
P4Debugger: Tracing through Network
Changes with Table-Version Packet Tainting

Chatzivasileiou Antonios

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Prof. Xenofontas Dimitropoulos

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

This research has been financed by the European Union and Greek national funds through
the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RE-
SEARCH – CREATE – INNOVATE (project code: T1EDK-03389).

P4Debugger: Tracing through Network Changes with
Table-Version Packet Tainting

Abstract

The increasing consumer demands for network performance and flexibility have led
enterprises to expand in Software Defined Networking (SDN). SDN is a technology
that changes the way that networks work by separating the network’s control logic
from the underlying switches and routers, promoting centralization of network
control, and introducing the ability to program the network. This allows Network
administrators to use network devices and supervise them from a programmable
controller. However, configuring these devices in combination with the significant
growth of protocol headers increases the complexity and makes them prone to bugs.
P4 is a language that works in conjunction with SDN, which expresses how packets
are forwarded by the programmable network devices and have the ability to add
custom headers to packets.

In this thesis, we introduce P4debugger, a prototype network debugger for SDN
developers which exploits the abilities of the P4. Our debugger is divided into two
parts; The first part is that we taint each packet that passes through the switch
with some information that allows us to backtrace them, detect loops, as well as
inspect them for any policy violation. For inspecting the extra information, we
use monitors that sample and analyze the packets that pass through each switch.
Network administrators can preview from these monitors the behavior of the net-
work based on the fields in the custom header of the packets. The second part of
our implementation is that our controllers save the state of the flow tables before
they make any changes to them. We implemented a web app to preview a visual
representation of the network topology, and based on the flows the switch had at a
specified time, the web app simulates its behavior. By employing this web app, the
user is capable of observing the reachability as well as problems such as network
loops.

We evaluate our thesis by presenting three errors commonly seen by SDN pro-
grammers, which provide a solid example of how P4debugger helps a programmer
find the source of the problem. Finally, we calculated the overhead that P4debugger
applies to the network topology, concluding that we contribute a valuable tool to
Network administrators.

P4debugger: Παρακολούθηση αλλαγών δικτύου
χρησιμοποιώντας προσαρμοσμένες κεφαλίδες και

καταγραφή πινάκων

Περίληψη

Οι αυξανόμενες απαιτήσεις των καταναλωτών για αποδοτικό και ευέλικτο δίκτυο

έχουν οδηγήσει τις επιχειρήσεις να επεκταθούν στο Software Defined Networking
(SDN). Το SDN είναι μια τεχνολογία που αλλάζει τον τρόπο λειτουργίας των δι-
κτύων διαχωρίζοντας τη λογική ελέγχου του δικτύου από τα υποκείμενα switches και
routers, προωθώντας τον συγκεντρωτισμό του ελέγχου του δικτύου και εισάγοντας
τη δυνατότητα προγραμματισμού του. Αυτό επιτρέπει στους διαχειριστές δικτύου να

χρησιμοποιούν συσκευές δικτύου και να τις εποπτεύουν από έναν προγραμματιζόμε-

νο ελεγκτή. Ωστόσο, η διαμόρφωση αυτών των προγραμματιζόμενων συσκευών σε

συνδυασμό με τη σημαντική αύξηση των κεφαλίδων πρωτοκόλλου, αυξάνει την πο-

λυπλοκότητα και τις καθιστά επιρρεπείς σε σφάλματα. Το P4 είναι μια γλώσσα που
λειτουργεί σε συνδυασμό με το SDN, η οποία εκφράζει τον τρόπο με τον οποίο τα
πακέτα προωθούνται από τις προγραμματιζόμενες συσκευές δικτύου και έχουν τη δυ-

νατότητα προσθήκης προσαρμοσμένων κεφαλίδων σε πακέτα.

Σε αυτήν την εργασία, εισάγουμε το P4debugger, ένα πρωτότυπο πρόγραμμα ε-
ντοπισμού σφαλμάτων δικτύου για προγραμματιστές SDN το οποίο εκμεταλλεύεται τις
ικανότητες του P4. Το πρόγραμμα εντοπισμού σφαλμάτων χωρίζεται σε δύο μέρη. Το
πρώτο μέρος είναι ότι χρησιμοποιούμε μια προσαρμοσμένη κεφαλίδα για να εισάγουμε

πληροφορία σε κάθε πακέτο που περνάει από το switch με αποτέλεσμα να μπορούμε
να κάνουμε ιχνηλάτηση του πακέτου, να εντοπίσουμε τυχόν βρόχους, καθώς και να

ελέγξουμε για κάποια παραβίαση της πολιτικής του δικτύου. Για τον έλεγχο των επι-

πλέον πληροφοριών, χρησιμοποιούμε παρατηρητές που αναλύουν δειγματοληπτικά τα

πακέτα που περνούν από κάθε switch. Οι διαχειριστές δικτύου χρησιμοποιώντας τους
παρατηρητές, κατανοούν τη συμπεριφορά του δικτύου με βάση τα πεδία στην προσαρ-

μοσμένη κεφαλίδα των πακέτων. Το δεύτερο μέρος της εφαρμογής μας είναι ότι οι

ελεγκτές μας αποθηκεύουν τους πίνακες ροής πριν κάνουν οποιεσδήποτε αλλαγές σε

αυτούς. Κατασκευάσαμε μια εφαρμογή ιστού για προεπισκόπηση μιας οπτικής αναπα-

ράστασης της τοπολογίας του δικτύου και με βάση τις ροές που είχε το switch σε μια
συγκεκριμένη χρονική στιγμή, η εφαρμογή ιστού προσομοιώνει τη συμπεριφορά της.

Χρησιμοποιώντας αυτήν την εφαρμογή ιστού, ο χρήστης είναι σε θέση να παρατηρήσει

την δυνατότητα προσέγγισης του δικτύου καθώς και προβλήματα όπως οι βρόχοι.

Αξιολογούμε τη διατριβή μας παρουσιάζοντας τρία συνήθη λάθη που παρατηρούν

οι προγραμματιστές SDN, τα οποία παρέχουν ένα σταθερό παράδειγμα για το πώς το
P4debugger βοηθά έναν προγραμματιστή να βρει την πηγή του προβλήματος. Τέλος,
υπολογίσαμε τις επιπτώσεις που έχει ο P4debugger όσον αφορά την απόδοση του
δικτύου, καταλήγοντας ότι συνεισφέρουμε ένα πολύτιμο εργαλείο στους διαχειριστές

δικτύου.

Ευχαριστίες

Θα ήθελα πρωτίστως να ευχαριστήσω τον επόπτη καθηγητή μου κύριο Ξενοφώντα

Δημητρόπουλο, για τη στήριξη και την εμπιστοσύνη που μου έδειξε καθ΄ όλη τη δι-

άρκεια των μεταπτυχιακών σπουδών μου. Επίσης θα ήθελα να ευχαριστήσω τον Δρ.

Βασίλειο Κοτρώνη για τις συμβουλές, τις ιδέες και τον χρόνο που αφιέρωσε.

Θα ήθελα να εκφράσω τις ευχαριστίες μου στον Καθηγητή κ. Κώστα Μαγκούτη

και στον Καθηγητή κ. Χρήστο Λιάσκο για τη μεγάλη προθυμία να συμμετέχουν στην

τριμελή επιτροπή.

Ακόμα, θα ήθελα να ευχαριστήσω το Ινστιτούτο Πληροφορικής του Ιδρύματος

Τεχνολογίας και ΄΄Ερευνας για την υποτροφία που μου προσέφερε καθ΄ όλη τη διάρκεια

της μεταπτυχιακής μου εργασίας.

Πολλές ευχαριστίες θα ήθελα να δώσω στα μέλη της ομάδας του Inspire Group
Γιώργο Νομικό, Μάνο Λακιωτάκη, Βασίλη Πετρόπουλο και Γιώργο Επταμηνιτάκη.

Επίσης, θα ήθελα να ευχαριστήσω τους φίλους μου, Κώστα Φετφατζή Σωτήρη Το-

τόμη, Κώστα Αρακαδάκη και Ιάσωνα Μαστοράκη για την στήριξη και τον παραγωγικό

χρόνο που περάσαμε μαζί.

Τέλος θα ήθελα να ευχαριστήσω την οικογένεια μου και ιδιαίτερα τους γονείς

μου Παντελή και Χρυσούλα, καθώς και τα αδέρφια μου Στέλλα, Μαριαλένα, Νικόλα,

Ορέστη, Νεφέλη και τη σύντροφό μου Ανδριάνη για την υποστήριξη και την αγάπη

που με περιέβαλλαν.

Στην οικογένειά μου

Table of contents

Table of contents i

List of Tables iii

List of Figures v

1 Introduction 1
1.1 Motivation . 1
1.2 Outline of the Thesis . 2

2 Theoretical Background 5
2.1 Traditional Switches . 5

2.1.1 Media access control address 5
2.1.2 Filtering and Forwarding 5
2.1.3 Learning . 6
2.1.4 Loop Prevention . 6

2.2 Software Defined Networking . 6
2.2.1 SDN Applications . 7

2.2.1.1 Monitoring and Measurement 7
2.2.1.2 Security . 8
2.2.1.3 Content Availability 8

2.2.2 Openflow . 8
2.3 P4 Programming language . 9

2.3.1 Overview . 9
2.3.2 Advantages of P4 . 10
2.3.3 The design of P4 . 11
2.3.4 P416 datatypes . 11
2.3.5 P416 architecture . 12
2.3.6 PSA . 13
2.3.7 V1Model . 14
2.3.8 Behavioral Model V2 . 14
2.3.9 Apache Thrift RPC . 15
2.3.10 gRPC . 15
2.3.11 Mininet . 16

i

2.3.12 P416 example . 16
2.4 P4Runtime . 22

2.4.1 Architecture . 23
2.4.2 Single Embedded Controller 24

3 Related Work 25
3.1 Where is the Debugger for my Software-Defined Network? 25
3.2 Controller-agnostic SDN Debugging 26
3.3 OFRewind . 26

4 P4Debugger 29
4.1 Workflow . 29
4.2 Data Plane . 30

4.2.1 IPv4 Header . 31
4.2.2 Custom Header . 32
4.2.3 Forwarding . 33
4.2.4 Packet Counting Per Flow 34
4.2.5 Data Plane Workflow . 36

4.3 Control Plane . 37
4.4 Visualizer . 38

4.4.1 Back-End . 38
4.4.2 Front-End . 40

5 Evaluation 41
5.1 P4Debugger in action . 41
5.2 Overhead of P4Debugger . 43

5.2.1 Measurements . 44

6 Conclusions & Future Work 49
6.1 Conclusions . 49
6.2 Future Work . 50

Bibliography 51

ii

List of Tables

5.1 Default TCP measurement for 1 hop 44
5.2 TCP measurement for 1 hop and 150 bytes of packet size 45
5.3 Default TCP measurement for 4 hops 46
5.4 TCP measurement for 4 hop and 150 bytes of packet size 47

iii

iv

List of Figures

2.1 Caption for SDN . 8
2.2 Programming a P4 switch . 10
2.3 Caption for SDN . 12
2.4 PSA blocks . 13
2.5 V1model blocks . 14
2.6 gRPC . 15
2.7 P4Runtime Architecture . 23
2.8 Embedded P4Runtime . 24

3.1 Overview of OFRewind . 27

4.1 Workflow of P4Debugger . 30
4.2 IPv4 Header . 31
4.3 Custom Header . 33
4.4 Counting Packets per Flow . 35
4.5 Data Plane Workflow . 36
4.6 P4 program packet structure . 37
4.7 Visualizer Workflow . 39
4.8 Web app . 40

5.1 Network Loop example . 42
5.2 Custom header loop example . 42
5.3 Default TCP measurement for 1 hop 44
5.4 TCP measurement for 1 hop and 150 bytes of packet size 45
5.5 Default TCP measurement for 4 hops 46
5.6 TCP measurement for 4 hop and 150 bytes of packet size 47

v

Chapter 1

Introduction

1.1 Motivation

Software Defined Networking (SDN) is an emerging paradigm that decouples the
control plane from the data plane to simplify network management and enable
innovations in networking [28]. This split architecture indicates the control plane to
make all the control logic decisions and the data plane to execute these forwarding
decisions. SDN can implement networks that can rapidly change the demands for
network resources or quickly evolve to match users’ demands. Some technologies
that match with the above statement are Network Function Virtualization (NFV)
[30], Internet of Things (IoT) [17] and cloud computing [26].

SDN has undergone continual development in the past years and has been
a research subject from academia and industry people. Many IT corporations
have adopted SDN technology to deploy their Networks. More specifically, Google
launched B4 project [32], Facebook launched edge fabric [38] and Microsoft pub-
lished Ananta [36]. In addition, SDN is recognized as the critical technology that
enables the development of many other network technologies such as 5G, IoT, and
NFV. Therefore, SDN constitutes the best choice for modern network management.
Nevertheless, despite the significant attention and adoption of SDN, most network
operators have concerns about the reliability of this technology [42].

These concerns are because SDN simplifies network management by providing
a centralized API (SDN controller) where network management programs can be
written. The SDN controller must manage policy configurations, host migrations,
react to failures, and many other events. The advantage of a software-based man-
agement plane is that we can dynamically counter all the above events and make
our network as adaptive and flexible as it can be. However, this creates a highly
complex system that is prone to bugs [31] [39].

When we have a network problem (e.g., a loop or blackholing), it suggests
that we have a bug in our control logic (controller), and network administrators
need to trace the source of this bug and fix it as fast as possible. Nevertheless,
this debugging procedure is highly time-consuming and demands lots of resources

1

2 CHAPTER 1. INTRODUCTION

as developers may spend many hours trying to find the bug inspecting various
forwarding tables, and creating custom traffic in order to understand where packets
escape the original flow [37].

A single misconfiguration or a typographical error can cause many problems,
from reachability issues to loops or misleading packets, which lead to limitation
of the providing services and may cost millions. Those problems can appear as
soon as we program the control plane, but there is a possibility that we trigger
these wrong configurations when our network reaches a different state (e.g., when
a switch shuts down). So as long as the specific switch is down, we may have
loops or blackholing problems. However, when the switch is up again, the network
returns to a healthy state. When network administrators build a dynamic network
configuration, it is impossible to check all these cases.

P4 (Programming Protocol-Independent Packet Processors) is a domain-specific
programming language that takes the concept of SDN one step further by making
the forwarding devices fully programmable. P4 is used to define the behavior of the
data plane in P4 programmable devices. The combination of SDN and P4 gives net-
work administrators the capability for a dynamic and flexible, fully programmable
network.

Furthermore, P4 forwarding devices allow the programmer to implement custom
protocols without any dependency on the switch vendor. P4 language is able
to only include the protocols that the device needs for forwarding the packet,
which significantly reduces the complexity and enables easier verification. Finally,
hardware P4 switches can reach up to 12.8 Tb/s with up to 400GbE port like
Tofino 2 switch [5].

Our goal is to help network administrators to find potential errors in their
topology fast and with ease. This way, they will not hesitate to try more ven-
turesome approaches on their network, which may lead them to develop it further.
In this thesis, we present P4Debugger, a prototype debugger for SDN networks,
which exploits the abilities of the P4 language to be a reliable and efficient tool.
P4Debugger provides a web application where network administrators can load
past or current time flow tables and simulate the forwarding state of their network.
This enables them to research previous states of the network and compare the dif-
ferences in its behavior. Moreover, we taint each packet that passes through the
switch with some information that allows us to backtrace them, detect loops, as
well as inspect them for any policy violation.

1.2 Outline of the Thesis

The thesis is structured as follows. In Chapter 2, we introduce all the relevant
theoretical background related to SDN, P4 language, as well as all the development
platforms that we used in this thesis. In Chapter 3, we present the related work we
found during our literature review, and we annotate the most important elements
of each work. Chapter 4 is where we analyze the Implementation of P4Debugger,

1.2. OUTLINE OF THE THESIS 3

we divide this chapter into individual pieces, and the most important of them is the
Data plane, which describes the functionality of our P4 program, after that is the
Control Plane where we show how we manage the P4 switches, and finally the Web
Application where we describe how we parse and visualize our data. In Chapter 5,
we present some use case scenarios and describe how our Debugger deals with the
individual problems. In Chapter 6, we present the results from the performance
evaluation, and finally, in Chapter 7, we present our conclusion and possible future
work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Theoretical Background

2.1 Traditional Switches

The basic role of a Link-Layer switch is to receive incoming frames and forward
them onto outgoing links.Although switches are transparent for hosts and routers,
they play the foremost role in their interconnection [29]. The main operations that
a switch perform are filtering, forwarding, self-learning, and prevention of loops.

2.1.1 Media access control address

The link-layer address is variously called as such physical address or a LAN address,
but the most popular one is the Media access control (MAC) address. Hosts and
routers do not have a MAC address, but rather their network interfaces are the
ones that do. A host or a router may have multiple interfaces, which corresponds
to multiple MAC addresses. The link-layer switches do not have MAC addresses
on their interfaces; they do their job transparently, which means that the router or
host does not have to address a specific frame to the intermediate switch.

The MAC address, which tries to reach all hosts and routers in a network,
except the interface where it comes from, is named broadcast address and is
represented as ff:ff:ff:ff:ff:ff. The second category of special MAC addresses is mul-
ticast addresses. These addresses belong to multiple hosts and are identified based
on the least significant bit of the destination MAC being set to 1.

2.1.2 Filtering and Forwarding

Filtering is the operation that the switch does in order to determine if the frame
should be forwarded to some interface or just dropped. Forwarding is the op-
eration of the switch to determine the interfaces to which a frame should be for-
warded. As a means to perform these operations, the switch is using a switch
table. This table contains information about the MAC address of the associated
host, the switch interface, and the time at which the entry is placed in the table. A

5

6 CHAPTER 2. THEORETICAL BACKGROUND

MAC address is unique and can matches with only one interface, except for multi-
cast and broadcast addresses that associate with multiple interfaces. The switch
checks the destination MAC address at the header of the frame and performs a
lookup at the switch table to find the matched interface. If a matched interface is
different from the interface that the packet came from, then the switch forwards
the packet to the specific interface. If there is no match for that MAC address, the
switch forwards copies of the frame to all interfaces, except the interface that the
packet came from, so-called broadcasting. Finally, the filtering method is applied
when the matched entry has the same interface that the packet came from. In this
case, there is no need to forward the frame to any interface. The switch filters the
frame by discarding it.

2.1.3 Learning

Especially in large topologies, it is not easy to populate the switch tables manually.
Thankfully the switch has a property that can build its table automatically. This
self-learning capability is accomplished by saving for every "new" incoming
frame its source MAC address, the interface from which the frame arrived, and
the time that the event happened. Since the network topology can change and the
switch table size is finite, switches must keep the most recent hosts in their tables.
Keep most recent hosts to their tables is accomplished by updating the time for
active entries and removing the entries if no frames are received with that address
after some period of time (aging time) [29].

2.1.4 Loop Prevention

A reliable and fault-tolerant network is required to have redundant links. These
extra links imply loops in the network, which can degrade user connectivity and
even destroy it entirely. Unlike the IP layer, which has a time to live (TTL) counter,
which decreases for every (Layer 3) device that passes through, Layer 2 devices do
not have any built-in protection against loops. [25]. The solution to this problem is
to use the Spanning Tree Protocol (STP). There are many different versions of this
protocol, such as Rapid Spanning Tree Protocol (RSTP) and Multiple Spanning
Tree Protocol (MSTP), but the first STP is standardized in IEEE 802.1D 1998
[14]. STP prevents loops by creating a spanning tree in the network, which keeps
only one link between two nodes. Furthermore, STP blocks the traffic from any
other link that is not part of this topology.

2.2 Software Defined Networking

We can divide computer networks into three different planes: the data, control, and
management plane. The data plane is represented by the networking devices, which
are responsible for forwarding the traffic. The control plane is the network’s control
logic, meaning that it represents the policies used to populate the forwarding tables

2.2. SOFTWARE DEFINED NETWORKING 7

of the networking devices, and the management plane can access remotely and
configure the policies of the control plane using services such as Simple Network
Management Protocol (SNMP) [22]. So basically, the management plane defines
the policy, the control plane compels the policy, and the data plane forwards the
data based on the above [28].

Traditional IP networks, although widely used, are tough to manage. These
networks have many types of equipment such as routers, switches, middleboxes,
firewalls, network address translators, server load balancers, and intrusion detec-
tion systems [21]. The data and control plane is tight together in the networking
device, making the whole structure completely decentralized. As for the manage-
ment plane, a programming interface is used by the network operators in order to
apply the network policies (which are becoming more and more complicated) to
each network device separately using low-level commands that usually are unique
for each vendor and even across different products from the same vendor [28]. The
challenges mentioned above have decreased the innovation rate, increased complex-
ity, running, and operational costs.

Software-Defined Networking (SDN) is an emerging architecture that breaks
the vertical integration by decoupling the control plane and data plane of network
devices. With the uncoupling of the control and data plane, network devices take
over a much simpler role, which is to forward the traffic, and the control plane can
be managed by a centralized controller, which facilitates the network configuration,
policy enforcement increases the innovation rate.

With these actions, the need for a programming interface between switches and
the SDN controller is mandatory. Southbound Interface (SI) provides communica-
tion between data and the control plane using the southbound API. Furthermore,
the Northbound Interface (NI) uses the northbound API in order to translate the
high-level policy rules from the management plane to low-level instruction sets for
the control plane, as shown in Figure 2.1.

2.2.1 SDN Applications

We are going to provide some case examples that SDN is used for.

2.2.1.1 Monitoring and Measurement

Network architectures are very complicated, and the amount of data needed to
handle them is higher than ever. So it is critical to know if we take as good
advantage of our resources as possible. SDN provides applications that give us the
luxury to measure the traffic between the links and monitor the latency. The above
information can make the network operators alter the traffic flow, alert or optimize
the network.

8 CHAPTER 2. THEORETICAL BACKGROUND

Network Infrastructure
Forwarding Devices

Open southbound API

Network	
 Opera,ng	
 System	
 (SDN	
 controllers)	

Network	
 Abstrac,ons	
 (e.g.,	
 topology	
 abstrac,on)	

Global network view

Abstract network views

C
on

tr
ol

 p
la

ne

D
at

a
Pl

an
e

Net	
 App	
 1	
 Net	
 App	
 2	
 Net	
 App	
 n	

Open northbound API

Figure 2.1: Caption

2.2.1.2 Security

Network Function Virtualization (NFV) combined with SDN creates a proactive
environment supporting virtual services that run in the network layer, reducing
the risk of harmful attacks as well as responding much quicker to similar incidents.
When a security breach occurs, it is crucial to identify it quickly and ensure that
other network components are safe. In order to accomplish that, the integration of
security services into SDN creates a more proactive environment.

2.2.1.3 Content Availability

Service providers use content servers in order to deliver or cache the media that
users need. These content servers need to distribute the media across multiple
geographic areas and do it efficiently, so they do not affect the Quality of Service
(QoS). SDN applications are easy to expand across an entire data center and be-
cause abstracting the network controls allows for easy and efficient transport of
data across the data center.

2.2.2 Openflow

The most common application programming interface (API) in SDN is OpenFlow
[34]. Although it started as an academic research project between Stanford Uni-
versity and the University of California at Berkeley, OpenFlow gained a big part of

0asdfsadfsafd

2.3. P4 PROGRAMMING LANGUAGE 9

the industry. Google deployed Openflow to interconnect its datacenter backbone
network across the globe [27]. Furthermore, Alibaba, ATT, the U.S. National Se-
curity Agency (NSA), and Microsoft are deploying OpenFlow, which proves that
SDN and especially Openflow is a protocol that more and more companies are
adopting.

When a switch supports the OpenFlow API, we call it OpenFlow switch. The
basic idea of how OpenFlow switches operate is that most switches and routers are
using TCAM’s to construct the flow tables, which are used to implement firewalls,
NAT, QoS, etc. OpenFlow switches have extracted the most common flow-table
functions from the industry switches and implemented them on their switches. This
way, Openflow creates a protocol that is open, simple, and user-friendly.

The essential parts of an OpenFlow switch are three. The first one is the Flow
Table, which has an action associated with each flow entry, the second one is
the Secure Channel that connects the switch with the remote controller, and the
third one is theOpenFlow Protocol, which, as we previously said, it provides the
way for the controller to communicate with the switch (over the Secure Channel).

Na anaferw meionektimata tou openflow kai pinakaki apo p4 14 paper.

2.3 P4 Programming language

2.3.1 Overview

Programming Protocol-independent Packet Processors (P4) is a programming lan-
guage which first presented by Pat Bosshart and his team in 2014 [18]. Two years
after, in 2016, Mihai Budiu and Chris Dodd presented a new version of the lan-
guage with P416 as a reference [19], and in order to distinguish the two versions,
when we are referring to the first one, we use P414.

P4 is a high-level language that works in parallelism with multiple SDN con-
trollers such as OpenFlow. Although OpenFlow is the most common SDN con-
troller, it has a significant disadvantage: it operates only in explicitly specified
protocol headers. The more header fields OpenFlow supports, the more complex
the specification becomes.

P4 language was developed with three main goals: Reconfigurability, Proto-
col Independence, and Target independence. Reconfigurability indicates that
programmers can change how the forwarding devices process packets after they have
deployed. Protocol independence refers to forwarding devices that should not be
bound to a specific network protocol, and target independence aims that program-
mers are able to configure how packets are processed regardless of the hardware
device [18].

Industrial networks are constantly adding new encapsulation layers to the pack-
ets to improve security or for better regulation, which extends the controller’s API
specification and creates the need to develop new software switches that can man-
age these new protocols. P4 is based on application-specific integrated circuits
(ASICs) that can reach speeds up to a terabit. These chips can provide adjustable

10 CHAPTER 2. THEORETICAL BACKGROUND

mechanisms for parsing packets and reconfigurable match-action tables, which are
essential for adding new header fields without upgrading the forwarding devices.

Figure 2.2 shows the relationship between P4 and the target device. Depicts
how P4 is used to configure the target device, as well an API (such as OpenFlow
or P4Runtime) that is designed to populate the fixed function switches.

Copyright © 2018 – P4.org

Programming a P4 Target

15

P4 Architecture
Model

P4 Compiler

Target-specific
configuration

binary
Data PlaneTables Extern

objectsLoad

Target
Vendor supplied

P4 Program

User supplied

Control Plane

Add/remove
table entries

CPU port

Packet-in/outExtern
control

R
U

N
TI

M
E

Figure 2.2: Programming a P4 switch
Source: P4.org, ONF

2.3.2 Advantages of P4

P4 provides a number of serious benefits compared to some state-of-the-art for-
warding devices that can be adjustable (e.g managed switches)

• Portability P4 can construct refined packet processing algorithms using
general-purpose operations and table look-ups that can be used across hard-
ware targets that have the same architecture.

• Flexibility P4 has the ability to express the packet forwarding policies of the
network as programs, compared to hardware-specific functions of traditional
switches.

• Further decoupling P4 target devices can use abstract architectures to
further decouple the low-level architectural details from the high-level pro-
cessing.

• Component libraries Target manufacturers can supply component libraries
to wrap hardware-specific functions into portable high-level P4 functions.

• Debugging Network administrators can write P4 programs based on a spe-
cific architecture to aid in the debugging process.

2.3. P4 PROGRAMMING LANGUAGE 11

2.3.3 The design of P4

P416 language is the latest version that P4.org has published; it is a language
with a syntax based on C, statically typed, and designed for packet processing. A
P4 program consists of parsers, deparsers, and control blocks [19]. Parsers
are the ones that receive packets in a byte format and translates them to packet
headers. Deparsers, on the other side, transforms the headers into a complete
packet in order to send it to the network. Control blocks guide the packets to
the appropriate operations, like modify the headers of the packet. Furthermore,
P4 does not support pointers, dynamic memory allocation, float numbers, and
recursions. Loops are allowed only on the parsing stage.

2.3.4 P416 datatypes

In P4, all values are statically typed, and the programs that fail in type-checking are
invalid. The main datatype in P4 is a bitstring of a specified width. For example,
bit<64> declares a bitstring of 64 bits which is used in order to represent integers.
Other data types that p4 includes are: booleans, enumerators including error
type for express error codes. P4 is able to construct derived types such as tuples,
structs, headers, arrays of headers, and unions of headers [19]. Structs and unions
are inspired by C language.

12 CHAPTER 2. THEORETICAL BACKGROUND

Headers describe the format (the set of fields, their ordering and sizes) of each header within a network packet.

User-defined metadata are user-defined data structures associated with each packet.

Intrinsic metadata is information provided or consumed by the target, associated with each packet (e.g., the input
port where a packet has been received, or the output port where a packet has to be forwarded).

Parsers describe the permitted header sequences within received packets, how to identify those header sequences,
and the headers to extract from packets. Parsers are expressed as state-machines.

Actions are code fragments that describe how packet header fields and metadata are manipulated. Actions may
include parameters supplied by the control-plane at run time (actions are closures created by the control-plane
and executed by the data-plane).

Tables associate user-defined keys with actions. P4 tables generalize traditional switch tables; they can be used
to implement routing tables, flow lookup tables, access-control lists, and other user-defined table types, in-
cluding complex decisions depending on many fields. At runtime tables behave as match-action units [8],
processing data in three steps:

• Construct lookup keys from packet fields or computed metadata,

• Perform lookup in a table populated by the control-plane, using the constructed key, and retrieving an
action (including the associated parameters),

• Finally, execute the obtained action, which can modify the headers or metadata.

Control blocks are imperative programs describing the data-dependent packet processing including the data-
dependent sequence of table invocations.

Deparsing is the construction of outgoing packets from the computed headers.

Extern objects are library constructs that can be manipulated by a P4 program through well-defined APIs, but
whose internal behavior is hardwired (e.g., checksum units) and hence not programmable using P4.

Architecture definition: a set of declarations that describes the programmable parts of a network processing
device.

Figure 1: Core abstractions of the P416 programming language. The last two abstractions are new to P416, the others
are inherited essentially unchanged from P414.

2.3 P416 Architectures

One major change in P416 compared to P414 is in al-
lowing programs to execute on arbitrary targets. Tar-
gets differ in the kind of processing they perform, (e.g.,
a switch has to forward packets, a network card has to
receive or transmit packets, and a firewall has to block
or allow packets), and also in their custom capabilities
(e.g., ASICs may provide associative TCAM memories
or custom checksum computation hardware units, while
an FPGA switch may allow users to implement custom
queueing disciplines). P416 embraces this diversity of
targets and provides some language mechanisms to ex-
press it.

Figure 2 is an abstract view of how a P416 interacts
with the data-plane of a packet-processing engine. The
data-plane is a fixed-function device that provides several

programmable “holes”. The user writes a P416 program
to specify the behavior of each hole. The target manufac-
turer describes the interfaces between the programmable
blocks and the surrounding fixed-function blocks. These
interfaces are target-specific. Note that the fixed-function
part can be software, hardware, firmware, or a mixture.

A P416 architecture file is expected to contain declara-
tions of types, constants, and a description of the control
and parser blocks that the users need to implement. Here
is a possible contents of the an architecture file:

// File arch.p4

// core.p4 contains the packet_in and
// packet_out declarations
#include <core.p4>

/// Ports are specified using 4 bits
typedef bit<4> PortId;

7

Figure 2.3: Core abstractions of the P416 programming language 1

2.3.5 P416 architecture

P416 language is applicable in a wide range of target devices, which may differ in
the type of processing or kind of capabilities. As far as the type of processing is
concerned, some devices have to forward packets (e.g., switches), other devices have
to receive/transmit packets (e.g., network cards), and others have to allow or block
packets (e.g., firewalls). For the different kinds of capabilities, P4 is applicable
in ASIC and FPGA devices. ASICs may have custom checksum hardware and
FPGAs because they are programmable, may have, for example, custom queuing

1Fron P4 paper

2.3. P4 PROGRAMMING LANGUAGE 13

mechanisms.
A hardware device represents the data plane, and the P4 language interacts

with it. The data plane has some programmable blocks, and the P4 program is
trying to manage the actions of each block. The manufacturer of each hardware
device is responsible for providing the P4 architecture file, which contains the
description of the control and parser blocks, type declarations, and constants that
the programmer has to implement. [19].

The architecture model for the P4 language is as important as the C standard
library is for C programming language [11]. In order to make P4 language appli-
cable to a wide range of target devices, we need to have these targets conform to a
specific model. This way, P4 programs can be portable across different devices as
long as the latter support the same architecture file. The most known architecture
model is the Programmable Switch Architecture (PSA). PSA specification is owned
by P4.org Architecture working Group, and it is the most widespread architecture
for multi-port Ethernet targets (e.g., switches). Another popular architecture is
the V1Model which was created as an intermediate solution until PSA was properly
defined.

2.3.6 PSA

The Portable Switch Architecture (PSA) specifies six programmable blocks and
two fixed-function blocks, as depicted in Figure 2.4

Parser Ingress Deparser
Packet

Buffer and
Replication

Egress Deparser
Buffer

Queueing
Engine

Parser

Fixed function
block

programmable
block

Figure 2.4: PSA blocks

The incoming packets are going through the parser block and then passed to
the ingress block where a match-action pipeline decides where the packets go.
After that, the packets enter the deparser block where the programmer specifies
the metadata and the contents that each packet should carry to the packet buffer.
The packet buffer might store the same packet multiple times if the programmer
replicates it at the ingress block. The egress block uses a match action pipeline
in order to send the packets to the appropriate egress port, where they will enter

https://github.com/p4lang/p4-spec/tree/main/p4-16/psa

14 CHAPTER 2. THEORETICAL BACKGROUND

a queue to leave the pipeline. You can find more information about the PSA
architecture at PSA architecture

2.3.7 V1Model

The V1Model architecture was designed based on the P414 switch architecture,
so basically, V1Model is able to translate P414 programs to P416 programs. In
this architecture, we have only six programmable blocks as depicted in figure 2.5.
The main difference compared to PSA architecture is that the parsing process is
done only once at the beginning and the deparsing process before the packet leaves
the switch. Furthermore there are some extra programmable blocks, the Verify
Checksum and Compute Checksum. The first block computes the checksum of the
packet and compares the result with the checksum value attached to the header, and
the Compute Checksum computes the checksum right before the deparser assembles
the packet again and updates the checksum value on the header of the packet.

Parser Verify
Checksum Ingress Compute

Checksum DeparserEgress

programmable
block

Figure 2.5: V1model blocks

2.3.8 Behavioral Model V2

Behavioral Model Version 2 (BMV2) is a framework that supports several software
target switches such as simple_switch, simple_switch_grpc and psa_switch and
has become very popular since many programmers use this framework to test P4
programs in an emulated environment such as mininet. It is written in C++11, and
the most popular target device is the simple_switch. BMV2 is a developing tool for
testing and debugging P4 data planes [1], so the throughput and latency of BMV2
are not comparable with a production-grade P4 switch like Barefoot Tofino’s. In
order to run P4 programs in BMV2, we need to compile the P4 code into a JSON
format that the BMV2 switch can accept.

P4lang [8] provides three compilers for the P4 language, p4c, p4Runtime and
p4c-bm. P4c and p4Runtime are the recommended compilers to use since they are
the only ones that are currently maintained. Let us assume that we are compiling
our p4 program with p4c compiler; it will provide us a JSON file that is going to
be "fed" to the bmv2 switch binary [1]. In this thesis, we are using the V1model
architecture since the target devices are BMv2 switches.

https://p4.org/p4-spec/docs/PSA.html

2.3. P4 PROGRAMMING LANGUAGE 15

2.3.9 Apache Thrift RPC

In SDN architectures, we need a Southbound API in order to accomplish connec-
tivity between the control plane interface and the forwarding devices in the data
plane. The simple_switch target of the BMV2 architecture uses Thrift Remote
Procedure Call (RPC) API in order to populate or change values to the tables of
the running P4 program.

Apache Thrift is a library developed at Facebook in 2007 [15], which has as
its purpose of deploying a reliable and efficient communication channel between
different programming languages. In order to accomplish that, Apache Thrift uses
the Thrift IDL (Interface Definition Language) file, which allows developers to de-
fine datatypes and service interfaces, and generate the necessary code by compiling
that file in order to build RPC clients and servers that communicate as if it were
local.

2.3.10 gRPC

Another RPC framework is gRPC which was introduced by Google in 1993 [40]
and in the last years has become the most popular open-source RPC framework
available. Like Thrift RPC, gRPC’s primary goal is to create a communication
channel between different applications, even if they use different programming lan-
guages. GRPC runs a server that can handle client calls and one or more clients
in different languages, also called stubs.

Figure 2.6: gRPC

Instead of using Thrift’s IDL, gRPC uses Protocol Buffers, Google’s open source
mechanism for serializing structured data. In order to use Protocol Buffers, devel-
opers need to define the structure for the data they want to serialize in a proto
file with a .proto extension. Then the proto file is passed to the protocol buffer

16 CHAPTER 2. THEORETICAL BACKGROUND

compiler called protoc in order to generate data access classes to the preferred
language [4].

Besides the usage of protocol buffers, gRPC owes its success to the adoption
of the HTTP/2 protocol. With this change in 2015, gRPC gained some significant
advantages compared to HTTP/1.1 that was using until then. Some of them are
the Binary framing layer which makes sending and receiving messages compact
and efficient by dividing them into smaller messages, multiple parallel requests
which allows bidirectional communication and multiple requests at the same chan-
nel. Finally, streaming allows not only real-time communication but in high
performance also thanks to the binary framing that we referred to previously.

Many big companies such as Cisco, Juniper, Netflix, etc., have adopted gRPC
because of its high performance, flexibility, and very supportive community. So
BMV2 provides the simple_switch_grpc switch target, which instead of communi-
cating with the controller using Thrift RPC, uses gRPC. The compatible controller
with the simple_switch_grpc target is P4Runtime API which we will briefly de-
scribe in the following chapter.

2.3.11 Mininet

Mininet is a network emulator written in python that allows the user to built a
complete virtual network on a single computer. It supports virtual hosts, switches,
controllers, and the links between them. All nodes in mininet run standard Linux
network software, and the user is able to execute a wide range of commands through
a Command Line Interface (CLI). Mininet provides an extensible Python API
which allows the creation of custom network topologies and experiments with them.

The user can interact with the nodes, either from the CLI, where he can execute
commands such as ping, traceroute and bring up/down links between nodes, or
using xterm command, which opens a Linux shell for the device it refers to.

2.3.12 P416 example

In this section, we will demonstrate an example of a P4 program. This program
implements a basic forwarding device for IPv4. The switch will perform the follow-
ing actions for every packet: (i) update the source and destination MAC address,
(ii) decrement the time-to-live (TTL) in the IP header, and (iii) forward the packet
to the appropriate port.

A P4 program starts by including the standard P416 library (core.p4), and
the library that describes the architecture of the device, in this case, we have the
v1model.p4 since the device is a bmv2 switch.

The following code is a fraction of the V1model.p4 architecture file and presents
the programmable blocks that the user has to implement. The first block is a
Parser block called Parser and his role is to identify the headers that are present
in each incoming packet. We also have 5 control blocks which are the Verify-
Checksum, Ingress, Egress, ComputeChecksum, and Deparser. All the above control

2.3. P4 PROGRAMMING LANGUAGE 17

blocks intend to further process the packet.

/∗
∗ Arch i t e c tu r e .
∗
∗ M must be a s t r u c t .
∗
∗ H must be a s t r u c t where every one i f i t s members i s o f

type
∗ header , header stack , or header_union .
∗/

par s e r Parser<H, M>(packet_in b ,
out H parsedHdr ,
inout M meta ,
inout standard_metadata_t

standard_metadata) ;

/∗
∗ The only l e g a l statements in the body o f the

VerifyChecksum con t r o l
∗ are : b lock statements , c a l l s to the verify_checksum and
∗ verify_checksum_with_payload methods , and return

statements .
∗/

con t r o l VerifyChecksum<H, M>(inout H hdr ,
inout M meta) ;

@pipe l ine
c on t r o l Ingre s s<H, M>(inout H hdr ,

inout M meta ,
inout standard_metadata_t

standard_metadata) ;
@pipe l ine
c on t r o l Egress<H, M>(inout H hdr ,

inout M meta ,
inout standard_metadata_t

standard_metadata) ;

/∗
∗ The only l e g a l statements in the body o f the

ComputeChecksum
∗ con t r o l are : b lock statements , c a l l s to the

update_checksum and

18 CHAPTER 2. THEORETICAL BACKGROUND

∗ update_checksum_with_payload methods , and return
statements .

∗/
con t r o l ComputeChecksum<H, M>(inout H hdr ,

inout M meta) ;

/∗
∗ The only l e g a l statements in the body o f the Deparser

c on t r o l are :
∗ c a l l s to the packet_out . emit () method .
∗/

@deparser
c on t r o l Deparser<H>(packet_out b , in H hdr) ;

package V1Switch<H, M>(Parser<H, M> p ,
VerifyChecksum<H, M> vr ,
Ingre s s<H, M> ig ,
Egress<H, M> eg ,
ComputeChecksum<H, M> ck ,
Deparser<H> dep
) ;

The program usually continues with the type definitions, which can be used to
create a new type providing the name followed by the size of it. Using the keyword
header, the programmer is able to define new structures of header formats that the
switch needs to recognize since P4 aims to be protocol independent language has
to be flexible about the different headers of incoming packets.

For the specific example, we declare the headers that each packet carries, along
with the size of each field. We developed this program to handle only the ethernet
and IPv4 header.

#inc lude <core . p4>
#inc lude <v1model . p4>

const b it <16> TYPE_IPV4 = 0x800 ;

typede f b it <9> egressSpec_t ;
typede f b it <48> macAddr_t ;
typede f b it <32> ip4Addr_t ;

2.3. P4 PROGRAMMING LANGUAGE 19

header ethernet_t {
macAddr_t dstAddr ;
macAddr_t srcAddr ;
b i t <16> etherType ;

}

header ipv4_t {
bit <4> ve r s i on ;
b i t <4> i h l ;
b i t <8> d i f f s e r v ;
b i t <16> tota lLen ;
b i t <16> i d e n t i f i c a t i o n ;
b i t <3> f l a g s ;
b i t <13> f r a gO f f s e t ;
b i t <8> t t l ;
b i t <8> pro to co l ;
b i t <16> hdrChecksum ;
ip4Addr_t srcAddr ;
ip4Addr_t dstAddr ;

}
s t r u c t metadata {

/∗ empty ∗/
}

s t r u c t headers {
ethernet_t e the rne t ;
ipv4_t ipv4 ;

}

Based on the V1model architecture, the user has to provide a parser block in
the P4 program. The following block of code, which starts with the keyword parser
uses a state machine and defines how the P4 program should parse the packets.
The state machine returns a set of headers that it has extracted from the incoming
packet according to the programmer’s instructions.

The parsing process begins in the start state, and using transition keyword can
switch from one state to another which in this case are the parse_ethernet and
parse_ipv4 state, and finishes when the states accept or reject are reached.

pa r s e r MyParser (packet_in packet ,

20 CHAPTER 2. THEORETICAL BACKGROUND

out headers hdr ,
inout metadata meta ,
inout standard_metadata_t standard_metadata

) {

s t a t e s t a r t {
t r a n s i t i o n parse_ethernet ;

}

s t a t e parse_ethernet {
packet . e x t r a c t (hdr . e the rne t) ;
t r a n s i t i o n s e l e c t (hdr . e the rne t . etherType) {

TYPE_IPV4: parse_ipv4 ;
d e f au l t : accept ;

}
}

s t a t e parse_ipv4 {
packet . e x t r a c t (hdr . ipv4) ;
t r a n s i t i o n accept ;

}

}

This architecture, besides parser block, usually has many control blocks. A
control block consists of action and table declarations. We can have multiple
actions and tables, but only one apply block which is the one that triggers table
lookups. As for the apply, it is a loop-free program that implies the order and
under which circumstances the tables are applied to packets.

The action and table declarations are the primary methods that the program-
mer changes how the switch behaves to the incoming packets. The actions, are
code fragments that operate similar to functions. They may include parameters
given by the control plane that can be executed by the data plane. Tables consists
of user-defined keys, and actions. You can refer to figure 2.3 to find out more about
tables.

Ingress and egress blocks contain match action tables. Ingress blocks use them
to determine the egress port(s) of the packet. Furthermore, in ingress processing,
it is able to forward packets, replicate them (using multicast or send them to the
control plane), drop them, and trigger a flow control.[18]

In our example, we have one table named ipv4_lpm which uses the dstAddr of
IPv4 header for each packet and tries to match against using the least prefix match
(lpm). This table can trigger either the ipv4_forward, drop or NoAction actions.

2.3. P4 PROGRAMMING LANGUAGE 21

Ipv4_forward receives the destination Mac address and the port that the packet
is supposed to leave from the switch and sets them to the appropriate fields of the
packet. Drop action simply drops the packet.

c on t r o l MyIngress (inout headers hdr ,
inout metadata meta ,
inout standard_metadata_t

standard_metadata) {
ac t i on drop () {

mark_to_drop (standard_metadata) ;
}

ac t i on ipv4_forward (macAddr_t dstAddr , egressSpec_t
port) {

standard_metadata . egress_spec = port ;
hdr . e the rne t . srcAddr = hdr . e the rne t . dstAddr ;
hdr . e the rne t . dstAddr = dstAddr ;
hdr . ipv4 . t t l = hdr . ipv4 . t t l − 1 ;

}

t ab l e ipv4_lpm {
key = {

hdr . ipv4 . dstAddr : lpm ;
}
a c t i on s = {

ipv4_forward ;
drop ;

}
s i z e = 1024 ;
de fau l t_act ion = drop () ;

}

apply {
i f (hdr . ipv4 . i sVa l i d ()) {

ipv4_lpm . apply () ;
}

}
}

22 CHAPTER 2. THEORETICAL BACKGROUND

The egress match/action table can recieve 4 types of packets. Normal Unicast
(NU), Normal Multicast (NM), Cloned from Ingress to Egress (CI2E), and Cloned
from Egress to Egress (CE2E). NU and NM packets come from the ingress control
block, and in egress block can be recirculated using unicsat or multicast packet
paths. For CI2E and CE2E, basically the packets cloned from the ingress and
egress block respectively and reentered the egress block.

c on t r o l MyEgress (inout headers hdr ,
inout metadata meta ,
inout standard_metadata_t

standard_metadata) {
apply { }

}

Finally the Deparser state is where the programmer declares how the output
packet will look on the wire. In our case where we have two headers, we declare
the order that the headers are going to be combined and sent out of the swtich.

c on t r o l MyDeparser (packet_out packet , in headers hdr) {
apply {

packet . emit (hdr . e the rne t) ;
packet . emit (hdr . ipv4) ;

}
}

2.4 P4Runtime

P4Runtime [9] is a vendor-independent, protocol-independent runtime API for P4-
defined data planes. It was built to augment the programmatic API definition
expressed in Protobuf format [10]. P4Runtime uses gRPC protocol 2.3.10 which
allows the user to write the Controller in a wide range of programming languages
and using protocol buffers to communicate with the target device.

2.4. P4RUNTIME 23

2.4.1 Architecture

The architecture of P4Runtime is depicted in Figure 2.7. We observe that our
target device, which is at the bottom, is connected with multiple controllers which
are at the top. In order to have multiple controllers above one target device, we
need a P4 Master Controller and as many P4 Slave controllers as we need. A
multi-parser protocol ensures that only one controller has the right to access the
target device.

Figure 1. P4Runtime Reference Architecture.

and installing the associated P4Infometadata. Furthermore, the controller can query the target for the
ForwardingPipelineConfig to retrieve the device config and the P4Info.

3.1. Idealized Workflow
In the idealized workflow, a P4 source program is compiled to produce both a P4 device config and
P4Info metadata. These comprise the ForwardingPipelineConfig message. A P4Runtime controller
chooses a configurationappropriate to aparticular target and installs it via a SetForwardingPipelineCon-
fig RPC. Metadata in the P4Info describes both the overall program itself (PkgInfo) as well as all entity
instances derived from the P4 program — tables and extern instances. Each entity instance has an
associated numeric ID assigned by the P4 compiler which serves as a concise “handle” used in API
calls.

In this workflow, P4 compiler backends are developed for each unique type of target and produce
P4Info anda target-specific device config. TheP4Info schema is designed tobe target and architecture-
independent, although the specific contents are likely to be architecture-dependent. The compiler
ensures the code is compatible with the specific target and rejects code which is incompatible.

In some use cases, it is expected that a controller will store a collection of multiple P4 “packages”,
where each package consists of the P4 device config and P4Info, and install them at will onto the tar-
get. A controller can also query the ForwardingPipelineConfig from the target via the GetForwarding-

PipelineRequest RPC.This can be useful to obtain the pipeline configuration from a running device to
synchronize the controller to its current state.

3.2. P4 as a Behavioral Description Language
P4 can be considered a behavioral description of a switching device which may or may not execute
“P4” natively. There is no requirement that a P4 compiler be used in the production of either the P4
device config or the P4Info. There is no absolute requirement that the target accept a SetForwarding-

PipelineRequest to change its pipeline “program”, as some devices may be fixed in function, or con-

8

Figure 2.7: P4Runtime Architecture
Source: P4.org, ONF

P4Runtime API is able to construct messages between the interfaces of the
controllers and the server(target device). For that purpose, the API is using a
Protobuf file named p4runtime.proto. Another Protobuf file is the P4info.proto
which describes the structure of P4Info metadata. The controller can access P4
entities which are declared in P4Info metadata using p4info.proto.

In a paradigmatic workflow, a P4 source program is compiled to produce both a
P4 device configuration file and the P4Info metadata. The p4Info is designed to be
target and architecture independent; however, the specific contents are architecture
dependent due to the compiler, which rejects incompatible code.

24 CHAPTER 2. THEORETICAL BACKGROUND

2.4.2 Single Embedded Controller

A target device has an embedded controller that can communicate using P4Runtime.
This is the simplest use-case of the P4Runtime controller and the most common in
P4 examples. P4Runtime is designed to be an ideal RPC and an IPC (Inter-Process
Communications). Figure 2.8 shows the architecture we mentioned above.

Figure 2. Use-Case: Single Embedded Controller

functions and APIs might be available to select users who would have access to the complete P4Info
and possibly P4 source code.

3.3.4. P4Info Role-Based Subsets

In this situation, P4Info is selectively packaged into role-based subsets to allow somecontrollers access
to just the functionality required. For example, a controller may only need read access to statistics
counters and nothing more.

4. Controller Use-cases
P4Runtime allows for more than one controller. The mechanisms and semantics are described in a
later section. Here we present a number of use-cases. Each use-case highlights a particular aspect
of P4Runtime's flexibility and is not intended to be exhaustive. Real-world use-cases may combine
various techniques and bemore complex.

4.1. Single Embedded Controller
Figure 2 shows perhaps the simplest use-case. A device or target has an embedded controller which
communicates to an on-board switch via P4Runtime. This might be appropriate for an embedded ap-
pliance which is not intended for SDN use-cases.

P4Runtime was designed to be a viable embedded API. Complex controller architectures typically
feature multiple processes communicating with some sort of IPC (Inter-Process Communications).
P4Runtime is thus both an ideal RPC and an IPC.

4.2. Single Remote Controller
Figure 3 shows a single remote Controller in charge of the P4 target. In this use-case, the device has
no control of the pipeline, it just hosts the server. While this is possible, it is probablymore practical to
have a hybrid use-case as described in subsequent sections.

10

Figure 2.8: Embedded P4Runtime
Source: P4.org, ONF

Chapter 3

Related Work

In this chapter, we present previous work that is related to our research subject.
The content of this chapter is based on the literature review that was conducted
as part of my master thesis. We will refer to some notable tries to develop a tool
that helps debug an SDN network and discuss the capabilities of each one, as well
as their advantages and disadvantages.

3.1 Where is the Debugger for my Software-Defined
Network?

Inspired from gdb [2], the authors of this paper [24] introduced ndb, a prototype
network debugger for SDN which implements two major primitives which came up
very helpful for its cause. The first one was brakepoints, and the second one was
packet backtraces.

The authors take advantage of Software Defined Networks(SDNs) in order to
debug the network control programs like gdb debugs software programs. The ar-
chitecture of this tool is simple. Since traditional Openflow switches cannot stamp
information in the packets that they forward, they have programmed the switches
to send a "postcard" every time, a packet visits a switch. A postcard is a truncated
copy of the packet’s header, followed by the matching flow entry, switch id, and
output port. Then these postcards for every switch are sent to a Collector, which
stores them and is able to create backtraces for every packet using the information
in the postcard alongside the given breakpoint. Furthermore, they have a Proxy
unit to modify the messages from the controller and tell the switches to create the
postcards. In order to find a postcard for a specific packet and inspects the IPID
and TCP sequence number fields of the immutable header fields since forwarding
rules do not modify them.

This debugger is able to backtrace the packets, identify the source of bugs, and
verify data authentication. Based on SDN Testing and Debugging Tools: A Survey
[35] the advantages of this debugger are that it does not have a framework restric-
tion, does not need a specific SDN controller or specific programming language.

25

26 CHAPTER 3. RELATED WORK

The disadvantages are that it can only identify bugs along the transmission path,
and it has limitations if the packets of the network change their state dynamically.

3.2 Controller-agnostic SDN Debugging

Similar to ndb, the authors of this paper introduce OFf [20], a debugging and test
environment for SDN developers which is built on top of the fs-sdn simulator [23].
For OFf to debug an application, the developer needs to include the corresponding
library. Furthermore, it does not need any additional hardware to be deployed, and
it does not affect the network’s performance unless the developer issues a debugging
command.

The architecture of OFf consists of two parts: the OFf proxy and OFf Con-
troller/Debugger Runtime Interfaces. The proxy unit, similar to ndb, represents
the communication channel between the simulated network in fs-sdn and the con-
troller. Besides that, the proxy is based on four components, the UI wrapper which
provides an interface for the developer to send commands to the other three com-
ponents. The second component is the Debugger, which is responsible for several
sub-modules aiming for more specific OFf commands from the controller API to
control plane activity. The third component is the Trace Replay which can repro-
duce network activity, and the last one is the Diff Report Generator that detects
changes in topology or the policies of the network and generates a report to help
developers determine the effects of configuration changes. The OFf Controller/De-
bugger Runtime Interface is responsible for linking the OFf Proxy unit to a specific
controller platform and language-level debugging environment.

The functionality that OFf debugger provides is that it can trace a packet and
replay its route, alert when some configuration changes, and verify that packets
passed through a specific set of switches. The advantages are that it is able to iden-
tify and eliminate bugs, detect security vulnerabilities. Finally, the disadvantages
are that it is not applicable to all switch vendors.

3.3 OFRewind

OFRewind [41] is a tool that takes advantage of split forwarding architectures such
as OpenFlow to improve the way that recording and replaying network domains are
done. OFRewind enables scalable, temporally consistent, centrally controlled net-
work recording and coordinated replay of traffic in an OpenFlow controller domain.
Because of how flexible an OpenFlow controller may be, OFRewind can dynami-
cally select data plane traffic for recording, which improves network scalability but
also makes it possible to enable always-on recording for low-volume traffic such as
forwarding control messages, which are more prone to bugs.

The main component of this system is the OFRewind which runs as a proxy
between the switches and the actual controller. This way, it is able to communicate
with every Datastore component that is locally attached at regular switch ports.

3.3. OFREWIND 27

DataStore

OF-Controller

OFRewind

of-sw1 of-sw3

of-sw2

DataStore

(a) System components

OFRewind

Ofrecord Ofreplay

DataStore

DatareplayDatarecord

(b) Software modules

DatarecordDatarecord Datarecord

L4 to L8

Data-Plane

Ofrecord

OpenFlow

Ctrl-Plane
OpenFlow

Data-Plane

L2

Ctrl-Plane

(e.g. ARP)

L2

Data-Plane
To

Controller

To

Switch

L4

Ctrl-Plane

(e.g. RSVP)

L3

Data-Plane
L3

Ctrl-Plane

(e.g. RIP)

(c) Traffic strata

Figure 1: Overview of OFRewind

controlling entity, known as the controller. Programma-
bility is achieved through forwarding rules that match in-
coming traffic and associate them with actions. We call
this layer of the network the substrate, and the higher-
layer superstrate network running on top of it guest. We
call the traffic exchanged between the switches and the
controller the substrate control plane. The higher-layer
control plane traffic running inside of the substrate data
plane (e.g., IP routing messages) is called the guest con-
trol plane. The relationship between these layers and
traffic strata is shown in Figure 1(c).

Even though not strictly mandated almost all split-
architecture deployments group several switches to be
centrally managed by one controller, creating a con-
troller domain. We envision one instance of OFRewind
to run in one such controller domain. Imagine, e.g., a
campus building infrastructure with 5-10 switches, 200
hosts attached on Gigabit links, a few routers, and an up-
link of 10GB/s.

2.2 Design Goals and Non-Goals
As previously stated, recording and replay functionali-
ties are not usually available in networks. We aim to
build a tool that leverages the flexibility afforded by split-
architectures to realize such a system. We do not en-
vision OFRewind to do automated root-cause analysis.
We do intend it to help localize problem causes. Ad-
ditionally, we do not envision it to automatically tune
recording parameters. This is left to an informed admin-
istrator who knows what scenario is being debugged.

Recording goals: We want a scalable system that can
be used in a realistic-sized controller domain. We want
to be able to record critical traffic, e.g., routing messages,
in an always-on fashion. What is monitored should be
specified in centralized configuration, and we want to
be able to attain a temporally consistent view of the re-
corded events in the controller domain.

Replay goals: We want to be able to replay traffic
in a coordinated fashion across the controller domain.

For replaying into a different environment or topology
(e.g., in a lab environment) we want to sub-select traf-
fic and potentially map traffic to other devices. We in-
clude time dilation to help investigate timer issues, cre-
ate stress tests, and allow “fast forwarding” to skip over
irrelevant portions of the traffic. Bisection of the traffic
between replays can assist problem localization whereby
the user repeatedly partitions and sub-selects traffic to be
replayed based on user-defined criteria (e.g., by message
types), performs a test run, then continues the bisection
based on whether a problem was reproducible.

(Absence of) determinism guarantees: As opposed
to host-oriented replay debugging systems which strive
for determinism guarantees, OFRewind does not – and
cannot – provide strict determinism guarantees, as black
boxes do not lend themselves to the necessary instrumen-
tation. Instead, we leverage the insight that network de-
vice behavior is largely deterministic on control plane
events (messages, ordering, timing). In some cases,
when devices deliberately behave non-deterministically,
protocol specific approaches must be taken.

2.3 OFRewind System Components
As seen in Figure 1(a), the main component of our sys-
tem, OFRewind, runs as a proxy on the substrate control
channel, i.e., between the switches and the original con-
troller. It can thus intercept and modify substrate control
plane messages to control recording and replay. It dele-
gates recording and replay of guest traffic to DataStore
components that are locally attached at regular switch
ports. The number of DataStores attached at each switch
can be chosen freely, subject to the availability of ports.

Both components can be broken down further into two
modules each, as depicted in Figure 1(b): They consist
of a recording and a replay module with a shared local
storage, labeled Ofrecord and Ofreplay, and Datarecord
and Datareplay respectively.

Record: Ofrecord captures substrate control plane
traffic directly. When guest network traffic recording is

3

Figure 3.1: Overview of OFRewind

Both components OFRewind and Datastore can be broken down further as depicted
in Figure 3.1

Although it is possible to enable always-on recording for every packet in the
network, this will cause significant overhead problems in performance as well as
storage. To counter this problem, the authors decided to classify the traffic and
select for recording only the categories of traffic the network operators seem im-
portant. If this selection approach does not reduce the recorded traffic, they can
apply sampling in packets or flows as a reduction strategy. Finally, the last data
reduction approach is to record the first X bytes of each flow.

When the operators want to replay traffic, Ofreplay is responsible to re-inject
the captured traces by Ofrecord into the network. There are different replay scenar-
ios: replaying traffic towards the controller, replaying traffic towards the switches,
and finally replaying traffic based on packet headers captured by the Datarecord
which allows to re-generate exact flows that enable complete testing of the network.
The packets may have a complete payload or dummy payload.

The advantages of this tool are that it can reproduce software errors, locate
configuration errors, and replay only the desired part of network traffic. The dis-
advantages are that it needs a lot of memory space, depending on the device’s
behavior.

28 CHAPTER 3. RELATED WORK

Chapter 4

P4Debugger

In this chapter, we present and describe P4Debugger, a tool that we created in
order to help network operators debug an SDN exploiting P4 capabilities. The main
functionality of this tool is to taint packets with the information of the switch that
forwards them, keep a record of all flow table versions, visualize the topology and
how the switches behave using a web app and monitor the network for a potential
policy violation.

The Chapter describes the three parts that assemble the P4Debugger, Data
Plane, Control Plane andVisualizer. First, we will present the workflow of P4Debugger
and how the three parts interact with each other in order to inform the user about
the network state. Then we will analyze the Data Plane and explain how we taint
the packets. Then, we describe the Control Plane and how the P4Runtime con-
troller interacts with the P4 switches. Finally, we will present the Visualizer, which
is a web application that visualizes the network’s behavior.

4.1 Workflow

In this section, we present the workflow of P4Debugger, which is depicted in Figure
4.1. We begin from the Data Plane where the P4 switches, before forward each
packet, add information on the custom header we created. Furthermore, some
switches are connected to monitors and have to duplicate a percentage of packets
and forward it to them to check if the right policies are applied to the network.

Next, the Control Plane which in our case is a P4Runtime controller, interacts
with the P4 switches updating their tables based on the instructions of the net-
work administrator, is also responsible for pushing the switch’s flow tables to a git
repository for every packet out.

The Visualizer fetches the flow tables from the git repository, parses the essen-
tial data in order to visualize the topology as well as the flows that the topology
has for a selected time and day.

29

30 CHAPTER 4. P4DEBUGGER

Control Plane

Data Plane

Git Repo

Push flow table

Visualizer

Fetch flow table

Parse data

Figure 4.1: Workflow of P4Debugger

4.2 Data Plane

In an SDN, as we described in section 2.2, the data plane or Southbound interface
is where the networking devices are. In our case, P4 switches are responsible for
forwarding the traffic. Protocol independence is the feature of the P4 language
that makes it so important in this thesis. A P4 switch has access to the whole
packet header, not only to the link-layer as traditional switches. It can dissect the
packet from the link-layer all the way to the payload; This is feasible because the
programmer is responsible for declaring the headers and the order of them, how
the parser is going to parse the packet and assign the bytes to the corresponding
headers.

In this section, we will analyze the structure of a packet with emphasis on the
IP layer, which is the one we used for assigning the custom header, Then we will
describe the structure of the custom header as well as the workflow of the switch,
and finally, we will describe how we managed a two-way communication between
our switch and the controller.

4.2. DATA PLANE 31

4.2.1 IPv4 Header

In order to send some information over the network, we need to encapsulate the data
in a header that complies with the protocol the network device has. Each network
protocol, such as TCP, IP, or Ethernet has a header format with the appropriate
fields and sizes. In Figure 4.2 we show how an IPv4 packet is structured.

Version
(4 bits)

Source IP Address
(32 bits)

Destination IP Address
(32 bits)

Options (If Any)
(Up to 320 bits/40 bytes)

Total Length
(16 bits)

Identification
(16 bits)

Time-to-Live (TTL)
(8 bits)

Header Checksum
(16 bits)

TOS
(8 bits)

IHL
(4 bits)

Flags
(3 bits)

Fragment Offset
(13 bits)

Protocol
(8 bits)

IP Data (If Any)
(Up to 65515 bytes)

0 32 bit

20
Bytes

Variable
length

Variable
length

Figure 4.2: IPv4 Header

Here is the description of each field:

• Version : The version of the IP protocol, for IPv4 the value is 4.

• IHL : The length of the header, the minimum is 20 bytes (when Options
filed does not exist) and maximum is 60 bytes (when Options field reaches
the maximum length).

• TOS : Type of Service (TOS) uses 3 bits for IP precedence and 4 bits for
TOS; The last bit is not used.

• Total Length : The length of the IP packet including IP header and data.
The length field is 16 bits so 216 - 1 = 65535 bytes.

• Identification : Differentiate fragmented packets from different datagrams.

• Flags : Control or Identify fragments.

• Fragment Offset : Used to fragment and reassembly the packet if needed.

• TTL : Limits datagram lifetime.

32 CHAPTER 4. P4DEBUGGER

• Protocol : Describes the protocol used in the data portion. For TCP, the
value is 6.

• Header Checksum : Value calculated based on IP header. The router
drops the packet if does not verify that value.

• Source IP : IP address of the host that sent the packet.

• Destination IP : IP address of the host that should receive the packet.

• Options : Used for network testing, has variable length from 0 to 40 bytes
and usually is empty.

• IP Data : The payload of the packet that may contain data and headers
from higher level protocols. Has variable length from 0 to 65515 bytes.

We can observe that if we want to add an extra header in the IP layer, the only
field that is not used often and has a variable length which is critical in our case,
is the Options field. We need the custom header field to have a variable length
because it will increase its size based on the number of switches that pass through.

4.2.2 Custom Header

As we described in this chapter, P4 allows us to declare our headers and, using the
Parser, we can define which headers represent the appropriate bits of the packet.
In this section, we will present the headers that we declare in our P4 program and
the order we place them to structure a packet.

Usually, the network topology of switches can see only the link-layer (MAC)
headers of every packet, except when dealing with layer-3 switches that can inspect
IP-layer too. In our case, although we could forward the packets using only the
link-layer, we also need to access the IP-layer to manipulate the extra header.
Since we declare and use the IP header for the above reason, we decided to forward
the packets based on IP tables that make the representation of use-case scenarios
easier.

We created the IPv4 header exactly as described in RFC 791 [13], then we
added a set of custom headers in the options field to tag each packet with the
desired information. We calculated the size of each field very carefully in order to
maximize the efficiency of our tool by allowing us to keep track of as many hops
as possible. In Figure 4.3 we see how the Option field of IP header is structured.

The fields of the custom header are described bellow:

• Option Type : This 8-bit field is divided into three sub-fields:

– Copy Flag (1 bit) : Declares if the options should copied to all frag-
ments if the datagram is fragmented.

– Option Class (2 bits) : Defines the category that options belong. 0 is
for Control options and 2 for Debugging and Measurement.

4.2. DATA PLANE 33

0 32 bit

40
Bytes

Options
(Up to 40 bytes)

CounterOption LengthOption Type

device_id table_id in_port out_port

device_id table_id in_port out_port

9
Hops

8 16

Figure 4.3: Custom Header

– Option number (5 bits) : Specifies the kind of option

• Option Length (8 bits) :Indicates the size of the entire option field.

• Counter (16 bits) : Specifies the number of P4 switches each packet passes
through.

For each switch that a packet passes through (hop), we add a set of the following
fields in order to record the information we want.

• device_id (8 bits) : Indicates the switch ID.

• table_id (8 bits) : Shows the ID of the table the packet passed through.

• in_port (8 bits) : Indicates the port number that the packet came from.

• out_port (8 bits) : Indicates the port number that the packet sent to.

IP option header has a maximum size of 40 bytes; So, assuming that each packet
will have 4 bytes committed for Option Type, Option Length and Counter, we are
left with 36 bytes of free space. Since the information we want from each switch
sums up to 4 bytes, we are able to taint the packet up to 9 times.

4.2.3 Forwarding

Every forwarding device needs a forwarding table to send the packets to the ap-
propriate address. In our case, P4 tables generalize traditional switch tables. P4
tables behave as match-action units with the following steps:

• Construction of a key.

• Look up for the key in a lookup table, and the result will be an "action".

34 CHAPTER 4. P4DEBUGGER

• Execute the action over the input data e.g(change the source and destination
MAC address of the packet).

In our implementation, the key is the destination IP address, and the table tries to
match it with its entries using the longest prefix match algorithm (lpm). When the
switch finds the match, it executes the corresponding action with the appropriate
parameters.

4.2.4 Packet Counting Per Flow

The procedure until now in the data plane is that for every packet the switch
forwards, adds some extra information in the custom header before the packet
leaves the switch. This procedure allows us to have all the packets in our network
topology tainted with the extra information.

The question is, how are we going to inspect this extra information? We can
not expect the users to check them by themselves. The solution we came up with
is to add a host for each P4 switch that will act as a monitor. Then the P4 switch
will duplicate a percentage of every packet that forwards for each flow and send it
to the monitor for inspection. We have to send only a portion of the packets per
flow because otherwise, we were going to overwhelm the monitor with too many
packets, as well as reduce the performance of the switch by half.

The challenging part of this action is that in order to count the packets and
check if the specified value has been reached, we need to write and read the value.
V1Model has the counters that are able to count quantities of packets or bytes, and
direct counters that are increased only if the table entry that the direct counter
is associated with is matched. So direct counters can count packets per flow, but
unfortunately, only the p4 controller is able to read the value. Registers are stateful
memories whose value can be read and written during packet forwarding under the
control of the P4 program. Although some P4 switch manufacturers like Tofino
have implemented a direct register which can be associated with table match keys
and be increased every time a table entry is matched, V1Model architecture as well
PSA do not support it yet.

So we created an algorithm inside the P4 switch in order to count packets per
flow. The procedure we follow is not easy and demands resources, but we can avoid
it in a real case scenario by using a physical P4 switch with implemented direct
registers.

The procedure of counting the packets starts at the egress stage of the switch.
As flow we defined the source and destination IP of the packet. The main idea is
that we insert the source and destination IP of the packet in a hash function. The
hashed value then operates as an index for storing the flow and the counter of the
flow in two hash tables, the id_table and counter_table respectively.

For every packet that is not cloned, we check if its flow is already in the id_table.
If it does, we increase the counter at the same position in the counter_table by
one. In case that the specific flow does not exist in the id_table, we assign its

4.2. DATA PLANE 35

flow in the empty cell that its hashed value indicated and assign the number 1 at
the count_table. However, we most probably will encounter the big problem of
collision.

Flow_1

Src_IP + Dst_IP

Flow_2

Flow_3

Flow_4

Flow_1

Flow_4

Flow_3

Hash
Function 1

Flow_2

Flow_2

Hash
Function 2

3

2

2

1

0

1

2

3

4

5

0

1

2

3

4

5

cntindex Value cntindex Value

Hash_table_1 Hash_table_2

Figure 4.4: Counting Packets per Flow

Collisions will happen when the hash function returns the same hash value for
two different flows. So for a packet from a new flow, we may find that the id_table
at the given index is already filled with another flow value. The solution to this
problem is to add more hash functions and tables. The same technique was pro-
posed in the paper Designing Heavy-Hitter Detection Algorithms for Programmable
Switches [16]. If there is a collision for a specific flow, we use the second hash func-
tion to produce the index for the second id_table and counter_table and insert the
flow there.

The amount of hash functions and tables is proportional to the number of
different flows we are going to have in our network. However, there is always the
possibility that a flow may not be able to find a position in the id_table. In that
case, we need to recirculate the packet and try again with a small change in the
flow’s data. Nevertheless, since we are using this technique only for demonstration,
if we want to apply this tool in a real network, we will use hardware P4 switches
that can count the packets without all this overhead. In our implementation, we
chose to use three hash functions and six tables (2 for each function) to ensure that
all our flows can match a table entry.

In Figure 4.4 we depict how our algorithm works for two hash function tables.
We show that if Flow_2 is guided to the index in the hash_table_1 where we
already have inserted Flow_3, then we pass Flow_2 to the second hash function
and try to insert it to the hash_table_2. We increase the counter value of each
field based on how many times we meet the same flow on the packets.

36 CHAPTER 4. P4DEBUGGER

4.2.5 Data Plane Workflow

In this section, we are going to describe the workflow of the data plane as depicted
in Figure 4.5. We know from 2.3.7 that P4 switches have an Ingress and an Egress
programmable block. We divide our actions into these two different blocks as they
are the ones that we apply our data plane’s logic.

Incoming packet

Yes

NoComes from
Controller?

set egress_port to
target

Match IP dst
with table?

Yes

No

set egress_port to
target

set egress_port to
Controller

Increase counter for
the specific flow

clone and recirculate
the packet

send it to specified
egress_port

Is the packet a
cloned one?

Yes

No

set egress_port to
monitor

Yes

counter equals
target number

No

Ingress
stage

Egress
stage

Figure 4.5: Data Plane Workflow

• Comes from Controller: If the incoming packet comes from the controller
(Packet out), it should not pass to match/action table, instead we set the
egress_port of that packet equal to the port that the controller has instructed.
This information is stored to a custom header of the packet that we will
discuss at 4.3. If the incoming packet is not from the controller then we pass
it to the match/action table.

• Match IP Table: Now the incoming packet passes through the match table.
If there is a match we set the egress_port of the packet according to the table.
Else we send it to controller by setting the egress_port number to controller’s
one.

• Is the packet a cloned one?: This state is located at egress block, If the
packet is a cloned one, we have to forward it to the monitor, so we set the
egress_port equal to monitor’s port. Otherwise we increase the counter for
the specific flow.

4.3. CONTROL PLANE 37

• Counter equals target number: After we increase the counter for the
specific flow, we check if we have reached the desired number of packets.
If the counter is equal to the target number, then we clone the packet and
recirculate it to enter again the egress block. Otherwise we continue by
sending the packet to the specified egress_port.

4.3 Control Plane

As described in 2.4, P4Runtime aims to provide target-independent and protocol-
independent API to the control dataplane. Furthermore provides a runtime control
for P4 targets, and using Protobuf allows easy serialization and supports a wide
range of programming languages. Hence we decided to use P4Runtime API for our
implementation.

There are two reasons we need a controller for our implementation. The first is
to present how we can populate the forwarding tables of the switches dynamically,
and the second is to install a two-way communication with our target devices. The
population of the forwarding tables is a procedure that requires constructing the
table entry in a protocol buffer representation and sent this entry to the target
device using gRPC protocol.

Achieve two-way communication with our target device was a challenging task.
The P4Runtime specification [9] had only a reference of how the switch can initiate
Packet In with the Controller. Eventually, we managed to create Packet in and
Packet out messages with the following actions.

In our P4 program, we define the Ethernet and IPv4 headers as well as two
extra headers that we need in order to communicate with the controller. The
structure of the packet is depicted in Figure 4.6.

IP HeaderEthernet HeaderPacket
Out

Packet
In

Figure 4.6: P4 program packet structure

• Packet Out: We declared a field named egress_port of 16 bits that indi-
cates the port number the Controller wishes to forward the packet during the
Packet Out message.

• Packet In: In this header, we declare a field named ingress_port where
we store the number of the port that the packet entered the switch, and we
forward the packet to the controller with a Packet In message.

38 CHAPTER 4. P4DEBUGGER

The Packet-In message serves the purpose that the Controller is notified to
populate another table in the target device. This allows us to initiate the second
part of P4Debugger’s implementation, which is to version the flow tables. When
the Controller receives a Packet-In message, it executes a script that pushes all
current forwarding tables of the switch in a git repository. After that, it populates
the new entries at the target device. This way, we are able to have all table versions
available.

We are using a single embedded controller in every switch as we described in
2.4.2, because it is easier for every controller to handle his Packet-In and Packet-Out
messages since we have to upload the tables of each switch to the git repository.
This will decrease the possibility of conflicts when we have Packet-In messages
from multiple target devices. Furthermore, we could still use a master controller
to manage all the embedded ones if we desire a centralized programming network.

4.4 Visualizer

In this section, we are introducing Visualizer, which is a web application we created
in order to manage the different versions of tables from the git repository and
provide a practical way to preview the flow rules. Figure 4.7 describes the workflow
of the web application.

• Topology: The user uploads the topology file (JSON) to the web application,
then we send the JSON file to the server. The server parses the topology file
and separates it in three different tables, the switches, hosts, and the links.
After that, it returns it to the web application where we visualize the topology
using Vis.js library [12].

• Date/Time: The user selects a date and a time from the web page, and we
forward the selected info to the server. Then the server fetches the forwarding
tables for each switch, from the git repository, for the specified date and time.
The switches are known from the topology file that the server parsed in the
previous action.

• Route: The user selects a host or a switch from the web application, and
inputs an IP address. After that we send these two information to the server,
and using the already fetched flow tables, it can export the path from the
switch/host to the given IP address. The server returns the path to the web
page, and highlights the path in the topology.

4.4.1 Back-End

In order to process the data, we selected Node.js [7] which is an open-source,
cross-platform, back-end JavaScript runtime environment. We chose this back-end

4.4. VISUALIZER 39

User Front-end Back-end

Upload
topology

Send to
server

Fetch tables
from Git

Send to
server

Compute the
path

(date/time)

(switch, ip)

Return the
path

Highlight the
path

(h1, s1, s5, h4)

Parse
topology file

Input
date/time

Input route

Send to
server

Display
topology

Return
switches,

hosts, links

topology.json

[switches],
[hosts],
[links]

Figure 4.7: Visualizer Workflow

solution because it has a very active community with almost guaranteed mainte-
nance. Furthermore, we would like to use a JavaScript based back-end solution
because the library for visualizing the topology is based on JavaScript as well.

The most trivial part in the back-end implementation was to find the path in
the topology, given a switch and an IP address. As information, we had the flow
tables of each switch and the topology. We linked each port from every flow table
with the appropriate switch based on the topology, and then, using a recursive
function, we found the path that a packet should follow. We describe below the
structure of a flow table, along with some values as an example.

• S1 Flow table for the switch 1

– match_field: ’hdr.ipv4.dstAddr’,

– mac: ’00:00:00:00:11:04’,

– table_name: ’basic_tutorial_ingress.ipv4_lpm’,

40 CHAPTER 4. P4DEBUGGER

– subnet: ’32’,

– action_param: ’port’,

– ip: ’10.0.0.4’,

– port: ’2’,

– action_name: ’basic_tutorial_ingress.ipv4_forward’,

4.4.2 Front-End

We created a web application that allows network administrators to load any ver-
sion of the flow tables to a simulated topology and preview each note’s paths. This
provides a reachability test for the network topology at any point in time as it can
be a helpful tool to observe loops. For Visualizing the topology, we used Vis.js,
which is a dynamic browser based visualization library designed to handle large
amounts of dynamic data. In Figure 4.8 we present a Screenshot of our Web appli-
cation after successfully found the path from switch 1 (s1) to IP address 10.0.3.6,
which belongs to host_6.

Figure 4.8: Web app

Chapter 5

Evaluation

In this chapter, we will introduce and analyze the results produced from P4Debugger.
First, we are going to present to you some errors that are commonly seen by SDN
programmers, and then we will present some measurements that we have conducted
that represent the overhead of our implementation in a network topology.

5.1 P4Debugger in action

The first error we are going to analyze is a network loop. In figure 5.1 we illustrate a
network loop between three switches. These kinds of loops are very hard to detect,
especially in SDN. The most common solution to this problem is to use Spanning
Tree Protocol [33], which basically forms the topology in a way that there is no
way to create a loop. But in SDN, Spanning Tree Protocols may not be applicable
due to the dynamic programming. So the only way to detect that there is a loop
in the topology is by noticing performance issues on the network.

With P4Debugger, these kinds of problems are easy to be traced. The monitors
that can be attached to any P4 switch receive a percentage of the packets and can
analyze the custom header to find the loop. In figure 5.2 we illustrate the fields
that the custom header of the packet will have after completing the first loop.

The second error we are going to investigate is when two hosts (h1,h2) could not
connect. Similar to the above solution, we inspect the monitor, which is attached
to any of the switches that connect the two hosts. Applying backtrace to a cloned
packet shows that the packet is reaching the host2, but one switch was corrupting
the source and destination MAC, so the host2 rejects it.

The third error is a trivial one. Let us assume that we have programmed our
SDN controller to change the flow route if a target device goes offline. This means
that we will experience the new flow rules only when the specific device for any
reason disconnects from the network. As long as the switch is online, there are
no problems. Let us now assume that the target device goes offline on a Sunday
night, and the Controller initiates the new flow rules. Due to a misconfiguration
at the new flow rules, a part of the network is down until the specific target device

41

42 CHAPTER 5. EVALUATION

s1 s2 s3 s4

s5 s6

h1 h2 h3 h4 h5 h6 h7 h8

Figure 5.1: Network Loop example

device_id = 1
table_version = 1

in_port = 1
out_port = 3

device_id = 5
table_version = 1

in_port = 1
out_port = 3

device_id = 6
table_version = 1

in_port = 3
out_port = 3

device_id = 5
table_version = 1

in_port = 3
out_port = 3

Figure 5.2: Custom header loop example

goes online again and the Controller applies back the standard flow rules. It is
challenging for a network administrator to trace this kind of problem. The main
reason is that they appear dynamically, so either they need to get the network to
the same state as Sunday night, which means reproduce the error, or searching
thousands of lines of log files to trace the bug.

Using the Visualizer, which is depicted in Figure 4.8 we can look back at the
flow tables that the network topology had on Sunday night. Then we initiate
the topology and start to emulate some flows until we find which switch is not
responding or a flow that violates the policies.

5.2. OVERHEAD OF P4DEBUGGER 43

5.2 Overhead of P4Debugger

In this section we are going to discuss the overhead that our P4program applies
to the target devices. The switches that we use to deploy our debugger are bmv2
which are not meant to be a production-grade software switch. Instead, they are
supposed to be used as a tool for developing, testing, and debugging P4 data planes
and control plane software written for them. Because of that, the performance of
bmv2 in terms of throughput and latency is significantly less than the performance
of a production-grade software switch like Open vSwitch.

Furthermore the performance of the bmv2 switch depends on a variety of fac-
tors:

• which version of bmv2 code we are running.

• which flags were used to build bmv2 : This is I think the most important
factor because some flags have a huge impact in the performance.

• the options we give to start simple_switch.

• the performance of our hardware: how many cores and memory does our
system have?

• If we are running in a physical Linux machine, or a Linux VM.

Considering all the above, unfortunately, we cannot provide a direct answer
about the performance of our P4Debugger. We have decided to compare our P4
switches’ bandwidth with the bandwidth that a standard P4 switch uses, without
the custom header and tagging procedure. This will give us some information
about the computational power our P4 program needs.

We have also added some measurements with the counting procedure imple-
mented on our switches. As we mentioned in 4.2.4, the counting per packet flow
procedure is not going to be implemented in a production grade switch because
most of them have a dedicated register for that purpose. However, it highlights the
difference in performance between a simple forwarding procedure, a forwarding and
packet tainting procedure, and a forwarding packet tainting and counting per-flow
procedure.

44 CHAPTER 5. EVALUATION

5.2.1 Measurements

We used iperf [6] to compute the bandwidth and Gnuplot [3] to graphically rep-
resent the measurements. Furthermore, the P4 program runs in a Linux Virtual
Machine, with four cores (intel i7 6700HQ) CPU and 16 GBytes of RAM. In fig-
ure 5.3 we observe that the P4 switch that was programmed only to forward the
packets, and the P4 switch that was creating a custom header and adding informa-
tion on it for every packet, have almost the same performance. However, when we
add the counting procedure above that, we experience a severe bandwidth drop.
Finally, in Table 5.1 we illustrate the percentage difference between the actions of
tainting the packets, and tainting and counting them, and the Simple forwarding
action. We observe that the tainting actions has no impact at all in the perfor-
mance, compared to the simple forwarding action. But when we add the counting
process, the impact in performance is approximately 100 % worse.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

B
a
n
d

w
id

th
 (

M
b

it
s/

s)

time (sec)

Simple forwarding
Taint

Tainting with Counting

Figure 5.3: Default TCP measurement for 1 hop

Table 5.1: Default TCP measurement for 1 hop
Mean Median

Tainting -2.4 % 0 %
Tainting and Counting 113 % 127.4 %

In order to distinguish the performance between our P4 switch and a basic
forward P4 switch, in figure 5.4 we used iperf to send tcp packets with a maximum
buffer size of 150 bytes. This means that the target device will have to deal with a

5.2. OVERHEAD OF P4DEBUGGER 45

much larger amount of packets for the same amount of time, considering that the
default TCP buffer size is 128 KBytes in iperf. The figure 5.4 confirms our thought,
and now we can clearly observe the impact in performance that our P4Debugger
has. From the Table 5.2, we observe that the process of tainting the packets,
decreases the bandwidth by approximately 40% based on simple forwarding action,
while the counting process, by 135 %. Nevertheless, it is highly impossible to have
a consistent amount of that small packets. Finally, the p4 program that taints
the packets and counts them based on their flow, we see that the performance is
significant lower.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40

B
a
n
d

w
id

th
 (

M
b

it
s/

s)

time (sec)

Simple forwarding
Taint

Tainting with Counting

Figure 5.4: TCP measurement for 1 hop and 150 bytes of packet size

Table 5.2: TCP measurement for 1 hop and 150 bytes of packet size
Mean Median

Tainting 43.3 % 40.3 %
Tainting and Counting 135 % 134 %

The last two figures have been produced from the same iperf instruction as the
previous ones, but in a different topology. This time we measure the bandwidth
between 2 hosts that are four switches (hops) away. This will give us a more solid
sample of the actual overhead compared to the basic forwarding switch. In figure
5.5 we observe that even though the measurement is performed in 4 P4 switches
that run our packet tainting procedure, we have almost the same performance in
bandwidth as the simple forwarding switch. The Median difference of the process
of tainting based on simple forwarding, is 0 %, and the Median difference is 13%

46 CHAPTER 5. EVALUATION

as shown in Table 5.3.

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

B
a
n
d

w
id

th
 (

M
b

it
s/

s)

time (sec)

Simple forwarding
Taint

Tainting with Counting

Figure 5.5: Default TCP measurement for 4 hops

Table 5.3: Default TCP measurement for 4 hops
Mean Median

Tainting 13 % 0 %
Tainting and Counting 60.5 % 46.2 %

The last figure 5.6 confirms once again that if we try a very small size of
packets, we end up stressing out our implementation, which clearly has a difference
in performance compared to the simple forwarding one. The packet tainting and
counting per flow program preview a worse performance in all scenarios. Table 5.4
informs us that we have an impact in performance of 50 % if we use the tainting
process, and approximately 150 % if we also count the packets.

In Conclusion, the implementation of the packet tainting process performs very
well in normal size packets, although we have to understand that BMv2 switches
are not suitable to provide reliable performance tests. As we expected, when we
tried to send a very small size of packets, the performance decreased. The counting
process was a heavy task, and the impact on performance is obvious in all scenarios.

5.2. OVERHEAD OF P4DEBUGGER 47

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35 40

B
a
n
d

w
id

th
 (

M
b

it
s/

s)

time (sec)

Simple forwarding
Taint

Tainting with Counting

Figure 5.6: TCP measurement for 4 hop and 150 bytes of packet size

Table 5.4: TCP measurement for 4 hop and 150 bytes of packet size
Mean Median

Tainting 53.7 % 50.4 %
Tainting and Counting 142 % 164 %

48 CHAPTER 5. EVALUATION

Chapter 6

Conclusions & Future Work

6.1 Conclusions

SDN aims to make networks easier to manage. However, this is done by pushing
complexity into SDN control software itself. Just as sophisticated compilers are
hard to write but make programming easy, SDN control software makes network
management easier, but only by forcing the developers of SDN control software to
confront the challenges of asynchrony, partial failure, and other notoriously hard
problems inherent to all distributed systems.

The techniques for troubleshooting SDN control software are very complex and
may include inspection of logs in the hope of finding the triggering input. In this
master thesis, we implement a tool that will help SDN programmers trace possible
errors in their network with ease and reliability. P4Debugger applies to all the
P4 programmable networks, and we showed that it is capable of quickly revealing
network errors, that in other cases, it would take time and probably many resources
to find.

Our method enables packet backtracing through the custom header we have
implemented, which helps network programmers detect and resolve logic bugs,
such as network loops and protocol compliance errors. Furthermore, we are able
to version the forwarding tables of the target devices, which enables us to detect
bugs and possible misconfigurations that may dynamically occur from migration
events or any other dynamic programming instruction.

Based on the Results 5.2, although we cannot completely evaluate our tool
because of the constraints of the bmv2 switch, we proved that despite all these
constraints and limitations, our implementation performs almost the same with a
P4 program that simply forwards packets. So we expect that a production-grade
P4 switch like Tofino is able to run our P4 program with zero constraints. That
said, if we try to forward a stream of very small packets, then we experience some
performance drop. P4Debugger is a valuable contribution to SDN programmers
because, with a very small trade off in performance (it may be almost no-existent
in a production P4 switch), we solve the problem that SDN networks created.

49

50 CHAPTER 6. CONCLUSIONS & FUTURE WORK

6.2 Future Work

We see the following research and engineering directions as interesting future work.

• TraceMac : Using an extra field in the custom header of the packet, we
could program the switch to perform traceroute, but in the Link Layer. In
more detail, every time the switch receives a packet with the raised flag in
the specified field, it will send back a packet from where it came from, and
eventually, it will reach the host who initiated TraceMac, and inside the
packet, there are going to be all the information about the switches and
ports the packet came through. The difference with our implementation is
that with TraceMac, we can make an active path exploration of our topology.

• Policy analysis tool : The current approach does not allow us to insert
policies that our network must comply with. We can only backtrace a packet
to see in which switch the error occurs. We need to implement a frame-
work where the network administrator can input the desired policies, and
the framework will check the cloned packets for any violation. This way, the
Network operator will react instantly and mitigate the problem.

• Open Source P4Debugger : The current version of the framework is in
the stage of prototyping. We have to test our P4 program to a production
grade P4 switch in order to validate the produced measurements. After that,
we can open source the code of the tool in order to attract more developers
to maintain and supporting the tool.

• All-in-one API : We plan to combine the Policy analysis tool, along with
the TraceMac, and the Visualizer in an API where the Network operator will
have a suite of active and passive monitoring tools for debugging and policing
the network.

Bibliography

[1] Behavioral-Model. https://github.com/p4lang/behavioral-model.

[2] GDB: The GNU Project Debugger. https://www.gnu.org/software/gdb/
documentation/.

[3] Gnuplot. http://www.gnuplot.info/.

[4] gRPC official page. https://grpc.io/docs/what-is-grpc/introduction/.

[5] Intel Tofno 2 P4 swtich. https://www.intel.com/content/www/
us/en/products/network-io/programmable-ethernet-switch/
tofino-2-series.html.

[6] Iperf. https://iperf.fr/iperf-doc.php.

[7] Node.js. https://nodejs.org/en/.

[8] P4 language. https://github.com/p4lang.

[9] P4Runtime. https://p4.org/p4-spec/p4runtime/v1.0.0/
P4Runtime-Spec.pdf.

[10] P4Runtime Protobuf. https://github.com/p4lang/p4runtime/tree/v1.0.
0/proto.

[11] P416 Portable Switch Architecture (PSA). https://p4.org/p4-spec/docs/
PSA.html.

[12] Vis.js. https://visjs.org/.

[13] Internet Protocol RFC 791. https://rfc-editor.org/rfc/rfc791.txt,
September 1981.

[14] Ieee standard for local area network mac (media access control) bridges. AN-
SI/IEEE Std 802.1D, 1998 Edition, pages 1–373, 1998.

[15] Aditya Agarwal, Mark Slee, and Marc Kwiatkowski. Thrift: Scalable cross-
language services implementation. Technical report, Facebook, 4 2007.

51

https://github.com/p4lang/behavioral-model
https://www.gnu.org/software/gdb/documentation/
https://www.gnu.org/software/gdb/documentation/
http://www.gnuplot.info/
https://grpc.io/docs/what-is-grpc/introduction/
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://iperf.fr/iperf-doc.php
https://nodejs.org/en/
https://github.com/p4lang
https://p4.org/p4-spec/p4runtime/v1.0.0/P4Runtime-Spec.pdf
https://p4.org/p4-spec/p4runtime/v1.0.0/P4Runtime-Spec.pdf
https://github.com/p4lang/p4runtime/tree/v1.0.0/proto
https://github.com/p4lang/p4runtime/tree/v1.0.0/proto
https://p4.org/p4-spec/docs/PSA.html
https://p4.org/p4-spec/docs/PSA.html
https://visjs.org/
https://rfc-editor.org/rfc/rfc791.txt

52 BIBLIOGRAPHY

[16] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. Designing
heavy-hitter detection algorithms for programmable switches. IEEE/ACM
Transactions on Networking, 28(3):1172–1185, 2020.

[17] Nikos Bizanis and Fernando A. Kuipers. Sdn and virtualization solutions for
the internet of things: A survey. IEEE Access, 4:5591–5606, 2016.

[18] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev., 44(3):87–95, July 2014.

[19] Mihai Budiu and Chris Dodd. The p416 programming language. SIGOPS
Oper. Syst. Rev., 51(1):5–14, September 2017.

[20] Ramakrishnan Durairajan, Joel Sommers, and Paul Barford. Controller-
agnostic sdn debugging. In Proceedings of the 10th ACM International on
Conference on Emerging Networking Experiments and Technologies, CoNEXT
’14, page 227–234, New York, NY, USA, 2014. Association for Computing Ma-
chinery.

[21] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn: An
intellectual history of programmable networks. SIGCOMM Comput. Commun.
Rev., 44(2):87–98, April 2014.

[22] Mark Fedor, Martin Lee Schoffstall, Dr. Jeff D. Case, and James R. Davin.
Simple Network Management Protocol (SNMP). RFC 1098, April 1989.

[23] Mukta Gupta, Joel Sommers, and Paul Barford. Fast, accurate simulation for
sdn prototyping. In Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking, HotSDN ’13, page 31–36, New
York, NY, USA, 2013. Association for Computing Machinery.

[24] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maziéres,
and Nick McKeown. Where is the debugger for my software-defined network?
In Proceedings of the First Workshop on Hot Topics in Software Defined Net-
works, HotSDN ’12, page 55–60, New York, NY, USA, 2012. Association for
Computing Machinery.

[25] Bruce Hartpence. Packet Guide to Routing and Switching. O’Reilly Media,
Inc., 2011.

[26] Raj Jain and Subharthi Paul. Network virtualization and software defined
networking for cloud computing: a survey. IEEE Communications Magazine,
51(11):24–31, 2013.

[27] Rowan Klöti, Vasileios Kotronis, and Paul Smith. Openflow: A security anal-
ysis. page 1, 2013.

BIBLIOGRAPHY 53

[28] Diego Kreutz, Fernando M. V. Ramos, Paulo Verissimo, Christian Esteve
Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined net-
working: A comprehensive survey, 2014.

[29] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down
Approach. Pearson, Boston, MA, 7 edition, 2016.

[30] Yong Li and Min Chen. Software-defined network function virtualization: A
survey. IEEE Access, 3:2542–2553, 2015.

[31] Kshiteej Mahajan, Rishabh Poddar, Mohan Dhawan, and Vijay Mann. Jury:
Validating controller actions in software-defined networks. In 2016 46th An-
nual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pages 109–120, 2016.

[32] Subhasree Mandal. Experience with b4: Google’s private SDN backbone.
Santa Clara, CA, July 2015. USENIX Association.

[33] M. Marchese and M. Mongelli. Simple protocol enhancements of rapid span-
ning tree protocol over ring topologies. Comput. Netw., 56(4):1131–1151,
March 2012.

[34] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: En-
abling innovation in campus networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, March 2008.

[35] Gilbert N. Nde and Rahamatullah Khondoker. Sdn testing and debugging
tools: A survey. In 2016 5th International Conference on Informatics, Elec-
tronics and Vision (ICIEV), pages 631–635, 2016.

[36] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Green-
berg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu
Wu, Changhoon Kim, and Naveen Karri. Ananta: Cloud scale load balancing.
SIGCOMM Comput. Commun. Rev., 43(4):207–218, August 2013.

[37] Peter Perešíni, Maciej Kuźniar, and Dejan Kostić. Dynamic, fine-grained data
plane monitoring with monocle. IEEE/ACM Transactions on Networking,
26(1):534–547, 2018.

[38] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Har-
sha V. Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov,
and Hongyi Zeng. Engineering egress with edge fabric: Steering oceans of
content to the world. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’17, page 418–431, New
York, NY, USA, 2017. Association for Computing Machinery.

54 BIBLIOGRAPHY

[39] Colin Scott, Andreas Wundsam, Barath Raghavan, Aurojit Panda, Andrew
Or, Jefferson Lai, Eugene Huang, Zhi Liu, Ahmed El-Hassany, Sam Whitlock,
H.B. Acharya, Kyriakos Zarifis, and Scott Shenker. Troubleshooting blackbox
sdn control software with minimal causal sequences. SIGCOMM Comput.
Commun. Rev., 44(4):395–406, August 2014.

[40] Xingwei Wang, Hong Zhao, and Jiakeng Zhu. Grpc: A communication
cooperation mechanism in distributed systems. SIGOPS Oper. Syst. Rev.,
27(3):75–86, July 1993.

[41] Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja Feldmann.
Ofrewind: Enabling record and replay troubleshooting for networks. 06 2011.

[42] Yinbo Yu, Xing Li, Xue Leng, Libin Song, Kai Bu, Yan Chen, Jianfeng Yang,
Liang Zhang, Kang Cheng, and Xin Xiao. Fault management in software-
defined networking: A survey. IEEE Communications Surveys Tutorials,
21(1):349–392, 2019.

	MSc_Thesis_Template (33).pdf (p.1-72)
	Table of contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Outline of the Thesis

	Theoretical Background
	Traditional Switches
	Media access control address
	Filtering and Forwarding
	Learning
	Loop Prevention

	Software Defined Networking
	SDN Applications
	Monitoring and Measurement
	Security
	Content Availability

	Openflow

	P4 Programming language
	Overview
	Advantages of P4
	The design of P4
	P416 datatypes
	P416 architecture
	PSA
	V1Model
	Behavioral Model V2
	Apache Thrift RPC
	gRPC
	Mininet
	P416 example

	P4Runtime
	Architecture
	Single Embedded Controller

	Related Work
	Where is the Debugger for my Software-Defined Network?
	Controller-agnostic SDN Debugging
	OFRewind

	P4Debugger
	Workflow
	Data Plane
	IPv4 Header
	Custom Header
	Forwarding
	Packet Counting Per Flow
	Data Plane Workflow

	Control Plane
	Visualizer
	Back-End
	Front-End

	Evaluation
	P4Debugger in action
	Overhead of P4Debugger
	Measurements

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography

	img20211115_02324690.pdf (p.73)

