
Computer Science Department
University of Crete

Performance analysis and scaling of networked, shared,
block-level storage

Master’s Thesis

Dimitrios Xinidis

November 2005
Heraklion, Greece

Performance analysis and scaling of networked, shared,

block-level storage

by

Dimitrios Xinidis

Master’s Thesis

Department of Computer Science
University of Crete

Abstract

iSCSI is proposed as a possible solution to building future storage systems. However, using

iSCSI raises numerous questions about its implications on system performance. This lack of un-

derstanding of system I/O behavior in modern and future systems inhibits providing solutions at

the architectural and system levels. First of all in this work, we try to understand the behavior of

the application server (iSCSI initiator), to evaluate the overhead introduced by iSCSI compared

to systems with directly-attached storage, and to provide insight about how future storage systems

may be improved. We examine these questions in the context of commodity iSCSI systems that can

benefit most from using iSCSI. Our analysis shows that building next generation, network-based

I/O architectures, requires optimizing I/O latency, reducing network and buffer cache related pro-

cessing in the host CPU, and increasing the sheer network bandwidth to account for consolidation

of different types of traffic.

Based on this knowledge we provide our own solution for a scalable distributed storage system,

Orchestra. Orchestra, is a system for cluster storage virtualization that allows sharing of storage

volumes at the block level by providing block locking and free block allocation services. To allow

file-based applications access to Orchestra block devices, in this work we design and implement

a stateless, pass-through file system, Orchestra-fs, that relies on Orchestra for locking and block-

allocation support and allows multiple existing applications to use a single Orchestra volume.

In this work we present the implementation of Orchestra-fs under Linux and evaluate it over

i

various setups using both single application and multiple storage nodes. We find that since most

functionality is implemented at the block layer, which is well structured, there is little overhead be-

yond TCP/IP communication costs and existing kernel overheads for disk I/O. Finally, our results

show that performance scales as the number of storage nodes grows for experiments where there

is no file sharing between applications.

Keywords: iSCSI, virtual timers, storage virtualization, distributed, stateless filesystem

Thesis Supervisor: Angelos Bilas
Title: Associate Professor

ii

����������	�
��
�������������	�
���������������� ���"!#	�
$�����%���������&��'"(����)�$� ���+*���,��-�-./�����
������01
���.2�����%����'43�!#*����4	5.6./�"7%��.8���

blocks
9;:8<8=?>A@?BDCFEHG�I/J8KMLN:OE

P�Q >SR/TU>NIOV�BWR?XY=[Z�@]\�RO^�KMR

_ <2=O<2R[Z`TYBa^�>A=8<8:8EHbcTdC/eUC/\�BD^�>Af`J
g R/J Q TYBa^�>A=8<UBaCihj@N=/>A:8E

gkQ @?Kle2:8m�:
n�o#pSqsr�tvuSwxozy{y|o

iSCSI }�~A��� pSqvo�t���� ��� r$�k� � �Hp � �2�z����y{�{�?�j� � ��tv�z�jwx��t��{�/w ��� ��� � y{y{o��zt � wS���� � �dtv�{�|��t�r��"��pSo{�2��w ��� �?�{�z������qS��o�y{�5� � tv�A�|� ~ qv�{� � �|o|pSo � ���O��t�o ��� �{� � o � qs� ���x�z� �{�OoSq � � � qvr�tv��� ��� �� ~N� t � wx��� � tv�z� � p � p|t�r$�O��t�o � �Ytv�z�5��pSu � oS�?��t�o � � � �dtv�{�|��t�oS��� � � tv��� } y{y ���¢¡ �£wx��t��z��uS�{�?�{�"tv�{�� � �{p � q � �8oSqv�{� tv��� ��� �?u � o �{¤���¥ u � o � t�r���� � �Ytv�{�|��t�r���� � ts����pS�{qv��wSr�y|� ��� tv����pS�{qvo ~ �`y|�{� � r��"�dt�o
� p � p ��� o�tv���¦�{q ~/� t � wSt�o�� � wx�{�§t�r��¨� � �dtv�{�|��t�r��k� � ts���x�©�"qvr�t��H��p/�¢ozy|�A�ª�O� � tv�«tv��� � o � y ��� �jpSqvo�¬�/pS���8oS�{� � ����wx��t��z��oS�{�?o � � � tv����� � �{p � q � �OoSqv�§t�o �` p � y{��tv� �]���¦� ¥�� ozy|o��/���Oo � � � t � � � p �¯® �{qv����� ��� �pSo � pSqvo|wx��y ��� t�o©pSqsr�tvuSwxozy{y|oc� � tvu©� � � ~N} �?�¦� � t��k� � �dtv�{�|��t���pSo �¦~ qv�{� � �|o|pSo � oS���kt�o|p � wxu ~ � ¬qvo©��pSo{�8��w ��� �?�{�&wx� � ����pSqvo�t ��� ��o � � � y|�{� ��� �z�/tvqzu|pSo � � ®x� y{t � r$�?�{�&t�r���� � y{y|o��zt � wS���1� � �dtv�{�|��t�r����pSo{�8��w ��� �?�{���
°�������y � �?���|�{�"��pSo �v��� w|��� ��� o�t � � � �£tv�5w]��t��{�/w ��� �£�{q ~/� t � wSt�o�� � wS��� ��� � �z� wSt � ��wS����� � �dtv�{�|��t�r����pSo{�8��w ��� �?�{� � pSux� � ���{�H� � �v� � �{���"pSqvo � pSo|� } t ��� tv��� ®x� y{t � �Yt�o|pSo � �{�?�±t�o �[~ qzuz��o � ���zt���pSu|w]q � �?�{�

��� �Ou � o �|¤���¥ u � o � �Utv�z�§� ��� r$�?�kt�o �©~ qvu���o � pSo �©¥ o �v� � � t�� � � � wxoS�|�|��t � �kt�o � y ��� t�o � qs� � wxoS�c� � �Ytv�z¬�|��t�oS�-u|p|r$� ��� ��� � � � t�o5t�o �`��� wxt � o�wx� � tv�{� buffer cache
�dtv���"� � q � �&t�o �� p � y|��tv�A��wx���Or$� � p � �?�{� wx� �tv���¦�{� ¥ ���O�§tv�{��� � ��o�y � wx�{� ~ r$q � t � wxu�tv��t��{��t�o �«�z� wStv�{o � � � �©tv���¦ox�|��y|� � pSoS�dtv�{q �¢¥ �A�U��pSoS�|u��zr$�?�

�z� �{�OoSq � t � wS���1tv��p|r��£w � ���{�?�{�&pS���zr²��pSo¦� � tvu/�
³ tv��q ��´ uS� � ��o � � � � � tv�µtv�µ�A�z�$�O�]��pSqzo�t ��� ��o � � � tv� �z� wx�;�|�{�Hy|���O�#� � �¶tv�z�µwx��t��{�/w ��� � � ��uS�wSy � �|��wx�$� � ��o � ��wx��t��z�����|�{� } ��o � ��pSo|�8��w ��� t � wxoS�±� � �dtv�{�|��t�ox�z� t�o;o|pSo � o·o���ox�|� ´ o � � � Orchestra

�
n�o

Orchestra ��� ��� �/� ���1�?�{�Ytv���|� ��� w]oz� � w]o|pSo � �{�?�{�£pSo �1� p � tvq } p ��� t�o�� ��� �{�|o � qv�{�?�|u ~ �$qvo � ��pSo{�8�z¬w ��� �?�{�k�dt�o � p � p ��� o#t�o � block
pS�{q }�~ o��zt��{� � pS�{q � � ��� �§wxy ���¢� �$�|��t�oS�kwx� � �v} �O� ��� �?�{�§� � ts���ct�r��

blocks
�ª¸ � ����� � p � tvq }�¡ o � � � t � � � �O�{qv�|o�� } ����� ~ qz��� � �|oSpSo � oS���"t�o��"��pSo{�8��w ��� t � wxu ~ �$qvo�t�o � Orche-

stra
� ��� p � p ��� o5�{q ~N��� o � �|� ~N���z� ���O��� � wx� ��� y|o|pSo � �{�?�{� � t�o �z� wxu��|��� �?�{�dtv�{�|� ��� � ~N��� qv�{�?�{� �{q ~N��� r��x�

iii

Orchestra-fs
�/t�o©o|pSo � o ® �{� �¢´v� t�� � �Yt�o Orchestra

� � �1t�okwSy ����� r$�|��wx� � tv� �z} �?� ��� �O� blocks
�

�"�{qvo � � � � ´ o � � � tv�z� � y|o|pSo � �{�?�¶t�o � Orchsestra-fs
wx� � t��±� ¥z� o�y{o��/oS�{� ��� wSt � y�����t��{� ��� �{�8oSqv�p ��� qv�{�|��t�� ~ qv�{� � �|o|pSo � ���zt��{�&pSo�y{y{��p|y|oS�{�"wxuS� ® o � � ��¥z� pS�{q � tv��ts���x�SpSo � pS�{q }�~ o � �5t�o�� ~ �$qvo§��pSo�¬�8��w ��� �?�{�5wx� �8} �����§wxuS� ® o p � y|��tv�A�/pSo �«~ qv�{� � �|o|pSo �¢��� t�o�� ~ �$qvo¨� � t�o��x��� q � �/wxo � � � u�t �8� p ���¢� �©�p � q � �?�?u�t � qv�1y ��� t�o � qv� � �¦t�o � � � ��ozy � wxoS�k� � �dtv�{�|��t�ox� ® q � �/w � t�� � �dt�o � p � p ��� o©t�o � block

�Nt�o©o|pSo � o
��� ��� � wx��y|� � ox�|��� } ��o/� � pS�{q ~N��� pSozy � � � wxqz� � p � ® �{q � ���?� � wxtvuS�1��pSoHt�ojwxuS�dt�oS�1t�o � pSqsr�t�o|wxu�y{y{o �
TCP/IP

wx� � t�r��©� � � � pS�{q ~ o��zt�r��©t�o � y ��� t�o � qs� � wxoS��� � �Ytv���|��t�oS�£� � �¨tv�z� ��� �?o � o ¤�}�¥ o � o���pSoHt�o�?�{�dtv�{�|�«t�o �j��� �/wxo � �«n } y{ox�z��t��j��pSo�t � y } �?�|��t��j�|�{�1� � t�o Orchestra-fs �v���¯~ ��o � �Ho�t � �¨��pSu � o�¬�?�ct�o � � � �dtv�{�|��t�oS��� �{¥ ��� � t�� � ������y|oz�/�H� � t�o��¨�{q � �2�|u�t�r�� ��¥v� pS�{q � tv��ts���x�UpSo � pS�{q }�~ o � �ct�oz���pSo{�8��w ��� t � wxu ~ r$qvo/�
��pSu|p|tv�{��� � t���p|t ��~/� ��wx�{���$qs�/�{� � �{���
	 �"�N� � y|oS���¨p � y|�{�z�/�"����p|y|�{qsr�tv�{������8���N��tv�{�

iv

Acknowledgments

First of all, I would like to thank my supervisor, Angelos Bilas who gave me the possibility to

work on the subject of scalable storage systems. I would also like to thank him for his guidance

and support thoughout this work. Our discussions helped me understand how brilliant people are

thinking and how a problem must be handled in order to be solved. I won’t forget that many times

he helped me for many hours in practical issues of my work, especially in the beginning, where no

one else could help me. I feel lucky for having the chance to work with not only a great scientist

but a great person as well. He was always there when i needed him. His advice helped me many

times to overcome obstacles that seemed unsurpassable. His simple, yet scientific, way of thinking

became valuable guide for me during the last few years.

I would also like to thank Michail D. Flouris, who helped me very much I was very lucky to

work with and I truly believe that Michail is the ideal co-worker. I would like to thank him for

his continuous help, his suggestions and observations throughout all this work. I’m also greatful

to Manolis Marazakis for reading previous drafts of this thesis and for helping me to improve the

contents of it. Many thanks also to Renaud Lachaize, for helping me improve the contents of both

the presentation and my thesis. Our discussions helped me overcome many obstacles that came up

these last months of my work. Thanks go also to Sven Karlsson for his valuable comments and

directions for the presentation of my thesis.

I would also like to thank my fellow students at ICS-FORTH for their help. G. Panayiotakis, G.

Kotsis, S. Passas, G. Passas, Y. Giannakopoulos, E. Kounalakis, M. Polyhronakis, D. Koukis, S.

Antonatos, H. Athanasopoulos, D. Antoniadis, M. Moschous, M. Athanatos, Ch. Papachristos, M.

Stamatogiannakis provided me with a pleasant and productive working environment.

I also thank my parents Charalambos and Kiriaki for their love and support during all these

years. They sacrificed everything in order to help me reach my goals and I’m sure that they will do

it again in the future. My young brother Marios-Christos who despite being so young, he gave me

strength, while he was a source of joy for me. Many thanks to my older brother Kostas. Kostas and

I study together all these years. He was my motivation and he was the one who helped me many

times when I was desperate. Kostas is and will always be a source of inspiration for me. Many

thanks are also to my grandparents Chrysoula and Dimitris. Their endless love and care enforced

v

me with patience and strength to continue this journey.

Thanks are also to all my friends that were there when I needed them. Especially, I would like

to thank Charalambos Papamanthou and Theofanis Oikonomou for being there in good and bad.

Both of them carried the burden of the difficult moments i had and showed me that there is nothing

more important in life than having close friends. Last but not least I would like to thank Kostas

Dimitriou. Kostas was the first person I meet in Heraklion. He was the person who introduced me

to the concepts of programming and computers in general. The greatness of his soul make me feel

lucky to know him. Unfortunately, Kostas left us early for the final journey. Kostas, I hope you are

happy wherever you are. I will never forget you ...

This work was financially supported by the Institute of Computer Science (ICS) of the the Foun-

dation for Research and Technology - Hellas (FORTH), Heraklion, Greece. In addition, I would

like to acknowledge both the fellowship support and the computer equipment that ICS-FORTH

provided me during the course of my work.

vi

To my parents Charalambos and Kiriaki

To my brothers Kostas and Marios-Christos

���������
	������� ������������������������ �!��"$#%���"&���'
���(� ��)�*(�,+-".�/�����/#�0213��� ����"546���" ��78���9'�13���

vii

Contents

1 Introduction 1

2 iSCSI Performance Analysis 5

2.1 Introduction . 5

2.2 Methodology . 6

2.2.1 Experimental testbed . 6

2.2.2 iSCSI implementation . 7

2.2.3 Workload . 8

2.3 Timing Measurements . 10

2.4 Virtual Timers . 10

2.4.1 Timer Semantics and API . 10

2.4.2 Timer Implementation . 13

2.4.3 Kernel Instrumentation . 16

2.4.4 System Configurations . 17

2.5 iSCSI Results and Analysis . 18

2.5.1 Basic measurements . 18

2.5.2 Microbenchmarks . 19

2.5.3 Application Performance . 21

viii

2.5.4 System Overhead Breakdown . 25

2.6 Related Work . 28

2.7 Summary . 30

3 The Orchestra-fs Filesystem 31

3.1 Overview . 31

3.2 Filesystem Entities . 33

3.2.1 File . 33

3.2.2 Directory . 35

3.3 Filesystem Operations . 37

3.4 Locks . 39

3.5 Preliminary Results . 41

3.6 Related Work . 44

3.7 Limitations . 46

3.8 Summary . 46

4 Conclusions 48

ix

List of Figures

1.1 Orchestra’s hierarchy and layers . 3

2.1 Intel iSCSI architercture . 7

2.2 Function for reading cycle counter in the x86 architecture. 11

2.3 Virtual timers API. 11

2.4 Left figure is the pseudo code of the Linux Kernel. Right figure is the generic

interrupt execution path in Linux. 13

2.5 Kernel Layer Hierarchy. 16

2.6 TCP/IP throughput and latency over D-Link DGE550T Gigabit Ethernet NIC,

measured with ttcp. 18

2.7 IOmeter statistics for a single local disk vs. an iSCSI RAM-disk. Dotted lines

denote the single local disk and solid lines the iSCSI RAM-disk. 20

2.8 IOmeter throughput. 20

2.9 IOmeter average I/O response time. 20

2.10 IOmeter CPU utilization. 20

2.11 Postmark results normalized to the direct configuration. Each graph represents

one input size. Each group of bars refers to one application metric: Transactions/s,

Read Throughput, and Write Throughput. Each bar refers to one system configu-

ration: direct, iSCSIx1, iSCSIx3 and iSCSIx3 without buffer cache (left to right).

. 22

x

2.12 Postmark execution time breakdown and I/O rate. The left bar in each pair refers

to the direct configuration and the middle bar to the iSCSIx1 configuration and the

right to the iSCSIx3. 22

2.13 TPC-H execution time normalized to the direct configuration. Each group of bars

refers to one query, whereas each bar refers to one system configuration: iSCSIx1,

iSCSIx3, and iSCSIx3 without target cache (left to right). 24

2.14 TPC-H I/O rate and execution time breakdown. The left bar in each pair refers to

the direct configuration, the middle bar to iSCSIx1, and the right to iSCSIx3. . . . 25

2.15 Spec-SFS results. 26

2.16 Postmark system time breakdowns with and without (NBC) buffer cache in the

storage targets. Each group of bars refers to one system configuration: direct (left),

iSCSIx1 (middle), and iSCSIx3 (right). 26

2.17 TCP-H system time breakdowns with and without (NBC) buffer cache in the stor-

age targets. Each group of bars refers to one system configuration: direct (left),

iSCSIx1 (middle), and iSCSIx3 (right). 27

3.1 Inode Structure . 33

3.2 Contents of an inode . 34

3.3 Directory structure . 35

3.4 Creation of a file examples. 36

3.5 Open File or Directory . 40

3.6 Close File or Directory . 41

3.7 IOzone (Orchestra-fs) throughput for the local case above physical disk. 42

3.8 IOzone (Orchestra-fs) throughput for the local case using two devices combined

in RAID-0 mode . 43

3.9 IOzone (Orchestra-fs) throughput for the 1, 2 and, 3 storage servers. 43

xi

List of Tables

2.1 Postmark results. Throughput is in KBytes/sec. 21

2.2 TPC-H query execution time in MySQL (in seconds). 23

xii

Chapter 1

Introduction

Future storage systems are required to scale to large sizes due to the amount of information that

is being generated and the increasing capacities and dropping prices of magnetic disks. Network-

attached, block-level storage, also called the SAN-approach due to the use of storage area networks

(SANs), is proposed as one method for addressing these issues. In this approach, large numbers

of magnetic disks are attached to a network through custom storage controllers or general-purpose

PCs and provide storage to application servers. One of the main issues in this approach is the pro-

tocol used for gaining access from application servers to remote storage over the network. Tradi-

tionally, specialized interconnection networks and protocols have been developed for this purpose.

For instance, SCSI [12] and Fiber Channel [11] are among the most popular such interconnects

and associated protocols.

Although these approaches have been used and are still used extensively for building storage

area networks, many problems have emerged due to changes in underlying technologies. First,

these interconnects use custom network components and thus are not able to take advantage of the

steep technology curves and dropping costs of commodity, IP-based networks. Moreover, the fact

that they require specialized equipment leads to building storage systems and data centers with

multiple interconnects. On one hand this does not allow for dynamic sharing of resources, since

they need to be partitioned statically based on the type of interconnect servers are attached to.

On the other hand, it increases significantly management overhead because multiple interconnects

need to be maintained and optimized.

Thus, there is recently a lot of interest in examining alternative solutions that would both be

able to reduce the cost of the underlying equipment and management, as well as better follow the

1

CHAPTER 1. INTRODUCTION 2

technology curves of commodity networking components. One such approach is using IP-type

networks and tunneling storage protocols on top of IP to leverage the installed base of equipment

as well as the increased bandwidth available, especially of local area networks. It is currently

projected that 10 Gigabit Ethernet interconnects will soon become commodity providing at least

as much bandwidth as is available in high-end storage area networks.

iSCSI [25] is a storage networking standard that provides a transport layer for SCSI commands

over TCP/IP. The main premise of iSCSI is that it can provide a familiar API and protocol (SCSI)

to the application and storage nodes utilizing low-cost, commodity IP infrastructure and taking

advantage of the technology curves. Thus, it functions as a bridge between the popular SCSI

storage protocol and the popular TCP/IP local area network family of protocols. With the advent

of 1 and 10 Gigabit Ethernet networks, there is increased interest in using iSCSI for local access.

Our final target is a data-center environment, where applications servers and user workstations

are able to access the storage, which is efficiently distributed over a cluster. Such a system should

have two main features. The first one is an efficient way of accessing the data on this storage

system. iSCSI is a protocol that permits this kind of access. The other feature is a way of having

safe sharing of data between multiple applications servers that run on top of the same storage pool.

In our work, from the prespective of the efficient data access of a storage system, we examine

the implications of iSCSI on system performance and whether or not this protocol should be used

for the development of novel data storage architectures. Next from the prespective of the efficient

sharing between concurrent access of applications, we use an existing distributed storage system,

Orchestra [20], and we built a filesystem on top of it to implement sharing between multiple

application accesses on the storage pool.

Specifically, Orchestra follows the current trend of pushing the functionality from the filesystem

layer towards to the block layer. It is a system that virtualizes storage distributed over a commodity

storage cluster. In particular, it allows extensions to storage functionality by providing hierarchies

consisting of virtual devices layered over physical storage devices distributed in a commodity

cluster. In addition, it can use virtual volumes that are mapped to physical devices but offer higher

level semantics than those of physical volumes, such as versioning , encryption etc. Moreover, it

enables sharing of the constructed hierarchies as storage volumes through a new block-level API

or a traditional filesystem API. Overall, the features of Orchestra are:

• It provides a novel approach for building extensible, large-scale storage systems and consol-

CHAPTER 1. INTRODUCTION 3

idates system complexity in a single point, Orchestra deals with metadata persistence and

allows for hierarchies to be distributed almost arbitrarily over application and storage nodes,

providing a lot of flexibility in the mapping of system functionality to available resources.

• It provides support for sharing at the block-level. Specifically, it provides block-locking and

allocation facilities that can be inserted in Orchestra hierarchies where required. Orchestra

currently provides simple but scalable policies for locking and allocation. More involved

policies can similarly be implemented through additional virtual modules.

A sample distributed Orchestra hierarchy is shown in Figure 1.1(a).

Since, Orchestra provides sharing on the block level, we design and implement a new stateless,

pass through filesystem above Orchestra, Orchestra-fs, in order to exploit this sharing of data

for applications that operate on the filesystem layer. Orchestra-fs relies on Orchestra for block

locking and block allocation services. Orchestra-fs provides only grouping of blocks in files and

of files in directories, it does not use any internal distributed state and does not require explicit

communication among its instances. We choose to avoid internal state and instance communication

in order to avoid consistency problems between instances of the same filesystem that are distributed

over the cluster. Figure 1.1(b) shows how Orchestra-fs is combined with Orchestra to provide file-

level sharing over distributed Orchestra volumes.

ALLOC

LOCK

MIGR

BLOWFISH

RAID 0
BLOWFISH

VERSION

LOCK LOCK

RAID 0

ALLOC

VERSION

�����
�����
������ �����

�����
������

Imported / Exported

A
PP

L
IC

A
T

IO
N

ST
O

R
A

G
E

 N
O

D
E

 1

PARTPART

LOCK

����������
��������������������

����������

Devices:

	�		�	
�

�
������������

ST
O

R
A

G
E

 N
O

D
E

 2

ST
O

R
A

G
E

 N
O

D
E

 N

Network Channels

...

�
�
������ ������������

��������

N
O

D
E

 X

DiskDisk

Disk
Virtual

Disk
Virtual

Disk
Virtual

DiskDiskDisk

Hierarchy A

Distributed

(a) A distributed Orchestra hierarchy.

Block Allocator

Filesystem

Block Allocator

Filesystem

Locking

RAID-0

Locking

RAID-0

Locking

RAID-0

Storage Node N

...
Storage Node 1

Virtual VolumeStorage Nodes
Mapped to many

...

App. Server YApp. Server X

...
Storage Node 2

...

Distributed Shared

...

(b) The allocator and locking layers allow many

FS clients to share a distributed volume mapped

on many nodes.

FIGURE 1.1: Orchestra’s hierarchy and layers

In order to identify the overheads of Orchestra-fs, we evaluate Orchestra with a small-scale stor-

age system, that consists of three storage nodes and a single application node using IOzone[36].

CHAPTER 1. INTRODUCTION 4

The results show that Orchestra-fs provides good scalability as the number of server nodes grows

in cases where there is no sharing conflicts. They also show that the performance of Orchestra-fs

is comparable to the performance of the ext2 [2] for most of the workloads we try.

The contributions of this work are1:

• We evaluate iSCSI, using micro and application benchmarks. To achieve this, first we imple-

ment a framework of high-accuracy timers in kernel-space for measuring kernel code paths.

Second we instrument the linux kernel using this timer framework in order to get a detailed

breakdown of the system time spent by applications (TPC-H, Postmark, SPEC-SFS) that run

over iSCSI.

• We develop a user-space filesystem (Orchestra-fs) to allow applications that access storage

through a file system interface to take advantage of the advanced features of the Orches-

tra block-level framework. Finally, we evaluate the performance of Orchestra-fs and we

compare it with ext2 [2] using various setups.

The rest of this thesis is organized as follows. Chapter 2 presents the evaluation of the iSCSI

protocol including the methodology we use and the results of our evaluation. Chapter 3 presents

the design, implementation and evaluation of Orchestra-fs. Finally, chapter 4 draws our conlusions

and discusses limitations and future work.

1Parts of this work are appeared in [54] and [55].

Chapter 2

iSCSI Performance Analysis

2.1 Introduction

Although the adoption of iSCSI appears appealing, it is not clear at this point what is its impact

on system performance. The introduction of both a new type of interconnect as well as a number

of protocol layers in the I/O protocol stack may introduce significant overheads. Our work aims to

examine iSCSI-related overheads in the I/O path. We investigate the iSCSI overheads associated

with storage systems built out of commodity PCs and commodity Gigabit Ethernet interconnects.

Although iSCSI may be used with customized systems as well, our storage nodes are commodity

PCs with multiple (5-8) disks. Given today’s technologies, such nodes may host about 1.5-2.5

TBytes of storage and in excess of 10 TBytes in the near future. Storage nodes are connected with

application servers and application clients through a Gigabit Ethernet network. In our evaluation

we use both microbenchmarks as well as real applications to examine the impact of iSCSI-based

storage compared to directly-attached disks. We instrument the Linux kernel (2.4 series) and in

particular the block-level I/O path to gain detailed information about I/O activity, and we examine

both application- and system-level metrics. Overall, we see that the most significant kernel over-

heads in the I/O path are not only TCP and interrupt processing, as previous work has shown, but

buffer cache processing as well. This suggests that novel I/O architectures should not only consider

TCP-related costs, but buffer cache processing as well.

In this chapter we present an extended performance evaluation of the iSCSI protocol that is

widely used for SAN environments. The following section describes our platform, as well as, the

suite of the benchmarks that are used. Section 2.3 discusses the methodology we have used while

5

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 6

section 2.5 presents our results.

2.2 Methodology

2.2.1 Experimental testbed

Our iSCSI testbed consists of 16 dual-processor (SMP) commodity x86 systems. Each system

is equipped with two Athlon MP2200 processors at 1.8 GHz, 512 MBytes of RAM and a Gigabyte

GA-7DPXDW motherboard with the AMD-760MPX chipset. The nodes are connected both via a

100 MBit/s (Intel 82557/8/9 adapter) and a 1 GBit/s (D-Link DGE550T adapter) Ethernet network.

All nodes are interconnected via a single 24-port switch (D-Link DGS-1024) with a 48 GBit/s

backplane. The 100 MBit network is used only for management purposes. All traffic related to our

storage experiments uses the GBit Ethernet network.

The AMD-760MPX chipset supports two PCI 64-bit/66 MHz bus slots, three PCI 32-bit/33 MHz

slots and two on-board IDE controllers, a system IDE controller with two ATA-100 channels for

up to four devices, and an IDE Promise PDC20276 RAID controller with two ATA-100 channels

for up to four devices. It is important to note that the IDE controllers are connected through a

single PCI 32-bit/33 MHz link to the memory, which limits the aggregate IDE bandwidth to about

120 MBytes/sec. Each node has an 80-GByte system disk (Western Digital WD800BB-00CAA1,

2 MB cache) connected to the system IDE controller. Three of the system nodes are equipped

with five additional disks of the same model. Three of the disks are connected to the system IDE

controller and the other two to the Promise IDE RAID controller. All disks (except the system disk)

are configured in RAID-0 [39] mode using the Linux MD driver (software RAID). The hardware

RAID functionality of the Promise controller is not used. Since we are interested in examining

commodity platforms, we use IDE/ATA disks. However, in the case of iSCSI we need to use the

SCSI I/O hierarchy in the Linux kernel to generate SCSI commands for the iSCSI modules.

The operating system we use is Linux RedHat 9.0, with a kernel version 2.4.23-pre5 [4]. Not

all Linux kernel versions provide support for fast disk I/O. In versions 2.4.19 to 2.4.22 a bug in the

kernel driver for the AMD IDE chipset disables support for fast data transfers and results in low

raw disk throughput. According to our measurements, versions up to 2.4.18 or later than version

2.4.22 offer the expected disk I/O performance. In our work we use version 2.4.23-pre5 for all

the experiments. Furthermore, we use the Linux hdparm utility to set each disk to 32-bit I/O

and to UDMA 100 mode. These result in an increase of maximum disk throughput from 25 to 45

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 7

Buffer Cache

iSCSI

TCP/IP

NIC

Buffer Cache

TCP/IP

NIC

User Space

Kernel Space

Applications Micro benchmarks

Network

iSCSI Initiator

Filesystem

iSCSI

iSCSI target

FIGURE 2.1: Intel iSCSI architercture

MBytes/s.

2.2.2 iSCSI implementation

During the course of this evaluation, we have experimented with various Linux iSCSI imple-

mentations [38, 7, 13]. [13] suffers from low performance, as we verified through several mi-

crobenchmark experiments. On the other hand, [38] requires SCSI disks on the target side. This

makes it unsuitable for our work, since our goal is to build commodity storage nodes based on

inexpensive IDE disk technology.

The Intel iSCSI implementation [7] we chose for our work has the fewest limitations. Mainly,

that it supports only non-SMP kernels, so our kernel is built with no SMP support (i.e. only one

processor is used). Secondly, we found that the Intel iSCSI target was originally developed for

block devices up to 4 GBytes (32-bit byte addressing). Since we would like to build storage nodes

with significantly higher capacity (currently 5x80 GBytes/node) and to experiment with datasets

that exceed 2 GBytes, we have modified the iSCSI target to support 32-bit block addressing, which

is adequate for our purposes1. In the Intel implementation, the iSCSI target runs at user level,

whereas the iSCSI initiator runs in the kernel as figure 2.1 shows.

1The main issue is that the iSCSI target, which is implemented in user space, opens the target devices with an

lseek call that repositions the file offset. The specific call used allows only 32-bit offsets and needs to be replaced

with the llseek call that handles 64-bit offsets.

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 8

2.2.3 Workload

To examine system behavior we use a set of microbenchmarks and applications: IOmeter [26],

a workload generator that has been used extensively for basic evaluation of I/O subsystems, Post-

mark [27], a benchmark that emulates the I/O behavior of an e-Mail server, the TPC-H [49] de-

cision support workload on MySQL [53], a popular open-source database, and Spec-SFS [45], a

widely-accepted NFS server benchmark. Next we examine each benchmark in more detail.

IOmeter: IOmeter [26] is a configurable workload generator. The parameters we vary are: ac-

cess pattern, mix of read and write operations, number of outstanding requests, and block size. We

choose four workloads that represent extreme access patterns: all sequential or all random, 100%

reads or writes, and two mixed workloads with 70-30% reads and writes. Finally, for each work-

load we vary the number of outstanding requests between 1 and 16 and the block size between 512

Bytes and 128 KBytes. The results we report are with 16 outstanding I/O requests, unless stated

otherwise. In our discussion we use the average throughput, the average response time for each

I/O request, and the total CPU utilization.

PostMark: PostMark [27] simulates the behavior of an Internet mail server. PostMark creates a

large number of small files (message folders) that are constantly updated (as new mail messages

arrive). PostMark can be configured in two ways [27]; The number of files to create and the total

number of transactions to perform on this set of files. In our experiments we use inputs 50K/50K,

50K/100K, 100K/100K, and 100K/200K. A new filesystem is created with mkfs before each

experiment to ensure that the filesystem state does not affect the results.

MySQL: MySQL is a popular open-source database [53]. To examine the behavior of this im-

portant class of applications we use the TPC-H workload [49]. The TPC-H benchmark models a

decision support system and consists of a suite of 22 business-oriented ad-hoc queries and concur-

rent data modifications. In our work we use TPC-H queries 1-3, 5-8, 11, 12, 14, and 19. Since we

need to perform multiple runs for each query, we omit the rest of the queries that take a long time

to complete (in the order of hours). A new filesystem is also created with mkfs and the database

is reloaded before each TPC-H experiment (each experiment includes all the queries we use). The

size of the database we use is 10 GB.

Briefly, the characteristics of the TPC-H queries we use are:

Q1: The “pricing summary report query” reports the amount of items billed, shipped and returned

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 9

as of a given date.

Q2: The ”minimum cost supplier query” finds which supplier should be selected to place an order

for a given part in a given region.

Q3: The “shipping priority query” retrieves the 10 unshipped orders of the highest value.

Q5: The “local supplier volume query” lists for every nation in a region, the revenue volume

done through local suppliers.

Q6: The “forecasting revenue change query” quantifies the amount of revenue increase that

would have resulted from eliminating certain company-wide discounts in a given percent-

age range in a given year.

Q7: The “volume shipping query” determines the value of goods shipped between certain nations

to help in the re-negotiation of shipping contracts.

Q8: The “national market share query” determines how the market share of a given nation within

a given region has changed over two years for a given part type.

Q11: The “important stock identification query” finds the most important set of suppliers’ stock

in a given nation.

Q12: The “shipping modes and order priority query” determines whether selecting less expensive

shipping modes is negatively affecting the critical-priority orders by causing more parts to

be received by customers after the committed date.

Q14: The “promotion effect query” monitors the market response to a promotion such as a TV ad

or a special campaign.

Q19: The “discounted revenue query” reports the gross discounted revenue attributed to the sale

of selected parts handled in a particular manner. This query is an example of code such as

might be produced programmatically by a data mining tool.

Spec-SFS: Spec SFS97 R1 V3.0 [45] measures the throughput and response time of an NFS

server. The first iteration starts with a total NFS server load of 500 operations/sec, while each

consecutive iteration increases the load by 100 operations/sec until the server is saturated. In our

work we measure total response time and response rate for NFS operations.

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 10

2.3 Timing Measurements

Finally, in our work we are interested in examining both application-specific as well as system-

wide metrics. In particular, we are interested in presenting detailed breakdowns of system I/O

activity in each kernel layer. To obtain the breakdown of kernel time in various layers we instru-

ment the Linux kernel source with our own stop-watch timers. Next we describe in details our

kernel level framework of timers.

2.4 Virtual Timers

In this section we describe the framework of Virtual Timers we developed in order to measure

the kernel code paths, especially the ones related to the block I/O.

2.4.1 Timer Semantics and API

Most CPUs today provide cycle counters that can be used for profiling purposes. For instance,

the x86 architecture provides an 64-bit cycle counter that can usually be read with a single assembly

instruction. Figure 2.2 shows how this is achieved in the x86 architecture. This instruction reads the

value of a processor register that counts clock cycles since the last boot of the system. Clock cycles

normalized with the processor frequency is a very accurate measure of time. This profiling method

is not only very accurate, but also incurs very low overhead, requiring a single assembly instruction

to read the cycle counter. In contrast, using OS facilities such as do gettimeofday() that use

the system real-time clock have two main disadvantages: (i) They need several instructions to

compute the time and thus incur high overhead and (ii) The granularity they provide is in the order

of milliseconds, while cycle counters can potentially measure nanosecond intervals on modern

high-frequency processors.

Figure 2.3 shows the timer API that we developed. This API is developed into the kernel and

especially for 2.4 kernel versions. A stop-watch timer has essentially six primitive operations:

alloc/dealloc(), start(), stop(), clear() and read time(). alloc() cre-

ates a new timer. start() starts counting time by reading the current timer value and storing

it. stop() reads the current timer value, subtracts from it the previously-stored timer value,

and stores their difference. This difference indicates the time elapsed between the start and stop

points. The timer can then be restarted and stopped, accumulating the total time for all intervals.

read time() returns the current total, i.e. the elapsed time. Clear() resets the total time

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 11

inline long long GetCurrentCycles(void) {

LARGE_INTEGER val;

__asm__ __volatile__("rdtsc ":

"=a" (val.split.LowPart),

"=d"(val.split.HighPart));

return val.QuadPart ;

}

FIGURE 2.2: Function for reading cycle counter in the x86 architecture.

int alloc (_timer_ctx_t *tc,char *name,char flag);
int dealloc (int timer_id, _timer_ctx_t *tc);
void start (int timer_id, _timer_ctx_t *tc);
void stop (int timer_id, _timer_ctx_t *tc);
void clear (int timer_id, _timer_ctx_t *tc);
void read_time (int timer_id, _timer_ctx_t *tc);

FIGURE 2.3: Virtual timers API.

measured by the timer. Finally, when the timer is not needed, we can free it using dealloc().

Using the above timer concepts, profiling a code path requires merely including the path in a

pair of start timer(), stop timer() calls. Using multiple timers, allows us to measure

independent code paths.

This simple profiling approach, however, becomes more complicated when applied to modern

operating systems, mainly because of two features: (a) multi-tasking and preemption, and (b)

interrupts.

Modern OSes try to minimize blocking and wait time by overlapping execution of concurrent

kernel and user tasks as much as possible. For this reason, they switch between tasks whenever

waiting on events is required. Processes are placed in various event queues and the OS scheduler

selects the next process to run on the CPU. Since stop-watch timers use physical time between the

start and stop operations, their measurement of elapsed time will include any time between these

two points, i.e. the time other processes may have run on the CPU. A similar situation occurs with

interrupts (software or hardware) that are issued during the run time of a process. In this case, the

interrupt handler routine will be included in the time of the specific code path.

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 12

To deal with these issues in a transparent manner, our framework offers two kinds of timers:

physical and virtual.

• Physical: Physical timers measure all time between start and stop operations.

• Virtual: Virtual timers automatically remove all wait and interrupt times.

Furthermore, timers can be categorized as private or global:

• Private: The timer is visible only inside the context of a single task and cannot be accessed

by other tasks.

• Global: The timer is visible from all tasks. Such timers can be started and stopped by any

task running in the system.

Thus one can have the following timer semantics:

• Physical-Global: These timers are the simplest timers traditionally available for profiling.

• Physical-Private: These timers are useful when a task needs to profile other activity (e.g.

wait time) that occurs during its execution.

• Virtual-Private: This type of timer can be used to profile paths in a single task without

interfering with other system or user tasks.

• Virtual-Global: These timers do not provide useful semantics, since profiling global execu-

tions path requires physical timers.

Virtual-private timers offer the advanced semantics described earlier and are the most challeng-

ing to implement. Supporting virtual timer semantics requires two additional internal functions

that are not part of the framework API: pseudo start, pseudo stop. These functions are

internal and they are called either from the scheduler or from interrupt handler in order to stop/start

active timers of a task during a scheduling or interrupt event.

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 13

schedule() {

need_resched_back:
prev = current;
if ((prev->state == TASK_INTERRUPTIBLE)

&& signal_pending())
prev->state = TASK_RUNNING;

else
del_from_runqueue (prev);

repeat_schedule:
next = idle_task ();

search_list();

/* c is the goodness value.
The biggest the more likely
for a process to run next. If
it is 0 the process cannot

run on the CPU
that has used until now. */

if (c == 0)
goto repeat_schedule;

if (prev == next)
goto same_process;

prepare_To_switch ();

stop_active_timers (prev);
start_active_timers (next);
switch (prev,next);

same_process:
if (current->need_resched)

goto need_resched_back;
return;

}

IRQ

Save registers

do_IRQ

Restore registers

Kernel task User task

of interrupted

of interrupted

Restore registers
of interrupted

Scheduler:
choose a task

to run

3

4
task

task

task t1

handle_IRQ

soft_irq

stop_active_timers(t1);

start_active_timers(t1);

2

1

3.1

3.2

3.3

3.4

4

5Kernel task continues
its execution

(a) (b)

FIGURE 2.4: Left figure is the pseudo code of the Linux Kernel. Right figure is the generic interrupt
execution path in Linux.

2.4.2 Timer Implementation

In this section we describe our implementation of virtual timers for Linux. First we describe the

Linux scheduler, for kernel versions of 2.4 [8]. Linux uses separate contexts for entities that can

be scheduled independently. Such entities are called tasks. A task may be a user process, a kernel

thread or a signal. Interrupts are distinguished from tasks and run in their own context. All user

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 14

tasks are preemptible. The scheduler may suspend the execution of the current user process at any

time and select another process to run, according to a scheduling algorithm. On the other hand all

kernel tasks are non-preemptible (in the 2.6.x kernel they are preemtible). However kernel tasks

yield the CPU to improve responsiveness when waiting for I/O to complete [8].

Figure 2.4(a) shows the scheduler pseudo-code. Initially, the scheduler checks the state of

the current task. If the state is set to TASK INTERRUPTIBLE, the scheduler checks if there are

signals that may require processing. If there are no such signals, the task is removed from the

queue of runnable tasks. In both cases, the flag that indicates if the task needs to be rescheduled,

is disabled. After the scheduler has applied the scheduling algorithm to all tasks in the runnable

queue, it selects the most suitable task to run or the idle task if the queue is empty. At this

point, it is guaranteed that the selected task will run. The context switch merely saves the context

of the previous task and restores the context of the task to run.

To implement virtual timers we need to: (i) pseudo stop all timers of the previously running

task that were active when the scheduler run and (ii) pseudo start the timers of the task that

will run next and that were active when the process was preempted. For this we need a bitmap per

task indicating the task’s active timers. The bits in this bitmap are set when the timer is started and

are reset when the timer is stopped.

Next we describe how we deal with interrupts. When an interrupt happens, the task that holds

the CPU is suspended and a general interrupt handling routine is called [1], as shown in Figure

2.4(b). After the completion of the interrupt there are two possibilities: (i) If the task that was

interrupted is a user task, the scheduler is called and selects a task to run. (ii) If the task is a kernel

task, the control of the CPU returns to this task. Consider, for example, that a task T1 uses the

CPU. When an interrupt arrives, the OS saves the context of T1 in the top-most interrupt handler

and calls the do IRQ function, which is the entry point of all interrupts. do IRQ calls other

functions, including the interrupt handler of the specific interrupt. After the interrupt is handled,

the OS decides which task should be scheduled next based on the reschedule flag of the interrupted

task. To deal with interrupts, we instrument the generic interrupt handler of the Linux kernel. In

the beginning of this function we pseudo stop the active timers of the interrupted task. When

the interrupt routine is completed we pseudo start the active timers of the next task to run. We

note that we could avoid the pseudo start operation in the case where the scheduler is called,

however we prefer to include it because it is easier to implement in the current Linux code.

In the case of nested interrupts, we will try to pseudo stop the active timers of the previous

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 15

task. In this case, the previous task is the task that was originally interrupted and not the inter-

rupt context. Since pseudo stop accumulates the timer difference, we need to avoid multiple

accumulation of a single time difference. For this reason pseudo stop checks if a particular

active timer has been pseudo stopped already. Similarly, pseudo start checks if the timer is

already pseudo started. This scenario happens only in nested interrupts. We measured the fre-

quency of this scenario during our experiments and found that it accounts for only 3% of the total

pseudo start and pseudo stop calls.

Finally, another scenario we need to address is the case where an interrupt occurs while the

scheduler itself is running, and the framework has pseudo started the active timers of the next

task to run, just before the actual context switch. In this case, execution is still in the context of

the current task, but the framework has started the timers of the next task to run. As mentioned

previously, the virtual timers code in the interrupt handler will stop the active timers of the task

that was interrupted. In this case the interrupted task appears to be the task that was preempted and

not the next task to run. This means that the virtual timers for the next task to be scheduled will

continue to measure time, during interrupt handling. This occurs because starting virtual timers

and performing the context switch are not atomic operations. The result is that the next task to run

will include the interrupt time. However, this will not result in, otherwise, corrupted or incorrect

measurements. One way to fix this, is to make the two operations atomic by disabling interrupts.

However, since this is an infrequent case (it has never occurred in our experiments) we prefer to

keep our implementation simple and not deal with this atomicity issue.

Our virtual timers framework use two main data structures. The first is general and is used for

all tasks running on the system. Its elements store information about the execution time of all

tasks and all timers in the system. This structure is allocated at system initialization (when the idle

process is created).

The second data structure is unique per task and is used to implement the virtual-private se-

mantics. The elements and information are similar to the first, global data structure. This second

structure is attached to the kernel’s task struct, which contains all information for each task.

The structure is allocated at the entry point of every new task in the system, do fork. Every

task has its own instance of this struct, thus the data for the timers is also unique for each task.

Allocation of this structure happens at the entry point of every new task in the system, do fork.

Finally, all timing information is available through the /proc filesystem. The global statistics,

i.e. all timers for all tasks, are accessible through the /proc/ktimers file, while separate task

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 16

VFS / Ext3
Filesystem Buffer Cache

SR
(Cdroms)

ST
(Tapes)

SD
(Disks)

SCSI Unifying Layer

Hardware
Drivers (iSCSI, ide−scsi)

Pseudo Drivers

NIC(GigEth)

I/O System Calls Kernel Space

Lower

Middle

Upper

SCSI Subsystem

User Space

TCP/IP

FIGURE 2.5: Kernel Layer Hierarchy.

timings are accessed through /proc/ktimers "taskid".

2.4.3 Kernel Instrumentation

In our instrumentation we have placed timers in the borders of consecutive layers of the I/O path.

Thus, starting from the high-level read() and write() system calls, we are able to measure

times spent in each layer as an I/O call is forwarded from the user process to the actual disk device

driver (or network device driver in the case of an iSCSI device).

Figure 2.5 illustrates the kernel layers that are of interest for the iSCSI call path. The system call

layer is the interface to the user-space world. The I/O system calls use VFS (or generic filesystem)

calls to perform their tasks, while individual filesystems, such as ext3, plug their code into the

VFS handlers. The buffer cache code is used for managing memory pages that cache file inodes

or disk blocks. The buffer cache functions are used both by VFS and the lower-level filesystem

code sometimes in a recursive manner. Thus, it is generally hard to distinguish system time spent

in VFS, Ext3 and buffer cache code since their calls are interdependent. However, in our analysis

we do not aim at a detailed analysis of the filesystem time, but instead on understanding iSCSI-

related overheads. For this reason we measure two separate times for the VFS/Ext3 layer: (a)

the time for read/write calls, labeled as “FS: read/write” in our breakdown graphs and (b) the

time for performing file and directory operations (e.g. create, delete, locate), labeled as “FS:

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 17

File Mgmt”. These two components are possible to distinguish because they are initiated through

different system calls.

Below the filesystem level is the SCSI hierarchy that consists of three layers: upper, middle,

and lower SCSI layers. We combine the time spent by the upper and middle layers in a single

component, labeled as “SCSI”. The low-level SCSI driver is the iSCSI module, which we time

separately. We also quantify what happens below the iSCSI layer, namely in the TCP/IP layer and

the network device driver and the associated interrupt handler (the DL2k module in our systems).

Our measurements of the TCP/IP stack, labeled “TCP”, contain all the time spent in both the send

and receive paths only accounting for the iSCSI traffic. Finally, we measure the time spent in the

network device interrupt handler separately (labeled “NIC IRQ”).

It is important to identify the kernel layers where memory copying of data related to iSCSI

traffic occurs. There are two such cases: one in the FS:Read/Write component, where data is

copied between the kernel’s buffer cache and the application buffer and second in the TCP layer,

where data is copied between the NIC’s buffer and kernel memory. These two copies occur for all

data stored on iSCSI storage. In the directly-attached disk case, the NIC copy does not occur and

is replaced with a DMA to the buffer of the hard disk controller.

2.4.4 System Configurations

For our evaluation we have examined three system configurations.

(A) Direct-attached (or Local) Disk. Five IDE disks directly attached to the application server.

(B) iSCSIx1. One storage node with five disks connected to the application server through Gigabit

Ethernet. The storage node (iSCSI target) exports a single RAID-0 volume through iSCSI.

(C) iSCSIx3. Three storage nodes (iSCSI targets) with five disks each connected to the applica-

tion server through Gigabit Ethernet. Each storage node exports a single RAID-0 volume

through iSCSI. Since, each storage node exports five disks, the total number of disks for this

configuration is fifteen. The three iSCSI volumes are concatenated with software RAID-0

on the application server.

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 18

2.5 iSCSI Results and Analysis

In this section we describe the experimental results and analysis of the iSCSI protocol. It is

divided in three parts. In the first part we report some basic measurements and costs of our plat-

form. The next part consists of the results of the micro and application benchmarks we have used.

The last part reports a breakdown of the time spent into the kernel during the execution of the

application benchmarks.

2.5.1 Basic measurements

 0

 20

 40

 60

 80

 100

 4 16 64 256 1K 4K 16K 64K 256K 1M

T
hr

ou
gh

pu
t (

M
B

yt
es

/s
ec

)

Buffer Size (Bytes)

TTCP Network Throughput (TCP Protocol)

TCP/IP Throughput (Switch)
TCP/IP Throughput (Back-to-Back)

(a) TCP Throughput

 0

 2

 4

 6

 8

 10

 12

 4 16 64 256 1K 4K 16K 64K 256K 1M

L
at

en
cy

 p
er

 b
uf

fe
r

(m
ill

is
ec

on
ds

)

Buffer Size (Bytes)

TTCP Network Latency (TCP Protocol)

TCP/IP Latency (Switch)
TCP/IP Latency (Back-to-Back)

(b) TCP Latency

FIGURE 2.6: TCP/IP throughput and latency over D-Link DGE550T Gigabit Ethernet NIC, measured with

ttcp.

Figure 2.6 shows the throughput and latency of the Gigabit Ethernet network we use, measured

with ttcp. The system achieves a maximum bandwidth of about 800 MBit/s using 128K packet

sizes. Our system configuration does not use jumbo frames since many commodity network inter-

faces and switches do not support this feature. The size of a jumbo frame is 9000 bytes while the

default one that we use is 1500 bytes.

Figure 2.7 shows the basic throughput for the disks and controllers we use, measured with

IOmeter. We see that each disk is capable of 45 MBytes/s throughput for sequential read accesses

and about 20 MBytes/s for sequential write accesses. A mix of 70% read and 30% write operations

achieves also about 20 MBytes/s throughput. Each IDE controller can transfer about 120 MBytes/s.

As mentioned in Section 2.2, the PCI bus in our systems is a 33MHz/32Bit bus, resulting in a

theoretical peak of 125 MBytes/s. Given that we use two IDE controllers in each system we expect

that the maximum I/O throughput in each node is limited by the PCI bus. CPU utilization and

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 19

response time for a single disk are depicted in Figure 2.7(a).

Finally, figure 2.7 shows the throughput, CPU utilization and response time for iSCSI when

using a RAM-disk on the iSCSI target with one outstanding I/O request. We see that the initiator

reaches 90% CPU utilization for reads and about 80% for writes for 1K or larger I/O request sizes.

Thus, when using iSCSI, I/O throughput is limited by network bandwidth to about 50 MBytes/s

(with 16 KByte requests) at a system utilization between 80-90%. Minimum response time (512

Byte requests) is less than a 100 µs.

2.5.2 Microbenchmarks

First, we look at IOmeter to understand basic aspects of the local and iSCSI configurations. Fig-

ure 2.8 shows that for directly-attached disks and sequential read requests, maximum throughput

approaches 120 MBytes/s, limited by the PCI bus in our systems. For write requests, maximum

throughput is about 50 MBytes/s. The read performance is higher than write due to the aggressive

prefetching (read-ahead) the software RAID driver performs. In the iSCSIx1 configuration, max-

imum throughput is limited to 40 MBytes/s and maximum read throughput is limited to about 25

MBytes/s. The writes in the iSCSI configuration are faster because of the write-back cache on the

iSCSI target nodes. Reads, however, are slower because data must be read from the remote disk. In

both cases, maximum throughput is achieved at 4 or 8KByte I/O requests. When using 70% read-

30% write mix, throughput is about 50 MBytes/s for the local case and about 20 MBytes/s for the

iSCSIx1 configuration. iSCSIx3 achieves about the same write throughput as iSCSI, but performs

much better in reads. This is due to the larger buffer cache that three nodes have compared to one

node in the iSCSIx1 case. Random access patterns exhibit a significantly lower throughput in all

cases.

Figure 2.9 shows that the local and iSCSIx1 configurations have similar response times. In

contrast, the iSCSIx3 setup shows higher latencies for larger block sizes, mainly due to network

congestion from the three iSCSI connections. Finally, Figure 2.10 shows the CPU utilization in

the initiator (application server). Maximum CPU utilization with sequential requests is between

75-90% in the local case and between 60-70% in the iSCSIx1 case depending on I/O request size.

We note that given the achievable throughput, iSCSIx1 utilization is higher compared to the local

configuration. iSCSIx3 shows very high CPU usage, especially in the case of sequential reads. This

is due to increased network throughput, which results in high network processing times (including

memory copies of data from the NIC).

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 20

512 2048 4096 8192 16384

Block size

0

10

20

30

40

50

60

M
B

yt
es

/s

100Reads-100Sequential
100Writes-100Sequential
70Reads-30Writes-100Sequential

(a) Throughput

512 2048 4096 8192 16384

Block size

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
ic

ro
se

co
nd

s)
(b) Average Response Time

512 2048 4096 8192 16384

Block size

0

10

20

30

40

50

60

70

80

90

100

%
 C

P
U

 U
ti

li
z
a

ti
o

n

(c) Cpu Utilization

FIGURE 2.7: IOmeter statistics for a single local disk vs. an iSCSI RAM-disk. Dotted lines denote the
single local disk and solid lines the iSCSI RAM-disk.

512 8192 16384 32768

Block size

0

20

40

60

80

100

120

140

M
B

yt
es

/s
ec

(a) Directly-attached disks

512 8192 16384 32768

Block size

0

20

40

60

M
B

yt
es

/s
ec

100Reads-100Random
100Reads-100Sequential
100Writes-100Random
100Writes-100Sequential
70Reads-30Writes-100Random
70Reads-30Writes-100Sequential

(b) iSCSIx1

512 8192 16384 32768

Block size

0

20

40

60

M
B

yt
es

/s
ec

(c) iSCSIx3

FIGURE 2.8: IOmeter throughput.

512 8192 16384 32768

Block size

100

1000

10000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
ic

ro
 s

ec
s)

(a) Directly-attached disks

512 8192 16384 32768

Block size

100

1000

10000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
ic

ro
 s

ec
s)

(b) iSCSIx1

512 8192 16384 32768

Block size

1000

10000

100000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
ic

ro
 s

ec
s)

(c) iSCSIx3

FIGURE 2.9: IOmeter average I/O response time.

5122048 8192 16384 32768 65536

Block size

0

10

20

30

40

50

60

70

80

90

100

%
 C

P
U

 U
ti

liz
at

io
n

(a) Directly-attached disks

5122048 8192 16384 32768 65536

Block size

0

10

20

30

40

50

60

70

80

90

100

%
 C

P
U

 U
ti

liz
at

io
n

(b) iSCSIx1

5122048 8192 16384 32768 65536

Block size

0

10

20

30

40

50

60

70

80

90

100

%
 C

P
U

 U
ti

liz
at

io
n

(c) iSCSIx3

FIGURE 2.10: IOmeter CPU utilization.

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 21

TABLE 2.1: Postmark results. Throughput is in KBytes/sec.

Input Size Tx/sec Read Write

(#files/#trans) Throughput Throughput

50K/50K 168 208.68 655.27

50K/100K 168 303.55 629.10

100K/100K 83 120.58 375.79

100K/200K 78 158.45 329.16

2.5.3 Application Performance

PostMark

Overall, we find that Postmark is sensitive to I/O latency and iSCSI reduces performance up to

30%. For the same reason, however, in iSCSIx3 performance improves up to 40% due to the

increased target buffer cache that reduces I/O latency. Also, iSCSIx3 is able to saturate the host

CPU, something that is not possible in the direct and iSCSI configurations. Next we present a more

detailed analysis.

Table 2.1 shows the performance of PostMark for the local configuration. Figure 2.11 shows the

performance of PostMark for the rest system configurations(iSCSIx1, iSCSIx3, iSCSIx3 without

buffer cache) compared to the local one. We notice that using iSCSI reduces transaction rate

between 0% and 25% compared to the direct configuration. In iSCSIx3 all application metrics

improve compared to direct by 0% to 40%. Moreover, we note that the largest improvement occurs

in the configurations that use a larger number of transactions for a given number of files. This is

due to the fact that when increasing the number of transactions and keeping the number of files

constant, the larger iSCSIx3 target buffer cache becomes more effective.

Figure 2.12 shows the execution time breakdown for PostMark. We see that system time drops

by 17-35% in iSCSIx1, compared to the direct case. This is due to the increased response time

in iSCSIx1. PostMark performs synchronous I/O, and thus, is sensitive to I/O response time. In

iSCSIx3, response time improves due to the larger target cache, which results in higher system

utilization that reaches almost 100% for all input sizes. To verify this we disable the buffer cache

in the Linux kernel in all iSCSI targets. Because there is no way to completely disable the buffer

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 22

TX/s RT
W

T
TX/s RT

W
T

TX/s RT
W

T
TX/s RT

W
T

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or

m
al

iz
ed

 r
at

e

iSCSIx1
iSCSIx3
iSCSIx3 NBC

(a)

FIGURE 2.11: Postmark results normalized to the direct configuration. Each graph represents one input

size. Each group of bars refers to one application metric: Transactions/s, Read Throughput,

and Write Throughput. Each bar refers to one system configuration: direct, iSCSIx1,

iSCSIx3 and iSCSIx3 without buffer cache (left to right).

cache, we decrease the memory of the target to 96 MBytes. This is the lowest possible size of

memory the target machine needs to boot. Figure 2.11 shows that PostMark performance drops

for larger input sizes (transaction number), even below the direct configuration (Table 2.1). Thus,

PostMark benefits mostly from the presence of the increased I/O subsystem cache in the iSCSI and

iSCSIx3 configurations, demonstrating one of the advantages of using iSCSI.

50K F 50K T

50K F 100K T

100K F 100K T

100K F 200K T
0

10
20
30
40
50
60
70
80
90

100

P
er

ce
nt

ag
e

%idle
%sys
%usr

(a) Execution Time Breakdown

50
K F

 50
K T

50
K F

 10
0K

 T

10
0K

 F
 10

0K
 T

10
0K

 F
 20

0K
 T

0

100

200

300

I/
O

 O
pe

ra
ti

on
s

/ s
ec

Read
Write

(b) I/O rate (IOs/s)

FIGURE 2.12: Postmark execution time breakdown and I/O rate. The left bar in each pair refers to the

direct configuration and the middle bar to the iSCSIx1 configuration and the right to the

iSCSIx3.

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 23

TABLE 2.2: TPC-H query execution time in MySQL (in seconds).

Query q1 q3 q5 q6 q7

Exec time (s) 74.37 54.25 59.74 12.33 60.92

Query q8 q11 q12 q14 q19

Exec time (s) 137.59 23.19 16.32 24.11 18.11

Figure 2.12 shows the I/O rate at the initiator (application server) for each system configuration

and input size. This rate shows the number of requests that reach the physical disks in the direct

configuration and the iSCSI layer in iSCSIx1 and iSCSIx3. The I/O rate in PostMark follows the

same pattern as the transaction rate reported by the application.

MySQL

Overall, TPC-H is sensitive to disk I/O throughput and CPU utilization. Thus, iSCSI reduces

performance by up to 95%. However, iSCSIx3 is able to scale the number of disks (and the

total size of I/O cache). This improves disk I/O throughput and reduces the gap with the direct

configuration, in some cases even improving performance up to 25% (Q14). Next we discuss our

results in more detail.

Table 2.2 shows the execution time for the TPC-H queries we use for the local configuration.

Figure 2.13 shows the execution time for all setups compared to the execution time of the local

configuration. We see that using iSCSI increases execution time between 1% (Q8) and 95% (Q6).

In the iSCSIx3 configuration, execution time reduces significantly compared to the iSCSIx1 case

and is within 40% of the direct case (and usually within 20%). Similarly to PostMark, iSCSIx3 is

able to recover the performance degradation of using iSCSI with a significant increase in resources.

To distinguish whether the performance improvement with iSCSIx3 is due to the increased target

cache or the larger number of disks we also run experiments with the iSCSIx3 configuration where

the target buffer is disabled (Figure 2.13). We see that, except for query Q14, in all cases the

performance degradation is fairly small (within 7%) which suggests that TPC-H benefits mostly

from the increased number of disks under iSCSIx3.

Figure 2.14 shows the execution time breakdown for each query. First, we note that between

direct and iSCSIx1 system time increases by up to 95% (Q14) which indicates that iSCSI intro-

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 24

Q1 Q3 Q5 Q6 Q7 Q8
Q11 Q12 Q14 Q19

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or

m
al

iz
ed

 T
im

e

FIGURE 2.13: TPC-H execution time normalized to the direct configuration. Each group of bars refers to

one query, whereas each bar refers to one system configuration: iSCSIx1, iSCSIx3, and

iSCSIx3 without target cache (left to right).

duces a significant overhead. Moreover, user time reduces in all queries and by up to 112% (Q6)

indicating that either system time takes up useful cycles from the host CPU or that the increase in

iSCSI response time results in lower CPU utilization.

Similarly to iSCSIx1, iSCSIx3 exhibits a higher user time compared to the direct configuration

for all queries where it performs better. Idle time in iSCSIx3 is almost 0% in all queries. Thus,

application server CPU is saturated and further improvements in application performance may only

be achieved with lowering CPU utilization.

Finally, Figure 2.14 shows the I/O rate for each configuration. We see that the large differences

in user time, especially in queries Q6, Q12, and Q19 are reflected to differences in the I/O rate.

Spec-SFS

Overall, we find that Spec-SFS is hurt by mixing client-server and iSCSI traffic over the same

network. Although consolidating all traffic on top of a single network is considered an advantage

of iSCSI, this has an adverse effect on Spec-SFS performance.

Figure 2.15 shows that the iSCSIx1 configuration saturates faster than the direct configuration at

600 I/O requests/s, as opposed to 700 I/O requests/s (14% difference). Moreover, I/O response time

is larger in the iSCSIx1 configuration for all I/O request loads by about 25% to 40%. However, the

I/O rate is similar in both the direct and iSCSI cases for the the loads that do not saturate iSCSI

(up to 600 IOs/s). The iSCSIx3 configuration behaves similarly to iSCSIx1, however, I/O response

time improves and is within 25% of the direct case in most cases.

The execution time breakdown for Spec-SFS (Figure 2.15) shows that the Spec-SFS server is idle

most of the time, which suggests that the network bandwidth of the Spec-SFS server is limiting

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 25

q1 q3 q5 q6 q7 q8 q1
1

q1
2

q1
4

q1
9

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

%idle
%sys
%usr

(a) Execution Time Breakdown

q1 q3 q5 q6 q7 q8 q1
1

q1
2

q1
4

q1
9

TPC-H Queries

0

100

200

300

400

500

600

700

I/
O

 O
pe

ra
ti

on
s

/ s
ec

Reads
Writes

(b) I/O rate (IOs/s)

FIGURE 2.14: TPC-H I/O rate and execution time breakdown. The left bar in each pair refers to the direct

configuration, the middle bar to iSCSIx1, and the right to iSCSIx3.

system performance. Note that all systems in this experiment are attached to the same Gigabit

Ethernet switch, meaning that both Spec-SFS and iSCSI traffic traverse on the same link that

connects the Spec-SFS server (iSCSI initiator) to the switch. For this reason, in the iSCSIx1 and

iSCSIx3 configurations the system saturates at a lower number of I/O requests, since using iSCSI

increases the traffic on the network.

2.5.4 System Overhead Breakdown

Next we examine the overhead introduced by iSCSI in the initiator’s I/O protocol stack.

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 26

300 400 500 600 700 800 900 1000
Request Load

0
1
2
3
4
5
6
7
8
9

10

M
se

c/
O

p

Local
iSCSIx1
iSCSIx3

300 400 500 600 700 800 900 1000
Request Load

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700

S
e
r
v
e
d

 O
p

s/
se

c

(a) (b)

FIGURE 2.15: Spec-SFS results.

50KF_50KT

50KF_100KT

100KF_100KT

100KF_200KT
0

10
20
30
40
50
60
70
80
90

100

P
er

ce
nt

ag
e %NIC IRQ

%TCP
% iSCSI + SCSI
% FS: Read/Write
% FS: File Mgmt
% Other

(a)

50KF_50KT

50KF_100KT

100KF_100KT

100KF_200KT
0

10
20
30
40
50
60
70
80
90

100

P
er

ce
nt

ag
e

(b)

FIGURE 2.16: Postmark system time breakdowns with and without (NBC) buffer cache in the storage

targets. Each group of bars refers to one system configuration: direct (left), iSCSIx1

(middle), and iSCSIx3 (right).

Figure 2.16(a) and 2.17(a) shows the breakdown of system time 2 in the major components

of the I/O stack (Figure 2.5). We see that in PostMark most (90%-95%) of the system time is

spent in the filesystem component. This is due to the fact that PostMark represents mail folders

as directories and writes mail messages to separate files. Thus, each mail operation results in

(multiple) file and directory operations (open, close, search, delete, create) that

account for most of the system overhead.

In TPC-H queries, the file management overhead is minimal, because during query execution

the only file operations that take place are read and write operations that are passed directly to the

2The negative components in some bars are due to measurement errors, which, however, do not affect our results.

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 27

q1 q3 q5 q6 q7 q8 q11 q12 q14 q19
0

10
20
30
40
50
60
70
80
90

100
P

er
ce

nt
ag

e %NIC IRQ
%TCP
% iSCSI + SCSI
% FS: Read/Write
% FS: File Mgmt
% Other

(a)

q1 q3 q5 q6 q7 q8 q11 q12 q14 q19
0

10
20
30
40
50
60
70
80
90

100

P
er

ce
nt

ag
e

(b)

FIGURE 2.17: TCP-H system time breakdowns with and without (NBC) buffer cache in the storage

targets. Each group of bars refers to one system configuration: direct (left), iSCSIx1

(middle), and iSCSIx3 (right).

block I/O hierarchy. On the other hand, buffer cache management is in many cases a significant

component of system time (up to 80%).

In terms of the block I/O stack, the overhead is divided almost equally between block I/O and

network components. The major components of the block I/O stack involved in the I/O path is the

buffer cache management (between 22% and 63% of system time). The major network components

are the send and receive paths of the TCP/IP stack (between 10% and 44% of system time) and the

NIC interrupt handler (between 4% and 18% of system time).

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 28

Thus, we see that a significant part of the I/O overhead for TCP-H is in the block-level I/O hierar-

chy and that using iSCSI has a significant impact due to TCP and NIC interrupt handler overheads.

Also, when comparing iSCSIx3 to iSCSIx1 we see that block-level I/O overheads increase signifi-

cantly and up to 18%. When disabling the buffer cache in all targets in the iSCSIx3 configuration

(Figure 2.17(b)) trends remain the same as before, since TPC-H is not affected significantly by

the available target cache size. Finally, Spec-SFS exhibits very little system time in the initiator

(Spec-SFS server) and thus, we do not examine the related breakdowns.

Overall, we see that the most significant kernel overheads in the I/O path are not only TCP

and interrupt processing, as previous work has shown, but buffer cache processing as well. This

suggests that novel I/O architectures should not only consider TCP-related costs, but buffer cache

processing as well.

2.6 Related Work

The authors in [35] evaluate the performance of iSCSI when used for storage outsourcing. Sim-

ilarly to our work, the authors use both microbenchmarks and real applications (TPC-C and Post-

mark). However, unlike our work, they focus on network issues. They examine the impact of

latency on application performance and how caching can be used to hide network latencies. The

authors in [10] examine the performance of iSCSI in three setups: An optimized, commercial-

grade back-end in a SAN environment, a commodity-type back-end in SAN environment, and a

commodity-type back-end in a WAN environment. They perform high-level experiments and ex-

amine system throughput with microbenchmarks. The authors in [31] use simulation to examine

the impact of iSCSI and network parameters on iSCSI performance. They only examine through-

put of a simple test and the consider iSCSI PDU size and network Maximum Segment Size, TCP

Window Size, and Link Delay. The authors in [14] present the design and implementation of iSCSI

for Linux and perform preliminary evaluation of their system with a simple microbenchmark. The

authors in [15] examine the impact of TCP Window Size and iSCSI request size for LAN, MAN,

and WAN environments. The authors find that the default TCP parameters are inappropriate for

high-speed MAN and WAN environments and that tuning of these layers is required.

In contrast, our work focuses on the impact of iSCSI on application server performance and

we examine in detail, by instrumenting the Linux kernel, system (kernel) overheads introduced by

iSCSI. We also examine how adding system resources in an iSCSI configuration impacts applica-

tion and server performance.

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 29

The authors in [33] examine the impact of iSCSI on application server performance. They use

a simple microbenchmark directly on top of block-level storage or through NFS. Similarly to our

results they find that iSCSI impacts system behavior significantly and that Ethernet interrupt cost is

the most significant source of overhead. Our results show similar behavior for the network-related

costs. However, we find that other, iSCSI-related costs can also be very high when using real

applications. The authors in [33] conclude that using jumbo frames reduces interrupt overhead by

about 50% but state that this may not be a practical option in real systems where not all components

in the network path may support jumbo frames. In our work, we do not consider Jumbo frames,

since we also feel that this may not be representative of practical setups.

The authors in [48] discuss an implementation of iSCSI that avoids a copy on commodity net-

work adapters. They use simple microbenchmarks to examine the performance of their implemen-

tation and find that it reduces CPU utilization from 39.4% to 30.8% for reads and that it does not

have a significant impact for reads.

During the course of the performance evaluation of the iSCSI protocol we developed a frame-

work of virtual timers for profiling kernel code paths. Below we present the related work for this

part of the work.

Specifically, there exist several system profiling tools. They can be first categorized based on

the events they are able to profile:

(i) OS-level tools that profile operating system events such as page faults, context switches, net-

work traffic etc. Such tools usually profile coarse grain events. The Microsoft Windows System

Monitor [32] counts and logs OS events and hardware resources. Similar statistics are exported

through the /proc filesystem in Linux and are displayed by utilities such as “top” [9]. Such mon-

itoring tools are intended for system administration and not kernel development, which requires

kernel code profiling information.

(ii) Code-level tools that profile user or kernel code. Today, such tools almost exclusively rely

in some type of cycle counter to provide fine-grain measurements: Our work is in this second

category. Most of the tools used in this category are currently based on sampling methods. Opro-

file [5] is a tool that enables OS profiling using the symbol sampling techniques to get statistics for

the various symbols that are executed. Oprofile periodically (at very short intervals) generates an

interrupt that samples the value of the PC register in the CPU. Using the PC, oprofile determines

in which function (symbol) the CPU was executing at that time. At the end of the experiment it

reports a breakdown of the percentage of execution time that was spent in every function. Another

CHAPTER 2. ISCSI PERFORMANCE ANALYSIS 30

sampling profiler using similar techniques is PAPI [6]. PAPI is designed for portability and pro-

vides an interface to access the hardware performance counters found on most modern processors.

VTune [3] is a sampling profiler for x86 systems (both for Linux and Microsoft Windows). VTune

also reports other CPU events by means of the x86 hardware event counters.

These sampling profilers though can neither provide a detailed breakdown of execution path nor

report the exact time of execution of a kernel function, since they use approximations based on

frequency counters to get the samples.

2.7 Summary

In summary, we see that using iSCSI without increasing system resources compared to a local

configuration has a significant impact in all applications we examine. However, the impact of

iSCSI differs in each case.

iSCSIx3 is able to scale system resources and recover and in some cases improve system perfor-

mance. Postmark benefits from the increased target buffer cache, TPC-H by the increased number

of disks (and to a lesser extend by the increased buffer cache), whereas Spec-SFS remains limited

by the available network bandwidth in the unified interconnect.

Chapter 3

The Orchestra-fs Filesystem

3.1 Overview

Orchestra provides a block-level API, while many applications access storage through a file sys-

tem interface. To allow such applications to take advantage of the advanced features of Orchestra

and to demonstrate the effectiveness of our volume sharing mechanisms it is necessary to provide

a file system interface on top of Orchestra.

One approach to achieve this is to use an existing distributed file system. Depending on the

distributed file system, Orchestra can be used to either provide a number of virtual volumes each

residing in a single storage node [44], or a single distributed virtual volume built out of multiple

storage nodes [47]. However, in both cases, many of the features that are intended to be provided

by Orchestra would be replicated by the file system. More importantly, current distributed file

systems are fairly complex and difficult to extend in any way.

For these reasons, we provide our own file system API on top of Orchestra using a user-level

library that provides only core file system functions, mainly grouping of blocks in files and of files

in directories. Orchestra-fs is a stateless, pass-through file system that uses its internal metadata to

translate file calls to the underlying Orchestra block device. Our approach demonstrates also that

by extending the block layer we are able to significantly simplify file system design in distributed

environments and especially when it is necessary to support system extensibility. Thus, the block

allocator uses the block volume facilities for free-list allocation and locking.

Orchestra-fs supports most file system operations required by applications and that are present

31

CHAPTER 3. THE ORCHESTRA-FS FILESYSTEM 32

in the POSIX interface:

• File operations: open, close, remove, creat, read, write, stat, rename,

symlink, link

• Directory operations: mkdir, rmdir, opendir, readdir, chdir, getcwd

A main feature of Orchestra-fs is that it does not require explicit communication between mul-

tiple instances running on the same or different application nodes. Usually, such communication

is required for two purposes: (i) mutual exclusion and (ii) metadata consistency. Orchestra-fs uses

the corresponding mechanisms provided by Orchestra volumes for this purpose.

• Mutual exclusion: Orchestra-fs uses the multiple-reader single-writer locking mechanism

provided by Orchestra to achieve mutual exclusion between multiple applications accessing

a single file system through a single or multiple application nodes. Currently, Orchestra-

fs locks and unlocks files during the open/close calls respectively. This granularity of

locking is coarse, however, it is realistic for many applications. Although finer grain locking

can also be provided by protecting individual read and write operations, this is beyond the

scope of our work.

• Metadata consistency: The only metadata required by Orchestra-fs are i-nodes and the direc-

tory structure. To avoid maintaining internal consistent state in memory, Orchestra-fs does

not perform any caching of metadata or data but uses the underlying Orchestra-fs block de-

vice. Thus, accesses to files or directories in Orchestra-fs may result in multiple reads to the

underlying block device for the corresponding i-nodes and directory blocks. The maximum

number of such reads that may happen in the case of very large files are four. Orchestra-fs

relies on the underlying Orchestra block device to reduce accesses to the physical disks.

The design goal of Orchestra-fs is to exploit the sharing potential that Orchestra provides for

applications that operate on the filesystem layer. To achieve this, it relies on two main services

that are provided by Orchestra. The first is the block allocation service which manages the blocks

along the volumes of Orchestra. The second is the locking mechanism, which is used in order to

guarantee the integrity of data in the distributed storage sytem.

One main feature of Orchestra-fs is that it supports 64-bit addressing scheme and large files. For

32-bit addressing the maximum file size permitted is 4 Gigabytes. Considering that applications

CHAPTER 3. THE ORCHESTRA-FS FILESYSTEM 33

typedef struct inode
{

long long i_ino;
umode_t i_mode; //Type of inode. i.e file,directory
unsigned int i_count; // Usage Counter. How many fs instances

// have this inode opened.
size_t i_size; //File length in bytes
time_t i_atime; // Last access time
time_t i_mtime; // Last modifications of content of file
time_t i_ctime; // >>>> attributes >>
long long directs [DIRECT_LEVELS];
long long first_indirect;
long long second_indirect;
long long third_indirect;

} inode_t;

FIGURE 3.1: Inode Structure

like video streaming may use files with sizes up to hundreds of Gigabytes, we choose to support

64-bit addressing.

3.2 Filesystem Entities

In this section we describe the main entities in Orchestra-fs.

3.2.1 File

Orchestra-fs provides a persistent mapping between file names and stored data blocks. File

size can vary from several bytes to the total capacity of the volume. The file has also metadata

that uniquely specifies it and resides in its i-node structure as described above. In fact, an i-node

contains all the information needed to connect the data of the file with its name. i-node holds

pointers to all the data and metadata blocks that constitute the file. Such metadata are the size, the

creation-modification time, the reference count etc. An i-node needs only a few bytes (256 bytes)

but we don’t want to access a whole filesystem block (4 KB) to access only a few bytes. For this

reason, Orchestra-fs uses a separate block size (256 bytes) for accessing i-nodes. This block size is

named small block size and is provided by Orchestra’s block layer. Figure 3.1 shows the contents

of the i-node structure that Orchestra-fs uses. Orchestra-fs stores a limited number of pointers, that

points directly to data blocks, into the i-node structure in order to quickly access very small files.

Orchestra-fs, also reserves some bytes of the i-node to hold some references to blocks that stores

pointers to data blocks. To access larger files, Orchestra-fs uses the technique of indirection levels.

CHAPTER 3. THE ORCHESTRA-FS FILESYSTEM 34

open counter

second indirect

third indirect

first indirect

inode number

size

atime

mtime

ctime

Po
int

ers
 B

loc
k

Po
int

ers
 B

loc
k

Po
int

ers
 B

loc
k

Da
ta

Bl
oc

k
Da

ta
Bl

oc
k

1

1 Level

Level

2 Levels

2 Levels

blo
ck

 si
ze

/si
ze

of
(lo

ng
 lo

ng
)

Da
ta

Bl
oc

k

...

...

...
...

...

long long

Meta Data Blocks
Data blocks

Direct Pointers

...
Data blocks

Nu
mb

er
of

 di
rec

tio
n b

loc
ks

FIGURE 3.2: Contents of an inode

Specifically, every i-node contains an indirect pointer. This pointer points to a block that contains

pointer blocks to data blocks. Thus, using only a single block, the filesystem is able to point to

a larger number of data blocks. This number N(x) is equal to filesystem’s block size divided by

the size of block addresses. This kind of indirection is called first indirect. To extend the file size

beyond this size, Orchestra-fs applies this technique twice. This time, the block is called second

indirect block. An i-node contains the address of the double indirect block which in turn contains

pointers to first indirect blocks. The number of indirect blocks a double indirect block can store

is the same with the number of data blocks a first indirect block can point to. However, there are

many cases in which the file size should extend to hundreds of Gigabytes. In such cases the triple

indirect technique is applied. A triple indirect block contains N(x) second indirect blocks. The

total file size achieved using direct, first, double, and triple indirect blocks is T (x):

N(x) =
blocksize

sizeof(longlong)
(3.1)

T (x) = DirectPointers∗blocksize+N(x)∗blocksize+N 2(x)∗blocksize+N 3(x)∗blocksize

(3.2)

For a filesystem block size of 4 KB, the max file size is 550 GB.

CHAPTER 3. THE ORCHESTRA-FS FILESYSTEM 35

Ha
sh

Fr
ee

 L
ist

Bl
oc

k R
eg

ion D
ire

cto
ry

 D
ata

Block Size

Info

long long pseudo_block;

long long freelist_avail_block;

long long pseudo_avail_block;

int offset;

FIGURE 3.3: Directory structure

3.2.2 Directory

Directories are used by Orchestra-fs to create and present hierarchical structures of all available

files. Orchestra-fs internally treats files and directories in a very similar manner. Orchestra-fs

locates directory i-nodes and blocks exactly in the same manner as file i-nodes and blocks. The

directory data is simply a list that holds all directory entries (files and directories). To allow for

efficient search of files in directories that contain very large numbers of entries, Orchestra-fs uses a

hash table to store entries in a directory. The directory hash table is always stored in the first blocks

of a directory, followed by the free-list of available hash entries. Currently, the hash table occupies

a (statically) configurable numbers of blocks. When accessing a file or directory, Orchestra-fs

hashes its name to a bucket in the containing directory hash table. Each bucket contains one

(no hash conflict case) or more (hash conflict case) blocks that may contain the file i-node. Then,

Orchestra-fs reads the specific block and examines its contents to locate the i-node for the directory

entry. In case of conflicts, each hash table bucket can grow dynamically up to the maximum space

allowed for the full hash table in single directory.

When a hash entry becomes full, we need to select another hash entry in a transparent manner.

For this purpose we reserve another region, which is called the free list section and consists of hash

entries, similar to the hash section. Whenever a hash entry within the hash section becomes full it

is redirected to the first available hash entry from the free list section. To implement this we hold a

pointer to the hash entry of the hash section to the next available hash entry in the free list section.

CHAPTER 3. THE ORCHESTRA-FS FILESYSTEM 36

offset: 0

B
lo

ck
 2

B
lo

ck
 1

...

B
lo

ck
 1

0
block: 10

size
...

daizy.txt
size

bob.txt
size

size

file-1.txt

file-1.txt

donald.txt

Info

(a)

B
lo

ck
 2

B
lo

ck
 1

...

B
lo

ck
 1

0

block: 10

donald.txt
size

...

daizy.txt
size

bob.txt
size

size
file-1.txt

offset: 3

offset: 0
block: 11

file-10.txt

file-3.txt

file-10.txt

size

size

Info

(b)

FIGURE 3.4: Creation of a file examples.

We explain in more details this procedure using two examples. Assume that the parent directory

is in a state where some entries (files or directories) are already stored under its scope. Figure 3.4

(a) shows the first scenario. We first create “file-1.txt”. Orchestra-fs passes this file through the

hash function of the parent directory, which produces an integer that specifies the position of file’s

hash entry within the hash region. Block 10 already stores some directory entries. “donald.txt”,

“daizy.txt”, and “bob.txt” occupy the first three slots of block 10. Orchestra-fs stores the file “file-

1.txt” into the fourth slot of block 10, as it is the first empty slot available. Whenever Orchestra-fs

looks up for this file, it will follow the same procedure.

In the next scenario we create “file-10.txt” as shown in Figure 3.4(b). However, in this case the

selected hash entry is full, so a new one must be found. The third hash entry of the free list section

is selected for this purpose. This entry stores its directory entries in the block 11 of the pseudo

block region. The second slot is the first available one within this block. This is where Orchestra-fs

stores the file “file-10.txt”

CHAPTER 3. THE ORCHESTRA-FS FILESYSTEM 37

3.3 Filesystem Operations

This section describes the basic operations that are provided by Orchestra-fs.

Initialization: The superblock of Orchestra-fs holds information such as the block size of

the block layer, the block size that the filesystem uses (it must be a multiple of the block’s

layer block size) and the block size used for handling i-nodes. The above initialization

procedure takes place when a filesystem is first created by means of a separate filesystem

utility (mkfs).

Mount/Unmount: Prior to accessing the filesystem, the information, that is stored in the

super block, must be restored in memory. Before applications can access the Orchestra-

fs, it must restore the information of the superblock to the memory, by using the mount

utility. When traditional file systems are mounted, they allocate a memory region that holds

the information mentioned above. Since, these filesystems reside in kernel, this region is

always accessible from processes until this filesystem is explicitly unmounted. This is not

the case for a user space implementation. The mount process will act similarly with the

kernel space implementation but when it finishes its execution, it will die, along with its

memory region. To address this problem, every application, that uses Orchestra-fs, reads

the superblock structure and retrieves it to its memory address space at its first operation.

When a filesystem is not needed any more, it can be umounted by using umount utility.

This operation flushes the contents of the memory region of the mount process into the

superblock.

Create/Delete: Creating a file is the most fundamental operation of Orchestra-fs. It is di-

vided in two phases. The first one is the allocation of an i-node that represents the new file.

This i-node is also filled with its metadata as described in section 3.2.1. At the time of its

creation, the file is empty and its size is zero. Next, the file needs to be connected with the

parent directory. Specifically, a new entry that contains the pair of file and i-node must be

added to the parent directory’s entry list.

The same procedure for the creation of a file is followed for the creation of a directory. The

only difference is that during the creation of a directory its contents must be initialized as

described in section 3.2.2. As mentioned above a major concept of a filesystem is its hierar-

chy. To implement this when a new directory is created, a reference to its parent directory

must be created as well. In Unix-like environments, the parent directory is expressed with

CHAPTER 3. THE ORCHESTRA-FS FILESYSTEM 38

an entry named “..”. Accordingly, the current directory is expressed with an entry named “.”.

This mechanism enables traversing the whole filesystem from the root node to its leaves.

When a file is deleted, Orchestra-fs traverses the filesystem hierarchy from the root down-

wards to find the parent directory. If the file is found into the parent directory, the filesystem

tries to grant write access to this file in a way described in the section 3.4. The deletion

operation is divided in two parts. First, the file is removed from the entry list of the parent

directory. Then, tha metadata, data, and i-node of the file are deallocated.

Open/Close: When a file is opened, Orchestra-fs traverses the filesystem hierarchy to find

the parent directory. Next, the target file i-node is read, as discussed in Section 3.2.2. If the

file is found, a file desciptor is returned to the process that opened the file. The file descriptor

is used for all subsequent I/O to the file.

Orchestra-fs treats opening of a directory in a similar manner. The meaning of opening a

directory is to provide a mechanism for easily accessing the contents of that directory. It

returns a handle that is used from readdir to gather the entries of the directory. The close

operation merely frees the locks and the structures of an opened file.

Lseek: lseek is used to change the current offset pointer in an opened file. This pointer will

exist until the file is closed.

Write/Read: The write operation translates an offset to a physical block number, and per-

forms a disk I/O operation to the data blocks. The read operation reads a file and uses

the same mechanism with write to map the file offset to a physical block number. Then, it

performs an I/O operation to get the data from the data blocks.

Rename: During a rename operation, the source and destination file are validated. Then,

Orchestra-fs verifies whether the source file and the destination directory of the new file

exist. If they exist, Orchestra-fs deletes the file from the source directory and creates a new

file into the destination directory with the new name.

Stat: Orchestra-fs supports the stat call, which returns the size, creation-modification time,

and permissions of a file.

Readdir: In order to facilitate the applications to get a view of the filesystem hierachy,

Orchestra-fs provides the readdir operation, that fills in a structure with all the entries of the

directory. Using this structure, applications can traverse the filesystem hierarchy.

CHAPTER 3. THE ORCHESTRA-FS FILESYSTEM 39

Link: Orchestra-fs supports both soft and hard links. Soft links offer the ability to link a

named entity that refers to an existing entity file or directory. This is achieved by creating an

entry into the directory’s list and substituting the name of its i-node structure with the path of

the existing file. Whenever the filesystem accesses this new entity, it transparently redirects it

to the original one. Hard links store the inode number of the existing file or directory. Thus,

the “link” is achieved by using the same i-node structure. In this approach, since i-nodes are

used by multiple hard links the space of the file can only be released after the deletion of the

hard link.

3.4 Locks

Orchestra provides a storage pool that is distributed accross the nodes of the cluster. Multiple

Orchestra-fs instances of the same volume can run above this nodes in order to provide applications

the same view of the volume. Every operation that takes place in one filesystem instance must be

visible from the other instances that run on top of other nodes. To ensure consistensy of data among

different file system instances across Orchestras nodes, Orchestra-fs uses locking. Orchestra-fs

supports multiple readers - single writer locks.

When creating a file or directory, Orchestra-fs traverses the filesystem hierarchy to find the

parent directory. Then, Orchestra-fs allocates and locks a new i-node in order to fill it properly.

Then, it locks the parent directory and adds this entity to the directory list of the parent directory.

Finally, Orchestra-fs first unclocks the i-node of the parent directory and then the i-node of the new

file. Orchestra-fs follows the similar procedure with locks to remove a file or directory.

Orchestra-fs locks files at open/close time rather than at read/write calls. After the file is opened,

applications can read/write this file without worrying for data corruption. This lock is released only

when the file is closed. Figures 3.5 and 3.6 show the pseudo code that implements the open and

close operations on a file respectively.

When Orchestra-fs renames an entity, two operations must happen. First, the deletion of the

source file and then the creation of the destination file. The locks of these operations are handled

in the way described above.

CHAPTER 3. THE ORCHESTRA-FS FILESYSTEM 40

open()
{

if READ permission requested (READ flags on open)
{

lock (whole inode);
/* I know there are no others accessing the same file
in the inode I’m the first reader

*/
if (lock ok)
{

reader_counter = 1;
unlock(2nd half of inode);
enter file descriptor in list with READ permission;
return ok;

}
lock (2nd half of inode);
/* I know there are other readers (multiple reader access) in the inode

I’m NOT the first reader (someone else is reading the file too)

*/

if (lock ok)
{

reader_counter++;
unlock(2nd half of inode);
enter file descriptor in list with READ permission;
return ok;

}
else
{

return failure; // a single writer exist (whole inode locked)
}

}
else if WRITE permission requested (WRITE flags on open)
{

lock (whole inode);
/* I know there are no others accessing the same file */
if (lock ok)
{

return ok;
}
else
{

return failure; // another writer/reader exists (part of inode locked)
}

}
}//open

FIGURE 3.5: Open File or Directory

CHAPTER 3. THE ORCHESTRA-FS FILESYSTEM 41

close()
{

if WRITER
{

unlock(whole inode);
return;

}
else if READER
{

/* 2 algorithms: using many single-byte locks OR
using a reader counter in the inode. */

lock (2nd half of inode);
if (reader_counter == 0)

unlock(whole inode); // I’m the last reader...
else
{

reader_counter--; // in the inode
unlock(2nd half of inode);

}
}

}//close

FIGURE 3.6: Close File or Directory

3.5 Preliminary Results

In this section we examine the overheads associated with Orchestra-fs. Our evaluation platform

for Orchestra-fs is a cluster of commodity x86-based Linux systems. All the cluster nodes are

equipped with dual AMD Opteron 242 CPUs and 1 GByte of RAM. Storage nodes have two West-

ern Digital WDC WD800BB-00CAA1 ATA Hard Disks with 80 GByte capacity and 2 MByte

cache. All nodes are connected both with a 100 Mbit/s (Intel 82551 adapter) and a 1 Gbit/s

(Broadcom Tigon3 adapter) Ethernet network. The nodes we use in our experiments are con-

nected through a single 48-port GigE switch. The 100 Mbit network is used only for management

purposes. All systems run Fedora Core 3 Linux with the 2.6.12-1.1378 FC3smp kernel.

We use IOzone [36] to examine the basic overheads in Orchestra-fs. IOzone is a file system

benchmark tool that generates and measures a variety of file operations. We use IOzone version

3.242 to study file I/O performance for the following workloads: Read, write, re-read, and re-

write. We vary block size between 4 and 64 KBytes and we use a file size of 3 GBytes. We

choose this file size in order to minimize the impact of the buffer cache to the results of IOzone.

Specifically, IOzone first creates and writes sequentially a file of the specified size. It then writes

the file once more starting from the beginning. When writes are completed IOzone reads the file

CHAPTER 3. THE ORCHESTRA-FS FILESYSTEM 42

from the beginning and then it reads it again. The size of every read and write operation is the

same and it is specified prior running IOzone.

The first setup we use for our experiments is a single storage node with one disk. In the first

experiment we run IOzone above Orchestra-fs over the physical disk. In the second experiment

we run the IOzone on Orchestra-fs, using the Orchestra block layer on top of the disk. We use

Orchestra layer in order to identify the overheads that Orchestra incurs in the local system.

The second setup we use for our experiments uses two disks configured in RAID-0 mode with 64

KByte stripe size. We use RAID-0 mode in order to have the maximum parallelism we can get. In

the case of the physical RAID device without the Orchestra driver we use the linux MD driver [16]

while in the second case we use Orchestra’s RAID-0 module. We perform the experiment with

two disks in order to see whether Orchestra-fs exploits the presence of a larger number of disks in

the system.

In all our experiments we choose to use the buffer cache of the application node in order to have

a fair comparison with ext2. Otherwise, every operation of Orchestra-fs goes to the disk, which

leads to very poor performance. The results of the above experiments are shown in Figures 3.7 and

3.8. These results are an estimation of the base line performance of Orchestra-fs and they show

that in the local setup when we use two disks, configured in RAID-0, the performance of IOzone

is approximately doubled compared to the single disk case for all operations and request sizes. We

also find that Orchestra incurs very low overhead in the local system as the results, when we run

Orchestra-fs above physical disk and Orchestra-fs above Orchestra, are similar.

4k 16
k

32
k

64
k

Record Size KBytes

0
10
20
30
40
50
60
70
80
90

100
110
120

M
B

yt
es

/s
ec OrchestraFs Write

OrchestraFs Re-Write
OrchestraFs Read
OrchestraFs Re-Read

(a) Local configuration over one physical disk

4k 16
k

32
k

64
k

Record Size KBytes

0
10
20
30
40
50
60
70
80
90

100
110
120

M
B

yt
es

/s
ec

(b) Local configuration over one physical

RAID-0 disk

FIGURE 3.7: IOzone (Orchestra-fs) throughput for the local case above physical disk.

Next, we present three additional setups with multiple nodes. We vary the number of storage

CHAPTER 3. THE ORCHESTRA-FS FILESYSTEM 43

4k 16
k

32
k

64
k

Record Size KBytes

0
10
20
30
40
50
60
70
80
90

100
110
120

M
B

yt
es

/s
ec OrchestraFs Write

OrchestraFs Re-Write
OrchestraFs Read
OrchestraFs Re-Read

(a) Local configuration over an Orchestra over one disk

4k 16
k

32
k

64
k

Record Size KBytes

0
10
20
30
40
50
60
70
80
90

100
110
120

M
B

yt
es

/s
ec

(b) Local configuration over an Orches-

tra device with Orchestra configured in

RAID-0 mode

FIGURE 3.8: IOzone (Orchestra-fs) throughput for the local case using two devices combined in RAID-0

mode

4k 16
k

32
k

64
k

Record Size KBytes

0

10

20

30

40

50

60

70

80

90

100

M
B

yt
es

/s
ec

OrchestraFs Write
OrchestraFs Re-Write
OrchestraFs Read
OrchestraFs Re-Read
Ext2 Write
Ext2 Re-Write
Ext2 Read
Ext2 Re-Read

(a) One storage server

4k 16
k

32
k

64
k

Record Size KBytes

0

10

20

30

40

50

60

70

80

90

100

M
B

yt
es

/s
ec

(b) Two storage servers

4k 16
k

32
k

64
k

Record Size KBytes

0

10

20

30

40

50

60

70

80

90

100

M
B

yt
es

/s
ec

(c) Three storage servers

FIGURE 3.9: IOzone (Orchestra-fs) throughput for the 1, 2 and, 3 storage servers.

servers between 1, 2, and 3. We name these setups 1x1, 2x1, and 3x1 respectively. For these

setups we create a single volume over all available system storage, which is two disks per storage

node. This volume uses the locking, allocation, and RAID0 modules. For every setup we use only

one application node. This node uses the exported device to create a file system and then runs an

instance of IOzone. In these setups we compare Orchestra-fs with ext2, a widely used filesystem.

Figure 3.9 shows the performance of IOzone for these setups.

The results show that in the 1x1 configuration the performance of Orchestra-fs drops dramati-

cally compared to the local case. For the local setup the write throughput is 60 MB/sec and the

read throughput is 100 MB/sec while for the 1x1 the write throughput is 20 MB/sec and the read

throughput is 30 MB/sec. We attribute this to the fact that Orchestra-fs issues requests with size

CHAPTER 3. THE ORCHESTRA-FS FILESYSTEM 44

4KB even when the request size is larger. This means that for request sizes of 64 KB Orchestra-fs

sends segments of 4 KB over the network. Since Orchestra-fs can issue only a single outstanding

request, it is bound by the latency of the network, which becomes the bottleneck for the IOzone

performance. The results also show that Orchestra-fs performs better than ext2 for request sizes

greater than 16KB for read, re-read, and re-write operations. This isn’t the case for the write oper-

ation as ext2 is slightly better than Orchestra-fs for all the request sizes. An important conclusion

from our experiments is that when we vary the number of storage nodes the performance of IOzone

scales as the number of storage nodes grows. For two storage servers the writes throughput is 35

MB/sec and the read throughput is 40 MB/sec, while for three storage servers the write through-

put is 50 MB/sec and the read throughput is 50 MB/sec. This means that Orchestra-fs efficiently

exploits the scalability that Orchestra provides in the case there are no sharing conflicts.

3.6 Related Work

The authors in [40] discuss how storage systems may be built out of commodity storage nodes

and interconnects. However, their focus is mechanisms that improve system reliability for enter-

prise environments. They use a voting mechanism and erasure codes for dealing with failures as

well as techniques for background recovery to avoid high overheads. We share similar objectives in

enabling block-level storage technologies based on commodity components. However, our work

examines how such, future block-level systems can be tailored to support changing application

needs without compromising transparency and scale.

Our work bears similarity with the Petal-Frangipani approach [29, 47] in that all filesystem

communication happens through a distributed volume layer, simplifying filesystem design and

implementation. However, contrary to Frangipani which uses a separate lock server and allocates

blocks through the FS, Orchestra performs locking as well as block allocation through the block

layer. Moreover, Orchestra allows storage systems to provide varying functionality through virtual

hierarchies as well provides flexibility and control in distributing many storage layers to a number

of storage nodes.

Object-based storage devices (OSD) is a recent effort to improve the efficiency and scalability of

storage systems. The OSD approach defines an object structure that is understood by the storage

devices, and which may be implemented at various systems components, e.g. the storage con-

troller or the disk itself. Our approach does not specify fixed groupings of blocks, e.g. to objects.

Instead, it allows virtual modules to use metadata and define block groupings dynamically, based

CHAPTER 3. THE ORCHESTRA-FS FILESYSTEM 45

on the module semantics. Moreover, these groupings and associations may happen at any layer

in the storage hierarchy. For instance, a versioning virtual device [19] that is inserted either at

the application server or storage node hierarchy, specifies through its metadata which blocks form

each version of a specific device. In both approaches, allocation happens closer to the blocks. In

OSD objects are allocated by the storage device, whereas in Orchestra by a virtual module that

is inserted in the storage hierarchy. In terms of locking, certain aspects are not finalized yet with

OSD [52], however, object attributes may be used to implement mutual exclusion mechanisms. In

Orchestra, similarly to allocation, locking is provided by a new virtual module that is inserted to

the storage hierarchy on demand. OSD specifies that object devices perform protection checking,

whereas in Orchestra we envision that, beyond traditional permissions in the filesystem, protec-

tion will also be provided by a virtual module at fine granularities. Finally, the OSD approach is

expected to allow implementing advanced storage functionality, such as support for collections of

objects, multi-object operations, snapshots, cloning, and space-management [24]. When imple-

mented close to the object device, such functionality can distribute the work that today takes place

in the centralized file-server, resulting in improved performance and simplified management [24].

Orchestra shares the same vision and provides a systematic framework for enabling such exten-

sions at the block-level.

Although our approach shares similarities with work in modular and extensible filesystems [22,

41, 43, 56] and network protocol stacks [28, 34, 37, 50], existing techniques from these areas

are not directly applicable to block-level storage virtualization. A fundamental difference from

network stacks is that the latter are essentially stateless, except for configuration information, and

packets are ephemeral, whereas storage blocks and their associated metadata need to persist. Com-

pared to extensible filesystems, our work targets clustered storage systems and presents a single

system image at the block-layer.

Distributed file systems such as the Global File System (GFS) [44] and the General Parallel

File System (GPFS) [42] are used extensively today in medium and large scale storage systems.

However, the complexity of the distributed file system prohibits any practical extensions to the

underlying storage system and forces all applications to use a single, almost fixed, view of the

available storage. In our work we examine how such issues can be addressed in future storage

systems.

The most popular virtualization software is volume managers. The two most advanced open-

source volume managers currently are EVMS and GEOM. EVMS [18], is a user-level distributed

volume manager for Linux. It uses the MD [16] and device-mapper kernel modules to support user-

CHAPTER 3. THE ORCHESTRA-FS FILESYSTEM 46

level plugins called features. The most recent version does offer persistent metadata and block

remapping primitives to these plugins. However, from the EVMS documentation of the feature

API or metadata support we could not determine if EVMS can support generic extensions, such as

versioning, as Orchestra does. GEOM [21] is a stackable BIO subsystem under development for

FreeBSD. The concepts behind it GEOM are, to our knowledge, the closest to Orchestra. However,

GEOM does not support persistent metadata which, combined with dynamic block mapping are

necessary for advanced modules such as versioning [19]. LVM [46] and Vinum [30] are simpler

versions of EVMS and GEOM. Orchestra has all the configuration and flexibility features of a

volume manager coupled with the ability to write extension modules with arbitrary virtualization

semantics.

Finally, besides open-source software, there exist numerous commercial virtualization solutions

as well, such as HP OpenView Storage Node Manager [23], EMC Enginuity [17], Veritas Volume

Manager [51] and Veritas File System. However, in all cases, the offered virtualization functions

are predefined and they do not seem to support extensibility of the I/O stack with new features.

3.7 Limitations

Although Orchestra-fs provides most of the functionality a single filesystem should support,

there are still functionalities that are not implemented. Such functionality is the behavior of

Orchestra-fs in the presence of failures. Many modern filesystems deal with failures using a tech-

nique called “journaling”. According to this technique, the filesystem holds a log area into the

storage media logging information for every operation it performs. Prior to every filesystem oper-

ation, the log is updated. When the filesystem is mounted it checks its state. In the case where its

state is inconsistent, it consults the log in order to recover. Although this technique is really useful,

it is beyond the scope of this work.

3.8 Summary

To provide access to Orchestra volumes through a file system API, we build Orchestra-fs a

stateless, pass-through file system that is currently implemented as a dynamically linked user-

level library. Orchestra-fs does not maintain internal state, instead it uses Orchestra facilities for

locking and block-allocation, and does not require explicit communication among its instances.

We implement Orchestra-fs under Linux and evaluate it using various setups with single ap-

plication node and multiple storage nodes. We run IOzone over various setups and we measure

CHAPTER 3. THE ORCHESTRA-FS FILESYSTEM 47

the base-line performance of Orchestra-fs. We find that in the local setup when we use two disks

instead of one the performance of IOzone is approximately doubled for all operations and request

sizes. From the results we can also conclude that Orchestra incurs very low overhead in the sys-

tem. We also find that when we vary the number of storage nodes the performance of IOzone

scales as the number of storage nodes grows. We also see that in the 1x1 setup the performance of

Orchestra-fs is lower than the local setups, due to the latency of the network. Finally, we find that

in the multiple storage servers setup the performance of Orchestra-fs and ext2 are comparable.

Chapter 4

Conclusions

In this work, we evaluate new architectures made of large numbers of commodity storage “bricks”,

accessed in parallel by many (commodity) application servers. There are two main challenges to

achieve this.

The first is how we can efficiently access stored data in networked storage systems. Usually, this

happens at the block layer. One way to provide transparent access to data is by using the iSCSI

protocol. However, it is not clear which is the impact of iSCSI on overall system and application

performance. This lack of understanding prevents us from optimizing the performance of such

systems. Thus, in this work we first accurately evaluate the costs of each layer in the I/O protocol

stack. To do this we implement a framework of high-accuracy timers in kernel-space for measuring

kernel code paths and we use it in order to get a detailed breakdown of the system time spent by

applications (TPC-H, Postmark, SPEC-SFS) that run over iSCSI. Our examination of kernel-level

overheads shows that improving I/O path performance requires dealing not only with TCP and

interrupt processing costs, but buffer cache management as well.

We also examine the behavior of benchmarks (Postmark, TPC-H, Spec-SFS, IOmeter) that run

on top of iSCSI at the initiator side. We experiment with three setups: Direct, iSCSI, and iSC-

SIx3. In summary, we see that using iSCSI without increasing system resources compared to a

local configuration has a significant impact in all applications we examine. However, the impact

of iSCSI differs in each case. Postmark is sensitive to increased I/O latency, TPC-H is affected by

reduced I/O throughput and increased CPU cycles, and Spec-SFS by the sharing of one network

between both client-server as well as iSCSI I/O traffic. iSCSIx3 is able to scale system resources

and recover and in some cases improve system performance. Postmark benefits from the increased

48

CHAPTER 4. CONCLUSIONS 49

target buffer cache, TPC-H by the increased number of disks (and to a lesser extend by the in-

creased buffer cache), whereas Spec-SFS remains limited by the available network bandwidth in

the unified interconnect.

The second challenge is how can multiple applications share a distributed storage system. Tra-

ditionally, such sharing happens at the file system level. For this reason, today there is a significant

interest in distributed file systems that scale to large numbers of nodes. In our work we propose

using a simple, stateless file-system that relies on the advanced features of Orchestra. Thus, we

design and implement a file system that sits above Orchestra, in order to provide sharing to the

applications. We experiment with various setups: Local setup with one disk and two disks, and

with multiple storage nodes and a single application node varying the number of storage nodes

between one and three. We find that in the local setup the performance of IOzone scales for all

operations and request sizes, when increasing the number of disks. We also find that when we vary

the number of storage nodes the performance of IOzone scales as the number of storage nodes

grows. However, in the 1x1 basic setup the performance of Orchestra-fs is lower than the local

setups, due to the latency of the network. Finally, we find that in the multiple storage servers setup

the performance of Orchestra-fs and ext2 are comparable.

Overall, our results show that building next generation, network-based I/O architectures, re-

quires optimizing I/O latency, reducing network and buffer cache related processing in the host

CPU, and increasing the sheer network bandwidth to account for consolidation of different types

of traffic. Finally, based on our results, we believe that offloading the functionality from the filesys-

tem layer towards the block layer will both simplify the design of the filesystem as well as improve

scalability.

Bibliography

[1] http:// www.linux.com / howtos / KernelAnalysis-HOWTO-6.shtml.

[2] Ext2 filesystem. e2fsprogs.sourceforge.net/ext2.html.

[3] Intel vtune performance analyzers. http:// www.intel.com/ software/ products/ vtune.

[4] Linux kernel sources version 2.4.23-pre5. http://www.kernel.org.

[5] Oprof: profiling system for linux 2.2/2.4/2.6. http:// oprofile.sourceforge.net.

[6] Papi: Performance application programming interface. http:// icl.cs.utk.edu/ papi/.

[7] Project: Intel iSCSI reference implementation. http://sourceforge.net/ projects/ intel-iscsi.

[8] Scheduling in unix and linux. http:// www.kernelnewbies.org/ documents / schedule /.

[9] Unix Top. http:// sourceforge.net/ projects/ unixtop.

[10] Stephen Aiken, Dirk Grunwald, and Jesse Willeke Andrew R. Pleszkun. A performance

analysis of the iSCSI protocol. In 11th NASA Goddard, 20st IEEE Conference on Mass

Storage Systems and Technologies (MSST2003), April 2003.

[11] ANSI. Fibre Channel Protocol (FCP), X3.269:1996. In 11 West 42nd Street, 13th Floor, New

York, NY 10036.

[12] ANSI. SCSI-3 Architecture Model (SAM), X3.270:1996.

[13] Michael F. Brown, Josh Hawkins, Mike Ostman, and William Moloney. UMass Lowell iSCSI

Project. http://www.cs.uml.edu/ mbrown/iSCSI.

50

BIBLIOGRAPHY 51

[14] Anshul Chadda, Ashish Palekar, Robert Russell, and Narendran Ganapathy. Design, im-

plementation, and performance analysis of the iSCSI protocol for SCSI over TCP/IP. In

Internetworking 2003 International Conference, June 2003.

[15] Ismail Dalgic, Kadir Ozdemir, Rajkumar Velpuri, and Umesh Kukreja. Comparative perfor-

mance evaluation of iSCSI protocol over metro, local, and wide area networks. In 12th NASA

Goddard & 21st IEEE Conference on Mass Storage Systems and Technologies (MSST2004),

April 2004.

[16] Miguel de Icaza, Ingo Molnar, and Gadi Oxman. The linux raid-1,-4,-5 code. In LinuxExpo,

April 1997.

[17] EMC. Enginuity(TM): The Storage Platform Operating Environment (White Paper).

http://www.emc.com/pdf/techlib/c1033.pdf.

[18] Enterprise Volume Management System. evms.sourceforge.net.

[19] Michail D. Flouris and Angelos Bilas. Violin: A Framework for Extensible Block-level

Storage. In Proceedings of 13th IEEE/NASA Goddard (MSST2005) Conference on Mass

Storage Systems and Technologies, Monterey, CA, April 11–14 2005.

[20] Michail D. Flouris, Dimitrios Xinidis, Renaud Lachaize, and Anglelos Bilas. Orchestra: Scal-

able support for shared extensible virtual block devices. DRAFT: submitted for publication,

October 2005.

[21] FreeBSD: GEOM Modular Disk I/O Request Transformation Framework.

http://kerneltrap.org/node/view/454.

[22] J.S. Heidemann and G.J. Popek. File System Development with Stackable Layers. ACM

Transactions on Computer Systems, 12(1):58–89, February 1994.

[23] HP. OpenView Storage Area Manager. http://h18006. www1.hp.com/ products/ storage/

software/ sam/ index.html.

[24] IBM. Object store project. http://www.haifa.il.ibm.

com/projects/storage/objectstore/overview.html.

[25] Internet Engineering Task Force (IETF). iSCSI, version 08, Sept. 2001.

[26] Iometer team. Iometer: The I/O Performance Analysis Tool. http://www.iometer.org.

BIBLIOGRAPHY 52

[27] Jeffrey Katcher. PostMark: A New File System Benchmark.

http://www.netapp.com/tech library/ 3022.html.

[28] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The Click

modular router. ACM Transactions on Computer Systems, 18(3):263–297, August 2000.

[29] Edward K. Lee and Chandramohan A. Thekkath. Petal: Distributed virtual disks. In Proc. of

The 7th International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS7), pages 84–92, Cambridge, MA, October 1996.

[30] Greg Lehey. The Vinum Volume Manager. In Proceedings of the FREENIX Track (FREENIX-

99), pages 57–68, Berkeley, CA, June 6–11 1999. USENIX Association.

[31] Yingping Lu, Farrukh, Noman, and David H.C. Du. Simulation study of iSCSI-based storage

system. In 12th NASA Goddard & 21st IEEE Conference on Mass Storage Systems and

Technologies (MSST2004), April 2004.

[32] Microsoft.com. Monitoring and Tuning System Performance in Microsoft Windows XP.

http:// support.microsoft.com/ kb/823887.

[33] Mike Brim and George Kola. An analysis of iSCSI for use in distributed file system design.

http://www.cs.wisc.edu/m̃jbrim/uw/740/paper.pdf.

[34] David Mosberger and Larry L. Peterson. Making Paths Explicit in the Scout Operating

System. In Proc. of the 2nd USENIX Symposium on Operating Systems Design and Impl.

(OSDI96), October 28–31 1996.

[35] Wee Teck Ng, Hao Sun, Bruce Hillyer, Elizabeth Shriver, Eran Gabber, and Banu Ozden.

Obtaining high performance for storage outsourcing. In Proc. of the 1st USENIX Conference

on File and Storage Technologies (FAST02), pages 145–158, January 2002.

[36] William D. Norcott and Don Capps. IOzone Filesystem Benchmark. http://www.iozone.org.

[37] S. W. O’Malley and L. L. Peterson. A dynamic network architecture. ACM Transactions on

Computer Systems, 10(2):110–143, May 1992.

[38] Ashish A. Palekar and Robert D. Russell. Design and implementation of a SCSI target for

storage area networks. Technical Report TR 01-01, University of New Hampshire, May 2001.

BIBLIOGRAPHY 53

[39] David A Patterson, Garth Gibson, and Randy H Katz. A Case for Redundant Arrays of

Inexpensive Disks (RAID). ACM, 1988.

[40] Y. Saito, S. Frolund, A. Veitch, A. Merchant, and S. Spence. FAB: Enterprise storage systems

on a shoestring. In Proc. of the ASPLOS 2004, October 2004.

[41] Paul W. Schermerhorn, Robert J. Minerick, Peter W. Rijks, and Vincent W. Freeh. User-level

Extensibility in the Mona File System. In Proc. of Freenix 2001, pages 173–184, June 2001.

[42] Frank Schmuck and Roger Haskin. GPFS: A Shared-disk File System for Large Computing

Centers. In USENIX Conference on File and Storage Technologies, pages 231–244, Mon-

terey, CA, January 2002.

[43] Glenn C. Skinner and Thomas K. Wong. Stacking/ vnodes: A progress report. In Proc. of

the USENIX Summer 1993 Technical Conference, pages 161–174, Berkeley, CA, USA, June

1993. USENIX Association.

[44] S. Soltis, G. Erickson, K. Preslan, M. O’Keefe, and T. Ruwart. The Global File System: A

File System for Shared Disk Storage, October 1997.

[45] Standard Performance Evaluation Corporation (SPEC). SFS 3.0.

http://www.spec.org/sfs97r1/docs/sfs-3.0.pdf, 2001.

[46] David Teigland and Heinz Mauelshagen. Volume managers in linux. In Proceedings of

USENIX 2001 Technical Conference, June 2001.

[47] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangipani: A Scalable

Distributed File System. In Proc. of the 16th Symposium on Operating Systems Principles

(SOSP-97), pages 224–237, October 5–8 1997.

[48] Fujita Tomonori and Ogawara Masanori. Performance optimized software implementation

of iSCSI. In SNAPPI03, September 2004.

[49] Transaction Processing Performance Council (TPC). TPC BENCHMARK H, Standard Spec-

ification, Revision 2.1.0. 777 N. First Street, Suite 600, San Jose, CA 95112-6311, USA,

August 2003.

[50] Robbert van Renesse, Kenneth P. Birman, Roy Friedman, Mark Hayden, and David A. Karr.

A framework for protocol composition in horus. In Symposium on Principles of Distributed

Computing, pages 80–89, 1995.

BIBLIOGRAPHY 54

[51] Veritas. Volume Manager(TM). http://www.veritas.com/vmguided.

[52] Ralph O. Weber (Editor). Information technology – scsi object-based storage device com-

mands (OSD), revision 10. Technical Council Proposal Document T10/1355-D, Technical

Committee T10, July 2004.

[53] Michael Widenius and David Axmark. MySQL Reference Manual. O’Reilly & Associates,

Inc., June 2002.

[54] Dimitrios Xinidis, Michail D. Flouris, and Angelos Bilas. Performance Evaluation of Com-

modity iSCSI-based Storage Systems. In 13th NASA Goddard, IEEE Conference on Mass

Storage Systems and Technologies (MSST2005), April 2005.

[55] Dimitrios Xinidis, Michail D. Flouris, and Angelos Bilas. Virtual Timers: Using Hardware

Physical Timers for Profiling Kernel Code-Paths. In Proc. of 8th Workshop on Computer

Architecture Evaluation using Commercial Workloads (CAECW-8), February 2005.

[56] Erez Zadok and Jason Nieh. FiST: A Language for Stackable File Systems. In Proceedings of

the 2000 USENIX Annual Technical Conference (USENIX-00), pages 55–70, Berkeley, CA,

June 18–23 2000. USENIX Association.

	Introduction
	iSCSI Performance Analysis
	Introduction
	Methodology
	Experimental testbed
	iSCSI implementation
	Workload

	Timing Measurements
	Virtual Timers
	Timer Semantics and API
	Timer Implementation
	Kernel Instrumentation
	System Configurations

	iSCSI Results and Analysis
	Basic measurements
	Microbenchmarks
	Application Performance
	System Overhead Breakdown

	Related Work
	Summary

	The Orchestra-fs Filesystem
	Overview
	Filesystem Entities
	File
	Directory

	Filesystem Operations
	Locks
	Preliminary Results
	Related Work
	Limitations
	Summary

	Conclusions

