical response of undoped
semiconductors has been treated extensively in the past using different the-
oretical approaches, such as the DCTS [5, 6]. However, in the quantum Hall
system, the presence of the 2DEG leads to strong Coulomb correlations in
the ground state itself, which result in long range charge and spin order at
sufficiently low temperatures and to collective electronic excitations. As a
result, the main DCTS assumption of an uncorrelated Hartree–Fock ground
state breaks down. In this chapter, we will develop a theoretical formula-
tion that goes beyond the DCTS by not relying on a Hartree–Fock or other
specific ground state, in analogy with Feynman’s theory of liquid helium
[21, 49, 71, 103? , 104], and allows us to study the ultrafast nonlinear optical
response of the quantum Hall system.

In §3.2, we set up the general problem, and in §3.3 we introduce the exci-
tations that dominate the ultrafast dynamics, the magnetoexcitons (X) and
the magnetoplasmons (MP). We also discuss the X+MP states created by
the interactions of the photoexcited excitons and 2DEG carriers. In §3.4,
we derive the equations of motion for the polarizations and the photoexcited
carrier populations, and we identify the contributions due to the many–body
interactions. In §3.5, we present a decoupling scheme for treating the inter-
action effects, which is motivated by a decomposition of the photoexcited
many–body states that separates out the uncorrelated and excitonic con-
tributions from the correlated and incoherent contributions. We use this
approach to devise a factorization scheme and identify the intraband and in-
terband correlated contributions to the density matrix. We also discuss the
linear absorption spectrum. Finally, in §3.6 we briefly discuss the coherent
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3. Theoretical framework

X–X interaction and scattering effects. At this point, our theory is set up
and we are able to derive an average polarization model to describe the ultra-
fast nonlinear optical response of the system and identify the experimental
signatures of the 2DEG dynamics, which will be discussed in Chapter 4. In
here, we will present a general solution.

3.2 Hamiltonian

To describe the quantum Hall system, we adopt a two–band many–body
Hamiltonian of interacting electrons and holes subject to a magnetic field
that splits the conduction and valence bands into discrete electron (e) and
hole (h) LLs [9] (~ = 1):

H =
∑

knσ

[Eg +Ωc
c(n+1/2)] ê†knσêknσ +

∑

knσ

Ωv
c (n+1/2) ĥ†knσĥknσ +Hint (3.1)

where Eg is the bandgap, Ωc,v
c = eB/me,h, are the electron and heavy hole

cyclotron energies, ê†knσ is the creation operator of the spin σ LLn conduction

band electron state, Eq. (2.15), and similarly, ĥ†knσ is the creation operator of
the spin σ LLn valence band heavy hole state ψ̄. In the ideal two–dimensional
system the hole wavefunction is related to the electron one as ψ̄kn = ψ∗

−kn,
which leads to an electron–hole symmetry that strongly affects the nonlinear
optical properties [105]. In the realistic system, this symmetry is partially
lifted due to lateral confinement, the different band offsets, confinement be-
tween the electrons and the holes, valence band mixing, etc.

The Hamiltonian Hint describes the e–e, e–h, and h–h Coulomb interac-
tions,

Hint =
1

2

∑

α1α2α3α4

[

vee
α1α2,α3α4

ê†α3
ê†α1

êα2
êα4

+ vhh
α1α2,α3α4

ĥ†α3
ĥ†α1

ĥα2
ĥα4

− veh
α1α2,α3α4

ĥ†α3
ê†α1

êα2
ĥα4

− vhe
α1α2,α3α4

ê†α3
ĥ†α1

ĥα2
êα4

]

(3.2)

where α = (k, n, σ). In the ideal two–dimensional system, the Coulomb
interaction matrix elements vij

α1α2,α3α4
(with i, j = e, h) are given by

vij
α1α2,α3α4

=

∫

dq

(2π)2
vq F

i
α1α2

(q)F j
α3α4

(−q) (3.3)

where

vq =
2πe2

ǫq
(3.4)
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is the Fourier transformed 2D Coulomb potential [9], ǫ the material dielectric
constant, q =

√

q2
x + q2

y, and

F e
α1α2

(q) = φn1n2
(q)eiqx(k1+k2)ℓ2/2δk1,k2+qy

δσ1,σ2
F h

α1α2
(q) = F e

−α2,−α1
(q)
(3.5)

where −α = (−k, n, σ), and

φmn(q) =
n!

m!

[

(−qy + iqx)l√
2

]m−n

Lm−n
n

(

q2ℓ2

2

)

e−q2ℓ2/4 (3.6)

for m ≥ n and φmn(q) = φ∗
nm(−q) for m < n. Lm−n

n is the generalized
Laguerre polynomial

Lm−n
n (x) =

n
∑

r=0

(−1)rm! xr

(n− r)!(m− n + r)!r!
(3.7)

Because of the symmetry of the Coulomb potential, Eq. (3.6) is often
useful in polar coordinates, obtained by substituting qx = q cos θ and qy =
q sin θ:

φmn(q) =
n!

m!

(

iql√
2

)m−n

ei(m−n)θLm−n
n

(

q2ℓ2

2

)

e−q2ℓ2/4 (3.8)

In the following, all energies are measured with respect to the ground
state energy, i.e. H|G〉 = 0.

The coupling to an external electric field E(t) can be described, within
the dipole approximation, by the Hamiltonian [9]

Htot(t) = H − µE(t)X̂† − µE∗(t)X̂ (3.9)

where µ is the interband transition matrix element and X̂† the interband
optical transition operator, given by

X̂† =
∑

nk

ê†kn↓ĥ
†
−kn↓ (3.10)

when the system is excited with right–circularly polarized light.

3.3 Magnetoexcitons and Magnetoplasmons

In this section we briefly discuss the magnetoexciton (X) and magneto-
plasmon (MP) excitations that govern the ultrafast nonlinear optical dynam-
ics. In the case of photoexcitation with right–circularly polarized light, which
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excites spin–↓ e–h pairs, the dipole transition operator X̂† can be expanded
in terms of the exciton creation operators X̂i that create the allowed optical
transitions for given LLs. In particular, the creation operator of a LLm →
LLn magnetoexciton with total momentum q is

X̂†
qnm =

1√
N

∑

k

eikqxℓ2 ê†k+qy/2,n,↓ĥ
†

−k+qy/2,m,↓ (3.11)

In the absence of disorder, momentum is conserved and only q = 0 excitons
are photoexcited directly. Furthermore, in the ideal system, the only allowed
optical transitions correspond to m = n. We then have that

X̂† =
√
N

∑

n

X̂†
n X̂†

n = X̂†
0nn =

1√
N

∑

k

ê†kn↓ĥ
†
−kn↓ (3.12)

In the realistic system, the disorder can relax the momentum conservation
condition [20, 37, 70, 106], thus mixing exciton states with different momenta,
while the valence band mixing couples the n 6= m valence hole states and
magnetoexcitons [20, 63, 64, 106].

The states |Xn〉 = X̂†
n|G〉 are the magnetoexciton states in the 2DEG

system. The difference from undoped semiconductors is that here the exciton
operators X̂†

n act on the strongly correlated state |G〉, which is the ground
state of the many–body Hamiltonian H that describes the correlated 2DEG
at rest.

The following orthogonality relation holds for the exciton states:

〈Xn|Xm〉 = (1 − νn)δnm, (3.13)

where

νn =
1

N

∑

k

〈G|ê†kn↓êkn↓|G〉 (3.14)

is the ground state filling factor of the LLn spin–↓ 2DEG electron states. In
the strong magnetic field limit, νn = 0.

The Pauli exchange effects between the excitons are described – as already
known from undoped semiconductors – by the deviation of the commutator of
the X operators from bosonic behavior due to the underlying Fermi statistics.
Using Eq. (3.12) we obtain that

[X̂n, X̂
†
m] = δnm (1 − νn − ∆ν̂n) , (3.15)

where

∆ν̂n =
1

N

∑

k

(

ĥ†−kn↓ĥ−kn↓ + ê†kn↓êkn↓ − 〈G|ê†kn↓êkn↓|G〉
)

(3.16)
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describes the change in the LLn filling factor due to the photoexcited electron
and hole populations.

The magnetoplasmon modes dominate over quasi-electron – quasi-hole
pair excitations for momenta q < 1/l. A LLm →LLn MP may be thought
of as an e–h pair, or exciton, formed by an electron in LLn and a hole in the
LLm 2DEG. The creation operator of this MP is given to first approximation
by the LLm →LLn contribution to the collective density operator [21, 35,
49, 67, 103]:

ρ̂e
qnmσ =

1√
N

∑

k

eiqxkℓ2 ê†k+qy/2,n,σêk−qy/2,m,σ. (3.17)

in analogy with the magnetoexciton creation operator, Eq. (3.11). It is con-
venient to also introduce a similar collective operator for the hole states [105],

ρ̂h
qnmσ =

1√
N

∑

k

eiqxkℓ2ĥ†
−k+qy/2,n,σ ĥ−k−qy/2,m,σ, (3.18)

The creation and annihilation operators are related as

ρ̂i†
qnmσ = ρ̂i

−qmnσ , i = e, h (3.19)

Here we focus on photoexcitation of the LL0 and LL1 optical transitions
only, which are dynamically coupled by the LL0 → LL1 inter–LL MPs [25,
38, 40–43]. These MPs are the lowest–energy neutral charge excitations of
the ν = 1 quantum Hall ferromagnet, where the intra–LL charge excitations
are suppressed since all spin–↑ LL0 states are occupied in the ground state
[107–109].

Similar to Feynmann’s theory of the collective charge excitation spectrum
of liquid helium [21, 35, 49, 71, 103, 104], a good variational approximation of
the MP eigenstates of the Hamiltonian H is given by the state (single–mode
approximation) [21, 49]

|Mq〉 =
∑

σnm

Cnmσ(q)φnm(q)ρ̂e
qnmσ|G〉, (3.20)

where Cnmσ(q) are variational parameters. The mixing of the different LL
states, which is due to the interactions, is suppressed in the strong magnetic
field limit [49] by a factor ∝ B−1/2 since the characteristic 2DEG Coulomb
interaction energy e2/ℓ ∝

√
B is smaller than the energy separation between

the electron LLs, Ωc
c ∝ B. Even though in the realistic system e2/ℓ ∼ Ωc

c,
calculations have shown that the LL mixing does not change qualitatively
the MP properties [35, 103, 110].
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Excitons and magnetoplasmons are both made of electrons, and therefore
the X–MP Pauli exchange effects must be considered. Similar to the case of
Xs, these are described by the commutators

[ρ̂e
qnmσ, X̂

†
l ] =

1√
N
δlmδσ↓X̂

†
qnm [ρ̂h

qnmσ, X̂
†
l ] =

1√
N
δlmδσ↓X̂

†
qmn (3.21)

obtained by using the second quantization expressions for ρ̂ and X̂. In the
case of a spin–polarized ground state 2DEG of spin–↑ electrons, the MP
and X operators commute since right–circularly polarized light only creates
spin–↓ electrons.

In addition to the Pauli exchange effects, the optical properties are strong-
ly affected by the interactions between the photoexcited excitons X̂n and the
2DEG carriers. We can describe such X–2DEG interactions, which scatter
the X into X+MP final states, by considering the action of the Hamiltonian
H on |Xn〉 [25]:

H|Xn〉 = Ωn|Xn〉 − (1 − νn)
∑

m6=n

Vmn|Xm〉 + |Yn〉. (3.22)

The above equation defines the state |Yn〉 by the requirement that it is ortho-
gonal to all exciton states, 〈Xm|Yn〉 = 0, and therefore describes an excited
2DEG configuration (denoted as 2DEG∗ from now on).

The above orthogonality requirement, as well as the orthogonality among
the X states, gives

Ωn =
〈Xn|H|Xn〉
〈Xn|Xn〉

(3.23)

the energy of the Xn state, and

Vnm = − 〈Xn|H|Xm〉
(1 − νn)(1 − νm)

= V ∗
mn (3.24)

the static Coulomb–induced coupling of the different LL Xs. Based on the
above we introduce the operator

Ŷn = [X̂n, H ] − ΩnX̂n + (1 − νn)
∑

m6=n

VnmX̂m (3.25)

that describes the interactions between Xn and all the other carriers: Xs,
MPs, or ground state 2DEG.

An explicit expression for the operator Ŷn can be obtained by calculating
the commutator [X̂n, H ]:

[X̂n, H ] = [Eg + (n+ 1/2) (Ωc
c + Ωv

c )] X̂n

−
∑

m

X̂m

∫

dq

(2π)2
vq |φmn(q)|2 + Ŷ int

n (3.26)
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The first two terms give the X energies and Coulomb–induced couplings
similar to the undoped system [85, 111], while the interaction contributions
are described by the operator

Ŷ int
n =

1

2πℓ2
√
N

∑

qm

vqρ̂q

[

φnm(−q)X̂qmn − φmn(−q)X̂qnm

]

(3.27)

where we defined for simplicity

ρ̂q =
∑

mm′σ

φmm′(q)
(

ρ̂e
qmm′σ − ρ̂h

qm′mσ

)

. (3.28)

The operator Ŷn can be obtained from Eq. (3.25) by subtracting from the
above expression for Ŷ int

n the contributions to the X energies and couplings,
Eqs. (3.23) and (3.24), which are ∝ 〈Xm|Ŷ int

n
†|G〉. After some algebra,

Ŷn = Ŷ int
n +

∑

m6=n

X̂n

1 − νn

∫

dq

(2π)2
vqφnm(−q)〈G|ρ̂qρ̂

e
−qnm↓|G〉

−
∑

m6=n

X̂m

1 − νm

∫

dq

(2π)2
vqφmn(−q)〈G|ρ̂qρ̂

e
−qmn↓|G〉 (3.29)

In the undoped system, Ŷ †
n |G〉 = 0 (since ρ̂q|G〉 = 0) and Ŷn = Ŷ int

n de-

scribes the X–X interaction effects. In the doped system, Ŷ int
n renormalizes

the exciton energies and couplings due to the exciton interactions with the
ground state 2DEG. In addition to X–X interactions, here Ŷ int

n describes
X+MP scattering effects. This can be seen from Eqs. (3.27) and (3.28) by
recalling that the operators ρ̂e

qmm′σ create and annihilate the MPs. In the
special case of spin–↑ polarized 2DEG, there is no change in the X energies
and couplings, as ρ̂e

−qnm↓|G〉 = 0. Furthermore, the X–X and X+MP con-
tributions can be distinguished, since the MPs are excitations of the spin–↑
electrons that populate the ground state, while all σ =↓ carriers are induced
by the right–circularly polarized optical pulses. As a result, in this case the
σ =↑ contribution to Eq. (3.28) describes the MP interaction effects, while
the σ =↓ term describes the X–X interactions.

To make the analogy to the case of phonons in undoped semiconductors
[5, 7], the density matrix 〈Ŷn〉 describes the contribution of the MP–assisted
interband density matrices and the X–X interactions. The results of [5, 7]
for the polarization equation of motion are reproduced if we add to the
Hamiltonian H the electron–phonon interaction and use Eq. (3.25). The
difference here is that both the X–X interactions and the interactions between
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Figure 3.1: Scattering of the LL1 exciton to (a) a {1-MP + 1-LL0-e + 1-LL1-
h} and (b) a {1-MP + 1-LL1-e + 1-LL0-h} four–particle excitation of the ground
state.

the photoexcited carriers and the collective 2DEG excitations are described
by the same electronic Hamiltonian Eq. (3.2).

By retaining contributions from the photoexcited LLs (LL0 and LL1)
only, we obtain the simple property

Ŷ1 = −Ŷ0 = Ŷ (3.30)

where

Ŷ = Ŷint +
X̂1

1 − ν1

∫

dq

(2π)2
vqφ10(−q)〈G|ρ̂qρ̂

e
−q10↓|G〉

− X̂0

1 − ν0

∫

dq

(2π)2
vqφ01(−q)〈G|ρ̂qρ̂

e
−q01↓|G〉 (3.31)

and

Ŷint =
1

2πℓ2
√
N

∑

q

vqρ̂q

[

φ10(−q)X̂q01 − φ01(−q)X̂q10

]

(3.32)

As is shown in the above expression, the state Ŷ †
int|G〉 is a linear combi-

nation of {1-MP + 1-LL0-e + 1-LL1-h} and {1-MP + 1-LL1-e + 1-LL0-h}
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Figure 3.2: Scattering of the LL0 exciton to (a) a {1-MP + 1-LL1-e + 1-LL0-
h} and (b) a {1-MP + 1-LL0-e + 1-LL1-h} four–particle excitation of the ground
state.

four–particle excitations, into which both the LL0 and the LL1 excitons can
scatter by interacting with the 2DEG. In the case of X1, the LL1 electron can
scatter to LL0 by emitting a LL0 → LL1 MP, as illustrated in Fig. 3.1a. Since
the MP energy is close to the e–LL0 → e–LL1 energy spacing, this scattering
process is almost resonant and therefore provides an efficient decay channel
of the LL1 exciton to a {1-MP + 1-LL0-e + 1-LL1-h} four–particle exci-
tation of the ground state |G〉. All other allowed scattering processes are
non-resonant. For example, the X1 hole can scatter to LL0 by emitting a
MP, which leads to a {1-MP + 1-LL1-e + 1-LL0-h} four–particle excitation
(Fig. 3.1b). The latter state however has energy that is significantly higher,
by an amount of the order of ∼ Ωc

c + Ωv
c , from that of the initial X1 state. In

the case of X0, the LL0 electron can scatter to LL1 by emitting a MP, so that
X0 → {1-MP + 1-LL1-e + 1-LL0-h} (Fig. 3.2a), or the LL1 hole can scatter
to LL0, in which case X0 → {1-MP + 1-LL0-e + 1-LL1-h} (Fig. 3.2b). |Y0〉
is thus a linear combination of the same final states as |Y1〉, also seen from
Eq. (3.30). However, in this case the energy of all final states is significantly
higher than that of the initial state |X0〉. Therefore, the decay of the LL0
exciton is suppressed as compared to that of the LL1 (or higher) exciton.
As discussed below, this difference in the dephasing of the two LL excitons
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already plays an important role in the linear absorption spectra, and has
even more profound effects on the nonlinear optical spectra.

3.4 Ultrafast Nonlinear Optical Response

In this section we obtain the equations of motion for the interband pola-
rizations and the intraband populations that determine the nonlinear optical
response and identify the contributions due to the many–body interactions.

Within the dipole approximation, the optical spectra are determined by
the polarization of the photo–excited system,

P (t) =
µ√
N

∑

n

Pn(t) Pn = 〈X̂n〉 (3.33)

which may be obtained from the equations of motion for the Xn polarizations
Pn. The time evolution of any operator Ô is determined by the full many–
body Hamiltonian Htot(t):

i∂t〈Ô〉 = 〈[Ô,H ]〉 − d(t)
∑

m

〈[Ô, X̂†
m]〉 − d∗(t)

∑

m

〈[Ô, X̂m]〉. (3.34)

where d(t) = µE(t)
√
N is the Rabi energy. Substituting Ô = X̂n in the above

equation and using the property [X̂n, X̂m] = 0, Eq. (3.25) for the commutator
[X̂n, H ] and Eq. (3.15) for the commutator [X̂n, X̂

†
m] we obtain the equation

of motion for the polarization:

i∂tPn(t)−ΩnPn(t)+(1−νn)
∑

m6=n

VnmPm(t) = −d(t)[1−νn−∆νn]+〈Ŷn〉 (3.35)

where ∆νn = 〈∆ν̂n〉. The lhs of the above equation describes the static
exciton energies and Coulomb–induced LL couplings, while the rhs describes
two sources of nonlinearity. The first term describes the Pauli blocking effects
(PSF), which are determined by the ground state spin–↓ electron populations,
with filling factor νn, and by the photo–induced carrier populations in the
spin–↓ electron system, described by 〈∆ν̂n〉, (see Eq. (3.16)). The second
term on the rhs of Eq. (3.35), 〈Ŷn〉, includes the interactions between Xn and
the rest of the carriers in the system: X–X, X–MP, and X–2DEG interactions.

The equation of motion for ∆ν̂n may be obtained by substituting Ô = ∆ν̂n

in Eq. (3.34) and recalling Eq. (3.15), which gives ∆ν̂n = 1 − νn − [X̂n, X̂
†
n].

The commutator [H, [X̂n, X̂
†
n]] can be easily calculated using the property

[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0 (3.36)
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3.4. Ultrafast Nonlinear Optical Response

which holds for any operators A, B, C and Eq. (3.25) for the commutators
[X̂n, H ]. The commutator [∆ν̂n, X̂

†
m] is obtained using Eqs. (3.12) and (3.16):

[∆ν̂n, X̂
†
m] =

2

N
δnmX̂

†
n, (3.37)

We therefore have the equation of motion:

i∂t∆νn =
2

N
[d∗(t)Pn − d(t)P ∗

n ] + 〈M̂n〉∗ − 〈M̂n〉 (3.38)

where we introduced the operator

M̂n = [Ŷn, X̂
†
n] (3.39)

This intra–band density matrix describes a redistribution of the photoex-
cited carrier populations between the LLs that is assisted by the MP and the
interactions. Analogous phonon–assisted effects in the case of undoped semi-
conductors are discussed e.g. in [7] and [5]. The corresponding physical pro-
cesses become clear by calculating the above commutator using Eqs. (3.12),
(3.29) and (3.27):

M̂n =
1

2πℓ2
√
N

∑

qm

vqρ̂q [φnm(−q)〈Xqmn|Xn〉 − φmn(−q)〈Xqnm|Xn〉]

+
∑

qmn′

vq

L2

[

φn′n(q)X̂†
qn′n − φnn′(q)X̂†

qnn′

] [

φnm(−q)X̂qmn − φmn(−q)X̂qnm

]

−
∑

qm6=n

vq

L2

[

φnm(−q)ρ̂qρ̂
e
−qnm↓ − φmn(−q)ρ̂qρ̂

h
−qnm↓

]

+
[X̂n, X̂

†
n]

1 − νn

∑

qm6=n

vq

L2
φnm(−q)〈G|ρ̂qρ̂

e
−qnm↓|G〉 (3.40)

The first term on the rhs describes the photoexcitation of coherent MPs and
is analogous to the coherent phonon contribution in undoped semiconduc-
tors [7]. Similar to the latter case, it vanishes in the ideal system, but is
known to contribute in the realistic quantum Hall system due to disorder,
inhomogeneities, and valence band mixing [20, 37, 70, 106]. The second term
describes a contribution due to X populations and inter–LL exciton coher-
ences, described by the density matrices 〈X̂†

qnmX̂qn′m′〉. As in the undoped
system, these exciton coherences and populations come from the photoex-
cited carriers. The third term describes interactions among the photoexcited
carriers similar to the undoped system [7], as well as the scattering and cor-
relations between MPs and spin–↓ carriers, which lead to the relaxation of
the photoexcited carriers due to MP emission and absorption.
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As can be seen from Eq. (3.40), the intraband scattering processes are
described by density matrices of the form 〈X̂†X̂〉, 〈ρ̂e

σρ̂
e
↓〉, 〈ρ̂e

σρ̂
h
↓〉, and 〈ρ̂h

↓ ρ̂
h
↓〉.

In the case of the spin–↑ polarized 2DEG, the MP contributions are described
by the density matrices 〈ρ̂e

↑ρ̂
e
↓〉 and 〈ρ̂e

↑ρ̂
h
↓〉, which vanish in the undoped

system in the case of right–circularly polarized light and are analogous to
the phonon–assisted intraband density matrices [7]. They relate an initial
state consisting of a photoexcited electron or hole to a final state consisting
of an electron or hole plus a MP and describe the effects of carrier scattering
by MP emission or absorption.

The number of independent density matrices can be reduced by noting
that the e–h pair creation operators may be expressed in terms of exciton
operators:

ê†kn↓ĥ
†
−k′m↓ =

1√
N

∑

q

X̂†
qnme

−iqx(k+k′)ℓ2/2δqy ,k−k′, (3.41)

obtained from Eq. (3.11). Similar to the DCTS, further reductions can be
obtained by noting that, as discussed below, only many–body states with
one valence band hole contribute to the above intraband density matrices in
the case of the third–order nonlinear optical response, and thus the density
matrix 〈ĥ†ĥ†ĥĥ〉 can be neglected to this order. Furthermore, in the case
of the spin–↑ polarized 2DEG excited with right–circularly polarized light,
spin–↓ carriers are only created via the photexcitation, and thus the density
matrix 〈ê†↓ê

†
↓ê↓ê↓〉 contributes to higher order, similar to the undoped system.

In this case, only states with one spin–↓ electron or hole contribute, and we
obtain by using Eq. (3.41) and denoting by ne↓ and nh↓ the number operators
of the spin–↓ carriers that

ρ̂e
qnn′↓ = ρ̂e

qnn′↓nh↓ =
1√
N

∑

q′m

ei(q×q′)zℓ2/2X̂†
q′nmX̂q′−qn′m (3.42)

and

ρ̂h
qnn′↓ = ρ̂h

qnn′↓ne↓ =
1√
N

∑

q′m

e−i(q×q′)zℓ2/2X̂†
q′mnX̂q′−qmn′ . (3.43)

The above expressions can be used to show that, in the case of spin–polarized
2DEG (e.g. for filling factors ν = 1/m (m = integer) or integer ν) and right–
circular polarization, the independent intraband density matrices have the
form 〈X̂†X̂〉 and 〈ρ̂e

↑X̂
†X̂〉. For other filling factors, all density matrices that

enter in Eq. (3.40) must be calculated to obtain the third–order response,
with the exception of 〈ĥ†ĥ†ĥĥ〉 which contributes to higher order.
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3.5. Interaction Effects

To conclude this section, we note from the above equations of motion that
the effects of the interactions on the nonlinear optical response are described
by the interband density matrix 〈Ŷ 〉 and the intraband density matrix 〈M̂n〉.
Due to the many–body nature of this strongly correlated system, approxima-
tions are needed in order to calculate these interaction–induced effects. In
the undoped system, the DCTS cumulant expansions separate the coherent
from the incoherent and the correlated from the uncorrelated contributions.
In the case of the 2DEG, we need an analogous decoupling scheme that we
will present in the following section.

3.5 Interaction Effects

In this section we discuss a decomposition of the photoexcited many–
body wavefunction into correlated and uncorrelated contributions, which we
use in the next section to devise approximations for treating the interaction–
induced density matrices 〈Ŷn〉 and 〈M̂n〉. Similar to the DCTS, we expand
in terms of the optical field and calculate the third–order polarization, which
is expected to describe the nonlinear optical signal when the photoexcited
carrier density is small and the X–cold 2DEG correlations prevail.

As in the theoretical approaches of [5, 112], we note the one to one corre-
spondence between the photon absorption / emission processes and the e–h
pair creation/destruction. However, since here a 2DEG is present prior to
the photoexcitation, when following the effects of the applied fields we count
the number of valence band holes in a given state. Therefore, we use the
shorthand notation 0–h, 1–h, 2–h ... to label the states, and it is clear that
states with three or more holes do not contribute to the third–order nonlin-
ear polarization [99]. We can then decompose the optically–excited state |ψ〉
according to

|ψ〉 = |ψ0〉 + |ψ1〉 + |ψ2〉 (3.44)

where |ψn〉, n = 0, 1, 2, describes the contribution of the n–h states. From
now on, we refer to operators that change the number of holes as interband
and to operators that leave the number of holes unchanged as intraband.

Substituting Eq. (3.44) into the Schrödinger equation for the Hamiltonian
Htot, Eq. (3.9), we obtain up to third order in the optical field that

i∂t|ψ0〉 −H|ψ0〉 = −µE∗(t)X̂|ψ1〉 (3.45)

i∂t|ψ1〉 −H|ψ1〉 = −µE(t)X̂†|ψ0〉 − µE∗(t)X̂|ψ2〉 (3.46)

i∂t|ψ2〉 −H|ψ2〉 = −µE(t)X̂†|ψ1〉 (3.47)
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Figure 3.3: Photoexcitation of the (a) 0–h (|ψ0〉), and (b) 2–h (|ψ2〉) states
via the nonlinear optical processes that contribute to the FWM signal. To third
order in the optical fields, the emission of a ks photon in the FWM direction
ks = k1 + k2 − k3 is determined by the excitation of one e–h by pulse k1, the
excitation of one e–h pair by pulse k2 and the deexcitation of one e–h pair by the
optical field k3. Although in a coherent FWM experiment the nonlinear excitation
process must begin and end with the ground state |G〉, the intermediate 0–h state
|ψ0〉 does not need to be the ground state and may contain excitations of the
2DEG.

with initial condition |ψn(−∞)〉 = δn,0|G〉. The Hamiltonian H includes
the degrees of freedom which lead to dephasing. The physics of the above
equations is clearly displayed: |ψ0〉 is coupled to |ψ1〉 by the destruction of one
e–h pair, |ψ1〉 is coupled to |ψ0〉 by the creation of one e–h pair and to |ψ2〉 by
the destruction of one e–h pair, and |ψ2〉 is coupled to |ψ1〉 by the creation of
one e–h pair. Fig. 3.3 shows the optical transitions that determine the FWM
signal up to third order in the optical field. It is worth noting that one can
extend Eqs. (3.45), (3.46) and (3.47) to treat higher order nonlinear processes
by retaining states with higher hole numbers in the expansion Eq. (3.44).

3.5.1 Linear response

To lowest order in the optical field, only the 1–h state |ψ1〉 is photoexcited.
We separate out the magnetoexciton contribution to this state by introducing
the decomposition

|ψ1L〉 =
∑

n

PL
n

1 − νn

|Xn〉 + |ψ̄1L〉 (3.48)

where |ψ̄1L〉 is the {1-h/2DEG∗} contribution, defined by the requirement
〈Xn|ψ̄1〉 = 0, that describes the incoherent contributions due to the X–2DEG
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interactions. The exciton amplitude

PL
n = 〈Xn|ψ1L〉 (3.49)

coincides with the linear polarization, whose equation of motion is obtained
by linearizing Eq. (3.35):

i∂tP
L
n = (Ωn − iΓn)PL

n − (1 − νn)
∑

m6=n

VnmP
L
m − d(t)(1 − νn) + P̄L

n (3.50)

where we introduced an exciton dephasing rate Γn. The amplitude

P̄L
n = 〈Ŷn〉L = 〈Yn|ψ1L〉 = 〈Yn|ψ̄1L〉 (3.51)

describes the time evolution of the X+MP states that contribute to |Yn〉 and
corresponds to a X+MP coherence, analogous to the X+phonon coherence
in undoped semiconductors [5, 7].

By substituting Eq. (3.48) in Eq. (3.46), using Eqs. (3.50) and (3.22), and
noting that up to first order in the optical field |ψ0〉 = |G〉 and |ψ2〉 does not
contribute, we obtain the equation of motion for |ψ̄1L〉:

i∂t|ψ̄1L〉 −H|ψ̄1L〉 =
∑

n

1

1 − νn

[

PL
n |Yn〉 − P̄L

n |Xn〉
]

(3.52)

The first term in the rhs of the above equation describes the scattering of
Xn with the 2DEG, while the second term is responsible for the dephasing
of PL

n .
If we restrict to the LL0 and LL1 states, Eq. (3.30) applies and thus

P̄L
1 = −P̄L

0 = P̄L (3.53)

To obtain the equation of motion for P̄L, a basis of X+MP states must be
introduced. A simple basis can be created by considering the action of the
Hamiltonian on the state |Y 〉 introduced in §3.3. Similar to Eq. (3.22) that
defines the latter state, we introduce a new state |Z〉 orthogonal to all the
|Xn〉 states as well as to |Y 〉 as follows [25]:

H|Y 〉 = Ω̄|Y 〉 +W

( |X1〉
1 − ν1

− |X0〉
1 − ν0

)

+ |Z〉 (3.54)

where

Ω̄ =
〈Y |H|Y 〉
〈Y |Y 〉 and W = 〈Y |Y 〉 (3.55)
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obtained by using the above orthogonality requirements and Eqs. (3.13),
(3.22) and (3.30).

By substituting Ô = Ŷ in Eq. (3.34), keeping terms up to first order to
the optical field and using Eq. (3.54), we obtain the equation of motion for
P̄L:

i∂tP̄
L = (Ω̄ − iγ)P̄L +W

(

PL
1

1 − ν1
− PL

0

1 − ν0

)

+ ZL (3.56)

where ZL = 〈Z|ψ̄1L〉 and γ is the dephasing rate.
By continuing the above orthogonalization procedure, we create a Lanczos

basis [8, 113] of strongly correlated orthogonal states |Z(n)〉, where |Z(0)〉 =
|Y 〉 and |Z(1)〉 = |Z〉, from the recursive relation obtained by acting with the
Hamiltonian H on the previous state, and then orthogonalizing the result
with respect to all the existing basis states [25, 113]:

H|Z(n)〉 = Ω̄(n)|Z(n)〉 +W (n)|Z(n−1)〉 + |Z(n+1)〉 (3.57)

where

Ω̄(n) =
〈Z(n)|H|Z(n)〉
〈Z(n)|Z(n)〉 , W (n) =

〈Z(n)|Z(n)〉
〈Z(n−1)|Z(n−1)〉 . (3.58)

By substituting Ô = Ẑ(n) in Eq. (3.34) and keeping terms up to first order
to the optical field we obtain the equations of motion for the coherences
Z(n)L = 〈Z(n)|ψ̄1L〉:

i∂tZ
(n)L =

(

Ω̄(n) − iγn

)

Z(n)L +W (n)Z(n−1)L + Z(n+1)L (3.59)

As discussed in [25], by taking the Fourier transform of the above system of
equations, we can obtain a continued fraction expansion of the polarization,
which describes a non–Markovian dephasing. This approach is analogous to
the numerical calculations of the 2DEG dynamical structure factor [21, 49].
The above hierarchy can be truncated when convergence is reached, which
becomes more rapid with increasing damping rates or, in the case of an N–
electron system, after performing N iterations. In the quantum Hall effect
literature, numerical calculations of the N–electron spectral functions have
been shown to extrapolate to the N → ∞ limit for a relatively small N
[21, 105]. Compared to an expansion in terms of non–interacting X+MP
states, as in Eq. (3.27), the correlated Lanczos states are advantageous when
the different momentum contributions are strongly coupled, or for obtaining
a simple solution such as the average polarization model discussed in §4.3.

Linear Absorption Spectrum

By retaining only the |X0〉, |X1〉, and |Y 〉 states, and using Eqs. (3.50)
and (3.56), we can calculate the linear absorption spectrum. In Chapter 6, we
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Figure 3.4: Normalized linear absorption spectrum of the quantum Hall system
at B = 7 T. The zero of energy was taken to be at ω = Ω1. Solid line: experiment
[52]. Dashed line: theoretical calculation by retaining the |X0〉, |X1〉, and |Y 〉
states and with parameters chosen to fit the experiment: Ω0 − Ω1 = 14.3 meV,
Γ0 = Γ1 = 0.28 meV, V01 = V10 = 2.3 meV, Ω̄ − Ω1 = 0.1 meV, γ = 3.5 meV,√
W = 2 meV, ν0 = 0.34, ν1 = 0. The small peak at −10 meV in the experiment

is due to the light–hole band, which is not taken into account in our theoretical
model.

will discuss our exact calculation for ν = 1, where we retain the |X0〉, |X1〉,
and X̂†

q01ρ̂
e
−q10↑|G〉 states and calculate all energies and couplings. Here, we

use parameters that fit the experimental data. Our results do not depend
on their precise value. Fig. 3.4 shows the calculated spectrum in comparison
with the experiment for B = 7 T. The effect of the higher Lanczos states,
which describe the “bath” that leads to exciton dephasing and do not couple
directly to the exciton, is taken into account by introducing the dephasing
rate γ of P̄L that describes the coupling between the exciton and the “bath”.
This dephasing is due to X+MP scattering (see Eq. (3.27)) and the emission
of other 2DEG excitations.

Noting the analogy between a MP and an X, one can make an analogy be-
tween the X–MP scattering described by Eq. (3.27) and the X–X scattering in
undoped semiconductors. As shown in [111], in the case of magnetoexcitons
the latter can be described by a dephasing rate for strong X–X interactions
and leads to the average polarization model [3, 91, 111]. The main feature
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in Fig. 3.4 is the strong LL1 broadening and asymmetric lineshape, which
is due to P̄L and cannot be obtained by introducing a polarization dephas-
ing time. Even though the time evolution of the X+MP states, described
by P̄L, determines the lineshape of the LL1 peak, it only plays a small role
at the LL0 frequency. To interpret this difference we note that, as can be
seen by using Eq. (3.32) to calculate the state |Y 〉, the main contribution
to P̄L comes from {1–MP + 1–LL0–e + 1–LL1–h} four–particle excitations,
while all other contributions are non-resonant with the LL0 and LL1 exci-
tons. Even though P̄L couples equally to both X amplitudes PL

0 and PL
1 ,

it dominates the dephasing of PL
1 since the above four–particle states have

energy comparable to that of X1 in the case of an inter–LL MP. In contrast,
X0 has significantly smaller energy, and thus the inter–LL MP plays a minor
role in the broadening of the LL0 exciton peak.

3.5.2 Second order processes

In this section we consider the two–photon nonlinear optical processes
that lead to the photoexcitation of the 2–h state |ψ2〉 and the 0–h state |ψ0〉.
By separating out the contribution of the states |XnXm〉 = X̂†

nX̂
†
m|G〉, which

describe a pair of non-interacting Xs, and X̂†
n|ψ̄1L〉, which describes a non-

interacting pair of X and X+MP 1–h states, we arrive at the decomposition
to O(E4)

|ψ2〉 =
1

2

∑

nm

PL
n P

L
m

(1 − νn)(1 − νm)
|XnXm〉 +

∑

n

PL
n

1 − νn

X̂†
n|ψ̄1L〉 + |ψ̄2〉 (3.60)

where |ψ̄2〉 describes the correlated X–X and X–X+MP contributions and
satisfies the equation of motion

i∂t|ψ̄2〉 −H|ψ̄2〉 =
1

2

∑

nm

PL
n P

L
m

(1 − νn)(1 − νm)
[Ŷ †

n , X̂
†
m]|G〉

+
∑

n

1

1 − νn

[

PL
n Ŷ

†
n − P̄L

n X̂
†
n

]

|ψ̄1〉 (3.61)

obtained by substituting Eq. (3.60) into Eq. (3.47) and using Eqs. (3.50),
(3.52) and (3.22). We note that, in the above equation of motion, there are
no terms proportional to d(t) and therefore the decomposition Eq. (3.60)
eliminates all contributions to |ψ2〉 that are proportional to the excitonic
amplitudes PL

n (whose time derivative is proportional to d(t)).
In addition to the photoexcitation of the above 2–h many–body state,

the two–photon process of excitation of a 1–h state and then de-excitation
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of an e–h pair (possibly accompanied by the scattering of 2DEG excitations)
leads to a second order contribution to the 0–h state |ψ0〉. We split the latter
state into the contribution of the ground state |G〉, with amplitude 〈G|ψ〉,
where the 2DEG is not excited during the excitation–deexcitation process,
and the photoexcited {0–h/2DEG∗} contribution. We further decompose
the latter contribution into an uncorrelated part ∝ X̂n|ψ̄1L〉, where the deex-
cited exciton X̂n does not interact with the |ψ̄1L〉 carriers, and a correlated
contribution |ψ̄0〉:

|ψ0〉 = 〈G|ψ〉|G〉 −
∑

n

PL∗
n

1 − νn
X̂n|ψ̄1L〉 + |ψ̄0〉 +O(E4) (3.62)

where the 2DEG∗ state |ψ̄0〉 is orthogonal to the ground state, 〈G|ψ̄0〉 = 0,
and up to second order in the optical field satisfies the equation of motion

i∂t|ψ̄0〉−H|ψ̄0〉 =
∑

nm

PL∗
n PL

m

(1 − νn)(1 − νm)
X̂n|Ym〉+

∑

n

PL∗
n Ŷn − P̄L∗

n X̂n

1 − νn
|ψ̄1L〉

−
∑

nm

PL∗
n P̄L

m

(1 − νn)(1 − νm)
X̂n|Xm〉 + d∗(t)

∑

n

PL
n

1 − νn
∆ν̂n|G〉 (3.63)

obtained by substituting Eq. (3.62) into Eq. (3.45) and using Eqs. (3.50),
(3.52) and (3.22).

The first term in Eq. (3.63) describes the photo–excitation of the 2DEG
via the second–order interaction–assisted process where the exciton Xm,
photo–excited with amplitude PL

m, scatters with the 2DEG into the state
|Ym〉, and then the exciton Xn is deexcited with amplitude PL

n . The above
process leaves the system in a 2DEG∗ 0–h state. It is analogous to the photo–
excitation of coherent phonons in undoped semiconductors, and dominates
the inelastic light scattering spectra of the 2DEG [20, 70]. The second term
on the rhs of Eq. (3.63) describes the scattering of Xn with the carriers in
|ψ̄1〉 during its de–excitation. The rest of the terms describe the possibility
to create 2DEG excitations by photoexciting an exciton whose hole then re-
combines with a 2DEG electron (Raman process). In the case of the spin–↑
polarized 2DEG and right–circularly polarized light, the latter Raman pro-
cess vanishes since there are no spin–↓ electrons in the ground state.

In the following we use the above decompositions of the photoexcited
many–body wavefunction |ψ〉, Eqs. (3.48), (3.60) and (3.62), in order to de-
scribe the interaction–induced contributions to Eqs. (3.35) and (3.38). These
decompositions provide a way of separating out the uncorrelated from the
correlated parts in a general correlated system, where a Hartree–Fock non–
interacting state may not be an appropriate reference state as in undoped
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semiconductors. This separation also motivates a factorization of the corre-
sponding density matrices that applies not only to undoped semiconductors,
but also to systems with strongly correlated ground states, where Wick’s
theorem does not apply. Similar to the DCTS, our method provides a sys-
tematic way of identifying the parts that can be factorized and the new
intraband dynamical variables that cannot be expressed in terms of inter-
band coherences due to the incoherent processes. Importantly, it allows us
to treat both coherent and incoherent processes in strongly correlated sys-
tems, where the coupling between the photoexcited carriers and the “bath”
(here the 2DEG) leads to new dynamics governed by slow/low energy “bath”
collective excitations. Finally, our method raises the possibility of devising
new approximations, obtained by projecting the many–body wavefunctions
in an appropriate basis of strongly correlated states or operators, and then
using this expansion to evaluate the correlated contributions to the density
matrices.

3.5.3 Intraband density matrix

In this section we turn to the equation of motion for the density matrix
〈M̂〉, where M̂ is any intraband operator that does not change the number
of holes. Furthermore, we assume that 〈G|M̂ |G〉 = 0, as is the case for the
operator M̂n = [Ŷn, X̂

†
n] discussed in §3.4.

Substituting the decomposition of the many–body state |ψ〉, Eq. (3.44),
together with Eqs. (3.48), (3.60) and (3.62), and keeping terms up to second
order in the optical field, we obtain for the average value 〈ψ|M̂ |ψ〉:

〈M̂〉 = 〈M̂〉c +
∑

nm

PL∗
n PL

m

(1 − νn)(1 − νm)
〈Xn|M̂ |Xm〉

+
∑

n

PL∗
n

1 − νn

〈G|[X̂n, M̂ ]|ψ̄1L〉 +
∑

n

PL
n

1 − νn

〈ψ̄1L|[M̂, X̂†
n]|G〉 (3.64)

where 〈M̂〉c is the correlated contribution, given by

〈M̂〉c = 〈G|M̂ |ψ̄0〉 + 〈ψ̄0|M̂ |G〉 + 〈ψ̄1L|M̂ |ψ̄1L〉. (3.65)

This above result corresponds to an intraband density matrix decomposition
into a factorizable part and a correlated part 〈M̂〉c. The second term on the
rhs of Eq. (3.64) is the coherent contribution, which similar to the undoped
system can be expressed as a product of exciton polarizations, while the rest
of the terms describe the incoherent contributions and 2DEG photoexcitation
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processes. This decomposition corresponds to a projection of the exciton
states |Xn〉.

We can obtain the equation of motion for 〈M̂〉c by substituting the de-
composition of 〈M̂〉, Eq. (3.64) in Eq. (3.34) and using Eqs. (3.35) and (3.52):

i∂t〈M̂〉c − 〈[M̂,H ]〉c + iγM〈M̂〉c =
∑

nm

PL∗
n PL

m

(1 − νn)(1 − νm)

×
[

i(Γn + Γm − γM)〈Xn|M̂ |Xm〉 + 〈Yn|X̂†
mM̂ |G〉 − 〈G|M̂X̂n|Ym〉

]

+
∑

n

i(Γn + γ − γM)

1 − νn

[

PL
n 〈ψ̄1L|[M̂, X̂†

n]|G〉 + PL∗
n 〈G|[X̂n, M̂ ]|ψ̄1L〉

]

+
∑

nm

PL
n P̄

L∗
m

(1 − νn)(1 − νm)
〈Xm|X̂†

nM̂ |G〉 −
∑

nm

P̄L
n P

L∗
m

(1 − νn)(1 − νm)
〈G|M̂X̂m|Xn〉

+
∑

n

PL
n

1 − νn
〈ψ̄1L|[M̂, Ŷ †

n ]|G〉 +
∑

n

PL∗
n

1 − νn
〈G|[M̂, Ŷn]|ψ̄1L〉

+
∑

n

P̄L∗
n

1 − νn
〈G|[X̂n, M̂ ]|ψ̄1L〉 +

∑

n

P̄L
n

1 − νn
〈ψ̄1L|[X̂†

n, M̂ ]|G〉

+
∑

nm

d(t)PL∗
m

1 − νm

〈G|[X̂m, X̂
†
n]M̂ |G〉 −

∑

nm

d∗(t)PL
m

1 − νm

〈G|M̂ [X̂n, X̂
†
m]|G〉 (3.66)

where we introduced a new dephasing rate γM for the correlated contribu-
tion 〈M̂〉c, since it has its own dynamics that cannot be described by the
polarization dephasing.

The above equation of motion applies for any intraband operator M̂ , for
which 〈G|M̂ |G〉 = 0, such as the operators that contribute to Eq. (3.40). It
includes contributions due to the possible photoexcitation of a 2DEG coher-
ence associated with the 2DEG∗ state M̂ |G〉, as well as due to deviations
from the factorization Eq. (3.64), induced by incoherent processes that in-
volve the photoexcited carriers. The intraband density matrix 〈M̂n〉, defined
in Eq. (3.39), can be calculated either by direct use of Eqs. (3.64) and (3.66),
or by expanding M̂n in the strongly correlated basis |Xm〉〈Xn|, |Xm〉〈Z(n)|
and |Z(m)〉〈Z(n)| and write equations of motion for the corresponding density
matrices.

By substituting M̂ = |Xm〉〈Xn| in Eq. (3.64), we seperate the coherent
contribution in the X populations (for n = m) and X↔X coherences (for
n 6= m) from the correlated one:

〈|Xm〉〈Xn|〉 = PL
n P

L∗
m + 〈|Xm〉〈Xn|〉c (3.67)
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The equation of motion of the latter is easily obtained by using Eqs. (3.66)
and (3.22) and taking into account that 〈Xn|ψ̄1L〉 = 0:

i∂t〈|Xm〉〈Xn|〉c = (Ωn − Ωm − iΓnm) 〈|Xm〉〈Xn|〉c
+ (1 − νm)

∑

m′ 6=m

Vm′m〈|Xm′〉〈Xn|〉c − (1 − νn)
∑

n′ 6=n

Vnn′〈|Xm〉〈Xn′|〉c

+ i(Γn + Γm − Γnm)PL
n P

L∗
m + 〈|Xm〉〈Yn|〉c − 〈|Xn〉〈Ym|〉∗c (3.68)

As can be seen from the above equation, incoherent X populations and X↔X
coherences can be photoexcited due to (i) the difference between the intra-
band relaxation rate Γnm and the sum of the exciton dephasing rates Γn+Γm,
and (ii) the coupling between the X and X+MP states described by the last
two terms on the rhs. The former is the only source in the undoped system,
while the latter X↔X+MP coupling dominates in the doped system and is
described by the equation of motion

i∂t〈|Xn〉〈Y |〉c =
(

Ω̄ − Ωn − iγn

)

〈|Xn〉〈Y |〉c + i(Γn + γ − γn)PL∗
n P̄L

+W

[〈|Xn〉〈X1|〉c
1 − ν1

− 〈|Xn〉〈X0|〉c
1 − ν0

]

+ (1 − νn)
∑

m6=n

Vmn〈|Xm〉〈Y |〉c

+ (δn1 − δn0)
(

P̄L∗P̄L − 〈|Y 〉〈Y |〉c
)

+ 〈|Xn〉〈Z|〉c (3.69)

3.5.4 Interband density matrix

We now consider the equation of motion for the density matrix 〈Ŷ 〉, where
Ŷ is any interband operator that creates an e–h pair with the simultaneous
scattering of any number of other electrons or holes (e.g. the operator Ŷ int

n

defined in Eq. (3.27)). By using the decomposition of the photoexcited many–
body state |ψ〉 and keeping terms up to third order in the optical field,
we obtain after some algebra the following decomposition of the interband
density matrix 〈Ŷ 〉 into correlated and uncorrelated contributions [25]:

〈Ŷ 〉 =
∑

n

PL∗
n

1 − νn
〈G|[X̂n, Ŷ ]|ψ2〉 +

∑

n

PL
n

1 − νn
〈[Ŷ , X̂†

n]〉c

+
1

2

∑

nm

PL
n P

L
m

(1 − νn)(1 − νm)
〈ψ̄1L|[[Ŷ , X̂†

n], X̂†
m]|G〉 + 〈Ŷ 〉c (3.70)

where

〈Ŷ 〉c = 〈ψ|G〉P̄L + 〈Y |ψ̄1NL〉 + 〈ψ̄0|Ŷ |ψ̄1L〉 + 〈ψ̄1L|Ŷ |ψ̄2〉 (3.71)
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and we introduced the nonlinear 1–h state

|ψ̄1NL〉 = |ψ1〉 − |ψ1L〉 +
∑

n

PL∗
n

1 − νn
X̂n|ψ2〉 −

∑

n

PL
n

1 − νn
X̂†

n|ψ̄0〉 (3.72)

The first term on the rhs of Eq. (3.70) describes the coherent X–X interac-
tion and correlation effects analogous to the undoped system, discussed in
the following section. The second term describes the contribution due to the
interaction of the optical polarization with the correlated intraband contri-
butions, i.e. the intraband coherences and incoherent populations discussed
above. The above two terms treat the effects of coherent X–X interactions
and the intraband excitation and incoherent population processes. The third
term in Eq. (3.70) describes X–X interactions accompanied by the shake–up
of 2DEG excitations, while the last term describes the correlated contribution
to the nonlinear polarization. As can be seen from Eq. (3.71), the dynamics
of the first two terms of the latter contribution is governed by the dephasing
of the X+MP state |Y 〉 while the last two nonlinear terms are determined by
the {1-h/2DEG∗} state |ψ̄1L〉 and describe incoherent correlated interband
contributions. The equation of motion for 〈Ŷ 〉c can be obtained as above
and describes the X dephasing.

3.6 Coherent X–X correlations

In this section we make the connection between the above result for the
coherent X–X interaction contribution to the nonlinear polarization (first
term on the rhs of Eq. (3.70)), described by the amplitude of the 2–h state
〈G|[X̂n, Ŷ ]|ψ2〉 = 〈[X̂n, Ŷ ]〉 + O(E5), and the familiar expressions that de-
scribe X–X correlations in undoped semiconductors [5, 6]. Using Eq. (3.32)
and restricting to the first two LLs, we obtain for B̂ = [X̂1, Ŷ ] = −[X̂0, Ŷ ]

B̂ =
∑

q

vq

L2

[

φ01(−q)X̂−q01 − φ10(−q)X̂−q10

] [

φ01(q)X̂q01 − φ10(q)X̂q10

]

=
∑

q

vq

L2

[

φ01(−q)φ01(q)X̂−q01X̂q01 + φ10(−q)φ10(q)X̂−q10X̂q10

−2|φ10(q)|2X̂−q01X̂q10

]

= B̂01
01 + B̂10

10 + B̂01
10 (3.73)

where B̂n′m′

nm
†|G〉 describes the 4–particle state {1–LLn′–e + 1–LLm′–h +

1–LLn–e + 1–LLm–h}. As can be seen from the above equation, the coher-
ent X–X interactions are determined by 2–X density matrices of the form
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〈X̂nX̂m〉, similar to the undoped system, where n, m describe excitons with
finite total momentum. Using the decomposition Eq. (3.60) we obtain for
any 2–h state |B〉 (e.g. the states [Ŷ †, X̂†

n]|G〉 that determine the coherent
X–X contribution to the nonlinear polarization)

〈B|ψ2〉 =
1

2

∑

nm

〈B|XnXm〉PL
n PL

m

(1 − νn)(1 − νm)
+

∑

n

PL
n

1 − νn

〈B|X̂†
n|ψ̄1L〉 +Bc (3.74)

where Bc = 〈B|ψ̄2〉 describes the X–X and X–X+MP correlations. The first
term in the above equation describes the familiar Hartree–Fock X–X inter-
actions, while the second term describes the analogous interactions between
the exciton X̂n and the {1–h/2DEG∗} state |ψ̄1L〉. By using Eq. (3.73) for
B̂ to calculate the overlap 〈G|B̂|XnXm〉 and taking into account that the
2DEG populates only LL0 (i.e. ν < 2),

〈B|ψ2〉 =
2V10

N
PL

0 P
L
1 +

∑

n

PL
n

1 − νn

〈B|X̂†
n|ψ̄1L〉 +B01

01 +B10
10 +B01

10 (3.75)

where Bn′m′

nm = 〈Bn′m′

nm |ψ̄2〉. In the X–phonon system, 〈G|B̂X̂†
n|ψ̄1L〉 = 0, and

thus we reproduce the results obtained in [5, 6] for the undoped system by
using the cumulants.

We now turn to the equation of motion for the correlated X–X amplitude
Bc. By projecting the state 〈B| to Eq. (3.61), restricting to the LL0 and LL1
states, and using Eq. (3.30) we obtain that

i∂tBc = 〈B|H|ψ̄2〉 +
〈B|B̂†|G〉

2

(

PL
1

1 − ν1
− PL

0

1 − ν0

)2

+

(

PL
1

1 − ν1
− PL

0

1 − ν0

)

〈B|Ŷ †|ψ̄1L〉 −
[

〈B|X̂†
1|ψ̄1L〉

1 − ν1
− 〈B|X̂†

0|ψ̄1L〉
1 − ν0

]

P̄L

(3.76)

By using the Lanczos recursive method [113], one can generate a basis
of strongly correlated 2–h states similar to §3.5.1. By describing the effects
of the higher Lanczos states by introducing a dephasing rate we recover the
average polarization model results used to describe X–X correlations and
biexciton effects in undoped semiconductors [3, 91, 111]. Thus the Lanczos
method can be used to derive such a model, which, in the case of 2D mag-
netoexcitons, was shown in [111] to be a good approximation in the case of
attractive or strong repulsive X–X interactions with appropriate range. The
Lanczos basis leads to a continued fraction expression of the X–X amplitude
Bc, similar to the linear response of the 2DEG [25], and is advantageous in
the case of strong coupling between the different X momentum states, e.g.
due to an antibound continuum resonance or a bound biexciton [111].

60



3.7. Conclusions

3.7 Conclusions

In summary, we discussed a theory [46, 114] that can describe the ul-
trafast non-linear optical response of magnetoexcitons in both doped and
undoped semiconductors, including systems with a strongly correlated many–
electron ground state, like the quantum Hall system. We discussed a method
for describing the interaction contributions to the density matrix equation
of motion, which gives the third–order non-linear polarization measured in
pumb–probe and FWM experiments.

Similar to the DCTS, we use an expansion in terms of the optical field
in order to eliminate the number of independent dynamical variables that
need to be considered. The X–2DEG correlations do not allow the complete
factorization of the intraband density matrix into products of interband co-
herences. We thus use a decomposition of the photoexcited many–body wave-
function into correlated and uncorrelated contributions to obtain a factor-
ization scheme for the density matrix. Our expansion in terms of the optical
field is valid for sufficiently short pulses and/or weak excitation conditions,
where the correlations are most pronounced. In undoped semiconductors,
our approach reduces to the DCTS if phonons are included.

In the following chapter, we will apply our theory to the case of the pho-
toexcitation of the quantum Hall system with three right–circularly polarized
optical pulses and we will derive an average polarization model to describe
the nonlinear optical dynamics of the system.
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Chapter 4

Interband and intraband

dynamics

4.1 Outline

In this chapter we will use the theory developed in Chapter 3 to derive an
average polarization model and explain a recent three–pulse FWM experi-
ment on a quantum Hall system, as well as on an undoped well for comparison
[45]. In §4.2 we briefly describe the experiment and the experimental results.
In the doped quantum well, a large off–resonant signal with striking oscilla-
tions is observed, which is not present in the undoped system. We will then
present an average polarization model derived from the theory of Chapter 3,
which we will use to calculate the FWM signal for the excitation conditions
of the experiment. We will show that the signal along the ∆t13 axis gives us
information about the dynamics of interband excitations of the system, while
the signal along the ∆t12 axis accesses the dynamics of intraband coherences.
We will also present simple analytical solutions of our model, which will give
us an intuitive picture about the dominant physical mechanisms in the ul-
trafast dynamics of the quantum Hall system. Finally, we will present full
numerical calculations of the FWM signal along both axes, which when com-
pared with the experiment, will allow us to identify the trace of X–X+MP
coherences and put an upper bound on their dephasing rate.

4.2 Experimental results

In this section we briefly describe one of the first experiments that stud-
ies the ultrafast dynamics of the quantum Hall system. These experiments
motivated the present work, which will be used to interpret them.

63



4. Interband and intraband dynamics

In the experiment described in Refs. [45, 52], the quantum Hall system is
excited with three 100 fs σ+ circularly polarized pulses along directions k1,
k2, and k3. Pulses k1 and k2 (k3) are separated by a time delay ∆t12 (∆t13),
where pulse k1 arrives first for negative values of the delay (see Fig. 2.6). The
FWM response is obtained in the background–free direction k1 + k2 − k3.
Using an interference filter, the signal is spectrally resolved so as to separate
out the contribution from each Landau level and then the intensity from each
Landau level is measured as a function of the time delays. In particular,
measurements are taken along the ∆t12 axis (∆t13 = 0) and along the ∆t13
axis (∆t12 = 0).

The sample under investigation is a modulation–doped quantum well
structure consisting of 10 periods of 12 nm GaAs wells and 42 nm AlGaAs
barrier layers with Si doped at their centers. The doped carrier (2DEG)
density is 2.1 × 1011 cm−2. The magnetic field is B = 7 T, which corre-
sponds to filling factor ν = 1.3, i.e. only the lowest Landau level (LL0)
is occupied and the 2DEG is mostly spin–↑ polarized. The temperature is
maintained between 1.5–4 K. The frequency of the optical pulses is tuned
such that LL1 is largely excited over LL0. For comparison, the FWM signal
from a similar undoped quantum well (i.e. without a 2DEG) is measured.
Low and high intensity measurements are also compared. For low intensity,
the photo–excited carriers density (5× 109 cm−2) is kept much smaller than
the 2DEG density in order to weakly perturb the quantum Hall system. For
high intensity, the two densities are comparable, so the photoexcited carrier
contribution is strong. More details about the samples and the experimental
setup can be found in Ref. [52].

4.2.1 Results along the ∆t13 axis

Fig. 4.1a shows the measured LL0 and LL1 FWM signals from the doped
quantum well along the ∆t13 axis. The back panel shows the LL0 and LL1
peaks in the linear absorption spectrum (in yellow), and the optical pulse
intensity (in red), centered on the LL1 peak. Fig. 4.1b shows the FWM
signal from the undoped quantum well. A striking difference between the
two responses is the large off-resonant signal from LL0 in the doped sample,
despite the large LL1/LL0 excitation ratio. One would expect a strong signal
from the states that are photo–excited, i.e. from LL1 in our case, which is
exactly what we observe in the undoped sample.

Besides the unexpectedly large off–resonant signal, there exist other im-
portant differences in the LL0 signal as compared to the undoped sample.
In the latter, one sees an asymmetric profile with oscillations at the inter–
LL frequency. On the other hand, the LL0 signal from the doped sample
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(b)

(a)

Figure 4.1: SR–FWM signal of the (a) doped and (b) undoped quantum well
along the ∆t13 axis and for mostly LL1 excitation. The doped sample shows a large
off–resonant signal from LL0, in contrast with the undoped well, and a symmetric
profile contrary to the RPA theory. Back panel: Linear absorption spectrum and
optical pulse intensity, showing the largely LL1 excitation conditions.
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shows an unusually symmetric profile, in contrast with the RPA theory [38].
Moreover, there are no oscillations.

These differences between the LL0 signals from the doped and the un-
doped quantum wells indicate that the presence of the 2DEG in the former
strongly affects the nonlinear response of the system. An easy test of this
is to increase the ratio of photoexcited over ground state carriers by in-
creasing the photoexcitation intensity. For low intensity, the number of the
photo–excited carriers is much smaller than the number of the 2DEG carri-
ers. Thus one is studying the quantum Hall system peturbatively. However,
at large intensity, the number of photo–excited carriers becomes comparable
or higher that that of the 2DEG, and consequently the nonlinear response
will be mostly determined by the photo–induced carriers. Thus one expects
that at large intensity the signal from the doped sample should be similar to
the undoped system. Fig. 4.2 shows the profiles of the LL0 signals for low
and high intensity for both the doped and the undoped samples. It is clear
that at high intensity the differences between the two systems diminish.

Based on the above observations, we conclude that the off–resonant signal
from LL0 is due to the presence of the 2DEG in the doped quantum well. We
expect that the magnetoplasmon excitations of the 2DEG lead to a resonant
coupling between the two Landau levels. This causes a transfer of oscillator
strength from LL1 to LL0 which may give rise to a large off–resonant signal.
In the following sections, we will use our theory to study this hypothesis. We
will see that the creation of X–X+MP coherences lead to such coupling with
the observed temporal profile, but before discussing the interpretation, we
will summarize the experimental results along the ∆t12 axis.

4.2.2 Results along the ∆t12 axis

Fig. 4.3 shows the SR–FWM signal of the doped quantum well along
the ∆t12 axis, for mostly LL1 photoexcitation. As in the case of the ∆t13
axis, there is a large off–resonant LL0 signal despite of largely exciting LL1.
Moreover, this signal exhibits strong oscillations at the inter-LL exciton fre-
quency. There are no oscillations in the LL1 signal. One would expect to
observe oscillations at the inter-LL energy because of the interference of the
LL0 and LL1 signals, but this cannot be the case here since the LL1 signal
is much smaller than the LL0 one. Moreover, if this was true, the LL1 signal
should also exhibit oscillations.

The LL0 oscillations are present for both positive and negative ∆t12 and
decay symmetrically on both sides of the axis. As explained in Ref. [52], by
subtracting a decaying exponential background from the ∆t12 > 0 signal and
then taking the Fourier transform, a single peak at 15.5 ± 0.1 meV with a
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Doped Sample Undoped Sample

Figure 4.2: Photoexcitation intensity dependence of the LL0 signal from doped
and undoped quantum wells. At low photoexcitation the doped signal shows the
symmetric temporal profile. The undoped signal shows the standard RPA profile
with oscillations. At high intensity, both signals look similar.

Figure 4.3: SR–FWM signal of the doped quantum well along the ∆t12 axis
and for mostly LL1 excitation. The signal from LL0 exhibits oscillations that
decay symmetrically about ∆t12 = 0. Back panel: Linear absorption spectrum
and optical pulse intensity, showing the largely LL1 excitation conditions.
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4. Interband and intraband dynamics

linewidth of 6.8± 0.5 meV is obtained by fitting the peak with a Lorentzian.
The linewidth of the peak gives an estimate of the decay of the oscillations.
Similarly for the negative ∆t12 axis, a peak at 16.0±0.4 meV with a linewidth
of 7.8 ± 1.0 meV was obtained. From the nearly equal linewidths of the
oscillations on both sides of the ∆t12 axis, we conclude that the oscillations
decay symmetrically. This will be important later on, in order to identify
the source of the oscillations. In the following section, we will present our
average polarization model, derived from the theory of Chapter 3, which we
will use to calculate the FWM signal and understand the above results.

4.3 Average Polarization Model

To derive a generalized average polarization model from the theoretical
formulation of the previous chapter, we retain the |X0〉, |X1〉 and |Y 〉 states
and restrict to the photo–excited Landau levels, LL0 and LL1. We expand
the intraband density matrix 〈M̂n〉, Eq. (3.40), on our basis consisting of the
X–X coherences and densities 〈|Xn〉〈Xm|〉 (n,m = 0, 1), and the X–X+MP
coherences 〈|Xn〉〈Y |〉 (n = 0, 1). We ignore the density matrix 〈|Y 〉〈Y |〉,
since it describes X+MP–X+MP coherences and thus is expected to dephase
quickly. By using this expansion in Eq. (3.70) for Ŷ and keeping only the
Hartree–Fock term of the X–X interactions (first term of Eq. (3.75)), we end
up with the following equations of motion for the LL0 and LL1 polarizations:

i∂tP0−(Ω0 − iΓ0)P0 + (1 − ν0)V01P1 + P̄ =

= 2µE(t)
(

PL
0 P

L∗
0 +N0
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(
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(4.1)

i∂tP1−(Ω1 − iΓ1)P1 + (1 − ν1)V10P1 − P̄ =
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(4.2)
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where we used the definitions

Nn = 〈|Xn〉〈Xn|〉c (4.3)

for the incoherent LLn populations,

Nnm = 〈|Xm〉〈Xn|〉c (4.4)

with n 6= m for the intraband X–X coherences and

Mn = 〈|Xn〉〈Y |〉c (4.5)

for the intraband X–X+MP coherences. The first term in the right–hand
side of Eqs. (4.1) and (4.2) describes Pauli blocking effects (PSF), the second
descibes the mean-field X–X interactions, the third one is the contribution of
incoherent densities Nn and X–X coherences Nnm, while the last two terms
describe X–X+MP coherences.

The dynamics of the incoherent densities N0 and N1 is described by the
following equations of motion, derived from Eq. (6.30):

i∂tN0 = − iγDN0 + (1 − ν0)V10N01 − (1 − ν0)V01N10

+ i(2Γ0 − γD)PL
0 P

L∗
0 −M0 +M∗

0 (4.6)

i∂tN1 = − iγDN1 + (1 − ν1)V01N10 − (1 − ν1)V10N01

+ i(2Γ1 − γD)PL
1 P

L∗
1 +M1 −M∗

1 (4.7)

where γD is the incoherent density relaxation rate, which is expected to be
very long (hundreds of picoseconds), as determined by radiation decay [115].

Similarly, the X–X coherences N10 = N∗
01 are described by:

i∂tN10 =(Ω1 − Ω0 − iγ10)N10 + (1 − ν0)V10N1 − (1 − ν1)V10N0

+ i(Γ0 + Γ1 − γ10)P
L
1 P

L∗
0 +M0 +M∗

1 (4.8)

where we introduced the X↔X coherence dephasing rate, γ10, which is ex-
pected to be much shorter than the population relevant of N10 relaxation
rate [115].

By using Eq. (3.69) we obtain the equation of motion for the X↔X+MP
coherences M0 and M1:

i∂tM0 =(Ω̄ − Ω0 − iγM0
)M0 + (1 − ν0)V10M1

+ i(Γ0 + γ − γM0
)P̄LPL∗

0 +W

(

N10

1 − ν1
− N0

1 − ν0

)

(4.9)
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i∂tM1 =(Ω̄ − Ω1 − iγM1
)M1 + (1 − ν1)V01M0

+ i(Γ1 + γ − γM1
)P̄LPL∗

1 +W

(

N1

1 − ν1
− N01

1 − ν0

)

(4.10)

where again, γMn
is the X↔X coherence dephasing time.

Finally, the dynamics of the third–order X+MP excitation P̄ = 〈Ŷ 〉c−P̄L

can be described in a first approximation by

i∂tP̄ = (Ω̄ − iγ)P̄ +W

(

P1

1 − ν1
− P0

1 − ν0

)

(4.11)

in analogy with Eq. (3.56). This approximation neglects the excitation in-
duced changes in the exciton dephasing, which for large γ are expected to
lead to nonlinearities smaller than the ones considered above.

Eqs. (4.1)–(4.11), together with the equations for the linear polarizations
PL

n and P̄L, Eqs. (3.50) and (3.56), consitute our model. To obtain the FWM
spectrum, we consider an optical field similar to experiment,

E(t) = Ep(t)e
ik1·r + Ep(t+ ∆t12)e

ik2·r + Ep(t+ ∆t13)e
ik3·r (4.12)

where Ep(t) = E0e
−(t/tp)2 is the Gaussian envelope of the pulses emitted by

the laser, with amplitude E0 and pulse intensity FWHM tp. We then solve
Eqs. (4.1)–(4.11) as a function of time t and the time delays ∆t12 and ∆t13,
with the initial condition that all quantities are zero at t → −∞, and by
keeping only terms that give a nonlinear signal in the k1 +k2 −k3 direction.
The SR–FWM signal is obtained by performing a Fourier transform of the
nonlinear polarizations,

S(ω,∆t12,∆t13) = |(1 − ν0)P0(ω) + (1 − ν1)P1(ω)|2 (4.13)

which at ω = Ω0 and ω = Ω1 gives the LL0 and LL1 signal respectively.
In the following sections, we will discuss the results of our analytical and
numerical calculations.

4.4 Simple analytical solutions

The system of Eqs. (4.1)–(4.11) is already too complicated to be solved
analytically and a numerical computation is necessary in order to calculate
the FWM signal. However, before discussing the full numerical calculations
of our model, it is helpful to solve these equations in some simplified form
analytically. Such analytical solutions will give us an intuition about the role
of each term and will help us identify their signatures in the FWM signal,
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4.4. Simple analytical solutions

which in comparison with the experimental results and the full numerical cal-
culations, will guide us to the processes that dominate the nonlinear optical
response of the quantum Hall system.

In the following, we will calculate the linear absorption spectrum and
the FWM contribution of PSF, X–X interactions and X–X and X–X+MP
coherences by making a few simplifications that will allow us to produce an-
alytical expressions. In particular, we assume delta–function pulses instead
of Gaussian ones, which is relatively justified by the fact that the Gaussian
pulses used in experiment are of ∼ 100 fs duration, while the shortest de-
phasing times / oscillation periods are a few hundreds of fs.1 Furthermore,
we can ignore all non–resonant terms in our equations, since resonant terms
will mainly drive the dynamics. This results in e.g. ignoring the Vnm term in
Eq. (3.50) and the coupling between the LL0 polarization and P̄ , since the
latter is almost resonant with LL1. Thus, we will approximately describe the
linear response of the system with the following simplified form of Eqs. (3.50)
and (3.56):

i∂tP
L
0 = (Ω0 − iΓ0)P

L
0 − µE0δ(t) (4.14)

i∂tP
L
1 = (Ω1 − iΓ1)P

L
1 − µE0δ(t) + P̄L (4.15)

i∂tP̄
L = (Ω̄ − iγ)P̄L +

W

1 − ν1
PL

1 (4.16)

the solution of which is

PL
0 (t) ∝ e−iΩ0te−Γ0t θ(t) (4.17)

PL
1 (t) ∝

(

e−iω1t + c e−iω2t
)

θ(t) (4.18)

P̄L(t) ∝W
(

e−iω1t − e−iω2t
)

θ(t) (4.19)

where θ(t) is the step function, c a constant and ω1,2 the solutions of the
quadratic equation (ω − Ω1 + iΓ1)(ω − Ω̄ + iγ) −W = 0. Assuming that
Ω̄ ≃ Ω1 and ν1 = 0 for the experiment of Refs. [45, 52], we obtain

ω1,2 ≃ Ω1 ±

√

W −
(

γ − Γ1

2

)2

− i
γ + Γ1

2
≡ (Ω1 ± δ) − iγ1 (4.20)

i.e. PL
1 and P̄L describe two almost degenerate states of which the separation

2δ depends on the coupling strength W . If δ is negligible, ω1 = ω2, and the
LL1 polarization can be described by a single Lorentzian with an effective

1However, an important difference between delta and Gaussian pulses is that in the
latter case we can excite e.g. only LL1, while in the former case, all LLs are equally
excited.
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Figure 4.4: Theoretical calculation of the linear absorption spectrum with and
without P̄L, with parameters chosen to fit experiment of Ref. [52] at B = 7 T. The
solid line (P̄L 6= 0) is the same as in Fig. 3.4. The dashed line (P̄L = 0) is obtained
by setting W = 0 and Γ1 = 1.2 meV, as an effective dephasing rate for PL

1 . The
LL0 peak is slightly changed because of the non–resonant PL

0 –P̄L coupling.

dephasing rate γ1. This is shown in Fig. 4.4, where the linear absorption
spectrum with and without P̄L is calculated. The presence of P̄L affects
the LL1 peak in a way that cannot be described with a single Lorentzian.
Moreover, because of the strong dephasing of the X+MP states described
by P̄L, the LL1 exciton decays faster that the LL0 exciton, which is what is
observed in the experiment (see Fig. 3.4).

Using the above approximations and solutions for the PL
n and P̄L we can

obtain the time and time delay dependence of the second order densities Nn

and coherences Nnm and Mn, and then calculate their contributions to the
LL0 and LL1 third order polarizations. In order to compare with the experi-
ment, we study the two axes ∆t13 and ∆t12 separately. As will become clear
from the following discussion, the former accesses the interband dynamics of
the system, while the latter accesses the intraband dynamics.

4.4.1 The ∆t13 axis: interband dynamics

To obtain a simple solution for the third order polarizations Pn along the
∆t13 axis, we first solve Eqs. (4.6)–(4.10) vs. time t and time delay ∆t13 by
using Eqs. (4.17), (4.18) and (4.19) and the approximations discussed above.
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Contributions to P0(Ω0) along the ∆t13 axis

Term if ∆t13 > 0 if ∆t13 < 0

E(t)PL
0 P

L∗
0 eiΩ0∆t13e−Γ0∆t13 0

E(t)N0 eiΩ0∆t13e−Γ0∆t13 0

PL
0 P

L
1 P

L∗
1 eiΩ1∆t13e−γ1∆t13 eiΩ1∆t13e(Γ0+γ1)∆t13

PL
0 N1 eiΩ1∆t13e−γ1∆t13 eiΩ1∆t13e(Γ0+γ1)∆t13

PL
1 N01 eiΩ1∆t13e−γ1∆t13 eiΩ1∆t13e(Γ0+γ1)∆t13

PL
0 M

∗
1 eiΩ1∆t13e−γ1∆t13 eiΩ1∆t13e(Γ0+γ1)∆t13

PL
1 M

∗
0 eiΩ1∆t13e−γ1∆t13 eiΩ1∆t13e(Γ0+γ1)∆t13

PL
0 P

L
1 P̄

L∗ eiΩ1∆t13e−γ1∆t13 eiΩ1∆t13e(Γ0+γ1)∆t13

Table 4.1: Contributions of the resonant terms in the equation of motion
Eq. (4.1) to the LL0 third order polarization P0(ω = Ω0) along the ∆t13 axis
(∆t12 = 0). The dependence on δ ≪ Ω1 − Ω0 is ignored for clarity. The first two
terms describe Pauli blocking (PSF), the third one X–X interactions, the next two
are the contributions of X populations and X–X coherences, and the last three are
the contributions of X–X+MP coherences.

For example, Eq. (4.6) is simplified to

i∂tN0 = −iγDN0 + i(2Γ0 − γD)PL
0 (t)PL∗

0 (t+ ∆t13) (4.21)

The time delay dependence appears by recalling that we are interested in
the FWM signal in the k1 + k2 − k3 direction, in which a term of the form
e.g. PL

n P
L
mP

L∗
l gives two contributions: PL

n (t)PL
m(t+ ∆t12)P

L∗
l (t+ ∆t13) and

PL
n (t+ ∆t12)P

L
m(t)PL∗

l (t+ ∆t13), depending on which pulse creates each po-
larization. In the ∆t13 axis, ∆t12 = 0 and thus, the two FWM contributions
collapse into one. However, as we will see in the following section, the two
contributions in the ∆t12 axis are different and interfere with each other,
giving rise to interesting dynamics.

The solution of Eq. (4.21) is

N0 ∝
{

eiΩ0∆t13e−Γ0∆t13
(

e−γDt − e−2Γ0t
)

θ(t) if ∆t13 > 0
eiΩ0∆t13eΓ0∆t13

[

e−γD(t+∆t13) − e−2Γ0(t+∆t13)
]

θ(t+ ∆t13) if ∆t13 < 0
(4.22)

which shows clearly the physical process that takes place. When the first
pulse comes in, it creates a polarization that decays as Γ0 for time |∆t13|
until the second pulse comes in. Then, there are two possibilities: either the
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Contributions to P1(Ω1) along the ∆t13 axis

Term if ∆t13 > 0 if ∆t13 < 0

E(t)PL
1 P

L∗
1 eiΩ1∆t13e−γ1∆t13 0

E(t)N1 eiΩ1∆t13e−γ1∆t13 0

PL
1 P

L
0 P

L∗
0 eiΩ0∆t13e−Γ0∆t13 eiΩ0∆t13e(Γ0+γ1)∆t13

PL
0 N10 eiΩ0∆t13e−Γ0∆t13 eiΩ0∆t13e(Γ0+γ1)∆t13

PL
1 N0 eiΩ0∆t13e−Γ0∆t13 eiΩ0∆t13e(Γ0+γ1)∆t13

PL
0 M0 eiΩ0∆t13e−Γ0∆t13 eiΩ0∆t13e(Γ0+γ1)∆t13

PL
1 M1 eiΩ1∆t13e−γ1∆t13 eiΩ1∆t13e2γ1∆t13

Table 4.2: Contributions of the resonant terms in the equation of motion
Eq. (4.2) to the LL1 third order polarization P1(ω = Ω1) along the ∆t13 axis
(∆t12 = 0). The dependence on δ ≪ Ω1 − Ω0 is ignored for clarity. The first two
terms describe Pauli blocking (PSF), the third one X–X interactions, the next two
are the contributions of X populations ans X–X coherences, and the last two are
contributions of X–X+MP coherences.

density N0 is created, which then decays with its own rate γD, or nothing
happens and the two polarizations decay with rate 2Γ0.

We repeat the same process for all second order densities and intraband
coherences and then substitute the obtained expressions into the Fourier
transformed Eqs. (4.1) and (4.2) to calculate their contribution to the LL0
(P0) and LL1 (P1) polarizations at the LL0 (ω = Ω0) and LL1 (ω = Ω1)
energy respectively. Tables 4.1 and 4.2 list these contributions along the
positive and negative ∆t13 axis. The first two terms describe Pauli block-
ing (PSF), which does not contribute for negative time delays, as predicted
from the standard mean field theory. The third term is the contribution
of the mean field X–X interactions and the rest are contributions of X–X
and X–X+MP coherences. These simple expressions can already give us an
explanation of the experimental results along the ∆t13 axis. Since mostly
LL1 is photoexcited in the experiment, PSF is expected to dominate the
LL1 signal and be insignificant for the LL0 signal. Thus the LL1 signal will
approximately follow the decay of the PSF contribution, which is −γ1∆t13
for ∆t13 > 0 and zero for ∆t13 < 0, i.e. it will be almost asymmetric about
∆t13 = 0. On the other hand, the LL0 signal will not be affected by the PSF
contribution. Since all other terms give the same decay rate, γ1 for ∆t13 > 0
and Γ0 +γ1 for ∆t13 < 0, the full LL0 signal will follow these decay rates. As
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discussed earlier, γ1 is the effective decay rate of the LL1 exciton, enhanced
by the strong dephasing of the X+MP states, and is much larger than the
decay rate of the LL0 exciton. As a result Γ0 + γ1 ≈ γ1, i.e the LL0 signal
will be symmetric about ∆t13 = 0. Moreover, since all terms (except for
PSF) in Table 4.1 have the same phase Ω1∆t13, there will be no significant
oscillations in the signal.

It is important to note that all contributions decay with the interband
polarization decaying rates in both the positive and negative ∆t13 axis, i.e.
we do not obtain any information about the dephasing rates of densities and
intraband coherences that are created in the system. We can only obtain the
decay rate of interband excitations, like the polarizations. This is a direct
consequence of the physical processes that can create a FWM signal in the
k1 +k2 −k3 direction along the ∆t13 axis. We thus state that “the ∆t13 axis
accesses the interband dynamics of the system”. To illustrate this, we will
discuss a typical process of creating a FWM signal along the positive and
the negative ∆t13 axis.

Positive ∆t13 axis

Fig. 4.5 shows the creation of the FWM signal along the positive ∆t13. In
this case, pulse k3 arrives first and creates a polarization, i.e. an interband
coherence. If both Landau levels, LL0 and LL1 are excited, the excited
polarization can be either LL0∗ or LL1∗. The wavevector of this polarization
is −k3

2. The excited polarization evolves in the sample for a time ∆t13 with a
phase −Ωn∆t13, where n = 0, 1 depending on whether it is a LL0∗ or a LL1∗

polarization. The evolving polarization also decays over this time interval
with a rate Γn. After time t = ∆t13, pulses k1 and k2 arrive simultaneously.
One of them creates an intraband excitation via a second order process, and
the other probes it at the same time. As a result, the decay and the phase
of the resulting FWM signal reflects the decay and phase accumulated by
the polarization during its evolution for time ∆t13, while the instantaneously
created second order excitation does not affect the decay of the measured
signal. Thus, by measuring the intensity of the decaying signal along the
positive ∆t13 axis, one can only obtain the decoherence rate of an interband
polarization.

2Pulse k3 also creates second order excitations, like intraband coherences between LL0
and LL1 or LL0 and LL1 populations. However, these second order quantities will have
wavevectors k3 − k3 = 0 or ±(k3 + k3) = ±2k3. Thus, when probed by pulses k1 and k2

they cannot contribute to the nonlinear signal in the k1 + k2 − k3 direction.

75



4. Interband and intraband dynamics

Figure 4.5: Interband dynamics along the ∆t13 > 0 axis: Pulse k3 comes first,
creates an interband polarization (LL1∗ in this figure), which accumulates a phase
−Ω1∆t13 and decay −Γ1∆t13. Pulses k1 and k2 then arrive and produce the FWM
signal, which reflects the phase −Ω1∆t13 and decay −Γ1∆t13.

Figure 4.6: Interband dynamics along the ∆t13 < 0 axis: Pulse k1 and k2 arrive
together and create interband polarizations (LL0∗ and LL1∗ in this figure). They
accumulate phase Ω0|∆t13| and Ω1|∆t13| and decay as −Γ0|∆t13| and −Γ1|∆t13|
respectively. Pulse k3 then arrives and produces the FWM signal, which reflects
the phase (Ω0 + Ω1)|∆t13| and the decay −(Γ0 + Γ1)|∆t13|.
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Negative ∆t13 axis

Along the negative ∆t13 axis, pulses k1 and k2 arrive first (Fig. 4.6).
They either create interband polarizations independently, or second order
interband excitations (like biexcitons), but they cannot create intraband ex-
citations like intraband coherences or populations. The created interband
excitations evolve in the sample for a time |∆t13|, after which pulse k3 ar-
rives, resulting in the k1 +k2−k3 FWM signal. As the interband excitations
decay over the time ∆t13, the FWM signal versus |∆t13| (for ∆t13 < 0) decays
with the same decoherence rate, i.e. either the sum of the decay rates of the
two polarizations created, or the decay rate of the second order interband
excitation (biexciton).

In conclusion, the FWM signal in both the positive and negative ∆t13 axis
reflects the dynamics of interband excitations. It decays with the dephasing
rate of the polarization for ∆t13 > 0, and either with the sum of the dephasing
rates of the polarizations or the dephasing rate of biexcitons for ∆t13 < 0.

4.4.2 The ∆t12 axis: intraband dynamics

Along the ∆t12 axis we access different dynamics. To show this, we solve
Eqs. (4.1) and (4.10) vs. time t and time delay ∆t12, as done earlier in the
∆t13 axis, by considering only resonant terms and delta pulses. Because of the
symmetry between pulses k1 and k2, there two FWM processes that create
each contribution to P0 and P1. For example, a term of the form PL

n P
L
mP

L∗
l

contributes as PL
n (t)PL

m(t+∆t12)P
L∗
l (t), as well as PL

n (t+∆t12)P
L
m(t)PL∗

l (t).
Moreover, all densities and intraband coherences can be created either by
pulses k1 and k3, or by pulses k2 and k3. To distinguish them, we will use a
“13” or “23” subscript respectively.

Tables 4.3 and 4.4 list the contributions to the LL0 and LL1 polarizations
for both positive and negative ∆t12. The first block describes PSF, the
second X–X interactions, the third the contributions of X densities and X–X
coherences, and the last the contributions of X–X+MP coherences. We have
introduced effective decay rates γ̃0 for M0 and N10, and γ̃1 for M1 and N1.
As seen from Eqs. (4.9) and (4.8), the coupling between the resonant M0 and
N10 results in two almost degenerate states – as in the case of PL

1 and P̄L –
with energies

ω1,2 ≃ Ω1 − Ω0 ±

√

W −
(

γM0
− γ10

2

)2

− i
γM0

+ γ10

2
≡ Ω1 − Ω0 ± δ0 − iγ̃0

(4.23)
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4. Interband and intraband dynamics

Similarly, the coupling between the resonant M1 and N1 (Eqs. (4.10) and
(4.7)) results in two almost degenerate states with energies

ω1,2 ≃ ±

√

2W −
(

γM1
− γD

2

)2

− i
γM1

+ γD

2
≡ ±δ1 − iγ̃1 (4.24)

In Tables 4.3 and 4.4 we have ignored the time delay dependence on the small
energies δ, δ0 and δ1, since they are of the order of a few meV and thus are
much smaller than the energy of the observed oscillations (§4.2).

These analytical expressions are particularly useful to compare with the
experiment. We begin with the LL1 signal, where we expect that PSF dom-
inates. The relevant terms in Table 4.4 show that when only PSF is consid-
ered, there are no oscillations and the signal decays with a rate of 2γ1 for
∆t12 > 0, and 2γ̃1 or 4γ1 for ∆t12 < 0, depending on which one is smaller. As
shown in Fig. 4.3, the LL1 signal exhibits no oscillations, and decays much
more slowly for ∆t12 < 0 than for ∆t12 > 0. Thus, we conclude that γ̃1 ≪ γ1.

A similar analysis for the LL0 signal allows us to identify the possible
sources of the observed oscillations at the inter-LL energy. It is clear from
Table 4.3 that for ∆t12 > 0, despite the many different terms, the oscillations
with frequency Ω1−Ω0 may decay only with a rate of Γ0+γ1. In the ∆t12 < 0
axis, the situation is sligtly more complicated. If we ignore the PSF terms
(since they are insignificant for the experimental conditions of interest), the
oscillations may decay with a rate of Γ0+3γ1, Γ0 +γ1+ γ̃1, γ̃0+2γ1 or γ̃0+ γ̃1.
However, in the experiment the oscillations decay symmetrically about ∆t12
and since γ1 ≫ Γ0, the Γ0 + 3γ1 and γ̃0 + 2γ1 decay rates are ruled out.
We thus end up with two possibilities: either Γ0 + γ1 + γ̃1 ≈ Γ0 + γ1, or
γ̃0 + γ̃1 ≈ Γ0 + γ1. Since we concluded from LL1 that γ̃1 ≪ γ1, the former
condition is already true. This implies that γ̃0 & γ1, a requirement that
diminishes the role of the M0 – N10 coherences because of the large γ1 rate3.
We thus reach the conclusion that the oscillations for ∆t12 < 0 decay as
Γ0 + γ1 + γ̃1 and are due to beatings of either M13

1 or N13
1 with another

term that decays as Γ0 + γ1. To find out which this term is, we need a full
calculation that we will present in the following section.

Before discussing our numerical results, it is interesting to note that for
∆t12 > 0 all contributions decay with the polarizations decay rates, while
for ∆t12 < 0, we get access to the decay rates of intraband coherences and
densities. This is a direct consequence of the process that creates a FWM
signal in the k1 + k2 − k3 direction along the ∆t12 axis. As a result, “the
∆t12 axis probes the intraband dynamics of the system”. This is illustrated in

3The contributions of the different terms to the polarizations include a 1/(decay rate)
coefficient, which makes them smaller.
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4.4. Simple analytical solutions

Contributions to P0(Ω0) along the ∆t12 axis

Term if ∆t12 > 0 if ∆t12 < 0

E(t) PL
0 (t+ ∆t12) P

L∗
0 e−iΩ0∆t12e−Γ0∆t12 0

E(t+ ∆t12) P
L
0 (t) PL∗

0 0 e−iΩ0∆t12e2Γ0∆t12

E(t) N23
0 e−iΩ0∆t12e−Γ0∆t12 0

E(t+ ∆t12) N
13
0 0

e−iΩ0∆t12e2Γ0∆t12

e−iΩ0∆t12eγD∆t12

PL
0 (t) PL

1 (t+ ∆t12) P
L∗
1 e−iΩ1∆t12e−γ1∆t12 e−iΩ1∆t12e(Γ0+γ1)∆t12

PL
0 (t+ ∆t12) P

L
1 (t) PL∗

1 e−iΩ0∆t12e−Γ0∆t12 e−iΩ0∆t12e2γ1∆t12

PL
0 (t) N23

1 e−iΩ1∆t12e−γ1∆t12 e−iΩ1∆t12e(Γ0+γ1)∆t12

PL
0 (t+ ∆t12) N

13
1 e−iΩ0∆t12e−Γ0∆t12

e−iΩ0∆t12e2γ1∆t12

e−iΩ0∆t12eγ̃1∆t12

PL
1 (t) N23

01 e−iΩ0∆t12e−Γ0∆t12 e−iΩ0∆t12e2γ1∆t12

PL
1 (t+ ∆t12) N

13
01 e−iΩ1∆t12e−γ1∆t12 e−iΩ1∆t12e(Γ0+γ1)∆t12

e−iΩ1∆t12eγ̃0∆t12

PL
0 (t) (M32

1 )∗ e−iΩ1∆t12e−γ1∆t12 e−iΩ1∆t12e(Γ0+γ1)∆t12

PL
0 (t+ ∆t12) (M31

1 )∗ e−iΩ0∆t12e−Γ0∆t12
e−iΩ0∆t12e2γ1∆t12

e−iΩ0∆t12eγ̃1∆t12

PL
1 (t) (M32

0 )∗ e−iΩ0∆t12e−Γ0∆t12 e−iΩ0∆t12e2γ1∆t12

PL
1 (t+ ∆t12) (M31

0 )∗ e−iΩ1∆t12e−γ1∆t12 e−iΩ1∆t12e(Γ0+γ1)∆t12

e−iΩ1∆t12eγ̃0∆t12

PL
0 (t) PL

1 (t+ ∆t12) P̄
L∗ e−iΩ1∆t12e−γ1∆t12 e−iΩ1∆t12e(Γ0+γ1)∆t12

PL
0 (t+ ∆t12) P

L
1 (t) P̄L∗ e−iΩ0∆t12e−Γ0∆t12 e−iΩ0∆t12e2γ1∆t12

Table 4.3: Contributions of the resonant terms in the equation of motion
Eq. (4.1) to the LL0 third order polarization P0(ω = Ω0) along the ∆t12 axis
(∆t13 = 0). The terms in the first block describe Pauli blocking (PSF), the ones
in the second X–X interactions, the terms in the third block are the contributions
of X populations and X–X intraband coherences, and the last block contains the
contributions of intraband X–X+MP coherences.
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4. Interband and intraband dynamics

Contributions to P1(Ω1) along the ∆t12 axis

Term if ∆t12 > 0 if ∆t12 < 0

E(t) PL
1 (t+ ∆t12) P

L∗
1 e−iΩ1∆t12e−γ1∆t12 0

E(t+ ∆t12) P
L
1 (t) PL∗

1 0 e−iΩ1∆t12e2γ1∆t12

E(t) N23
1 e−iΩ1∆t12e−γ1∆t12 0

E(t+ ∆t12) N
13
1 0

e−iΩ1∆t12e2γ1∆t12

e−iΩ1∆t12eγ̃1∆t12

PL
1 (t) PL

0 (t+ ∆t12) P
L∗
0 e−iΩ0∆t12e−Γ0∆t12 e−iΩ0∆t12e(Γ0+γ1)∆t12

PL
1 (t+ ∆t12) P

L
0 (t) PL∗

0 e−iΩ1∆t12e−γ1∆t12 e−iΩ1∆t12e2Γ0∆t12

PL
0 (t) N23

10 e−iΩ1∆t12e−γ1∆t12 e−iΩ1∆t12e2Γ0∆t12

PL
0 (t+ ∆t12) N

13
10 e−iΩ0∆t12e−Γ0∆t12 e−iΩ0∆t12e(Γ0+γ1)∆t12

e−iΩ0∆t12eγ̃0∆t12

PL
1 (t) N23

0 e−iΩ0∆t12e−Γ0∆t12 e−iΩ0∆t12e(Γ0+γ1)∆t12

PL
1 (t+ ∆t12) N

13
0 e−iΩ1∆t12e−γ1∆t12

e−iΩ1∆t12e2Γ0∆t12

e−iΩ1∆t12eγD∆t12

PL
0 (t) M23

0 e−iΩ1∆t12e−γ1∆t12 e−iΩ1∆t12e2Γ0∆t12

PL
0 (t+ ∆t12) M

13
0 e−iΩ0∆t12e−Γ0∆t12 e−iΩ0∆t12e(Γ0+γ1)∆t12

e−iΩ0∆t12eγ̃0∆t12

PL
1 (t) M23

1 e−iΩ1∆t12e−γ1∆t12 e−iΩ1∆t12e2γ1∆t12

PL
1 (t+ ∆t12) M

13
1 e−iΩ1∆t12e−γ1∆t12

e−iΩ1∆t12e2γ1∆t12

e−iΩ1∆t12eγ̃1∆t12

Table 4.4: Contributions of the resonant terms in the equation of motion
Eq. (4.2) to the LL1 third order polarization P1(ω = Ω1) along the ∆t12 axis
(∆t13 = 0). The first two terms describe Pauli blocking (PSF), the third one X–X
interactions and the rest are contributions of incoherent densities and intraband
coherences.
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4.4. Simple analytical solutions

Figure 4.7: Interband dynamics along the ∆t12 > 0 axis: Pulse k2 comes first,
creates an interband polarization (LL0 in this figure), which accumulates a phase
−Ω0∆t12 and decay −Γ0∆t12. Pulses k1 and k3 then arrive and produce the FWM
signal, which reflects the phase −Ω0∆t12 and decay −Γ0∆t12.

Figure 4.8: Interband dynamics along the ∆t12 < 0 axis: Pulse k1 and k3 arrive
first and create an intraband coherence (M13

1 ∗), which accumulates no phase and
decays as −γ̃1∆t12. Pulses k1 and k3 then arrive and produce the FWM signal,
which reflects the zero phase and the decay −γ̃1∆t12.
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4. Interband and intraband dynamics

Figs. 4.7 and 4.8, which show the creation of the M1 = 〈|X1〉〈Y |〉c coherence
along the positive and negative ∆t12 axis.

Along the positive ∆t12 axis (Fig. 4.7) pulse k2 arrives first and creates
a LL0 polarization in the sample. The polarization evolves with a phase
frequency Ω0 and decay rate Γ0 for a time ∆t12, after which pulses k1 and
k3 arrive simultaneously, and create the M1 coherence (M13

1 ). The coherence
is then probed by the decaying LL0 polarization, created by pulse k2, and
results in the FWM signal at LL0 in the direction k1 + k2 − k3 that has a
phase of Ω0∆t12 and decays as Γ0∆t12. Because of the symmetry between
the k1 and the k2 pulses, M1 can be created by pulses k2 and k3 (M23

1 ) and
be probed by pulse k1. In both cases though, the decay of the signal along
the positive ∆t12 axis reflects the decay of the interband polarization created
by pulse k2.

Along the negative ∆t12 axis we access different information. Fig. 4.8
shows the process that creates the M13

1 coherence. Here, pulses k1 and k3

arrive first and contribute a LL1 and a LL1∗ polarization respectively, which
create the second order intraband coherence M13

1 with wavevector k1 − k3.
The M1 coherence is a coherence between a LL1 exciton and the X+MP state
{1–MP + 1–LL0–e + 1–LL1–h}, and since the two states are very close in
energy, the coherence evolves in the sample with phase frequency Ω̄−Ω1 ∼ 0
(this is also seen from Eq. (4.10)). As a result, the coherence evolves with
almost no phase for time |∆t12|. However, it does decay with decay rate g̃1.
After time |∆t12|, pulse k2 arrives and probes the coherence, resulting in a
FWM signal along the k1 +k2 −k3 direction that reflects the zero phase and
the decay rate of the M1 coherence.

4.5 Numerical calculations

Our physical arguments and analytical calculations in the previous section
showed that N1 or M1 should contribute significantly to the LL0 signal, and
that PSF should dominate the LL1 response. To check our conclusions and to
identify the terms that are responsible for the oscillations, we solve Eqs. (4.1)–
(4.11) numerically for the linear absorption of Fig. 3.4 and γD = 0.1 meV,
γ10 = 3 meV, γM1

= 0.3 meV, and γM0
= 0.6 meV. Our conclusions are not

sensitive to their precise values. Fig. 4.9 shows the calculated FWM signal
for both axes, for photoexcitation of mostly LL1. The back panel shows the
linear absorption spectrum and the optical pulse intensity. Our calculation
reproduces well the experiment, shown in Figs. 4.1 and 4.3. These results
reproduce the qualitative temporal and spectral features observed in the
experiment within the femstosecond coherent regime, as a function of energy
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4.5. Numerical calculations

(b)

(a)

Figure 4.9: Numerical calculation of the SR–FWM signal along (a) the ∆t13 axis
and (b) the ∆t12 axis, for mostly LL1 excitation. Back panel: Linear absorption
spectrum and optical pulse intensity, showing the largely LL1 excitation conditions.
The theoretical calculation is in good agreement with the experiment, shown in
Figs. 4.1 and 4.3.
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Figure 4.10: Numerical calculation of the LL0 SR–FWM signal along the ∆t12
axis and for mostly LL1 excitation. Dashed line: contribution of the M1 intraband
coherence.

and the two time delays. The main contribution to the calculated LL0 FWM
signal comes from the X1 ↔X01+MP coherence M1 = 〈|X1〉〈Y |〉c. This can
be seen in Fig. 4.10, which compares to the calculation with the contribution
of M1 only.

4.5.1 Explanation of oscillations

As is shown in Fig. 4.10, the LL0 signal is dominated by the contribu-
tion of the M1 coherence, and consequently the oscillations are due to this
coherence. In particular, they are due to beatings between the two FWM
processes that create M1. As discussed in §4.4.2, because of the symmetry
between pulses k1 and k2, the M1 coherence (and any other process) can
be created either by pulses k1 and k3 (M13

1 ), or by pulses k2 and k3 (M23
1 ).

These two FWM contributions beat with each other and create the oscilla-
tions observed in experiment, as shown in Fig. 4.11. To illustate this, we will
now discuss the two processes for both positive and negative ∆t12.

Fig. 4.12 shows the creation of the two FWM processes that create the
M1 coherence along the positive ∆t12 axis. In the case of M13

1 (top panel
of Fig. 4.12), pulse k2 arrives first, and creates a LL0 polarization which
evolves for time ∆t12 with frequency Ω0 and decay rate Γ0. Pulses k1 and
k3 arrive at t = ∆t12 and create the M13

1 coherence, which is then probed by
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Figure 4.11: Numerical calculation of the FWM contributions of the M1 (solid
line), M13

1 (dashed line), and M23
1 (dotted line) coherences along the ∆t12 axis. It

is clear that the oscillations are due to the interference between the signals of M13
1

and M23
1 .

the decaying polarization created by pulse k2. The resulting FWM signal at
LL0 is characterized by a relative phase of Ω0∆t12 and decays as Γ0∆t12.

In the symmetric case that creates M23
1 (bottom panel), pulse k2 creates a

LL1 polarization, which evolves with frequency Ω1 and decay rate γ1. At time
t = ∆t12 pulses k1 and k3 arrive and create a LL0 and a LL1∗ polarization
respectively. The decaying LL1 polarization from k2 and LL1∗ from k3 create
the M23

1 coherence, which is instantaneously probed by the LL0 polarization
of k1. The resulting LL0 FWM signal has a relative phase of Ω1∆t12 and
decay of γ1∆t12. As a result the two contributions beat with each other with
a frequency of Ω1 − Ω0 and a decay rate of Γ0 + γ1.

On the other hand, the negative ∆t12 axis gives us access to different
information. Fig. 4.13 shows the creation of the two processes along this axis.
Now pulses k1 and k3 arrive first and pulse k2 follows after time t = |∆t12|.
In the case of M13

0 (top panel of Fig. 4.13), the two pulses create a LL1 and
LL1∗ polarization respectively, which create the M13

1 coherence. The latter
evolves with a phase of Ω̄ − Ω1 ≈ 0 and its own decay rate γM1

. After time
t = |∆t12|, pulse k2 comes it and creates a LL0 polarization that probes the
M13

0 coherence. Thus, the LL0 signal in this case has (almost) no phase and
decays as −γM1

∆t12.
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4. Interband and intraband dynamics

Figure 4.12: Schematic of the FWM processes that are responsible for the
inter-LL oscillations along the ∆t12 > 0 axis: The FWM contribution from the
M13

1 coherence (top panel) interferes with that of the M23
1 (bottom panel). The

two are symmetric processes obtained by exchanging the roles of k1 and k2. The
superposition of the two results in inter-LL oscillations due to the different phase
accumulated in the two processes during the ∆t12 time delay. The decay of the
beats is thus Γ0 + γ1.
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4.5. Numerical calculations

Figure 4.13: Schematic of the FWM processes that are responsible for the
inter-LL oscillations along the ∆t12 < 0 axis: The FWM contribution from the
M13

1 coherence (top panel) interferes with that of the M23
1 (bottom panel). The

two are symmetric processes obtained by exchanging the roles of k1 and k2. The
superposition of the two results in inter-LL oscillations due to the different phase
accumulated in the two processes during the |∆t12| time delay. The decay of the
beats is thus Γ0 + γ1 + γM1

.
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4. Interband and intraband dynamics

In the case of M23
1 (bottom panel), pulses k1 and k3 create a LL0 and a

LL1∗ polarization respectively, which evolve independently for a time |∆t12|
each accumulating a phase of Ω0∆t12 and −Ω1∆t12 and a decay of −Γ0|∆t12|
and −γ1|∆t12| respectively. Then pulse k2 arrives and contributes a LL1
polarization, which together with the LL1∗ polarization from k3 creates the
M23

1 coherence. Consequently, the two FWM contributions beat with fre-
quency Ω1 −Ω0 and decay as Γ0 + γ1 + γ̃1 ≈ Γ0 + γ1. We thus conclude that
γ̃1 ≈ γM1

≪ (Γ0 + Γ1), i.e. the X1 ↔X+MP coherence M1 dephases over a
time interval of 1/γM1

≫ 1/(Γ0 + Γ1) ≈ 300fs.

4.6 Conclusions

In this chapter, we discussed a recent FWM experiment on the quantum
Hall system, that showed a surpisingly large off-resonant signal at LL0 with
strong oscillations. Using our theory, developed in Chapter 3, we derived
an average polarization model and we calculated the LL0 FWM signal. We
showed that the off-resonant signal is due to the X↔X+MP coherence M1 =
〈|X1〉〈Y |〉c. The observed oscillations are due to the interference of the two
FWM processes that can create the M1 coherence along the ∆t12 axis: M1

can be created either by pulses k1 and k3, or by pulses k2 and k3. By
comparing the decay of oscillations with our calculations, we are able to put
an upper bound to the M1 coherence decay rate.

In the following chapter, we will apply our theory in the case of an un-
doped quantum well in a large magnetic field. In this case, there is no 2DEG
present in the ground state, but X↔X coherences are photoexcited and create
interesting dynamics.
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Chapter 5

Dynamics of coherences in an

undoped quantum well

5.1 Outline

In the previous chapter, we discussed the nonlinear optical response of
the quantum Hall system, and showed that we can access the dynamics of
intraband coherences along the ∆t12 axis. This is not the case just for the
quantum Hall system; it is a consequence of the configuration of pulses in
any three–pulse FWM experiment. This opens the possibility of studying
the dynamics of intraband coherences in other systems as well. Quantum
coherences in general are at the heart of quantum mechanics and are cen-
tral in determining the nonlinear optical properties of semiconductors and
atomic systems. Raman coherences in three–level atomic systems lead to
non-linear optical effects like electromagnetically induced transparency [116]
and lasing without inversion [117]. In analogy to atomic systems, one would
like to observe Raman coherences in semiconductors. In the past, quantum
beats attributed to coherences between the heavy and light hole valence band
continuum states have been observed in bulk GaAs [118]. Similarly, Raman
coherences can be created in semiconductor quantum wells subject to a large
perpendicular magnetic field. In this case, the quantum well confinement
discretizes the eigenstates along the z-direction (growth direction). At the
same time, the large B-field results in quasi-confinement in the x-y plane,
thus discretizing the in-plane eigenstates into Landau levels. This discrete
spectrum, similar to atomic systems, opens new possibilities for creating and
controlling coherences.

Though similarities between atomic systems and semiconductors can be
established, there are also important differences. Strong Coulomb interac-
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5. Dynamics of coherences in an undoped quantum well

tions exist between the optically excited states in semiconductors. This leads
to novel effects like exciton-exciton scattering which have no analogue in
atomic systems. The dynamics of coherences, like dephasing, result from the
coupling of these optically excited states to other states or the environment.
In a many-body system, it is not easy to treat such complex interactions the-
oretically. Thus measuring dynamical quantities like the dephasing rate is a
valuable source of information on the behavior of complex systems. Moreover,
if these coherences are long-lived, they are potentially useful in applications
of quantum technology.

In this chapter, we will discuss the nonlinear response of an undoped
quantum well in a perpendicular magnetic field. We will begin by describing
the main results of a recent FWM experiment on this system in §5.2. In
§5.3 we will present an average polarization model derived from the theory
of Chapter 3, in the special case of no 2DEG carriers in the ground state. We
will then present (§5.4) some simple analytical solutions, which in compari-
son with the experiment, will allow us to identify the signature of a Raman
coherence and will extract its dephasing rate. Finally, in §5.5, we will present
our numerical calculations and we will discuss the contributions of the differ-
ent physical mechanisms to the nonlinear response of the undoped quantum
well.

5.2 Experimental results

The sample under investigation is an undoped GaAs quantum well struc-
ture, which consists of 10 14 nm thick GaAs layers sandwiched between 10 nm
thick layers of Al0.3Ga0.7As [53]. The sample is kept at 1.5-4◦K in a split-
coil magneto-optical cryostat and a perpendicular magnetic field (B = 0− 7
T) is applied along the growth direction of the quantum well. The system
is photoexcited with three ∼100 fs pulses of right circularly polarized (σ+)
light. The experiment is similar to the one for the doped system, described in
Refs. [45, 52] and §4.2. The pulses propagate in spatially distinct directions
k1, k2 and k3 with a time delay ∆t12 (∆t13) between pulse k1 and k2 (k3)
(Fig. 2.6). For negative values of the above delays, pulse k1 arrives first.
The signal is measured at the background–free direction k1 + k2 − k3 and
is resolved with an interference filter to seperate the response from the LL0
and LL1 magnetoexcitons.

Fig. 5.1a shows the SR–FWM signal from LL0 and LL1 along the ∆t13
axis for mostly LL1 excitation. The back panel shows the linear absorption
spectrum and pulse intensity. As expected, the LL1 signal is much larger
than the one from LL0. For ∆t13 > 0, both signals exhibit beatings at the

90



5.2. Experimental results

(a)

Figure 5.1: SR–FWM signal of the undoped quantum well along (a) the ∆t13
and (b) the ∆t12 axis, for mostly LL1 excitation. Back panel: Linear absorption
spectrum and optical pulse intensity, showing the largely LL1 excitation conditions.
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inter–LL frequency, which is also expected because of the interference of the
two contributions. Along the negative axis, there are no oscillations and
both signals decay much faster than along the positive axis. As discussed
in §4.4.1, for ∆t13 < 0 we access the dynamics of interband excitations, like
polarizations and biexcitons. According to standard RPA theory, the decay
rate for ∆t13 < 0 is twice the decay rate along the positive axis [8]. Thus, any
deviations from this asymmetric temporal profile are considered a signature
of X–X correlations [2, 3].

Fig. 5.1b shows the LL0 and LL1 FWM signals along the ∆t12 axis for
the same excitation conditions. Here we observe oscillations only in the
LL0 signal, which are at the inter–LL energy, Ω1 − Ω0, measured from the
linear absorption spectrum (back panel of Fig. 5.1). As discussed in §4.4.2,
the positive and negative ∆t12 axes reflect different dynamics and thus, we
analyse the decay rates seperately for the two halves. We substract a constant
(exponential) background from the negative (positive) axis and take a Fourier
transform of the signal. In both cases we see a strong peak at the Ω1 − Ω0

energy. However, there is a large difference in the linewidth for the two cases
(as obtained by fitting a Lorentzian to the peak): 2.9 meV for the negative
side vs. 5.6 meV for the positive. This indicates that the beats decay slower
on the negative side. This will allow us to identify the decay rate of an X–X
coherence created in the system. In the following, we will discuss an average
polarization model derived from the theory of Chapter 3 for the case of the
undoped system, which we will use to explain the above experimental results.

5.3 Average Polarization Model

5.3.1 Linear response

The linear response of the undoped quantum well is determined by the
linear polarizations PL

n created in the system, described by Eq. (3.50). If we
retain only the photoexcited LLs, LL0 and LL1, we end up with the following
two equations of motion

i∂tP
L
0 =(Ω0 − iΓ0)P

L
0 − V01P

L
1 − µE(t) (5.1)

i∂tP
L
1 =(Ω1 − iΓ1)P

L
1 − V10P

L
0 − µE(t) (5.2)

where Γn is the LLn exciton decay rate, Ωn is the exciton energy, Vnm the
inter–LL Coulomb induced coupling.

In the ideal system, exciton energies and inter–LL couplings can be easily
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Figure 5.2: 3Numerical calculation of the linear absorption spectrum of the
undoped quantum well that fits the B = 7 T data of Ref. [119], p. 60. Parameters
used: Ω1 − Ω0 = 20.9 meV, V01 = 1.4 meV, Γ0 = 0.44 meV and Γ1 = 0.6 meV.

calculated analytically, using Eqs. (3.23) and (3.24):

Ωn = Eg + (n+ 1/2)(Ωc
c + Ωv

c) −
∫

dq

(2π)2
|φnn(q)|2 (5.3)

⇒ Ω1 − Ω0 = Ωc
c + Ωv

c −
1

4

√

π

2

e2

ǫℓ
(5.4)

Vnm =

∫

dq

(2π)2
|φnm(q)|2 ⇒ V01 = V10 =

1

2

√

π

2

e2

ǫℓ
(5.5)

For B = 7 T, we obtain from the above expressions and Eq. (2.14) that
Ω1 − Ω0 = 18 meV and V01 = 7.21 meV. However, here we use parameters
that fit the experimentally measured linear absorption spectrum Ref. [119],
since it is affected by higher LLs [85] that are not included here.

5.3.2 Nonlinear response

To describe the ultrafast nonlinear response of magnetoexcitons in the
undoped system, we will use the theory of Chapter 3, in the special case of
no ground state carriers. Since there is no 2DEG present, Ŷ †

n |G〉 = 0 and
Ŷn = Ŷ int

n (Eqs. (3.29) and (3.27)) describes X–X interaction effects. In this
case, our theory coincides with the DCTS, if phonons are included.
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5. Dynamics of coherences in an undoped quantum well

By retaining only the photoexcited states |X0〉 and |X1〉 and expanding
the intraband matrix 〈M̂n〉 on the basis of X–X coherences and densities
〈|Xn〉〈Xm|〉 (n,m = 0, 1), we obtain the following equations of motion for
the polarizations:

i∂tP0 − (Ω0 − iΓ0)P0 + V01P1 = 2µE(t)
(

PL
0 P

L∗
0 +N0

)

− 2V01

[

PL
0 (N1 −N10) − PL

1 (N0 −N01)
]

− 2V01

(

PL
1 P

L
0 +B01

10 +B01
01 +B10

10

) (

PL∗
1 − PL∗

0

)

(5.6)

i∂tP1 − (Ω1 − iΓ1)P1 + V10P0 = 2µE(t)
(

PL
1 P

L∗
1 +N1

)

+ 2V10

[

PL
0 (N1 −N10) − PL

1 (N0 −N01)
]

+ 2V10

(

PL
1 P

L
0 +B01

10 +B01
01 +B10

10

) (

PL∗
1 − PL∗

0

)

(5.7)

The first term in the right–hand side of Eqs. (5.6) and (5.7) describes phase
space filling effects, while the second one describes the contributions of in-
coherent densities Nn and intraband coherences Nnm, defined in Eqs. (4.3)
and (4.4) respectively. The last term is the contribution of mean field X–X
interactions and X–X correlations, described by Bn′m′

nm (Eq. (3.6)).
The dynamics of the incoherent densities Nn = 〈|Xn〉〈Xn|〉c is described

by Eq. (6.30) without the contribution of the X–X+MP coherences Mn =
〈|Xn〉〈Y |〉c:

i∂tN0 = − iγDN0 + V10N01 − V01N10 + i(2Γ0 − γD)PL
0 P

L∗
0 (5.8)

i∂tN1 = − iγDN1 + V01N10 − V10N01 + i(2Γ1 − γD)PL
1 P

L∗
1 (5.9)

where γD is the density decay rate, and N10 = N∗
01 is the X0–X1 coherence

described by

i∂tN10 = (Ω1−Ω0−iγ10)N10+V10N1−V10N0+i(Γ0+Γ1−γ10)P
L
1 P

L∗
0 (5.10)

where again γ10 is the coherence decay rate.
Finally, X–X correlations are described by the following equations of mo-

tion, derived from Eq. (3.76):

i∂tB
01
01 =

(

Ω01 − iγ01
01

)

B01
01 +WB

(

PL
0 − PL

1

)2
(5.11)

i∂tB
10
10 =

(

Ω10 − iγ10
10

)

B10
10 +WB

(

PL
0 − PL

1

)2
(5.12)

i∂tB
01
10 =

(

Ω01
10 − iγ01

10

)

B01
10 +2WB

(

PL
0 − PL

1

)2
+i(Γ0+Γ1−γ01

10)P
L
0 P

L
1 (5.13)
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5.4. Simple analytical solutions

where WB = 〈B01
01 |B01

01〉 = 〈B10
10 |B10

10〉, verified easily from the definition of B01
01

and B10
10 , given in Eq. (3.75). Using these definitions and Eqs. (3.4), (3.6)

and (A.1), it is straightforward to calculate WB analytically:

WB =
1

(πℓ2N)2

∑

q

v2
q |φ10(q)|2 =

1

2N

(

e2

ǫℓ

)2

(5.14)

Ωn′m′

nm and γn′m′

nm are the energy and the decay rate of the correlated X–X
amplitude Bn′m′

nm , respectively. Since e.g. B01
01 describes a {2–LL0–e + 2–

LL1–h} state, it is expected that it is amost resonant with two LL0 exciton
states, i.e. Ω01

01 ≃ 2Ω0. Similarly, Ω10
10 ≃ 2Ω1, and Ω01

10 ≃ Ω0 + Ω1.

5.4 Simple analytical solutions

As explained in §4.4, simple analytical solutions of the equations of mo-
tion of our model are particularly useful. They allow us to distinguish the
signatures of the different physical mechanisms that contribute to the non-
linear response of the system. Thus, by comparing to experiment we can un-
derstand which processes dominate the FWM signal. Here, we will present
our analytical solutions for Eqs. (5.6)–(5.13) that describe the third–order
response of the undoped quantum well. As in §4.4, we assume delta pulses
and ignore all non–resonant terms in our equations.

Tables 5.1 and 5.2 list the LL0 and LL1 contributions of PSF, incoherent
densities and intraband coherences, as well as X–X interactions and corre-
lations along the positive and negative ∆t13 axis. For ∆t13 > 0, all contri-
butions decay with the polarizations decay rate, which is expected since in
this case pulse k3 arrives first and can only create a polarization that will
decay until pulses k1 and k2 come in (see e.g. Fig. 4.5 or Fig. 5.3 where
the creation of the B01

10 excitation is depicted as an example). On the other
hand, for ∆t13 < 0, we access different dynamics. PSF does not contribute
for negative time delays, in agreement with RPA [12]. The contributions of
intraband coherences and mean–field X–X interactions decay as 2(Γ0 + Γ1),
which is about twice as fast as the decay of their contributions along the
positive ∆t13 axis, assuming that Γ0 ≃ Γ1 in the undoped system. This is
also in agreement with the Hartree–Fock treetment of X–X interactions [8].
However, the contributions of 2X excitations decay with their own decay
rates. This is illustrated in Fig. 5.4 where a schematic of the contribution
of the B01

10 excitation to the LL0 signal is shown. When ∆t13 < 0, pulses k1

and k2 arrive first and create the B01
10 excitation, which then evolves for time

t = |∆t13| with its own frequency Ω01
10 and decay rate γ01

10 , until it is probed
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5. Dynamics of coherences in an undoped quantum well

Figure 5.3: Dynamics of the interband 2X excitation B01
10 along the ∆t13 > 0

axis: pulse k3 arrives first and creates a LL1∗ polarization which evolves for time
t = ∆t13 and accumulates a phase of Ω1∆t13 and decays as −Γ1∆t13. Pulses k1 and
k2 then arrive and create the 2X excitation B1001, which describes the 4–particle
{1–LL0–e + 1–LL1–e + 1–LL0–h + 1–LL1–h} state, and is probed instantly by
the decaying LL1∗ polarization. Thus the resulting FWM signal reflects the phase
Ω1∆t13 and the decay −Γ1∆t13.

Figure 5.4: Dynamics of the interband 2X excitation B01
10 along the ∆t13 < 0

axis: pulses k1 and k2 arrive together and create the 2X excitation B01
10 . The

excitation evolves for time t = |∆t13| during which it accumulates a phase of
(Ω01

10 − Ω0)|∆t13| ≃ Ω1|∆t13| and decays as −γ01
10 |∆t13|. Pulse k3 then arrives and

produces the FWM signal, which reflects the phase ∼ Ω1|∆t13| and the decay
−γ01

10 |∆t13|.
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5.4. Simple analytical solutions

Contributions to P0(Ω0) along the ∆t13 axis

Term if ∆t13 > 0 if ∆t13 < 0

E(t)PL
0 P

L∗
0 eiΩ0∆t13e−Γ0∆t13 0

E(t)N0 eiΩ0∆t13e−Γ0∆t13 0

PL
0 N1 eiΩ1∆t13e−Γ1∆t13 eiΩ1∆t13e(Γ0+Γ1)∆t13

PL
1 N01 eiΩ1∆t13e−Γ1∆t13 eiΩ1∆t13e(Γ0+Γ1)∆t13

PL
0 P

L
1 P

L∗
1 eiΩ1∆t13e−Γ1∆t13 eiΩ1∆t13e(Γ0+Γ1)∆t13

B01
01P

L∗
0 eiΩ0∆t13e−Γ0∆t13

eiΩ0∆t13e2Γ0∆t13

eiΩ0∆t13eγ01

01
∆t13

B01
10P

L∗
1 eiΩ1∆t13e−Γ1∆t13

eiΩ1∆t13e(Γ0+Γ1)∆t13

eiΩ1∆t13eγ01

10
∆t13

Table 5.1: Contributions of the resonant terms in the equation of motion
Eq. (5.6) to the LL0 third order polarization P0(ω = Ω0) along the ∆t13 axis
(∆t12 = 0) for the undoped quantum well. The first two terms describe Pauli
blocking (PSF), the next two are the contributions of incoherent densities and X–
X coherences, while the last three are the contributions of X–X interactions and
correlations. For simplicity we assumed Ω01

01 ≃ 2Ω0 and Ω01
10 ≃ Ω0 + Ω1.

from pulse k3. Thus, the resulting FWM signal reflects the frequency and
decay rate of the 2X excitation. In the experiment (Fig. 5.1), both LL0 and
LL1 signals decay faster that 2(Γ0 +Γ1) for ∆t13 < 0. We thus conclude that
biexcitonic contributions cannot decay more slowly.

Tables 5.3 and 5.4 show the LL0 and LL1 contributions along the posi-
tive and negative ∆t12 axis. Along this axis, there two FWM contributions
for every process, because of the symmetry between pulses k1 and k2. For
∆t12 > 0, all contributions decay with the decay rates of the polarizations,
as expected. Along the negative ∆t12, we access the dynamics of intraband
coherences and densities, as explained in §4.4.2.

To understand the origin of the oscillations in the LL0 signal, we note
that for ∆t12 > 0 the oscillations between any terms beat at the inter–
LL energy, Ω1 − Ω0, and decay with rate Γ0 + Γ1. Thus, by comparing
to experiment we conclude that Γ0 + Γ1 = 5.6 meV. For ∆t12 < 0, the
observed decay of the oscillations is slower than for ∆t12 > 0, i.e. slower
than Γ0 + Γ1. The only possibility of such oscillations is, as shown from
Table 5.3, the case of beatings between the contributions of the incoherent
density N1 (PL

0 N
13
1 ), and the X–X coherence N01 (PL

1 N
13
01 ), which decay as
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5. Dynamics of coherences in an undoped quantum well

Contributions to P1(Ω1) along the ∆t13 axis

Term if ∆t13 > 0 if ∆t13 < 0

E(t)PL
1 P

L∗
1 eiΩ1∆t13e−Γ1∆t13 0

E(t)N1 eiΩ1∆t13e−Γ1∆t13 0

PL
0 N10 eiΩ0∆t13e−Γ0∆t13 eiΩ0∆t13e(Γ0+Γ1)∆t13

PL
1 N0 eiΩ0∆t13e−Γ0∆t13 eiΩ0∆t13e(Γ0+Γ1)∆t13

PL
1 P

L
0 P

L∗
0 eiΩ0∆t13e−Γ0∆t13 eiΩ0∆t13e(Γ0+Γ1)∆t13

B10
10P

L∗
1 eiΩ1∆t13e−Γ1∆t13

eiΩ1∆t13e2Γ1∆t13

eiΩ1∆t13eγ10

10
∆t13

B01
10P

L∗
0 eiΩ0∆t13e−Γ0∆t13

eiΩ0∆t13e(Γ0+Γ1)∆t13

eiΩ0∆t13eγ01

10
∆t13

Table 5.2: Contributions of the resonant terms in the equation of motion
Eq. (5.6) to the LL1 third order polarization P1(ω = Ω1) along the ∆t13 axis
(∆t12 = 0) for the undoped quantum well. The first two terms describe Pauli
blocking (PSF), the next two are the contributions of incoherent densities and X–
X coherences, while the last three are the contributions of X–X interactions and
correlations. For simplicity we assumed Ω10

10 ≃ 2Ω1 and Ω01
10 ≃ Ω0 + Ω1.

γD + γ10. Moreover, since the lifetime of the incoherent density decays very
slowly, γD +γ10 ≃ γ10 = 2.9 meV. Thus, we conclude that the longest lasting
oscillations are due to beatings between the incoherent density and the X–X
coherence the lifetime of which is of the order of 1/2.9 meV−1 ≃ 200 fs.

5.5 Numerical calculations

In this section we discuss the results of our numerical calculations, where
we solve Eqs. (5.6)–(5.13) with no further approximations. Fig. 5.5 shows
our calculation for the LL0 and LL1 FWM signals along the ∆t13 and ∆t12
axes with a long density decay rate γD = 0.08 meV, short decay rates for
biexcitonic contributions (γ01

01 ≃ γ10
10 ≃ γ01

10 ≃ 2 meV) and γ10 = 0.75 meV, so
that γD ≪ γ10 < Γ0 + Γ1 ≃ 1 meV. Our calculation captures the qualitative
features of the experiment (Fig. 5.1).

Fig. 5.6 shows the contributions of the different terms to the LL0 and LL1
signals along the ∆t13 axis. As expected from the photoexcitation conditions,
PSF contributes significantly to LL1 while it is negligible for the LL0 signal.
X–X interactions are significant mostly for ∆t13 < 0 where PSF is zero, while
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5.5. Numerical calculations

Contributions to P0(Ω0) along the ∆t12 axis

Term if ∆t12 > 0 if ∆t12 < 0

E(t) PL
0 (t+ ∆t12) P

L∗
0 e−iΩ0∆t12e−Γ0∆t12 0

E(t+ ∆t12) P
L
0 (t) PL∗

0 0 e−iΩ0∆t12e2Γ0∆t12

E(t) N23
0 e−iΩ0∆t12e−Γ0∆t12 0

E(t+ ∆t12) N
13
0 0

e−iΩ0∆t12e2Γ0∆t12

e−iΩ0∆t12eγD∆t12

PL
0 (t) N23

1 e−iΩ1∆t12e−Γ1∆t12 e−iΩ1∆t12e(Γ0+Γ1)∆t12

PL
0 (t+ ∆t12) N

13
1 e−iΩ0∆t12e−Γ0∆t12

e−iΩ0∆t12e2Γ1∆t12

e−iΩ0∆t12eγD∆t12

PL
1 (t) N23

01 e−iΩ0∆t12e−Γ0∆t12 e−iΩ0∆t12e2Γ1∆t12

PL
1 (t+ ∆t12) N

13
01 e−iΩ1∆t12e−Γ1∆t12 e−iΩ1∆t12e(Γ0+Γ1)∆t12

e−iΩ1∆t12eγ10∆t12

PL
0 (t) PL

1 (t+ ∆t12) P
L∗
1 e−iΩ1∆t12e−Γ1∆t12 e−iΩ1∆t12e(Γ0+Γ1)∆t12

PL
0 (t+ ∆t12) P

L
1 (t) PL∗

1 e−iΩ0∆t12e−Γ0∆t12 e−iΩ0∆t12e2Γ1∆t12

B01
01 P

L∗
0 e−iΩ0∆t12e−Γ0∆t12 e−iΩ0∆t12e2Γ0∆t12

B01
10 P

L∗
1

e−iΩ0∆t12e−Γ0∆t12

e−iΩ1∆t12e−Γ1∆t12

e−iΩ0∆t12e2Γ1∆t12

e−iΩ1∆t12e(Γ0+Γ1)∆t12

Table 5.3: Contributions of the resonant terms in the equation of motion
Eq. (5.6) to the LL0 third order polarization P0(ω = Ω0) along the ∆t12 axis
(∆t13 = 0) for the undoped quantum well. The terms in the first block describe
Pauli blocking (PSF), the ones in the second are the contributions of X populations
and X–X intraband coherences, while the last block includes the contributions of
X–X interactions and correlations.
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5. Dynamics of coherences in an undoped quantum well

Contributions to P1(Ω1) along the ∆t12 axis

Term if ∆t12 > 0 if ∆t12 < 0

E(t) PL
1 (t+ ∆t12) P

L∗
1 e−iΩ1∆t12e−Γ1∆t12 0

E(t+ ∆t12) P
L
1 (t) PL∗

1 0 e−iΩ1∆t12e2Γ1∆t12

E(t) N23
1 e−iΩ1∆t12e−Γ1∆t12 0

E(t+ ∆t12) N
13
1 0

e−iΩ1∆t12e2Γ1∆t12

e−iΩ1∆t12eγD∆t12

PL
0 (t) N23

10 e−iΩ1∆t12e−Γ1∆t12 e−iΩ1∆t12e2Γ0∆t12

PL
0 (t+ ∆t12) N

13
10 e−iΩ0∆t12e−Γ0∆t12 e−iΩ0∆t12e(Γ0+Γ1)∆t12

e−iΩ0∆t12eγ10∆t12

PL
1 (t) N23

0 e−iΩ0∆t12e−Γ0∆t12 e−iΩ0∆t12e(Γ0+Γ1)∆t12

PL
1 (t+ ∆t12) N

13
0 e−iΩ1∆t12e−Γ1∆t12

e−iΩ1∆t12e2Γ0∆t12

e−iΩ1∆t12eγD∆t12

PL
1 (t) PL

0 (t+ ∆t12) P
L∗
0 e−iΩ0∆t12e−Γ0∆t12 e−iΩ0∆t12e(Γ0+Γ1)∆t12

PL
1 (t+ ∆t12) P

L
0 (t) PL∗

0 e−iΩ1∆t12e−Γ1∆t12 e−iΩ1∆t12e2Γ0∆t12

B10
10 P

L∗
1 e−iΩ1∆t12e−Γ1∆t12 e−iΩ1∆t12e2Γ1∆t12

B01
10 P

L∗
0

e−iΩ0∆t12e−Γ0∆t12

e−iΩ1∆t12e−Γ1∆t12

e−iΩ1∆t12e2Γ0∆t12

e−iΩ0∆t12e(Γ0+Γ1)∆t12

Table 5.4: Contributions of the resonant terms in the equation of motion
Eq. (5.7) to the LL1 third order polarization P1(ω = Ω1) along the ∆t12 axis
(∆t13 = 0) for the undoped quantum well. The terms in the first block describe
Pauli blocking (PSF), the ones in the second are the contributions of X populations
and X–X intraband coherences, while the last block includes the contributions of
X–X interactions and correlations.
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Figure 5.5: Calculated FWM signal from the undoped quantum well along (a)
the ∆t13 and (b) the ∆t12 axis, for mostly LL1 excitation. Back panel: Linear
absorption spectrum and optical pulse intensity, showing the largely LL1 excitation
conditions.
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Figure 5.6: Contributions of the different terms to the (a) LL0 and (b) LL1
FWM signals along the ∆t13 axis for the undoped quantum well. Full signal is in
blue, the contribution of PSF in red, X–X interactions and correlations in green
and the contribition of intraband coherences and incoherent densities in magenta.
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Figure 5.7: Contributions of the different terms to the (a) LL0 and (b) LL1
FWM signals along the ∆t12 axis for the undoped quantum well. Full signal is in
blue, the contribution of PSF in red, X–X interactions and correlations in green
and the contribition of intraband coherences and incoherent densities in magenta.
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5. Dynamics of coherences in an undoped quantum well
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Figure 5.8: Numerical simulation of the LL0 FWM signal with and without the
contribution of the X–X coherence.

intraband coherences and densities dominate the LL0 signal.
Fig. 5.7 shows the different contributions along the ∆t12 axis. The LL0

signal is dominated by intraband densities and coherences, which exhibit
strong oscillations. As shown from Table 5.3, along the negative ∆t12 axis
oscillations can be created from beatings between the 23 ans 13 contributions
of the density N1 or the coherence N01. These oscillations decay with different
decay rates depending on the source terms. The two slowest possible decay
rates are (i) γ10+γD when N13

01 beats with N13
1 and (ii) Γ0+Γ1+γD when N13

1

beats with N23
1 . In the former case, the LL0 temporal profile is asymmetric,

(all oscillations decay as Γ0 + Γ1 for ∆t12 > 0), while in the latter case the
profile is symmetric. This is shown in Fig. 5.8 where the LL0 signal with and
without the contribution of the N01 coherence is plotted. Thus, the lifetime
of the N01 coherence can be extracted.

5.6 Conclusions

In this chapter we discussed the ultrafast nonlinear optical response of an
undoped quantum well in a large magnetic field. To describe the dynamics of
magnetoexcitons in this system, we used the theory described in Chapter 3
in the case of no carriers present in the ground state, which is equivalent
to the DCTS [4–6] if phonons are included. By comparing our calculations
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with the experiment [53], we identified the decay rate of a many body X–X
coherence.
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Chapter 6

The role of X+MP states at

ν = 1

6.1 Outline

In Chapter 4 we discussed the role of the 2DEG in the nonlinear response
of the quantum Hall system by introducing a state |Y 〉 which describes all
X+MP effects. Although the major experimental results were explained
with this approximation, we could not distinguish the role of the different
X+MP states. Their effect was treated in Chapters 3 and 4 by introducing a
dephasing rate to the X+MP coherence equation of motion. In this chapter,
we develop a microscopic theory to study the effect of these X+MP states
on the linear and nonlinear optical response of the quantum Hall system at
filling factor ν = 1.

In §6.2 we discuss the linear response and derive the equations of motion
for the linear polarizations. We also study the energy dispersion of the X+MP
states. We then calculate the linear absorption spectrum and we will show
that it is strongly affected by X+MP states with non–zero momentum. In
§6.3, we discuss the nonlinear response by deriving the equations of motion
for the nonlinear polarizations, which are coupled to X–X, X–X+MP and
X+MP–X+MP coherences. We finish by presenting a generalized average
polarization model for the third–order polarization.

6.2 Linear Response

At filling factor ν = 1, the 2DEG is spin–↑ polarized and only LL0 is
occupied. In this special case, the ground state excitations are distinguished
from the photo–induced excitations, since the latter are spin–↓ polarized. As
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6. The role of X+MP states at ν = 1

a result, the Ŷ int
n operator, defined in Eq. (3.27), is orthogonal to all exciton

states, i.e. Ŷ int
n = Ŷn, and

|Yn〉 =
1

2πℓ2
√
N

∑

q 6=0
mn′

vqφm0(−q) [φn′n(q)|Yqn′nm〉 − φnn′(q)|Yqnn′m〉] (6.1)

where

|Yqnn′m〉 = Ŷ †
qnn′m|G〉 = X̂†

qnn′ ρ̂
e
−qm0↑|G〉 (6.2)

describe a continuum of X+MP states consisting of {1–LLn–e + 1–LLn′–h
+ 1–(LL0→LLm)–MP} that are orthogonal to all exciton states,

〈Xl|Yqnn′m〉 = 0 (6.3)

and to each other

〈Yq1n1n′

1
m1

|Yq2n2n′

2
m2

〉 = δq1q2
δn1n2

δn′

1
n′

2
δm1m2

(6.4)

The above orthogonality relations are easily obtained by using Eq. (A.1) and
taking into account that for ν = 1, ρ̂h

qnn′σ|G〉 = 0 = ρ̂e
qnn′↓|G〉, as well as that

q 6= 0. The q = 0 term is canceled by the direct interaction with the positive
background [120], if we assume that the system is homogeneous.

Using the above expression for |Yn〉, the equation of motion for the linear
polarization, Eq. (3.50), becomes

i∂tP
L
n = (Ωn − iΓn)PL

n −
∑

m6=n

VnmP
L
m − d(t)

+
1

2πℓ2
√
N

∑

qmn′

vqφ0m(q)
[

φnn′(−q)P̄L
qn′nm − φn′n(−q)P̄L

qnn′m

]

(6.5)

where

Vnm =

∫

dq

(2π)2
vq|φnm(q)|2 (6.6)

is the static Coulomb induced inter–LL coupling,

Ωn = Eg + (n+ 1/2) (Ωc
c + Ωv

c) − Vnn (6.7)

is the LLn exciton energy, and

P̄L
qnn′m = 〈Yqnn′m|ψ1L〉 = 〈Yqnn′m|ψ̄1L〉 (6.8)
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6.2. Linear Response

describes the time evolution of the |Yqnn′m〉 state. Its equation of motion is

obtained by substituting Ô = Ŷqnn′m in Eq. (3.34), using Eqs. (A.10) and
(A.11) and keeping terms up to first order in the optical field:

i∂tP̄
L
q′nn′m = [Eg + (n +m+ 1/2)Ωc

c + (n′ + 1/2)Ωv
c +

∑

r

Vr0]P̄
L
q′nn′m

−
∑

r

V̄mr,00(q)P̄L
q′nn′r −

∑

rr′

V̄r′n′,rn(q)P̄L
q′rr′m

+
1

2πℓ2
√
N

∑

q′ 6=0
rr′

vq′φ0r(q
′)
[

φmr′(−q′)〈G|ρ̂e
q′0r↑ρ̂

e
q−q′0r′↑X̂qnn′|ψ1L〉e−i(q×q′)zℓ2/2

−φr′0(−q′)〈G|ρ̂e
q′0r↑ρ̂

e
q−q′r′m↑X̂qnn′|ψ1L〉ei(q×q′)zℓ2/2

]

+
1

2πℓ2
√
N

∑

q′ 6=0
srr′

vq′φrr′(q
′)
[

φms(−q′)〈G|ρ̂e
q0m↑ρ̂

e
q′rr′↑X̂q+q′sn′|ψ1L〉ei(q×q′)zℓ2/2

−φsn′(−q′)〈G|ρ̂e
q0m↑ρ̂

e
q′rr′↑X̂q+q′ns|ψ1L〉e−i(q×q′)zℓ2/2

]

(6.9)

where

V̄nn′,mm′(q) =

∫

dq′

(2π)2
vq′φnn′(q′)φ∗

mm′(q′)ei(q×q′)zℓ2 (6.10)

are a generalization of the Coulomb induced Vnm couplings, Eq. (3.24), for
non–zero momentum states.

In order to simplify the terms of the form 〈G|ρ̂eρ̂eX̂|ψ1L〉 in Eq. (6.2), we
expand the 1–hmany–particle wavefunction |ψ1L〉 in terms of not only exciton
states |Xn〉, but also X+MP states |Yqnn′m〉, in analogy with Eq. (3.48):

|ψ1L〉 =
∑

n

PL
n |Xn〉 +

∑

q 6=0
nn′m6=0

P̄L
qnn′m|Yqnn′m〉 + |ψ̃1L〉 (6.11)

where |ψ̃1L〉 is a {1–h/2DEG∗} contribution, defined by the requirement
〈Xn|ψ̃1L〉 = 〈Yqnn′m|ψ̃1L〉 = 0, and describes X+2MP states and higher, i.e.

contributions of the form X̂†ρ̂eρ̂e|G〉, X̂†ρ̂eρ̂eρ̂e|G〉, etc. The above expansion
is equivalent to separating the X+MP states from |ψ̄1L〉

|ψ̄1L〉 →
∑

q 6=0
nn′m6=0

P̄L
qnn′m|Yqnn′m〉 + |ψ̃1L〉 (6.12)

The m 6= 0 requirement in Eqs. (6.11) and (6.12) arises from the q 6= 0
requirement when ν = 1: in this case the ground state is full with spin–↑
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6. The role of X+MP states at ν = 1

electrons, and a 2DEG electron – already in LL0 – cannot move within LL0
with non–zero momentum.

Substituting Eq. (6.11) in Eq. (6.2) and remembering that ρ̂e
qnm↑|G〉 =

(1 − δn0) δm0 ρ̂
e
qn0↑|G〉, we obtain the equation of motion for P̄L

qnn′m:

i∂tP̄
L
q′nn′m =

(

Ω̄qnn′m − iγqnn′m

)

P̄L
q′nn′m +

1√
N
αnn′,0m(q)

(

PL
n′ − PL

n

)

−
∑

r 6=0,m

[

V̄mr,00(q) + V̄0r,0m(0) − αor,om(q)
]

P̄L
q′nn′r

−
∑

r 6=n

V̄n′n′,rn(q)P̄L
q′rn′m −

∑

r 6=n′

V̄rn′,nn(q)P̄L
q′nrm −

∑

r 6=n
r′ 6=n′

V̄r′n′,rn(q)P̄L
q′rr′m

+
1

N

∑

q′ 6=0,q
r,t6=0

[

αmt,rn(q′ − q)P̄L
q′rn′te

i(q×q′)zℓ2/2 − αmt,n′r(q
′ − q)P̄L

q′nrt

]

− 1

N

∑

q′ 6=0,q
r

[

α00,rn(q′ − q)P̄L
q′rn′m − α00,n′r(q

′ − q)P̄L
q′nrme

−i(q×q′)zℓ2/2
]

(6.13)

where we introduced a phenomenological decay rate γqnn′m and

αnn′,mm′(q) =
1

2πℓ2
vqφnn′(q)φ∗

mm′(q) (6.14)

to simplify the expression. The energy of the X+MP state |Yqnn′m〉 is the
sum of the X and MP energies,

Ω̄qnn′m =
〈Yqnn′m|H|Yqnn′m〉
〈Yqnn′|Yqnn′m〉

= ΩX
qnn′ + ΩMP

−qm0 (6.15)

where

ΩX
qnn′ =

〈Xqnn′|H|Xqnn′〉
〈Xqnn′|Xqnn′〉 = Eg + (n + 1/2)Ωc

c + (n′ + 1/2)Ωv
c − V̄n′n′,nn(q)

(6.16)
is the energy of an exciton of momentum q with an electron in conduction
band LLn and a hole in valence band LLn′, while

ΩMP
−qm0 =

〈G|ρ̂e
q0m↑Hρ̂

e
−qm0↑|G〉

〈G|ρ̂e
q0m↑ρ̂

e
−qm0↑|G〉

= mΩc
c − V̄mm,00(q) + V00 − V0m + α0m,0m(q)

(6.17)
is the energy of a MP excitation of momentum −q, created by destroying a
conduction band electron from LL0 and creating another electron in LLm.
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6.2. Linear Response

Fig. 6.1a shows the energy shift of the |Yq011〉 state from LL1, Ω̄q011 −Ω1,
as well its two components, ΩX

q01 − (Eg + 1
2
Ωc

c + 3
2
Ωv

c) and ΩMP
−q10 − Ωc

c. The
latter can be easily calculated analytically from Eq. (6.17) using Eqs. (3.4),
(3.6) and (6.14)

ΩMP
−q10 − Ωc

c =
e2

ǫℓ

qℓ√
2
e−q2ℓ2/2

+
e2

ǫℓ

1

2

√

π

2

{

1 − e−q2ℓ2/4

[(

1 +
q2ℓ2

2

)

I0

(

q2ℓ2

4

)

− q2ℓ2

2
I1

(

q2ℓ2

4

)]}

(6.18)

where In is a modified Bessel function of the first kind. The resulting curve is
plotted in Fig. 6.1b. It has a maximum at qℓ ∼ 0.9 and a minimum at qℓ ∼ 2.
For q → 0, ΩMP

q10 → Ωc
c, in accordance with Kohn’s theorem [72]. For qℓ≪ 1,

the spectrum increases linearly ΩMP
−q10 −Ωc

c ≃ 1
2
qℓ. Our result is in agreement

with previous calculations of the energy dispersion of the magnetoplasmon
for filling factor ν = 1 [67]. The first term in the right–hand side of Eq. (6.18)
is the energy dispersion of the magnetoplasmon when calculated within the
RPA and is plotted in Fig. 6.1b. Although it describes the mode well for
qℓ≪ 1, it is clearly inadequate for qℓ≫ 1 [67].

6.2.1 Linear Absorption

By solving the system of Eqs. (3.50) and (6.13), we can calculate the
linear polarizations that are photoexcited in the system, and thus the linear
absorption spectrum. If we retain the first two LLs only, LL0 and LL1, we
need to calculate (besides PL

0 and PL
1 ) P̄L

q001, P̄
L
q011, P̄

L
q101 and P̄L

q111. The last
two are resonant to LL2 and thus can be ignored, since they are not excited
by the optical pulse. We then end up with the following equations of motion
for the polarizations:

i∂tP
L
0 = (Ω0 − iΓ0)P

L
0 − V01P

L
1 − µE(t) − 1

N

∑

q

α01,01(q)P̄L
q011 (6.19)

i∂tP
L
1 = (Ω1 − iΓ1)P

L
1 − V10P

L
0 − µE(t) +

1

N

∑

q

α01,01(q)P̄L
q011 (6.20)

where we have made the transformation PL
n →

√
NPL

n . We note that the
symmetry between Ŷ0 and Ŷ1, Eq. (3.30) is satisfied.

In Eqs. (6.19) and (6.20) the polarizations are not coupled to P̄L
q001, and

thus we will ignore it. The only quantity left then is P̄L
q011, whose dynamics
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Figure 6.1: (a) Energy shift of the X+MP |Yq011〉 state at ν = 1 in comparison
with the LL1 exciton |X1〉 energy. The solid line denotes the energy shift Ω̄q011 −
Ω1, which is the sum of the Xq01 energy (dashed line) and the MP energy (dotted
line). (b) Dispersion curve of the MP energy (solid line). The dashed line denotes
the RPA contribution, and the dotted line the rest. Our calculation reproduces
older results [67].
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Figure 6.2: Calculation of the linear absorption spectrum of the quantum Hall
system at ν = 1 (B = 8.68 T for the system of Ref. [52]) by retaining the |X0〉,
|X1〉, and |Yq011〉 states. The zero of energy is the energy of the LL1 exciton
(Ω1). The X+MP states create a second peak close to the LL1 peak. When the
dephasing is large, the two peaks merge into a broad one.

is described by the equation of motion

i∂tP̄
L
q011 =

(

Ω̄q011 − iγq011

)

P̄L
q011 +

1√
N
α01,01(q)

(

PL
1 − PL

0

)

+
1

N

∑

q′ 6=0,q

W (q,q′)P̄L
q′011 (6.21)

where we defined

W (q,q′) = 2α11,00(q
′ − q) cos

[

(q × q′)zℓ
2

2

]

− α11,11(q
′ − q) − α00,00(q

′ − q)

(6.22)
the coupling between different momentum states that describes rescattering
many–body effects.

Fig. 6.2 shows the linear absorption spectrum that is calculated by solving
Eqs. (6.19), (6.20) and (6.21) for the quantum Hall system of Ref. [52] at
ν = 1, which corresponds to a magnetic field B = 8.68 T. The contribution
of the X+MP states |Yq011〉 creates a second peak next to the LL1 peak. If
the dephasing of these states is strong, the two peaks merge into a broad
one, similar to the experiment [52]. Fig. 6.3 shows the linear absorption
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Figure 6.3: Effect of rescattering many–body processes on the linear absorption
spectrum of the quantum Hall system at ν = 1.
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Figure 6.4: Calculation of the linear absorption spectrum within the RPA.

114



6.3. Nonlinear Response

spectrum without the last term in Eq. (6.21), which describes rescattering
effects. These effects bring the two peaks closer to each other. Fig. 6.4 shows
the linear absoprtion spectrum when calculated within RPA, which does not
reproduce the second peak. This indicates that the role of the X+MP states
for qℓ > 1, where RPA is inadequate, is important.

6.3 Nonlinear Response

To calculate the nonlinear polarization, we use Eq. (3.34) for Ô = X̂n, as
in §3.4:

i∂tPn =(Ωn − iΓn)Pn −
∑

m6=n

VnmPm − d(t)
∑

m

〈[X̂n, X̂
†
m]〉(2)

+
1

2πℓ2
√
N

∑

q 6=0 m

vq

[

φnm(−q)〈ρ̂qX̂qmn〉(3) − φmn(−q)〈ρ̂qX̂qnm〉(3)
]

(6.23)

where the subscript (n) denotes that we only keep the contributions to the
matrix element that are of nth–order in the optical field.

To calculate the second–order contribution of 〈[X̂n, X̂
†
m]〉, we expand the

intraband commutator [X̂n, X̂
†
m] on the strongly correlated basis |Xn〉〈Xm|,

|Xl〉〈Yqnn′m|, and |Yqnn′m〉〈Yq′rr′s|, and obtain:

〈[X̂n, X̂
†
m]〉(2) = − δnm

N

[

2〈|Xn〉〈Xn|〉

+
∑

q 6=0
r,t6=0

(〈|Yqrnt〉〈Yqrnt|〉 + 〈|Yqnrt〉〈Yqnrt|〉)
]

= − δnm

N

[

2〈|Xn〉〈Xn|〉c + 2PL
n P

L∗
n

+
∑

q 6=0
r,t6=0

(〈|Yqrnt〉〈Yqrnt|〉c + 〈|Yqnrt〉〈Yqnrt|〉c)
]

(6.24)

In the last line of the above expression we seperated the coherent contri-
butions in the X populations using Eq. (3.67), while it is straightforward to
verify from Eq. (3.64) that 〈|Yqnn′m〉〈Yqrr′s|〉 = 〈|Yqnn′m〉〈Yqrr′m|〉c. Eq. (6.24)
will give the PSF contribution to our equations of motion.

To calculate matrix elements of the form 〈ρ̂qX̂qmn〉 we note that these
are interband density matrices and thus we may expand them into correlated
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6. The role of X+MP states at ν = 1

and uncorrelated contributions, as in Eq. (3.70):

〈ρ̂qX̂qmn〉 =
∑

r

PL∗
r 〈G|[X̂r, ρ̂qX̂qmn]|ψ2〉 +

∑

r

PL
r 〈[ρ̂qX̂qmn, X̂

†
r ]〉c

+
1

2

∑

rr′

PL
s P

L
s′ 〈ψ̄1L|[[ρ̂qX̂qmn, X̂

†
s ], X̂

†
s′]|G〉 + 〈ρ̂qX̂qmn〉c (6.25)

The commutators in the above equation are easily calculated with Eqs. (3.21)
and (A.1). Moreover, using the expansion of the 2–h state Eq. (3.60) and
Eq. (6.12), we obtain:

〈ρ̂qX̂qmn〉 = − 1

N
√
N
φmn(q)(PL∗

m − PL∗
n )PL

n P
L
m − 1

N

∑

t6=0

φt0(q)P̄L∗
qnmtP

L
n P

L
m

+
1√
N

∑

rr′

φrr′(q)(PL
r′ − PL

r )〈X̂†
qrr′X̂qmn〉c

− 1√
N
PL

m〈ρ̂qρ̂
h
−qmn↓〉c −

1√
N
PL

n 〈ρ̂qρ̂
e
−qnm↓〉c + 〈ρ̂qX̂qmn〉c

(6.26)

where we have treated X–X interactions within the Hartree–Fock approx-
imation. The intraband density matrices of the form 〈X̂†X̂〉 and 〈ρ̂ρ̂〉 in
Eq. (6.26) can be calculated by expanding the corresponding operators in
our basis consisiting of |Xn〉〈Xm|, |Xl〉〈Yqnn′m|, and |Yqnn′m〉〈Yq′rr′s|. Using
Eqs. (A.1), (A.3) and (A.4), we obtain

〈X̂†
qrr′X̂qmn〉c =

∑

t6=0

〈|Yqrr′t〉〈Yqmnt|〉c (6.27)
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and after some algebra,

〈ρ̂qρ̂
h
−qmn↓〉c =

1

N
φmn(q) [〈|Xm〉〈Xn|〉c − 〈|Xn〉〈Xn|〉c]

+
1√
N

∑

t6=0

[φ0t(q)〈|Xm〉〈Yqmnt|〉c + φt0(q)〈|Xn〉〈Y−qnmt|〉∗c]

+
1

N

∑

r, q′ 6=0
t6=0,t′ 6=0

[

φtt′(q) − δtt′φ00(q)ei(q×q′)zℓ2
]

〈|Yq′−qrmt〉〈Yq′rnt′ |〉c

+
1

N

∑

q′ 6=0
rr′, t6=0

φrr′(q)〈|Yq′rmt〉〈Yq′r′nt|〉cei(q×q′)zℓ2

− 1

N

∑

q′ 6=0
rr′, t6=0

φmr′(q)〈|Yq′rr′t〉〈Yq′rnt|〉c (6.28)

〈ρ̂qρ̂
e
−qnm↓〉c =

1

N
φmn(q) [〈|Xm〉〈Xm|〉c − 〈|Xn〉〈Xm|〉c]

+
1√
N

∑

t6=0

[φ0t(q)〈|Xn〉〈Yqmnt|〉c + φt0(q)〈|Xm〉〈Y−qnmt|〉∗c]

+
1

N

∑

r, q′ 6=0
t6=0,t′ 6=0

[

φtt′(q)e−i(q×q′)zℓ2 − δtt′φ00(q)
]

〈|Yq′−qnrt〉〈Yq′mrt′ |〉c

− 1

N

∑

q′ 6=0
rr′, t6=0

φrr′(q)〈|Yq′nr′t〉〈Yq′mrt|〉ce−i(q×q′)zℓ2

+
1

N

∑

q′ 6=0
rr′, t6=0

φrn(q)〈|Yq′rr′t〉〈Yq′mr′t|〉c (6.29)

Th advantage of these expansions is that despite the long expressions, we have
now reduced the dynamics of all intraband density matrices to the dynamics
of 〈|Xn〉〈Xm|〉c, 〈|Xn〉〈Yqrr′t|〉c and 〈|Yqnn′m〉〈Yq′rr′t|〉c, which is described by
equations of motion derived from Eq. (3.66), in analogy with Eqs. (6.30) and
(3.69). We thus obtain the following equation of motion for the X populations
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and X–X coherences, taking into account Eqs. (6.12), (6.3) and (3.26):

i∂t〈|Xn〉〈Xm|〉c = (Ωm − Ωn − iγnm)〈|Xn〉〈Xm|〉c + i(Γn + Γm − γnm)PL∗
n PL

m

−
∑

r 6=m

Vrm〈|Xn〉〈Xr|〉c +
∑

r 6=n

Vnr〈|Xr〉〈Xm|〉c

+
1√
N

∑

q 6=0
r,t6=0

[α0t,rm(q)〈|Xn〉〈Yqrmt|〉c − α0t,mr(q)〈|Xn〉〈Yqmrt|〉c]

− 1√
N

∑

q 6=0
r,t6=0

[αrn,0t(q)〈|Yqrnt〉〈Xm|〉c − αnr,0t(q)〈|Yqnrt〉〈Xm|〉c]

(6.30)

where γnm is the decay rate of the Xn ↔ Xm coherence (if n 6= m) or Xn

density (if n = m). Similarly, we obtain for the X–X+MP coherences:

i∂t〈|Xl〉〈Yqnn′m|〉c = (Ω̄qnn′m − Ωl − iγl
qnn′m)〈|Xl〉〈Yqnn′m|〉c

+ i(Γl + γqnn′m − γl
qnn′m)PL∗

l P̄L
qnn′m

+
1√
N

∑

q′ 6=0
s t6=0

[

αsl,0t(q
′)P̄L∗

q′slt − αls,0t(q
′)P̄L∗

q′lst

]

P̄L
qnn′m

−
∑

t6=0,m

[

V̄mt,00(q) − αm0,t0(−q) +
1

N

∑

q′ 6=0

αm0,t0(q
′)

]

〈|Xl〉〈Yqnn′t|〉c

−
∑

s 6=n

V̄n′n′,sn(q)〈|Xl〉〈Yqsn′m|〉c −
∑

s 6=n′

V̄sn′,nn(q)〈|Xl〉〈Yqnsm|〉c

−
∑

s 6=n s′ 6=n′

V̄s′n′,sn(q)〈|Xl〉〈Yqss′m|〉c +
∑

s 6=l

Vls〈|Xs〉〈Yqnn′m|〉c

+
1√
N
αm0,n′n(−q) [〈|Xl〉〈Xn′|〉c − 〈|Xl〉〈Xn|〉c]

− 1√
N

∑

q′ 6=0
s t6=0

[αsl,0t(q
′)〈|Yq′slt〉〈Yqnn′m|〉c − αls,0t(q

′)〈|Yq′lst〉〈Yqnn′m|〉c]

+
1

N

∑

q′ 6=0,q
s t6=0

[

αmt,sn(q′ − q)ei(q×q′)zℓ2 − δtmα00,sn(q′ − q)
]

〈|Xl〉〈Yq′sn′t|〉c

− 1

N

∑

q′ 6=0,q
s t6=0

[

αmt,n′s(q
′ − q) − δtmα00,n′s(q

′ − q)e−i(q×q′)zℓ2
]

〈|Xl〉〈Yq′nst|〉c

(6.31)
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where we used Eqs. (A.10), (A.11) and (3.66), and introduced a decay rate
γl
qnn′m for the 〈|Xl〉〈Yqnn′m|〉c coherence.

In analogy with Eqs. (6.30) and (6.31), we can also write the equa-
tion of motion for 〈|Yqnn′m〉〈Yq′rr′t|〉c and thus together with Eq. (6.23) and
Eqs. (6.26)–(6.28), we can calculate the third–order polarizations induced in
the system. In the following sections, we will present a simplified form of
the above equations when photoexcitating the lowest two LLs and ignoring
X+MP–X+MP contributions and we will calculate the FWM signal.

6.4 Calculation of the FWM signal

To simplify the equations of motion discussed above, we keep the lowest
two LLs, LL0 and LL1, assuming that they are the only photoexcited lev-
els. We also ignore density matrices of the 〈|Y〉〈Y|〉c form, as they describe
X+MP–X+MP coherences, which we assume they dephase fast and thus their
contribution can be described within the relaxation time approximation.

To simplify our expresions, we use the definitions introduced in Eqs. (4.3)
and (4.4) for the X populations and X–X coherences respectively, as well as

Ml,nn′(q) = 〈|Xl〉〈Yqnn′1|〉c (6.32)

in analogy with Eq. (4.5) and taking into account that them 6= 0 requirement
in the |Yqnn′m〉 states implies m = 1 when keeping 2 LLs only. We also intro-
duce the transformations PL

n →
√
NPL

n [which we also used in Eqs. (6.19)–
(6.21)] Nn → NNn, Nnm → NNnm, and Ml,nn′(q) →

√
NMl,nn′(q). Finally,

for simplicity we assume that the Ml,nn′(q) density matrices depend only on
the amplitude |q|. We thus obtain the following equations of motion for the
third–order polarizations:

i∂tP0 =(Ω0 − iΓ0)P0 − V01P1 + 2µE(t)
[

PL
0 P

L∗
0 +N0

]

− 2V01P
L
0 P

L
1 (PL∗

1 − PL∗
0 ) − 1

N
PL

0 P
L
1

∑

q

α01,01(q)P̄L∗
q011

− 2V01

[

PL
1 (N01 −N0) − PL

0 (N10 −N1)
]

− 1

N
PL

0

∑

q

α01,01(q)
[

M∗
1,01(q) −M0,01(q)

]

− 1

N
PL

1

∑

q

α01,01(q)
[

M∗
0,01(q) −M1,01(q)

]

(6.33)
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i∂tP1 =(Ω1 − iΓ1)P1 − V10P0 + 2µE(t)
[

PL
1 P

L∗
1 +N1

]

+ 2V10P
L
0 P

L
1 (PL∗

1 − PL∗
0 ) +

1

N
PL

0 P
L
1

∑

q

α01,01(q)P̄L∗
q011

+ 2V10

[

PL
1 (N01 −N0) − PL

0 (N10 −N1)
]

+
1

N
PL

0

∑

q

α01,01(q)
[

M∗
1,01(q) −M0,01(q)

]

+
1

N
PL

1

∑

q

α01,01(q)
[

M∗
0,01(q) −M1,01(q)

]

(6.34)

The above equations are in exact analogy with Eqs. (4.1) and (4.2). As
before, the third term in Eqs. (6.33) and (6.34) is the contribution of Pauli
blocking effects (PSF), the fourth describes X–X interactions, and the sixth
is the contributions of incoherent X populations and X–X coherences. The
fifth and seventh terms are contributions of X–X+MP coherences. They are
a generalization of the relevant terms in Eqs. (4.1) and (4.2) so as to include
the contribution of each momentum q seperately. The only density matrices
that contribute to the LL0 and LL1 polarizations are M0,01(q) and M1,01(q),
in analogy with the M0 and M1 matrices discussed in Chapter 4. We thus
ignore all other matrices (likeM0,00,M0,10, etc.). Using Eqs. (6.30) and (6.31),
we then obtain the following equations of motion for the X populations, and
X–X and X–X+MP coherences:

i∂tN0 = − iγDN0 + i(2Γ0 − γD)PL∗
0 PL

0 − V10N10 + V01N
∗
10

+
1

N

∑

q 6=0

[

−α01,01(q)M0,01(q) + α01,01(q)M∗
0,01(q)

]

(6.35)

i∂tN1 = − iγDN1 + i(2Γ1 − γD)PL∗
1 PL

1 + V10N10 − V01N
∗
10

+
1

N

∑

q 6=0

[

α01,01(q)M1,01(q) − α01,01(q)M∗
1,01(q)

]

(6.36)

i∂tN10 =(Ω1 − Ω0 − iγ10)N10 + i(Γ0 + Γ1 − γ10)P
L∗
0 PL

1 − V01N0 + V01N1

+
1

N

∑

s,q 6=0

[

α01,01(q)M0,01(q) + α01,01(q)M∗
1,01(q)

]

(6.37)

i∂tM0,01 = (Ω̄q011 − Ω0 − iγ0
q011)M0,01 + i(Γ0 + γq011 − γ0

q011)P
L∗
0 P̄L

q011

+ V01M1,01(q) + α01,01(q) [N10 −N0] +
1

N

∑

q′ 6=0,q

W (q,q′)M0,01(q
′)

(6.38)
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i∂tM1,01 = (Ω̄q011 − Ω1 − iγ1
q011)M1,01 + i(Γ1 + γq011 − γ1

q011)P
L∗
1 P̄L

q011

+ V10M0,01(q) + α01,01(q) [N1 −N01] +
1

N

∑

q′ 6=0,q

W (q,q′)M1,01(q
′)

(6.39)

The system of Eqs. (6.19)–(6.39) can be solved numerically thus we can
calculate the FWM signal created at the LL0 and LL1 energies. In the
following, we present our numerical calculations where we have included only
the factorizable parts of the X–X+MP coherences, i.e. terms of the form
PL

0 P
L
1 P̄

L∗

q011. Calculations of the FWM signal including non-factorizable parts
are in progress.

Fig. 6.5 shows the calculated FWM signal along the ∆t12 axis for mostly
LL1 photoexcitation in two cases: when including the contributions of the
X+MP states and when they are ignored. It is clear that their presence
strongly affects the nonlinear signal, as it creates a transfer of oscillator
strength from LL1 to LL0. In the absence of the continuum of the X+MP
states (Fig. 6.5b), the FWM signal is similar to the one from the undoped
system.

Fig. 6.6 shows the LL0 FWM signal when calculated within the RPA in
comparison with the signal obtained from the full X+MP dispersion. This
comparison that the large–momentum X+MP states, for which the RPA is
inadequate, can affect the decay of the FWM signal. This is more clear in
Fig. 6.6b where a small dephasing rate of the X+MP states is assumed.

6.5 Conclusions

In this chapter we studied the role of the X+MP states, described by
|Yqnn′m〉 = X̂†

qnn′ ρ̂e
−qm0↑|G〉, in the linear and nonlinear response of the quan-

tum Hall system for filling factor ν = 1. We showed that the energy dis-
persion of these states approximately follows the energy dispersion of the
magnetoplasmon excitation, which exhibits a local minimum at a non–zero
momentum. These large momentum states affect the linear and nonlinear
response of the quantum Hall system and cannot be described within the
RPA. The linear absorption spectrum exhibits a peak close to the LL1 peak
because of the X+MP states, which due to strong dephasing merge into a
broad peak that is observed in experiment.
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Figure 6.5: Theoretical calculation of the FWM signal along the ∆t12 axis
for mostly LL1 photoexcitation, (a) with and (b) without the contribution of the
X+MP states. The presence of these states strongly affects the nonlinear signal
and creates a transfer of oscillator strength from LL1 to LL0. In the absence of the
X+MP states, we obtain the LL1/LL0 signal ratio similar to the undoped system.
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Figure 6.6: Calculation of the LL0 FWM signal and comparison with calculation
within the RPA, for (a) large and (b) small dephasing of the X+MP states. The
large momentum X+MP states, which are not described by the RPA, affect the
decay of the signal.
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Chapter 7

Conclusions

7.1 Summary

In this thesis, we discussed a theoretical formulation to study the ultrafast
nonlinear optical response of the quantum Hall system. Our approach goes
beyond the DCTS, widely used to describe the ultrafast coherent dynam-
ics of excitons in undoped semiconductors, the assumptions of which break
down in systems with a strongly correlated ground state, such as the quan-
tum Hall system. Our theory is based on the projection of the exciton states
and the separation of the uncorrelated contributions to the third–order non-
linear optical response from the contributions due to correlations among the
interband and intraband elementary excitations. We also use an expansion
in terms of the optical field in order to eliminate the number of independent
dynamical variables that need to be considered, similar to the DCTS [4–6].

We discussed and compared to recent ultrafast three–pulse FWM results
that demonstrate the important role of correlations between photoexcited
excitons and the inter–LL collective excitations of the 2DEG. We showed
that three–pulse transient FWM spectroscopy can be used to access simul-
taneously the intraband and interband coherent dynamics of the quantum
Hall system. Even for very small excitation of the LL0 transition, the FWM
signal in the quantum Hall system is dominated by a large off–resonant peak
at the LL0 energy with strong coherent oscillations and symmetric temporal
profile. Using a microscopic many-body theory we showed that this signal is
due to many-particle coherences created via the non-instantaneous interac-
tions of photoexcited carriers and MPs. In particular, the non–instantaneous
X1 →X01+MP interaction process both creates an intraband coherence and
leads to strong LL1 exciton dephasing. Such effects govern the LL0 FWM
temporal and spectral profiles. We showed for example that strong tempo-
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ral oscillations result from the interference of different FWM contributions
of the above intraband coherences. The combination of ultrafast nonlinear
spectroscopy and quantum Hall physics initiates a new field of quantum Hall
ultrafast dynamics. Future experimental and theoretical activity in this area
will further progress our understanding and manipulation of non–equilibrium
correlations and quantum coherent phenomena in nanostructures.

From a theoretical point of view, the theoretical formulation developed
in this thesis can be used to study the ultrafast nonlinear optical dynamics
due to excitations such as the trion and skyrmion states. Such effects have
not been explored before. In addition, a new more sensitive experimental
technique called two–dimensional correlation spectroscopy that was very re-
cently developed can provide new insight into the ultrafast dynamics of the
quantum Hall system. To guide such experiments, theoretical calculations of
the experimentally observable signal must be performed based on the present
theory.
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Appendix A

Useful commutators

Here we include several commutators that have been used in Chapter 6.
The calculations are often lengthy but always straightforward, by using the
definitions Eqs. (3.11), (3.17) and (3.18), as well as Eq. (3.1).

X–X interactions are described by the commutator
[

X̂q1n1n′

1
, X̂†

q2n2n′

2

]

= δq1q2
δn1n2

δn′

1
n′

2
− 1√

N
δn1n2

ei(q1×q2)zℓ2/2ρ̂h
q2−q1n′

2
n′

1
↓

− 1√
N
δn′

1
n′

2
e−i(q1×q2)zℓ2/2ρ̂e

q2−q1n2n1↓

(A.1)

When q1 = q2 = q and n1 = n′
1 = n, m1 = m′

1 = m Eq. (A.1) is simplified
to Eq. (3.15), written also as

[

X̂n, X̂
†
m

]

= δnm

(

1 − 1√
N
ρ̂h

0nn↓ −
1√
N
ρ̂e

0nn↓

)

(A.2)

Similarly, X–MP interactions are described by
[

ρ̂e
qnmσ, X̂

†
q′n′m′

]

=
1√
N
δσ↓δmn′ei(q×q′)zℓ2/2X̂†

q+q′nm′ (A.3)

In analogy of the above commutator,
[

ρ̂h
qnmσ, X̂

†
q′n′m′

]

=
1√
N
δσ↓δmm′e−i(q×q′)zℓ2/2X̂†

q+q′n′n (A.4)

It is also useful to describe the interactions between magnetoplasmons by the
commutator

[

ρ̂e
qnn′σ, ρ̂

e
q′mm′σ′

]

=
1√
N
δσσ′δn′me

i(q×q′)zℓ2/2ρ̂e
q+q′nm′σ

− 1√
N
δσσ′δnm′e−i(q×q′)zℓ2/2ρ̂e

q+q′mn′σ (A.5)
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Moreover,

[

ρ̂h
qnn′σ, ρ̂

h
q′mm′σ′

]

=
1√
N
δσσ′δn′me

−i(q×q′)zℓ2/2ρ̂h
q+q′nm′σ

− 1√
N
δσσ′δnm′ei(q×q′)zℓ2/2ρ̂h

q+q′mn′σ (A.6)

and
[

ρ̂e
qnn′σ, ρ̂

h
q′mm′σ′

]

= 0 (A.7)

Another useful commutator, which is easily calculated using Eqs. (A.1)
and (A.3), is

[X̂l, Ŷ
†
qnn′m] = − 1√

N

(

δlnρ̂
h
qn′n↓ + δln′ ρ̂e

qnn′↓

)

ρ̂e
−qm0↑ (A.8)

where Ŷ †
qnn′m is defined in Eq. (6.2). Eq. (A.8) describes the interaction of an

exciton with an X+MP configuration. Similarly, X+MP–X+MP interactions
are described by

[Ŷq1n1n′

1
m1
, Ŷ †

q2n2n′

2
m2

] =
1√
N

[

δm1m2
e−i(q1×q2)zℓ2/2ρ̂e

q1−q200↑

−ei(q1×q2)zℓ2/2ρ̂e
q1−q2m2m1↑

]

X̂†

q2n2n′

2

X̂q1n1n′

1

+

[

δq1q2
δn1n2

δn′

1
n′

2
− δn1n2√

N
e−i(q1×q2)zℓ2/2ρ̂h

q2−q1n′

2
n′

1
↓

−
δn′

1
n′

2√
N
ei(q1×q2)zℓ2/2ρ̂e

q2−q1n2n1↓

]

ρ̂e
q10m1↑

ρ̂e
q2m20↑

(A.9)

The interactions between excitons and the ground state 2DEG are described
by the commutator of the exciton operator with the Hamiltonian:

[

X̂qnn′, H
]

=
[

Eg + Ωc
c(n+

1

2
) + Ωv

c (n
′ +

1

2
)
]

X̂qnn′ −
∑

rr′

V̄r′n′,rn(q)X̂qrr′

+
1

2πℓ2
√
N

∑

q′r

vq′ ρ̂q′

[

φnr(−q′)X̂q+q′rn′ei(q×q′)zℓ2/2

−φrn′(−q′)X̂q+q′nre
−i(q×q′)zℓ2/2

]

(A.10)
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Similarly,

[

ρ̂e
qmm′σ, H

]

=
[

Ωc
c(m

′ −m) +
∑

r

Vrm

]

ρ̂e
qmm′σ −

∑

rr′

V̄m′r′,mr(q)ρ̂e
qrr′σ

+
1

2πℓ2
√
N

∑

q′r

vq′ ρ̂−q′

[

φm′r(q
′)ρ̂e

q+q′mrσe
i(q×q′)zℓ2/2

−φrm(q′)ρ̂e
q+q′rm′σe

−i(q×q′)zℓ2/2
]

(A.11)

and

[

ρ̂h
qmm′σ, H

]

=
[

Ωv
c (m

′ −m) +
∑

r

Vmr

]

ρ̂h
qmm′σ −

∑

rr′

V̄mr,m′r′(q)ρ̂h
qrr′σ

+
1

2πℓ2
√
N

∑

q′r

vq′ ρ̂−q′

[

φmr(q
′)ρ̂h

q+q′rm′σe
i(q×q′)zℓ2/2

−φrm′(q′)ρ̂h
q+q′mrσe

−i(q×q′)zℓ2/2
]

(A.12)
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shape of time-resolved four-wave mixing, Phys. Rev. A 42 (9), 5675
(1990).

[84] F. Jahnke, M. Koch, T. Meier, J. Feldmann, W. Schäfer, P. Thomas,
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[94] R. L. P. Kner, W. Schäfer and D. S. Chemla, Coherence of Four-
Particle Correlations in Semiconductors, Phys. Rev. Lett. 81 (24), 5386
(1998).

[95] N. A. Fromer, P. Kner, D. S. Chemla, R. Lövenich, and W. Schäfer,
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