
University of Crete
School of Sciences and Engineering

Computer Science Department

LEoNIDS: a Low-latency and Energy-efficient
Network-level Intrusion Detection System

Nikos Tsikoudis

Master’s thesis

June 2013 Heraklion, Greece

University of Crete
Computer Science Department

LEoNIDS: a Low-latency and Energy-efficient Network-level Intrusion
Detection System

Thesis submitted by
Nikos Tsikoudis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Nikos Tsikoudis

Committee approvals:
Evangelos Markatos
Professor, Thesis Supervisor

Kostas Magoutis
Research scientist, ICS-FORTH, Committee Member

Apostolos Traganitis
Professor, Committee Member

Departmental approval:
Angelos Bilas
Professor, Director of Graduate Studies

Heraklion, June 2013

Abstract

Over the past decade, the design and implementation of low-power systems
has received significant attention. Started with data centers and battery-operated
mobile devices, it has recently branched to core network devices such as routers.
Towards this direction, we aim to reduce the power consumption of Network-level
Intrusion Detection Systems (NIDS), which are used to improve the secure op-
eration of modern computer networks. Unfortunately, traditional approaches to
low-power system design, such as frequency scaling and core deactivation, lead to
a disproportionate increase in packet processing and queuing times. In this work,
we show that this increase has a negative impact on the detection latency and
impedes a timely reaction of a NIDS to the incoming attacks.

To address this issue, we present LEoNIDS: a NIDS architecture that resolves
the energy-latency tradeoff by providing both low power consumption and low de-
tection latency at the same time. The key idea of LEoNIDS is to identify the
packets that are more likely to carry an attack. These packets are given higher
priority so as to achieve low attack detection latency, while the rest of the packets
are scheduled to run at a much lower priority, achieving overall low power con-
sumption. Our results indicate that LEoNIDS consumes comparable power to a
state-of-the-art low-power design, while, at the same time, achieving up to an order
of magnitude faster attack detection latency.

Περίληψη

Κατά τη διάρκεια της τελευταίας δεκαετίας έχει γίνει μεγάλη προσπάθεια για την

σχεδίαση και υλοποίηση συστημάτων με χαμηλή κατανάλωση ενέργειας. Ξεκινώντας

από data centers και κινητές συσκευές που λειτουργούν με μπαταρία, έχει πρόσφατα
επεκταθεί σε κύρια τμήματα του δικτύου όπως δρομολογητές. Προς αυτή την κατε-

ύθυνση, έχουμε ως στόχο την μείωση της κατανάλωσης ενέργειας των συστημάτων

ανίχνευσης δικτυακών επιθέσεων τα οποία χρησιμοποιούνται για την βελτίωση της

ασφαλής λειτουργίας των σύγχρονων δικτύων. Δυστυχώς, οι παραδοσιακές προσεγ-

γίσεις σχεδίασης για χαμηλή κατανάλωση ενέργειας, όπως κλιμάκωση συχνότητας και

απενεργοποίηση πυρήνων, οδηγούν σε δυσανάλογη αύξηση του χρόνου επεξεργασίας

και αναμονής των πακέτων. Στην εργασία αυτή δείχνουμε ότι η αύξηση αυτή έχει

αρνητικό αντίκτυπο στο χρόνο ανίχνευσης των επιθέσεων και παρεμποδίζει την έγ-

καιρη αντίδραση ενός συστήματος ανίχνευσης δικτυακών επιθέσεων στις εισερχόμενες

επιθέσεις.

Για να αντιμετωπίσουμε αυτό το ζήτημα, παρουσιάζουμε το LEoNIDS: μια αρχιτε-
κτονική για συστήματα ανίχνευσης δικτυακών επιθέσεων που καταφέρνει να παρέχει

ταυτόχρονα χαμηλή κατανάλωση ενέργειας και χαμηλό χρόνο ανίχνευσης επιθέσεων.

Η βασική ιδέα του LEoNIDS είναι να προσδιορίζει τα πακέτα που είναι πιο πιθανό να
περιέχουν μία επίθεση. Στα πακέτα αυτά δίνεται μεγαλύτερη προτεραιότητα ώστε να

επιτευχθεί χαμηλός χρόνος ανίχνευσης επιθέσεων, ενώ τα υπόλοιπα πακέτα δρομολο-

γούνται με χαμηλότερη προτεραιότητα, ώστε να επιτευχθεί χαμηλότερη κατανάλωση

ενέργειας. Τα αποτελέσματα δείχνουν ότι το LEoNIDS καταναλώνει συγκρίσιμη ε-
νέργεια με ένα τυπικό σύστημα χαμηλής ενεργειακής κατανάλωσης, ενώ ταυτόχρονα

επιτυγχάνει μία τάξη μεγέθους χαμηλότερη καθυστέρηση ανίχνευσης επιθέσεων.

Acknowledgments

I would like to thank my Supervisor, Professor Evangelos P. Markatos, for his
valuable guidance during my studies and the chance to be a part of the Distributed
Computing Systems (DCS) Lab, at FORTH-ICS. I am also grateful to Antonis Pa-
padogiannakis, whose advices and support played a crucial role during my research.

I need to express my gratitude to past and current members of the DCS Lab
for their support and for contributing for a pleasant environment in the lab. A
heartfelt thank you to my friends for their support and especially to Sofia Gkika
for her constant and endless encouragement.

Finally, I would never made it through without my family. I am grateful to my
father Giannis, my mother Vangelio and my brother Manos for their support in
every single aspect of my life.

This work has been conducted in theDistributed Computing Systems(DCS)
laboratory, Institute of Computer Science (ICS), Foundation for Research
and Technology - Hellas (FORTH) and supported by the FP7 project SysSec,
funded by the European Commission under Grant Agreement No. 257007.

2

Contents

1 Introduction 1
1.1 Low-Power NIDS Design . 1
1.2 Motivation . 2

1.2.1 Why NIDS Power Consumption Matters 2
1.2.2 Why Detection Latency Matters 2

1.3 Proposed Approach . 3
1.4 Contributions . 4
1.5 Thesis Outline . 4

2 Related Work 5
2.1 Energy-Efficient Systems . 5
2.2 Energy Efficiency in Networks . 6
2.3 Energy-Latency Tradeoff . 6
2.4 Utilizing Features of Modern NICs 6

3 Towards a Power Proportional NIDS 7
3.1 Experimental Environment . 7
3.2 Power Consumption . 8
3.3 Exploring the Design Space . 8
3.4 Adapt to the Traffic Load . 10
3.5 Summary . 12

4 The Energy-Latency Tradeoff in NIDS 13
4.1 Detection Latency . 13
4.2 Deconstructing Detection Latency 14
4.3 Delay Analysis . 15
4.4 Summary . 18

5 Solving the Energy-Latency Tradeoff 19
5.1 Identify the Most Important Packets for Detection Latency 19
5.2 Time Sharing . 21
5.3 Space Sharing . 21

5.3.1 Flow Migration . 22
5.3.2 Adaptive Core Management 22

I

5.4 Summary . 23

6 Implementation 25
6.1 Time Sharing . 27
6.2 Space Sharing . 27
6.3 Adapting the Number of Active Cores 27

7 Experimental Evaluation 29
7.1 Time Sharing . 29
7.2 Space Sharing . 30
7.3 Comparison of all Approaches . 32

8 Conclusions 35

II

List of Figures

3.1 Power consumption, detection latency, and core utilization as a func-
tion of frequency and number of active cores when running Snort
and sending 0.6 Gbit/sec. Power consumption decreases as the uti-
lization of active cores approaches 100%. However, this results in
increased detection latency. 9

3.2 Power consumption and detection latency of a straight-forward NIDS
versus the original system as a function of traffic rate. A straight-
forward power-proportional NIDS consumes less power with higher
detection latency. 11

4.1 The energy-latency tradeoff. Detection latency as a function of
power consumption when sending 0.6 Gbit/sec traffic. 14

4.2 Processing time and queuing delay of attack packets as a function of
traffic rate when running 12 cores at 1.2 GHz, 1.8 GHz, and 2.3 GHz.
The main cause of increased detection latency is higher queuing delay. 15

4.3 Total delay as a function of frequency and number of cores. When
using 4 cores to process 75,000 packets per second the delay increases
exponentially as we decrease frequency. Total delay approximates
the behavior of detection latency. 16

4.4 Total and queuing delay as a function of system utilization. When
utilization exceeds 80%, the queuing delay approaches the total delay
and they are both increased exponentially. 17

5.1 CDF of the attack packet ranking and fraction of packets per each
rank. A large percentage of the attacks can be detected in a small
fraction of the total packets using a flow cutoff value. 20

6.1 The LEoNIDS architecture with time sharing and space sharing. . 26
6.2 Redirection table and NIC queues 28

7.1 Detection latency as a function of cutoff for three different rates
when using time sharing. In all cases we observe the lowest latency
for a cutoff value of 500 packets per flow. 30

III

7.2 Latency breakdown for high- and low-priority packets with time
sharing as a function of cutoff when we send 1.0 Gbit/sec traffic.
Low-priority packets experience up to 49.2x higher latency than
high-priority packets. 31

7.3 Detection latency as a function of cutoff when using space sharing to
process 1.0 Gbit/sec. The optimal cutoff for space sharing is around
500 packets per flow. 31

7.4 Latency breakdown for high- and low-priority packets with space
sharing as a function of cutoff. Both high- and low-priority packets
experience lower latency in space sharing compared with time-sharing 32

7.5 Power consumption and detection latency of all approaches as a
function of the traffic rate. LEoNIDS with space sharing consumes
approximately the same power as the other power-proportional ap-
proaches, but with significantly lower detection latency. 33

IV

List of Tables

3.1 CPU consumes the larger portion of energy in a NIDS. More than
50% of power is consumed at the CPU. 8

3.2 Using more cores at lower frequency is more energy efficient, but
results in higher latency. 10

V

VI

Chapter 1

Introduction

Low power consumption is one of the main design goals in today’s computer sys-
tems. Recently, much effort has been put into improving the energy efficiency in a
variety of areas like data centers [33], high performance computing [6], and mobile
devices [26]. Also significant attention receive core network devices like routers [23].
Towards this direction, we aim to build an energy efficient Network-level Intrusion
Detection System (NIDS) [27, 31]

NIDS are commonly deployed to detect security violations, enhancing the secure
operation of modern computer networks. They perform computationally heavy
operations like multiple pattern matching, regular expression matching, and other
types of complex analysis on the incoming packets to detect at real time malicious
activities in the monitored network. Thus, NIDS usually utilize multi-core sys-
tems [28] or cluster of servers [15, 32, 35] to cope with increased link speeds and
complicated analysis of network traffic.

1.1 Low-Power NIDS Design

Although NIDS are usually provisioned to operate at link rate, in order to be able
to handle a fully utilized network at the worst case, most networks are typically
much less utilized than their maximum capacity. This results in increased power
consumption at low traffic load. To reduce the energy spent under low traffic we
aim at building a power-proportional NIDS using Dynamic Voltage and Frequency
Scaling (DVFS) and sleep states (C-states), which are usually found in modern
processors. The system should consume the least power needed to sustain the
incoming traffic load.

We find that a NIDS consumes less power when it uses the smallest number of
cores at the lowest possible frequency, by keeping these cores nearly fully utilized.
This is inline with previous studies on energy-efficient networked systems [23]. Our
results indicate that this energy-efficient NIDS can process all packets with up to
23% lower power consumption than the original system at low rates. However,
we not surprisingly observe a significant increase on the attack detection latency.

1

2 CHAPTER 1. INTRODUCTION

There is an up to 7x increase due to higher packet processing times when reducing
the frequency, and mostly due to increased queuing delays imposed by the high
CPU utilization.

A low detection latency is very important for a NIDS in order to ensure a timely
reaction to the attack. Upon the detection of a packet that carries an attack, the
NIDS can terminate the offending connection by actively sending TCP reset (RST)
packets or installing a new firewall rule. This reaction should happen as soon as
possible, definitely before the attack packets reach the victim’s machine and the
attack succeeds.

1.2 Motivation

We first argue for the usefulness of an energy-efficient NIDS and then we explain
why a low response time is crucial for a NIDS.

1.2.1 Why NIDS Power Consumption Matters

NIDS are usually over-provisioned to handle a fully utilized line and tolerate over-
loads without missed attacks [7]. Thus, they use all the available resources: all
cores [28], and the maximum CPU frequency. In high speed networks, the traffic
load may also be split among multiple machines [15, 35, 32]. However, the mon-
itored networks are rarely fully utilized at their maximum capacity and a NIDS
machine is not often overloaded. This results in increased energy spent and in-
creased cost for running multiple NIDS to protect a large infrastructure.

The increased power consumption is a significant concern in data center envi-
ronments with limited power capacity. Moreover, it is important in devices with
limited resources, like wireless access points. The power consumption is even more
important when a NIDS runs on a device with limited battery life, like a sensor
node or a mobile device. For instance, mobile devices may run host-based NIDS to
protect their users against emerging attacks on such devices. We believe that our
work can be applied in NIDS that run in such devices as well.

1.2.2 Why Detection Latency Matters

Although a NIDS operating in passive mode does not affect the actual latency of the
monitored packets, a low packet processing latency and thus a fast attack detection
is necessary. This is because a NIDS is able to react and protect the potential
victims upon a timely attack detection. One way to achieve this is to actively
terminate an offending TCP connection by sending TCP reset (RST) packets with
the correct sequence numbers and spoofed IP addresses of victim and attacker hosts
(e.g., using Snort’s Flexresp active response). Since a reset packet may not reach
the client or server before this host has already responded to the attack packet,
the NIDS tries to terminate the connection by sending multiple reset packets and
guessing the next TCP sequence and acknowledgment numbers. However, such an

1.3. PROPOSED APPROACH 3

active response is not guaranteed to successfully terminate an offending connection:
it is a race between the NIDS and the endpoints of the network communication.
Depending on the detection latency and the network latency (round-trip time and
throughput), NIDS may or may not win this race. Thus, a NIDS should be able
to detect the incoming attacks fast in order to stop fast TCP connections.

Another possible reaction of a NIDS upon an attack detection is to automat-
ically add a firewall rule to block the next incoming attack packets in order to
prevent a full system compromise. To be effective, a low detection latency is again
crucial. Moreover, DNS and URL blacklists may also updated upon the detection
of a malicious domain or malicious URL to protect the other hosts from accessing
it. Since a malicious website may be accessed within short time periods by many
users, e.g., due to massive spam messages, it is important to automatically update
these blacklists in a timely fashion.

1.3 Proposed Approach

Our results indicate a new tradeoff for NIDS: the energy-latency tradeoff. Our key
idea to resolve this tradeoff is to identify the most important packets for attack
detection and process them with lower latency. In previous work [24] we have
found that the first few packets of each connection have a much higher probability
to carry an attack. Thus, processing these packets with low latency results in fast
detection in most cases. An increased latency for the rest packets, in order to save
power, is less likely to affect the overall detection latency.

We explore two alternative approaches to achieve lower latency for the first
packets of each connection: time sharing and space sharing. In time sharing we
give higher priority to these packets using a typical priority queue scheduling in
each core. In space sharing the high-priority packets follow a different path, using
few dedicated cores with much lower utilization. To implement space sharing we use
features of modern network interface cards (NIC) to move efficiently the processing
of least-significant packets to cores with higher utilization, a technique we call as
flow migration. Thus, we keep the first packets of each flow in cores with low
utilization to achieve low latency. We experimentally compare the two approaches
and both of them with the original system and we find that space sharing has a
better power-latency ratio. This is because time sharing cannot efficiently reduce
the queuing delays during a high utilization and the original system consumes 22%
more power.

Based on these approaches we propose LEoNIDS: a NIDS architecture that
resolves the energy-latency tradeoff. The implementation of LEoNIDS uses NIC
features, a specialized kernel module, a modified user-level library, and is based
on the popular Snort NIDS [31]. LEoNIDS consumes less power, proportionally to
the traffic load, while its detection latency remains low and almost constant at any
traffic load.

4 CHAPTER 1. INTRODUCTION

1.4 Contributions

The main contributions of this work are:

• We identify a new tradeoff for NIDS: the energy-latency tradeoff which affects
the detection latency. As we reduce power consumption the detection latency
is significantly increased, which impedes a timely reaction to the incoming
attacks. We see that the main cause of the increased detection latency is the
queuing delays imposed by the high utilization at each active core.

• We resolve the energy-latency tradeoff by identifying the most important
packets and processing them with low latency. These are the first packets of
each connection, which have a higher probability to contain an attack.

• We introduce space sharing: a new technique based on flow migration that
processes the most important packets in dedicated cores with low utilization,
and moves the processing of least significant packets to cores with higher
utilization.

• We experimentally compare two alternative approaches for low latency in a
power-proportional NIDS: time sharing and space sharing. We show that
space sharing results in lower detection latency when power consumption is
reduced. It utilizes the NIC capabilities better than the time sharing does.

• We present the design, implementation, and experimental evaluation of LEoNIDS,
a NIDS architecture that achieves both low latency and reduced power con-
sumption.

1.5 Thesis Outline

The rest of this thesis is structured as follows. Chapter 2 presents similar studies
to ours. In chapter 3 we explore the design of a power-proportional NIDS. How
detection latency is affected is described in chapter 4 with both experimental and
analytical evaluation, indicating the energy-latency tradeoff. Chapter 5 identifies
the solution, resolving the energy-latency tradeoff and presents the two possible
approaches. Implementation and experimental evaluation of the approaches are
described in chapters 6 and 7 respectively. Finally, chapter 10 concludes the thesis

Chapter 2

Related Work

Several recent works show a growing emphasis on improving the energy efficiency
in a variety of areas, like data centers [14, 21, 33], high performance computing [6],
networks [1, 5, 10, 13, 22, 23] and mobile devices [4, 18, 26, 37]. This has led to the
deployment of new advanced options for power management in modern computer
systems. Furthermore, there are works that study throughput and latency opti-
mizations, especially in the area of wireless sensor networks [16, 19, 38]. Finally,
various research projects share ideas with this work like flow director filters and
using dedicated cores for specific processes [3, 29].

2.1 Energy-Efficient Systems

Focusing on energy efficient data centers Kontorinis et al. [14] propose a distributed
UPS architecture that stores energy in UPS batteries during idle periods and uses
it during power spikes. Meisner et al. [21] present an approach to reduce the idle
power consumption of a server by rapidly switching from a high-performance active
state to a minimal-power nap state in response to instantaneous load. The authors
in [33] evaluate and control the power and energy usage of workloads on a multi-
core server. Some more specialized systems focus on database workloads evaluating
current query optimizers in terms of energy efficiency [34] and low-power modes
for main memories [6].

Energy efficiency is also a major issue for the mobile devices because of their
limited battery capacity. Lindsey et al. [18] propose a protocol for power efficient
information gathering in sensor systems. Each node communicates only with a
close neighbor and takes turns transmitting its packets to the distant base station.
Recent works focus on profiling the energy for smartphones apps [26] and moni-
toring the power consumption of every application process [37]. A closely related
to our work, presents the energy constrains when adopting malware detection on
mobile devices and determines an optimal spot for protection while consuming a
limited amount of battery power [4].

5

6 CHAPTER 2. RELATED WORK

2.2 Energy Efficiency in Networks

Both industrial and research works aim to improve energy efficiency in networked
systems. Gupta and Singh [10] suggest to put components of network devices
into sleep states in order to save energy, and propose modifications to the current
protocols for energy savings. Closer to our work, Niccolini et al. [23] present an
approach for a power-proportional software router that utilizes DVFS and C-states
using an online adaptation algorithm. Iqbal and John [13] propose a predictive
power management scheme to pro-actively change the frequency and number of
active cores in network processors. Nedevschi et al. [22] also use sleep states and
rate adaption to save energy. In contrast to the above, authors in [5] propose to
modify routing protocol for energy efficiency, avoiding changes to the internals of
the network components.

We follow a similar approach to the above works regarding the power man-
agement. However, these works do not consider the impact of reduced energy on
performance metrics like latency. Our work is mostly focused on resolving the
energy-latency tradeoff for energy-efficient intrusion detection systems.

2.3 Energy-Latency Tradeoff

Kuang and Bhuyan [16] propose a scheduling algorithm to optimize throughput
and latency given a power budget for network packet processing on multi-core
processors. The energy-latency tradeoff has been well studied in the area of wireless
sensor networks [19, 38]. These works aim to design communications protocols
that minimize the power consumption of the sensor nodes while satisfying latency
constraints.

To the best of our knowledge, our work is the first effort to study and resolve the
energy-latency tradeoff in the area of network monitoring and intrusion detection
systems although there is growing attention in their performance [28, 36].

2.4 Utilizing Features of Modern NICs

Pesterev et al. [29] utilize the flow director filters to improve connection locality
in multi-core systems, similarly to the flow migration technique we use in space
sharing. An another related approach by Afek et al. [3] uses dedicated cores to
defend against algorithmic complexity attacks in NIDS.

Chapter 3

Towards a Power Proportional
NIDS

In this chapter we explore the design space to build a power-proportional NIDS.

3.1 Experimental Environment

Our testbed consists of two machines interconnected with a 10 GbE switch. Both
machines are equipped with two six-core Intel Xeon E5-2620 processors with 15 MB
L2 cache, 8 GB RAM, and an Intel 82599EB 10GbE network interface. The clock
frequency of these processors can be scaled from 1.2 GHz to 2.0 GHz using DVFS,
which results in 9 available frequency steps (P-states). They also support Intel
Turbo Boost technology to further increase their frequency up to 2.5 GHz. To
reduce power consumption, each idle core can be put independently into one of the
3 available sleep states: C1, C3 or C6. We measure the power consumption in the
NIDS machine using the Watts up? PRO ES device, by sampling and storing the
power at one second intervals. All our measurements run for significantly higher
time periods than one second. The idle power consumption is 85.1 W and when
all cores are 100% utilized it reaches 152.6 W.

The first machine is used for traffic generation. The generated traffic reaches
the second machine, which runs the Snort IDS [31] v2.8.3.2 with the official rule
set [2] containing 8308 rules. We use PF_RING [9] v5.3.0 and ixgbe driver v3.7.17
to split the incoming traffic to the active cores using the Receive Side Scaling
(RSS) [12] feature of Intel 82599 NIC [11]. We set the size of the ring buffer that
stores packets at each core to 4096 slots. To change the frequency we use the
cpufrequtils package. Both machines run 64-bit Linux (kernel version 3.5.0).

We generate real traffic by replaying an one-hour long full payload anonymized
trace captured at the access link of an educational network. The trace contains
58,714,906 packets and 1,493,032 flows, totaling more than 40GB, 95.4% of which is
TCP traffic. For this trace Snort triggers 1796 alerts from 76 different rules. Most
of these matching rules are related to common threats and protocol violations. In

7

8 CHAPTER 3. TOWARDS A POWER PROPORTIONAL NIDS

NIDS utilization Total power consumption CPU power consumption
Low 109.9 W 63.5 W

Moderate 129.6 W 78.0 W
High 145.7 W 90.6 W

Table 3.1: CPU consumes the larger portion of energy in a NIDS. More than 50%
of power is consumed at the CPU.

order to strengthen our evaluation, we augmented the trace with 120 short traces
of real attacks captured in the wild [30], adding 233 more alerts from 14 different
rules. The resulting trace generates a total of 1938 alerts due to 90 different attack
signatures.

3.2 Power Consumption

The system’s idle power is 85.1 W. When running an idle NIDS the power consump-
tion is 87.1 W, while a fully utilized NIDS consumes 145.7 W. Thus, we estimate
that the extra power from idle state is consumed by the NIDS. Since NIDS perform
heavy computational operations, the CPU consumes the larger portion of energy
in the system. Table 3.1 shows the contribution of the CPU in the total power
consumption. Varying the traffic rate results in different utilization of the original
NIDS. In all cases, 58-62% of the total power is consumed by the two CPUs. We
measure the CPU power consumption by accessing the RAPL (Running Average
Power Limit) registers provided by Intel Xeon E5-2620 CPUs, which measure the
total energy consumed by each chip.

Modern processors offer two ways for reduced power consumption: frequency
scaling (DVFS), and sleep states (C-states). Intel processors have a single voltage
and frequency regulator, so the frequency change uniformly for all cores of this
processor. On the other hand, each core can operate in a different C-state to
save energy. The power consumption of each core consists of (i) the active power
consumed when the core process packets at the used frequency, (ii) the power
consumed to enter a C-state, and (iii) the power consumed during the idle state.
We see that idle cores consume less power when they are in C6 state, so we put
inactive cores in this state.

3.3 Exploring the Design Space

Based on the packet arrival rate, we aim to find the most energy-efficient strategy
for a NIDS by properly adapting the CPU frequency and the number of active
cores (not in C-states). The two main questions are: (i) is it better to operate at
lower frequency or utilize sleep states? (ii) is it better to use more cores on lower
frequency or less cores at higher frequency?

3.3. EXPLORING THE DESIGN SPACE 9

 90

 95

 100

 105

 110

 115

 120

 1.2 1.4 1.6 1.8 2 2.2 2.4

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

W
)

CPU frequency (GHz)

4 active cores
6 active cores
8 active cores

10 active cores
12 active cores

(a) Power consumption

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.2 1.4 1.6 1.8 2 2.2 2.4

A
tt
a
c
k
 d

e
te

c
ti
o
n
 l
a
te

n
c
y
 (

m
s
)

CPU frequency (GHz)

4 active cores
6 active cores
8 active cores

10 active cores
12 active cores

(b) Detection latency

 30

 40

 50

 60

 70

 80

 90

 1.2 1.4 1.6 1.8 2 2.2 2.4

C
o
re

 u
ti
liz

a
ti
o
n
 (

%
)

CPU frequency (GHz)

4 active cores
6 active cores
8 active cores

10 active cores
12 active cores

(c) Utilization per active core

Figure 3.1: Power consumption, detection latency, and core utilization as a func-
tion of frequency and number of active cores when running Snort and sending
0.6 Gbit/sec. Power consumption decreases as the utilization of active cores ap-
proaches 100%. However, this results in increased detection latency.

10 CHAPTER 3. TOWARDS A POWER PROPORTIONAL NIDS

Active cores Frequency Power consumption Detection latency
6 2.0 GHz 107.0 W 0.371 ms
8 1.5 GHz 104.2 W 0.856 ms
10 1.2 GHz 100.2 W 1.228 ms

Table 3.2: Using more cores at lower frequency is more energy efficient, but results
in higher latency.

A related work on power-proportional software routers [23] shows that the less
power is consumed when the system operates in the lowest possible frequency with
no idle time, compared with higher frequencies and idle times that put cores in
C-states. It also shows that it is better to utilize more cores in lower frequency
than less cores in higher frequency. Both findings lead to the conclusion that the
lowest power consumption is achieved with higher CPU utilization, i.e., when the
resulting service rate is closer to the packet arrival rate.

To explore whether the above strategy is also optimal for NIDS, we measure
Snort’s power consumption as a function of the CPU frequency and the number of
active cores, when sending traffic at a constant rate of 0.6 Gbit/sec. Figure 3.1(a)
shows that the lowest power consumption is achieved when using 4 active cores at
1.2 GHz, which is the minimum setup that is able to handle the 0.6 Gbit/sec traffic
with no packet loss. In this setup we see up to 21% reduced power consumption
compared to 12 cores at the maximum frequency. We observe that as with software
routers, the less power is consumed when the system operates at the lowest possible
frequency with no idle time, instead of running at higher frequencies and entering
C-states during idle periods.

Moreover, we see that using more cores at lower frequency is more energy
efficient than using less cores at higher frequencies. For instance, 6 cores at 1.2 GHz
consume 95.9 W, while 4 cores at 1.8 GHz, which offer approximately the same
computing power, consume 98.5 W. As another example, Table 3.2 shows three
alternative setups that can be used to process 1.5 Gbit/sec: 6 cores at 2.0 GHz,
8 cores at 1.5 GHz, or 10 core at 1.2 GHz. These setups offer approximately the
same computing power. We see that 10 cores at 1.2 GHz consume the less power.

Figure 3.1(c) shows the respective utilization of the active cores. We see that
power consumption decreases as the core utilization increases and approaches 100%.
This is because being idle is not sufficiently efficient, i.e., the power consumed to
enter and leave C-states and during these idle periods is quite significant.

3.4 Adapt to the Traffic Load

Our experimental results indicate that a power-proportional NIDS should utilize
the smallest number of cores that are able to sustain the incoming traffic without
any packet loss when they operate at the lowest possible frequency. Therefore, the
system should dynamically adapt to the traffic load by changing the frequency and

3.4. ADAPT TO THE TRAFFIC LOAD 11

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

D
e
te

c
ti
o
n
 l
a
te

n
c
y
 (

m
s
)

 80

 90

 100

 110

 120

 130

 140

 0 0.5 1 1.5 2 2.5 3

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

W
)

Traffic rate (Gbit/sec)

Original Snort
Power-proportional Snort

Figure 3.2: Power consumption and detection latency of a straight-forward NIDS
versus the original system as a function of traffic rate. A straight-forward power-
proportional NIDS consumes less power with higher detection latency.

activating/deactivating cores. The NIDS should be also able to handle short-term
overloads, e.g., by spending more energy during these periods, to avoid dropping
packets due to full buffers, which results in undetected attacks [25].

A NIDS is based on the underlying packet capturing system to receive packets
for processing. The packet capturing system, which relies into the OS kernel, is
responsible to pass the incoming packets from NIC to user-level. To tolerate pro-
cessing spikes or short-term overloads, the packet capturing system is able to store
a limited number of packets in memory queues (ring buffers). Modern NICs [11]
offer multiple receive queues and are able to distribute the packets among them
to allow for efficient multi-core processing. Thus, a packet capturing system with
multi-core support [9] uses a separate queue per each core. When queues are get-
ting full, the system has a strong indication of higher load than it can handle
with the current setup, so it needs to employ more cores or increase the frequency.
A straight-forward power-proportional NIDS uses the following strategy, which is
similar to the power-proportional software router:

1. The system starts with a single active core at the minimum frequency while the
rest cores are in C6 state.

2. It continuously monitors the queues’ usage.

2.1. If queues are filled by more than a high threshold :

12 CHAPTER 3. TOWARDS A POWER PROPORTIONAL NIDS

2.1.1. If there are inactive cores, it wakes up one more core uses one
more queue.

2.1.2. Else, it increases the frequency of all cores to the next step.

2.2. If queues are filled by less than a low threshold :

2.2.2. If the system uses the lowest frequency, it deactivates one core.
2.2.2. Else, it decreases the frequency.

We implemented this online adaptation algorithm within the packet captur-
ing subsystem and we ran Snort over this system when varying the load. Fig-
ure 3.2 (bottom part) shows the power consumption of this straight-forward energy-
efficient NIDS as a function of the traffic rate, compared to the original system. We
see that the power consumption of the vanilla system is reduced with the traffic rate
up to 24% when processing 200 Mbit/sec, compared with the power consumption
at 3 Gbit/sec. However, the power-proportional NIDS adapts much better to the
load and reduces significantly the power consumption up to 39% when processing
200 Mbit/sec. This is a 23% improvement on the power consumption compared to
the original system.

3.5 Summary

Briefly, this chapter explored the design space in order to build a power-proportional
NIDS. We observed that the CPU consumes the larger portion of the energy in these
systems. Therefore, a power proportional NIDS should utilize the smallest number
of cores and operate at the lowest possible frequency able to process the incoming
traffic without any packets drops and with no idle time.

Chapter 4

The Energy-Latency Tradeoff in
NIDS

Although a power-proportional NIDS is able to handle the same traffic as the
original system with lower energy consumption, we would like to explore other
aspects related to the performance of a NIDS as well. Thus, in this chapter we turn
our attention on the impact of this approach on the detection latency. Detection
latency is an important issue for a NIDS operating in passive mode in order to
achieve a timely reaction to an attack, e.g., by actively terminating the offending
connection. A high latency will make the NIDS reaction pointless. In this chapter
we study how the latency is affected when energy is reduced, and we explain the
observed behavior with both experimental and analytical evaluation.

4.1 Detection Latency

In our experiments we instrumented Snort to measure the attack detection latency,
by subtracting from the time when Snort triggers an alert the timestamp of the
packet that contains the attack pattern. The packet’s timestamp is set within
the packet capturing module before the packet is queued. Figure 3.1(b) shows
the detection latency as a function of frequency and number of active cores for
0.6 Gbit/sec traffic. We see a linear increase when frequency is higher than 1.6 GHz
and more than 8 cores are used, but we see an exponential increase to the detection
latency when the average core utilization exceeds 70%. To better see the relation
between power consumption and detection latency we replot the data in Figure 4.1.
We see a clear tradeoff: in order to achieve power consumption lower than 100 W,
the detection latency should be increased 4–7 times. This trafeoff was not observed
in previous works, like the power-proportional software router [23].

Table 3.2 leads us to the same outcome: although using 10 cores at 1.2 GHz
consumes the less power, it comes at a price of significantly increased latency.
Figure 3.2 (upper part) shows the detection latency of a power-proportional NIDS,
compared to the original system. We see that although it consumes less power

13

14 CHAPTER 4. THE ENERGY-LATENCY TRADEOFF IN NIDS

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 90 95 100 105 110 115 120

A
tt
a
c
k
 d

e
te

c
ti
o
n
 l
a
te

n
c
y
 (

m
s
)

Power consumption (W)

Figure 4.1: The energy-latency tradeoff. Detection latency as a function of power
consumption when sending 0.6 Gbit/sec traffic.

for lower traffic loads, this power-proportional NIDS has a significantly higher
detection latency at all rates. This is because at all rates this system always
selects the frequency and number of cores that lead to high utilization, close to
100%, in order to save energy. As a consequence, the detection latency remains
always high.

4.2 Deconstructing Detection Latency

An attack vector may span among multiple successive packets of the same flow.
We define detection latency as the time passed from the arrival and capturing of
the last packet that contains the attack till the alert generation in the NIDS. Thus,
the detection latency is equal to the latency imposed per each attack packet, from
the capturing time till it finished processing. The packet latency can be divided
in three parts: (i) interrupt handling time, i.e., the time spent for packet handling
in OS kernel, (driver, packet capturing system), (ii) queuing delay, which is the
time that the packet waits in a queue to be delivered for processing, and (iii)
processing time by the NIDS at user level. We see that the time spent in kernel per
packet is negligible compared to queuing delay and NIDS processing time. Thus,
the increased detection latency may occur due to higher processing times when
reducing the frequency or due to higher queuing delays imposed by the increased
CPU utilization.

To explore why latency is increased, we measure how much each part contribute
to the detection latency as we vary the input traffic rate for few different frequencies.
We instrumented Snort to measure the queuing delay per packet, by subtracting
the packet’s timestamp set by the capturing system from the time that Snort
receives the packet, and the packet’s processing time by Snort’s inspection engine
for attack detection. For each packet we reported the respective times to calculate

4.3. DELAY ANALYSIS 15

Traffic Rate (Gbit/sec)

0.50 0.75 1.00 1.25 1.50

L
a
te

n
c
y
 (

m
s
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.2GHz 1.2GHz 1.2GHz 1.2GHz 1.2GHz
1.8GHz 1.8GHz 1.8GHz 1.8GHz 1.8GHz

2.3GHz 2.3GHz 2.3GHz 2.3GHz 2.3GHz

Processing time

Queuing delay

Figure 4.2: Processing time and queuing delay of attack packets as a function of
traffic rate when running 12 cores at 1.2 GHz, 1.8 GHz, and 2.3 GHz. The main
cause of increased detection latency is higher queuing delay.

the average values.
Figure 4.2 shows the average processing time and queuing delay per each attack

packet, which are summed to the detection latency, for traffic rates ranging from
0.5 Gbit/sec to 1.5 Gbit/sec, when using 12 cores in 1.2 GHz, 1.8 GHz, and 2.3 GHz.
We observe a higher processing time for attack packets compared to benign packets,
which is due to logging and alert generation. We see that for low frequency and
high rates, when the system is more utilized, the queuing delay is the main factor
of the increased detection latency. For instance, we observe a large increase on
the detection latency when processing 1.5 Gbit/sec at 1.2 GHz, which result in the
lowest power consumption. In this case, the queuing delay is 7x higher than the
processing time for the attack packets. This is because the higher utilization results
in a large number of packets waiting at the queue and thus in an exponentially
higher queuing delay. On the other hand, the processing time increases normally
as we decrease the frequency.

4.3 Delay Analysis

Our results indicate that the main reason for increased latency when reducing the
power consumption is the higher CPU utilization that leads to increased packet
queuing delays. To better understand how the queuing delay is affected by reduced
frequency and reduced number of cores, we present a theoretical formulation of the
problem using basic concepts from queuing theory.

We assume that packet arrivals follow a Poisson distribution with an average
rate of λ packets per second, and that the queued packets are processed with an
exponential service rate of µ packets per second. The maximum service rate is

16 CHAPTER 4. THE ENERGY-LATENCY TRADEOFF IN NIDS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1.2 1.4 1.6 1.8 2 2.2 2.4

T
o
ta

l
d
e
la

y
 (

m
s
)

CPU frequency (GHz)

4 cores
6 cores
8 cores

10 cores
12 cores

Figure 4.3: Total delay as a function of frequency and number of cores. When using
4 cores to process 75,000 packets per second the delay increases exponentially as
we decrease frequency. Total delay approximates the behavior of detection latency.

µmax when all the cmax cores are used at the maximum frequency fmax. Packets
arrive at each core with rate λc = λ/c, where c is the number of active cores, and
they are served from each core with rate µc = µ/cmax. Each core can be modeled
as a M/M/1 queue with a finite queue size of N packets. The core’s utilization is
ρc = λc/µc.

Reducing the number of cores c that process the incoming packets results in
an increased arrival rate λc per core. Reducing the frequency f results in reduced
service rate per core:

µc(f) =
µmax

cmax

f

fmax
(4.1)

The average total delay T of a packet, which is the queuing delay plus the
processing time, when using c cores and frequency f is:

T =
1

µc(f)− λc
=

cmax · fmax · c
µmax · f · c− λ · cmax · fmax

(4.2)

Respectively, the average queuing delay W is:

W =
ρc

µc(f)− λc
=

λ · c2max · f2max

µmax · f · (µmax · f · c− λ · fmax · cmax)
(4.3)

The packets loss probability is: Ploss =
∞∑

k=N

ρkC(1− ρc).

4.3. DELAY ANALYSIS 17

 0.001

 0.01

 0.1

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
 (

m
s
)

System utilization

Total delay
Queuing delay

Figure 4.4: Total and queuing delay as a function of system utilization. When
utilization exceeds 80%, the queuing delay approaches the total delay and they are
both increased exponentially.

Based on equation 4.2, Figure 4.3 plots the total delay T as a function of
frequency f and number of cores c. We set fmax = 2.5 GHz, cmax = 12 cores,
λ = 75, 000 packets per second, and the maximum service rate µmax = 500, 000
packets per second. We see that the total delay approximates the behavior of
detection latency: when using 4 cores to process 75,000 packets per second, the
delay increases exponentially as we decrease frequency. When using more cores,
the system is less utilized so we see a linear increase on the total delay per packet.

Our results in section 3.2 indicate that we have the lower power consumption
when ρc ≈ 1. Figure 4.4 shows the total delay T and queuing delay W as a
function of utilization ρ. We keep µmax = 500, 000 packets per second and we
vary λ from 50, 000 till 500, 000, which results in system utilization from 10% to
100% respectively. We use 12 active cores and 2.5 GHz frequency in equations 4.2
and 4.3. The results show that total and queuing delay increase exponentially
at high utilization. When utilization is increased above 80%, the queuing delay
approaches the total delay and both increase exponentially. It is clear that for
high system utilization values the queuing delay becomes the main reason for the
increased total delay, as we also observe in section 4.2. To achieve a total delay
lower than 0.1 ms we need to sustain a system utilization lower than 75%. If we
want to reduce the total delay even more, e.g., less than 50 ms in this case, the
utilization should be kept lower than 50%.

18 CHAPTER 4. THE ENERGY-LATENCY TRADEOFF IN NIDS

4.4 Summary

Reducing the power consumed in a system its performance is usually degraded.
In this chapter we studied the performance of a power-proportional NIDS. Our
findings indicate an up to 7x increase of the detection latency, which is an important
issue for a NIDS in order to achieve a timely reaction to an attack. The main reason
for this increase is the high CPU utilization that leads to exponentially increased
queuing delays.

Chapter 5

Solving the Energy-Latency
Tradeoff

In this chapter we aim to solve the energy-latency tradeoff using domain-specific
knowledge on NIDS. This will enable us to build a NIDS with both low power
consumption and low detection latency. The key idea of our approach is based
on the fact that there is a small percentage of packets with significantly higher
probability to contain an attack. These are the first few packets of each connection.
Then we propose two alternative approaches to process these packets with low
latency, while consuming less power proportional to the workload.

5.1 Identify the Most Important Packets for Detection
Latency

Previous works have shown that most attacks are found among the first few packets
of each flow [17, 24]. This is because many types of threats like port scanning,
service probes and OS fingerprinting, code-injection attacks, and brute force login
attempts, require a new connection for each attempt, and the attack vector is
found in the first few KB of the flow. By contrast, very large streams usually
correspond to file transfers, VoIP communication, or streaming media applications,
which typically are not related to security threats.

Due to the heavy-tailed flow size distribution in the Internet [8], the first N
packets of each flow correspond to a small percentage of the total traffic. Thus,
processing these packets with higher priority and lower latency will result in faster
detection for most of the attacks.

We first measure the position of the attack packets within their flows while
running Snort with our trace. The trace contains 1796 alerts in the captured
traffic and 233 alerts from the attack traces we manually added, as we explained
in section 3.1. Figure 5.1 shows the CDF of the rankings of the attack packets
detected. We see that 50% of the attacks are found within the first 10 packets of a
flow, while the 90% of the attacks are detected in the first 100 packets of their flows.

19

20 CHAPTER 5. SOLVING THE ENERGY-LATENCY TRADEOFF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06

C
D

F

Packet rank

Attacks detected

Fraction of packets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Figure 5.1: CDF of the attack packet ranking and fraction of packets per each
rank. A large percentage of the attacks can be detected in a small fraction of the
total packets using a flow cutoff value.

Only 1% of the attacks are found beyond the first 800 packets of a flow. Thus, the
first few hundred packets of each flow are more important for the detection latency,
since they have a much higher probability to actually contain an attack. We can
separate these packets from the less important packets by applying a cutoff value
to the flow size. Then we classify as high priority the packets until this cutoff and
as low priority the rest packets of each flow, if has more packets than the cutoff
value.

Figure 5.1 also presents the CDF of the fraction of packets with ranking lower or
equal to the corresponding value on the x-axis. This fraction is also the percentage
of high-priority packets as a function of the cutoff applied. For instance, 10% of
the total packets have ranking lower than 100 in their flows. This means that a
cutoff value of 100 packets per flow will classify the 10% of the total packets as
high-priority packets, and 90% of the attacks can be detected on them. Even a
higher cutoff of 1,000 packets per flow corresponds to just 21% of the total packets,
while more than 99% of the attacks can be detected on them.

Since we have identified the most important packets for fast detection, we need
to ensure a low latency for these packets when the system enters into a power
saving mode and active cores’ utilization increases. We propose two alternative
techniques to ensure low latency for the high-priority packets: time sharing and
space sharing.

5.2. TIME SHARING 21

5.2 Time Sharing

The time sharing technique uses a typical priority queue scheduling to favor the
high-priority packets. Time sharing first classifies packets into their corresponding
transport-layer flows, and then uses a flow cutoff to assign them a low or high
priority. Then, packets are stored into the respective priority queue. When a new
packet is scheduled for processing, the NIDS will choose the next packet from the
high priority queue. If there is no such packet, a lower priority packet is chosen.
However, this priority queue scheduling is non preemptive: when a high-priority
packet arrives and a low priority is being processed, the NIDS cannot evict the
low-priority packet to serve immediately the high-priority packet. Time sharing
follows the same strategy described at section 3.4 to adapt the number of cores
and their frequency according to the load.

We expect a much lower latency for high-priority packets and a higher latency
for the lower priority packets. With a careful cutoff selection, the majority of
the attacks will be detected faster on high-priority packets. However, an attack
detection on a lower priority packet will be significantly delayed.

5.3 Space Sharing

Besides time sharing, we also propose a second approach to reduce the latency of
high priority packets: space sharing. In space sharing we choose to use separate
cores for each priority. Thus, we use few dedicated cores for the high-priority pack-
ets. In time sharing the cores of a power-proportional NIDS will remain almost fully
utilized. This may be a cause of reduced performance due to the non-preemptive
priority queue scheduling. On the other hand, in space sharing, we aim to keep the
cores that serve the high priority packets less utilized, to ensure a low per-packet
latency.

The cores that serve low-priority packets should remain almost fully utilized to
allow for reduced power consumption. The increased latency for low-priority pack-
ets is less likely to affect the overall detection latency. Fortunately, as Figure 5.1
indicates, the majority of the packets have a low priority. Therefore, most of the
cores can be used to serve low-priority packets with high CPU utilization that is
necessary to achieve significant energy savings in a power-proportional NIDS.

In order to reduce even more the detection latency, we would like to increase
the frequency of the dedicated cores used to serve high-priority packets. However,
the single per chip regulator in our Intel processors limits significantly our ability
to change the frequency of high priority cores independently of low priority cores.
Fortunately, our analysis in chapter 4 shows that core utilization is the main fac-
tor of an increased detection latency. Thus, just reducing the utilization could
be enough to achieve our low latency goal even with a lower frequency, which is
necessary for low priority cores to reduce their power consumption.

Space sharing is based on two main ideas: flow migration and adaptive core

22 CHAPTER 5. SOLVING THE ENERGY-LATENCY TRADEOFF

management.

5.3.1 Flow Migration

The flow migration technique, assisted by advanced features of modern NICs, is
used to distribute efficiently the packets into the proper cores based on their pri-
ority. Initially all packets arrive at the high priority cores. Then, packets are
classified into flows. When a flow size exceeds the specified cutoff value, the flow is
moved into a low priority core by instructing the NIC to schedule all the successive
packets of this flow into this core. Thus, only the high-priority packets, which
are the first N packets of each flow, remain for processing into the high priority
cores. The low-priority packets are moved to the rest cores using the flow migration
technique.

5.3.2 Adaptive Core Management

Another aspect of space sharing is the adaptive core management. Space sharing
is able to partition the active cores into high-priority and low-priority cores. This
partitioning may vary depending on the workload. Space sharing should use the
optimum number of high priority cores that keep the core utilization within a
desirable range. Using more cores than necessary may increase power consumption,
while less cores may increase the latency of high-priority packets. Therefore, we
propose the following adaptive core management algorithm, which is a variant of
the core/frequency adaptive algorithm we presented in section 3.4:

1. The system starts with one high-priority core and one low-priority core.

2. It continuously monitors the queues’ usage.

2.1. If high-priority queues are filled by more than a high-priority up thresh-
old :

2.1.1. If there are inactive cores, activate another high-priority core.
2.1.2. Else increase the CPU frequency.
2.1.3. If maximum frequency is used, reduce flow cutoff (so less packets

will be considered as high priority) until it reaches a certain limit.

2.2. If high-priority queues are filled by less than a high-priority down thresh-
old :

2.2.3. Increase cutoff up to a certain limit.
2.2.1. Else reduce the CPU frequency.
2.2.2. If the lowest frequency is used, deactivate a high-priority core.

2.3. If low-priority queues are filled by more than a low-priority up threshold :

2.3.1. If there are inactive cores, activate another low-priority core.
2.3.2. Else increase the CPU frequency.

5.4. SUMMARY 23

2.4. If low-priority queues are filled by less than a low-priority down thresh-
old :

2.4.1. Reduce the CPU frequency.
2.4.2. In case of the lowest frequency, deactivate a low-priority core.

The high-priority up threshold ensures a low utilization for high-priority packets.
The low-priority up threshold ensures that no packet will be lost. It is significantly
higher than high-priority up threshold. We can also control the load of high- and
low- priority cores by changing the flow cutoff value, which divides the traffic
into high- and low-priority packets. However, decreasing the flow cutoff is not
always a good choice, as the probability that an attack occurs in a low-priority
packet increases. Since low-priority packets experience a higher latency, the average
detection latency in this case may also increase.

5.4 Summary

To summarize, in this section we resolved the energy-latency tradeoff by identifying
the most important packets for the detection latency. These are the first packets of
each flow and they should to be processed with lower latency. Finally, we proposed
two approaches to achieve low latency and power consumption in NIDS: Time
Sharing and Space Sharing that use priority queue scheduling and dedicated cores
with lower utilization respectively, for the most important packets.

24 CHAPTER 5. SOLVING THE ENERGY-LATENCY TRADEOFF

Chapter 6

Implementation

Based on the two alternative approaches this chapter describes the implementa-
tion of LEoNIDS: a NIDS architecture that offers both low power consumption,
proportionally to the load, and low detection latency. Figure 6.1 illustrates the
architecture of LEoNIDS with time sharing and space sharing. Our implementa-
tion utilizes advanced features of modern NICS, and it is based on a specialized
kernel module that modifies the packet capturing subsystem. Moreover, it includes
a modified user-level packet capturing library and slight modifications to the Snort
NIDS [31].

We implemented the online frequency adaptation and core management algo-
rithm within the packet capturing subsystem as a Linux kernel loadable module.
Both time sharing and space sharing are implemented within this module. The
module runs as a protocol handler and processes all captured packets. It is also
responsible to store packets in the proper queues and impose a scheduling or load
balancing policy. The packets are distributed among the available cores either with
the RSS hash-based load balancing scheme [12] that is supported by the NIC, in
case of time sharing, or with a dynamic load balancing scheme, in case of space
sharing. Space sharing uses the flow director filters (FDIR) to manually define the
core that will serve each flow. The FDIR filters are used in conjunction with RSS.

RSS sets the number of queues according to the number of the available cores
that will process the packets. LEoNIDS runs an instance of the detection system
that processes the packets on each core. Each queue is assigned to one core and
the traffic is split across the queues. The traffic distribution is based on the 5-tuple
(source and destination IP, source and destination port and protocol) of the packet
header.

We use the PF_RING API [9] to deliver packets at user-level through memory
mapped buffers, and a libpcap [20] wrapper library. Then we link Snort with this
user-level library, instead of the original libpcap. In the rest of this chapter we give
more details about the implementation of time sharing and space sharing.

25

26 CHAPTER 6. IMPLEMENTATION

NIC

RX queue 2

Kernel

RX queue 4RX queue 3RX queue 1
First packets of a flow

NIC driverNIC driver

LEoNIDS

kernel module

NIC driver

LEoNIDS

kernel module

NIC driver

Core 1 Core 2 Core 3 Core 4

LEoNIDS

kernel module

LEoNIDS

kernel module

The rest packets of a flow

User

1.2 GHz 1.2 GHz 1.2 GHz 1.2 GHz
C6 stateC0 state C0 state C0 state

High priority queue

Low priority queue

RSS (adapt number of queues based on load)

Flow

state

(a) LEoNIDS with time sharing

RX queue 2

Kernel

RX queue 4RX queue 3RX queue 1
First packets of a flow

NIC driverNIC driver

LEoNIDS

kernel module

NIC driver

LEoNIDS

kernel module

NIC driver

Core 1 Core 2 Core 3 Core 4

LEoNIDS

kernel module

LEoNIDS

kernel module

The rest packets of a flow

User

2.5 GHz 1.2 GHz 1.2 GHz 1.2 GHz
C6 stateC0 state C0 state C0 state

NIC

Flow director (FDIR) filters
RSS

In
s
ta

ll F
D

IR
 filte

rs

Flow state

(b) LEoNIDS with space sharing

Figure 6.1: The LEoNIDS architecture with time sharing and space sharing.

6.1. TIME SHARING 27

6.1 Time Sharing

In time sharing we extend the ring buffers of the packet capturing system using a
typical priority queue scheme. The incoming packets are classified into flows and
are assigned a low or high priority according to the cutoff value. Based on its
priority, each packet is stored in the proper queue. The modified user level library
reads the next packet from the high priority queue, and only if this is queue is
empty, it reads the next packet from the low priority queue. This packet is then
delivered to Snort for processing.

The algorithm described in 3.4 is implemented within the packet capturing
subsystem. It monitors the packet queues per each core and properly adapts the
number of active cores and the CPU frequency. Cores are woken up or put to sleep
and the CPU frequency is increased or decreased according to the thresholds.

6.2 Space Sharing

In space sharing, we use few dedicated cores to process the most important packets
with reduced latency. Thus, only the first N packets of each flow are processed
by these cores, where N is the per-flow cutoff value, and these cores operate with
low utilization to avoid increased queuing delays. We aim to keep the utilization
of these cores between 30%–50%, which results in relatively low queuing delays as
we see in chapter 4. Based on the current queue utilization we properly adapt the
number of high-priority cores and the CPU frequency.

To implement space sharing we first modify the RSS to split all the packets
only to the high-priority cores. Then, these cores classify packets into flows. When
a flow exceeds the specified cutoff size, an FDIR filter is added to the NIC in order
to move the processing of this flow to a low-priority core (flow migration). The
low-priority core is chosen in a round-robin fashion. Each flow that exceeds the
cutoff value moves from one core to another only once, so the cache locality is not
significantly affected. Using the FDIR filters for flow migration is highly efficient
and improves cache performance, as each core accesses only its local data.

We keep a list with all filters that are installed at the NIC, so when a flow
expires (either explicitly by a TCP RST/FIN packet, or by an inactivity timeout)
the respective FDIR filter is removed by the NIC. The Intel 82599 NIC [11] offers
up to 8K perfect match and 32K signature-based FDIR filters. In case all filters
are used, space sharing evicts the oldest filter to accommodate a new flow.

6.3 Adapting the Number of Active Cores

The RSS uses a redirection table to distribute the incoming packets to the available
cores. As shown in Figure 6.2, after a packet arrival a hash function on its 5-tuple
is computed and the result of the function is used as an index in the redirection
table. The entries of this table are the identities of the queues that should be used

28 CHAPTER 6. IMPLEMENTATION

Figure 6.2: Redirection table and NIC queues

to store and forward the packet to the dedicated core. Each queue is assigned to
one core and an interrupt is raised at the packet’s arrival in order to be routed to
the core.

The queues can only be defined at startup of the NIC-driver and they can
only change after a reset of the card driver. Therefore, before LEoNIDS starts all
queues, one per each core, are set. In order to keep cores inactive we configure the
redirection table such as to maintain its entries for queues assigned only to active
cores. The 128-byte size of the redirection table permits fast modifications. While
there is no packet reception by a queue there is no interrupt at the corresponding
core. During this period the core remains in idle state (C6 low power state).

When a queue is filled with more than the threshold, we modify the redirection
table in order to activate an additional core. The entries need to include the
identity of the queue assigned to the new core. At the arrival of the first packet
to a newly added queue, an interrupt wakes up the corresponding core, which
then starts to process and route packets to the LEoNIDS instance running on this
core. A respective process is followed to deactivate a core. The redirection table is
reconfigured to exclude one queue from the traffic distribution and when the queue
becomes empty the core enters the idle state.

Chapter 7

Experimental Evaluation

In this chapter we experimentally evaluate the two alternative approaches. We first
evaluate each technique separately to find out the optimal cutoff values, and then
we compare the original system with PF_RING and Snort, the straight-forward
power-proportional system and LEoNIDS with time sharing and space sharing. In
our experiments we use the same experimental environment with Section 3.1.

7.1 Time Sharing

Using a small cutoff reduces the percentage of high-priority packets, and thus their
queue utilization and queuing delays. However, the probability that an attack
will be found in the low-priority packets, which experience a much higher delay,
increases with a small cutoff. To find out the optimal cutoff for time sharing we
vary the cutoff values from 50 to 50,000 packets per flow while sending traffic at
three different rates.

Figure 7.1 shows that in all cases the lower latency is observed for cutoff value
500 packets per flow. Using this cutoff value, 97% of the attacks reside into the high-
priority packets. Lower or higher values lead to higher detection latency. Lower
cutoff values result in more attacks found in low-priority packets with increased
detection latencies. With higher cutoff values high priority queues contain more
benign packets leading to higher queuing latencies for the larger fraction of high
priority packets.

To better understand the detection latency we observe with time sharing, we
study how the packet latency changes with the cutoff for high- and low-priority
packets and priority. Figure 7.2 presents the processing and queuing delay for
high- and low-priority packets as a function of the cutoff value when sending at
1.0 Gbit/sec. We see that the low-priority packets experience up to 49.2x higher
latency than the high-priority packets. The highest difference is observed for the
smallest cutoff of 50 packets per flow. As the cutoff increases, the latency of
low-priority packets decreases significantly until the value of 750 packets while it
increases for higher cutoff values. It is firstly decreasing because the fraction of

29

30 CHAPTER 7. EXPERIMENTAL EVALUATION

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

100 300 1000 3000 10000

D
e
te

c
ti
o
n
 l
a
te

n
c
y
 (

m
s
)

Cutoff (packets per flow)

0.7 Gbit/sec
1.0 Gbit/sec
1.2 Gbit/sec

Figure 7.1: Detection latency as a function of cutoff for three different rates when
using time sharing. In all cases we observe the lowest latency for a cutoff value of
500 packets per flow.

low-priority packets is respectively decreasing compared with the fraction of high-
priority packets leading to lower utilization in low-priority queues. For cutoff values
greater than 750 packet it is increasing because low-priority packets are waiting for
a large number of high-priority packet to be firstly processed. The latency of high-
priority packets indicates a steady rise as the cutoff increases due to the higher
number of packets arriving in high-priority queues. Therefore, both low and high
cutoff values lead to higher detection latencies. Moreover, however using a cutoff
of 750 or 1000 packets per flow result in slightly lower queuing latency for low-
latency packets, the optimal cutoff is 500 packets, where the high-priority packets
experience lower latency than using higher cutoff values.

7.2 Space Sharing

We now turn our attention to space sharing. We aim to find out the optimal cutoff
value for this approach. The most significant difference from time sharing is that
now dedicated cores are used for high-priority packets, so high- and low-priority
packets are processed simultaneously.

Figure 7.3 depicts the detection latency as a function of the cutoff when using
space sharing to process 1.0 Gbit/sec traffic. We see that the optimal cutoff for
space sharing is also around 500 packets per flow for the same reasons as in case of
the time sharing: small cutoff values result in more attacks detected in low-priority
packets, while a large cutoff results in higher utilization in high-priority cores.

7.2. SPACE SHARING 31

Cutoff (packets per flow)

50 250 500 750 1000 5000 10000 50000

L
a
te

n
c
y
 (

m
s
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Queuing delay − high−priority packets

Processing time − high−priority packets

Queuing delay − low−priority packets

Processing time − low−priority packets

Figure 7.2: Latency breakdown for high- and low-priority packets with time sharing
as a function of cutoff when we send 1.0 Gbit/sec traffic. Low-priority packets
experience up to 49.2x higher latency than high-priority packets.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

100 300 1000 3000 10000 30000

D
e
te

c
ti
o
n
 l
a
te

n
c
y
 (

m
s
)

Cutoff (packets per flow)

Figure 7.3: Detection latency as a function of cutoff when using space sharing to
process 1.0 Gbit/sec. The optimal cutoff for space sharing is around 500 packets
per flow.

32 CHAPTER 7. EXPERIMENTAL EVALUATION

Cutoff (packets per flow)

50 250 500 750 1000 3000 5000 10000 50000

L
a

te
n

c
y
 (

m
s
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Queuing delay − high−priority packets

Processing time − high−priority packets

Queuing delay − low−priority packets

Processing time − low−priority packets

Figure 7.4: Latency breakdown for high- and low-priority packets with space shar-
ing as a function of cutoff. Both high- and low-priority packets experience lower
latency in space sharing compared with time-sharing

To better understand the optimal cutoff and explain the lower detection la-
tencies with space sharing compared to time sharing we plot the processing and
queuing delay for low- and high-priority packets when space sharing processes
1.0 Gbit/sec. As Figure 7.4 illustrates, we see much lower latency for the low-
priority packets in space sharing compared to time sharing, which also decreases
as the cutoff value increases. This is because their are processed in parallel with
high-priority packets and their number is lower when using higher cutoff values.
Moreover, we observe lower latency for high-priority packets compared with the
respective latency of time sharing due to the ability to keep high-priority core less
utilized in space sharing. The high latencies at high-priority cores for small cutoff
values in space sharing is the result of the increased CPU utilization because of the
often FDIR filter establishments.

7.3 Comparison of all Approaches

Finally, we compare all approaches in terms of latency and energy efficiency. We
compare time sharing with space sharing, and both of them with the original system
and with the straight-forward power-proportional NIDS we described in chapter 3.
We use a cutoff of 500 packets per flow in both time and space sharing, which
was found to give the best results. Figure 7.5 shows the power consumption and
latency of all approaches as a function of traffic rate.

We see that LEoNIDS with time sharing and space sharing consume approxi-
mately the same power as the power-proportional NIDS, which is significantly lower
than the power consumption of the original Snort. Despite the lower consumption,
LEoNIDS with both approaches achieve a significantly lower detection latency than
the power-proportional NIDS, closer to the latency of the original system that uses

7.3. COMPARISON OF ALL APPROACHES 33

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

D
e
te

c
ti
o
n
 l
a
te

n
c
y
 (

m
s
)

 80

 90

 100

 110

 120

 130

 140

 0 0.5 1 1.5 2 2.5 3

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

W
)

Traffic rate (Gbit/sec)

Original Snort
Power-proportional Snort

LEoNIDS with time sharing
LEoNIDS with space sharing

Figure 7.5: Power consumption and detection latency of all approaches as a func-
tion of the traffic rate. LEoNIDS with space sharing consumes approximately the
same power as the other power-proportional approaches, but with significantly
lower detection latency.

the highest frequency.
We observe that space sharing performs quite better than time sharing: al-

though both consume approximately the same amount of power, space sharing
achieves more than 40% lower detection latency. This is due to the lower latency
that space sharing experience in high- and low-priority packets. The attacks reside
in low-priority packets are the 3% of the total attacks and experience 66% lower
latency in space sharing than in time sharing. Although, we can use higher cutoff
values to reduce these attacks, the increased latency of high-priority packets lead
to higher detection latency. Another reason is the non-preemptive priority queues
used in time sharing: the low-priority packets interfere with high-priority packets.
When a high-priority packet arrives, a low-priority packet may be processed. Then,
the high-priority packet waits in the queue for a low-priority packet. Moreover, the
overall utilization of active cores in time sharing remain very high, so it cannot
efficiently reduce the queuing delays of high-priority packets.

Overall, LEoNIDS with space sharing consumes 22% less power than the origi-
nal system and it is able to detect attacks with 74% lower latency than the straight-
forward power-proportional NIDS. Moreover, space sharing achieves a lower detec-
tion latency than the original system for rates higher than 2.5 Gbit/sec. This is due
to the higher priority given in the first packets of each flow at these rates by space
sharing where the original system has a high CPU utilization. Since the original
system does not give priority to these packets, it experiences a higher detection

34 CHAPTER 7. EXPERIMENTAL EVALUATION

latency compared to both time and space sharing at high traffic rates where all
approaches result in an almost fully utilized system.

Chapter 8

Conclusions

In this work we studied the problem of improving the energy efficiency of NIDS
using common power management capabilities like DVFS and C-states. Since
NIDS are usually overprovisioned to operate at the maximum link capacity, while
these links are usually much less utilized, there are significant opportunities to
reduce power consumption. However, while building a power-proportional NIDS,
we identified an energy-latency tradeoff: the reduced power consumption results in
a significant increase on the detection latency, which impedes a timely automatic
reaction of the NIDS to the incoming attacks. By analyzing the detection latency
we showed that the main reason for this increase is the higher packet queuing delays
imposed by the high core utilization.

To resolve this tradeoff we presented the design, implementation, and evalua-
tion of LEoNIDS, a NIDS that resolves the energy-latency tradeoff. The key idea
of our approach is that the first few packets of each flow should be processed with
lower latency for a fast detection. Indeed, we show that there is a higher prob-
ability for these packets to carry an attack. Then we proposed two alternative
techniques: time sharing and space sharing. Time sharing uses a typical priority
queue scheduling, while space sharing uses dedicated cores with lower utilization for
the processing of high-priority packets. Our experimental evaluation shows that
space sharing performs better than time sharing. Overall, LEoNIDS with space
sharing consumes significantly less power, proportionally to the load, and detects
attack with low latency.

35

36 CHAPTER 8. CONCLUSIONS

Bibliography

[1] Cisco green research symposium. http://www.cisco.com/web/about/ac50/
ac207/crc_new/events/symposium_details.html.

[2] Sourcefire vulnerability research team (vrt). http://www.snort.org/vrt/.

[3] Y. Afek, A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral. Mca2: multi-core
architecture for mitigating complexity attacks. In Proceedings of the eighth
ACM/IEEE symposium on Architectures for networking and communications
systems (ANCS), 2012.

[4] J. Bickford, H. A. Lagar-Cavilla, A. Varshavsky, V. Ganapathy, and L. Iftode.
Security versus energy tradeoffs in host-based mobile malware detection. In
Proceedings of the 9th international conference on Mobile systems, applica-
tions, and services (MobiSys), 2011.

[5] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and S. Wright.
Power awareness in network design and routing. In INFOCOM 2008. The
27th Conference on Computer Communications. IEEE, 2008.

[6] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini. Memscale:
active low-power modes for main memory. In Proceedings of the sixteenth
international conference on Architectural support for programming languages
and operating systems (ASPLOS), 2011.

[7] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Operational experiences
with high-volume network intrusion detection. In Proceedings of the 11th ACM
Conference on Computer and communications security (CCS), 2004.

[8] W. Fang and L. Peterson. Inter-as traffic patterns and their implications. In
Global Telecommunications Conf., Dec 1999.

[9] F. Fusco and L. Deri. High speed network traffic analysis with commodity
multi-core systems. In Proceedings of the 10th annual Conference on Internet
measurement (IMC), 2010.

[10] M. Gupta and S. Singh. Greening of the internet. In Proceedings of the
2003 conference on Applications, technologies, architectures, and protocols for
computer communications (SIGCOMM), 2003.

37

http://www.cisco.com/web/about/ac50/ac207/crc_new/events/symposium_details.html
http://www.cisco.com/web/about/ac50/ac207/crc_new/events/symposium_details.html
http://www.snort.org/vrt/

38 BIBLIOGRAPHY

[11] Intel. 82599 10 GbE Controller Datasheet. http://download.intel.com/
design/network/datashts/82599_datasheet.pdf, October 2011.

[12] Intel Server Adapters. Receive side scaling on Intel Network Adapters. http:
//www.intel.com/support/network/adapter/pro100/sb/cs-027574.htm.

[13] M. F. Iqbal and L. K. John. Efficient traffic aware power management in multi-
core communications processors. In Proceedings of the eighth ACM/IEEE sym-
posium on Architectures for networking and communications systems (ANCS),
2012.

[14] V. Kontorinis, L. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E. Pettis,
D. Tullsen, and T. Simunic Rosing. Managing distributed ups energy for
effective power capping in data centers. In 2012 39th Annual International
Symposium on Computer Architecture (ISCA), 2012.

[15] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer. Stateful intrusion de-
tection for high-speed networks. In Proceedings of the IEEE Symposium on
Security and Privacy, 2002.

[16] J. Kuang and L. Bhuyan. Optimizing throughput and latency under given
power budget for network packet processing. In Proceedings of the 29th con-
ference on Information communications (INFOCOM), 2010.

[17] T. Limmer and F. Dressler. Improving the Performance of Intrusion Detec-
tion using Dialog-based Payload Aggregation. In 14th IEEE Global Internet
Symposium (GI), 2011.

[18] S. Lindsey and C. Raghavendra. Pegasis: Power-efficient gathering in sensor
information systems. In IEEE Aerospace Conference Proceedings, 2002.

[19] G. Lu, B. Krishnamachari, and C. Raghavendra. An adaptive energy-efficient
and low-latency mac for tree-based data gathering in sensor networks. Wireless
Communications and Mobile Computing, 2007.

[20] S. McCanne, C. Leres, and V. Jacobson. libpcap. Lawrence Berkeley Lab.,
Berkeley, CA. (http://www.tcpdump.org/).

[21] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap: eliminating server idle
power. In Proceedings of the 14th international conference on Architectural
support for programming languages and operating systems (ASPLOS), 2009.

[22] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D. Wetherall. Re-
ducing network energy consumption via sleeping and rate-adaptation. In Pro-
ceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2008.

http://download.intel.com/design/network/datashts/82599_datasheet.pdf
http://download.intel.com/design/network/datashts/82599_datasheet.pdf
http://www.intel.com/support/network/adapter/pro100/sb/cs-027574.htm
http://www.intel.com/support/network/adapter/pro100/sb/cs-027574.htm

BIBLIOGRAPHY 39

[23] L. Niccolini, G. Iannaccone, S. Ratnasamy, J. Chandrashekar, and L. Rizzo.
Building a power-proportional software router. In Proceedings of the 2012
USENIX conference on Annual Technical Conference (ATC), 2012.

[24] A. Papadogiannakis, M. Polychronakis, and E. P. Markatos. Improving the
accuracy of network intrusion detection systems under load using selective
packet discarding. In Proceedings of the Third European Workshop on System
Security (EUROSEC), 2010.

[25] A. Papadogiannakis, M. Polychronakis, and E. P. Markatos. Tolerating over-
load attacks against packet capturing systems. In Proceedings of the USENIX
Annual Technical Conference (ATC), 2012.

[26] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside my app?:
fine grained energy accounting on smartphones with eprof. In Proceedings of
the 7th ACM european conference on Computer Systems (EuroSys), 2012.

[27] V. Paxson. Bro: A system for detecting network intruders in real-time. Com-
puter Networks, 1999.

[28] V. Paxson, R. Sommer, and N. Weaver. An architecture for exploiting multi-
core processors to parallelize network intrusion prevention. In Proceedings of
the IEEE Sarnoff Symposium, 2007.

[29] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris. Improving network
connection locality on multicore systems. In Proceedings of the 7th ACM
european conference on Computer Systems (EuroSys), 2012.

[30] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. An empirical
study of real-world polymorphic code injection attacks. In Proceedings of
the 2nd USENIX Workshop on Large-scale Exploits and Emergent Threats
(LEET), 2009.

[31] M. Roesch. Snort: Lightweight intrusion detection for networks. In Proceedings
of the 1999 USENIX LISA Systems Administration Conference, 1999.

[32] L. Schaelicke, K. Wheeler, and C. Freeland. SPANIDS: a scalable network
intrusion detection loadbalancer. In Proceedings of the 2nd Conference on
Computing frontiers (CF), 2005.

[33] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and Z. Chen. Power contain-
ers: an os facility for fine-grained power and energy management on multicore
servers. In Proceedings of the eighteenth international conference on Archi-
tectural support for programming languages and operating systems (ASPLOS),
2013.

[34] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing the energy
efficiency of a database server. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, 2010.

40 BIBLIOGRAPHY

[35] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and B. Tierney. The
NIDS cluster: Scalable, stateful network intrusion detection on commodity
hardware. In Proceeding of the 10th International Symposium on Recent Ad-
vances in Intrusion Detection, 2007.

[36] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Ioan-
nidis. Gnort: High performance network intrusion detection using graphics
processors. In Proceedings of the 11th International Symposium on Recent
Advances in Intrusion Detection (RAID), 2008.

[37] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha. Appscope: Application
energy metering framework for android smartphone using kernel activity mon-
itoring. In Proceedings of the USENIX Annual Technical Conference (ATC),
2012.

[38] Y. Yu, B. Krishnamachari, and V. Prasanna. Energy-latency tradeoffs for data
gathering in wireless sensor networks. In Proceedings of the 23rd conference
on Information communications (INFOCOM), 2004.

	Introduction
	Low-Power NIDS Design
	Motivation
	Why NIDS Power Consumption Matters
	Why Detection Latency Matters

	Proposed Approach
	Contributions
	Thesis Outline

	Related Work
	Energy-Efficient Systems
	Energy Efficiency in Networks
	Energy-Latency Tradeoff
	Utilizing Features of Modern NICs

	Towards a Power Proportional NIDS
	Experimental Environment
	Power Consumption
	Exploring the Design Space
	Adapt to the Traffic Load
	Summary

	The Energy-Latency Tradeoff in NIDS
	Detection Latency
	Deconstructing Detection Latency
	Delay Analysis
	Summary

	Solving the Energy-Latency Tradeoff
	Identify the Most Important Packets for Detection Latency
	Time Sharing
	Space Sharing
	Flow Migration
	Adaptive Core Management

	Summary

	Implementation
	Time Sharing
	Space Sharing
	Adapting the Number of Active Cores

	Experimental Evaluation
	Time Sharing
	Space Sharing
	Comparison of all Approaches

	Conclusions

