Appendix C

Schematics

C.1 Codec overview

Fig. C.1 Codec Overview with JTAG controller.

Fig. C.2 Overview of the 4 Units.
Fig. C.1: Codec Overview with JTAG controller.
Fig. C.2: Overview of the 4 Units.
C.2 Global Control Unit

Fig. C.3 Global FSM.
Fig. C.3: Global FSM
C.3 System and DCT bus Interface

Fig. C.4 I/O Interface.

Fig. C.5 System bus Interface.

Fig. C.6 Dct Bus Interface.

Fig. C.7 Register read demultiplexer.

Fig. C.8 System bus synchronization circuits.

Fig. C.9 Dct bus synchronization circuits.
Fig. C.4: I/O Interface.
Fig. C.5: System bus Interface.
Fig. C.6: Dct Bus Interface.
Fig. C.7: Register read demultiplexer.
Fig. C.9: Dct bus synchronization circuits.
C.4 Statistical Model Unit

Fig. C.11 Statistical Model Unit overview.

Fig. C.12 Context generation circuit.

Fig. C.13 DC-DIFF generation circuit.

Fig. C.14 LU and K_x conditional coding parameters.

Fig. C.15 Sz register.

Fig. C.16 M register.

Fig. C.17 Internal M register circuit.

Fig. C.18 Internal DC-DIFF circuit.
Fig. C.12: Context generation circuit.
Fig. C.13: DC-DIFF generation circuit.
Fig. C.14: LU and K_x conditional coding parameters.
Fig. C.15: S_z register.
Fig. C.17: Internal M register circuit.
Fig. C.18: Internal DC-DIFF circuit.
C.5 Probability Estimation Unit

Fig. C.19: Probability estimation state machine overview.

Fig. C.20: Pipeline stages 3 and 4.

Fig. C.21: Probability estimation PLA.

Fig. C.22: Context area static RAM.

Fig. C.23: Probability estimation control unit.
Fig. C.20: Pipeline stages 3 and 4.
Fig. C.22: Context area static RAM.
C.6 Arithmetic Coding Unit

Fig. C.24: Arithmetic Coding Unit overview.

Fig. C.25: A and C registers.

Fig. C.26: A register.

Fig. C.27: 16-bit CLA composed hierarchically from 8-bit CLA.

Fig. C.28: 12-bit counters designed as CL incrementor.

Fig. C.29: 16-bit Carry SKip Adder (CSKA) comprised from four 4-bit Carry Ripple Adders (CRA).

Fig. C.30: 4-bit Carry Ripple Adder used as building block in CSKA.

Fig. C.31: C register.

Fig. C.32: CLA A-type Adder cell.

Fig. C.33: CLA B-type Adder cell.

Fig. C.34: CLA alternative B-type Adder cell.

Fig. C.35: 16-bit CLA.

Fig. C.36: 28-bit CLA.
Fig. C.24: Arithmetic Coding Unit overview.
Fig. C.25: A and C registers.
Fig. C.27: 16-bit CLA composed hierarchically from 8-bit CLA.
Fig. C.28: 12-bit counters designed as CL incrementor.
Fig. C.29: 16-bit Carry SKIP Adder (CSKA) comprised from four 4-bit Carry Ripple Adders (CRA).
Fig. C.30: 4-bit Carry Ripple Adder used as building block in CSKA.
Fig. C.31: C register
Fig. C.32: CLA A-type Adder cell.

Fig. C.33: CLA B-type Adder cell.

Fig. C.34: CLA alternative B-type Adder cell.
Fig. C.35: 16-bit CLA.
Fig. C.36: 28-bit CLA.