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A measurement study of the online header bidding
ad-ecosystem

Abstract

In recent years, Header Bidding has gained popularity among web publishers,
challenging the status quo in the ad ecosystem. Contrary to the traditional wa-
terfall standard, Header Bidding aims to give back to publishers control of their
ad inventory, increase transparency, fairness and competition among advertisers,
resulting in higher ad-slot prices. Although promising, little is known about how
this ad protocol works: What are Header Bidding’s possible implementations, who
are the major players, and what is its network and UX overhead?

In this thesis, we present HBDetector, a novel methodology to detect Header
Bidding auctions on a website in real time based on different signals. Those signals
include the DOM events that are being triggered in a webpage by the Header
Bidding libraries and web requests that are being sent to the advertising partners.

Using HBDetector we crawled the 35,000 top Alexa websites, where we man-
aged to collect and analyze a dataset of 800,000 auctions. Based on the data
collected we where able to identify three different facets of Header Bidding cur-
rently used by the publishers. Furthermore, we find that: (i) 14.18% of the top
websites utilize Header Bidding. (ii) Publishers prefer to collaborate with a few
Demand Partners who also dominate the waterfall market. (iii) Header Bidding
latency can be significantly higher (up to 3x in median cases) than waterfall.

In this thesis, we present the design and implementation of HBDetector, and
conduct the first in depth analysis of the Header Bidding advertising ecosystem.
We provide a detailed analysis on how this new advertising standard works, how
it can be detected and we shed light on its mechanics on the web.





Ανάλυση μετρήσεων του διαδικτυακού

οικοσυστήματος διαφημίσεων πονταρίσματος

κεφαλίδας

Περίληψη

Τα τελευταία χρόνια, το ποντάρισμα κεφαλίδας (Header Bidding) έχει κερδίσει
έδαφος μεταξύ των διαδικτυακών εκδοτών, αλλάζοντας τα δεδομένα του διαδικτυακού

διαφημιστικού οικοσυστήματος. Σε αντίθεση με το παραδοσιακό πρότυπο καταρράκτη,

το ποντάρισμα κεφαλίδας στοχεύει να δώσει τον έλεγχο των διαφημίσεων πίσω στους

εκδότες, αυξάνοντας τη διαφάνεια, τη δικαιοσύνη και τον ανταγωνισμό μεταξύ των

διαφημιστών, αποτέλεσμα του οποίου θα είναι οι μεγαλύτερες τιμές για κάθε διαφήμι-

ση. Αν και πολλά υποσχόμενο, λίγα είναι γνωστά για το πώς λειτουργεί αυτό το

πρωτόκολλο: Ποιες είναι οι δυνατές υλοποιήσεις του, ποιοι είναι οι μεγαλύτεροι πα-

ίκτες, και ποιο είναι το κόστος του στο δίκτυο αλλά και στην εμπειρία πλοήγησης του

χρήστη;

Σε αυτή την εργασία, παρουσιάζουμε το HBDetector μια πρωτότυπη μεθοδολογία
που ανιχνεύει το ποντάρισμα κεφαλίδας σε μια ιστοσελίδα, σε πραγματικό χρόνο, βασι-

ζόμενο σε διάφορα σήματα. Τέτοια σήματα περιλαμβάνουν τα γεγονότα DOM τα οποία
ενεργοποιούνται σε μια ιστοσελίδα από τις βιβλιοθήκες ποντάρισματος κεφαλίδας και

τα διαδικτυακά αιτήματα που στέλνονται στους διαφημιστικούς συνέταιρους.

Χρησιμοποιώντας το HBDetector προσπελάσαμε τις κορυφαίες 35,000 ιστοσελίδες
με βάση την κατάταξη Alexa, όπου καταφέραμε να μαζέψουμε και να αναλύσουμε δεδο-
μένα από 800,000 δημοπρασίες διαδικτυακών διαφημίσεων. Βασιζόμενοι στα δεδομένα

που μαζέψαμε μπορέσαμε να αναγνωρίσουμε τρείς διαφορετικούς τύπους πονταρίσμα-

τος κεφαλίδας τους οποίους χρησιμοποιούν οι εκδότες. Επιπλέον, βρήκαμε ότι (ι)

14.28% από τις κορυφαίες ιστοσελίδες χρησιμοποιούν το πρωτόκολλο πονταρίσμα-

τος κεφαλίδας. (ιι) Οι εκδότες προτιμούν να συνεργάζονται με λίγους Συνέταιρους

Ζήτησης (Demand Partners)οι οποίοι κυριαρχούν ήδη και στην αγορά του πρωτόκολ-
λου καταρράκτη. (ιιι) Η καθυστέρηση από το πρωτόκολλο κεφαλίδας μπορεί να είναι

σημαντικά πιο υψηλή (έως και 3 φορές πάνω) σε σχέση με αυτή του πρωτοκόλλου

καταράκτη.

Σε αυτή την εργασία, παρουσιάσαμε το σχεδιασμό και την υλοποίηση του HBDe-
tector, και εκτελέσαμε την πρώτη σε βάθος ανάλυση του διαδικτυακού οικοσυστήμα-
τος πονταρίσματος κεφαλίδας. Παραθέτουμε μια λεπτομερή ανάλυση σχετικά με το

πως αυτό το νέο πρωτόκολλο λειτουργεί, πως μπορει να ανιχνευτεί και ρίξαμε φώς

σχετικά με τις λεπτομέρειες του στο διαδίκτυο.
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Chapter 1

Introduction

The largest portion of the digital advertisements we receive today on the Web
follows a programmatic ad-purchase model. Upon a website visit, a real time
auction gets triggered, usually via the real-time bidding (RTB) protocol [27], for
each and every available ad-slot on the user’s display. These auctions are hosted in
remote marketplace platforms called Ad Exchanges (ADXs) that collect the bids
from their affiliated Demand Site Platforms (DSPs). The highest bidder wins, and
delivers its impression to the user’s display.

However, there are more than one ad networks that can provide bids for an
ad-slot. In the traditional standard for ad-buying, called waterfalling, the different
ad networks (e.g., ADXs with their affiliated DSPs) are prioritized in hierarchical
levels [32]. Thus, when there is no bid from ad network #1, a new auction is
triggered for ad network #2, and so forth. Of course, apart from the auction-based
ad purchase, there are still other non-programmatic channels like direct orders from
advertisers who run static campaigns for a certain number of impressions [12].
Through these channels, advertisers target not a user but the entire audience of a
specific website (e.g., an ad regarding Super Bowl on espn.com). Alternatively, if
there is neither a direct order nor a bid in these auctions, the ad-slot may be filled
via another channel for remnant inventory called fallback or backfill (e.g., Google
AdSense) [25].

The process of ad prioritization among the above different channels and ad
networks in waterfall is managed through the publisher’s ad server or Supply Side
Platform (SSP) (e.g., DoubleClick for Publishers (DFP)). Priorities are typically
set not at real time but based on the average price of the past purchases for each
channel. As a consequence, in waterfall not all ad partners have the ability to
compete simultaneously. Therefore, the publishers do not get the optimal charge
price, since an ad-slot may not be sold at the highest price (e.g., if the winning
bid in the auction of ad network #1 is 0.2$, the ad-slot will be sold even if there
was a bid of 0.5$ in ad network #2). Apart from the potential loss of revenue
for the publishers, there is also a significant lack of transparency. Except from
the winning bidder, the publishers do not know who else placed a bid for their

1
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Figure 1.1: High level overview of the HB. The absence of priorities aims to provide
(i) fairness and higher competition among advertisers and (ii) increased revenue
for the publishers.

ad-slot and for how much. In addition, the lack of control restricts the publishers
from choosing Demand Partners, or different sale channels in real time (e.g., to
get a high price through RTB when the quota of direct ads sold has not yet been
depleted).

To remedy all the above, Header Bidding [55] (or parallel bidding in mobile
apps [42]) has been recently proposed and has started to gain wide acceptance
among publishers [52, 20, 36, 23]. As depicted in Figure 1.1, HB is a different auc-
tion that takes place not on the ad server as in waterfall, but inside the header field
of a HTML page, before anything else is loaded on the page. It allows a publisher
to simultaneously get bids from all sale channels (e.g., direct orders, programmatic
auctions, fallback) and Demand Partners (e.g., DSPs, ADXs, ad agencies). HB
not only gives the control back to the publisher but also allows higher revenues
than waterfall, since it guarantees that the impressions with the higher price will
be bought and rendered [10]. On the advertiser’s side, HB promotes fairness since
there are no priorities. Consequently, any advertiser could win any auction, as
long as it bids higher than others. HB enables small advertisers to also be compet-
itive, compared to big advertisers who would have higher priority on the waterfall
model.

Although there is a lot of research regarding the waterfall standard [41, 35, 6,
34, 5], we know very little about the innovative and rapidly growing alternative
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of HB. How is it implemented? What is the current adoption of HB on the Web?
What is the performance overhead and how it affects the page rendering time?
How many bids the average publisher can receive? What are the average charge
prices and how do these compare to the ones of the waterfall standard? Which are
the big players and how is the market share divided?

To respond to all these questions, we study the different existing implementa-
tions of HB and we design HBDetector : a novel methodology to detect HB auctions
on the Web. Our approach aims to increase transparency on the ad-ecosystem, by
exposing at real-time the internals of the new and rapidly growing HB ad protocol:
in which sites it exists, the prices and partners involved, etc. Using HBDetector ,
we crawl a number of popular websites, we collect a rich dataset of HB-enabled
websites. Our tool helps us detect particular browser events triggered by the HB
libraries embedded in such webpages, along with the ad partners participating in
the HB and metadata for the auctions executed on these websites. We analyze and
present the first full-scale study of HB aiming to shed light on how this innovative
technology works and investigate the trade-off between the overhead it imposes on
the user experience and the average earnings it brings to publishers. In this thesis,
we make the following main contributions:

1. We propose and implement HBDetector , the first of its kind Web transparency
tool, capable of detecting HB activity at real-time, on the Web. We provide it
as an open-sourced browser extension for Google Chrome1 .

2. By running HBDetector across 35,000 top Alexa websites, we collect a dataset of
800k auctions. This work is the first to analyze the adoption and characteristics
of HB.

3. We extract a set of lessons on HB: (i) There are 3 different implementations of
HB: Client-side, Server-side and Hybrid HB. (ii) There is at least 14.28% of top
websites that use HB. (iii) Publishers tend to collaborate with a small number
of Demand Partners, which are already reputable in the waterfall standard. (iv)
HB latency can be significantly higher (up to 3× in the median case, and up to
15× in 10% of cases) than waterfall.

1https://www.github.com/mipach/HBDetector
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Chapter 2

Background on Header Bidding

In this section, we cover background knowledge required for our study regarding
the most important aspects of HB.

2.1 HB Protocol Description

Contrary to the traditional waterfall standard, in HB the ad auction does not take
place in a remote ADX, but on the user’s browser. The HB process, depicted in
Figure 2.1, is the following:

Step 1: When a user visits a website, the HTML page is fetched. As soon as
the header of the HTML is rendered in the browser, user tracking code and the
third-party library responsible for the procedure of the HB is loaded as well.

Step 2: Then, the HB library sends (in parallel) HTTP POST requests to the
Demand Partners (e.g., DSPs, ad agencies, ADXs which conduct their own RTB
auctions) requesting for bids. These bid requests also include information about
the current user (such as interests and cookies). Such information can be used by
the Demand Partners to decide whether and how much they will bid for an ad-slot
in the particular user’s display. Note, that if a Demand Partner does not respond
within a predefined time threshold, its bid is considered late and not taken into
account.

Step 3: As soon as the Demand Partners respond with their bids (and their
impressions), the collected responses are sent to the publisher’s ad server. The ad
server will check the received bids and compare with the floor price agreed with the
publisher, to decide if the received prices are high enough [54]. If the floor price is
met, the HB process was successful and the ad-slot is satisfied. Alternatively, the
ad server can check the rest of the programmatic (or not) available channels (e.g.,
direct order, RTB, fallback) and will find the best next option for the specific ad-
slot. This step entails communicating with SSPs for available direct orders which
can provide higher revenues to the publisher than regular RTB auctions. The ad
server can also communicate with Demand Partners for RTB auctions, or other
SSPs who can provide fallback ads, such as Google AdSense, or even house ads.

5
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Figure 2.1: Flow chart of the Header Bidding protocol.

Step 4: As soon as the impression is rendered on the user’s display, a call-
back HTTP request notifies the winning Demand Partner that its impression was
rendered successfully on the user’s browser, and the ad price that was charged
(winner notification).

In theory, with this new protocol, the publisher has total control over the ad
inventory they provide, knowing exactly how much the Demand Partners value
each slot, and the actual amount of money they are willing to pay for it. In
addition, there is full transparency, since the publisher can have access to all bids
and decide at real time the best strategy it should follow without the need to trust
any intermediaries. In the future, HB could provide the means to publishers to
reduce advertising that is not suitable for, or does not match the semantics of their
websites, and even curb malvertising. However, as we will show later in Section 4,
this transparency and control is not always applicable under the various types of
HB we have detected.
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2.2 HB Implementation & Performance

To implement the above protocol, publishers need to include HB third-party li-
braries in their webpages. Although there does not exist a common standard for
HB yet, the great majority of publishers use the open-source library of Prebid.js [45],
supported by all major ad companies. This library includes: (i) The core compo-
nent which is responsible to issue the bid requests and collect the responses, which
are later sent to the publisher’s ad server. (ii) The adapters which are plugged
into the core and provide all necessary functionality required for each specific De-
mand Partner. Prebid.js is supported by more than 200 Demand Partners (e.g.,
AppNexus, Criteo, OpenX, PulsePoint) that provide their own adapters [44].

We note that in traditional waterfall, the auction information is opaque to
the client and the only information that can be inferred (if at all) is through
the parameters of the notification URL (which acts as a callback to the winning
bidder). In contrast, in the HB, and due to bidder responses, browser DOM events
are triggered that contain metadata directly available at the user browser, and can
be used to clearly distinguish between waterfall and HB activity.

The non-hierarchical model of HB produces much more network traffic than the
waterfall standard. Indeed, HB sends one request for each and every collaborating
Demand Partner. This can result to an increased page latency, especially when
some Demand Partners take too long to respond. To make matters worse, as soon
as they receive a bid request, some of these Demand Partners may run their own
auctions inside their ad network, with their own affiliated bidders (as depicted in
Figure 1.1). This increased page latency raises significant concerns. Indeed, 40%
of the publishers already mention that such latency is capable of impacting their
users’ browsing experience [8, 9, 15].

It is worth noting, that HB technology is still in its early stages and many
ad networks are technologically not ready to move completely from the waterfall
model to participate in this new model. In order not to miss bids from such net-
works, some ad mediators (e.g., Appodeal) mix the two techniques in an attempt
to provide waterfall compatibility during this transitional period [42].
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Chapter 3

Methodology for Measuring HB

In this section, we outline our methodology for detecting HB on webpages, and
our effort to crawl top Alexa websites for HB activity.

3.1 Detection Mechanism

In order to detect if a webpage is using HB for delivering ads to its users, we need
to detect HB-related activity originating from the said webpage. As explained
above, the HB activity is performed over different channels than ad protocols such
as RTB, using a library (implemented in JavaScript) embedded in the header of
the page. Therefore, by monitoring the events triggered by such libraries, we can
confidently distinguish HB activity from other models such as waterfalling.

There are three main ways to detect if HB is present in a webpage:

1. Perform static analysis of the page and identify tags of scripts that load
known HB libraries.

2. Detect DOM-related events that are triggered due to HB embedded in the
webpage.

3. Detect web requests sent from the page to HB entities.

The first method is straightforward to implement with the following steps:
Download the webpage source code and use regular expressions to detect all known
HB libraries. However, we note that just detecting these libraries is not enough, as
false positives or false negatives could occur. For example, static analysis is prone
to false positives such as non HB libraries being misnamed using HB-related names,
or HB-related libraries appearing in the HTML code but not executed Similarly,
static analysis is vulnerable to false negatives such as renamed HB libraries to
names that are not known yet, or new HB libraries that do not match our HB-
related keywords from known libraries. To avoid such potential false positives and
negatives, we chose not to use static analysis in the HBDetector .

9
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Figure 3.1: Overview of the HBDetector mechanism. After the user accesses a
webpage, all the incoming and outgoing WebRequests are inspected to detect HB
partners. A content script is also injected in the header of the webpage to detect
HB events about the auction performed.

The second method is more difficult to implement, but offers better detection
rates with reduced false positives and negatives, and thus, harder to evade. This
method monitors the DOM events that are triggered in a webpage, events that
are sent to notify the code of interesting activity that has taken place on the
page. Events can represent everything from basic user interactions to automated
notifications happening on the page. Most HB libraries trigger events in several
phases of an auction (initiation of the auction, bid collection, winning bidder, etc.).
If such an event is detected, we are certain that it is because of HB. Even better,
by “tapping” on these events [33], we can collect information about HB that the
first method is not able to detect.

The third method is similar to the second, but operates at a different level in
the browser: monitor the web requests of a page in real-time, and detect all the
request sent to and received from known HB Demand Partners. By constructing
a list containing all the known Demand Partners, we can check all the incoming
and outgoing WebRequests to the browser, and keep the relevant to HB.

In this thesis, we implemented HBDetector , a tool which combines the 2nd
and 3rd methods to increase detection performance. An overview of the tool is
illustrated in Figure 3.1. HBDetector adds a content script in the header of each
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webpage when the page is loaded. This script monitors the webpage’s activity for
various events and requests sent and received by the page, keeping the ones relevant
to HB (e.g., incoming responses from DSPs for HB auctions). When such DOM
events are triggered (which is a first sign of HB activity), the tool filters the web
requests triggering these events by checking the parameters included in them. HB
libraries use predefined parameters such as “bidder”, “hb partner”, “hb price”,
etc., which are not used by other ad-protocols such as RTB. Thus, the tool keeps
all web requests that triggered a DOM event of a HB library, and also include
HB parameters. It then proceeds to extract the values from these parameters for
analysis. These parameters are typically fixed for each HB library, and all HB
partners must use them as such, to participate successfully in HB auctions with
that library. In contrast, in the RTB protocol, the parameter names used in the
notification URLs are DSP dependent and do not utilize DOM events.

From the available HB libraries, we examined prebid.js (and its variants),
being the most famous one (64% of client-side wrappers are built on prebid [28]),
as well as gpt.js and pubfood.js libraries for their available codebase and/or
documentation. We decided to focus our more in-depth reverse-engineering on
prebid.js due to its popularity, available documentation and open-source code
and APIs [24, 43]. By performing code and documentation analysis for the HB
libraries that have such material available, we identified the following list of HB
events that our tool can detect:

• auctionInit : the auction has started

• requestBids: bids have been requested

• bidRequested : a bid was requested from specific partner

• bidResponse: a response has arrived

• auctionEnd : the auction has ended

• bidWon: a bid has won

• slotRenderEnded : the ad’s code is injected into a slot

• adRenderFailed : an ad failed to render

In this work, we focus on three of these events: auctionEnd, bidWon, and
slotRenderEnded. The auctionEnd, as its name states, is triggered after the auc-
tions for the ad-slots have finished, i.e., the Demand Partners have submitted their
offers. The bidWon event is triggered after the winning Demand Partner has been
determined. Finally, the slotRenderEnded event is triggered when an ad has fin-
ished rendering successfully on an ad-slot. By analyzing these events, which can
only be triggered by HB activity and not other libraries, we were able to collect
several metadata about the auctions, such as the Demand Partners who bided, the
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Table 3.1: Summary of collected data by crawling top Alexa webpages using the
HBDetector for HB-related activity.

Data Volume

# of websites crawled 35,000
# of websites with HB 4998
# of auctions detected 798,629
# of bids detected 241,392
# of competing Demand Partners 84
# weeks of crawling 5

ones who won, the CPM (cost per million impressions in USD) spent, the ad size,
currency, dimensions, etc.

We also constructed a list with all the known HB Demand Partners. We col-
lected and combined several lists used by HB tools designed to help publishers fine
tune their HB on their websites. Using this list, we can infer all the WebRequests
about HB without altering them, in order to detect when a request to a Demand
Partner is sent, and when an answer is received. The HBDetector is written in a
few hundred lines of JavaScript as a Google Chrome browser extension.

HBDetector limitations: The tool does not analyze all libraries used by the
HB ecosystem due to unavailability of documentation and/or code. Also, it cannot
capture new DOM events if they get added to existing libraries it is analyzing.
Finally, it cannot capture current DOM events if the events change format or
parameters they are using. In addition, the tool does not capture waterfalling
RTB activity, and therefore, does not allow direct comparison of the two protocols
with respect to Demand Partners involved, ad-prices, etc. We plan to address
these limitations in a future version of the tool.

3.2 Data Crawling

We used our tool to detect which websites employ HB, by crawling a set of websites,
based on a large top list purchased from Alexa [3] on 01/2017. Given the changes
anticipated in such website ranking list and especially in its long tail [48], we focus
on the head of the Alexa list, to capture a more stable part of the ranking distri-
bution through time. Due to equipment, network and time costs, we limited this
list to 35,000 domains to crawl per day, during Feb’19. To confirm the representa-
tiveness of this older list, we compared it with the top 35k domains in 2017-2019
from [48], and found that it has an overlap of 78.36%(06/2017), 62.10%(06/2018),
58.36%(02/2019) and 55.34%(06/2019).

We used selenium and chromedriver loaded with HBDetector in order to auto-
mate the crawling. We initiated a clean slate instance before visiting each website,
in order to keep the crawling process stateless (no previous history, no cookies,
no user profile). When a webpage is visited, the crawler waits for the page to
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be completely loaded, and then allows an extra five seconds, in case additional
content needs to be downloaded or pending responses to be concluded. We set
the page load timeout to 60 seconds, so that if the page is not fully loaded in
one minute, the crawler proceeds to the next webpage in the list, after killing the
previous instance and initiating a new, clean instance.

With this crawling process, we detected HB in ∼5,000 (14.28%) of the websites,
in a well-distributed fashion. In particular, HB was found in 20-23% of the top
5k websites, 12-17% for the top 5k-15k, and 10-12% for the rest. Indeed, new top
websites not included in this 35k list may have already adopted HB, leading to
an underestimation of today’s adoption rate. However, as found in our results in
Sec. 4.1 were we use top 1k Alexa lists for 6 years, we show similar HB adoption
rate with the head of the top 35k list, giving credence to our results. Then, we
crawled these 5k websites every day for a period of 34 days in Feb’19, collecting
metadata about the HB auctions, and performance exhibited from the various
websites using HB. In Table 3.1, we provide a summary of the data collected.

We note that we detected 800k auctions but received 241k bids. One could
expect that each auction should have at least a bid. Indeed this would be the
case if actual users were involved and Demand Partners were interested in them.
However, there are cases where bidders may avoid bidding when they know nothing
about the user. In our case, we are interested in the vanilla case using a clean state
crawler and no real user profiles.
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Chapter 4

The 3 Facets of Header Bidding

In this section, we analyze the crawled data and present results and observations
we have made about the HB adoption over time and types of HB we identified
from our exploration.

4.1 Header Bidding Adoption

Since this is a new programmatic ad-protocol (standardized in 2014[7]), we explore
the general adoption of HB through the last 6 years. To do that, we downloaded
snapshots of selected lists of webpages using the Wayback Machine [29]. Due to the
involved network and time cost to crawl from the Wayback Machine, we focused
on the top 1,000 publishers based on Alexa rankings, made available in a recent
study [48] and https://toplists.github.io/. The list of top publishers was
selected on a fixed day per year (6/6/2019, 6/6/2018, etc.). Since these historical
webpages were static, we performed a static analysis looking for HB libraries and
components in their websites’ code. Someone could also try an analysis using
the HBDetector , by attempting to render each website, or even fingerprinting
the libraries. However, such analyses: i) Take more time to execute than static
analysis. ii) The webpage must be renderable and its components must work
(scripts should be downloadable, scripts should not fail to run, the page should
not call unresponsive servers, etc.). Therefore, dynamic analysis cannot be applied
on historical pages “played back”, with potentially deprecated libraries or other
scripts embedded, third-party partners not responding, etc., and expect 100%
correctness on the results collected.

Figure 4.1 shows the yearly breakdown of HB found in these websites. Inter-
estingly, we observe a steady increase of the HB adoption. About 10% of these
websites were early adopters and started using HB 6 years ago. After the break-
through of 2016, when HB became popular[49], there is a steady 20% of the web-
sites using this ad protocol. These adoption rates, and the general rate of 14.28%
in the 35k list, match industry-claimed numbers of ∼15% in the last 15 months
(14.66% in Jan’18 - 15.84% in March’19, computed for the top 1k out of 5k top

15
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Figure 4.1: Header Bidding adoption in the last six years for the top 1k Alexa
websites of every year.

Alexa websites that serve programmatic ads) for the US market [19, 28].

We note that HBDetector catches 100% of the HB activities for the libraries
analyzed. Indeed, there are websites which could be using HB libraries that we
didn’t analyze at the time of data collection, and therefore were not flagged as HB-
enabled websites. This means we get 100% precision but not 100% recall. However,
the HB adoption experiment using the 1k lists shows a rate that aligns with the
overall HB adoption rate in the 35k list, and these two rates closely match what
industry is claiming. These observations point to low false positive and negative
rates, and that the data collected by HBDetector (i.e., using dynamic analysis)
have high recall rate and provide a representative picture of the HB ecosystem at
the time of each crawl.

4.2 Types of Header Bidding Detected

Our in-depth investigation of the HB ecosystem and the data collected revealed
that this new programmatic ad protocol is currently being deployed in three facets:
(i) Client-Side HB, (ii) Server-Side HB, and (iii) Hybrid HB. This finding matches
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Figure 4.2: Client-Side HB overview and steps followed.

the 3 types of HB wrappers (client-side, server-side and hybrid) suggested by in-
dustry reports [26]. In the Client-Side HB and Hybrid HB models, the ad auctions
are transparent, so we can distinguish them with a high degree of certainty due to
the events sent and received by the browser. On the other hand, on Server-Side
HB model it is less clear, since most of the ad-related actions happen at the server.
However, after inspecting the responses received by the browser, we can discover
the parameters referring to HB (e.g. hb partner, hb price, etc.). Next, we analyze
each facet, including the steps taken for the protocol’s execution, and potential
consequences it may have.

4.3 Client-Side HB

In Client-Side HB, as the name implies, the HB process happens in the user’s
browser. As illustrated in Figure 4.2, during this HB type, the user’s browser
executes 8 steps, including the initiation of the HB auction, receiving of bids
from Demand Partners and notifying the winning partner. Client-Side HB’s main
goal is to improve fairness and transparency. Publishers can choose the Demand
Partners they want to collaborate with, regardless of their market cap. What
matters is if their bids are competitive enough. Also, because the whole HB
process is performed at the client side, and then sent to the publisher’s ad server,
it is completely transparent to the publisher and, in theory, to the user.

The publisher can know at any time which partners bid, for which ad-slots they
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Figure 4.3: Server-Side HB overview and steps followed.

were interested, how much they were willing to pay, etc. On the down side, Client-
Side HB is harder to set up. Publishers need to have good technical understanding
to set up and tune their HB library. Also, they need to operate their own ad server,
a task which is not trivial. Finally, because of the increased number of messages
to be exchanged, or due to a bad configuration in the HB library, longer latencies
may be observed.

From the regular end-user’s point of view, the only thing that can be observed
is an increased latency for the loading of the webpage when it employs Client-Side
HB. However, the regular user cannot be aware of all the HB (and other ad-tech)
activity happening in the background. This is where our HBDetector tool can
help increase transparency of the protocol from the point of view of the end-user,
and measure non-obvious aspects such as the communication and time overhead
for the browser during HB, winning bids, etc.

4.4 Server-Side HB

In Server-Side HB, a single request is sent to a Demand Partner’s server, which
is responsible to do the whole HB process and send back to the client only the
winning impressions. As Demand Partners, in this scenario, we consider all pos-
sible ad partners (SSPs, DSPs) that take part in the auction. Figure 4.3 shows
the Server-Side HB model and the steps performed by the user’s browser. The
careful reader will note a similarity of this model with Client-Side HB with one
Demand Partner. To distinguish Server-Side HB from Client-Side HB, we check
the responses sent back from the Demand Partner involved to the browser, to filter
out bid responses (which would reveal Client-Side HB cases). This filtering using
HB-related keywords, also ensures that we are not mixing HB with traditional
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waterfall activity. Obviously, in this model the publisher needs to trust that the
Demand Partner (i.e., the server handling all requests) is honest, will not execute
waterfall in the backend instead of HB, and will select the best bids as winners,
thus providing the best possible profits to the publisher.

Server-Side HB requires the least effort from the publishers to setup their
HB. However, in exchange for setup convenience, it reduces transparency to the
minimum, since the publishers have no way of knowing the Demand Partners
participating in the auctions or their actual bids. Publishers don’t need to tune
their library, nor set up an ad server. They just add to their webpage a pre-
configured library, provided by the Demand Partner they choose to collaborate
with. Also, this setup could make small players less competitive, compared to
big ones with better infrastructure and higher influence to the market, because
publishers could tend to trust the latter ones. In effect, the Server-Side HB has
re-enabled the dominant players in RTB to regain control of the ad-bidding process
which was momentarily transferred on the user browser.

From the end-user’s point of view, this setup lacks transparency and does not
offer many insights on how the whole HB process either works, performs, or what
impact it has on the user’s browser: all auctions are done in the background, at
the ad server’s side. This setup brings back the pros and cons of the typical RTB
with ADXs playing the crucial and controlling role in the protocol.



20 CHAPTER 4. THE 3 FACETS OF HEADER BIDDING

4.5 Hybrid HB

As its name states, this is a hybrid model that combines Client-Side HB with
Server-Side HB (Figure 4.4). In this model, the user fetches the webpage which
then requests bids from independent Demand Partners (as in the Client-Side HB
model). When the browser (HB library) receives the bid responses, it sends them
to the ad server along with the available slots. The ad server then performs
its own auction (as in the Server-Side HB model) and picks the final winning
impression(s) from all collected bids (both from client and server side). This model
tries to combine the pros of Client-Side HB and Server-Side HB, while avoiding
their cons. It is a semi-transparent model with a certain degree of fairness, which
requires a moderate degree of effort for the setup. Publishers can choose the
Demand Partners they will collaborate with directly, so they can know the bids
they are willing to pay. Also they don’t need to operate their own ad server, so
the programmatic effort is reduced to tuning with the selected Demand Partners.

4.6 Facet Breakdown

The 3 facets of HB that we observed and described above, have the following
breakdown as detected from the HBDetector in the wild (no other cases were
observed that could comprise a 4th category). We find that the Server-Side HB
currently comprises the larger portion of the market with 48%. Then, the Hybrid
HB is second with 34.7%, and the Client-Side HB is third with 17.3%. This
means that publishers prefer the centralization and control offered by a server-
side (or hybrid) model, which imposes a smaller overhead and increases speed of
transactions.

Indeed, the actors that provide both HB and waterfalling options need to
respect the protocols’ guidelines, otherwise they won’t participate successfully in
the HB process. Depending on the model they are called to use in each auction,
they have to use the appropriate notification channel and parameters to notify the
browser. As we will see in the next section, this highly skewed breakdown towards
server-side or hybrid is due to the presence of Google’s DFP, which participates in
many of these HB auctions.



Chapter 5

Analyzing the HB ecosystem

Here, we analyze the data crawled in different dimensions:

• Number, diversity and combinations of Demand Partners participating in
HB (Section 5.1)

• Latencies measured with respect to overall HB process, publishers and par-
ticipating partners (Section 5.2)

• Auctions performed, bids received, bids taken into account or got lost (Sec-
tion 5.3)

• Properties of ads delivered: ad-slot prices paid and comparison with RTB
prices. (Section 5.4)

5.1 Demand Partners Involved in HB

As a next step, we examine the properties of Demand Partners across the web-
sites crawled and investigate who are the dominant Demand Partners, how many
participate per website, and how they are combined together per webpage.
Who dominates the market?
First, we examine the popularity of each Demand Partner across all websites.
We define as popularity the percentage of sites that a given Demand Partner
participates in the site’s HB process. In total, we find 84 unique Demand Partners.
Figure 5.1 shows the 11 most popular Demand Partners. As we can see, Google’s
DoubleClick for Publishers (DFP) is the most popular partner, with more than
80% of publishers utilizing it. The DFP can be used both as an ad server and
as a server-side HB solution. Thus, it is not strange that most of the publishers
choose this option over setting their own ad server. We can also see that the list
of top Demand Partners is full of popular partners that can be found also in the
waterfall standard, as presented in past works1 [35, 41]. These companies have

1AppNexus, Index, Amazon, Rubicon, OpenX, AOL, Criteo, Pubmatic, and Sovrn, which
match exactly what the industry claims as the top HB bidders in Aug’19 reports [28]

21
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Figure 5.1: Top Demand Partners in HB. Google (with DFP) is present in 80% of
websites with HB. The rest of Demand Partners (N=73) have presence in 36% of
the websites with HB.

already invested in the HB protocol and process early on, capitalizing on their
knowledge and market share in RTB, and most publishers tend to choose these
traditional big ad-partners over smaller ones.

How many Demand Partners are typically used?
A website can use more than one Demand Partner during the HB auction. But
given that the more partners used could impact the loading time of the website,
a question is what is typically employed by publishers. The number of unique
Demand Partners participating in a HB auction are extracted from the incoming
web requests that trigger corresponding HB events at the browser, and detected
by the HBDetector (see Section 3.1 for details on the detection). Figure 5.2 shows
the CDF of the number of Demand Partners found on each website. We can see
that more than 50% of the websites use only one Demand Partner. However, about
20% of the publishers collaborate with 5 or more Demand Partners, and about 5%
of publishers collaborate with ten or more Demand Partners.

Which Demand Partners are typically combined?
Demand Partners can appear on a website in different combinations. Given that
we already identified 3 types of HB setup (client-side, server-side and hybrid), it is
interesting to see how publishers select different Demand Partners to participate in
their HB auctions. We should keep in mind that the mixture of partners selected
can impact the performance of HB with respect to delays and prices achieved. Also,
frequently selected combinations may reveal typical or unlike competitions between
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Figure 5.4: Top Demand Partners with respect to participation in HB auctions,
per facet of HB. Top 2 partners in all types are Rubicon and AppNexus.

Demand Partners. Therefore, we analyze the common combinations of Demand
Partners found on webpages, and show the top 15 with respect to popularity in
Figure 5.3, out of 753 possible groups of competitors found.

As expected, DFP holds a majority of the market on its own (i.e., appearing
without any competitors) in 48% of the cases. Interestingly, besides DFP which
dominates the market as single-partner, common groups of competitors include
DFP in 51% of groups found. Furthermore, Criteo and Yieldlab follow as single
partners with 2.37% and 1.68%, respectively. Some popular pairs of competitors
include DFP and other companies such as Amazon, Criteo, and AppNexus. Fi-
nally, some triples include the above pairs with added entities such as Rubicon,
OpenX, etc.

Which Demand Partners are used in each HB facet?
Given the three HB facets, we anticipate that some Demand Partners and publish-
ers will prefer one facet of HB over another. Therefore, we analyze the participation
of Demand Partners into each type, in Figure 5.4. In contrast to Client-Side HB,
which all the bidders are transparent to the client, in Hybrid and Server-Side HB
this is not the case. For this reason, we analyze the responses from the ad server
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Figure 5.5: Total HB latency per website. (1) Marks median latency of 600ms.
(2) Marks a commonly used industry threshold of 3 seconds which captures 90%
of bid responses.

(most commonly the DFP) to find the partners who won the auctions. As ex-
pected, big DSPs like AppNexus and Rubicon hold the highest shares, followed by
Index Exchange.

5.2 Header Bidding Latency

In this section, we explore various aspects of Header Bidding such as the imposed
latency measured from different vantage points, with respect to overall latency,
publishers using it, number of partners participating, etc. In all whiskers plots,
we show 5th and 95th percentiles, and the boxes show 25th and 75th percentiles,
with a red line for median (50th percentile).

How much latency does HB add?
The total latency of HB on a publisher’s webpage is defined as the time from the
first bid request to a Demand Partner (step 1 in Fig. 2.1) until the ad server is
informed and responds (step 3 in Fig. 2.1). In Figure 5.5, we show the total time
needed from the HB to process the bid requests and responses. We see that the
median latency is about 600ms (point 1 in figure). However, some websites suffer
a much higher overhead. Indeed, about 35% percent of the websites observe more
than one second of latency, and as much as 4% of websites observe more than 5
seconds of latency for the HB process to conclude.

Based on our description so far, one might expect that a timeout would be
used during HB, to cut off responses from slow Demand Partners. Although many
of the wrappers use a timeout of 3 seconds, publishers are able to set their own
threshold by making some changes in the wrappers. Unfortunately, our results
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Figure 5.6: HB latency Vs. domain popularity with respect to Alexa ranking (in
bins of 500 websites). Some outliers that goes as high as 10 seconds (removed for
clarity).

indicate that at least 10% of the websites exceed the threshold of 3 seconds (point
2 in Figure 5.5), and some even need 20 seconds before the HB is completed (not
shown in the figure for clarity of the other results).

Overall, even though most of the HB libraries strive to perform HB activities
in an asynchronous fashion, it appears that HB can add significant overhead to a
website if the library is badly tuned and Demand Partners are slow to respond. In
a recent report [11], the average page load time (PLT) of a webpage was measured
at 8.66 seconds, which is above the median latency measured here for HB. However,
the industry recommends that the PLT should be kept under 3 seconds [11], which
would lead 10% of websites with HB auctions experiencing time delays above this
recommendation.

Does publisher popularity associate with HB latency?
As a next step, we study the latency measured with respect to the ranking of
each website. Someone could expect that highly ranked publishers seek to have
lower latencies for their websites, and therefore add partners in their HB process
who demonstrate lower latencies. Also, higher-ranked websites may have available
more resources to use in their HB planning, which could lead to reduced latencies
and better performance. In Figure 5.6, we show the latency of publishers vs. their
Alexa ranking. Indeed, we find that the highest-ranked publishers (i.e., the first
500 websites) exhibit significantly lower latencies (median = 310ms), than the rest
of the ranked websites (median = 500ms).
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Figure 5.7: HB latency for the fastest partners (left-side of plot), top partners in
market share (middle-section of plot), and slowest partners (right-side of plot).
Top partners in market share are not the fastest.

Which are the fastest and slowest Demand Partners?
Figure 5.7 shows the fastest, top and slowest Demand Partners, respectively. We
notice many small or unknown Demand Partners in these lists. The fastest (slow-
est) Demand Partners have median values in the range of 41-217ms (646-1290ms).
Interestingly, the top Demand Partners with respect to market share have latencies
that are small, but not low enough to qualify them for the fastest partners (with
the exception of Criteo which has a median latency under 200ms).

Do multiple Demand Partners impact HB protocol’s latency?
As we mentioned earlier, a publisher may choose to use several Demand Partners at
the same time. Although this decision may increase competition for the ad-slots
offered, and can drive-up the bidding prices, and consequently the publisher’s
revenue, it may also increase the latency of the webpage to load on the user’s
browser, and decrease the quality of the overall user experience. Therefore, we
explore the impact that the number of Demand Partners can have on the user
experience with respect to latency.

Figure 5.8 shows the latency of websites vs. the number of Demand Partners
each website has. We observe that publishers who use only one Demand Partner
have a small latency of 268.2 ms. As can be seen by the second y-axis, this is the
majority of websites. Also, publishers with two Demand Partners have a latency
of 1091.6 ms. Publishers with more than two Demand Partners have a median
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Figure 5.8: Total HB latency (left y-axis) and % of websites found (right y-axis) vs.
number of Demand Partners per website. Publishers with more than one partner
tend to have higher page load times.

latency in the range of 1.3-3.0 seconds.

Does HB partner popularity associate with HB latency?
Next, we study the latency of all 84 Demand Partners detected, ranked based on
their popularity in our dataset. In Figure 5.9, we show the distribution of latencies
observed per partner, when computed across all the websites each partner was
found. We observe that the most popular partners tend to have latencies with
smaller variability (up to 200ms), in comparison to the less popular partners who
may exhibit latency variability up to 500-1,000ms.

How many bids are late?
Here, we analyze the portion of bids that arrive too late to be included in the
auction. As late bids we define all the responses about bids from Demand Partners
which arrive too late, i.e., after the request to the ad server is sent from the browser.
Thus, it is important to understand what is the portion (and number) of bids that
were received from the browser, that came too late and were not considered in the
HB auction. In Figure 5.10, we show the CDF of the portion of such late bids
with respect to the total number of bids received at a website for the HB auction.
We see that in 50% of the cases with late bids, almost 50% of the bid responses
come too late to be considered in the auction by the ad server. Also, for 10% of
the auctions, more than 80% of the bids are late. In results not show here due to
space, we measured that in 60% of the auctions, there was only one late bid, in
40% of the auctions there was at least two late bids, and in 20% of auctions at
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Figure 5.9: Distribution of latencies observed per Demand Partner across all the
websites. Partners are ranked based on popularity. Popular partners tend to have
latencies with smaller variability.
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Figure 5.10: Portion of late bids over the total bids received, due to high latency
of a partner to respond. For 10% of auctions, they have 80% or more late bids.
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Figure 5.11: Percentage of late bids out of all bids sent per Demand Partner. Some
partners have all their bids arriving too late to be considered for auction.

least four late bids.

In Figure 5.11, we measure the percentage of late bids per Demand Partner.
We notice that 21 Demand Partners bid too late in 50% of the auctions they par-
ticipate. In some extreme cases, the Demand Partner loses 100% of the bids they
send. All these late bids point to the possible loss of revenue from the publisher.
This could be the result of a poorly defined wrapper that sends the request to
the ad server the same time it sends the requests to Demand Partners, without
waiting for their responses first, as well as Demand Partners that do not have the
proper infrastructure to respond fast enough to all incoming requests.

5.3 Auctioned Ad-slots

In this section, we investigate the properties of the auctioned ad-slots, such as
the size, the number of auctions per website, and how this impacts the overall
performance of the protocol.

How many ad-slots are auctioned per webpage?
We start by investigating the number of ad slots that are available for auction. In
Figure 5.12, we plot the CDF of the number of ad-slots across the websites, per
HB type. In general, and for up to 70% of websites, the Hybrid HB type auctions
more ad-slots than the other two types. For the other 30% of websites, Server-Side
HB auctions more ad-slots. The median website has 2-6 available ad-slots, and
90% of websites have up to 5-11 ad-slots (depending on the HB type). Also, 3%
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Figure 5.12: Auctioned ad-slots across websites, per HB facet. The median website
has 2-6 available ad-slots. 90% of websites have 5-11 ad-slots (depending on the
HB type).

of the websites provide more than 20 slots for auction.

Requesting bids for 20 ad-slots on a single page can be considered odd, even
a flag for suspicious or fraudulent behavior. Therefore, we manually investigated
such cases, and to our surprise, we found that some publishers request auctions for
more slots than they have available for display. After investigating this behavior
further, we observed that these ad-slots refer to several different devices and screen
sizes such as for tablet, smartphone, laptop, etc. We speculate they do that due to
either bad configuration of their wrapper (i.e., they use the same HB wrapper for
all the devices they serve without customizing the requests), or because they want
to receive bids for multiple versions of the same ad-slots, for better optimization of
the publisher’s HB process later on. Indeed, this odd activity needs to be studied
in depth in the future, to understand if it is a matter of bad practice or an effort
for ad-fraud.

Does the number of auctioned ad-slots impact latency?
Next, we checked if the HB latency is associated with the number of ad-slots
auctioned. Intuitively, we may expect that the more slots are to be auctioned, the
more time the HB will take. However, given that a lot of Demand Partners invest
significant computing resources to parallelize and optimize bidding computations,
the above statement may not hold. In Figure 5.13, we plot the latency of HB
based on the number ad-slots auctioned in the website. In the majority of cases,
this latency includes the communication to the ad server. In Client-Side HB, we
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Figure 5.13: HB latency as a function of the number of ad-slots auctioned. More
ad-slots result in higher median latency and variability in latency for the HB
process.

cannot know the ad server (since each publisher uses their own), so we have no
means to infer this latency. We observe that the total latency tends to increase
with the number of slots auctioned. In fact, when there are 1-3 ad-slots auctioned,
the median latency is 0.30-0.57 seconds, but when the slots are 3-5, the median
latency ranges to 0.57-0.92 seconds. Interestingly, we observe that even if there is
only one ad-slot to be auctioned, the latency can still vary per auction, from a few
tens of milliseconds to almost two seconds. This variability can be due to extra
latencies as result of internal auctions occurring at each Demand Partner.

What are the most popular ad-slots auctioned?
Finally, we analyze the most popular dimensions of HB ad slots. Our findings are
presented in Figure 5.14, per facet of HB. The most common ad size is the 300x250
(side banner), for all 3 facets. The second most common is the 728x90 (top banner)
and the 300x600 (for the Client-Side HB). These are generally popular banners in
both mobile and desktop advertising, and they match results observed in the past
for RTB [41]. Due to the increase of mobile browsing, publishers can choose these
specific sizes to keep the HB configuration simple and well defined for multiple
devices (as they don’t need to set multiple sizes for different devices, and fewer
auctions need to occur on the Demand Partners’ side).

5.4 Ad-slot Bid Prices

In this section, we discuss the auctioned ad-slots’ bid prices and how they vary
depending on their size. We were able to detect the ad prices using HBDetector . In
case of Hybrid and Client-Side HB, most of the prices are transparent to the client
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Figure 5.14: Portion of ads for different HB ad sizes, per HB facet. The side
banner (300x250) and top banner (728x90) are among the most popular ad-slot
sizes in all HB facets.

and easy to extract from the bid response messages. In contrast, in Server-Side
HB the prices are not trivial to detect. We analyze in depth the auction metadata,
and based on several heuristics we find and extract the prices whenever they are
included.

What are the HB partners willing to pay?
First, we analyze the prices bided by the Demand Partners during the auctions.
In Figure 5.15, we show the CDF of the baseline bid prices (in CPM or cost per
thousand ad impressions, in USD) that advertisers are willing to spend for the
ad-slots auctioned, per type of HB. In general, we note that Client-Side HB draws
higher bid prices for the publisher, in comparison to the other two types. Also,
more than 20% of the prices are more than 0.5 CPM, which is lower but comparable
to regular waterfall prices, as claimed in past studies (found to be ∼1 CPM [41]).
Also, we should note that these prices are baseline, so they are much lower than
if they were referring to targeted users.

What are the HB partners paying per ad-slot?
Second, we compare ad-slot sizes with bid prices for each size. In Figure 5.16
we plot the prices (in CPM) for each ad-slot. We see that in the recorded di-
mensions, the median cost ranges from 0.00084-0.096 CPM. The most expensive
ad-slot (based on median price) is 120x600 with 0.096 CPM. The cheapest ad-slot
is 300x50 (which also happens to have the least ad-area) with 0.00084 CPM. Also,
the most popular ad-slot size, which is 300x250, has a median cost of 0.031 CPM.
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Figure 5.15: CDF of the auctioned ad slots bid prices, per HB facet. These are
baseline prices that Demand Partners are willing to spend when they have no
information for the user.

Previous studies on waterfall standard [41] find the prices of 300x250 slot ranging
from 0.1 to 1.4 CPM, with a median of 0.19 CPM. These prices are higher than the
ones found in our HB study, but we should again consider that our detected prices
are for baseline users that Demand Partners have no prior knowledge, whereas
in [41] it was for real users. Therefore, a follow-up work could apply real user
profiles to collect HB prices, and thus, make a more fair comparison with RTB
prices.

What is the variability of bid prices per DSP?
In Figure 5.17, we plot the prices (in CPM) that each Demand Partner bid to
examine possible association between a partner’s popularity and how high they bid
in HB. The DSPs are ranked by popularity and grouped in buckets of 10 to ease
illustration. The most popular partners (first bins) tend to be more consistent and
bid lower prices. In contrast, less popular DSPs have higher median bid prices and
variability in their bids. This observation could be explained when considering
how the HB market works: for less popular DSPs to be competitive and win
auctions, they bid higher prices than popular partners to reach sufficient number
of users. Alternatively, this result could also indicate that more popular partners
have technology that detects when browsing is of a baseline (or bot/unknown)
user and therefore do not bid high, whereas the less popular partners bid high,
hoping to target a real user. Finally, it can also be a side effect of how Demand
Partners decide to spend their budget across the websites they collaborate with:
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Figure 5.16: Distribution of bid prices in CPM per ad-slot size (x-axis sorted by
area of ad-slot). Even in our crawler’s baseline scenario, partners bid high prices
to reach users.

more popular partners exist in more websites, and may chose to bid low in many
of them, to cover a wider range of websites.
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Figure 5.17: Distribution of prices that partners bid, ranked by popularity of
Demand Partner (who are grouped in bins of 10).



Chapter 6

Related Work

User data and their economics have long been an interesting topic and attracted
a considerable body of research [37, 41, 22, 13, 51, 2, 47, 35, 53, 21, 56, 46]. In
particular, Acquisti et al. discuss the value of privacy after defining two concepts
(i) Willingness To Pay : the monetary amount users are willing to pay to protect
their privacy, and (ii) Willingness To Accept : the compensation that users are
willing to accept for their privacy loss [2]. In two user-studies [13, 51] authors
measure how much users value their own offline and online personal data, and
consequently how much they would sell them to advertisers. In [47], authors
propose “transactional” privacy to allow users to decide what personal information
can be released and receive compensation from selling them.

Papadopoulos et al. set out to explore the cost advertisers pay to deliver an
ad to the user in the waterfall standard and RTB auctions [41]. In addition, they
study how the personal data that users leak while browsing (like location and
interests) can affect the pricing dynamics. The authors propose a methodology to
compute the total cost paid for the user even when advertisers hide the charged
prices. Finally, they evaluate their methodology by using data from a large number
of volunteering users. Olejnik et al. perform an analysis of cookie matching in
association with the RTB advertising [35] . They leverage the RTB notification
URL to observe the charge prices and they conduct a basic study to provide some
insights into these prices, by analyzing different user profiles and visiting contexts.
Their results confirm that when the users’ browsing histories are leaked, the charge
prices tend to be increased. In [39], the authors measure the costs of digital
advertising on both the user’s and the advertiser’s side in an attempt to compare
how fairly these costs are distributed between the two. In particular, they compare
the cost advertisers pay in the waterfall standard with the costs imposed on the
data plan, the battery efficiency and (by using cookie synchronization [38, 1, 40]
as a metric) the privacy of the specific user.

In [31], the authors briefly describe HB and focus on optimizing its bidding
strategy and the produced yield. They consider revenue optimization as a contex-
tual bandit problem, where the context consists of the information available about

37
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the ad opportunity, such as properties of the internet user or of the provided ad
slot. In [21], authors use a dataset of users’ HTTP traces and provide rough
estimates of the relative value of users by leveraging the suggested bid amounts
for the visited websites, based on categories provided by the Google AdWords.
FDTV [22] is a plugin to inform users in real-time about the economic value of
the personal information associated to their Facebook activity. In [30], Iordanou
et al. try to detect both programmatic and static advertisements in a webpage,
using (i) a crowdsourcing, and (ii) a crawling approach to determine the criteria
with which ads are displayed. They find biases on ads depending on age, income
and gender of users.

Bashir et al. study the diffusion of user tracking caused by RTB-based pro-
grammatic ad-auctions [6]. Results of their study show that under specific as-
sumptions, no less than 52 tracking companies can observe at least 91% of an
average user’s browsing history. In an attempt to shed light upon Facebook’s ad
ecosystem, Andreou et al. investigate the level of transparency provided by the
mechanisms “Why am I seeing this?” and Ad Preferences Page [4]. The authors
built a browser extension to collect Facebook ads and information extracted from
these two mechanisms before performing their own ad campaigns and target users
that used their browser extension. They show that ad explanations are often in-
complete and misleading. In [5], the authors aim to enhance the transparency in
ad ecosystem with regards to information sharing, by developing a content agnos-
tic methodology to detect client- and server- side flows of information between ad
exchanges and leveraging retargeted ads. By using crawled data, the authors col-
lected 35.4K ad impressions and identified 4 different kinds of information sharing
behavior between ad exchanges.



Chapter 7

Summary & Discussion

Header Bidding is gaining popularity among Web publishers, who want to regain
the control of their ad inventory and what advertisers are paying for it. Propo-
nents of HB have touted that this new ad-tech protocol increases transparency
and fairness among advertisers, since more partners can directly compete for an
ad-slot. HB, in theory, can boost the revenue of publishers, who can select the
Demand Partners that are competing for the publishers’ ad-slots, and also remove
intermediaries from the ad-selling process.

In this study, we investigate and present in full detail the different implementa-
tions of HB and how each of them works. Based on these observations, we design
and implement HBDetector : a first of its kind tool to measure in a systematic fash-
ion the evolving ecosystem of HB, its performance and its properties. By running
HBDetector across a list of top 35,000 Alexa websites, we collected data about
800k HB auctions and performed the first in-depth analysis of HB. We discuss our
lessons from this study in the next paragraphs.

7.1 Commoditization of Ad Supply

Header Bidding was introduced to put Demand Partners under pressure for more
competitive pricing (and loosen Google’s grip on the market). Indeed, it has
changed the hierarchy on the supply side. Depending on the publisher’s needs, we
found that Header Bidding can be implemented in 3 ways: (i) Client-Side HB, (ii)
Server-Side HB, and (iii) Hybrid HB. Therefore, Demand Partners that could pre-
viously claim exclusive access to a publisher’s inventory (and thus higher positions
in the waterfall) are no longer able to do so. Instead, HB enabled all Demand
Partners regardless of their size or relationship with publishers, to compete for the
same inventory, thus commoditizing supply [16].

However, as measured in this study, big companies such as DoubleClick, App-
Nexus, Rubicon, Criteo, etc., took advantage of their existing dominance in the
ad-market and placed themselves again in a very centralizing (and process con-
trolling) position within the HB ecosystem (especially within the Server-Side HB
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and Hybrid HB models). In fact, we identified that Server-Side HB dominates this
market with 48% of auctions handled by a single partner/ad server. Google, in
particular, handles as much as 80% of HB auctions. DoubleClick for Publishers
(DFP) dominates as a single partner, while it also appears in 51% of the competing
groups of Demand Partners in HB. Also, most publishers use only one Demand
Partner, but some use many (more than 10). Interestingly, this centralization is
in direct contrast to the publishers’ revenue. We found that websites utilizing
Client-Side HB achieve higher bid prices than the other two models.

7.2 Non-Viable Performance Overheads

The fear of latency has kept some premium publishers away from header integra-
tions and continues to make others wary about embracing HB. Results of this study
verify the concerns of publishers [18, 14] regarding the latencies imposed on the
user side. We measured up to 0.6 seconds for the median website and more than 3
seconds in 10% of websites. Furthermore, publishers with more than one Demand
Partner experienced higher HB latencies: one Demand Partner imposes a small
latency of 0.3 seconds, but 2 Demand Partners impose 1.1 seconds latency, and 3
Demand Partners can impose up to 3 seconds latency. It is of no doubt that for the
publishers that do the utmost to provide readers with a high-quality experience,
such latency is capable of significantly degrading the user experience. Interest-
ingly, we find that the top 500 (in Alexa ranking) websites exhibited significantly
lower HB latency than the rest of websites.

Although Header Bidding tech promises multiple, in-parallel bid requests to
Demand Partners that can provide the best possible ad price to the publisher,
Javascript on the users’ end is single-threaded. This means that even if the HB
provider’s wrapper performs well-optimized asynchronous ad calls, these still need
to stand in the network queue, thus increasing not only the overall HB execution
time but also the entire webpage’s loading time. These delays can have adverse ef-
fects on user’s browsing experience while loading a HB-enabled webpage. Interest-
ingly, we find that the 10 most popular Demand Partners exhibit lower variability
in latency than the rest, demonstrating that they invest appropriate resources to
reduce latencies at the user-end.

7.3 Late Bids: Revenue & Network Cost

The broadcasting nature of Header Bidding results in an enormous amount of
bid requests to multiple Demand Partners. As measured in this study, a typical
website has a small number of available ad-slots (i.e., 2-6 ad-slots for the median
case, depending on the type of HB), but some auctions request for more ad-slots
than they have available to show (even up to 20). Side banner and top banner are
the most popular ad-slots auctioned in HB. For each ad-slot, a parallel auction
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takes place that requests bids from numerous DSPs. As expected, the more ad-
slots present in a webpage, the higher the overall HB latency: when 1-3 ad-slots
are auctioned, the median latency is 0.3-0.57 seconds, but for 3-5 slots, the median
latency is 0.57-0.92 seconds.

This overwhelming volume of bid requests significantly increases the needed
processing power for ADXs and the decision engines of DSPs, thus skyrocketing
their infrastructure costs [17]. Indeed, companies that started supporting HB
experienced increases of up to 100% in the bid requests they received [50] (i.e.,
between 5 million and 6 million requests per second) for the very same number of
available ad-slots as before. Interestingly, the same partners may in fact compete
for the same ad-slots more than once: in the HB, and then in the regular waterfall
model, since the publisher may still fall back to the waterfall if the HB does not
reach high enough prices for the auctioned slots [17].

Apart from skyrocketing the infrastructure costs, the increased amount of bid
requests also increases the response time for DSPs, causing lots of delayed bids.
We found that in more than 50% of auctions, half of bid responses arrive too late
(after the publisher’s set threshold) to be considered, due to high latency. These
late bids not only are wasted network resources and processing power from the
point of view of the Demand Partners, but also loss of potentially higher revenues
for publishers.

7.4 Limitations & Future Work

The present work is a first, comprehensive study of the HB protocol, and an effort
to measure the ecosystem and partners involved. Unfortunately, HB documen-
tation is scarce at best, and it has been a feat to reverse-engineer the protocol,
and understand the numerous HB libraries used by the crawled websites. Due to
several limitations in the data collection process, in the present study, we focused
on specific dimensions and left others for future work. In a follow-up work on HB,
it is important to address the limitations of our HBDetector , and also perform
extensions to study aspects not covered in this work:

• Perform extensive analysis of all available HB libraries, to increase coverage of
the ecosystem and websites employing HB.

• Study in detail the impact that HB has on the UX and page load time of each
website, as well as the various hosting infrastructures responsible for the crawled
websites, locations of Demand Partners involved, and categories of websites to
find associations with HB prices and latencies.

• Investigate the privacy of online users accessing HB-enabled websites for poten-
tial PII leaks, and measure the impact that HB may have on user anonymity,
as well as the use of HTTP vs. HTTPs for HB transactions.
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