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Περίληψη

Το αντικείμενο αυτής της εργασίας είναι η μελέτη μιας νέας και απρόσμενης μορφής

κυματικής διάδοσης η οποία εμφανίζεται στη δυναμική ορισμένων μη-Ερμιτιανών

τυχαίων πλεγμάτων (¨αποεντοπισμός μέσω αλμάτων¨), στην οποία το προφίλ δι-

άδοσης του κανονικοποιημένου πεδίου κατά την διάδοση μιας αρχικής διέγερσης

εμφανίζει έναν αντιδιαισθητικό μηχανισμό διάδοσης μέσω κβαντισμένων ¨αλμάτων’

παρά τον ισχυρό εντοπισμό των ιδιοκαταστάσεων του πλέγματος λόγω της τυχαι-

ότητας. Η εργασία αρχικά εστιάζει σε μονοδιάστατες αλυσίδες ασθενώς συζευγ-

μένων κυματοδηγών που εμφανίζουν απώλεια ή ενίσχυση με τυχαία κατανεμημένο

τρόπο, και έπειτα στρέφεται σε διατάξεις μη-αμοιβαία συζευγμένων κυματοδηγών

που περιγράφονται από το μοντέλο των Χάτανο-Νέλσον. Η προέλευση των μη-

Ερμιτιανών αλμάτων που εμφανίζονται σε αυτά τα συστήματα για συγκεκριμένα

είδη τυχαιότητας αποκαλύπτεται εξετάζοντας τις σχετικές φασματικές τους ιδιότη-

τες που προκύπτουν από την μη-Ερμιτιανότητα τους, όπως η μη-ορθογωνιότητα

των ιδιοκαταστάσεών τους. Τέλος, παρουσιάζονται επιπλέον η επίδραση του μη-

Ερμιτιανού skin effect στον αποεντοπισμό μέσω αλμάτων καθώς και μια γενίκευση
των αποτελεσμάτων για τυχαία διδιάστατα πλέγματα.
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Abstract

The subject of this thesis is to study the appearance of a new and unexpected
form of wave propagation that appears in the dynamics of certain non-Hermitian
random lattices, namely ”delocalization via jumps”, wherein the normalized field
profile of the evolution of an initial excitation exhibits a counterintuitive propaga-
tion mechanism via quantized jumps despite the strong disorder induced localiza-
tion of the eigenstates of the lattice. The dynamics of such systems is explored and
the physical mechanism behind such an effect is elucidated in the context of non-
Hermitian Anderson localization. This work initially focuses in one-dimensional
chains of evanescently coupled waveguides exhibiting randomly distributed gain or
loss, and then shifts its focus to arrays of non-reciprocally coupled waveguides de-
scribed by the Hatano-Nelson model. The origin of the non-Hermitian jumps that
are exhibited by such systems for certain types of disorder is then uncovered by
examining their relevant spectral properties that arise from their non-Hermiticity,
such as the non-orthogonality of their eigenstates. Finally, the impact of the non-
Hermitian skin effect (NHSE) on the jumpy dynamics as well as a generalization
of our results for in two-dimensional tight-binding lattices are also presented.

Output: A. Leventis, K. G. Makris, and E. N. Economou, Phys. Rev. B
106, 064205 (2022)
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List of commonly used symbols

To avoid confusion relating to the indices used throughout the chapters of this
work, n will be used to index the N sites of a lattice and j will be used to index
the N eigenstates and eigenvalues of the Hamiltonian corresponding to the same
lattice.

N the size of a one 1D-lattice
M,N the number of rows and columns in a 2D-lattice
ϵn On-site potential on the site with index n
c the coupling constant, usually taken to be c = 1, in the tight-

binding Hamiltonian
W disorder strength in the case of a diagonal disorder term drawn

from a rectangular distribution; if the disorder is complex, WR

and WI is the disorder strength for the real and imaginary part
of the disorder respectively

z, zi propagation distance; if taken in a discretized interval with step
dz, zi = i · dz

ψn the complex field amplitude of a field |ψ⟩ on the n-th site of a
lattice

P(z) the optical power of the field |ψ(z)⟩, defined as P(z) =∑N
n=1 |ψn(z)|2

ϕn the normalized field amplitude on the n-th site, defined as
ϕn(z) = ψn(z)/

√
P(z) for each component

|uj⟩ the j-th eigenstate of the Hamiltonian referring to a lattice of
size N ; if the Hamiltonian is non-Hermitian, uLj and uRj refer to
left and right eigenstates respectively

ujn the n-th component of the j-th eigenstate; see above
ωj the eigenvalue corresponding to the j-th eigenstate
γj the imaginary part of ωj
cj the projection coefficient of the field |ψ⟩ on the j-th eigenstate,

defined as ⟨uLj |ψ⟩ in general
V the disorder strength of off-diagonal disorder drawn from an

equal-probability distribution corresponding to a disk of radius
V in the complex plane



Chapter 1

Introduction

The spectral and dynamical behavior of periodic systems, such as atoms in
a crystalline structure, are determined by the application of Bloch’s theorem,
which states that the eigenstates of a periodic system behave as the product
of a plane wave and a function of the same periodicity. As a result of this
theorem, the eigenstates extend over the entirety of the system; this also explains
why in metals, one can may derive properties such as resistivity or the specific
heat capacity with some accuracy using a one-body approximation. In actual
materials, there exist non-periodic defects (such as inclusions or dislocations) that
cause deviations from periodicity. Such perturbations result in diffusive transport
instead of the ballistic one associated with perfect order; the diffusive transport
is associated with eigenstates extended over the whole length of the system but
with a randomized phase characterized by the so-called phase coherence length.
Moreover, Bloch’s theorem is usually coupled with periodic boundary conditions
for the ends of the system; the application of closed boundary conditions results
in the appearance of edge states in the spectrum which are not described by
Bloch’s theorem. In practice, for a large system approaching the thermodynamic
limit N →∞, the spectrum does not differ significantly when considering these
states.

However, for sufficiently strong disorder, a new regime arises wherein some
eigenstates become localized([1] - [4]); in the case of a crystal lattice, the spatial
wavefunction describing an electron may be confined to a narrow region of the
lattice. An immediate result of this effect is the absence of transport in such
a system, wherein waves do not propagate outside a confined region of the
lattice characterized by a localization length ξ. The cause of this effect, known as
Anderson localization [1], has been determined to be the constructive interference
of waves following multiple closed paths about a point inside the medium; in
the presence of sufficiently strong random scatterers, this process increases the
probability of finding the electron in its starting position. Localized states do
not contribute to the conductivity. For an infinite 1D disordered system, where
all states are localized, the conductivity is hence zero; such a situation is termed
an Anderson insulator.

8



CHAPTER 1. INTRODUCTION 9

Disordered systems have been the focus of extensive studies in the past decades
since the publication of Anderson’s prolific paper regarding the localization of
electrons in disordered crystals. Since then, Anderson localization has been
observed not only in electronic, but also in other systems where wave propagation
and disorder is involved, such as mechanical and optical systems, in the quantum
and classical domains alike ([2] - [7]). In the last case in particular, experiments
involving disorder in optical waveguides have provided new insights in regard
to localization in two and three dimensions as well as numerous technological
applications. While exact control of wave propagation in a complex medium is a
difficult task, the field of photonics has provided fertile ground for investigating
Anderson localization through novel experimental techniques involving waveguide
arrays and fiber networks ([14]-[18]). Furthermore, photons do not interact with
each other and therefore such experiments avoid the complexity associated with
many-body electron interactions present in solid state lattices.

Non-Hermiticity, a property associated with open systems that exchange
energy with their environment, has also recently become the focus of recent
discoveries, turning one of the core postulates of quantum mechanics on its
head. The initial discovery of PT -symmetrical systems and their properties
by Bender and Boettcher ([19] - [21]) and the subsequent implementation of
PT -symmetric lattices in optical systems ([22] - [27]) has given rise to the field
of non-Hermitian photonics. In this field the concept of optical loss, inherent
to optical systems and traditionally considered an obstacle, has been exploited
in conjunction with gain to generate new physics such as exceptional points in
PT -symmetric lattices ([28]-[34]), the non-Hermitian skin effect exhibited in
non-reciprocal photonic lattices ([67]-[71]), topological non-Hermitian lattices
[46] and constant intensity waves in disordered media (thus exploiting wave
transport) ([49] - [51]. The associated technological advances included novel
metamaterials ([35]-[36]), optical isolators and switches ([34] - [44]) as well as
ultra-sensitive sensors utilizing EPs [45].

A photonic lattice, consisting of an array of coupled waveguides, is equivalent
to a crystal lattice consisting of periodically ordered atoms as potential wells; in
the paraxial approximation, the transverse direction of the field is analogous to
the wavefunction in Schrödinger’s equation and the refractive index takes the role
of the potential. Therefore, by controlling the refractive index on each waveguide
site, one can emulate the propagation of a wave in a solid crystal ([13], [47]).
The introduction of gain and loss can also be achieved by accordingly modifying
the imaginary part of the refractive index; in this case, gain corresponds to
on-site optical pumping and loss to cavity leaks or absorption by the material.
By randomly varying the real and imaginary part of the refractive index on each
site, the eigenstates of the system become localized while its spectrum varies in
the complex plane; this non-Hermitian version of Anderson localization ([54] -
[57]) provides new emergent effects that are still largely unexplored.

An additional possibility that appears in the context of non-Hermitian
photonics is the implementation of non-reciprocal coupling resulting in non-
symmetric wave propagation. Such an effect is possible by amplifying forward
propagating waves, thus inducing a preferred direction of propagation in the
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lattice[68]. A prototypical non-Hermitian model that has been extensively
studied in this context was originally introduced by Hatano and Nelson ([61] -
[63]). In the case of a disordered Hatano-Nelson lattice, the imbalance between
the couplings counterbalances the effect of disorder and prevents localization for
some of the eigenstates, introducing a delocalization transition [60]. Furthermore,
the eigenvalues and eigenstates of such a system exhibit high sensitivity to the
topology (boundary conditions) of the lattice, in sharp contrast to the Hermitian
case. This effect, known as the non-Hermitian skin effect (NHSE) ([65], [67]), is a
novel property of non-Hermitian systems that also occurs in other non-Hermitian
models and lattices in higher dimensions that display skin modes which feature
characteristically in the topology of their spectrum.

Whereas the absence of transport in Hermitian disordered lattices has been
thoroughly investigated in the context of Anderson localization, the field of non-
Hermitian localization remains largely unexplored and presents the intriguing
possibility of wave transport even in the presence of strong disorder [59]. In
particular, the additional degree of freedom provided by the non-Hermiticity
of the system provides an avenue for the construction of loss-free propagation
([49]-[50]). A recent experiment [58] has demonstrated the appearance of an
unexpected and counterintuitive form of wave propagation in random non-
Hermitian lattices characterized by a rectangular distribution, despite the strong
localization of the eigenstates. In this work, this dynamical effect (”delocalization
via jumps”) is studied in order to provide a systematic methodology toward
the prediction of the location, number and duration of these jumps. The main
focus is the non-Hermitian tight binding Anderson lattice and the asymmetrical
Hatano-Nelson lattice with disorder, which both display this mode of propagation
under certain conditions which are established. A brief introduction to the
relevant spectral properties of these systems is made before an investigating
their dynamics. The relevance of the NHSE to this form of propagation, the
question of transport vs amplification as well as the dynamics of two-dimensional
non-Hermitian disordered lattices are also systematically discussed.



Chapter 2

The 1-D tight-binding
Anderson model

In this chapter we briefly introduce Anderson localization as it manifests in a
one-dimensional disordered tight-binding lattice model, as well the computational
techniques that were employed in the calculation of the localization length of
its eigenstates and the dynamics of wave propagation on the lattice. We later
introduce non-Hermitian localization in the corresponding non-Hermitian model
and discuss its differences to the Hermitian case as well as the new propagation
effects that appear in this kind of lattice.

2.1 Hermitian disordered lattices

2.1.1 Localization length

The tight-binding Hamiltonian is derived by considering only nearest neighbor
interactions in a lattice where the cites are periodically situated. Such a lattice
is described by the on-site self-energy ϵn, which for a lattice with only one kind
of lattice site is taken to be constant ϵn = ϵ ∀n, as well as a coupling constant
cn,m between neighboring sites which here we also take to be constant and real
(cn,n′ = c) [12]. In the case of a system of size N , this Hamiltonian then takes
the form of a matrix with only diagonal and off-diagonal elements:

Ĥ =

N∑
n=1

ϵn |n⟩ ⟨n|+
′∑

n,n′

c |n⟩ ⟨n′| (2.1)

where the accented sum denotes summation over nearest neighbors (|n−n′| = 1),
and c is a real coupling constant between the two sites.

The dynamics of this system is described by the complex field in vectorized
form |ψ⟩ = (ψ1, ψ2, . . . , ψN ) where ψn is the field amplitude on the n-th site of
the lattice. Taking ϵn = ϵ∀n, an eigenfunction |ψ⟩j of this Hamiltonian then

11



CHAPTER 2. THE 1-D TIGHT-BINDING ANDERSON MODEL 12

solves the system of N linear equations:

ωψj,n = ϵψj,n + c(ψj,n+1 + ψj,n−1) (2.2)

where ωj denotes its respective eigenvalue. In the case of periodic boundary
conditions (PBC), we can apply Bloch’s theorem by demanding that ψj,n =
N−1/2eikjn are the solutions in terms of the wavevector k. In this case, the
eigenvalues of the Hamiltonian in Eq. (2.2) turn out to be given by the dispersion
relation ω(kj) = ϵ+ 2c cos(kj). For an infinite system, this is a continuous band
with −π < k < π. We may take ϵ = 0 as a non-zero ϵ results simply in a global
eigenvalue shift. Furthermore, we take by convention c = 1 for the rest of this
section.

The above Hamiltonian, supplied with appropriate boundary conditions, also
applies to the description of a single-mode field in an array of N evanescently
coupled waveguides in the paraxial approximation. In this case, the amplitude of
the transverse field on each waveguide becomes equivalent to the on-site amplitude
of the wavefunction |ψ⟩ in a solid state lattice. It the case of periodic boundary
conditions (PBC) where ψN+1 = ψ1, ψ0 = ψN , we take the corner matrix
elements of the Hamiltonian of Eq. (2.1) as ĤN,0 = Ĥ0,N = 1, while for open

boundary conditions (OBC), where ψN+1 = ψ0 = 0, we take ĤN,0 = Ĥ0,N = 0
instead. In the first case the waveguides are arranged in a linear chain, while
in the second they form closed ring topology. We consider primarily a system
with closed boundary conditions for this section; nonetheless, we remark that
this system with periodic boundary conditions will not have a radically different
behaviour for large system sizes N .

The Anderson tight-binding Hamiltonian ([1]) is a modification of the above
such that the on-site potential is now a function of the site index n, taken at
random from a rectangular probability distribution:

ϵn ∈ [−W/2,W/2] (2.3)

The system described by this Hamiltonian is not periodic and therefore Bloch’s
theorem no longer holds. The constant W is commonly called the disorder
strength constant and determines how strongly localized the eigenstates are.
To obtain the eigenstates and eigenvalues of such a system we use numerical
exact diagonalization. The Anderson tight-binding Hamiltotian in this section is
therefore given in matrix form as:

Ĥ =



ϵ1 1 0 0 . . . δ
1 ϵ2 1 0 . . . 0

0
. . .

. . .
. . . . . . 0

0 . . . 1 ϵN−2 1 0
0 . . . 0 1 ϵN−1 1
δ . . . 0 0 1 ϵN


(2.4)

where δ = 1 for PBC and δ = 0 for OBC.
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Figure 2.1: Example of two eigenstates |uj | in an Anderson lattice of size N = 50
with weak disorder (W = 2). A state with an eigenvalue on the center of
the spectrum is localized, and decays exponentially in the region outside its
localization site. On the contrary, a state with an eigenvalue around the center of
the band extends to the whole lattice and behaves as an extended state (because
ξj > N). In both cases, fluctuations can be observed in the wavefunction that
dissipate as it extends to the rest of the lattice.

The one-dimensional Hamiltonian of Eq. (2.4) displays a spectral feature
known as Anderson localization, wherein its eigenstates appear to be confined to
a finite interval of the lattice and decay exponentially outside of it. A measure
of this behavior is the localization length ξ. For an eigenstate |uj⟩ of this
Hamiltonian, this behavior is qualitatively described by a relation of the form
|ujn| ∝ e−|n|/ξj for n outside the area in which |uj⟩ is localized. The localization
length ξj for each eigenstate is a function of its eigenvalue such that ξ = ξ(ω).

There are several numerical methods to determine the localization length
associated with an eigenstate |u⟩j for variable disorder strength W . The transfer
matrix method ([9],[11]) considers an incident Bloch wave of frequency ω on the
right side of an open lattice to determine the transmission coefficient. As the
wave scatters through the disordered lattice, the decay factor in its amplitude
for large n will give an estimate of the localization length. For such a wave, a
recursive expression for ψn can be extracted from Eq. (2.2) as follows, by taking
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c = 1:

(ω − ϵn)ψn = ψn+1 + ψn−1 ⇒ ψn+1 =
ω − ϵn
ψn

− ψn−1 (2.5)

Then we obtain the system of equations:[
ψn+1

ψn

]
=

[
ω − ϵn −1

1 0

] [
ψn
ψn−1

]
≡ T̂n

[
ψn
ψn−1

]
(2.6)

where T̂n is defined as the transfer matrix on the n-th site of the disordered
lattice. This equation can be iterated by choosing ψ2

0 + ψ2
1 ̸= 0 such that:[

ψn+1

ψn

]
= (

n∏
j=1

T̂j)

[
ψ1

ψ0

]
(2.7)

Defining the Lyapunov exponent as γ(ω) = limn→∞ ln(ψ2
n + ψ2

n+1), the localiza-
tion length is calculated as

ξ(ω) =
1

Re[γ(ω)]
(2.8)

which is consistent with the common definition of the localization length in one
dimension as ξ = − limn→∞

n
ln |ψn| .

After numerically diagonalizing the Hamiltonian of Eq. (2.4) for an Anderson
lattice described by a random potential in the form of Eq. (2.3), Eq. (2.7) can
be iterated over a large number sites for each eigenvalue ωj in the spectrum.
This process can then be repeated for an appropriate amount of realizations
of disorder to obtain a converging average value of the localization length. To
effectively determine the localization length in a disordered system using this
technique, a large system size N is required, because the eigenstates tend to
fluctuate significantly (Fig. 2.1) and thus require many consecutive iterations
of the transfer matrix to achieve convergence. A more generalized method that
employs the transfer matrix can be found in [9] and [10].

A simpler method that also takes into account the eigenstate solutions |uj⟩
is to perform a linear fit on each eigenstate of the form:

ln |ujn| ≈ −
1

xj
|m− n|+ intercept (2.9)

where m is the site for which |ujn| is maximum. In the case of OBC, this fit
should be applied in both directions about the sitem; in this case, the localization
length can be determined by a weighted average of the slopes in the left and
right directions:

ξ(ωj) =
mξLj + (N −m)ξRj

N
(2.10)

Repeating this process for many realizations of the Hamiltonian (2.4) for the
same disorder strength W yields a set of eigenvalues which are then binned
according to their magnitude. Averaging over all disorder realizations in each
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Figure 2.2: Average localization length ξ̄ as a function of the eigenvalue ω for
the eigenstates |u⟩ of the Anderson tight-binding model described by Eqs. (2.1)
and (2.3), calculated by linear regression on the eigenstate magnitude |un| as
a function of the site index n. The localization length was averaged over 200
realizations of disorder on a system size of N = 500 sites and over 50 bins, for
W = 1, W = 3 and W = 5 (left to right). We can see that states with large |ω|
are more strongly affected by the disorder.

bin will then give the average localization length for an interval in the spectrum
of the system. The localization length calculated using this method for select
values of the disorder strength W can be seen in Fig. 2.2.

In the case of a finite system and weak disorder strength, some eigenstates
with eigenvalues about the center of the band may correspond to a localization
length for which ξ ≳ N . In this case, the calculation for ξ will not necessarily
converge and these eigenfunctions will behave as extended states for the system.
Since the spectrum of this (finite) system is not completely localized, in contrast
to the case of a system with strong disorder, transport may still take place; that
is, an excitation at one end of the lattice will eventually reach the other end.
For large system sizes we expect all states to be localized regardless.

We remark that in the context of the scaling theory of Anderson localization
[6], this is not necessarily the case in higher dimensions. For two dimensional
systems, there is a possibility that some states will behave as extended states
even as N →∞, because the localization length corresponding to these states
can be very large. For three dimensional systems and for a given disorder
strength, the localization length diverges algebraically at a critical value of
ω . For calculating the localization length of states that are not strongly
localized, especially motivated by the study of two-dimensional systems, special
computational methods have been developed beyond the naive approach used
here, that can also be used in the case of weak disorder for one dimensional
systems [12].

2.1.2 Absence of transport

To study the dynamics of the lattice described by the Anderson model of Eq.
(2.2) in the context of photonics, we consider the set of equations concerning
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W = 0 W = 2 W = 5

(a) (b) (c)

Figure 2.3: Evolution of a single channel excitation on the center of a lattice
described by the Hamiltonian of equation (2.2) with closed boundary conditions,
in the case of (a) no disorder (b) weak disorder and (c) strong disorder. In the
last case, the disorder completely localizes the eigenstates; as such, no transport
of the initial excitation outside a narrow area of the lattice is observed. Plotted
is |ψn| vs propagation distance z.

the propagation of the slowly varying component of the electric field |ψ⟩ over
propagation distance z in a one dimensional array of N evanescently coupled
waveguides:

i
∂ψn
∂z

+ ψn+1 + ψn−1 + ϵnψn = 0 (2.11)

This evolution law for the propagation of light in multiple discrete channels
is obtained via two approximations from the wave equation [13]. The first
approximation is the paraxial approximation; by writing the electric field on each
waveguide as En(z) = un(z) exp(ikz) and taking the field amplitude ψn(z) to
vary slowly with the propagation distance, such that we can neglect the second
order derivative in z that appears in the wave equation, we obtain differential
equations that are first order in z. The second is the tight binding approximation;
because individual waveguides are close together their individual modes overlap,
giving rise to coupling between neighboring waveguides. The evolution is then
described by considering the self-energy ϵn on each site which depends on the
local variation of the refractive index and the coupling constant c. Thus the field
|ψ⟩ describes the amplitude of the electric field in each waveguide site.

This set of equations is reminiscent of the time-dependent Schrödinger equa-
tion for wavefunctions in solid state tight binding lattices, with the propagation
distance z appearing instead of the time t. The on-site potential can then be
adjusted through the refractive index on each waveguide. It is important to note
here that ϵn contains the difference of the local refractive index to the refractive
index of the bulk material in which the array is contained; as such negative
values for Re(ϵn) do not physically correspond to backward propagating waves,
and we may take the disorder distribution to be in a symmetric interval such as
in Eq. (2.3).

The above system ofN equations can be numerically integrated for any form of
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ϵn, boundary and starting conditions by employing a 4th-order Runge-Kutta (RK)
method over a discretized propagation interval {0, dz, 2dz, . . . , (J − 1)dz, Jdz}
with step dz. Then, writing the field in vectorized form as |psi⟩ = (ψ1 ψ2 . . . ψN ),
a step of the RK method starting at zj = jdz is performed as:

|k1⟩ = iĤ |ψ⟩ (zj)

|k2⟩ = iĤ

(
|ψ(zj)⟩+ dz · |k1⟩

2

)
|k3⟩ = iĤ

(
|ψ(zj)⟩+ dz · |k2⟩

2

)
|k4⟩ = iĤ (|ψ(zj)⟩+ dz · |k3⟩)

|ψ(zj+1)⟩ = |ψ(zj)⟩+
dz

6
(|k1⟩+ 2 |k2⟩+ 2 |k3⟩+ |k4⟩)

(2.12)

by observing that ∂ |ψ⟩ /∂z = iĤ |ψ⟩. This process is iterated for all zj = j · dz
where j ∈ {0, 1, 2, . . . , J} to finally get the field on the desired propagation
distance zmax. In this work, 105 steps are used for determining the field up to
propagation distances in the order of 102.

Another method that can be used to study the dynamics of the system
involves the exponential matrix method. The evolution of the field |ψ⟩ is given
in terms of the evolution matrix Û as:

|ψ(z)⟩ = Û(z) |ψ0⟩ ≡ eiĤz |ψ0⟩ (2.13)

where |ψ0⟩ is the initial field profile at z = 0. Then the same discretization as in
the previous method can be employed to calculate the evolution matrix for a
single step in the propagation interval as Û = exp(iĤdz). If dz is sufficiently
small, the field |ψ⟩ can then be calculated by iteratively multiplying with Û as:

|ψ(zj+1))⟩ = Û |ψ(zj)⟩ (2.14)

Both methods applied here yield similar results; the evolution matrix is more
desirable in the case of systems where it is cumbersome to write down a RK
method due to the complexity of the Hamiltonian Ĥ. Because the tight-binding
Hamiltonian involves only nearest neighbor coupling, here we choose to use the
RK method.

The evolution of a field in the presence of strong disorder is limited to a small
subsection of the lattice, in contrast to the ballistic transport of the field in the
periodically ordered lattice [15]. As seen in Fig. 2.3, if the disorder strength W
is large enough, the field does not reach the edges of the lattice - no transport is
then observed.
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2.2 Non-Hermitian disorder

2.2.1 Spectral properties and localization

We now consider the case of a system described by Eq. (2.2) with complex,
rather than strictly real, random on-site potential ϵn. As in the case of the
Anderson model, ϵn is drawn at random from a rectangular distribution as:

Re(ϵn) ∈ [−WR/2,WR/2], Im(ϵn) ∈ [−WI/2,WI/2] (2.15)

In the case of an array of N coupled waveguides, the imaginary part of the on-site
potential describes gain in the form of optical pumping (Im(ϵn) < 0) or losses in
the form of cavity leaks and absorption by the waveguide material (Im(ϵn) > 0).
The Hamiltonian of this system is no longer Hermitian, and therefore the norm
of the field is not a conserved quantity of the lattice.

Since the Hamiltonian H is not self-adjoint, the (right) eigenvalue problem of
Eq. (2.2) with complex disorder in the above form should be accompanied by the
adjoint (left) eigenvalue problem of its Hermitian conjugate (H†); the two sets
of right and left eigenstates satisfy the biorthogonality condition ⟨uLi |uRj ⟩ = δi,j .
The solutions of the right eigenvalue problem are complex eigenvalues ωj and
their associated eigenstates |uj⟩ that satisfy ψj(z) = uRj e

iωjz for the evolution
of the complex field amplitude ψ(z).

Writing down the two eigenvalue problems, it can be shown that the right and
left eigenvalues and eigenstates are complex conjugates of one another, because
the Hamiltonian remains symmetric (Ĥ† = Ĥ∗) ([47] - [48]):{

Ĥ |uRj ⟩ = ωj |uRj ⟩
Ĥ† |uLj ⟩ = ω∗

j |uLj ⟩
⇒

{
Ĥ∗ |uRj ⟩

∗
= ω∗

j |uRj ⟩
∗

Ĥ∗ |uLj ⟩ = ω∗
j |uLj ⟩

⇒ |uRj ⟩ = |uLj ⟩
∗

(2.16)

Therefore, for this system we only need to study the behavior of the right
eigenstates (henceforth denoted simply as uj) to obtain its dynamical and
spectral properties. We may, furthermore, rule out the possibility of degenerate
eigenstates by observing that the spectrum is determined by random diagonal
elements.

To quantify the effect of the complex disorder on the spectrum of the system
we may examine the distribution of the level spacings for the tight-binding
Anderson model [48]. For a given realization of disorder, we denote the eigenvalues
of the Anderson Hamiltonian by ωj,a, where a is the index corresponding to
that specific realization. Since the distributions for the real and imaginary parts
of the on-site potential ϵn are independent, we may restrict our study of the
level spacings to the real part of the eigenvalues. Ordering the eigenvalues by
descending order, the level spacings for a given realization are defined as:

sj,a = ωj,a − ωj+1,a (2.17)

To consider a statistical average over many realizations, we also define the
normalized level spacings s̄j,a, which are defined as:

s̄j,a =
sj,a
⟨sj,a⟩a

(2.18)
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Figure 2.4: Distribution of the normalized level spacings s̄ as defined by Eqs.
(2.17) and (2.18) for the complex Anderson Hamiltonian defined by Eqs. (2.4) and
(2.15). In both cases the normalized level spacings where calculated for a system
of size N = 1000 over 50 realizations of disorder. (a) The distribution of the
normalized level spacings for weak disorder WR = 0.3, WI = 0.3 is in agreement
to that predicted by the Wigner-Dyson distribution of Eq. (2.19). (b) The
distribution of the normalized level spacings for strong disorder WR = 3, WI = 3
is in agreement to that predicted by the Poisson distribution of Eq. (2.20).

where the notation ⟨. . .⟩a denotes averaging over all realizations. For low values of
the disorder strength W , the Anderson model is known to exhibit level repulsion,
wherein the probability that there is an overlap between two eigenvalues tends to
zero. The distribution of the normalized level spacings is then known to follow
the Wigner-Dyson distribution [8]:

PWD(s̄) =
πs̄

2
exp(−πs̄/4) (2.19)

In the case of strong disorder, the effect of the level repulsion on the spectrum
is diminished; the level spacings are determined by the random diagonal terms
and as a result their distribution tends to the Poisson distribution:

PP (s̄) = exp(−s̄) (2.20)

The results of this statistical analysis can be seen for two distinct cases of disorder
in Figs. 2.4(a) and 2.4(b) for weak and strong disorder respectively. Between
these two regimes there is an intermediate transition region where the effect
of localization can be studied by considering the ratio between adjacent level
spacings instead.

We then consider the effect of introducing gain or loss randomly on each
site on the localization length; thus the disorder distribution describing our
system in now non-Hermitian. Using the transfer matrix method outlined by Eq.
(2.7), we calculate the localization length for variable disorder strength. For a
potential drawn from a rectangle of sides WR and WI per Eq. (2.15) the system
is described effective disorder strength which is given as Weff =

√
W 2
R +W 2

I . As
seen in Fig. 2.5 in which the localization length is plotted alongside with the
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(a) (b)

Figure 2.5: Spectra and localization length ξ (colorbar) plotted for the eigenstates
of a non-Hermitian disordered lattice described by equations (2.1) and (2.15),
(a) in the weak disorder (WR =WI = 1) and (b) in the strong disorder (WR =
WI = 5) regimes. (N = 500, four realizations of disorder.)

eigenvalues in the complex plane, we have a similar behavior as in the Hermitian
case [Fig. 2.2] where the localization length is greater for eigenvalues near the
origin. In the case of weak disorder [Fig. 2.5a] the localization length for energies
near the origin is in the order of magnitude of the system size, and therefore we
do not have complete localization of the eigenstates. In contrast, in the case of
strong disorder [Fig. 2.5(b)] all eigenstates are localized (ξ ≪ N); in that case,
the eigenstates span very few lattice sites before decaying as ξ ∼ 1.

Another interesting feature of non-Hermitian systems is the non-orthogonality
of the right eigenstates [48]. In the case of strong localization, the right eigenstates
display some overlap with each other that depends on the strength of both the
real and the imaginary parts of the disorder. To examine this feature, we sort
the eigenstates |uRj ⟩ | by the index of their greatest n-component, thus arranging
them by the order of the sites around which they are localized:

argmax(|uRj,n|) = j ⇒ max(|uRj ⟩) = |uj,j | (2.21)

We may then define a ”distance” s between two eigenstates |uRj ⟩ and |uRi ⟩ as
the distance between the indices where each of the eigenstates is maximal as
s(|uRi ⟩ , |uRj ⟩) = |i− j|.

The average orthogonality of the right eigenstates is examined in Figs. 2.6(a-
b), for variable disorder strengths WI and WR. In Fig. 2.6(a), the blue line
corresponds to strong real and imaginary disorder, whereas the red line cor-
responds to weak imaginary disorder. In the second case, the eigenstates are
still all localized, but because the strength of non-Hermiticity has decreased,
immediately neighboring eigenstates have a smaller overlap. The black line
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Figure 2.6: Orthogonality between right eigenstates for the Hamiltonian described
by Eqs. (2.2) and (2.15). (a) Orthogonality between eigenstates localized around
sites separated by distance s, for various disorder strengths , averaged over 20
realizations (N = 200). Between neighboring localized eigenstates (s = 1), the
overlap is smaller for weaker imaginary part disorder (the non-Hermiticity is
reduced). (b) Orthogonality matrix (log scale, colorbar) for the right eigenstates
of a lattice with N = 100 sites under strong disorder (WR = 5,WI = 5) as a
function of eigenstate sites. The overlaps decrease exponentially as s increases.

corresponds to weak complex disorder; while extended states are present, the
overlap still decreases for distant eigenstates. In all cases, the magnitude of
the overlap for eigenstates localized around neighboring sites is in the order of
10−1, and it decreases exponentially as s increases. The rate of the exponential
decrease depends on the localization length of the eigenstates which in turn
depends on the effective strength of the disorder.

This exponential decrease can be confirmed to hold individually in the case
of strong disorder by examining the orthogonality matrix of the right eigenstates
[Fig. 2.6(b)]. It is not expected to consistently hold in the case of a lattice with
weak complex disorder (where there are many extended eigenstates). In all cases,
the exponential decrease of the overlap indicates that non-orthogonality is not a
feature that greatly determines the dynamics of the non-Hermitian Anderson
model.

2.2.2 Dynamics and delocalization via jumps

We now turn our attention to the dynamics of a non-Hermitian Anderson lattice.
We first note that because the eigenvalues are complex, each eigenstate evolves
as |uj⟩ (z) = |uj⟩ e(iReωj−Imωj)z, and therefore its magnitude either diverges
exponentially or vanishes as the propagation distance z increases. Because in
principle a single channel excitation excites all eigenstates of the system, this
implies that in general the most gainy states will dominate the dynamics for
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large values of z. As a result, we expect to find the field |ψ⟩ (z) in the eigenstate
with the greatest negative imaginary part for large propagation distances.

We also consider the optical power of |ψ⟩ as

P(z) =
N∑
n=1

|ψn(z)|2 (2.22)

For a Hermitian lattice, P(z) is one of the conserved quantities; for a non-
Hermitian system, the optical power P(z) varies with z. The optical power P(z)
has the same divergent behavior as |ψ(z)⟩, where it increases exponential if any
gainy eigenstates are present in the spectrum.

To mitigate this divergence, we consider the normalized field |ϕ(z)⟩ ≡ |ψ(z)⟩√
P(z)

,

for which the power is by definition Pϕ(z) = 1 ∀z. Then we rewrite Eq. (2.11)
for the normalized field |ϕ(z)⟩ as:

i
∂ϕn
∂z

+ ϕn+1 + ϕn−1 + ϵ′n(z)ϕn = 0 (2.23)

where ϵ′n(z) = ϵn + i
2
d lnP(z)

dz is the new z-dependent on-site potential derived
by substituting the field into equation (2.11). This new quantity illustrates that
the rate of gain/loss is significant in determining how the ”center of mass” of
the field will propagate through the lattice.

To study the dynamics of the field we employ the RK method of Eq. (2.12)
with an additional normalization step. Because of the normalization we obtain
effectively the dynamics for |ϕ(z)⟩ instead |ψ(z)⟩. The normalization step is
performed on the end of each step as:

|ϕ(zj+1)⟩ ←
|ψ(zj+1)⟩√∑N
n=1 |ψn(zj+1)|2

Pj+1 ←
N∑
n=1

|ψn(zj+1)|2

|ψ(zj+1)⟩ ← |ϕ(zj+1)⟩

(2.24)

This extra step allows for the calculation of normalized field in the case where
numerical overflows would prevent the calculation of |ψ(z)⟩. The power can then

be retrieved by a cumulative multiplication for zi = i · dz as P(zi) =
∏i
j=0 Pj ,

with Pj defined above, and similarly the physical field |ψ⟩ is recovered as

|ψ(zj)⟩ = |ϕ(zj)⟩ ·
∏j
i=0

√
Pj .

We now consider the evolution of single-channel excitation in a non-Hermitian
lattice in the strong disorder regime (WR =WI = 5), as seen in Fig. 2.7. Initially,
the initial excitation is transported only a small region around the excitation
channel inside of which the field remains localized. However, a new and interesting
effect is exhibited by the evolution of the initial excitation in the appearance
of sudden ”jumps” between distant lattice sites, representing a change in the
localization site of the field.
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Figure 2.7: Evolution of the normalized field |ϕn| for a single channel excitation in
a non-Hermitian lattice described by Eqs. (2.11) and (2.15) and closed boundary
conditions. While the field is evidently localized, a sudden jump appears around
z = 25 that represents a sudden shift in the field’s center of mass.

Because the distribution of gain and loss governed by Eq. (2.15) is even,
this effect initially seems to be caused by the selective amplification of the field
on select sites realized in the form of optical pumping. While the absence of
transport in the case of 1D disordered lattices has been well studied in the
context of Anderson localization, the introduction of non-Hermitian terms in
disordered systems has been shown to introduce new delocalization effects in the
form of quantized ”jumps” ([58] - [59]), implying the suppression of Anderson
localization for certain non-Hermitian systems. To avoid considering external
supply of energy as a factor which affects propagation, we consider an alternative
”uneven” distribution of non-Hermitian disorder which features only loss on each
site:

Re(ϵn) ∈ [−WR/2,WR/2] , Im(ϵn) ∈ [0,WI ] (2.25)

Remarkably, a lattice with only losses also displays the effect of jumpy
propagation, as seen in Fig. 2.8(a), showing that delocalization via jumps is not
an effect of amplification, but a consequence of the complex spectrum introduced
via the non-Hermitian disorder term. Furthermore, since delocalization via
jumps appears in the strong disorder regime, it also cannot be explained by
transport of the initial excitation via extended eigenstates, because all eigenstates
are localized. To better study the effect of the loss on the propagation profile,
we expand the on-site field amplitude ψn in a linear combination of the right
eigenstates as:

ψn =

N∑
j=1

cjujn (2.26)
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48
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Figure 2.8: Dynamics and spectrum for a non-Hermitian lattice of size N = 50
described by Eqs. (2.2) and (2.25), with strong disorder (WR = WI = 5) and
closed boundary conditions. (a) Evolution of the normalized field |ϕn| for a
single-channel excitation placed on n = 10. Distinctive jumps take place at z = 5
and z = 25. Between two consecutive jumps, a single mode dominates the power
derivative. (b) The derivative of the power logarithm by considering all modes
(blue line) compared to its decay considering only the most dominant mode on
each interval. The jumps are evident here as well. (c) Spectrum in the complex
plane. The labeled eigenvalues (sorted by decreasing imaginary part) denote
the dominant modes on each interval, and the arrows that connect them the
transition that is associated with each jump.
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where cj = ⟨uLj |ψ⟩ is the projection coefficient of the field on the j-th right
eigenstate. Denoting Im ωj = γj for the eigenvalues, we find that:

i
d|cj |2

dz
= i

dcj
dz

c∗j + i
dc∗j
dz

cj = −(ωj−ω∗
j )|cj |2 = −2γj |cj |2 ⇒ |cj | = e−γjz|cj |(z=0)

(2.27)
using that a left eigenstate evolves as |uLj (z)⟩ = e−iω

∗
j z |uLj ⟩(z=0)

. Then by using

the expansion of the field in right eigenstates, we can obtain a modal form for
the optical power P(z) of the field:

P(z) =
N∑
n=1

N∑
i,j=1

(ciuin)(cjujn)
∗ =

N∑
i,j=1

cic
∗
jΓi,j (2.28)

using that
∑N
n=1 uinu

∗
jn ≡ ⟨uRj |uRi ⟩ ≡ Γi,j is overlap between the right eigenstates

|uRj ⟩ and |uRi ⟩ that appears in the orthogonality matrix (Γ)ij . At this point we
can use the numerical results presented in Figs. 2.6(a) and 2.6(b); in the strong
disorder regime, we can approximate the orthogonality matrix by only considering
its diagonal, and therefore arriving at an ”almost-orthogonal” approximation:

Γi,j = δi,jΓj,j (2.29)

Per Eq. (2.23), the quantity that chiefly determines the potential and the
dynamics of the normalized field is the derivative of power logarithm. Using the
above approximation regarding right eigenstate orthogonality, we may derive
approximate expressions for this quantity for various forms of the field profile.
Our results are shown in Figs. 2.8 and 2.9 for the dynamics of the normalized
field |ϕ⟩ considering an initial single-channel excitation on an Anderson lattice
with open boundary conditions and only loss.

Considering initially the case where a single mode |uRm⟩ (with respective
eigenvalue ωm) dominates the field profile (such as cj ≪ cm for all other modes
|uRj ⟩ with j ̸= m), we may derive approximate for d lnP

dz that:

lnP(z) ≈ ln

N∑
j=1

|cj |2Γj,j ≈ ln(|cm|2z=0Γm,m)− 2γmz ⇒
d lnP(z)

dz
= −2γm

(2.30)
This explains the flat sections in the derivative of the power logarithm seen in
Fig. 2.8(b), which correspond to the intervals between two consecutive jumps in
the dynamics of |ϕ⟩.

We may also derive the sigmoid transition in the power logarithm derivative for
two competing modes |uRn ⟩ and |uRm⟩ with corresponding amplification/dissipation
rates γm < γn, by considering a case where |cn| ≫ |cj |, |cm| ≫ |cj | for all j ̸= m,n
in an interval [z1, z2] where the jump takes place. Using only the approximation
for the orthogonality matrix of the right eigenstates, we can obtain the following
expression for the power derivative:

d lnP(z)
dz

=

∑N
j=1−2γjAje−2γjz∑N

j=1Aje
−2γjz

= −2γn
1 +

∑
j ̸=n

γj
γn

Aj

An
e−2(γj−γn)z

1 +
∑
j ̸=n

Aj

An
e−2(γj−γn)z

(2.31)
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where Aj ≡ |cj |2z=0Γj,j , and un is assumed to be dominant at z1 = 0 (for
simplification purposes). Then we may ignore other terms in the sum and obtain:

d lnP(z)
dz

=
−2γn

1 + Am

An
e−2(γm−γn)z

+
−2γmAm

An
e−2(γm−γn)z

1 + Am

An
e−2(γm−γn)z

(2.32)

In the case that γm < γn, the left term vanishes as the propagation distance
increases and the right term describes a sigmoid curve that connects the two
consecutive intervals where |uRn ⟩ and |uRm⟩ are dominant. This feature is clearly
observed in the last jump in Fig. 2.8(b).

We stress that the above analytical approximations are valid in the case
of strong disorder, where the overlaps between the right eigenstates decay
exponentially and the orthogonality matrix can be approximated by its diagonal.
In this case, the ”trajectory” of the jumps is determined by the magnitude of
the projection coefficients of the field amplitude on the right eigenstates |cj |. To
determine the propagation distance z where a jumps takes place, and therefore
which mode is dominant on each interval, we plot ln |cj | versus z (Fig. 2.9(a)).
The jumps can then be predicted by examining how competing modes overtake
each other as their projection coefficients evolve.

Our results using the analysis outlined in this section are outlined in Figs.
2.9(a-b). The line indices correspond to the indices of the modes sorted by in
ascending order by decreasing imaginary part of their eigenvalues (from most
to least lossy in this case). The blue, orange and green lines (modes 30, 48,50)
correspond to modes that are dominant in each interval between the jumps
seen in Figs. 2.8(a) and 2.8(b); in the interval in which each of these mode is
dominant the corresponding line is accented. The crossings of these lines predict
exactly the point where one mode overtakes another and therefore the position
of each jump (at z ∼ 5, 25). Since the slopes of the lines are determined by
the corresponding decay rate γj , the dynamics and positions of the jumps are
determined by the initial values of the projection coefficients (the intercepts of
the lines). While modes 40 and 49 (intermittently dashed and doted lines) decay
slower than the previous dominant modes 30 and 48 respectively, there are no
jumps to these modes; for mode 49, the reason is the small value of its initial
projection coefficient. For mode 40, the critical factor for its non-participation
in jumps is the high value of its decay rate.

Furthermore, the analytical approximations of Eqs. (2.30) and (2.32) outlined
in this section as seen in Fig. 2.9(a) are in excellent agreement with the exact
dynamics presented in Fig. 2.8(a-b), and predict correctly the trajectory of the
light in the complex eigenvalue plane depicted in Fig. 2.8(c).

2.2.3 Eigenvalue shifting for the normalized field

Another way to study the dynamics of delocalization via jumps is to examine
how the eigenvalues ω̃j(z) of the normalized field Hamiltonian (defined from Eq.
(2.23)) shift in the complex plane as the propagation distance z increases and the
optical power P(z) evolves. Because the on-site potential ϵ′n of the modified Eq.
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Figure 2.9: (a) Derivative of the power logarithm for the dynamics in Figs.
(2.8)(a-c). The exact evolution of the optical power (blue curve) is predicted
accurately by both the single dominant mode approximation of Eq. (2.30) (red
discontinuous lines) and the sigmoid approximation of Eq. (2.32) (continuous
dashed red line). (b)Magnitude of the projection coefficients |cj | (log scale) for
the fields dynamics in Figs. 2.8(a-c). Lines 30, 48 and 50 correspond to the
dominant modes; the crossings of these lines determine the position of the jumps.

(2.23) differs from ϵn by a power-dependent diagonal term, the eigenstates of
both Hamiltonians are the same and the eigenvalues of the modified Hamiltonian
differ by those of that of Eq. (2.2) by the same term:

ω̃j(z) = ωj +
i

2

d lnP(z)
dz

≡ ω̃j(0) +
i

2

d lnP(z)
dz

(2.33)

Therefore, when a single mode um is dominant at z = z1 and the approximation
(2.30) holds, we expect that:

ω̃m(z1) = Reωm+ iγm+
i

2

d lnP(z)
dz

|z=z1 ≃ Reωm+ iγm− iγm = Reωm (2.34)

Therefore |uRm⟩ for the normalized field behaves as a state without loss or
gain when it is dominant. This implies that for the normalized field to have
constant power (by definition), all other eigenstates must either be occupied
in such a way as to balance loss and gain or not occupied at all (condition on
saturation). Regarding the asymptotic behavior of the model at large values of z,
after the last jump has take place, all eigenvalues for the modified Hamiltonian of
the normalized field correspond to lossy eigenstates without any energy content,
except for the eigenvalue of the least lossy/most gainy state |uRm⟩ for which
Im(ω̃m)→ 0 (see Fig. 2.10). This is consistent with the exponential evolution of
the projection coefficients |cj | which predicts that on saturation only one mode
is significantly occupied, and the power derivative curve of Fig. 2.9(a).

The explanation given for the appearance of jumps, and the analytical
expressions derived, are expected to hold in the case of strong disorder. In
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Figure 2.10: Shifting of the eigenvalues of the Hamiltonian for the normalized
field defined by Eq. (2.23) for the same realization and initial conditions as in
Fig. 2.8(a). The asymptotic behavior of the normalized field is |ϕ⟩ → |uRm⟩ for
large values of z, where |um⟩ is the least lossy mode. For this mode Im(ω̃m))→ 0,
which is consistent with the norm of the normalized field |ϕ⟩remaining constant.
Every other mode becomes lossy (Im(ω̃j ̸=m) > 0).

the case the effective disorder of Eq. (2.15) is weak, the presence of extended
eigenstates in the spectrum will decrease the rate of exponential decay of the
overlaps that as seen in Fig. 2.6(a); therefore, the first approximation in (2.30)
about the orthogonality of the right eigenstates will no longer be correct, and
terms that involve the overlap of different eigenstates must be included when
determining the form of the power logarithm derivative.

In practice, however, the extended states that appear correspond to eigenval-
ues that are located within a radius about the origin, similarly to the Hermitian
case of weak disorder [Fig. 2.1]. Therefore, even in the case of weak disor-
der, the possibility of strongly localized eigenstates with strong amplification
(Im(ω) ∼ −WI/2) or dissipation (Im (ω) ∼WI/2) still remains, as seen in Fig.
2.5(a). In this case, if the field becomes localized in such a mode, jumps may
still occur if the prerequisites in Eq. (2.32) are fulfilled. An alternative case is
that the field transports until it becomes localized in the most gainy/least lossy
mode; in this case saturation is reached without delocalization via jumps.

In the case of strong real disorder and weak imaginary disorder, jumps are
expected to occur as the prerequisites for the approximation (2.30) are fulfilled;
however because amplification and/or dissipation effects are weak, jumps in this
case will take place over larger propagation distances.
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2.3 Summary and discussion

The case of the Anderson model with the addition of a non-Hermitian random on-
site potential term is associated with the appearance of a form of delocalization
via jumps in the dynamics of the system, that does not appear in the Hermitian
case [cf. Figs. 2.3(c) and 2.7]. The jumps can be predicted in the strong disorder
regime by expanding the field in a linear combination of the right eigenstates
using the biorthogonality condition [Eq. (2.16)] and calculating the projection
coefficient for each eigenstate [Eq. (2.26)]. By taking the right eigenstates to be
approximately orthogonal, we then derive an expression for the power logarithm
derivative [Eqs. (2.27)-(2.32)], which characterizes the dynamics of the system
for the normalized field [Eq. (2.23)]. Our analysis appears to hold best in the
case of strong disorder where the almost orthogonal approximation of Eq. (2.29)
for the orthogonality matrix of the right eigenstates is valid, as seen in Figs.
2.6(a)-(b).



Chapter 3

The Hatano-Nelson model

The results of the previous chapter indicate that the appearance of jumps is
an effect that originates from the interaction of disorder and non-Hermiticity
in the dynamics of a random lattice. Based in this discussion, one would
expect that jumpy dynamics are always present in non-Hermitian disordered
models. To examine if this is valid, we turn our attention to the well-studied
assymetric Hatano-Nelson model ([60] - [62]), which is described by a tight-
binding Hamiltonian with non-reciprocal off-diagonal coupling elements:

ĤHN =

N∑
n=1

ϵn |n⟩ ⟨n|+
N∑
n=1

[
e−h |n⟩ ⟨n+ 1|+ eh |n⟩ ⟨n− 1|

]
(3.1)

where h is a real constant and ϵn is the on-site potential that can either be
constant, periodic or in the form of Eq. (2.15), as in the disorder term of the
Anderson model. The Hatano-Nelson model can be implemented in a photonic
lattice using non-reciprocal waveguides. The summation of the coupling terms
takes into account the boundary conditions; for OBC |0⟩ = |N + 1⟩ = 0, while
for PBC |0⟩ = |N⟩, |N + 1⟩ = |0⟩. Because the real off-diagonal matrices are not
equal, this model is non-Hermitian. Furthermore, the choice h ̸= 0 introduces
a preferred direction of propagation to the left (h < 0) or the right (h > 0); in
contrast to the ballistic transport in the case of a tight-binding Hermitian lattice,
an excitation does not propagate uniformly in both directions [63].

In contrast to non-Hermitian tight-binding models, the system of Eq. (3.1)
displays radically different dynamical and spectral properties depending on the
choice of boundary conditions, as we will see in this section. This effect is known
as the non-Hermitian skin effect, which has been studied extensively for this
model as well as more generally for non-Hermitian lattices in one ([67] - [68]) or
more ([69] - [71]) spatial dimensions.

30
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3.1 The periodic Hatano-Nelson model

To understand the effect of real diagonal disorder on the spectral and dynamical
properties of the Hatano-Nelson model, it is instructive to examine a case without
disorder. To that effect, we take a finite system of N non-reciprocal waveguides,
the dynamics of which are described by a system of N differential equations:

i
∂ψn
dz

+ ehψn−1 + e−hψn+1 = 0 (3.2)

where ϵn = 0 ∀n in Eq. (3.1). We should examine the spectrum of this system
for both choices of boundary conditions. We first examine the case of OBC by
taking ψ0 = ψN+1 = 0. In this case, the Hatano-Nelson Hamiltonian becomes a
tridiagonal non-Hermitian matrix:

ĤOBC =



0 e−h 0 0 . . . 0
eh 0 e−h 0 . . . 0

0 eh 0
. . . . . . 0

...
...

. . .
. . .

. . .
...

0 0 . . . eh 0 e−h

0 0 . . . . . . eh 0


(3.3)

The Hamiltonian of Eq. (3.3) can be solved by considering an imaginary gauge
transformation for the components of the field ψn on each site, such that
ψ̃n = e−hnψn [61]. Then the system of Eqs. (3.2) can be rewritten as:

i
∂ψ̃n
dz

ehn + eheh(n−1)ψ̃n−1 + e−heh(n+1)ψ̃n+1 = 0⇒

i
∂ψ̃n
∂z

+ ψ̃n+1 + ψ̃n−1 = 0

(3.4)

In this orthogonal but not normal basis, the eigenvalues of ĤOBC are identical
to those of the Hamiltonian of Eq. (2.1) describing a periodic Hermitian lattice
with OBC, and therefore are all real and independent of h. Then, denoting
the eigenstates of Eq. (2.1) with OBC as |uRj ⟩, the eigenstates of the OBC

Hatano-Nelson Hamiltonian are then written as ψRn,j = uRj,ne
iωjze−hn, while the

left eigenstates (which can be found in the same manner for h→ −h) are then
written as ψLn,j = uLj,ne

iω∗
j zehn. The right eigenstates then take the appearance

of edge states concentrated on the right or left side of the lattice, depending on
the sign of h. Each left eigenstate |uLj ⟩ is related to |uRj ⟩ by uLj,n = e−2hnuRj,n;
the left eigenstates appear as edge states localized on the opposite site of the
lattice to the right eigenstates.

To better understand the dynamics of the Hatano-Nelson model in the case
of closed boundary conditions, we briefly examine an exactly solvable case of
Eq. (3.3) for N = 3 (Fig. 3.1). For initial conditions, we consider an excitation
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Figure 3.1: Example of the dynamics of Hatano-Nelson lattice with N = 3 and
closed boundary conditions, for a single channel excitation on n = 2 and h = 1.
The power of field and the field amplitude on each channel are all periodic
functions (3 periods are plotted.)

on the center of the lattice n = 2. Then, the following initial conditions for the
derivatives of the field amplitudes ψn can be derived:

∂ψ1

dz
= ie−h,

∂ψ3

dz
= ieh,

∂ψ2

dz
= 0 (at z = 0) (3.5)

From these expressions we expect to observe asymmetric transport in one
direction of the lattice (specifically to the right in the case that h > 0) [64]. The
solutions for the field amplitude on each site for the N = 3 are:

ψ1(z) = i
e−h

2
sin(
√
2z)

ψ2(z) = cos(
√
2z)

ψ3(z) = i
eh

2
sin(
√
2z)

(3.6)

which indicate that the center of mass of field ψ(z) oscillates between the center
and right channels for h > 0. As such, there is only gainy propagation: the
power of ψ(z) oscillates between 1 and

√
cosh(2h) ≥ 1. Lossy propagation

is only possible in the case of an excitation on the rightmost (h > 0) or the
leftmost (h < 0) site of the lattice. This oscillatory behavior (which also applies
to larger lattices) also predicts the lack of gainy or lossy modes for the OBC
Hatano-Nelson model. At this point we stress that even if the spectrum of a
non-Hermitian system is real, the optical power P(z) remains a non-conserved
quantity; the reality of the spectrum however implies that averaged over large
propagation distances there is no net gain or loss. The underlying reason for the
oscillatory evolution of the optical power is the non-orthogonality of the right
eigenstates, which is always a feature of non-Hermitian systems.

In the case periodic boundary conditions, the spectral and dynamical proper-
ties of the system are radically different. By applying the gauge transformation
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(a) (b) (c)

Figure 3.2: Features of the periodic Hatano-Nelson model with periodic boundary
conditions, in a lattice with N = 50 and h = 1. (a) Elliptical spectrum in the
complex plane. (b) Dynamics of a single channel excitation in the middle of the
lattice, for the normalized field |ϕn|, as defined in the previous chapter. The
center of mass of the normalized field moves uninhibited to the right. (c) The
power derivative for the propagation in (a): note that the field is amplified at a
steady rate after the left propagating wave has dissipated.

as in the OBC case, the Hatano-Nelson Hamiltonian for periodic boundary
conditions becomes:

ĤPBC =



0 e−h 0 0 . . . eh

eh 0 e−h 0 . . . 0

0 eh 0
. . . . . . 0

...
...

. . .
. . .

. . .
...

0 0 . . . eh 0 e−h

e−h 0 . . . . . . eh 0


⇒

ˆ̃HPBC =



0 1 0 0 . . . ehN

1 0 1 0 . . . 0

0 1 0
. . . . . . 0

...
...

. . .
. . .

. . .
...

0 0 . . . 1 0 1
e−hN 0 . . . . . . 1 0


N×N

(3.7)

where ˆ̃HPBC is the Hamiltonian in the ψ̃n basis, which remains non-Hermitian.
For this reason, the eigenvalues are complex and they depend on the parameter
h. This extreme sensitivity of the spectrum on the boundary conditions is
characteristic of non-Hermitian systems, known as the non-Hermitian skin effect
(NHSE) ([65]-[68]). In this case, the effect describes the sudden transition from
extended complex eigenstates (PBC) to real edge states (OBC) and the collase
of the eigenvalue spectrum to the real axis.

The eigenvalues of the Hatano-Nelson model lie on an ellipse centered to the
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origin [Fig. 3.2(a)]. Using Bloch’s theorem, we may in fact extract an exact
expression for the eigenvalues in the limit N →∞ in terms of the wavenumber
k:

ω(k) = 2cosh(h) cos(k)− 2isinh(h) sin(k) (3.8)

for k ∈ [0, 2π]. The sign of h determines the direction of the elliptical contour
described in the complex plane when varying k monotonically. This quantity is
more commonly defined in terms of the winding number w as:

w =

∫ 2π

0

dk

2π

dω(k)

dk
(3.9)

For the PBC Hatano-Nelson model of Eq. (3.1), w takes the values w = ±1 =
−sgn(h) which correspond to counterclockwise and clockwise trajectories in the
complex plane [65].

Because asymmetric transport is not limited by the size of the system as
in the case of the OBC Hatano-Nelson lattice, an excitation on any site of the
lattice can be amplified as it asymmetrically transports in the preferred direction
of the lattice; the wave that transports in the opposite direction likewise decays
exponentially and eventually vanishes. At large propagation distances the most
gainy modes will have dominated and eventually the field |ψ(z)⟩ is amplified at
a steady rate 4|sinh(h)| [Figs. 3.2(b) and Figs. 3.2(c)].

Neither the OBC nor the PCB case of the periodic Hatano-Nelson model
exhibits jumps in their dynamics; in the case of OBC, the evolution of the field
exhibits oscillatory behavior, while in the case of PBC, we observe that the
normalized field propagates asymmetrically in one direction, indicating that the
non-normalized field is amplified. This reinforces the hypothesis that jumps are
expected to take place only between localized states. To observe jumps in the
Hatano-Nelson model, we need to introduce disorder to the system.

3.2 The Hatano-Nelson model with real disorder

The Hatano-Nelson model with real disorder is described, similarly to the
Anderson model, by the Hamiltonian of Eq. (3.1) where the on-site potential
ϵn is now drawn from the rectangular distribution of Eq. (2.3). After a brief
summary of the effect of disorder on the spectrum and the eigenstates, we
examine whether this system, which exhibits both non-Hermiticity and disorder,
can exhibit jumps similar to those of the Anderson lattice for complex disorder
(as seen in Fig. 2.7).

3.2.1 Localization of the eigenstates

We first remark that the non-Hermitian skin effect will dissipate for strong
disorder, where the real diagonal dominates the off-diagonal asymmetric hopping
amplitude terms. In this regime, we expect that all eigenstates will be localized
and exhibit negligible gain or loss, as all eigenvalues will tend to the real axis.
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Figure 3.3: Procedural localization of the eigenstates of a lattice described by
the Hatano-Nelson Hamiltonian of Eq. (3.1) under PBC and h = 0.1 with
disorder strength W = 2, calculated using the transfer matrix method, with the
spectrum plotted in the complex plane as in Fig. 2.1. The color map represents
the localization length, while the red dots represent the part of the spectrum
for which the states are characterized by a localization length ξ ≳ N and the
calculation does not converge. Two representative states are plotted; states
with eigenvalues at the edge of the band are localized and have eigenvalues
tending closely to the real axis, while eigenstates with eigenvalues near the center
of the band (on the ring part of the spectrum) behave as extended (ξ > N).
(N = 1000)

As a result, for strong enough disorder the boundary conditions will not be
significant.

As in the case of the tight-binding Hamiltonian, we may calculate the
localization length for each eigenvalue ωj of the Hatano-Nelson model with a
random on-site potential ϵn by using the transfer matrix method. In analogy
to the derivation of Eq. (2.7) for the Anderson model, we derive the transfer
matrix for the Hatano-Nelson Hamiltonian as:[

ψn+1

ψn

]
=

[
(ω − ϵn)eh −e2h

1 0

] [
ψn
ψn−1

]
≡ T̂n

[
ψn
ψn−1

]
(3.10)

so that Eq. (2.7) applies as in the case of the Anderson lattice. We remark
that we may also obtain an average value for the localization length in selected
sections of the bands by fitting ln |ψn| − n as outlined in Sec. 2.1.1.

For the Hatano-Nelson model of Eq. (3.1) under PBC, we observe that strong
localization of an eigenstate implies that its eigenvalue will have a negligible
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Figure 3.4: Average localization length ξ̄ as a function of the eigenvalue ω for the
right eigenstates |uR⟩ of the Hatano-Nelson model under OBC with h = 0.1 for
different values of the real disorder strength W = 1, W = 3, W = 7, calculated
as in Fig. 2.2. Note that for weak disorder the eigenstates around the center
of the band (which are the least affected by disorder) are localized with ξ ∼ 10
whereas they are extended (ξ > N) in the cases of the Hermitian Anderson
model or the Hatano-Nelson model under PBC. For the case of W = 1, the
localization length is larger for eigenstates with eigenvalues at the edges of the
band, as the the effect of disorder is to deform edge states into states localized
anywhere on the lattice. The transition between the bulk localized and the skin
effect phases of the system is hence marked by an increase in the localization
length of the edge states as they are deformed.

imaginary part [Fig. 3.3]. Without disorder, the eigenstates are all extended and
their corresponding eigenvalues lie on the ellipse described by Eq. (3.8); as the
real disorder increases, the eigenstates become increasingly localized and because
the real diagonal term dominates the non-reciprocal coupling, their eigenvalues
tend to the real axis. For strong enough disorder, the spectrum becomes real
and the eigenstates exhibit negligible gain or loss.

In the case of the Hatano-Nelson model under OBC, the states are already
localized as a result of the NHSE in one edge of the lattice even without the
presence of disorder; by the discussion of the previous section, we expect that the
localization length of the eigenstates will be ξ ∼ 1/|h|. For strong disorder, the
eigenstates are localized anywhere on the lattice in accordance with Anderson
localization. This transition is mediated by a continuous deformation of the
eigenstates and the spectrum; as a result, the localization length is expected to
increase for weak disorder as the NHSE dissipates [Fig. 3.4].

We conclude that there are no localized modes that exhibit gain or loss in the
case of real disorder, so the key assumption (strongly localized states that exhibit
gain or loss) that was used in the case of the Anderson model with complex
disorder to predict and explain the delocalization via jumps does not hold here;
this is a strong indication that the Hatano-Nelson model does not exhibit jumps.
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(a) (b)

(c) (d)

Figure 3.5: Propagation of a single-channel excitation for the same realization of
the Hatano-Nelson Hamiltonian formulated in Eq. (3.1) with varying disorder
strength, system size of N = 50, h = 0.1 and PBC. (a) No disorder. Every
eigenstate is extended and the eigenvalues form a closed ring. (b) Weak real
disorder WR = 2. Some eigenstates with real eigenvalues are localized, while
others are extended. (c) Strong real disorder WR = 6. There are no extended
eigenstates, and the initial excitation remains localized in the right section of
the lattice. (d) Spectra for each of the above realizations (a-c).

3.2.2 No jumps in the Hatano-Nelson model

For the reasons outlined in the previous section, the dynamics of the Hatano-
Nelson model does not feature jumps under any choice of boundary conditions.

Under OBC, the right eigenstates are all concentrated on one edge of the
lattice; an initial excitation propagates asymmetrically to that side until it
reaches the boundary. At that point, the optical power reaches its maximum
value and then oscillates, as seen in Fig. 3.1. The frequency of the oscillation
depends on the size of the lattice. The addition of real diagonal disorder localizes
the eigenstates without affecting the reality of the spectrum; as a result, the
field remains localized and no dynamical delocalization is exhibited.

Under PBC, the dynamics of an initial excitation are characterized by the
domination of the most gainy eigenstate. Since the eigenstates are all extended,
asymmetric transport is not inhibited and the optical power increases expo-
nentially. Because the addition of real disorder localizes the eigenstates while
simultaneously decreasing their amplification/dissipation rates, gain or loss can-
not coexist with strong localization in such a lattice. As a result, no jumps are
observed, as seen in Figs. 3.5(a-c).
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(a) (b)

Figure 3.6: Phase transition between the mixed and the bulk localized phase
exhibited in the spectrum of the PBC Hatano-Nelson Hamiltonian (N = 500)
with complex disorder in the form of Eq. (2.15). (a) Spectrum for h = 0.1 and
variable disorder strength with WR = WI . As the disorder strength increases,
more states become localized and the ring deforms, until a critical disorder value
is reached and all states become localized. (b) Spectrum for WR = WI = 5
and variable h. Localized states behave inflexibly and are not sensitive to the
asymmetry of the hopping amplitudes once they become localized. For low
values of h (between h = 0.1 and h = 0.4), the spectrum is entirely dominated
by the complex diagonal potential.

The absence of jumps in the dynamics of the Hatano-Nelson model with real
disorder indicates that non-Hermiticity and strong disorder is a necessary but
not sufficient condition for delocalization via jumps.

3.3 A modified Hatano-Nelson model

In this section, we introduce complex on-site disorder to the Hatano-Nelson
Hamiltonian of Eq.(3.1) in the form of the random distribution in Eqs.(2.15)
and (2.25) (loss only). The spectrum of the Hatano-Nelson model in this case
exhibits a phase transition in the complex plane which relates to whether its
eigenstates are partially or fully localized. In the last case we recover the jumpy
dynamics exhibited by the Anderson model with complex disorder as seen in
Sec. 2.2.2. We also examine the case of off-diagonal Hermitian disorder; in this
case, where the non-Hermiticity is provided only by the asymmetric terms in
the Hatano-Nelson Hamiltonian, we also recover the jumps.
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(a) (b)

Figure 3.7: Spectrum and dynamics for a lattice described by Eqs. (3.1) under
PBC and (2.15) with N = 50, h = 0.1 , in the weak complex disorder regime
(WR = WI = 1.5). (a) Evolution of the normalized field for a single-channel
excitation on n = 43, which exhibits no clear jumps. (b) Derivative of the power
logarithm. No jumps can be observed to take place. The field dissipates at an
average rate determined by the on-site loss near the excitation channel.

3.3.1 The Hatano-Nelson model with complex disorder

We initially consider the Hatano-Nelson model of Eq.(3.1) under PBC with
random complex on-site potential ϵn drawn from the even distribution of Eq.
(2.15), as in the Anderson model with complex disorder. The effect of increasing
the effective disorder strength Weff is a continuous deformation of the spectrum
from its elliptical shape in the case of no disorder, similar to the deformation
shown in Fig. 3.3 for real diagonal disorder.

For given h, as the disorder strength increases, states starting on the edge of
the band become localized, and the ring that consists of those states that remain
extended shrinks. After a critical value of disorder, all states are localized and the
elliptical shape that the spectrum exhibits in the non-disordered case vanishes
entirely [Fig. 3.6(a)]. The system therefore exhibits two phase transitions; one
between the delocalized phase where there are only complex extended states
and the mixed phase where localized states begin to appear at the edge of the
band, and one between the mixed phase and the bulk localized phase which
is characterized by the complete absence of extended states [68]. The phase
that the spectrum appears in is determined by the ratio of the effective disorder
Weff =

√
W 2
R +W 2

I and the hopping amplitude e|h|. The deformation of the
spectrum and the associated localization length is examined in greater detail in
Fig.B.1 under OBC.

We note that the spectrum of the PCB Hatano-Nelson model in the case of
the bulk localized phase (Fig. 3.6a, green dots) appears almost identical to the
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spectrum of the tight-binding Anderson model in the case of strong complex
disorder (Fig. 2.5(b)), and so it may exhibit jumps as well. In the case there are
many localized states that are more gainy than the extended states in the mixed
phase, it may also be possible to observe jumps between those states, if these
eigenstates are also strongly localized. In the next sections, we will explore these
two possibilities.

3.3.2 Jumps in the complex Hatano-Nelson model

We initially comment that the case of weak complex disorder, which corresponds
to the spectrum being in the mixed phase seen in Fig. 3.6(a) (orange dots), does
exhibit some of the characteristics of delocalization via jumps, but because of an
abundance of extended states, jumpy propagation cannot be distinguished from
gainy transport as the field transports asymmetrically to one direction of the
lattice (Fig. 3.7).

We now consider the Hatano-Nelson model with strong complex diagonal
disorder in the form of a rectangular distribution with only loss per Eq.(2.25).
The spectrum is in the bulk localized phase as in Fig. 3.6(a) (green dots), but is
confined in the lower complex plane, indicating that the effect of gainy transport
that appeared in the case of the periodic Hatano-Nelson model has completely
diminished and the asymmetry of the two coupling constants in Hamiltonian of
Eq. (3.1) has been dominated by the diagonal terms. Furthermore, the strong
disorder causes the NHSE to be supressed (as in the Hermitian case) and the
choice of boundary conditions does not affect the spectrum and the dynamics of
the system. The dynamics of this model feature clear jumps as in the case of the
Anderson model with complex disorder, seen in Fig. 3.8a. Since jumps appear
from the right to the left side of the lattice, we conclude that propagation is
not chiefly affected by the asymmetry of the coupling constants which favors
propagation to the right in this case (h > 0).

We also note that oscillatory behavior is exhibited in the jump between states
44 and 47 as evidenced in Figs. 3.8(a) and 3.8(c) in both the normalized field
dynamics and the derivative of the logarithm optical power. Because these states
are localized at neighboring lattice sites and the magnitudes of their projection
coefficients in similar in a propagation interval, while the imaginary parts of their
eigenvalues are comparable [Fig. 3.8(d)], the almost-orthogonal approximation
of Eq. (2.29) does not hold well for these states, and their non-orthogonality is
responsible for the observed power oscillation. By calculating the optical power
from Eq. (2.28) including only the terms related to the dominant eigenstates
as determined by Fig. 3.8(b) as well as the corresponding overlaps in the Γi,j
matrix, we recover this oscillation [black dashed line in Fig. 3.8(c)].

3.3.3 The Hatano-Nelson model with Hermitian off-diagonal
disorder

Motivated by the above results, we look for another modification to the Hatano-
Nelson model. We may also consider, in addition to a real diagonal disorder
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Figure 3.8: Jumpy evolution of the Hatano-Nelson mode of Eq. (3.1) under OBC
with N = 50 , in the strong complex disorder regime (WR =WI = 5, h = 0.1)
with only loss per Eq. (2.25). (a) Evolution of the normalized field amplitude
|ψn| for a single-channel excitation on channel n = 43, with one distinctive jump.
(b) Magnitude of the projection coefficients, as in Fig. 2.9(b). (c) Derivative of
the power logarithm, as in Fig. 2.9(a). Note the oscillatory behavior present
in the first jump. The black dashed line gives the expected evolution of the
optical power given by Eq. (2.28) including only dominant modes without the
orthogonality approximation. d) Spectrum, with all eigenvalues corresponding
to lossy localized states. The most distinctive jump is between modes 47 and 50.
The most distinctive jump is between modes 47 and 50.



CHAPTER 3. THE HATANO-NELSON MODEL 42

term, a Hermitian off-diagonal disorder term to the Hatano-Nelson Hamiltonian
([72] - [73]) as:

Ĥ =

N∑
n=1

[
ϵn |n⟩ ⟨n|+ (e−h + vn) |n+ 1⟩ ⟨n|+ (eh + v∗n−1) |n⟩ ⟨n− 1|

]
(3.11)

where ϵn is a real disorder term drawn from a rectangular distribution as in Eq.
(2.3), and vn are the matrix elements of the off-diagonal Hermitian disorder term
in the Hamiltonian. Equivalently, we can write the equations for the evolution
of the field on each channel as:

i
∂ψn
∂z

+ (eh + v∗n−1)ψn−1 + (e−h + vn)ψn+1 (3.12)

We may define the disorder strength for the off-diagonal disorder by tak-
ing vn ≡ |vn|eiβn where |vn| and βn are drawn from the random distribution
describing a disk of radius V in the complex plane:

|vn| ∈ [0, V ], βn ∈ [0, 2π] (3.13)

This implementation of off-diagonal disorder in the Hatano-Nelson model
can be experimentally realized by modulating the amplitude and the phase of
the field as it exits each waveguide, instead of introducing gain or loss locally is
in the case of complex diagonal disorder. Because the off-diagonal disorder is
taken to be Hermitian, the only source of non-Hermiticity in this Hamiltonian is
the inherent asymmetry of the coupling constants in the Hatano-Nelson model.

We initially take ϵn = ϵ = 0∀n, such that the Hamiltonian describes a periodic
Hatano-Nelson model with additional Hermitian off-diagonal terms. Because of
the periodic on-site potential, the spectrum is symmetric about the origin of the
complex plane. The effect of increasing off-diagonal disorder on the spectrum
continuously shrink the region of the band inside of which extended states lie,
similarly to the case of complex diagonal disorder [Fig. 3.9(a)]. An important
distinction to be made for this case versus the case of only diagonal real disorder
is that the imaginary gauge transformation that forces a real spectrum for the
Hatano-Nelson model under OBC and reduces it to a tight-binding model with
reciprocal couplings no longer applies, and as result the spectrum is in general
complex even in this case [Fig. 3.9(b)]. We therefore may have a complex
spectrum without relying on on-site pumping or dissipation via leaks on each
waveguide site.

The effect of the disorder on the eigenstates is similarly a continuous deforma-
tion. An interesting feature of off-diagonal disorder is that, unless an exponential
random distribution is chosen for |vn|, there are some extended states near the
center of the band regardless of the disorder strength; this occurs because in the
case of a large value of V there are some large transfer matrix elements between
the sites and thus transport is favored over localization [74]. This effect is shown
for the continuous deformation of an eigenstate for the case of the model under
OBC in Fig. B.2. Therefore, the use of off-diagonal disorder enables us to also
study the effect of the presence of extended states in the spectrum.
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(a) (b)

Figure 3.9: Deformation of the spectrum of the Hatano-Nelson model with
the addition of off-diagonal disorder described by Eqs. (3.11) and (3.13), with
h = 0.3, N = 50, no diagonal disorder (W = 0) and variable off-diagonal disorder
strength V . (a) Deformation of the spectrum for periodic boundary conditions.
The states near the center remain extended and fluctuate significantly as V
increases. (b) Deformation of the spectrum for closed boundary conditions.
Note that the spectrum is no longer real, but is generally complex because the
asymmetry of the coupling constants can no longer be lifted by introducing a
local gauge transformation, is in the periodic case.

Because of the existence of strongly localized states that correspond to
eigenvalues in the edge of the band in complex plane, the almost orthogonal
approximation of Eq. (2.29) that is necessary for the application of Eqs. (2.30)
and (2.31) is valid at least concerning these states. For this reason, we expect
that such a model will also exhibit jumps, in spite of the Hermitian disorder.
The propagation of a single channel excitation in a lattice described by the
Hamiltonian of Eq. (3.11) does indeed show that this occurs, as seen in Figs.
3.10(a-c).

We comment that the addition of real diagonal disorder as per Eq. (2.3) to
the Hermitian disorder term will result in a decrease for the localization length of
the eigenstates and the collapse of the spectrum to the real axis if W ≫ V . For
small values of the diagonal disorder strength W we still expect the spectrum to
be complex and therefore jumps will take place, albeit over larger propagation
distances as the absolute imaginary parts of the eigenvalues will be decreased.

3.4 Summary and Discussion

The Hatano-Nelson model introduces non-Hermiticity by replacing the coupling
term between two sites in the tight-binding Hamiltonian with two asymmetric
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Figure 3.10: Dynamics of the normalized field and spectrum for a system
described by the Hatano-Nelson model with off-diagonal disorder of Eqs. (3.11)
(under PBC) and (3.13) with h = 0.5, N = 50 and V = 5, W = 0 (no diagonal
disorder). (a) Evolution of the normalized field amplitude |ϕn| for a single
channel excitation on n = 9 with one, distinct jump. (b) Derivative of the power
logarithm for the dynamics in (a), as in Fig. 2.9(a). (c) Spectrum in the complex
and eigenvalues of the dominant modes participating in the jump seen in Fig.
2.8(c).

coupling constants [Eq. (3.1)], therefore inducing a preferred direction in which
the field is amplified as it is transported [Fig. 3.2]. The choice of boundary
conditions for the system greatly influences its spectral and dynamical properties,
causing the localization of the eigenstates to one edge of the lattice as seen in
Sec. 3.1; this phenomenon is known as the NHSE. The addition of real disorder
causes the eigenstates to become localized while reducing the absolute imaginary
parts of their respective eigenvalues, while supressing the NHSE. For the case of
PBC, only extended eigenstates correspond to complex eigenvalues, while for
the case of OBC the spectrum remains real at all times. Therefore, it does not
exhibit delocalization via jumps [Figs. 3.5(a-b)]. The introduction of complex
disorder per Eqs. (2.15) or (2.25) (loss only) in the Hatano-Nelson Hamiltonian
causes the appearance of 3 distinct phases in the Hatano-Nelson spectrum [Figs.
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3.6(a-b)]; when the spectrum is in the bulk localized phase for strong complex
disorder, the diagonal disorder term dominates and jumps can be observed as
in the tight-binding Anderson model with complex disorder [Figs. 3.8(a-c)].
Another case which exhibits jumps without introducing gain or loss locally is
that of the Hatano-Nelson model with additional off-diagonal disorder per Eq.
(3.11), which also displays delocalization via jumps between strongly localized
gainy eigenstates (Fig. 3.10).

From the results of this section, we can infer that a non-Hermitian system will
not necessarily exhibit delocalization via jumps if it has localized eigenstates; the
additional requirement is that the eigenvalues associated with these eigenstates
must also be complex.



Chapter 4

Conclusions

The results in this work indicate that a form of dynamical delocalization, namely
delocalization via jumps, can be observed when introducing non-Hermiticity to
disordered lattices. This type of propagation occurs between localized eigenstates
that exhibit gain or loss, observed in the dynamics of the normalized field
amplitude |ϕ(z)⟩ as a sudden ”jump” of the field between distant sites of the
lattice as well as the derivative of the power logarithm, which is an experimentally
measurable quantity. This dynamical evolution is adequately captured by the
analytical approximate forms for the optical power in Eqs. (2.30) and (2.31).
Based on the case studies of both the symmetrical non-Hermitian Anderson
model and the asymmetric Hatano-Nelson model, delocalization via jumps is
expected to be observed in all cases where the system is described by a complex
spectrum with localized eigenstates, regardless of the disorder strength, such
that the almost orthogonal approximation of Eq. (2.29) applies to the right
eigenstates. The effect of weak disorder is then to obfuscate the jumps by
introducing some extended states to the spectrum.

Because jumps can also be observed in the case of only loss, delocalization
via jumps is not an effect that results from selective amplification of the field
on specific sites via the addition of external energy. In the Hermitian case,
energy is transported through the evanescent coupling of adjacent channels in
the lattice; this mechanism is blocked in the presence of strong disorder via
Anderson localization. The effect of non-Hermitian disorder is to introduce
complex eigenvalues which enable the propagation of energy via jumps, and thus
overcome Anderson localization. If the disorder is strong enough, alternative
propagation mechanisms are eliminated and thus the observation of jumps is
facilitated.

As a general conclusion, delocalization via jumps is an observable effect that
arises from the interplay of non-Hermiticity and strong disorder in photonic
lattices. Our results indicate that non-Hermiticity provides new and interesting
alternatives to Anderson localization in the case of disordered systems and
exploits the meaning of wave transport.
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Jumps in 2-D lattices

In this chapter we will examine delocalization via jumps in 2-D tight-binding
lattices, starting from the Anderson model in two dimensions and continuing
with a non-reciprocal non-Hermitian model consisting of coupled Hatano-Nelson
chains. Since we have established the conditions under which delocalization
via jumps is expected to take place, we will initially examine whether almost
orthogonal approximation of Eq. (2.29) for the right eigenstates is valid by
examining their localization length and orthogonality matrix. Afterward we
will examine the second order NHSE exhibited in the case of the non-reciprocal
lattice. In both cases, jumps are exhibited under similar conditions to the
one-dimensional cases.

A.1 The 2-D tight-binding Anderson model

In this section we examine the 2-D tight binding Anderson model by considering
a rectangular lattice of size M ×N with random complex on-site potential drawn
from a rectangular distribution as in Eq. (2.15) or Eq. (2.25) (loss only). The
Hamiltonian that describes this lattice is given by:

Ĥ =

M,N∑
m=1,n=1

ϵm,n |m,n⟩ ⟨m,n|+ c

′∑
m,m′,n,n′

|m,n⟩ ⟨m′, n′| (A.1)

where the accented sum denotes summation over nearest neighboring lattice
sites (either |m −m′| = 1 or |n − n′| = 1). As with the rest of this work, we
take c = 1. For the boundary conditions, we may choose independently periodic
or open boundary conditions for each of the two directions. We denote these
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(a) (b)

Figure A.1: Spectrum and average localization length ξ̄(ω) (colorbar) as a
function of the complex eigenvalues ω for the 2-D tight binding Anderson model
of Eq. (A.1) with complex disorder in the form of Eq. (2.15), averaged for
50 realizations for a lattice size of 40 × 40. (a) Weak complex disorder with
WR = WI = 1. The localization length is comparable to the system size. (b)
Strong complex disorder with WR =WI = 5. In this regime we expect that the
right eigenstates are almost orthogonal.

choices as:

OBC : |0, n⟩ = |m, 0⟩ = |M + 1, n⟩ = |m,N + 1⟩ = 0

PBCx : |0, n⟩ = |M + 1, n⟩ = 0, |m,N + 1⟩ = |m, 1⟩ , |m, 0⟩ = |m,N⟩
PBCy : |m, 0⟩ = |m,N + 1⟩ = 0 |M + 1, n⟩ = |1, n⟩ , |0, n⟩ = |M,n⟩
PBCxy : |m,N + 1⟩ = |m, 1⟩ , |m, 0⟩ = |m,N⟩ , |M + 1, n⟩ = |1, n⟩ , |0, n⟩ = |M,n⟩

(A.2)

In the cases of mixed boundary conditions PBCx and PBCy, the system is
described by the topology of an open cylinder, while in the case PBCxy (toroidal
boundary conditions) the system is described by the topology of a torus. We
note that since our model consists of stacked chains that do not mix the two
directions, in the case of no disorder its M ×N eigenvalues will be of the form:

ω = ωi,j = ωMi + ωNj (A.3)

where ωM and ωN denote the eigenvalues for the 1-D tight binding Anderson
model of Eq. (2.4) under the boundary conditions applied in each direction
for system sizes M and N respectively and i, j are integer indices such that
i ∈ [1,M ] and j ∈ [1, N ].

A key difference between the 1-D and the 2-D case for the Anderson model
that has been developed upon in the context of the scaling theory of localization
is that for an infinite two-dimensional system, while all states are localized as in
the one-dimensional model, the localization length scales exponentially with the
mean free path of the wave as it is scattered by the on-site impurities. For a
finite lattice, we expect this to translate in practice to the necessity of a higher
disorder strength to observe strong localization for the eigenstates of the lattice,
and therefore obtain the jumps associated with their orthogonality.
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To calculate the localization length, we employ the linear fit to the logarithm
of the eigenstate magnitudes outlined in Sec. 2.1.1 and in particular Eq. (2.9).
To adapt this method to a second spatial dimension we fit independently for
both the x and y direction of the lattice and then average the results according
to the size of the lattice in both directions:

ξ̄j =
Nξjx +Mξjy
M +N

(A.4)

where M is the number of rows, N is the number of columns, and ξxy is the
localization length obtained for averaging along the x/y direction. The reasoning
for such an averaging is that the coupling constant for each tight-binding chain in
the model is the same in both the x and y directions. In general, the localization
length may be different for each direction. We then bin the eigenvalues ωj in
rectangular regions of equal area in the complex plane and average the localization
length in each region to obtain an estimate for ξ̄(ω). The results of this analysis
are shown in Figs. A.1(a-b). These results indicate that in the strong disorder
regime the eigenstates decay exponentially outside a region limited to few lattice
sites, and therefore we expect that the almost orthogonal approximation of Eq.
(2.29) will also hold here.

We remark that our derivations for the approximate form of the derivative of
the logarithm power of Eqs. (2.30) and (2.31) are based on the biorthogonality
condition of Eq. (2.16), and therefore also apply to the case of two-dimensional
lattices with on-site disorder. To calculate the field dynamics, we use the expo-
nential matrix method of Eq. (2.14). Our results using the same methodology
formulated for one-dimensional lattices in Sec. 2.2.2 are summarized in Figs.
A.2(a-d). Note that because all the eigenstates as well as the initial excitation
are localized and there is a higher number of neighboring sites for the initial exci-
tation due to the two-dimensional structure of the lattice there are more modes
with high initial values of their respective projection coefficient magnitudes [Fig.
A.2(b)], resulting in more modes participating in jumpy propagation as well as a
more complex evolution of the derivative of the power logarithm [Fig. A.2(c)].

A.2 Rectangular 2-D non-reciprocal lattice

For this section we consider a 2-D non-reciprocal tight binding lattice consisting
of stacked Hatano-Nelson chains [Eq. (3.1)] ([70]). The Hamiltonian describing
this model can be written as:

Ĥ =

M,N∑
m=1,n=1

ϵm,n |m,n⟩ ⟨m,n|

+

M,N∑
m=1,n=1

[
e−hx |m,n⟩ ⟨m,n+ 1|+ ehx |m,n⟩ ⟨m,n− 1|

]
+

M,N∑
m=1,n=1

[
e−hy |m,n⟩ ⟨m+ 1, n|+ ehy |m,n⟩ ⟨m− 1, n|

]
(A.5)
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Figure A.2: Jumpy evolution of the normalized field |ϕ⟩ for the two-dimensional
complex Anderson model described by Eqs. (A.1) and (2.25) (loss only) under
OBC with WR =WI = 5 for a lattice of size 20× 20. (a1 - a4) Two-dimensional
normalized field profile for the initial excitation at (m,n) = (1, 9) and its evolution
at z = 10, z = 20 and z = 40. (b) Magnitudes of the projection coefficients for
the dominant modes as in Fig. 2.9(b). (c) Derivative of the logarithmic power
as in Fig. 2.9(a). (d) Spectrum and eigenvalues of the dominant modes which
participate in the jumpy dynamics, as in Fig. 2.8(c). The eigenvalues of the
dominant eigenstates are highlighted in red for clarity.
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Figure A.3: Representative eigenstates (a1, b1, c1) and spectra (a2, b2, c2, blue
dots) of the non-reciprocal 2-D lattice of Eq. (A.5) under OBC, PBCy and PBC
respectively, with hx = hy = 0.1 and M = N = 40. The red dots in (a2),(b2)
and (c2) represent the spectrum of the Hatano-Nelson model with system size
N and h = 0.1 under the same boundary conditions as those applied in the x
direction in each case.

where hx and hy determine the non-reciprocal coupling terms for the x and the
y direction respectively, and the boundary conditions are considered as in Eqs.
(A.2).

In the case that hx = 0 and hy = 0, we recover the tight binding Anderson
model of Eq. (A.1). For only one nonzero hx or hy, the model displays a
preferred direction of propagation for only one of the two axes x, y respectively.
If both hx and hy are nonzero, both axes have a favored propagation direction
and the system displays a second order non-Hermitian skin effect under OBC
where the right eigenstates are localized in one corner of the lattice. Under
PBCx or PBCy, the system displays the first order non-Hermitian skin effect
where the states decay exponentially away from one of the edges of the lattice,
depending on the choice of the direction in which the lattice is periodic.

As in the case of the Hatano-Nelson model, there is an imaginary gauge
transformation of the form ψ̃m,n = exp(−hxn − hym)ψm,n which reduces the
Hamiltonian of Eq. (A.5) to the 2-D tight binding Anderson model of Eq.
(A.1). More generally, under PBCx or PBCy the Hamiltonian of this model can
be rewritten to have reciprocal couplings in the y and x directions by a new
choice of basis in the form ψ̃m,n = exp(−hym)ψm,n or ψ̃m,n = exp(−hxn)ψm,n
respectively. Under these considerations the right eigenstates will be localized
in the directions where OBC are applied with localization lengths 1/|hx| and
1/|hy| for the x and y directions respectively.
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The spectrum of this two-dimensional non-reciprocal model has the same
form as in Eq. (A.3). As a result, we obtain wide landscape of spectra and
eigenstates based on the order of the NHSE exhibited depending on the choice
of the boundary conditions. A summary can be seen in Figs. A.3(a-c).

With the addition of complex diagonal disorder in the form of the distribution
of Eq. (2.15), the spectrum deforms similarly as in the case of the Hatano-Nelson
model. There are two distinctions to be made however. Firstly, for hx ̸= hy
it is possible that the eigenstates will be more localized in one direction than
the other because the stronger coupling. In this case, the average localization
length may vary significantly when calculated along different directions for weak
disorder strength. Secondly, the second order NHSE exhibited in the case of
OBC is expected to more strongly localize the states in the corner of the lattice
than the first order NHSE in the Hatano-Nelson model under OBC, and therefore
stronger disorder is required to observe complete localization in the system.

As in the case of the Hatano-Nelson model, this model can also exhibit
delocalization via jumps when it is in the bulk localized phase characterized by
strong enough disorder to completely break the topology of the spectrum and
localize the eigenstates. Our results are shown for a system in this regime in
Figs. A.4(a-d) featuring one distinct jump at z ∼ 38.
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Figure A.4: Jumpy evolution of the normalized field |ϕ⟩ for the two-dimensional
non-reciprocal model described by Eqs. (A.5) and (2.25) (loss only) under OBC
with WR = WI = 6 for a lattice of size 20 × 20. (a1 - a4) Two-dimensional
normalized field profile for the initial excitation at (m,n) = (5, 11) and its
evolution at z = 25, z = 28 and z = 50. (b) Magnitudes of the projection
coefficients for the dominant modes as in Fig. 2.9(b). (c) Derivative of the
logarithmic power as in Fig. 2.9(a). (d) Spectrum and eigenvalues of the
dominant modes which participate in the jumpy dynamics, as in Fig. 2.8(c).
The eigenvalues of the dominant eigenstates are highlighted in red for clarity.
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Figure B.1: Spectrum in the complex plane and localization length (color bar)
for the Hatano-Nelson model of Eq. (3.1) under OBC with h = 0.1 and system
size N = 50 for variable complex disorder in the form of Eq. (2.15), calculated
using the transfer matrix method for a single realization of disorder.
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Figure B.2: Deformation of a single right eigenstate near the center of the band
for the Hatano-Nelson model with Hermitian off-diagonal disorder described
by Eq. (3.11) with N = 50, h = 0.1, W = 0 and variable V (denoted in each
subfigure) under OBC. The real part of the eigenvalue of this eigenstate is
denoted above each subfigure. Note that as V increases above a certain threshold
the extend of the eigenstate also increases, corresponding to an increase in
localization length.
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