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P4Debugger: Tracing through Network Changes with
Table-Version Packet Tainting

Abstract

The increasing consumer demands for network performance and flexibility have led
enterprises to expand in Software Defined Networking (SDN). SDN is a technology
that changes the way that networks work by separating the network’s control logic
from the underlying switches and routers, promoting centralization of network
control, and introducing the ability to program the network. This allows Network
administrators to use network devices and supervise them from a programmable
controller. However, configuring these devices in combination with the significant
growth of protocol headers increases the complexity and makes them prone to bugs.
P4 is a language that works in conjunction with SDN, which expresses how packets
are forwarded by the programmable network devices and have the ability to add
custom headers to packets.

In this thesis, we introduce P4debugger, a prototype network debugger for SDN
developers which exploits the abilities of the P4. Our debugger is divided into two
parts; The first part is that we taint each packet that passes through the switch
with some information that allows us to backtrace them, detect loops, as well as
inspect them for any policy violation. For inspecting the extra information, we
use monitors that sample and analyze the packets that pass through each switch.
Network administrators can preview from these monitors the behavior of the net-
work based on the fields in the custom header of the packets. The second part of
our implementation is that our controllers save the state of the flow tables before
they make any changes to them. We implemented a web app to preview a visual
representation of the network topology, and based on the flows the switch had at a
specified time, the web app simulates its behavior. By employing this web app, the
user is capable of observing the reachability as well as problems such as network
loops.

We evaluate our thesis by presenting three errors commonly seen by SDN pro-
grammers, which provide a solid example of how P4debugger helps a programmer
find the source of the problem. Finally, we calculated the overhead that P4debugger
applies to the network topology, concluding that we contribute a valuable tool to
Network administrators.






P4debugger: Ilagaxorobdnorn arAaywy dixTtOOU
XEYOLLOTOLWVTAUSC TPOCARLOCUEVES XEQYANIDES xal
HOUTULY POUPT| TULVAX WV

ITepiandn

O auEaVOUEVES AMAUTACELS TV XATUVOAWTWY YL ATOG0TIXG XAk EVEMXTO BIXTUO
€youv odnyfoel Tig emyelperioelg va enextadoly oto Software Defined Networking
(SDN). To SDN ebvou g teyvoloyia mouv odAdler tov Tpémo Aettovpyiog twv Oi-
%100V dlayweilovtoag T Aoyixn eEAéyyou Tou Bixthou and To unoxelueva switches xou
routers, TEOWIMOVTAC TOV CUYXEVIPWTIOUO TOU EAEYYOU TOU OLXTOOU %O ELGAYOVTOG
T BUVATOTNTO TEOYPUUUATIONOU Tou. AUTO ETUTEENEL OTOUC BlayERlo TEC BIXTOOU Val
YENOWOTOOUY GUOXEVES BIXTOOU XU VA TI ETOTTEVOLY AN EVOV TEOYEAUUUATICOUE-
vo eheyxth). 01600, 1N SLPORPWOT| QUTWY TWV TEOYPOUUATILOUEVWY GUGKEUWY OE
CUVBUACUO UE TN oNUoVTIX! aOENoT TWY XEPUABWY T TOXOAAOU, aUEdVEL TNV To-
Aumhoxotnta xou Ti¢ xoho T emippenelc oe opdhyata. To P4 elvar plor yhwooo mou
Aertoupyel oe ouvbuaoud ye to SDN, 1 omolo exgpdlel Tov TpdTo Pe TOV omolo Ta
Toxéta Tpowdolval and T TEOYPUUHATILOUEVEC GUOXEVES BIXTVOU Xou €YOUV T1) Bu-
VOTOTN T TROCUNAANG TEOGUPUOCUEVKY XEPAUADWY GE ToXETA.

Ye authy v epyaoia, ewodyouvye to P4ddebugger, éva mpwtdtuTo MEdYEOUUY E-
VTOTUGHOU GQUAIATODY DxTLOL Yia TpoyeaupatioTée SDN To onolo expetahhedeton Tig
ovotnTeg Tou P4, To npdypopua eviomiopod cpoipdtony ywelletar oe 6o pépn. To
TEMTO PEPOC Efval OTL YENOLOTIOLOVUE ULdl TROCUQUOCUEVT] XEPUAIDAL YLOL VOL ELGEYOUUE
Thnpogopla o xde moxéTo mou TepVdeL amd To switch ye anotéleopa vo umopolue
VO XAVOUUE LY VINASTNOT TOU ToXETOU, VoL EVIOTICOUUE Tuy OV Bedyouc, xodmg xou va
ehéyoupe yio xdmota mopaPioor g TohTxAc Tou dtbou. ot tov éheyyo Twv emi-
TAEOV TANEOYORLOY, YENOWOTOLOUUE TURATNENTES TOU ovOADOUY BELYUUTOANTTIXG Tal
Tax€Ta Tou TEPVOLY amd xde switch. Ou Sloyelpio Tég BixTHOU YENOWOTOUMVTAS TOUG
TOEATNENTES, XATAVOOUV T1 GUUTERLPOEA TOu BixTOoL e Bdor tor Tedior oTNY Teooue-
HOOUEVT XEQUADA TV Toxétwy. To deltepo pépog Tng eapuoync pag eivar 6Tl oL
EAEYATEC o amoUNxEVOUY TOUC TVAXES POTIC TPV XAVOUV OTIOLEGOHTOTE OANAYES OF
autolg. Kotaoxeudooue plo e@apuoyn loTol Yo TEOETIGKOTNOT| ULIC OTTIXAG OVATO-
pdoTaone TG Tomoloyiag Tou dtbou xou Ue Bdon Ti¢ poég mou elye To switch oe wa
CUYXEXPWEVT] YPOVIXT| OTIYUY|, 1) EQPUPUOYT L0TOU TROCOUOLOVEL T GUUTERLPORY. TNG.
XenowWonolvTog auTHY TNV EQUEUOYT LoToU, 0 ¥ehoTng ivon ot Y€on va Tapatneroe
TNV BUVITOTNTA TROGEYYLONE TOU BXTUOU XaddS xou TROoBAAuaTa OTKS oL Bedyot.

AZohoyolue T Bratefn pog topoucidlovtog tela cuviin Addn Tou topatneoly
ot mpoypopuatiotéc SDN, ta onola mapéyouy €va otoepd TORABELYA VLol TO TS TO
P4debugger Bondd évav npoypoupatiot| va Beet Tnv Ty Tou mpoBAfuatog. Télog,
unohoyloaue T emntwoelc mou €xel o Pddebugger 6cov agopd tnv anddoor Tou
OTO0U, XUTAAYOVTUG OTL GUVELGHPEPOUUE EVOL TOADTIUO EQYAUAEID GTOUC DLUYELQIOTES
othou.






Euvyapioticeg

Oa fidela TewTioTWE Vo U AP THOW ToV ENOTTN xadnyNTy Hou x0plo Eevopahvta
Anunteémovho, yio T oTARIEN XU TNV EUTLOTOGUVN Tou You €deile xad OAn TN Ot
BEXELL TWV YETATTUYLOXGY 0ToudwY wou. Emlong Vo Alela va evyaplotiow tov Ap.
Baoiieio Kotpdyvn yio Tic ouufBourée, Tig WOEEg xon TOV YpOVO TOU UPIERWOE.

Oa fdeha vo expedon Tic evyaptotie pou otov Kaldnynth x. Kdota Moyxoitn
xou otov Koadnyntn x. Xerjoto Awdoxo yua tn ueydhn mpodupla vor GUUPETEOUY OTNV
TEWEAT| ETLTEOTY.

Axdua, Vo Hdela va euyaplothiow Tto Ivetitolto ITinpogopiniic tou Idpluatog
Teyvohoyloc xar "Egeuvag yio tnv unotpogio mou uou teocépepe xod)” OAN TN didpxela
TNG UETUmTUYLOXC Hou epyactog.

[ToAAég euyopiotieg Yo ko Vo Bwow ot YEAN Tng ouddoc tou Inspire Group
INopyo Nouwxd, Mdvo Aoantdxn, Baciin Iletpénouro xou I'ideyo Emtounvitd.
Enilong, da Hdeha va euyopiothion toug gihoug pou, Koota Petgpatlh Lwtien To-
toun, Kooto Apoxaddnn xou Idcwmva Mactopdxn yio Tnv 6 TARLEN %ot TOV Topoy OYLXO
Yeovo mou nepdoaye pall.

Téhog Vo Aleha Vo EUYEIOTACW TNV OXOYEVELXL HOL Xl LOLOLTERO TOUC YOVELS
pou Iloavtedr xou XpucoUha, xodng xon tar adéppiar pou MtéAAa, Mopioahéva, Nixdia,
Opéotn, Negéhn xar tn olvTeopo pou AvOpLdvr yio TNV UTOCTARIEN Xou TNV oydmn
ToU Ue meptEBauiay.
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Chapter 1

Introduction

1.1 Motivation

Software Defined Networking (SDN) is an emerging paradigm that decouples the
control plane from the data plane to simplify network management and enable
innovations in networking [28]. This split architecture indicates the control plane to
make all the control logic decisions and the data plane to execute these forwarding
decisions. SDN can implement networks that can rapidly change the demands for
network resources or quickly evolve to match users’ demands. Some technologies
that match with the above statement are Network Function Virtualization (NFV)
[30], Internet of Things (IoT) [17] and cloud computing |26].

SDN has undergone continual development in the past years and has been
a research subject from academia and industry people. Many IT corporations
have adopted SDN technology to deploy their Networks. More specifically, Google
launched B4 project [32], Facebook launched edge fabric [38] and Microsoft pub-
lished Ananta [36]. In addition, SDN is recognized as the critical technology that
enables the development of many other network technologies such as 5G, IoT, and
NFV. Therefore, SDN constitutes the best choice for modern network management.
Nevertheless, despite the significant attention and adoption of SDN, most network
operators have concerns about the reliability of this technology [42].

These concerns are because SDN simplifies network management by providing
a centralized API (SDN controller) where network management programs can be
written. The SDN controller must manage policy configurations, host migrations,
react to failures, and many other events. The advantage of a software-based man-
agement plane is that we can dynamically counter all the above events and make
our network as adaptive and flexible as it can be. However, this creates a highly
complex system that is prone to bugs [31] [39].

When we have a network problem (e.g., a loop or blackholing ), it suggests
that we have a bug in our control logic (controller), and network administrators
need to trace the source of this bug and fix it as fast as possible. Nevertheless,
this debugging procedure is highly time-consuming and demands lots of resources
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as developers may spend many hours trying to find the bug inspecting various
forwarding tables, and creating custom traffic in order to understand where packets
escape the original flow [37].

A single misconfiguration or a typographical error can cause many problems,
from reachability issues to loops or misleading packets, which lead to limitation
of the providing services and may cost millions. Those problems can appear as
soon as we program the control plane, but there is a possibility that we trigger
these wrong configurations when our network reaches a different state (e.g., when
a switch shuts down). So as long as the specific switch is down, we may have
loops or blackholing problems. However, when the switch is up again, the network
returns to a healthy state. When network administrators build a dynamic network
configuration, it is impossible to check all these cases.

P4 (Programming Protocol-Independent Packet Processors) is a domain-specific
programming language that takes the concept of SDN one step further by making
the forwarding devices fully programmable. P4 is used to define the behavior of the
data plane in P4 programmable devices. The combination of SDN and P4 gives net-
work administrators the capability for a dynamic and flexible, fully programmable
network.

Furthermore, P4 forwarding devices allow the programmer to implement custom
protocols without any dependency on the switch vendor. P4 language is able
to only include the protocols that the device needs for forwarding the packet,
which significantly reduces the complexity and enables easier verification. Finally,
hardware P4 switches can reach up to 12.8 Tb/s with up to 400GbE port like
Tofino 2 switch [5].

Our goal is to help network administrators to find potential errors in their
topology fast and with ease. This way, they will not hesitate to try more ven-
turesome approaches on their network, which may lead them to develop it further.
In this thesis, we present P4Debugger, a prototype debugger for SDN networks,
which exploits the abilities of the P4 language to be a reliable and efficient tool.
P4Debugger provides a web application where network administrators can load
past or current time flow tables and simulate the forwarding state of their network.
This enables them to research previous states of the network and compare the dif-
ferences in its behavior. Moreover, we taint each packet that passes through the
switch with some information that allows us to backtrace them, detect loops, as
well as inspect them for any policy violation.

1.2 Outline of the Thesis

The thesis is structured as follows. In Chapter 2, we introduce all the relevant
theoretical background related to SDN, P4 language, as well as all the development
platforms that we used in this thesis. In Chapter 3, we present the related work we
found during our literature review, and we annotate the most important elements
of each work. Chapter 4 is where we analyze the Implementation of P4Debugger,
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we divide this chapter into individual pieces, and the most important of them is the
Data plane, which describes the functionality of our P4 program, after that is the
Control Plane where we show how we manage the P4 switches, and finally the Web
Application where we describe how we parse and visualize our data. In Chapter 5,
we present some use case scenarios and describe how our Debugger deals with the
individual problems. In Chapter 6, we present the results from the performance
evaluation, and finally, in Chapter 7, we present our conclusion and possible future
work.



CHAPTER 1. INTRODUCTION



Chapter 2

Theoretical Background

2.1 Traditional Switches

The basic role of a Link-Layer switch is to receive incoming frames and forward
them onto outgoing links. Although switches are transparent for hosts and routers,
they play the foremost role in their interconnection [29]. The main operations that
a switch perform are filtering, forwarding, self-learning, and prevention of loops.

2.1.1 Media access control address

The link-layer address is variously called as such physical address or a LAN address,
but the most popular one is the Media access control (MAC) address. Hosts and
routers do not have a MAC address, but rather their network interfaces are the
ones that do. A host or a router may have multiple interfaces, which corresponds
to multiple MAC addresses. The link-layer switches do not have MAC addresses
on their interfaces; they do their job transparently, which means that the router or
host does not have to address a specific frame to the intermediate switch.

The MAC address, which tries to reach all hosts and routers in a network,
except the interface where it comes from, is named broadcast address and is
represented as ff:ff:ff:ff:ff:ff. The second category of special MAC addresses is mul-
ticast addresses. These addresses belong to multiple hosts and are identified based
on the least significant bit of the destination MAC being set to 1.

2.1.2 Filtering and Forwarding

Filtering is the operation that the switch does in order to determine if the frame
should be forwarded to some interface or just dropped. Forwarding is the op-
eration of the switch to determine the interfaces to which a frame should be for-
warded. As a means to perform these operations, the switch is using a switch
table. This table contains information about the MAC address of the associated
host, the switch interface, and the time at which the entry is placed in the table. A
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MAC address is unique and can matches with only one interface, except for multi-
cast and broadcast addresses that associate with multiple interfaces. The switch
checks the destination MAC address at the header of the frame and performs a
lookup at the switch table to find the matched interface. If a matched interface is
different from the interface that the packet came from, then the switch forwards
the packet to the specific interface. If there is no match for that MAC address, the
switch forwards copies of the frame to all interfaces, except the interface that the
packet came from, so-called broadcasting. Finally, the filtering method is applied
when the matched entry has the same interface that the packet came from. In this
case, there is no need to forward the frame to any interface. The switch filters the
frame by discarding it.

2.1.3 Learning

Especially in large topologies, it is not easy to populate the switch tables manually.
Thankfully the switch has a property that can build its table automatically. This
self-learning capability is accomplished by saving for every "new" incoming
frame its source MAC address, the interface from which the frame arrived, and
the time that the event happened. Since the network topology can change and the
switch table size is finite, switches must keep the most recent hosts in their tables.
Keep most recent hosts to their tables is accomplished by updating the time for
active entries and removing the entries if no frames are received with that address
after some period of time (aging time) [29].

2.1.4 Loop Prevention

A reliable and fault-tolerant network is required to have redundant links. These
extra links imply loops in the network, which can degrade user connectivity and
even destroy it entirely. Unlike the IP layer, which has a time to live (TTL) counter,
which decreases for every (Layer 3) device that passes through, Layer 2 devices do
not have any built-in protection against loops. [25]. The solution to this problem is
to use the Spanning Tree Protocol (STP). There are many different versions of this
protocol, such as Rapid Spanning Tree Protocol (RSTP) and Multiple Spanning
Tree Protocol (MSTP), but the first STP is standardized in IEEE 802.1D 1998
[14]. STP prevents loops by creating a spanning tree in the network, which keeps
only one link between two nodes. Furthermore, STP blocks the traffic from any
other link that is not part of this topology.

2.2 Software Defined Networking

We can divide computer networks into three different planes: the data, control, and
management plane. The data plane is represented by the networking devices, which
are responsible for forwarding the traffic. The control plane is the network’s control
logic, meaning that it represents the policies used to populate the forwarding tables
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of the networking devices, and the management plane can access remotely and
configure the policies of the control plane using services such as Simple Network
Management Protocol (SNMP) [22]. So basically, the management plane defines
the policy, the control plane compels the policy, and the data plane forwards the
data based on the above [28].

Traditional IP networks, although widely used, are tough to manage. These
networks have many types of equipment such as routers, switches, middleboxes,
firewalls, network address translators, server load balancers, and intrusion detec-
tion systems [21]. The data and control plane is tight together in the networking
device, making the whole structure completely decentralized. As for the manage-
ment plane, a programming interface is used by the network operators in order to
apply the network policies (which are becoming more and more complicated) to
each network device separately using low-level commands that usually are unique
for each vendor and even across different products from the same vendor [28]. The
challenges mentioned above have decreased the innovation rate, increased complex-
ity, running, and operational costs.

Software-Defined Networking (SDN) is an emerging architecture that breaks
the vertical integration by decoupling the control plane and data plane of network
devices. With the uncoupling of the control and data plane, network devices take
over a much simpler role, which is to forward the traffic, and the control plane can
be managed by a centralized controller, which facilitates the network configuration,
policy enforcement increases the innovation rate.

With these actions, the need for a programming interface between switches and
the SDN controller is mandatory. Southbound Interface (SI) provides communica-
tion between data and the control plane using the southbound API. Furthermore,
the Northbound Interface (NI) uses the northbound API in order to translate the
high-level policy rules from the management plane to low-level instruction sets for
the control plane, as shown in Figure 2.1.

2.2.1 SDN Applications

We are going to provide some case examples that SDN is used for.

2.2.1.1 Monitoring and Measurement

Network architectures are very complicated, and the amount of data needed to
handle them is higher than ever. So it is critical to know if we take as good
advantage of our resources as possible. SDN provides applications that give us the
luxury to measure the traffic between the links and monitor the latency. The above
information can make the network operators alter the traffic flow, alert or optimize
the network.
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Figure 2.1: Caption

2.2.1.2 Security

Network Function Virtualization (NFV) combined with SDN creates a proactive
environment supporting virtual services that run in the network layer, reducing
the risk of harmful attacks as well as responding much quicker to similar incidents.
When a security breach occurs, it is crucial to identify it quickly and ensure that
other network components are safe. In order to accomplish that, the integration of
security services into SDN creates a more proactive environment.

2.2.1.3 Content Availability

Service providers use content servers in order to deliver or cache the media that
users need. These content servers need to distribute the media across multiple
geographic areas and do it efficiently, so they do not affect the Quality of Service
(QoS). SDN applications are easy to expand across an entire data center and be-
cause abstracting the network controls allows for easy and efficient transport of
data across the data center.

2.2.2 Openflow

The most common application programming interface (API) in SDN is OpenFlow
[34]. Although it started as an academic research project between Stanford Uni-
versity and the University of California at Berkeley, OpenFlow gained a big part of

Oasdfsadfsafd
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the industry. Google deployed Openflow to interconnect its datacenter backbone
network across the globe [27]. Furthermore, Alibaba, ATT, the U.S. National Se-
curity Agency (NSA), and Microsoft are deploying OpenFlow, which proves that
SDN and especially Openflow is a protocol that more and more companies are
adopting.

When a switch supports the OpenFlow API, we call it OpenFlow switch. The
basic idea of how OpenFlow switches operate is that most switches and routers are
using TCAM'’s to construct the flow tables, which are used to implement firewalls,
NAT, QoS, etc. OpenFlow switches have extracted the most common flow-table
functions from the industry switches and implemented them on their switches. This
way, Openflow creates a protocol that is open, simple, and user-friendly.

The essential parts of an OpenFlow switch are three. The first one is the Flow
Table, which has an action associated with each flow entry, the second one is
the Secure Channel that connects the switch with the remote controller, and the
third one is the OpenFlow Protocol, which, as we previously said, it provides the
way for the controller to communicate with the switch (over the Secure Channel).

Na anaferw meionektimata tou openflow kai pinakaki apo p4 14 paper.

2.3 P4 Programming language

2.3.1 Overview

Programming Protocol-independent Packet Processors (P4) is a programming lan-
guage which first presented by Pat Bosshart and his team in 2014 [18]. Two years
after, in 2016, Mihai Budiu and Chris Dodd presented a new version of the lan-
guage with P44 as a reference [19], and in order to distinguish the two versions,
when we are referring to the first one, we use P414.

P4 is a high-level language that works in parallelism with multiple SDN con-
trollers such as OpenFlow. Although OpenFlow is the most common SDN con-
troller, it has a significant disadvantage: it operates only in explicitly specified
protocol headers. The more header fields OpenFlow supports, the more complex
the specification becomes.

P4 language was developed with three main goals: Reconfigurability, Proto-
col Independence, and Target independence. Reconfigurability indicates that
programmers can change how the forwarding devices process packets after they have
deployed. Protocol independence refers to forwarding devices that should not be
bound to a specific network protocol, and target independence aims that program-
mers are able to configure how packets are processed regardless of the hardware
device [18].

Industrial networks are constantly adding new encapsulation layers to the pack-
ets to improve security or for better regulation, which extends the controller’s API
specification and creates the need to develop new software switches that can man-
age these new protocols. P4 is based on application-specific integrated circuits
(ASICs) that can reach speeds up to a terabit. These chips can provide adjustable
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mechanisms for parsing packets and reconfigurable match-action tables, which are
essential for adding new header fields without upgrading the forwarding devices.

Figure 2.2 shows the relationship between P4 and the target device. Depicts
how P4 is used to configure the target device, as well an API (such as OpenFlow
or P4ARuntime) that is designed to populate the fixed function switches.

User supplied P
: Control Plane
E v ~|w
: P4 Program . P4 Compiler (= Add/remove Extern Packet-in/out
: : ( E table entries control
| ] S
i | P4 Architecture || || Target-specific N
: Model : configuration | Load Tables
1 f binary
i —— -
Vendor supplied

Figure 2.2: Programming a P4 switch
Source: P4.org, ONF

2.3.2 Advantages of P4

P4 provides a number of serious benefits compared to some state-of-the-art for-
warding devices that can be adjustable (e.g managed switches)

e Portability P4 can construct refined packet processing algorithms using
general-purpose operations and table look-ups that can be used across hard-
ware targets that have the same architecture.

e Flexibility P4 has the ability to express the packet forwarding policies of the
network as programs, compared to hardware-specific functions of traditional
switches.

e Further decoupling P4 target devices can use abstract architectures to
further decouple the low-level architectural details from the high-level pro-
cessing.

e Component libraries Target manufacturers can supply component libraries
to wrap hardware-specific functions into portable high-level P4 functions.

e Debugging Network administrators can write P4 programs based on a spe-
cific architecture to aid in the debugging process.
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2.3.3 The design of P4

P444 language is the latest version that P4.org has published; it is a language
with a syntax based on C, statically typed, and designed for packet processing. A
P4 program consists of parsers, deparsers, and control blocks [19]. Parsers
are the ones that receive packets in a byte format and translates them to packet
headers. Deparsers, on the other side, transforms the headers into a complete
packet in order to send it to the network. Control blocks guide the packets to
the appropriate operations, like modify the headers of the packet. Furthermore,
P4 does not support pointers, dynamic memory allocation, float numbers, and
recursions. Loops are allowed only on the parsing stage.

2.3.4 P4,¢ datatypes

In P4, all values are statically typed, and the programs that fail in type-checking are
invalid. The main datatype in P4 is a bitstring of a specified width. For example,
bit<64> declares a bitstring of 64 bits which is used in order to represent integers.
Other data types that p4 includes are: booleans, enumerators including error
type for express error codes. P4 is able to construct derived types such as tuples,
structs, headers, arrays of headers, and unions of headers [19]. Structs and unions
are inspired by C language.
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Headers describe the format (the set of fields, their ordering and sizes) of each header within a network packet.
User-defined metadata are user-defined data structures associated with each packet.

Intrinsic metadata is information provided or consumed by the target, associated with each packet (e.g., the input
port where a packet has been received, or the output port where a packet has to be forwarded).

Parsers describe the permitted header sequences within received packets, how to identify those header sequences,
and the headers to extract from packets. Parsers are expressed as state-machines.

Actions are code fragments that describe how packet header fields and metadata are manipulated. Actions may
include parameters supplied by the control-plane at run time (actions are closures created by the control-plane
and executed by the data-plane).

Tables associate user-defined keys with actions. P4 tables generalize traditional switch tables; they can be used
to implement routing tables, flow lookup tables, access-control lists, and other user-defined table types, in-
cluding complex decisions depending on many fields. At runtime tables behave as match-action units [8],
processing data in three steps:

e Construct lookup keys from packet fields or computed metadata,

e Perform lookup in a table populated by the control-plane, using the constructed key, and retrieving an
action (including the associated parameters),

o Finally, execute the obtained action, which can modify the headers or metadata.

Control blocks are imperative programs describing the data-dependent packet processing including the data-
dependent sequence of table invocations.

Deparsing is the construction of outgoing packets from the computed headers.

Extern objects are library constructs that can be manipulated by a P4 program through well-defined APIs, but
whose internal behavior is hardwired (e.g., checksum units) and hence not programmable using P4.

Architecture definition: a set of declarations that describes the programmable parts of a network processing
device.

Figure 2.3: Core abstractions of the P416 programming language !

2.3.5 P4,¢ architecture

P44 language is applicable in a wide range of target devices, which may differ in
the type of processing or kind of capabilities. As far as the type of processing is
concerned, some devices have to forward packets (e.g., switches), other devices have
to receive/transmit packets (e.g., network cards), and others have to allow or block
packets (e.g., firewalls). For the different kinds of capabilities, P4 is applicable
in ASIC and FPGA devices. ASICs may have custom checksum hardware and
FPGASs because they are programmable, may have, for example, custom queuing

1Fron P4 paper
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mechanisms.

A hardware device represents the data plane, and the P4 language interacts
with it. The data plane has some programmable blocks, and the P4 program is
trying to manage the actions of each block. The manufacturer of each hardware
device is responsible for providing the P4 architecture file, which contains the
description of the control and parser blocks, type declarations, and constants that
the programmer has to implement. [19].

The architecture model for the P4 language is as important as the C standard
library is for C programming language [11]. In order to make P4 language appli-
cable to a wide range of target devices, we need to have these targets conform to a
specific model. This way, P4 programs can be portable across different devices as
long as the latter support the same architecture file. The most known architecture
model is the Programmable Switch Architecture (PSA). PSA specification is owned
by P4.org Architecture working Group, and it is the most widespread architecture
for multi-port Ethernet targets (e.g., switches). Another popular architecture is
the V1Model which was created as an intermediate solution until PSA was properly
defined.

2.3.6 PSA

The Portable Switch Architecture (PSA) specifies six programmable blocks and
two fixed-function blocks, as depicted in Figure 2.4

Fixed function
block

programmable
block

Packet Buffer
Parser Ingress Deparser Buffer and Parser Egress Deparser Queueing
Replication Engine

Figure 2.4: PSA blocks

The incoming packets are going through the parser block and then passed to
the ingress block where a match-action pipeline decides where the packets go.
After that, the packets enter the deparser block where the programmer specifies
the metadata and the contents that each packet should carry to the packet buffer.
The packet buffer might store the same packet multiple times if the programmer
replicates it at the ingress block. The egress block uses a match action pipeline
in order to send the packets to the appropriate egress port, where they will enter
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a queue to leave the pipeline. You can find more information about the PSA
architecture at PSA architecture

2.3.7 V1Model

The V1Model architecture was designed based on the P44 switch architecture,
so basically, V1Model is able to translate P4;4 programs to P44 programs. In
this architecture, we have only six programmable blocks as depicted in figure 2.5.
The main difference compared to PSA architecture is that the parsing process is
done only once at the beginning and the deparsing process before the packet leaves
the switch. Furthermore there are some extra programmable blocks, the Verify
Checksum and Compute Checksum. The first block computes the checksum of the
packet and compares the result with the checksum value attached to the header, and
the Compute Checksum computes the checksum right before the deparser assembles
the packet again and updates the checksum value on the header of the packet.

programmable
block

Verify
Checksum

Compute
Checksum

Parser Ingress Egress Deparser

Figure 2.5: V1model blocks

2.3.8 Behavioral Model V2

Behavioral Model Version 2 (BMV2) is a framework that supports several software
target switches such as simple switch, simple switch grpc and psa_ switch and
has become very popular since many programmers use this framework to test P4
programs in an emulated environment such as mininet. It is written in C++11, and
the most popular target device is the simple switch. BMV2 is a developing tool for
testing and debugging P4 data planes [1], so the throughput and latency of BMV2
are not comparable with a production-grade P4 switch like Barefoot Tofino’s. In
order to run P4 programs in BMV2, we need to compile the P4 code into a JSON
format that the BMV2 switch can accept.

P4lang [8] provides three compilers for the P4 language, p4c, p4Runtime and
p4c-bm. Pjc and p4Runtime are the recommended compilers to use since they are
the only ones that are currently maintained. Let us assume that we are compiling
our p4 program with p4c compiler; it will provide us a JSON file that is going to
be "fed" to the bmv2 switch binary [1]. In this thesis, we are using the Vl1model
architecture since the target devices are BMv2 switches.


https://p4.org/p4-spec/docs/PSA.html
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2.3.9 Apache Thrift RPC

In SDN architectures, we need a Southbound API in order to accomplish connec-
tivity between the control plane interface and the forwarding devices in the data
plane. The simple switch target of the BMV2 architecture uses Thrift Remote
Procedure Call (RPC) API in order to populate or change values to the tables of
the running P4 program.

Apache Thrift is a library developed at Facebook in 2007 [15], which has as
its purpose of deploying a reliable and efficient communication channel between
different programming languages. In order to accomplish that, Apache Thrift uses
the Thrift IDL (Interface Definition Language) file, which allows developers to de-
fine datatypes and service interfaces, and generate the necessary code by compiling
that file in order to build RPC clients and servers that communicate as if it were
local.

2.3.10 gRPC

Another RPC framework is gRPC which was introduced by Google in 1993 [40]
and in the last years has become the most popular open-source RPC framework
available. Like Thrift RPC, gRPC’s primary goal is to create a communication
channel between different applications, even if they use different programming lan-
guages. GRPC runs a server that can handle client calls and one or more clients
in different languages, also called stubs.

0 pequest
o

gRPC Server Ruby Client

C++ Service

/'0[
© RGSPOnse(S)

Android-Java Client

Figure 2.6: gRPC

Instead of using Thrift’s IDL, gRPC uses Protocol Buffers, Google’s open source
mechanism for serializing structured data. In order to use Protocol Buffers, devel-
opers need to define the structure for the data they want to serialize in a proto
file with a .proto extension. Then the proto file is passed to the protocol buffer



16 CHAPTER 2. THEORETICAL BACKGROUND

compiler called protoc in order to generate data access classes to the preferred
language [4].

Besides the usage of protocol buffers, gRPC owes its success to the adoption
of the HTTP /2 protocol. With this change in 2015, gRPC gained some significant
advantages compared to HT'TP /1.1 that was using until then. Some of them are
the Binary framing layer which makes sending and receiving messages compact
and efficient by dividing them into smaller messages, multiple parallel requests
which allows bidirectional communication and multiple requests at the same chan-
nel. Finally, streaming allows not only real-time communication but in high
performance also thanks to the binary framing that we referred to previously.

Many big companies such as Cisco, Juniper, Netflix, etc., have adopted gRPC
because of its high performance, flexibility, and very supportive community. So
BMV2 provides the simple switch_grpc switch target, which instead of communi-
cating with the controller using Thrift RPC, uses gRPC. The compatible controller
with the simple_switch grpc target is PARuntime API which we will briefly de-
scribe in the following chapter.

2.3.11 Mininet

Mininet is a network emulator written in python that allows the user to built a
complete virtual network on a single computer. It supports virtual hosts, switches,
controllers, and the links between them. All nodes in mininet run standard Linux
network software, and the user is able to execute a wide range of commands through
a Command Line Interface (CLI). Mininet provides an extensible Python API
which allows the creation of custom network topologies and experiments with them.

The user can interact with the nodes, either from the CLI, where he can execute
commands such as ping, traceroute and bring up/down links between nodes, or
using xterm command, which opens a Linux shell for the device it refers to.

2.3.12 P4,¢ example

In this section, we will demonstrate an example of a P4 program. This program
implements a basic forwarding device for IPv4. The switch will perform the follow-
ing actions for every packet: (i) update the source and destination MAC address,
(ii) decrement the time-to-live (TTL) in the IP header, and (iii) forward the packet
to the appropriate port.

A P4 program starts by including the standard P4;¢ library (core.p4), and
the library that describes the architecture of the device, in this case, we have the
vlmodel.p4 since the device is a bmv2 switch.

The following code is a fraction of the V1model.p4 architecture file and presents
the programmable blocks that the user has to implement. The first block is a
Parser block called Parser and his role is to identify the headers that are present
in each incoming packet. We also have 5 control blocks which are the Verify-
Checksum, Ingress, Egress, ComputeChecksum, and Deparser. All the above control
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blocks intend to further process the packet.

17

Architecture.

M must be a struct.

EE S G

x* H must be a struct where every one if its members is of
type
x header, header stack, or header union.
/
*

parser Parser<H, M>(packet in b,
out H parsedHdr,
inout M meta,
inout standard metadata t
standard metadata) ;

The only legal statements in the body of the
VerifyChecksum control
x are: block statements, calls to the verify checksum and
x verify checksum with payload methods, and return
statements.
%/
control VerifyChecksum<H, M>(inout H hdr,
inout M meta) ;
@pipeline
control Ingress<H, M>(inout H hdr,
inout M meta,
inout standard metadata t
standard metadata) ;
@pipeline
control Egress<H, M>(inout H hdr,
inout M meta,
inout standard metadata t
standard metadata) ;
/%
* The only legal statements in the body of the
ComputeChecksum
x* control are: block statements, calls to the
update checksum and
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x update checksum with payload methods, and return
statements .
control ComputeChecksum<H, M>(inout H hdr,
inout M meta) ;

x The only legal statements in the body of the Deparser
control are:

x calls to the packet out.emit() method.

@deparser

control Deparser<H>(packet out b, in H hdr);

package VI1Switch<H, M>(Parser<H, M> p,
VerifyChecksum<H, M> vr,
Ingress<H, M> ig,
Egress<H, M> eg,
ComputeChecksum<H, M> ck,

Deparser<H> dep

);

The program usually continues with the type definitions, which can be used to
create a new type providing the name followed by the size of it. Using the keyword
header, the programmer is able to define new structures of header formats that the
switch needs to recognize since P4 aims to be protocol independent language has
to be flexible about the different headers of incoming packets.

For the specific example, we declare the headers that each packet carries, along
with the size of each field. We developed this program to handle only the ethernet
and IPv4 header.

#include <core.pd>
#include <vlmodel.p4>

const bit <16> TYPE IPV4 = 0x800;
typedef bit<9> egressSpec t;

typedef bit <48> macAddr t;
typedef bit<32> ip4Addr t;
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header ethernet t {
macAddr _t dstAddr;
macAddr _t srcAddr;
bit <16> etherType;

}

header ipv4d t {

bit <4> version ;
bit <4> ihl;
bit <8> diffserv;

bit <16> totalLen ;
bit <16> identification ;
bit <3> flags;
bit <13> fragOffset ;
bit <8> ttl;
bit <8> protocol;
bit <16> hdrChecksum ;
ipdAddr _t srcAddr;
ip4dAddr _t dstAddr;
}
struct metadata {
/* empty */
}

struct headers {
ethernet t ethernet ;
ipvd t ipvd;

Based on the V1model architecture, the user has to provide a parser block in
the P4 program. The following block of code, which starts with the keyword parser
uses a state machine and defines how the P4 program should parse the packets.
The state machine returns a set of headers that it has extracted from the incoming
packet according to the programmer’s instructions.

The parsing process begins in the start state, and using transition keyword can
switch from one state to another which in this case are the parse ethernet and
parse ipv4 state, and finishes when the states accept or reject are reached.

parser MyParser(packet in packet
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out headers hdr,
inout metadata meta,
inout standard metadata t standard metadata

) |

state start {
transition parse ethernet;
}

state parse ethernet {
packet.extract (hdr.ethernet);
transition select (hdr.ethernet.etherType) {
TYPE IPV4: parse ipv4;
default: accept;

}

state parse ipv4d {
packet.extract (hdr.ipv4);
transition accept;

This architecture, besides parser block, usually has many control blocks. A
control block consists of action and table declarations. We can have multiple
actions and tables, but only one apply block which is the one that triggers table
lookups. As for the apply, it is a loop-free program that implies the order and
under which circumstances the tables are applied to packets.

The action and table declarations are the primary methods that the program-
mer changes how the switch behaves to the incoming packets. The actions, are
code fragments that operate similar to functions. They may include parameters
given by the control plane that can be executed by the data plane. Tables consists
of user-defined keys, and actions. You can refer to figure 2.3 to find out more about
tables.

Ingress and egress blocks contain match action tables. Ingress blocks use them
to determine the egress port(s) of the packet. Furthermore, in ingress processing,
it is able to forward packets, replicate them (using multicast or send them to the
control plane), drop them, and trigger a flow control.[1§]

In our example, we have one table named ipv4 Ipm which uses the dstAddr of
IPv4 header for each packet and tries to match against using the least prefix match
(Ipm). This table can trigger either the ipv forward, drop or NoAction actions.
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Ipv4d _forward receives the destination Mac address and the port that the packet
is supposed to leave from the switch and sets them to the appropriate fields of the
packet. Drop action simply drops the packet.

control Mylngress(inout headers hdr,
inout metadata meta,
inout standard metadata t
standard metadata) {
action drop() {
mark to drop(standard metadata) ;
}

action ipv4 forward(macAddr t dstAddr, egressSpec t
port) {
standard metadata.egress spec = port;
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = dstAddr;
hdr.ipv4.ttl = hdr.ipv4d.ttl — 1;

}

table ipv4 lpm {

key = {
hdr.ipv4.dstAddr: lpm;
}

actions = {
ipvd forward;
drop;

}
size = 1024;
default action = drop();

}

apply {
if (hdr.ipv4.isValid()) {

ipvd_lpm.apply () ;
}
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The egress match/action table can recieve 4 types of packets. Normal Unicast
(NU), Normal Multicast (NM), Cloned from Ingress to Egress (CI2E), and Cloned
from Egress to Egress (CE2E). NU and NM packets come from the ingress control
block, and in egress block can be recirculated using unicsat or multicast packet
paths. For CI2E and CE2E, basically the packets cloned from the ingress and
egress block respectively and reentered the egress block.

control MyEgress(inout headers hdr,
inout metadata meta,
inout standard metadata t
standard metadata) {

apply { }

Finally the Deparser state is where the programmer declares how the output
packet will look on the wire. In our case where we have two headers, we declare
the order that the headers are going to be combined and sent out of the swtich.

control MyDeparser(packet out packet, in headers hdr) {
apply {
packet.emit (hdr.ethernet);
packet .emit (hdr.ipv4);

2.4 P4Runtime

P4Runtime [9] is a vendor-independent, protocol-independent runtime API for P4-
defined data planes. It was built to augment the programmatic API definition
expressed in Protobuf format [10]. P4Runtime uses gRPC protocol 2.3.10 which
allows the user to write the Controller in a wide range of programming languages
and using protocol buffers to communicate with the target device.
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2.4.1 Architecture

The architecture of P4Runtime is depicted in Figure 2.7. We observe that our
target device, which is at the bottom, is connected with multiple controllers which
are at the top. In order to have multiple controllers above one target device, we
need a P/ Master Controller and as many Pj Slave controllers as we need. A
multi-parser protocol ensures that only one controller has the right to access the
target device.

P4 Runtime
Configuration

P4Blob

P4 Master Controller

Optional - P4 Slave
Controller(s)

gRPC Client

P4 Runtime

Interface

gRPC Client

Platform Drivers

Config

Figure 2.7: P4Runtime Architecture
Source: P4.org, ONF

P4Runtime API is able to construct messages between the interfaces of the
controllers and the server(target device). For that purpose, the API is using a
Protobuf file named pjruntime.proto. Another Protobuf file is the Pjinfo.proto
which describes the structure of P4Info metadata. The controller can access P4
entities which are declared in P4Info metadata using p4info.proto.

In a paradigmatic workflow, a P4 source program is compiled to produce both a
P4 device configuration file and the P4Info metadata. The p4Info is designed to be
target and architecture independent; however, the specific contents are architecture
dependent due to the compiler, which rejects incompatible code.
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2.4.2 Single Embedded Controller

A target device has an embedded controller that can communicate using P4ARuntime.
This is the simplest use-case of the P4Runtime controller and the most common in
P4 examples. P4Runtime is designed to be an ideal RPC and an IPC (Inter-Process
Communications). Figure 2.8 shows the architecture we mentioned above.

P4Runtime

gR PC Client gRPC Server

P4 Instrumentation
Embedded

Controller Platform Drivers

Config
P4 Pipeline

P4 Target

Figure 2.8: Embedded P4Runtime
Source: P4.org, ONF



Chapter 3

Related Work

In this chapter, we present previous work that is related to our research subject.
The content of this chapter is based on the literature review that was conducted
as part of my master thesis. We will refer to some notable tries to develop a tool
that helps debug an SDN network and discuss the capabilities of each one, as well
as their advantages and disadvantages.

3.1 Where is the Debugger for my Software-Defined
Network?

Inspired from gdb [2], the authors of this paper [24] introduced ndb, a prototype
network debugger for SDN which implements two major primitives which came up
very helpful for its cause. The first one was brakepoints, and the second one was
packet backtraces.

The authors take advantage of Software Defined Networks(SDNs) in order to
debug the network control programs like gdb debugs software programs. The ar-
chitecture of this tool is simple. Since traditional Openflow switches cannot stamp
information in the packets that they forward, they have programmed the switches
to send a "postcard" every time, a packet visits a switch. A postcard is a truncated
copy of the packet’s header, followed by the matching flow entry, switch id, and
output port. Then these postcards for every switch are sent to a Collector, which
stores them and is able to create backtraces for every packet using the information
in the postcard alongside the given breakpoint. Furthermore, they have a Proxy
unit to modify the messages from the controller and tell the switches to create the
postcards. In order to find a postcard for a specific packet and inspects the IPID
and TCP sequence number fields of the immutable header fields since forwarding
rules do not modify them.

This debugger is able to backtrace the packets, identify the source of bugs, and
verify data authentication. Based on SDN Testing and Debugging Tools: A Survey
[35] the advantages of this debugger are that it does not have a framework restric-
tion, does not need a specific SDN controller or specific programming language.

25
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The disadvantages are that it can only identify bugs along the transmission path,
and it has limitations if the packets of the network change their state dynamically.

3.2 Controller-agnostic SDN Debugging

Similar to ndb, the authors of this paper introduce OFf [20], a debugging and test
environment for SDN developers which is built on top of the fs-sdn simulator [23].
For OFf to debug an application, the developer needs to include the corresponding
library. Furthermore, it does not need any additional hardware to be deployed, and
it does not affect the network’s performance unless the developer issues a debugging
command.

The architecture of OFf consists of two parts: the OFf proxy and OFf Con-
troller/Debugger Runtime Interfaces. The proxy unit, similar to ndb, represents
the communication channel between the simulated network in fs-sdn and the con-
troller. Besides that, the proxy is based on four components, the Ul wrapper which
provides an interface for the developer to send commands to the other three com-
ponents. The second component is the Debugger, which is responsible for several
sub-modules aiming for more specific OFf commands from the controller API to
control plane activity. The third component is the Trace Replay which can repro-
duce network activity, and the last one is the Diff Report Generator that detects
changes in topology or the policies of the network and generates a report to help
developers determine the effects of configuration changes. The OFf Controller/De-
bugger Runtime Interface is responsible for linking the OFf Proxy unit to a specific
controller platform and language-level debugging environment.

The functionality that OFf debugger provides is that it can trace a packet and
replay its route, alert when some configuration changes, and verify that packets
passed through a specific set of switches. The advantages are that it is able to iden-
tify and eliminate bugs, detect security vulnerabilities. Finally, the disadvantages
are that it is not applicable to all switch vendors.

3.3 OFRewind

OFRewind [41] is a tool that takes advantage of split forwarding architectures such
as OpenFlow to improve the way that recording and replaying network domains are
done. OFRewind enables scalable, temporally consistent, centrally controlled net-
work recording and coordinated replay of traffic in an OpenFlow controller domain.
Because of how flexible an OpenFlow controller may be, OFRewind can dynami-
cally select data plane traffic for recording, which improves network scalability but
also makes it possible to enable always-on recording for low-volume traffic such as
forwarding control messages, which are more prone to bugs.

The main component of this system is the OFRewind which runs as a proxy
between the switches and the actual controller. This way, it is able to communicate
with every Datastore component that is locally attached at regular switch ports.
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Figure 3.1: Overview of OFRewind

Both components OF Rewind and Datastore can be broken down further as depicted
in Figure 3.1

Although it is possible to enable always-on recording for every packet in the
network, this will cause significant overhead problems in performance as well as
storage. To counter this problem, the authors decided to classify the traffic and
select for recording only the categories of traffic the network operators seem im-
portant. If this selection approach does not reduce the recorded traffic, they can
apply sampling in packets or flows as a reduction strategy. Finally, the last data
reduction approach is to record the first X bytes of each flow.

When the operators want to replay traffic, Ofreplay is responsible to re-inject
the captured traces by Ofrecord into the network. There are different replay scenar-
ios: replaying traffic towards the controller, replaying traffic towards the switches,
and finally replaying traffic based on packet headers captured by the Datarecord
which allows to re-generate exact flows that enable complete testing of the network.
The packets may have a complete payload or dummy payload.

The advantages of this tool are that it can reproduce software errors, locate
configuration errors, and replay only the desired part of network traffic. The dis-
advantages are that it needs a lot of memory space, depending on the device’s
behavior.
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Chapter 4

P4Debugger

In this chapter, we present and describe P4Debugger, a tool that we created in
order to help network operators debug an SDN exploiting P4 capabilities. The main
functionality of this tool is to taint packets with the information of the switch that
forwards them, keep a record of all flow table versions, visualize the topology and
how the switches behave using a web app and monitor the network for a potential
policy violation.

The Chapter describes the three parts that assemble the P4Debugger, Data
Plane, Control Plane and Visualizer. First, we will present the workflow of P4Debugger
and how the three parts interact with each other in order to inform the user about
the network state. Then we will analyze the Data Plane and explain how we taint
the packets. Then, we describe the Control Plane and how the P4Runtime con-
troller interacts with the P4 switches. Finally, we will present the Visualizer, which
is a web application that visualizes the network’s behavior.

4.1 Workflow

In this section, we present the workflow of P4Debugger, which is depicted in Figure
4.1. We begin from the Data Plane where the P4 switches, before forward each
packet, add information on the custom header we created. Furthermore, some
switches are connected to monitors and have to duplicate a percentage of packets
and forward it to them to check if the right policies are applied to the network.

Next, the Control Plane which in our case is a PARuntime controller, interacts
with the P4 switches updating their tables based on the instructions of the net-
work administrator, is also responsible for pushing the switch’s flow tables to a git
repository for every packet out.

The Visualizer fetches the flow tables from the git repository, parses the essen-
tial data in order to visualize the topology as well as the flows that the topology
has for a selected time and day.
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Figure 4.1: Workflow of P4Debugger

4.2 Data Plane

In an SDN, as we described in section 2.2, the data plane or Southbound interface
is where the networking devices are. In our case, P4 switches are responsible for
forwarding the traffic. Protocol independence is the feature of the P4 language
that makes it so important in this thesis. A P4 switch has access to the whole
packet header, not only to the link-layer as traditional switches. It can dissect the
packet from the link-layer all the way to the payload; This is feasible because the
programmer is responsible for declaring the headers and the order of them, how
the parser is going to parse the packet and assign the bytes to the corresponding
headers.

In this section, we will analyze the structure of a packet with emphasis on the
IP layer, which is the one we used for assigning the custom header, Then we will
describe the structure of the custom header as well as the workflow of the switch,
and finally, we will describe how we managed a two-way communication between
our switch and the controller.
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4.2.1 IPv4 Header

In order to send some information over the network, we need to encapsulate the data
in a header that complies with the protocol the network device has. Each network
protocol, such as TCP, IP, or Ethernet has a header format with the appropriate
fields and sizes. In Figure 4.2 we show how an IPv4 packet is structured.

0 32 bit
\
Version IHL TOS Total Length
(4 bits) | (4 bits) (8 bits) (16 bits)
Identification Flags Fragment Offset
(16 bits) (3 bits) (13 bits)

Time-to-Live (TTL) Protocol Header Checksum - 20

(8 bits) (8 bits) (16 bits)

Source IP Address
(32 bits)

Destination IP Address
(32 bits)

b,
Options (If Any) ' |_Variable

(Up to 320 bits/40 bytes) ] length
IP Data (If Any) E Variable

(Up to 65515 bytes) ] length

Figure 4.2: IPv4 Header

Here is the description of each field:

e Version : The version of the IP protocol, for IPv4 the value is 4.

e IHL : The length of the header, the minimum is 20 bytes (when Options
filed does not exist) and maximum is 60 bytes (when Options field reaches
the maximum length).

e TOS : Type of Service (TOS) uses 3 bits for IP precedence and 4 bits for
TOS; The last bit is not used.

e Total Length : The length of the IP packet including IP header and data.
The length field is 16 bits so 2! - 1 = 65535 bytes.

e Identification : Differentiate fragmented packets from different datagrams.
e Flags : Control or Identify fragments.
e Fragment Offset : Used to fragment and reassembly the packet if needed.

e TTL : Limits datagram lifetime.

Bytes
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e Protocol : Describes the protocol used in the data portion. For TCP, the
value is 6.

e Header Checksum : Value calculated based on IP header. The router
drops the packet if does not verify that value.

e Source IP : IP address of the host that sent the packet.
e Destination IP : IP address of the host that should receive the packet.

e Options : Used for network testing, has variable length from 0 to 40 bytes
and usually is empty.

e IP Data : The payload of the packet that may contain data and headers
from higher level protocols. Has variable length from 0 to 65515 bytes.

We can observe that if we want to add an extra header in the IP layer, the only
field that is not used often and has a variable length which is critical in our case,
is the Options field. We need the custom header field to have a variable length
because it will increase its size based on the number of switches that pass through.

4.2.2 Custom Header

As we described in this chapter, P4 allows us to declare our headers and, using the
Parser, we can define which headers represent the appropriate bits of the packet.
In this section, we will present the headers that we declare in our P4 program and
the order we place them to structure a packet.

Usually, the network topology of switches can see only the link-layer (MAC)
headers of every packet, except when dealing with layer-3 switches that can inspect
IP-layer too. In our case, although we could forward the packets using only the
link-layer, we also need to access the IP-layer to manipulate the extra header.
Since we declare and use the IP header for the above reason, we decided to forward
the packets based on IP tables that make the representation of use-case scenarios
easier.

We created the IPv4 header exactly as described in RFC 791 [13], then we
added a set of custom headers in the options field to tag each packet with the
desired information. We calculated the size of each field very carefully in order to
maximize the efficiency of our tool by allowing us to keep track of as many hops
as possible. In Figure 4.3 we see how the Option field of IP header is structured.

The fields of the custom header are described bellow:

e Option Type : This 8-bit field is divided into three sub-fields:

— Copy Flag (1 bit) : Declares if the options should copied to all frag-
ments if the datagram is fragmented.

— Option Class (2 bits) : Defines the category that options belong. 0 is
for Control options and 2 for Debugging and Measurement.
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Figure 4.3: Custom Header

— Option number (5 bits) : Specifies the kind of option

e Option Length (8 bits) :Indicates the size of the entire option field.

e Counter (16 bits) : Specifies the number of P4 switches each packet passes

through.

For each switch that a packet passes through (hop), we add a set of the following

fields in order to record the information we want.

e device id (8 bits) : Indicates the switch ID.

e table id (8 bits) : Shows the ID of the table the packet passed through.
e in_port (8 bits) : Indicates the port number that the packet came from.

e out port (8 bits) : Indicates the port number that the packet sent to.

IP option header has a maximum size of 40 bytes; So, assuming that each packet
will have 4 bytes committed for Option Type, Option Length and Counter, we are
left with 36 bytes of free space. Since the information we want from each switch

sums up to 4 bytes, we are able to taint the packet up to 9 times.

4.2.3 Forwarding

Every forwarding device needs a forwarding table to send the packets to the ap-
propriate address. In our case, P4 tables generalize traditional switch tables. P4

tables behave as match-action units with the following steps:

e Construction of a key.

e Look up for the key in a lookup table, and the result will be an "action".

40
Bytes
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e Execute the action over the input data e.g(change the source and destination
MAC address of the packet).

In our implementation, the key is the destination IP address, and the table tries to
match it with its entries using the longest prefix match algorithm (Ipm). When the
switch finds the match, it executes the corresponding action with the appropriate
parameters.

4.2.4 Packet Counting Per Flow

The procedure until now in the data plane is that for every packet the switch
forwards, adds some extra information in the custom header before the packet
leaves the switch. This procedure allows us to have all the packets in our network
topology tainted with the extra information.

The question is, how are we going to inspect this extra information? We can
not expect the users to check them by themselves. The solution we came up with
is to add a host for each P4 switch that will act as a monitor. Then the P4 switch
will duplicate a percentage of every packet that forwards for each flow and send it
to the monitor for inspection. We have to send only a portion of the packets per
flow because otherwise, we were going to overwhelm the monitor with too many
packets, as well as reduce the performance of the switch by half.

The challenging part of this action is that in order to count the packets and
check if the specified value has been reached, we need to write and read the value.
V1Model has the counters that are able to count quantities of packets or bytes, and
direct counters that are increased only if the table entry that the direct counter
is associated with is matched. So direct counters can count packets per flow, but
unfortunately, only the p4 controller is able to read the value. Registers are stateful
memories whose value can be read and written during packet forwarding under the
control of the P4 program. Although some P4 switch manufacturers like Tofino
have implemented a direct register which can be associated with table match keys
and be increased every time a table entry is matched, V1Model architecture as well
PSA do not support it yet.

So we created an algorithm inside the P4 switch in order to count packets per
flow. The procedure we follow is not easy and demands resources, but we can avoid
it in a real case scenario by using a physical P4 switch with implemented direct
registers.

The procedure of counting the packets starts at the egress stage of the switch.
As flow we defined the source and destination IP of the packet. The main idea is
that we insert the source and destination IP of the packet in a hash function. The
hashed value then operates as an index for storing the flow and the counter of the
flow in two hash tables, the id table and counter table respectively.

For every packet that is not cloned, we check if its flow is already in the id_ table.
If it does, we increase the counter at the same position in the counter table by
one. In case that the specific flow does not exist in the id_table, we assign its
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flow in the empty cell that its hashed value indicated and assign the number 1 at
the count table. However, we most probably will encounter the big problem of
collision.

Hash_table_1 Hash_table_2
Hash Hash
Src_IP + Dst_IP Function 1 Function 2
index| Value cnt index| Value cnt
) 0
Flow_1 » 0 | Flow 1 | 3 0
1 1
Flow_2
»| 2 [ Flow 4 | 2 2
3 »| 3 | Flow 2 | 1
Flow_3
A
»| 4 | Flow 3 | 2 Flow 2 4
Flow_4 [—— 2 2
. -

Figure 4.4: Counting Packets per Flow

Collisions will happen when the hash function returns the same hash value for
two different flows. So for a packet from a new flow, we may find that the id_table
at the given index is already filled with another flow value. The solution to this
problem is to add more hash functions and tables. The same technique was pro-
posed in the paper Designing Heavy-Hitter Detection Algorithms for Programmable
Switches [16]. If there is a collision for a specific flow, we use the second hash func-
tion to produce the index for the second id_ table and counter table and insert the
flow there.

The amount of hash functions and tables is proportional to the number of
different flows we are going to have in our network. However, there is always the
possibility that a low may not be able to find a position in the i¢d_table. In that
case, we need to recirculate the packet and try again with a small change in the
flow’s data. Nevertheless, since we are using this technique only for demonstration,
if we want to apply this tool in a real network, we will use hardware P4 switches
that can count the packets without all this overhead. In our implementation, we
chose to use three hash functions and six tables (2 for each function) to ensure that
all our flows can match a table entry.

In Figure 4.4 we depict how our algorithm works for two hash function tables.
We show that if Flow 2 is guided to the index in the hash_table 1 where we
already have inserted Flow 3, then we pass Flow 2 to the second hash function
and try to insert it to the hash_table 2. We increase the counter value of each
field based on how many times we meet the same flow on the packets.
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4.2.5 Data Plane Workflow

In this section, we are going to describe the workflow of the data plane as depicted
in Figure 4.5. We know from 2.3.7 that P4 switches have an Ingress and an Egress
programmable block. We divide our actions into these two different blocks as they
are the ones that we apply our data plane’s logic.

Incoming packet

clone and recirculate
the packet

set egress_port to
Controller

Controller?

v

set egress_port to

s the packet a

set egress_port to

target target cloned one?
) e
stage V
E set egress_port to send it to specified
) gress monitor egress_port
stage

Figure 4.5: Data Plane Workflow

e Comes from Controller: If the incoming packet comes from the controller
(Packet out), it should not pass to match/action table, instead we set the
egress__port of that packet equal to the port that the controller has instructed.
This information is stored to a custom header of the packet that we will
discuss at 4.3. If the incoming packet is not from the controller then we pass
it to the match/action table.

e Match IP Table: Now the incoming packet passes through the match table.
If there is a match we set the egress port of the packet according to the table.
Else we send it to controller by setting the egress port number to controller’s
one.

e Is the packet a cloned one?: This state is located at egress block, If the
packet is a cloned one, we have to forward it to the monitor, so we set the
egress_port equal to monitor’s port. Otherwise we increase the counter for
the specific flow.
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e Counter equals target number: After we increase the counter for the
specific flow, we check if we have reached the desired number of packets.
If the counter is equal to the target number, then we clone the packet and
recirculate it to enter again the egress block. Otherwise we continue by
sending the packet to the specified egress port.

4.3 Control Plane

As described in 2.4, P4ARuntime aims to provide target-independent and protocol-
independent API to the control dataplane. Furthermore provides a runtime control
for P4 targets, and using Protobuf allows easy serialization and supports a wide
range of programming languages. Hence we decided to use P4Runtime API for our
implementation.

There are two reasons we need a controller for our implementation. The first is
to present how we can populate the forwarding tables of the switches dynamically,
and the second is to install a two-way communication with our target devices. The
population of the forwarding tables is a procedure that requires constructing the
table entry in a protocol buffer representation and sent this entry to the target
device using gRPC protocol.

Achieve two-way communication with our target device was a challenging task.
The P4Runtime specification [9] had only a reference of how the switch can initiate
Packet In with the Controller. Eventually, we managed to create Packet in and
Packet out messages with the following actions.

In our P4 program, we define the Ethernet and IPv4 headers as well as two
extra headers that we need in order to communicate with the controller. The
structure of the packet is depicted in Figure 4.6.

Packet Packet

Ethernet Header IP Header
Out In

Figure 4.6: P4 program packet structure

e Packet Out: We declared a field named egress port of 16 bits that indi-
cates the port number the Controller wishes to forward the packet during the
Packet Out message.

e Packet In: In this header, we declare a field named ingress port where
we store the number of the port that the packet entered the switch, and we
forward the packet to the controller with a Packet In message.
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The Packet-In message serves the purpose that the Controller is notified to
populate another table in the target device. This allows us to initiate the second
part of P4Debugger’s implementation, which is to version the flow tables. When
the Controller receives a Packet-In message, it executes a script that pushes all
current forwarding tables of the switch in a git repository. After that, it populates
the new entries at the target device. This way, we are able to have all table versions
available.

We are using a single embedded controller in every switch as we described in
2.4.2, because it is easier for every controller to handle his Packet-In and Packet-Out
messages since we have to upload the tables of each switch to the git repository.
This will decrease the possibility of conflicts when we have Packet-In messages
from multiple target devices. Furthermore, we could still use a master controller
to manage all the embedded ones if we desire a centralized programming network.

4.4 Visualizer

In this section, we are introducing Visualizer, which is a web application we created
in order to manage the different versions of tables from the git repository and
provide a practical way to preview the flow rules. Figure 4.7 describes the workflow
of the web application.

e Topology: The user uploads the topology file (JSON) to the web application,
then we send the JSON file to the server. The server parses the topology file
and separates it in three different tables, the switches, hosts, and the links.
After that, it returns it to the web application where we visualize the topology
using Vis.js library [12].

e Date/Time: The user selects a date and a time from the web page, and we
forward the selected info to the server. Then the server fetches the forwarding
tables for each switch, from the git repository, for the specified date and time.
The switches are known from the topology file that the server parsed in the
previous action.

e Route: The user selects a host or a switch from the web application, and
inputs an IP address. After that we send these two information to the server,
and using the already fetched flow tables, it can export the path from the
switch /host to the given IP address. The server returns the path to the web
page, and highlights the path in the topology.

4.4.1 Back-End

In order to process the data, we selected Node.js [7] which is an open-source,
cross-platform, back-end JavaScript runtime environment. We chose this back-end
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Figure 4.7: Visualizer Workflow

solution because it has a very active community with almost guaranteed mainte-
nance. Furthermore, we would like to use a JavaScript based back-end solution
because the library for visualizing the topology is based on JavaScript as well.

The most trivial part in the back-end implementation was to find the path in
the topology, given a switch and an IP address. As information, we had the flow
tables of each switch and the topology. We linked each port from every flow table
with the appropriate switch based on the topology, and then, using a recursive
function, we found the path that a packet should follow. We describe below the
structure of a flow table, along with some values as an example.

e S1 Flow table for the switch 1

— match_field: ’hdr.ipv4.dstAddr’,
— mac: ’00:00:00:00:11:04’,

— table name: ’basic_tutorial _ingress.ipv4_lpm’,
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subnet: 32,

action param: 'port’,
— ip: ’10.0.0.4’,

port: 2’

action name: ’basic_tutorial ingress.ipv4d forward’,

4.4.2 Front-End

We created a web application that allows network administrators to load any ver-
sion of the flow tables to a simulated topology and preview each note’s paths. This
provides a reachability test for the network topology at any point in time as it can
be a helpful tool to observe loops. For Visualizing the topology, we used Vis.js,
which is a dynamic browser based visualization library designed to handle large
amounts of dynamic data. In Figure 4.8 we present a Screenshot of our Web appli-
cation after successfully found the path from switch 1 (s1) to IP address 10.0.3.6,
which belongs to host 6.

Network Visualization

PR R FURR 09714 /2021 0] 23 24 o0
Submit Query

topology.json
Choose a Node: sl pl] 10.0.3.6

Figure 4.8: Web app
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Evaluation

In this chapter, we will introduce and analyze the results produced from P4Debugger.
First, we are going to present to you some errors that are commonly seen by SDN
programmers, and then we will present some measurements that we have conducted
that represent the overhead of our implementation in a network topology.

5.1 P4Debugger in action

The first error we are going to analyze is a network loop. In figure 5.1 we illustrate a
network loop between three switches. These kinds of loops are very hard to detect,
especially in SDN. The most common solution to this problem is to use Spanning
Tree Protocol [33], which basically forms the topology in a way that there is no
way to create a loop. But in SDN, Spanning Tree Protocols may not be applicable
due to the dynamic programming. So the only way to detect that there is a loop
in the topology is by noticing performance issues on the network.

With P4Debugger, these kinds of problems are easy to be traced. The monitors
that can be attached to any P4 switch receive a percentage of the packets and can
analyze the custom header to find the loop. In figure 5.2 we illustrate the fields
that the custom header of the packet will have after completing the first loop.

The second error we are going to investigate is when two hosts (h1,h2) could not
connect. Similar to the above solution, we inspect the monitor, which is attached
to any of the switches that connect the two hosts. Applying backtrace to a cloned
packet shows that the packet is reaching the host2, but one switch was corrupting
the source and destination MAC, so the host2 rejects it.

The third error is a trivial one. Let us assume that we have programmed our
SDN controller to change the flow route if a target device goes offline. This means
that we will experience the new flow rules only when the specific device for any
reason disconnects from the network. As long as the switch is online, there are
no problems. Let us now assume that the target device goes offline on a Sunday
night, and the Controller initiates the new flow rules. Due to a misconfiguration
at the new flow rules, a part of the network is down until the specific target device

41
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Figure 5.2: Custom header loop example

goes online again and the Controller applies back the standard flow rules. It is
challenging for a network administrator to trace this kind of problem. The main
reason is that they appear dynamically, so either they need to get the network to
the same state as Sunday night, which means reproduce the error, or searching
thousands of lines of log files to trace the bug.

Using the Visualizer, which is depicted in Figure 4.8 we can look back at the
flow tables that the network topology had on Sunday night. Then we initiate
the topology and start to emulate some flows until we find which switch is not
responding or a flow that violates the policies.
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5.2 Overhead of P4Debugger

In this section we are going to discuss the overhead that our P4program applies
to the target devices. The switches that we use to deploy our debugger are bmv?2
which are not meant to be a production-grade software switch. Instead, they are
supposed to be used as a tool for developing, testing, and debugging P4 data planes
and control plane software written for them. Because of that, the performance of
bmv2 in terms of throughput and latency is significantly less than the performance
of a production-grade software switch like Open vSwitch.

Furthermore the performance of the bmv2 switch depends on a variety of fac-
tors:

e which version of bmv2 code we are running.

e which flags were used to build bmv2 : This is I think the most important
factor because some flags have a huge impact in the performance.

e the options we give to start simple  switch.

e the performance of our hardware: how many cores and memory does our
system have?

e If we are running in a physical Linux machine, or a Linux VM.

Considering all the above, unfortunately, we cannot provide a direct answer
about the performance of our P4Debugger. We have decided to compare our P4
switches’” bandwidth with the bandwidth that a standard P4 switch uses, without
the custom header and tagging procedure. This will give us some information
about the computational power our P4 program needs.

We have also added some measurements with the counting procedure imple-
mented on our switches. As we mentioned in 4.2.4, the counting per packet flow
procedure is not going to be implemented in a production grade switch because
most of them have a dedicated register for that purpose. However, it highlights the
difference in performance between a simple forwarding procedure, a forwarding and
packet tainting procedure, and a forwarding packet tainting and counting per-flow
procedure.
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5.2.1 Measurements

We used iperf [6] to compute the bandwidth and Gnuplot [3] to graphically rep-
resent the measurements. Furthermore, the P4 program runs in a Linux Virtual
Machine, with four cores (intel i7 6700HQ) CPU and 16 GBytes of RAM. In fig-
ure 5.3 we observe that the P4 switch that was programmed only to forward the
packets, and the P4 switch that was creating a custom header and adding informa-
tion on it for every packet, have almost the same performance. However, when we
add the counting procedure above that, we experience a severe bandwidth drop.
Finally, in Table 5.1 we illustrate the percentage difference between the actions of
tainting the packets, and tainting and counting them, and the Simple forwarding
action. We observe that the tainting actions has no impact at all in the perfor-
mance, compared to the simple forwarding action. But when we add the counting
process, the impact in performance is approximately 100 % worse.
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Figure 5.3: Default TCP measurement for 1 hop

Table 5.1: Default TCP measurement for 1 hop
Mean | Median
Tainting 24% 1 0%

Tainting and Counting | 113 % | 127.4 %

In order to distinguish the performance between our P4 switch and a basic
forward P4 switch, in figure 5.4 we used iperf to send tcp packets with a maximum
buffer size of 150 bytes. This means that the target device will have to deal with a
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much larger amount of packets for the same amount of time, considering that the
default TCP buffer size is 128 KBytes in iperf. The figure 5.4 confirms our thought,
and now we can clearly observe the impact in performance that our P4Debugger
has. From the Table 5.2, we observe that the process of tainting the packets,
decreases the bandwidth by approximately 40% based on simple forwarding action,
while the counting process, by 135 %. Nevertheless, it is highly impossible to have
a consistent amount of that small packets. Finally, the p4 program that taints
the packets and counts them based on their flow, we see that the performance is
significant lower.
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Figure 5.4: TCP measurement for 1 hop and 150 bytes of packet size

Table 5.2: TCP measurement for 1 hop and 150 bytes of packet size
Mean | Median
Tainting 43.3 % | 40.3 %
Tainting and Counting | 135 % | 134 %

The last two figures have been produced from the same iperf instruction as the
previous ones, but in a different topology. This time we measure the bandwidth
between 2 hosts that are four switches (hops) away. This will give us a more solid
sample of the actual overhead compared to the basic forwarding switch. In figure
5.5 we observe that even though the measurement is performed in 4 P4 switches
that run our packet tainting procedure, we have almost the same performance in
bandwidth as the simple forwarding switch. The Median difference of the process
of tainting based on simple forwarding, is 0 %, and the Median difference is 13%
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as shown in Table 5.3.
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Figure 5.5: Default TCP measurement for 4 hops

Table 5.3: Default TCP measurement for 4 hops
Mean | Median
Tainting 3% | 0%

Tainting and Counting | 60.5 % | 46.2 %

The last figure 5.6 confirms once again that if we try a very small size of
packets, we end up stressing out our implementation, which clearly has a difference
in performance compared to the simple forwarding one. The packet tainting and
counting per flow program preview a worse performance in all scenarios. Table 5.4
informs us that we have an impact in performance of 50 % if we use the tainting
process, and approximately 150 % if we also count the packets.

In Conclusion, the implementation of the packet tainting process performs very
well in normal size packets, although we have to understand that BMv2 switches
are not suitable to provide reliable performance tests. As we expected, when we
tried to send a very small size of packets, the performance decreased. The counting
process was a heavy task, and the impact on performance is obvious in all scenarios.
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Figure 5.6: TCP measurement for 4 hop and 150 bytes of packet size

Table 5.4: TCP measurement for 4 hop and 150 bytes of packet size
Mean | Median
Tainting 53.7 % | 50.4 %
Tainting and Counting | 142 % | 164 %
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Chapter 6

Conclusions & Future Work

6.1 Conclusions

SDN aims to make networks easier to manage. However, this is done by pushing
complexity into SDN control software itself. Just as sophisticated compilers are
hard to write but make programming easy, SDN control software makes network
management easier, but only by forcing the developers of SDN control software to
confront the challenges of asynchrony, partial failure, and other notoriously hard
problems inherent to all distributed systems.

The techniques for troubleshooting SDN control software are very complex and
may include inspection of logs in the hope of finding the triggering input. In this
master thesis, we implement a tool that will help SDN programmers trace possible
errors in their network with ease and reliability. P4Debugger applies to all the
P4 programmable networks, and we showed that it is capable of quickly revealing
network errors, that in other cases, it would take time and probably many resources
to find.

Our method enables packet backtracing through the custom header we have
implemented, which helps network programmers detect and resolve logic bugs,
such as network loops and protocol compliance errors. Furthermore, we are able
to version the forwarding tables of the target devices, which enables us to detect
bugs and possible misconfigurations that may dynamically occur from migration
events or any other dynamic programming instruction.

Based on the Results 5.2, although we cannot completely evaluate our tool
because of the constraints of the bmv2 switch, we proved that despite all these
constraints and limitations, our implementation performs almost the same with a
P4 program that simply forwards packets. So we expect that a production-grade
P4 switch like Tofino is able to run our P4 program with zero constraints. That
said, if we try to forward a stream of very small packets, then we experience some
performance drop. P4Debugger is a valuable contribution to SDN programmers
because, with a very small trade off in performance (it may be almost no-existent
in a production P4 switch), we solve the problem that SDN networks created.
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6.2 Future Work
We see the following research and engineering directions as interesting future work.

e TraceMac : Using an extra field in the custom header of the packet, we
could program the switch to perform traceroute, but in the Link Layer. In
more detail, every time the switch receives a packet with the raised flag in
the specified field, it will send back a packet from where it came from, and
eventually, it will reach the host who initiated TraceMac, and inside the
packet, there are going to be all the information about the switches and
ports the packet came through. The difference with our implementation is
that with TraceMac, we can make an active path exploration of our topology.

e Policy analysis tool : The current approach does not allow us to insert
policies that our network must comply with. We can only backtrace a packet
to see in which switch the error occurs. We need to implement a frame-
work where the network administrator can input the desired policies, and
the framework will check the cloned packets for any violation. This way, the
Network operator will react instantly and mitigate the problem.

e Open Source P4Debugger : The current version of the framework is in
the stage of prototyping. We have to test our P4 program to a production
grade P4 switch in order to validate the produced measurements. After that,
we can open source the code of the tool in order to attract more developers
to maintain and supporting the tool.

e All-in-one API : We plan to combine the Policy analysis tool, along with
the TraceMac, and the Visualizer in an API where the Network operator will
have a suite of active and passive monitoring tools for debugging and policing
the network.
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