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Abstract

Chip Multiprocessors (CMP) are the dominant architectural approach since the 
middle of this decade. They integrate multiple processors on a single chip. However, 
it is still not obvious how to develop software that exploits the amounts of hardware 
and the operations available in such platforms to satisfy requirements for functionality 
and high performance communication.

Messaging layer  software that  adheres to  Message Passing Interface (MPI) 
standard  specifications  has  been  very  popular  for  almost  two  decades.  The  MPI 
standard  fundamentally  provides  an  abstraction  layer  that  captures  common 
application  communication  requirements.   Whenever  an  abstraction  layer  is  used, 
performance  might  be  less  than  optimal.  However,   abstractions  typically  assist 
programmers to determine software requirements, while also providing a portability 
path for existing applications designed and implemented with an abstraction layer in 
mind.  Abstraction layers are a natural ingredient of the software development cycle 
exploited for fast deployment of new features. The use of abstraction layers might be 
minimized at later stages of development, if performance issues associated with them 
are determined.

This thesis designed and implemented commonly used MPI primitives over a 
an  FPGA prototyping  platform that  includes  multiple  MicroBlaze  processors.  We 
implemented  features  introduced  in  previous  theoretical  and practical  work in  the 
field of MPI standard implementations and continued the establishment of a software 
code base targeted to the particular FPGA prototyping platform. The implementation 
demonstrates how the underlying hardware operations can be exploited to develop a 
software  messaging  layer  and  facilitate  high  performance  communication  support 
among processors in a CMP environment.

Supervisor professor: Manolis Katevenis
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Τμήμα Επιστήμης Υπολογιστών
Πανεπιστήμιο Κρήτης

Υλοποίηση με λογισμικό βασικών λειτουργιών MPI
σε πολυπύρηνη FPGA

Μεταπτυχιακή Εργασία

Μαρία Κατσαμάνη

Περίληψη

Τα (chips) Πολυεπεξεργαστικών Συστημάτων αποτελούν τη βασική αρχιτεκτονική 
τάση από τα μέσα της δεκαετίας. Ενσωματώνουν πολλαπλούς πυρήνες επεξεργασίας 
στο  ίδιο  chip.   Όμως,  δεν  είναι  ακόμα  προφανές  με  ποιο  τρόπο  θα  πρέπει  να 
αναπτύσσεται  λογισμικό  που  να  εκμεταλλεύεται  το  πλήθος  του  υλικού  και  τις 
λειτουργίες που παρέχονται από το υλικό σε αυτά τα συστήματα, προκειμένου να 
ικανοποιηθούν απαιτήσεις λειτουργικότητας και επικοινωνίας με υψηλές επιδόσεις.  

Το λογισμικό επικοινωνίας που συμμορφώνεται με τις προδιαγραφές του προτύπου 
Message Passing Interface (MPI) παραμένει δημοφιλές  για σχεδόν δύο δεκαετίες. 
Το  πρότυπο  MPI παρέχει  ένα  επίπεδο  αφαίρεσης,  το  οποίο  περιλαμβάνει 
συνηθισμένες  ανάγκες  επικοινωνίας  μεταξύ  εφαρμογών.  Κάθε  φορά  που 
χρησιμοποιείται ένα επίπεδο αφαίρεσης, η επίδοση μπορεί να είναι μικρότερη από τη 
βέλτιστη.  Όμως, τα επίπεδα αφαίρεσης τυπικά βοηθούν τους προγραμματιστές  να 
κατανοήσουν τις απαιτήσεις από το λογισμικό, ενώ παρέχουν και μια διαδικασία να 
εξασφαλίζεται  η διαλειτουργικότητα για τις  εφαρμογές  που έχουν ήδη αναπτυχθεί 
ώστε να χρησιμοποιούν ένα επίπεδο αφαίρεσης.

Σε  αυτή  την  εργασία  σχεδιάστηκαν  και  υλοποιήθηκαν  συχνά  χρησιμοποιούμενες 
βασικές λειτουργίες του  MPI σε ένα πρωτότυπο βασισμένο σε  FPGA που περιέχει 
πολλαπλούς  πυρήνες  επεξεργασίας  MicroBlaze.  Υλοποιήσαμε  χαρακτηριστικές 
λειτουργίες που έχουν προταθεί σε προηγούμενη θεωρητική και πρακτική μελέτη στο 
πεδίο των υλοποιήσεων του  MPI και συνεχίσαμε την ανάπτυξη λογισμικού για  το 
συγκεκριμένο  πρωτότυπο  σε  FPGA.  Η  υλοποίηση  επιδεικνύει  τον  τρόπο  που 
μπορούν να χρησιμοποιηθούν οι λειτουργίες του υλικού για την ανάπτυξη λογισμικού 
επικοινωνίας το οποίο να διευκολύνει την επικοινωνία με υψηλές επιδόσεις μεταξύ 
επεξεργαστών σε ένα περιβάλλον πολυεπεξεργαστικών συστημάτων. 

Επόπτης καθηγητής:  Μανόλης Κατεβαίνης
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Chapter 1

Introduction

Computers  automate  procedures  that  occur  in  everyday  life  of  humans.  Since  their 
inception, there have been ongoing efforts to produce faster systems, in order to extend 
further the benefits of computer usage in all areas of economic and social development. 
Sometimes  performance  improvements  lead  to  the  introduction  of  new  computer 
applications that were not possible before. Other times the demands of existing or desired 
applications lead to increased efforts for performance improvements. In any case, there 
exists a feedback cycle between computer industry and the wider audience.

Although there have been performance improvements due to novel architecture 
ideas, such as pipelining and the introduction of caches [2], the performance of computer 
systems  for  many  decades  has  improved  mainly  due  to  advances  in  the  transistor 
technology used to built the hardware of such systems. 

Limitations  in  further  speedup  of  the  clock  frequency  of  processors  became 
apparent during the last decade. The difficulty in overcoming those limitations intensified 
efforts to improve performance with rearrangements of the hardware architecture. Once 
again,  improvements in hardware technology made viable,  more than ever before, the 
introduction of multiple processors on a single chip.  

Parallel software was being developed for decades, especially in the context of 
high-performance clusters. An increased current need for parallel software development 
is  a natural  consequence of the fact  that alleged high-performance hardware is  being 
shipped  with  multiple  processors  on  a  single  chip.  The hardware  on  its  own cannot 
deliver  the  expected  performance  unless  proper  software  that  exploits  its  increased 
resources is also deployed. Typical questions that arise include how to quickly develop 
software that  exploits  new hardware organization  and operations  from a functionality 
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2 Introduction

perspective, how to port existing applications to the new architectures, and how to fine-tune the 
software to deliver performance close to the hardware capabilities.       

As multiple processors are being deployed and available work is distributed among them, 
communication between the processors is typically needed for coordination and feedback purposes. 
The  more  often  communication  is  needed,  the  more  important  communication  performance 
becomes.  Part  of  the  steps  required  for  communication  are  typically  assigned  to  software 
components, while other steps are automatically performed by the hardware after communication 
initiation by the software.  The software components that perform tasks related to communication 
define the messaging layer software. Such software typically prepares data for transmission (e.g. 
prepare  packet  headers)  and  control  network  interfaces  using  a  predefined  protocol  that  the 
hardware  understands  and  expects.  An  overview  of  messaging  layer  software,   its  typical 
functionality and descriptions of messaging layer implementations such as Active Messages and 
Illinois  Fast  Messages  can  be found in [1].  [1]  also  includes  an  overview of  Message  Passing 
Interface (MPI).

Messaging layer  software that  adheres to the MPI standard specifications has been very 
popular for more than two decades. The MPI standard fundamentally provides an abstraction layer 
that captures common application communication requirements.  Whenever an abstraction layer is 
used, performance might be less than optimal. However,  abstractions typically assist programmers 
to determine software requirements, while also providing a portability path for existing applications 
designed and implemented  with an abstraction  layer  in  mind.   Abstraction  layers  are  a  natural 
ingredient of the software development cycle exploited for fast deployment of new features. The 
use of abstraction layers might be minimized at later stages of development, if performance issues 
associated with them are determined. 

Latencies  in  high  performance  networked  systems  are  in  many  cases  due  to  software 
overheads. The faster the networking hardware becomes, the more it becomes obvious that software 
dominates the communication latency. However,  those overheads are not unrelated to the interface 
between the messaging layer software and the networking hardware. As a result, the latencies of the 
software could be reduced not only using software improvements, but also with the introduction of 
new hardware operations and features the software can take advantage of. 
 

From the  perspective  of  the  application,  the  experienced  performance  does  not  depend 
solely on hardware performance, but also on the performance of the software. Some researchers 
propose designing networks and network interfaces in ways that either simplify or even replace 
software messaging layer functionality [6]. Operations and design choices that seem slow in the 
context  of  hardware  might  have  the  benefit  of  increasing  software  performance,  so  it  is  not 
immediately obvious which features should be supported by networking hardware. The existence of 
programmable hardware  in  the  form of  FPGAs assists  the  study of  various  possible  hardware 
architectures and operations offered from the hardware to the software. 

The Remote DMA (RDMA) feature has been around for many years. It was first proposed 
by architects  in  VAX clusters  [22]  and  it  is  possible  to  find  today a  wealth  of  scientific  and 
commercial hardware offering RDMA operations. InfiniBand [4] is an example of a specification 
implemented by networking hardware vendors, which includes memory communication semantics 
through the use of RDMA operations. The basic function performed by RDMA capable hardware is 
DMA across  a  network.   RDMA makes  possible  for  memory to  be shared  for  communication 
purposes among processes across a network, with the network being anything from a traditional 
LAN or WAN to a  NOC within a  chip interconnecting  multiple  processors.  RDMA offers the 
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potential of eliminating copies between system and application buffers and has received interest in 
various contexts, including the Internet Engineering Task Force (IETF). An study of RDMA from 
the IETF can be found in [19]. 

As noted previously,  MPI is an abstraction layer  and it  is  a specification rather  than an 
implementation. It is purposefully general enough to lend itself to implementations above a wide 
variety of underlying hardware architectures. MPI has been implemented over TCP/IP sockets and 
over  shared  memory  architectures.  An  implementation  of  MPI  over  InfiniBand  using  RDMA 
operations  can  be  found  in  [15].  A  subset  of  MPI  named  Cell  Messaging  Layer  has  been 
implemented in multicore Cell [3][21] processor environments and is described in [17].  

Our  work  focuses  on  the  implementation  of  a  subset  of  MPI  in  a  CMP  environment 
developed using an FPGA board.  The processors  in  the CMP are interconnected  through their 
Network Interfaces (NI's) to a Network On a Chip (NOC). The  NI's and NOC offer various features 
to the software, including Remote Stores and RDMA operations. Descriptions of the platform and 
its features are provided in [5] [7] and [16]. We explore the minimum MPI functions that must be 
implemented in order to be able to run basic MPI applications over the specific platform. We also 
focus on analysing the performance of the MPI primitives we implement.

This  master  thesis  is  part  of  the  integrated  project  Scalable  Computer  ARChitecture 
(SARC),  which  focuses  on  long-term  research  in  advanced  computer  architecture.  FORTH's 
responsibility for SARC project is the majority of the architectural research, some of the congestion 
control and all of the FPGA prototyping and NI development. This work aims to develop software 
that  demostrates  the  capabilities  of  the  underlying  hardware  for  facilitating  high  performance 
communication among the processors within a CMP implemented using an FPGA board. 

1.1 Thesis Contributions

In this thesis we present the software architecture and implementation of basic MPI primitives over 
a multicore processor hardware platform that offers RDMA operations.

We do not port an existing MPI implementation to the specific hardware platform due to 
limitations of the specific hardware platform. The limitations include  lack of an OS and filesystem 
on the FPGA board,  basic RISC-style processor functionality and small amount of local scratchpad 
memory  to  be  used  for  RDMA  operations  and  other  tasks.  We  instead  provide  our  own 
implementation of the basic MPI functions needed to run any meaningful MPI application. 

Our MPI library uses RDMA Write operations, Remote Stores and Counters with associated 
notifications  to satisfy  the basic MPI specification requirements from the implementors of the 
MPI_Send() and MPI_Recv() functions. The MPI standard allows the MPI_Send() function to be 
implemented  as  non-blocking  when  using  copies  from  application  to  system  buffers.  The 
MPI_Send()  function  of  our  implementation  is  blocking  until  a  notification  is  provided by the 
hardware to the sender indicating that the application data of the sender have been delivered by the 
network to the scratchpad of the remote receiver. Our MPI_Send() function does not wait for the 
data to be copied from the remote scratchpad to the application buffer of the receiver. 

Our  library  implementation  includes  the  Eager  and  the  Rendezvous  Protocol  that  are 
typically  used  internally  in  MPI  implementations  to  provide  the  semantics  of  various  MPI 
communication modes. The Eager Protocol is typically used for small and the Rendezvous is used 
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for large messages, while the choice between the two protocols is decided at run-time by the sender 
based on the application message size to be transferred to the remote side. 

After measuring the latency of the Eager and Rendezvous Protocols, we have decided to set 
the threshold between the internal protocols to 48 bytes while the size of an eager buffer is set to 64 
bytes.  The choice was made with a focus on latency while also taking into account  scratchpad 
memory size limitations. 

The zero-byte 1-way latency of our implementation is 217 clock cycles.   This latency has 
been computed as an average using a ping-pong test between 2 processes and is not representative 
of the actual latency of the individual MPI_Send() and MPI_Recv() functions.  However, the ping-
pong test is commonly used in the literature to measure the performance of MPI libraries and does 
provide an indication of an average expected latency.  

The contributions of this master thesis are:

1. Design and implement basic blocking MPI primitives over a novel hardware architecture.
2. Implement both the Eager and the Rendezvous  MPI library internal protocols. 
3. Measure and analyse the latency components of the Eager and Rendezvous Protocols on the 

specific platform. 
4. Use  the  performace  results  to  set  the  threshold  between  the  Eager  and the  Rendezvous 

Protocol as well as the eager buffer size.
5. Use the latency results to suggest ways of improving  performance of the MPI library even 

further.

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 refers to related work. Chapter 3 presents 
the software architecture of the MPI implementation over the hardware architecture of our platform. 
Chapter 4 presents MPI library implementation issues and experimental results. We summarize and 
draw conclusions in Chapter 5.



 5

Chapter 2

Related Work

A  significant  amount  of  research  and  literature  is  available  on  the  topic  of  MPI  standard 
implementations over various types of underlying high performance interconnection networks and 
especially networks that offer RDMA operations.  Each different hardware architecture typically 
offers a set of alternative communication operations to the software for developing a messaging 
layer and software developers need to decide which low level operation to use for each type of 
communication task. During the initial stage of developing an MPI library, the programmers choose 
the hardware features that can satisfy each MPI function requirement from the underlying layers. In 
cases where various alternatives exist, the performance and benefits (e.g. scalability) when using 
each alternative need to be evaluated.

Our work is an initial implementation of a basic subset of MPI over a Chip Multiproccesor 
(CMP) architecture  that  offers  a  plethora  of  communication  mechanisms and services  (such as 
RDMA Write, RDMA Read,  Messages, Remote Stores, Counters and Queues). There exists no 
other MPI implementation on top of the same architecture to which we can directly compare the 
design and performance of our own MPI libary in equivalent conditions. However, the literature 
does  offer  evaluations  of  design  alternatives  that  have  been  implemented  in  other  hardware 
architectures with RDMA operations, such as networks based on InfiniBand Architecture (IBA) [4] 
and networks of the Cell Broadband Engine (CBE or Cell) processors [3][21]. We are using those 
implementations to describe the differences of our own implementation from other existing ones 
and to put our performance results into perspective.

In [9] an implementation of MPI over the native Verbs layer of InfiniBand is presented. 
InfiniBand  supports  both  channel  (send/receive)  and  memory  semantics  (RDMA).  The  VAPI 
interface [12] from Mellanox closely follows the Verbs semantics and the authors of this work use 
VAPI send/receive operations for the Eager Protocol data transfer. They also use VAPI send/receive 
operations for the exchange of control messages during a Rendezvous transfer. They chose to use 
RDMA Write operations for the actual data transfer of the Rendezvous Protocol.  The evaluation of 
this work uses Mellanox's second generation adapter (InfiniHost) and switch (InfiniScale). Their 
implementation delivers around 9.5 usec latency for short messages on dual Intel Xeon 2.4 GHz 
systems with PCI-X 64-bit 133 MHz interfaces, while the Verbs layer  of the InfiniHost adapter 
delivers  6.9  usec  latency  for  small  messages.  The  hardware  architecture  used  to  obtain  those 
performance results is quite different from ours. A rough conclusion may be that their messaging 
library adds approximately 2.6 usec to the short message latency of VAPI, which is slightly above 
27% of the total  short  message latency using a  high performance processor.  Their  MPI library 
implementation is also different from ours, since our hardware platform does not offer send/receive 
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operations.  Our library uses RDMA Write operations for both Eager and Rendezvous Protocols. 
We also  use  the  notification  mechanism of  our  platform for  the  exchange  of  the  FIN control 
message of the Rendezvous Protocol.  

[11] continues the work described in the previous paragraph and tries to bring the benefit of 
RDMA operations to the small messages of the Eager protocol and to the control messages of the 
Rendezvous Protocol. RDMA Write is still used for the Rendezvous Data. They focus on RDMA 
Write because RDMA Write usually had better performance than RDMA Read in their hardware at 
the time of writing. They use send/receive when it is not possible to perform RDMA Write for small 
and control messages. Our MPI library does not use send/receive, as said previously. However, our 
design is very similar to this work in many respects. We have used fixed-size, preallocated buffers 
for Eager Protocol at both the sender and receiver sides as they did. We also have a persistent buffer 
association  between  the  sender  and  receiver  sides  and  the  buffers  are  organized  as  rings.  The 
detection of incoming eager messages at the receiver side in their  work is handled by introducing 
multiple flags within an eager buffer, while also relying on the hardware to write bytes in order at 
the destination buffer because InfiniBand implementations support it, although not specified in the 
InfiniBand standard. Our MPI library does not introduce multiple  flags. We cannot rely on our 
hardware to write bytes in order at the destination. We exploit the notification mechanism of our 
platform to set the ready flag in an eager receive buffer. In our design the ready flag can be placed 
at the header or trailer of an eager buffer and we have chosen to place it at the address of the eager 
buffer itself. Our MPI library never sets the ready flag within an eager buffer. Only the hardware 
sets this field on RDMA Write completion. The software at the receiver resets the flag after the 
eager buffer has been consumed.  Their implementation delivers around 6.8 usec latency for short 
messages on dual Intel Xeon 2.4 GHz systems with PCI-X 64-bit 133 MHz interfaces. 

The  RDMA  Channel  interface  abstraction  of  MPICH2  is  used  to  provide  an  MPI 
implementation over InfiniBand in the work described in [10]. This implementation delivers around 
7.6 usec latency for short messages on dual Intel Xeon 2.4 GHz systems with PCI-X 64-bit 133 
MHz interfaces  and demonstartes  that  the  RDMA Channel  abstraction  of  MPICH2 can deliver 
reasonable performance with reduced development  effort.  Our implementation  does not  port  an 
existing MPI implementation to our hardware by using an abstraction with only a few functions to 
implement. We instead provide a new implementation targeted to our hardware platform and our 
initial release supports only a limited subset of MPI features. Our platform is an FPGA prototype 
and our resources do not allow porting of an existing implementation. In the design described in 
[10], small messages are transferred using RDMA Write, while for large messages RDMA Read 
(instead of RDMA Write) is used for the Rendezvous data transfer. Our implementation does not 
exploit  the RDMA Read support of our platform. We chose to use RDMA Write in our initial  
implementation to provide a baseline for MPI library performance.  Future work will aim to use 
RDMA Read for  the  Rendezvous data  transfer.  As described in  [20],  the  use  of  RDMA Read 
reduces the number of control messages in the Rendezvous Protocol and allows the receiver  to 
proceed independently of the sender after the initial Rendezvous control message is sent, with the 
result  being  better  overlap  of  communication  with  computation.  We  conclude  from  those 
implementations that the use of a hardware operation that might seem slower at the hardware level 
(RDMA Read compared to RDMA Write) might result in better overall performance, because of a 
reduction  in  software  overheads  and  synchronization  points  between  the  sender  and  receiver. 
Similar concepts about features of networks and network interfaces that simplify messaging layer 
software have been described in [6].
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In [17] an MPI implementation  is  developed for the Cell.  The implementation  does not 
support the Eager Protocol and provides only an equivalent of the Rendezvous using RDMA PUT 
operations. The authors propose receiver-initiated message passing, in which the receiver initiates 
the Rendezvous Protocol.  We agree that the support of MPI_ANY_SOURCE is non-trivial with 
receiver-initiated message passing. Their implementation does not support MPI_ANY_SOURCE 
and neither  does ours,  since we provide a new implementation in an environment  with limited 
resources.  However,  an  additional  reason exists  for  sender-initiated  message  passing  not  being 
extensively used in the MPI literature. MPI allows the application message size of the sender to be 
different from the application message size specified by the receiver and the minimum of the two 
should be tranferred. MPI applications might use such a feature to post general purpose application 
buffers for receiving messages from either any source or having any tag or for any other reason. As 
described in [20], only the sender side knows the size of the actual data to be transferred and can 
make an efficient decision to use either the Eager or the Rendezvous Protocol. [cellmpi] does not 
implement the Eager Protocol, so their implementation does not need to make a choice between 
protocols.  Our  implementation  supports  both  protocols  and  we  therefore  have  chosen  sender-
initiated  message  passing.  Another  reason  for  receiver-initiated  message  passing  not  being 
commonly utilized is related to how the Rendezvous Protocol is implemented using RDMA Read in 
the literature.  As described in [20], sender-initiated message passing with RDMA Read has the 
same  number  of  control  messages  as  receiver-initiated  message  passing,  the  number  of 
synchronization points between the sender and receiver is also reduced, and both the Eager and 
Rendezvous  Protocol  can  be  supported  in  a  manner  efficient  for  the  application.  The 
implementation of MPI for the Cell described in [17] has a zero-byte latency of 0.272 usec or 870 
Synergistic Processor Element (SPE) clocks within the same Cell, with the SPE clock operating at 
3.2 Ghz. Our implementation has a zero-byte latency of 217 clock cycles with the clock of our 
FPGA prototype being  approximately 75 Mhz, which yields a zero-byte latency of 2.893 usec. The 
two hardware architectures are obviously quite different.  

MPI has also been implemented in [18] across multiple FPGAs. The TMD-MPI design is  
minimal  due to similar limitations we face on our own FPGA prototype. Their testbed system has 
two networks with the one being used for intra-FPGA communication and the other for inter-FPGA 
communication.  They support  only the Rendezvous Protocol  and their  hardware does  not  offer 
RDMA operations. The on-chip communication uses internal BRAMs. A single BRAM (64KB) 
contains code and data. The testbed is running at 40 Mhz and has an on-chip zero-byte latency of 
17usec or 680 cycles at 40 Mhz.
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Chapter 3

Hardware and Software Architecture

This chapter provides a detailed description of the software architecture of the MPI library. Since 
the MPI library interfaces  directly  to  the hardware,  we provide  a  high-level  description  of  the 
hardware  architecture.  We  also  examine  how  the  software  requirements  can  be  mapped  into 
hardware operations. The hardware is described from the perspective of the software programmer 
and includes only the details related to software design and implementation. 

3.1 Hardware Architecture Overview

This section provides an introduction to the hardware architecture of our system. We do not provide 
a detailed description of the hardware. Additional information about the hardware will be provided, 
when needed, at later sections and as we describe software design and implementation. A detailed 
description of the hardware can be found in [5] [16].

3.1.1 Hardware Platform Abstract Architecture

Our platform contains 4 processors interconnected by a NOC.  An abstract view of the entire CMP 
is provided in Figure 3.1, while a high-level diagram of each processor block is provided in Figure
3.2.  A  256MB DDR2 SDRAM  is  also  connected  to  the  NOC and  is  accessible  from all  the 
processors. Each of the 4 processors has an L1 and an L2 data cache. The size of each L1 data cache 
is 4 KB and the size of each L2 data cache is 64 KB. Part of each L2 data cache can be configured  
by software at run-time to operate as scratchpad. The configuration is as simple as writing a specific 
value to the tags of each cache line we desire to have it operate as scratchpad instead of cache.
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From a programmer's perspective, a scratchpad region within the L2 data cache is nothing 
more than a memory close to the processor, and therefore fast, that can be directly addressed like 
any other memory. The hardware will not evict any of the cache lines that have been configured by 
the software to operate as scratchpad.  

Each  L2  data  cache  is  4-way  associative  and  we  must  refrain  from  allocating  all  the 
available cache ways as scratchpad, because we must have at least some data cache for program 
data that are not explicitly mapped into scratchpad regions.  Taking this restriction into account as 
well as the L2 cache size of 64KB, it becomes obvious we should carefully choose the software data 
to allocate into scratchpad regions. 

Figure 3.1: Abstract diagram of CMP with 4 processors 
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We should also keep in mind the trade-off between speed of access to scratchpad region data 
and possible frequent eviction from the cache of other cacheable data of our program. The more 
scratchpad regions we allocate,  the less cache space remains for cacheable data,  so the data in 
scratchpad should generally be more frequently used than the remaining data that are left to be 
cached. 

The previous  requirement  seems to introduce a slight  paradox regarding expected  cache 
behavior. We typically expect cached data to exhibit spatial or temporal locality. If the expectation 
of  infrequent  use  of  cached  data  is  fully  realized,  then  the  performance  of  the  cache  might  
deteriorate to the point of being incapable to hide the DRAM latency.  However, a low locality  
behavior cannot be handled by any cache scheme. Frequent eviction due to reduced cache size is a 
greater concern. In the average case we expect the cached data to be used often, but the data in 
scratchpad to be used more often than those that are cached. The point is that we proactively cache 
data we expect to be used often and this practice, although manual, has potential of achieving better 
code  performance.  We still  need  to  carefully  choose  the  data  to  place  into  scratchpad  regions 
though.

3.1.2 Hardware Operations

Each L2 data cache of our platform is integrated with an NI. Communication between nodes is 
achieved via the NI's, which interconnect each processor to the NOC. Besides being able to allocate 
general software data into scratchpad regions, we also need to allocate data into scratchpad for the 
purposes of issuing commands to the NI and getting responses from the NI. If notifications about 
completion of operations are also desired, than we also need to allocate Counter objects within 
scratchpad regions. The logical view of the L2-cache run-time configurability is shown in  Figure
3.3.

Each scratchpad memory is  identified by using a  specific  memory address range that  is 
parametrized by the CPU_ID of the CPU physically closest to a specific scratchpad memory. We 

Figure 3.3: L2 cache logical run-time configurability 
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will typically say that each CPU has a scratchpad memory, although it should be noted that each 
scratchpad memory is accesible  by other processors and ownership of scratchpad is not strictly 
assumed.

In the next paragraphs we describe the operations that are offered from the hardware to the 
software for the purposes of message exchange together with the conventions that must be followed 
when software communicates with the NI's. The hardware features offered are the following:

Counters/Notifications 
A  Counter is an object allocated within special scratchpad lines by writing a specific value into the 
cache tag of the line. A Counter is typically initialized with a 24-bit signed value representing the 
size of the Counter. When issuing RDMA operations a Counter object is used  to detect completion 
of the RDMA operations. The value of the Counter in this case is associated with the size of the 
RDMA operation. By convention, if the size of the RDMA operation is dma_size, then software 
should  provide  the  value  (0  –  dma_size)  to  the  Counter  instead  of  the  value  dma_size.   This 
convention benefits  hardware design and is trivially implemented in software. The value of the 
Counter is written at the address of the Counter itself. Software can also provide up to 4  scratchpad 
memory addresses that should be notified about subsequent operation completion. Those addresses 
are written at  the second half  of the Counter scratchpad line and can be either local or remote 
addresses.  Counter  configuration  alternatives  are  shown in figure  Figure 3.4.  More information 
about how exactly the notification addresses can be used is provided in the description of RDMA 
operations that follows. 

 
RDMA Write/Read  
Software  can  instruct  the  NI  to  perform RDMA operations.  The  typical  software  steps  are  as 
follows:  

a. Software determines the source and destination memory addresses associated with the RDMA 
operation.  These memory addresses must belong to a scratchpad region. Any processor can issue 
an RDMA operation with the memory addresses being in any scratchpad region of any scratchpad 
in the platform (i.e. any combination of remote or local scratchpad addresses is allowed).

Figure 3.4: Counter configuration alternatives 
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b. Software determines whether notification(s) about completion of an RDMA operation should be 
provided by the NI. If this is so, then software allocates a Counter object in scratchpad region and 
updates the Counter with the desired notification addresses. The notification addresses must also be 
located in scratchpad regions for the NI to be able to update them after operation completion. When 
the operation is complete, NI will write the value 1 into the notification addresses, so software must 
set the contents of any notification address to a value other than 1 before the RDMA operation is 
initiated to be able to detect completion at a later time via polling.  Note also that the value of the  
Counter is set to (0 – dma_size). As shown in Figure 3.4, a Counter does not need to be local to the  
processor issuing an RDMA operation.

c.  Software  allocates  an  NI command  buffer  in  scratchpad region if  one has  not  already been 
allocated  and  issues  a  sequence  of  stores  into  the  NI  buffer  supplying  the  RDMA  operation 
arguments.  The NI automatically  detects  command  buffer  completion  and proceeds  to  perform 
requested operation without any further software intervention. 

d. Software can be informed about progress of an RDMA operation by either testing for the value of 
1 at any notification addresses previously supplied or by testing the first location of an NI command 
buffer for the value of 0. The later method does not mean that the operation has been completed, but 
is useful in order for software to determine whether an NI command buffer can be reused.

Remote Store
Each  processor  can  issue  a  store  to  a  remote  scratchpad  address.  From the  perspective  of  the 
software, the remote store is implemented like any other store. Typically a pointer holds the value 
of the remote address to write data to and the remote store is as simple as writing the contents of the 
pointer via a usual assignment of a value to the dereferenced pointer.

Messages
A Message is a compromise between a Remote Store and an RDMA Write. Issuing a Message 
transfer is similar to the issuing of an RDMA command to the NI. A Message can be used to write  
up to 5 4-byte words to a scratchpad address, while a store can write up to 4 bytes to an address.  A 
Remote store has lower initiation overhead, since the initiation of a Message transfer requires itself 
a sequence of stores.  
Queues
The hardware provides mechanisms for the software to define Queues in scratchpad regions that can 
be partly controlled and updated by the hardware and partly by software. It was not clear how we 
could incorporate them into our MPI library implementation. Besides, at the time of development of 
the library a new version of the hardware was being deployed and the Queues had not been tested.  
We therefore did not use them in our library implementation. More information about the Queues 
offered by the hardware can be found in [5].

3.1.3 Mapping Hardware Operations to Software Requirements

The Remote Store can be used for small data transfers between processors. Any control messages 
used by our library during MPI application data transfers are candidates for usage of Remote Stores. 
A performance gain from use of a Remote Store is expected when it is used with messages for 
which we can infer the completion by the data actually stored by the operation or when we can wait 
for the data at any point in time (i.e. we only care for the data to eventually arrive at some point and 
do not demand to consume the latest such data). 
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A Message  can  be  used for  data  transfers  up to  5  4-byte  words.  Control  messages  are 
candidates for using a Message if a Remote store to a single 4-byte word is not sufficient. The 
performance of 5 stores compared to the performance of a single Message should be explored.

Any typical data transfer can be impelemented with RDMA operations. RDMA operations 
do have an initiation overhead, so, from a performance perspective, the point over which an RDMA 
operation is more beneficial than a Remote Store or Message should be explored.

Counters  and their  associated  notifications  will  be used to  detect  completion  of RDMA 
operations in order to determine whether normal buffers or NI command buffers or the Counters  
themselves found in scratchpad regions can be reused. 

3.2 MPI Library Programming Environment 

This section includes some implementation issues because they directly affect the software design 
choices. We briefly mention them in this specific chapter  rather than delaying them until Chapter 4.

The Application Programming Interface  (API) described within the MPI specification  is 
typically implemented using the C programming language, although implementations using other 
languages such as FORTRAN or even combinations of programming languages are also possible. 
Our implementation is based solely on the C programming language.  

The FPGA prototyping environment we use to implement and test our software does not 
include an operating system. We only have a C runtime system with minimal C library support. We 
do not have a filesystem on the board either. The 4 processors in our system are Xilinx MicroBlaze 
processors and we use the mb-gcc compiler to compile our programs with the assistance of Xilinx  
tools that facilitate software development. 

The platform includes a DDR SDRAM. The program text of each processor is assigned to 
different  non-overlapping  DRAM   regions  with  the  assistance  of  linker  scripts  specifically 
developed for this purpose. Programs are loaded at run-time from the DRAM into the instruction 
caches of the processors. 

It  is  hardly feasible  to  port  any known MPI implementation  into  our  system,  since our 
DRAM is limited to 256 MB and we do not even have an OS. Consequently, our implementation 
begins from scratch and we focus on providing a subset of MPI functions with the goal of extending 
the software code base of our hardware platform. Our focus is on basic functionality instead of 
providing a full MPI standard implementation.  We explore the practical issues faced when trying to 
implement the basic MPI functions in a multicore FPGA environment. Such issues have already 
been explored by other researchers during the development  of the Cell Messaging Layer  in the 
context  of  Cell  processor  environments.   The  Cell  Messaging Layer  does  not  implement  non-
blocking MPI  functions  and we chose  not  to  support  those functions  either  in  our  initial  MPI 
implementation.

The MPI standard purposefully does not constrain MPI library implementations with respect 
to various software design choices. Still, basic MPI primitives do have specific requirements from 
the underlying software layers. Our library implementation is ultimately limited by the available 
hardware resources of the specific FGPA prototype used to implement and test our software, so 
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practical compromises must be made. We do not claim to strictly follow the standard, but we strive 
to fundamentally comply to usual expectations from MPI application programmers. 

3.3 MPI Application General Structure

An MPI program consists of independent processes executing their own instructions  and generally 
each  process  has  its  own  address  space.   In  order  for  two  or  more  processes  to  exchange  
information,  explicit  messages  must  be  sent  from one  processes  to  another.  MPI  employs  the 
concept of a communicator to capture the abstraction of a group of processes capable of exchanging 
messages for a specific purpose. A typical MPI application developed using the C programming 
language exhibits the following general source code structure:

int main(void)
{

MPI_Init();

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if (0 == my_rank)
{

// Computation

 MPI_Send();

// Computation

MPI_Recv();
}

MPI_Finalize();
}

The typical MPI application source code begins with a function call that initializes the MPI 
library and ends with a function call that terminates the library environment. A process rank is an 
identifier used to refer to each process and select the code that each process should run. The calls to 
the MPI library are embedded in normal C source code and are no different than any other typical  
library function call. 

As stated previously, our library design begins from scratch and our main goal is to extend 
the software code base of our hardware platform. We implement only a subset of the MPI functions  
and focus  on basic  functionality  instead  of  providing a  full  MPI standard implementation.  We 
explore the practical issues faced when trying to implement the basic MPI functions in a multicore 
FPGA environment. The section that follows provides detailed descriptions of the subset of MPI 
functions we chose to implement.  We determine the requirements of applications from the MPI 
library and explore how these requirements can be satisfied in our specific environment. 
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3.4 Description of  MPI Primitives

The MPI primitives we implement are described in the following paragraphs. These primitives are 
absolutely required in order to run any meaningful MPI program. The fact that we do not implement 
non-blocking MPI functions at this stage has an important consequence for MPI applications run on 
top of our library: all message exchanges between processes should be carefully arranged to avoid 
deadlocks. In other words, the MPI application programmer cannot assume that deadlock situations 
would be resolved in any implicit way by the MPI library.  

3.4.1 MPI_Init() and MPI_Finalize()

All MPI programs must begin with a call to MPI_Init() and end with a call to MPI_Finalize().  The 
call to MPI_Init() prepares the necessary data structures for subsequent calls into the MPI library,  
while the call to MPI_Finalize() cleans up and terminates the library environment.  Any calls into 
the MPI library before the invocation of MPI_Init() or after the invocation of MPI_Finalize() are 
expected  to  be  erroneous  and  such  practice  is  therefore  not  recommended  to  MPI  application 
programmers. 

The work performed by the MPI_Init() function is closely related to the implementation of 
MPI_Send()  and MPI_Recv()  functions.  The  latter  functions,  when  implemented  using  RDMA 
operations  with  memory semantics,  typically  require  memory address  conventions  for  message 
exchange. Those conventions are partly realized during library initialization. The correctness of the 
MPI_Send() and MPI_Recv() functions highly depends on the correctness of the initialization. 

Of particular importance is the requirement for synchronization between processes of the 
system  before  the  MPI_Init()  function  returns  at  each  processes.   At  this  point,  every  other 
processes must have been initialized, otherwise programs might be erroneous in a non-deterministic 
way or might simply crash. Synchronization among processes at the end of MPI_Init() must be 
confirmed whenever an issue that manifests itself in a non-deterministic way appears during the 
operation of the library and should be kept in mind whenever changes need to be made to any of the 
initialization  routines.  Alternatively,  applications  could  explicitly  call  MPI_Barrier()  after 
MPI_Init() to avoid initialization related errors.

3.4.2 MPI_Comm_size() and MPI_Comm_rank()

The utility  functions  MPI_Comm_size()  and MPI_Comm_rank()  are  typically  used  by an  MPI 
application immediately after the MPI library has been initialized by invocation of MPI_Init(). A 
typical MPI application uses the rank parameter and size of communicator to distribute unique work 
among processes.

Through a call to MPI_Comm_size() each procesess obtains the size of the communicator 
MPI_COMM_WORLD, which is also the only communicator supported by our implementation. 
The size  of   MPI_COMM_WORLD is  fundamentally  the  number  of  processes  running in  our 
system.  We  support  a  single  process  per  available  processor.  Since  4  processor  exist  in  our 
multicore environment, the size returned by a call to MPI_Comm_size() is also 4. 
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Through  a  call  to  MPI_Comm_rank()  each  process  obtains  its  rank  within  the 
MPI_COMM_WORLD  communicator.  Generally,  in  an  MPI  environment,  each  process  is 
uniquelly identified by a rank within a communicator. Since MPI_COMM_WORLD communicator 
is the only communicator supported by our implementation, the rank suffices to uniquely identify a 
process in  our platform.  Each processor  in  our system already has  a  unique CPU_ID. We can 
therefore perform a one-to-one mapping from the processor CPU_ID into the MPI rank of each 
running  process.  Consequently,  CPU_ID  and  MPI  rank  can  be  considered  equivalent  for  the 
purposes of our implementation and from now on we can use any of those terms to identify a 
process, depending on the context. 

3.4.3 MPI_Barrier()

A barrier forces all processes to wait until all processes reach the barrier and afterwards releases all 
the processes. Implementation of a barrier for synchronization among processes in our system is 
important for the correctness of MPI_Init() and therefore the correctness of any MPI application 
that uses our library.  Our existing system software includes an implementation of barriers.  The 
algorithm used is a sense-reversing barrier. A sense-reversing barrier avoids undesired interactions 
between barrier instances, and particularly situations where a process races ahead and gets to the 
barrier again before the last process has left. More information on sense-reversing barriers can be 
found in [5]. We simply comply to the requirements of the system software library and follow the 
conventions for the practical definition of such a barrier. 

The only communicator  we implement  is  MPI_COMM_WORLD. This communicator  is 
absolutely necessary for any MPI implementation and is used to capture the abstraction of a point-
to-point message path between each pair of processes existing in our system. A barrier call that only 
uses the MPI_COMM_WORLD communicator practically means that all processes in our system 
must synchronize at each occurence of MPI_Barrier()  function call  in a program. Note that the 
implementors of the Cell Messaging Layer  have also chosen to implement this communicator only.  
This implementation choice is reasonable in a multicore environment with increased conserns about 
high speed memory availability and simultaneous demands for high performance.

3.4.4 MPI_Send()

The MPI_Send() function initiates a point-to-point message transfer from the process that calls the 
function towards a second process. The MPI_Send() function is referred to as a standard send with 
blocking semantics.  The syntax of the blocking send operation is the following:

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

The MPI_Send() function does not alter any of the arguments supplied in an invocation of 
the function.  The buf is the address of the application send buffer, count is the number of elements 
contained in buf, datatype is the datatype of each element in buf, dest is the rank of the destination 
process,  tag is an extra field added to an outgoing message (used in application specific ways to 
differentiate among messages), and comm is a communicator object. 
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The  rank and  comm uniquely identify the receiving process and, consequently, a standard 
send can only initiate point-to-point message transfers between a sending and a receiving processes. 
In our system, the  MPI rank of the destination process needs to be specified in the parameters 
passed  to  the  function.  The  communicator  parameter  in  our  system  must  always  be 
MPI_COMM_WORLD. Support for MPI_COMM_WORLD is required, while it is typical to be the 
only communicator  supported in initial  MPI library implementations  in multicore environments 
with limited resources.

Our  implementation  will  not  support  tags.  The  use  of  tags  complicates  the  message 
matching logic at the receiver side and is not supported in other similar implementations. More 
information about the matching logic is provided when describing the MPI_Recv() function.

When  MPI_Send()  returns  to  the  calling  environment,  the  application  assumes  that  the 
application buffer provided when the standard send operation was issued can safely be reused. The 
MPI library implementation  can either  deliver  the application  message  to the  matching receive 
buffer or use system buffers to temporarily store a pending message. So, when this function returns, 
it is not generally true that the application message has been necessarily delivered to the remote 
receiving application side.  On return from the function, an application message might only have 
been copied to system buffers and the NI instructed to deliver it to the remote side. Still, from the 
perspective of the MPI application the send buffer can be reused and this is all that matters for all  
practical  application  programming  purposes.  Such  a  call  is  characterized  as  being  non-local, 
because successful completion might depend on the occurence of a matching receive. 

Message  buffering  requires  additional  memory  to  be  allocated  either  at  startup  or 
progressively during the lifetime of a program with potential complexity about how to return such 
memory to the system when it is no longer needed. Another disadvantage is the resulting copy 
overhead between application and sytem buffers at the sending and receiving processes. However, 
the potential benefit is a decoupling of the sender from the receiver, which could improve  overlap 
of communication with computation in some cases on the sender side. The use of system buffering 
is yet another instance of the engineering principle that sometimes trades memory for speed.  

Additional  reasons  to  use  system buffering  and  copies  between  application  and system 
buffers appear in environments offering RDMA operations: not all memory addresses can be used 
for  RDMA,  some  overhead  occurs  during  allocation  of  RDMA-capable  memory,  and  size  of 
RDMA-capable memory is usually limited or has specific alignment restrictions when used.  Even 
if all memory can be used for RDMA with byte-level accuracy, lack of support for cache coherence  
might  introduce  errors  in  programs.  Our  system  does  not  yet  support  cache  coherence  and, 
therefore, the support for system buffering in our implementation seems to be needed at least at an 
initial stage. Such support is realized via the implementation of the Eager Protocol, with details 
being described in later sections.

Zero-copy support  in the MPI libraries  is  typically  desired in  order to avoid the known 
overheads of copies from application to system buffers, especially for messages perceived as large. 
Such support is realized via  the  implementation of the Rendezvous Protocol,  with more details 
provided in later sections. Support for zero-copy implies that the starting address of the application 
buffer must be part of an RDMA-capable region. The application buffer must therefore have been 
allocated in such a region from the beginning or at least before the address of the buffer is handed 
off to the MPI library. A typical technique to address this requirement is to provide hooks into the 
malloc() function. The RDMA-capable memory is not infinite and not all memory allocated by an 
application will be used for communication purposes. The allocation of RDMA-capable memory 
for computation purposes only might be a disadvantage in some cases. Tradeoffs are encountered in 
both the Eager and the Rendezvous Protocol implementations, same way tradeoffs appear in most 
engineering choices, so,  balance and tuning will typically be needed to get the best of both worlds. 
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3.4.5 MPI_Recv()

The MPI_Recv() function delivers a message to a process. Typically another processes has either 
previously initiated a point-to-point message transfer towards the  process that receives the message 
or is expected to do so in the near future (i.e. data might not be yet  ready when the receive is 
posted). The MPI_Recv() function is referred to as a standard receive with blocking semantics.  The 
syntax of the blocking receive operation is the following:

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, 
MPI_Comm comm, MPI_Status *status) 

Most of the arguments of an MPI_Recv() and an MPI_Send() function call  have similar  
meanings, with the main difference now being that arguments are interpreted from the prespective 
of the receiver (i.e. buf now becomes the initial address of the receive buffer, and rank is the rank of 
the sending processes). There exist some differences as far as the count and source  arguments are 
concerned, while status is an additional argument we do not encounter  in a standard send. 

The argument  count supplies the length of the received message and must be less than or 
equal to the length of the receive buffer. According to the MPI standard, if a message shorter than 
the receive buffer arrives, then only the memory locations corresponding to the shorter message will 
be modified. If a message larger than the receive buffer arrives, then an overflow error might be 
returned,  but  still,  quality implementations  must  ensure  that  memory  locations  beyond  the 
boundaries  of  the receive  buffer  will  not  be modified.  In conlusion,  the length  of  the message 
written to the receive buffer is the shortest among the sender and receive buffer length. We cannot 
assume  that  the  lengths  of  the  send  and  correponding  receive  buffers  will  be  identical.  MPI 
applications sometimes allocate a large buffer and use it to receive messages of various sizes. If a 
blocking  receive  call  is  used  to  receive  messages,  then  a  flexible  receive  buffer  size  allows  a 
program to avoid deadlocks when matching the size of the transferred message. 

A receive operation must select one among potentially many messages  delivered to the 
receiving processes at the time the receive is posted. This selection is determined by the value of the 
message envelope. Specifically, if envelope matches the source, tag and comm values specified by 
the receive operation, then the message is a candidate for reception by the application. 

When a  receive  operation  is  posted,  multiple  messages  that  have  already arrived  might 
match  the  operation  and  the  MPI  library  must  decide  which  one  of  those  messages  must  be 
delivered to the MPI application. If there are multiple matching messages, then, on reception, the 
MPI library must maintain the exact order the messages were sent by the sending process. MPI 
terminology refers to this requirement by stating that messages are non-overtaking and implies the 
existence of a virtual FIFO between each sender and each receiver.

 According  to  the  MPI  specification,  a  receiver  may  specify  a  wildcard 
MPI_ANY_SOURCE  value  for  source,  and/or  a  wildcard  MPI_ANY_TAG  value  for  tag,  to 
indicate  that  any  source  and/or  tag  can  be  accepted  by  the  application.  The  use  of  wildcards 
modifies the matching logic and a message can be received only if it is addressed to the receiving 
process, has a matching communicator, has matching source unless source= MPI_ANY_SOURCE 
in the pattern,  and has a matching tag unless tag= MPI_ANY_TAG in the pattern.  The use of 
wildcards complicates the matching logic and introduces non-determinism in MPI libraries. 
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We  do  not  offer  support  for  MPI_ANY_SOURCE  and   MPI_ANY_TAG  in  our 
implementation. We do not support tags in general. The argument status, which is used to provide 
additional information about reception to the appluication is not supported. Note that this argument 
is typically used by an application that uses wildcards to determine the source and tag fields of a 
received  message.  Since  our  implementation  does  not  support  wildcards,  it  is  not  particularly 
meaningful to support the status argument. Note also that the Cell Messaging Layer has followed 
similar  implementation  choices.  In  later  sections  we  will  provide  more  details  about  how the 
requirement  for  a  virtual  FIFO  between  each  sender  and  each  receiver  is  realized  in  our 
implementation. 

3.5 Eager and Rendezvous Protocols

Two internal  protocols are typically used  in MPI library implementations  to  provide message 
exchange between processes:  Eager and Rendezvous.  Both protocols  are  fundamentally  used to 
facilitate  a  data  transfer,  but  differ  in  various  respects.  Each  protocol  has  advantages  and 
disadvantages and the choice  between them usually depends on the size of the application message 
being transferred.  A detailed desctiption of Eager and Rendezvous Protocols is provided in the 
paragraphs that follow.

3.5.1 Eager Protocol

When  Eager  Protocol  is  employed,  sender  eager  writes  data  to  the  receiver  side  without  any 
apparent negotiation. Eager Protocol is depicted in  Figure 3.5.  As noted in [12], Eager Protocol 
uses system buffer preallocation at the receiver in order for the sender to be able to write data  
directly into the remote memory space, while in Rendezvous  the sender is informed by the receiver 
about remote available buffers.  

Figure 3.5: Eager Protocol 
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The Eager Protocol approach also utilizes memory copies between application and system 
buffers at the sender and receiver sides as shown in Figure 3.7.

  It is obvious that the Eager approach suffers from scalability issues due to system buffer 
memory preallocation, and more so if per-processes memory preallocation occurs. Eager protocol 
fundamentally  trades  memory  for  simplicity  and  speed.  This  trading  typically  occurs  only  for 
smaller messages to avoid memory exhaustion.  For small  messages it  might faster to copy the 
message into system buffers than to suffer the software steps overhead of the Rendezvous Protocol. 
It is expected that usage of Eager protocol for message exchange will become prohibitive in the 
case  of larger messages, not only due to memory availability concerns, but also for performance  
reasons associated with the copy overhead, even if the necessary system buffer memory had not 
been an issue.

The  choice  between  Eager  and  Rendezvous  Protocols  depends  on  the  size  of  the  MPI 
application  message  being  transferred  and  is  decided  at  run-time.  The  Eager-to-Rendezvous 
message size threshold  is a compile-time design parameter of our software library and needs to be 
tuned and adjusted to the specific hardware environment of our system.  

3.5.2 Rendezvous Protocol

The steps of the Rendezvous Protocol are shown in  Figure 3.7. We implement the Rendezvous 
Protocol using RDMA Write operations. The RDMA Write based Rendezvous protocol generally 
uses 3 control messages for a single message transfer between 2 processes. As shown in Figure 3.7, 
ender queries the receiver side about the remote memory address to write data to (Request To Send, 
RTS),  receiver  responds  with  the  requested  memory  address  (Clear  To  Send,  CTS),  sender 
completes  the  data  transfer  (Rendezvous  Data)  and  finally  sender  informs  the  receiver  about 
completion of the operation (Rendezvous Finish, FIN).  

Figure 3.6: Copies between application and system buffers
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There exist various techniques to reduce the number of software control messages associated 
with  the  Rendezvous  Protocol.  The  Rendezvous  Finish  control  message  could  be  handled 
automatically  by  hardware  notification  mechanisms  after  the  Rendezvous  Data  arrive  at  the 
receiver. Another technique uses RDMA Read operations for the Rendezvous Data transfer instead 
of RDMA Write. Note that this technique modifies the protocol steps slightly as shown in Figure
3.8.

Figure 3.8: RDMA Read based Rendezvous Protocol 
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Figure 3.7: RDMA Write based Rendezvous Protocol
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Chapter 4

Library Implementation and Performance

This section describes a software library implementation of blocking MPI primitives over a chip 
multiprocessor environment developed in an FPGA. We exploit enhanced features offered by the 
hardware  for  the  purposes  of  low-latency  communication  and  messaging  layer  software 
development. Our implementation takes into account the limited fast memory resources, software 
utility availability issues and functionality limitations typically encountered in FPGA platforms.

4.1 FPGA Prototyping Environment   

4.1.1 Target FPGA

The hardware prototype of our system has been  implemented in a Xilinx Virtex-5 FPGA. The chip 
multiprocessor  contains  4  MicroBlaze  soft-cores  as  processors.  The  processors  are  RISC-style 
processors, 32-bit, in-order, and have been configured to include a 5-stage pipeline for performance 
reasons.  High performace multiplication and division is not supported by the hardware, so software 
should refrain from using such operations to avoid a performance penalty. 

Each processor has a private L1 data cache and a configurable L2 cache/scratchpad memory 
tightly coupled with an NI. Instruction caches have been activated. The prototype includes a 256 
Mbyte  DDR2  SDRAM  to  be  shared  among  processors  and  be  used  as  main  memory. 
Communication among processors and the off-chip DDR memory controller is achieved via a 32-
bit, 5-port input-queued crossbar switch with round-robin scheduling policy. 

The  operating  clock  frequency  of  the  system  is  approximately  75  MHz  due  to  DDR 
controller issues and the complexity of the hardware design. Our performance measurements will be 
provided in units of clock cycles instead of seconds. Note that most MPI implementations report 
performance numbers in units of seconds.
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4.1.2 Software Development Environment 

As was described in the previous chapter, our software design has been affected by the fact that we 
do not have an OS or filesystem on the FPGA board. We only have a C run-time environment with 
limited C library support. We developed our code and downloaded it to the FPGA using Xilinx 
development  tools.  The  compiler  we  used  is  mb-gcc  and  we  compiled  our  programs  with 
optimization level -O3. 

The mapping of program sections to the memories of our system has been achieved with the 
use of linker scripts. The 256 Mbyte DRAM of our system has been equally partitioned among the 4 
processors.  We  generate  4  executables  and  each  processor  has  its  own  address  space.   The 
program .text is mapped to the last 16MB of each partition. The other required sections, including 
the stack and heap, of each executable are mapped to the first 48MB of each DRAM partition.

4.2 Messaging Layer Components

4.2.1 Data Structures

Our implementation of Eager Protocol uses RDMA Write to eagerly copy application data towards 
the receiver application buffer using intermediate copies to system buffers. A sender that initiates a 
message transfer needs to know beforehand the remote memory address of the receiver  system 
buffer in order to instruct the NI to perform the RDMA operation. Consequently, the system buffers 
must  be  preallocated  and  a  convention  between  each  pair  of  sender  and  receiver  should  be 
maintained in order for each sender to know at any given point in time the remote address where the 
next data are expected by the receiver.

 
The system eager buffer memory space used for copying user data and afterwards initiating 

RDMA operations is fixed size and obtained at startup. We currently obtain 1 way of the L2 cache 
for the purposes of our library. After we obtain the RDMA memory space, we use it to allocate 
queues for all existing processes. The number of processes is equal to the number of processors in  
the system. The maximum number of CMP nodes connected to the prototyping platform is 4. 

We allocate a send queue and a corresponding receive queue for each pair of processes. 
Sender 0 uses send queue 1 to send data to receiver 1 while receiver 1 uses receive queue 0 to 
receive  data  from sender  0,  and so on.  We maintain  a mapping between a send queue and its 
corresponding  receive  queue.  Each  of  those  mappings  can  be  considered  as  a  point-to-point 
unidirectional virtual circuit between a sending and a receiving process. 

The system buffers in each send queue are persistently associated with their corresponding 
system buffers in a receive queue. Persistent buffer association is shown in Figure 4.1, has been 
used in other RDMA based Eager protocol implementations and eases coordination of buffers and 
flow control between a sender and a receiver. 
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The send and receive queue buffers are organized as rings with corresponding head and tail  
pointers. A queue is empty if the pointers are equal and full if an advance of the tail pointer by one 
(mod N, where N is the number of buffers) would cause the tail to reach the value of the head. 

The sender writes data  at  the tail  position of a send queue and then copies them at the 
corresponding position  of  the  remote  receive  queue using  RDMA Write.  Therefore,  the sender 
always knows the tail position of the send and corresponding receive queue. The sender does not 
know the status of the head, since only the receiver acts on this variable.  Each sender needs to 
monitor the head and tail of a send/receive queue pair in order to detect a queue full condition. Note 
that in the scheme we describe, and from the perspective of the receiver, only the receive head 
pointer is significant. The main responsibility for flow control is handed off to the sender. 

The receiver can inform the sender about the value of the queue pair head by writing the  
head value to a specific space within the scratchpad memory of the sender.  We have allocated 
control space in scratchpad memory at each sender for each remote receiver.  Each receiver can 
write the value of the queue pair head to this control space using a Remote Store. In conclusion, a 
sender uses its local tail and the current value of the remote head contained in its local scratchpad to 
determine if a queue pair has space for an eager protocol message transfer. 

The size of each buffer in a send or receive queue is a compile time constant, while the 
control information per peer has a size of 4 bytes (4 bytes for the remote queue head pointer value). 
The structure of an Eager buffer is shown in Figure 4.3.

Figure 4.1: Persistent Buffer Association 
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Each eager buffer starts with a 4-byte ready flag used by a receiver to sense incoming data 
within the eager buffer at the head position of a receive queue.  A 4-byte message type field follows 
and is used to differentiate among messages that can be possibly written within an eager buffer. 
Such messages include Eager Data and Rendezvous Control Messages. The application data type is 
a 4-byte field used to communicate the type of data that the sending MPI process transfers to the 
receiving MPI process. The application data size is a 4-byte field used to determine the amount of 
data to be written at  the receiving process application buffers.  The application data  size of the 
sender and receiver  might  differ.  In any case,  the smallest  of the two sizes is  written  into the 
receiving process application buffers.

Generally, we cannot assume that the bytes inside an eager buffer are RDMA written by the 
hardware in order. Such hardware features typically complicate messaging layer design. However, 
our platform offers counters with associated notifications. When a sender initiates an RDMA Write 
to a remote eager buffer, the eager buffer local to the sender is marked as being not ready and the 
hardware is instructed to provide a notification on RDMA completion at the remote receive buffer 
address, which is also the address of the ready flag.  So, the sender software does not mark an eager  
buffer as being ready to be read by the receiver. This task is handled by the hardware and is shown 
in Figure 4.4. Receiver software marks again an eager receive buffer as being not ready when data 
within an eager receive buffer have been consumed.

Figure 4.2: Eager buffer structure
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4.2.2 Process Synchronization Mechanism 

Our MPI library requires a process synchronization mechanism to be available in order to ensure 
correctness of library initialization.  After initialization is finished, each process is eligible to send 
application data to remote receivers and will initiate RDMA Write operations or Remote Stores for 
that purpose. So, the remote addresses must have already been allocated by the remote processes in 
their corresponding scratchpads or else the initialization will be erroneous.

A sense-reversing barrier implementation already existed from previous work on software 
development for our platform. We use this existing mechanism to synchronize processes before 
MPI_Init()  returns  to  each of  the process  in  our  system.  We also use the  same mechanism to  
implement  MPI_Barrier()  for  the  communicator  MPI_COMM_WORLD,  which  is  the  only 
communicator supported by our library.

Our work focused more on the point-to-point blocking communication primitives and less 
on efficient process synchronization mechanisms. For the purposes of our work, in an environment 
that includes only 4 processors, the existing barrier implementation was adequate to fundamentally 
satisfy  the  synchronization  requirements  of  our  library.  Therefore,  our  MPI_Barrier() 
implementation  does provide barrier  functionality,  but does not claim to provide any particular 
barrier performance.

It should be noted that the existing barrier implementation is based on the Xilinx Mutex core 
for the On-Chip Peripheral Bus (OPB). Each mutex has its own address range of 4 words of 32-bit 
data. The first word of the mutex can be used to implement locks and the second word for user 
defined data. The existing barrier implementation exploits the first word for locking and the user 
register for barrier data. The locking procedures that must be followed for the mutex to be locked 
and unlocked are described in the Xilinx manual for the OPB Mutex core.

Figure 4.3: RDMA Write completion designation by NI  
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4.2.3 Library Initialization

Library initialization is performed when an MPI application calls the MPI_Init() function. During 
library initialization each process performs the following tasks:

1. Assigns to the value of its own rank the value of its own CPU_ID for later support for the  
MPI_Comm_rank() function.

2. Initializes the number of processes in the communicator MPI_COMM_WORLD for later 
support for the MPI_Comm_size() function.

3. Allocates memory space in scratchpad to be used by Eager Protocol.

4. Calculates the base scratchpad memory address of remote processes.

5. Allocates an NI command buffer and space in scratchpad for the polling address of the local 
sender.  

6. Calculates the addresses of remote eager send and receive queues and their buffers. The 
result is stored in cached private process variables. The caching of those values improves 
communication performance since those calculations are removed from the fast path.

7. Allocates space in scratchpad for tracking the head status of remote receive queues.

8. Allocates memory space in scratchpad to be used for Rendezvous Protocol and initializes 
the custom memory allocator that overrides malloc().

9. Enters a barrier and waits for all other processes to reach the same point before MPI_Init()  
returns to the MPI application calling environment.

At each step of the initialization any variables that need specific initial values are set to those values 
(e.g. queue head and tail pointers, buffer ready flags, etc).

4.2.4 Eager Protocol Implementation

When a sender calls the MPI_Send() function and the application message size does not exceed the 
Eager-to-Rendezvous threshold, then Eager Protocol will be used between the sender and receiver 
for the specific message transfer. It should be noted that sender decides the protocol to be used. 
Generally, the application message size specified in an MPI_Send() function call might be different 
from the application message size specified in the matching MPI_Recv() function call. In any case, 
the minimum of the two sizes is used to write data into the application destination buffer. Still, the 
sender and not the receiver decides the protocol to be used, since the sender is the only entity that 
knows the actual amount of data to be transferred over the network.

If  sender decides  that  Eager  Protocol  should be used,  then sender  prepares  the  data  for 
transmission by executing the following series of steps:

1. Finds available local buffer in the send queue associated with the remote receiver. 
2. Fills the header of the buffer with the application message type and size. The message type 

is set to designate an Eager Protocol transfer and the ready flag is set to designate that the 
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eager buffer is not ready to be consumed by the receiver.  The application data are copied to 
the data field within the eager send buffer.

3. The address of the corresponding remote receive queue buffer is obtained.
4. The local counter object is updated with the size of the upcoming RDMA Write, the local 

notification address and the remote notification address.
5. The NI is instructed to perform the RDMA Write and supply local and remote notifications.
6. The send queue local tail advances to the next posistion within the send queue ring.
7. The queue full  condition is  tested to determine if  next Eager transfer towards the same 

destination rank can start immediately.   Performing this test here instead of at an earlier 
point  in  this series of steps improves latency of a zero-byte Eager transfer when measured 
with a ping-pong test. 

 
The receiver on the other hand does not know the protocol to be used for the transfer as 

described earlier  in  this  section.  The receiver  does know the  rank of  the sending process.  The 
receiver therefore performs the following series of steps:

1. Determines the address of the local buffer at the head of the receive queue associated with 
the remote sender.

2. Advances the value of the head in the local receive queue. Performing this increment here 
instead of  at  a later  stage in  this  series of  steps improves  latency of  a  zero-byte  Eager  
transfer when measured with a ping-pong test. Note that the sender is not yet informed about 
this increment, so there is no danger  associated with misleading the sender with a head 
value that is not yet valid. 

3. Polls the ready flag of the local buffer at the true head of the receive queue. This flag will be 
set by the NI on RDMA Write completion for the specific buffer. 

4. When the local receive buffer becomes ready, receiver reads the value of the message type 
field within the buffer. 

5. If the message type indicates that an Eager transfer is being performed, receiver copies the 
application data from the eager receive buffer into the application destination buffer.

6. Marks the local buffer at the true head of the receive queue as not ready.
7. Informs the sender about the new head value by performing a Remote Store into a specific  

location of the sender's scratchpad. Note that this  update occurs for every eager transfer 
performed. We have also tried to employ a mechanism that would send an update only  if 
the number of unacknowledged eager messages received has reached a value equal to half of 
the buffers in the send/receive queue pair (e.g. one update every 4 eager transfers if there are 
8 buffers  in  the  receive/queue  pair).  However,  the  cost  of  deciding  whether  to  send an 
update or not is greater than performing the Remote Store itself, so we decided to simplify 
things and always send an update about the new head value to the remote side.

A receiver must peform a matching between a send operation with its corresponding receive 
operation  using  the  source,  tag  and  comm as  has  been  descibed  in  the  previous  chapter.  Our 
implementation  does  not  support  tags  and  MPI_COMM_WORLD  is  the  only  communicator 
supported. This simplifies the matching logic to a match on only the source rank. The receiver tries 
to detect an incoming message by polling the ready flag at the head of the receive queue dedicated 
to messages from the specific source rank. 

Another requirement from the MPI specification is that messages should be non-overtaking. 
This requirement is satisfied in our implementation because of the way the send/receive queue pairs 
work. Each sender writes in successive locations in those queues and the receiver reads from the 
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receive queue in order. Therefore, the application messages between a sender and a receiver are 
received in the same order that they were sent regardless of whether the network reorders packets or 
not. 

It should be noted that our initial implementation used function calls for many of the steps of 
the Eager Protocol. However, the use of function calls in our environment can sometimes lead to 
high  performance  penalties,  so  we have  removed  most  of  them from the  code,  with  only  few 
exceptions. 

4.2.5 Rendezvous Protocol Implementation

The steps of the Rendezvous Protocol have been described in the previous chapter. We provide an 
additional  Figure 4.5 in this  section for convenience while  discussing the Rendezvous Protocol 
implementation.

The  Rendezvous  Protocol  is  used  to  achieve  a  zero-copy  effect.  Consequently,  the 
application  buffers  at  the  sender  and  receiver  sides  must  have  been  previously  allocated  in 
scratchpad regions. We have overriden malloc() with a custom mpi_malloc(). The main source code 
of the allocator  was developed by Programming APTS and is freely available on the Internet.  The 
logic of the allocator is similar to the well-known allocator described in [8]. The algorithm performs 
a first fit during allocation. We have only modified the source code to allow the allocator to be 
initialized  and  activated in the specific environment of our platform. 

When  we  discussed  the  Eager  Protocol  implementation,  we  noted  that  only  the  sender 
knows  the  actual  size  of  the  messsage  to  be  transferred  over  the  network.  When  a  specific 
application message size is crossed,  sender initiates a Rendezvous Protocol transfer by sending an 
RTS message to the remote side using the existing Eager Protocol mechanisms.  The sender then 
goes into a state of waiting for a CTS from the receiver (blocking  send operation).

Figure 4.4: Rendezvous Protocol 
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The receiver does not know the protocol to be used, but is waiting for the eager buffer at the 
head of the receive queue dedicated to the particular sender to become ready. When this buffer 
becomes ready, receiver reads the message type field within the buffer and realizes that Rendezvous 
Protocol has been chosen by the sender. Receiver then sends a CTS message back to the sender. 
CTS message contains the address of the application buffer of the receiver as well as the receiver 
message size and is sent as an Eager Protocol message. The application buffer has been previously 
allocated  in  scratchpad  memory  using  a  custom malloc()  implementation  and  such  a  buffer  is 
capable of being RDMA written directly by the sender without copies being necessary. After the 
receiver sends the CTS, it goes into a state of waiting for the FIN from the sender (blocking receive 
operation).

When sender receives the CTS, it extracts the remote address and receiver message size 
from the eager buffer and performs an RDMA Write directly to the receiving application's buffer. 
When the RDMA operation is complete, receiver could be notified by an independent eager FIN 
message from the sender that would signal the end of the Rendezvous Data transfer. In order to 
avoid the overhead of an additional eager message for the FIN, we exploited our hardware platform 
notification mechanism. When the sender prepares to instruct the NI to send the Rendezvous Data, 
it also sets  the receiver notification address to be the address of the next eager receive buffer the 
receiver will consume from the particular sender. Therefore, the hardware automatically updates the 
receiver  on completion  of  the data  transfer  and the sender  does not  send an additional  control 
message for the FIN. The receiver detects completion by checking the head of the receive queue for 
the particular sender and the Rendezvous is finished.

4.3 Library Implementation Summary 

4.3.1 Scratchpad Partitioning

Each L2 cache is 4-way set-associative, with each of the ways being 16Kbytes, which yields a total 
of 64Kbyte L2 cache size. We cannot use all the ways of the cache as scratchpad or a program 
which uses cached variables will not be able to function. In addition,  the more cache ways we 
allocate as scratchpad, the less the performance of the cache will be, since its available size will be 
reduced. We therefore have chosen to allocate a single way of the cache to be used as scratchpad for 
the purposes of the Eager and Rendezvous Protocols.

Each  eager  buffer  has  a  size  EAGER_BUFFER_SIZE and  each  send  or  receive  queue 
contains   EAGER_BUFFER_QUEUE_LENGTH such buffers.  Each  processor  allocates  1  send 
queue per  remote  receiver  and one  receive  queue per  remote  sender.  Each  processor  does  not 
allocate queues for sending and receiving eager messages from themselves. The total scratchpad 
memory size allocated for the system buffers required for the operation of the Eager Protocol is  
therefore: 2*EAGER_BUFFER_SIZE*EAGER_BUFFER_QUEUE_LENGTH*(processors–1). For 
an  eager  buffer  size  of  64bytes  and  an  eager  queue  length  of  8  entries,  the  scratchpad  space 
allocated for the eager queues at each processor is  : 2 * 64 * 8 * (4-1) = 3072 bytes.  The number of 
eager buffers for each queue and the size of the eager buffers can be configured at compile time. 

Because each processor does not allocate eager buffers for themselves, each processor must 
map each processor rank to the base addresses of the remote eager buffer receive queues and the 
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base addresses of the local send queues for sending to a remote rank. This task is performed during 
library initialization.

We also allocate 1 Counter (32 bytes), 1 NI Command buffer (32 bytes), 1 sender polling 
address (32 bytes) and per remote receiver space for the head values of the receivers to be written 
back to the sender (1 cacheline or 32 bytes).  The total space for these additional allocations is 128 
bytes. 

After all the previous requirements have been satified, the remaining space of the 16Kbyte 
scratchpad is left to initialize the memory allocator used for Rendezvous. The allocator requires a 
base address and a total available memory size for initialization.

4.3.2 Current Limitations 

We do not provide a full MPI standard implementation. Our libary supports only the following MPI 
functions:  MPI_Init(),  MPI_Comm_size(),  MPI_Comm_rank(),  MPI_Send(),  MPI_Recv(), 
MPI_Barrier()  and  MPI_Finalize().  We  do  not  support  MPI_ANY_SOURCE,  the  use  of  tags, 
derived datatypes, and the status object in MPI_Recv() arguments. MPI_COMM_WORLD is the 
only communicator  supported.  The MPI_Send()  implementation  is  blocking until  the  data  have 
been delivered  to  the remote  scratchpad and a  notification  is  provided by the  hardware  to  the 
sender. Note that in the case of Eager Protocol this does not necessarily mean that the matching  
MPI_Recv() has copied the data from an eager buffer to the application buffer of the receiver. In the 
case  of  Rendezvous,  and  due  to  the  zero-copy  procedure,  when  the  sender  is  notified  about 
completion of the network data transfer it also means that the data have actually been delivered to 
the receiver application buffer. Therefore, when the Rendezvous Protocol is chosen by the sender, 
the semantics of MPI_Send() become those of a synchronous send.  

4.3.3 Software Architectural Constants

The number  of  eager  buffers  in  each send and corresponding receive  queue is  a  compile-time 
configurable parameter  of our library.  The importance of this  parameter  can be explored in  an 
implementation that does not block the sender until the data have been copied by the hardware to 
the remote scratchpad.  Our implementation blocks the sender until a notification is delivered by the 
NI at an agreed address, so using many eager buffers at each queue pair does not make a difference 
to the observed performance.  

Theoretically, we could block the sender until the NI has written a zero value to the address 
of the NI command buffer. However, at the time of development of our library this feature of the 
hardware was not supported. Besides, even if the NI command buffer can be reused early, the MPI 
library  also  needs  to  know  when  the  Counter  at  the  sender  can  be  reused.  Therefore,  future 
implementations  could support a pool  of Counters without  necessarily supporting a pool of NI 
command  buffers,  since the  NI command  buffers  are  expected  to  be consumed  faster  than  the 
notifications are delivered.

The size of an eager buffer is also a compile-time configurable parameter of our library and 
and the same holds for the threshold between the Eager and Rendezvous Protocols.  Those two 
parameters are closely related.  A typical design choice would be for the threshold to be set to the 
size of the payload that can be accommodated by an eager buffer. The size of this payload still 
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needs to be tuned and we will revisit this issue after we describe the latency results obtained from 
our performance measurements for the Eager and Rendezvous Protocols. 

4.4 Performance Measurements

4.4.1 Latency of Eager Protocol

We measure the 1-way latency of the Eager Protocol by performing an experiment similar to the 
experiment  used  in  [16].  We  have  one  CPU of  our  system  execute  MPI_Send()  followed  by 
MPI_Recv() while a second CPU excutes the matching MPI_Recv() and MPI_Send() in a ping-
pong fashion. The ping-pong test is repeated 10,000 times (with 10 warmup repetitions). The 1-way 
latency is computed as the total  time divided by 20,000, which corresponds to half the average 
round-trip time (½ RTT). Our measurements were obtained in units of clock cycles. 

We have set the eager buffer size to 512 bytes and executed the ping-pong experiment for 
application message sizes within the interval from 0 to 496 bytes in 2 byte increments . The header  
of an eager buffer is 16 bytes, so the actual data transferred by the network are within the interval 
from 16 to 512 bytes.  Some sample values of the 1-way latency are provided in Table 4.1.

Application Message Size (bytes) 1-way Latency (clock cycles)

0 217
16 644
48 737
112 924
240 1297
496 2065

Table 4.1: Eager Protocol 1-way latency
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The results of our experiment are plotted in Figure 4.5.

The  zero-byte  latency  refers  to  an  application  message  size  of  0  bytes  and  a  network 
message of 16 bytes. When a zero-byte application message is transferred, the Eager Protocol does 
not  perform a copy from application  to  eager  buffers  and vice  versa.  Therefore,  the  zero-byte  
latency represents a base latency for all application messages transferred. The base latency includes 
software overheads and the overhead of the hardware for sending a 16-byte message and providing 
notifications.

All application messages with size greater than zero have a latency greater than the base 
zero-byte cost, while the latency increases as application message size increases. The variable part 
of the latency is mainly due to one copy  at the source from the application send buffer to the eager  
send buffer  and a second copy at the destination from the eager receive buffer to the application 
receive buffer. We perform copies at the sender and receiver using memcpy(). The sender performs 
a series of stores to scratchpad from cached data. The receiver performs a series of stores from 
scratchpad to cached data.  Accesses to DRAM are also possible while the previous procedures are 
being performed.  

Another reason for the increase in the observed latency with message size is the fact that the 
hardware delay for RDMA Write operations between scratchpads also increases with message size, 
although this factor is not the dominating reason for the linearly and quickly increasing latency 
observed in Figure 4.5. The analysis of Rendezvous in the following paragraphs will show that the 
hardware communication delay does not increase so fast with message size.

Figure 4.5: Eager Protocol 1-way latency 
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The zero-byte 1-way latency of our implementation is 217 clock cycles. The Cell Messaging 
Layer has a zero-byte latency of 870 SPE clocks within the Same Cell according to [17]. It must be 
noted that the two platforms are different both from processor and network capabilities perspective.

The tremor in Figure 4.5 is related to how the hardware handles a number of bytes that are 
not multiples of 4 bytes. In  Figure 4.6 we plot again the values for smaller application message 
sizes and it  is  clear  that  non-multiples  of 4-bytes  experience  higher  delay than the next  larger  
multiple of 4 bytes. 

Figure 4.6 will also be useful when we decide where to set the threshold between Eager and 
Rendezvous Protocols. 

Figure 4.6: Eager Protocol latency for small message sizes
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4.4.2 Analysis of Eager Protocol RTT Latency

In the previous section we provided an estimation of the Eager Protocol 1-way latency.  The 1-way 
latency was computed as an average and hides  the latency of both the send and the receive path. In  
general, it is expected that the latency of the send and the receive path will not be equal, so we 
executed again the ping-pong experiment to measure the latency components of the zero-byte Eager 
transfer during the ping-pong test.  We sampled various checkpoints within the MPI_Send() and 
MPI_Recv() source code and recorded the checkpoints of the last iteration of the ping-pong loop, 
which are shown in Figure 4.7.

The cycle  counts in  Figure 4.7 are indicative.  Each run of the ping-pong test  will  yield 
slightly different results. The number of calls  to timers affects  the results and access to cached 
variables inserts a degree of non-determinism to the cycle counts reported. However, the results are 
useful in order to obtain an estimation of the latency components of the Eager Protocol and to 
determine the contribution of each of those components to the total delay observed when running 
the ping-pong test. 

CPU  1  on  the  left  of  Figure  4.7 spends  144  cycles  on  MPI_Send(),  237  cycles  on 
MPI_Recv() and 62 cycles between MPI_Send() and MPI_Recv(). The sum of those delays is 443 
cycles.  CPU  0  on  the  right  of  Figure  4.7 spends  237  cycles  on  MPI_Recv(),  141  cycles  on 
MPI_Send() and 59 cycles between MPI_Send() and MPI_Recv(). The sum of those delays is 437 
cycles. The zero-byte 1-way delay reported with the ping-pong test is 217. The average of 443 and 
437 is  440 and divided by two gives us 220 cycles,  which is close to 217 (220 includes timer 
overheads). 

The process running on CPU 0 enters MPI_Recv() 40 cycles before the process running on 
CPU 1 enters MPI_Send(). The process on CPU 0 starts polling at the local notification address in 
scratchpad  26 cycles later.  CPU 0 spends 176 cycles out of the total 237 cycles of MPI_Recv() on 
polling.   The 176 cycles  of polling correspond to slightly above 74% of the total  MPI_Recv() 

Figure 4.7: Analysis of Eager Protocol latency 
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latency.  Besides polling, CPU 0 spends 61 cycles for other work, such as buffer management and 
flow control.  More details about the software overheads of MPI_Recv() will be provided in the 
sections that follow. 

The process running on CPU 1 spends  73 out of the total 144 cycles of MPI_Send() on 
issuing the 4 stores required to start an RDMA Write and polling on the local notification address. 
The 73 cycles correspond to slightly above 50% of the MPI_Send() total time. The remaining 71 
cycles include Eager Protocol buffer management, RDMA operation preparation and flow control. 
More details  about the software overheads of MPI_Send() will  be provided in the sections that 
follow. 

As  we have  seen,  both  the  sender  and the  receiver  spend time  on polling.  Our current 
implementation includes only blocking functions and we have implemented them as such. Each 
sender allocates only 1 NI command buffer and only 1 Counter to be used for all possible receivers. 
The polling time at  the sender might  be improved with the use of a pool of RDMA command 
buffers and a pool of Counters. Such pools will require additional memory in scratchpad however. 
So, future work could trade memory for speed to the extent possible in our platform. Still, those 
pools will have to be managed by software and additional  software overheads might be introduced.

Assuming that  t=0 corresponds to  the  moment  CPU 0 enters  MPI_Recv(),  then CPU 1 
reaches the point “before RDMA” at t = 40 + 56 = 96 and the point “after RDMA” at t = 96 + 73 = 
169. CPU 0 reaches the point “after poll” at t = 176 + 26 = 202. So, it takes 202-169 = 33 more 
clock cycles for CPU 0 to detect that the RDMA is finished than it takes for CPU 1. Part of those  
cycles  include  the  overhead  of  issuing  the  4  stores  on  CPU  1.  Assuming  that  those  are  the  
theoretical 4 clock cycles,  then it takes 29 more cycles for CPU 0 to detect the RDMA completion.  
This duration for CPU 1 is 73-4 = 69 clock cycles (16-byte RDMA takes 34 clock cycles according 
to [5] and we also wait for notification from a local Counter).  

In our current implementation, when an RDMA Write is complete, the hardware updates the 
Counter at the sender and a notification is triggered back to the receiver. The polling time at the 
receiver might be reduced with Counters being allocated at each receiver instead of at each sender. 
The logic of this suggestion is related to the way the hardware provides the notification mechanism.  
If Counter is allocated at the receiver, then hardware can provide a notification to the receiver as 
soon as data have been written to its scratchpad.  However, such a design will require per-sender 
Counters at each receiver  (which implies additional memory and further scalability concerns for the 
Eager Protocol) or a locking mechanism for the Counter of the receiver.

A process that enters MPI_Recv() before the sender is ready will have to poll at least until 
the  sender  enters  MPI_Send()  and  we  cannot  do  anything  to  improve  this  situation  besides 
providing non-blocking operations  in  the future.  In the general  case of an application that  also 
includes  computation,  the  polling  time  might  or  might  not  be  avoided,  even when using  non-
blocking operations  (e.g.  when the expected  data  are  absolutely required  for  the  application  to 
proceed  any  further).  In  this  specific  ping-pong  test  however,  the  polling  time  affects  the 
measurement of the RTT and consequently the measurement of the 1-way latency.  As it can be 
seen from Figure 4.7, each process spends  141-144 cycles to send data,  237 cycles to receive data 
and there exists an additional overhead of 59-62 cycles between the MPI_Send() and MPI_Recv() 
calls.  This  overhead must  be function call  and return overhead because there is  no other  code 
between exit from MPI_Send() and entrance of MPI_Recv() and vice versa. As we have seen in 
other cases while developing the code for the MPI library, the cost of function calls  in our FPGA 
environment can sometimes be high. The program .text is loaded from DRAM. We are using an 
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instruction cache, but misses might still occur. More importantly, the program stack is also loaded 
from DRAM via the data cache path, so misses can occur there as well with the result being the 
DRAM latency penalty.

4.4.3 Latency Components of Eager Protocol

Table 4.2 shows the latency in clock cycles  of components  within MPI_Send() when using the 
Eager Protocol to send zero-byte application messages (16-bytes RDMA for the Eager Protocol 
header)  with  a  ping-pong  test  performing  10,010  iterations.  We  are  sampling  only  within 
MPI_Send(),  computing  differences  among checkpoints.  As we have seen in  general,  the more 
points we sample, the more intrusive the testing becomes and affects all measurements, since  the 
measurement overhead in itself becomes significant and there exist synchronization dependencies 
between the processors during the ping-pong test that affect processor waiting times.

The sampling for the Eager Protocol within MPI_Recv() is shown in  Table 4.3, and the 
results are enlarged by the intrusive measurement.  The values in  Table 4.3  have been measured 
while running the same ping-pong test we used for MPI_Send(), but we are now sampling only the 
MPI_Recv() function at many points, computing the differences of adjacent points and summing 
them up for the duration of the loop. The numbers include some computation/storing overhead for 
the sum of differences between sample points and are tracked across many calls to MPI_Recv(). 

We  have  conducted  other  tests  where  we  sampled  less points  within  MPI_Send()  and 
MPI_Recv() with 10010 iterations and the results of the averages are shown in Table 4.2 and  Table
4.3 in bold. The other numbers can be used as an approximation of each operation's weight in the 
total  cost.  Note  also  that  the  numbers  in  the  timing  sequence  for  the  Eager  Protocol  that  we 
described in the previous section were also different, since they represented a single iteration of the 
ping-pong loop and we were not storing values from iteration to iteration (less intrusive test, but  
maybe not representative).
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Software Operations for Eager Send # clock cycles

1. Calculate message size in bytes from 
count (branch)

2. Choose between Eager and 
Rendezvous Protocols (branch)

3. Read tail of sendq (cached memory 
accesses)

4. Increment tail (arithmetic operation)
5. Read address of remote head (cached 

memory access)
6. Read address of send buffer (cached 

memory access
7. Fill eager buffer header (scratchpad 

memory accesses)
8. Check if message must be copied 

(branch)

40

1. Determine remote eager buffer 
address (cached memory access and 
arithmetic operation)

2. Calculate RDMA size (arithmetic 
operation)

3. Read Counter address (cached 
memory access)

4. Store RDMA size to local Counter 
(scratchpad write)

5. Store notification addresses to local 
Counter (scratchpad write)

22

Before RDMA Write 62 (53)
1. Issue 16-byte RDMA Write (4 stores)
2. Poll for completion 

78 (77)

1. Update tail (cached memory access, 
branch)

2. Check queue full condition 
(scratchpad memory access, branch)

25 (17)

After RDMA Write 25 (17)

Table 4.2: Eager Send Latency Components
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Software Operations for Eager Receive # clock cycles

Calculate message size in bytes from count 
(branch)

7

Read address of receive buffer (cached 
memory accesses)

18

Store address of ready flag to volatile 
variable

7

Increment head of receive queue  (cached 
memory access, branch)

11

Before polling 43 (33)
Poll on volatile variable (branch) Varies (sample value 166)
Choose between Eager and Rendezvous 
Protocols (branch)

27

Decide to copy user buffer data to eager 
buffer payload (branch)

9

Invalidate receive buffer (scratchpad write) 8
Update remote head with our new head value 
(cached memory accesses, Remote Store)

15

After arrival of data 59 (45)

Table 4.3: Eager Receive Latency Components
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4.4.4 Latency of Rendezvous Protocol

We have run the ping-pong test to measure the average latency of the Rendezvous  Protocol. The 
Eager to Rendezvous threshold was set to 32 bytes. The results are presented in Figure 4.8. 

When the Eager to Rendezvous threshold is set to 32 bytes,  the Rendezvous is used for 
application messages larger than 32 bytes, while the Eager Protocol is used for application message 
sizes smaller or equal to 32 bytes. We have used malloc() to obtain a 4096 byte application buffer in 
scratchpad and we use the same buffer to send application messages from 0 to 4096 bytes. A spike 
is observed for small message sizes. This spike for message sizes up to 32 bytes does not represent 
the Eager Protocol latency.  Because the application buffer has been allocated in scratchpad, the 
Eager  Protocol  performs  copies   from application  buffer  in  scratchpad  to  eager  buffer  also  in 
scratchpad and vice versa instead of between cached application buffer and scratchpad eager buffer. 
For the purposes of this test we can ignore the Eager Protocol measurements, since we are trying to 
analyse the performance of the Rendezvous Protocol in this experiment.  

Figure 4.8: Rendezvous Protocol 1-way latency
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Application Message Size (bytes) 1-way Latency (clock cycles)

48 716
64 718
128 731
256 761
512 817
1024 923
2048 1139
4096 1561

Table 4.4: Rendezvous Protocol 1-way latency

From Figure 4.8 it becomes obvious that the Rendezvous Protocol outperforms the Eager 
Protocol from very small application message sizes. Some sample latency values are reported in 
Table 4.4. The Eager Protocol has a latency of 2065 cycles when the application buffer size 496 
bytes, while the Rendezvous transfers 512 bytes in 817 clock cycles. The Rendezvous can transfer 
4096 bytes in less clock cycles (1561) than the Eager can transfer 496 bytes (2065). It is also clear  
that the hardware overhead when message size increases does not grow as fast as the Eager Protocol 
copy overhead grows.

We plot  the  Rendezvous Protocol  latency for  small  message  sizes  in  Figure  4.9.  If  we 
compare this figure to Figure 4.4, we see that, for message sizes between 32 and 48 bytes bytes the 
two  protocols  compete,  but  for  sizes  greater  than  48  bytes  the  Rendezvous  Protocol  always 
performs better from a latency perspective. 

Figure 4.9: Rendezvous Protocol latency for small message sizes
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4.4.5 Analysis of Rendezvous Protocol RTT Latency

In  Figure 4.10 we show averages of latency of the Rendezvous Protocol components during the 
ping-pong test. We have set the Eager to Rendezvous threshold to 48 bytes and used an application 
message size of 64 bytes for the actual Rendezvous Data transfer. The  Figure 4.10 is not to be 
strictly interpreted as a timing sequence ordering the stages of the protocol in the two processors. It 
is  more  meant  to  describe  the difficulties  in  estimating  messaging  layer  overheads in  terms  of 
execution time. One of the reasons the authors of [6] have used instruction counts in their analysis is 
of messaging layer costs is the difficulty in obtaining accurate cycle counts  due to the details of the 
hardware.  We  have  run  the  ping-pong  test  many  times  and  the  cycle  counts  we  obtain  vary 
significantly.  If  we obtain  single  instances  of  the  ping-pong loop  and  try  to  analyse  a  timing 
sequence, it  is nearly impossible  to argue using the only the numbers reported about why each 
component of the instance lasts a particular number of cycles and why in another instance it lasts a 
different number of clock cycles. It is  typically difficult to argue about performance in a system 
that contains caches even when a single processor is used. With more processors, the issue of non-
determinism becomes more evident.

We therefore have computed averages only. We obtain the differences among sample points 
within MPI_Send() and MPI_Recv(), we sum the differences and when the ping-pong loop is done 
with the iterations we compute the average of the differences that we summed up during the loop. 
All the numbers in Figure 4.10 are average latencies of the components.

Since the results vary and we have computed only averages, there are two difficulties in 
analysing the timing sequence of the execution of the program in the two processors. One difficulty 
is to decide which processor enters the sequence first. Another difficulty is related to function call 
overhead.  We  have  performed  another  ping-pong  test  that  measures  the  average  duration  of 
MPI_Send() and MPI_Recv() in each of the processors. During this second test we have removed 

Figure 4.10: Analysis of Rendezvous Protocol latency 
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all the timing code from within MPI_Send() and MPI_Recv(). We only use timers within the ping-
pong loop that invokes MPI_Send() and MPI_Recv(). 

The average MPI_Send() duration on  CPU 1 is 735 clock cycles,  while the sum of the 
average components shown in Figure 4.10 is 659 clock cycles. We therefore have a difference of 76 
clock cycles. We have confirmed from individual instances of the loop that such differences always 
exist from the exit of MPI_Send() until we enter MPI_Recv() code and vice versa.  In addition, the 
average  MPI_Send()  duration  on  CPU  0  is  687  clock  cycles,  while  the  sum  of  the  average 
components is  599, which yields a difference of 57clock cycles.   

The average MPI_Recv() duration on  CPU 1 is 664 clock cycles,  while the sum of the 
average components shown in Figure 4.10 is 599 clock cycles. We therefore have a difference of 65 
clock cycles. In addition, the average MPI_Recv() duration on CPU 0 is  689 clock cycles, while the 
sum of the average components is 671, which yields a difference of 18 clock cycles.  

If we sum all the average components on CPU 1, the total is 1258 clock cycles. If we further 
add the  MPI_Send() and MPI_Recv() average function call overheads for CPU 1, then the total 
time in an average iteration for CPU 1 is 1399 clock cycles. If we follow a similar procedure on 
CPU 0, then the total average time becomes 1301+57+18 = 1376 clock cycles.  The largest of the 
two total times is 1399 and if we divide it by two, the result is 700 clock cycles, which is close to 
the minimum 1-way latency reported for Rendezvous, and is in fact smaller. The ping-pong loop 
also includes the overhead of the loop itself and a test condition for the initial warmup iterations, so 
after taking all this into account we are quite close to at least justify at a high level the numbers  
obtained for the individual components.

Despite  the  difficulty  in  analysing  an  exact  timing  sequence,  we  have  at  least  a  few 
synchronization  points  in  the  Rendezvous  Protocol  to  help  us  start.  We  do  not  know  which 
processor begins  first, but it is clear that MPI_Send() on CPU 1 has sent the RTS after a duration of 
212 clock cycles, while MPI_Recv() on CPU 0 has received the RTS after a duration of 211 clock 
cycles. This first step can be considered to have in both processors a delay approximately equal to  
the average 1-way delay of a zero-byte Eager transfer (the RTS is equivalent to an eager zero-byte  
message). 

The second step in the Rendezvous Protocol is for CPU 0 to send the CTS. CPU 0 spends 
252 clock cycles to send the CTS, while it takes 249 clock cycles for CPU 1 to receive the CTS. 
This step can be considered to have in both processors a delay approximately equal to the average 
1-way delay of a 4-byte Eager transfer, because an eager CTS message includes the 4-bytes of the  
receiver application buffer address within the body of the eager message. In the case of the CTS 
message, the network will send 20-bytes of total data and not 16 bytes as is the case with a zero-
byte application message, and we also pay some overhead for writing into the data portion of the 
eager buffer in scratchpad.

The third step is for CPU 1 to prepare to instruct the NI to perform the zero-copy. During 
preparation we observe a delay of 80 clock cycles, while the same software step at a later point in 
CPU 0 lasts 44 cycles on average and both CPUs are running the same code. This software step  
includes accesses to cached variables in order to prepare the Counter and NI command. The actual  
execution time might depend on misses on individual processors and/or the timing of the misses and 
whether misses occur simultaneously on the two processors. During this step CPU 0 determines 
where to wait for the Rendezvous FIN, performs some buffer management tasks and starts polling 
at its local notification address. We have moved some buffer management tasks at this stage, to 



 45

reduce polling time and to make the next step faster for CPU 0 (i.e. CPU 0 will have less remaining  
work to do after it receives the FIN). Note also that CPU 1 does not send a separate FIN eager 
message, but this task is rather handled by the RDMA Write notification mechanism.

The fourth step on CPU 1 includes the 4 stores required to issue an RDMA Write and then  
CPU 0 starts polling at its local notification address. The whole step lasts 93 cycles and the same 
duration is reported at a later equivalent point in the sequence for CPU 0.  If we assume that the 4  
stores last 4 clock cycles, then it takes  93-4 = 89 clock cycles for an RDMA Write of 64 bytes to be 
performed  and for  the  local  Counter  on  CPU 1 to  trigger  a  notification  at  an  address   in  the 
scratchpad of  CPU 1. According to [5], an RDMA Write of 64 bytes takes 52 clock cycles. So, we 
are left with 89-52 = 37 clock cycles that must be associated with the triggering of a notification. 
Those 37 clock cycles will include the time for CPU 1 to notice, while being in a loop testing a  
volatile  variable,  whether the RDMA Write is  complete.  Note also that there are 2 notification 
addresses configured on the Counter local to CPU 1 (one local and one remote notification address). 
CPU 0 on the other hand, is informed about completion 186 cycles after it started polling, but the 
difference  between the time  it  was  informed  and the  time  the  RDMA Write  started  cannot  be 
computed, since we do not have an exact timing sequence. 

The last  step before CPU 1 exits  MPI_Send()  lasts  25 clock cycles  and includes  buffer 
management  overhead.  The  tail  of  the  send  eager  queue  is  incremented  (cached  variables  are 
accessed, branch for buffer ring wraparound), the eager buffer that CPU 1 received the CTS is  
marked as not ready (scratchpad write) and the remote peer is informed about the new head of our 
receive queue (Remote store). Similar steps are performed in CPU 0 (FIN buffer marked as not 
ready via a scratchpad write and Remote Store for receive queue head).

The next step is for CPU 1 to enter MPI_Send() after paying a function call overhead, while 
CPU 0 enters MPI_Send () and the steps described previously are reversed. We notice that the 
sending of RTS is performed faster than it did when CPU 1 had sent it, while the sending of CTS is 
performed slower. Our code does include function calls for sending the RTS and CTS, so some 
variability can occur there. It was not possible to remove those function calls because the code 
would become hard to debug. In fact, the function calls have been put to resolve a bug that we could 
not have resolved otherwise. We have generally avoided function calls, but those two have not been 
removed for the reasons just described. It must be noted though,  that the increased variability in the 
delays of the Rendezvous Protocol components that was described at the beginning of this section 
can be attributed to those function calls, as well as, to the 3 steps of the protocol, which make the 
analysis harder than the corresponding analysis of the Eager Protocol.

The Rendezvous Protocol can roughly be viewed as experiencing a base delay of a “virtual” 
RTT comprising of a combination of the 1-way delay of a zero-byte Eager  message (217 for RTS) 
and the 1-way delay a 4-byte Eager message (501 for CTS, but we do not call memcpy() in this 
case). We see that both processors experience an initial delay of 461-463 clock cycles before the 
actual Rendezvous Data transfer begins. The zero-copy sequence we analysed was for a 64-byte 
application  message,  which  has  a  computed  average  1-way  delay  of  718  clock  cycles. 
Approximately 718-462 = 256 clock cycles are left. The network overhead is in the order of 93 
cycles,  so we have 163 clock cycles due to: software overheads for buffer management and NI 
command  preparation,  variability  in  function  call  overheads  for  RTS/CTS  and  the 
MPI_Send()/MPI_Recv() themselves, idle polling time at the receivers during the zero-copy data 
transfer, and loop overheads for performing the ping-pong test itself.  
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4.4.6 Eager to Rendezvous Threshold

The Eager Protocol can be used for application messages sizes up to 32 bytes that correspond to 
RDMA Write operations of up to 48 bytes. From there on, the overhead of copies from application 
buffers to system buffers at the sender and from system buffers to application buffers at the receiver  
exceeds the overhead of using the Rendezvous Protocol. It must be noted that from 32 up to 48 
bytes of application message size (64 bytes RDMA Write) the protocols compete.

On the other hand, the use of Rendezvous Protocol incurs the initial overhead of 2 software 
protocol  steps  before  the  actual  application  data  transfer  occurs.  The  latency  of  Rendezvous 
Protocol for application messages smaller than  32 bytes exceeds the latency of the Eager Protocol.

We could set the Eager to Rendezvous Protocol threshold to 32 bytes.  At an early stage of  
the implementation we had set the Eager to Rendezvous threshold to be equal to the eager buffer 
data size. The size of each eager buffer can now be set to 64 bytes to make it equal to the size of 2 
cachelines, while the Eager to Rendezvous threshold can be disassociated from the eager buffer data 
size and set independently at compile time to be equal to 32 bytes. Note that this implies that 16 
bytes of each eager buffer will be wasted (32 bytes eager data + 16 bytes header = 48 bytes). 

Another consideration regarding the Eager to Rendezvous threshold is related to the way the 
Rendezvous-capable application buffers are allocated. In order to achieve the zero-copy effect, an 
MPI application must call malloc() to obtain a buffer in scratchpad.  Every time an MPI application 
calls malloc() it does not necessarily need a buffer in scratchpad with the goal to communicate 
using RDMA operations. So, the threshold could be set to 48 bytes or higher to avoid scratchpad 
allocations for very small buffers. At this point, it seems reasonable to set the threshold to 48 bytes 
since the scratchpad space for the eager buffers will be wasted anyway if we set the threshold to 32 
bytes.  Increasing the threshold further presents a tradeoff between memory and speed.
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Chapter 5

Conclusions

In this master thesis we present an implementation of basic MPI primitives in a multicore FPGA 
platform. The platform includes 4 RISC-type processors interconnected via a NOC.  Each of the 
processors incorporates an L2 data cache tightly coupled to the processor. Each L2 data cache can 
be configured at run time to operate partly as cache and partly as scratchpad. Each L2 data cache is 
integrated  with  an  NI.  The NI connects  each  processor  to  the  NOC and can  be  controlled  by 
software to facilitate message exchange between the processors. 

We have implemented basic MPI primitives using the operations provided by the specific 
hardware to the software.  We provide blocking MPI message exchange primitives only. We have 
implemented the Eager and Rendezvous Protocols, which are commonly used internally in MPI 
libraries to provide the send/receive functions to upper software layers. The choice between Eager 
and Rendezvous Protocols is decided by the sender at run-time based on the size of the application 
message being tranferred.

The implementation of Eager Protocol uses  RDMA Write to transfer data eagerly to the 
remote side and Counters with associated notifications to detect data transfer completion. It also 
uses Remote Stores for each receiver to inform remote senders about the corresponding receive 
queue status.

The implementation of the Rendezvous Protocol is RDMA Write based. The Eager Protocol 
is used before the actual Rendezvous data transfer for sending the RTS and CTS control messages 
required for the sender to be informed about the remote address to write to. The actual Rendezvous 
data transfer uses RDMA Write to perform a zero copy from the application buffer of the sender to 
the application buffer of the receiver. The FIN control message is not sent independently by the 
software, but the same effect is accomplished by instructing the hardware to provide a notification 
to the receiver using Counters. 

The  performance  measurements  taken  indicate  that  the  offered  hardware  operations 
(RDMA Write, Remote Store, Counters) can help develop low latency messaging layer software 
over the specific platform. The zero-byte latency of our MPI library is 217 clock cycles in an FPGA 
prototype with a 75 MHz clock. We have used the results of the performance measurements to set  
the threshold between Eager and Rendezvous Protocols to 48 bytes, while the size of each eager  
buffer is set to 64 bytes to make it equal to the size of 2 cachelines. For application message sizes 
up to 48 bytes the Eager Protocol will be used, while for application message sizes above 48 bytes 
the Rendezvous Protocol will be used to achieve a zero copy effect.
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Future work will aim to extend the current work in the following ways:

• Implement the Rendezvous Protocol using RDMA Read operation instead of RDMA Write 
for the actual zero-copy data transfer, with the goal to reduce the software protocol steps and 
increase overlap of communication with computation in order to improve MPI application 
performance further. 

• Implement  non-blocking  MPI  primitives.  The  challenge  will  be  to  keep  any  additional 
required  data  structures  to  a  minimum  to  facilitate  simplicity  and  low  latency  in  the 
messaging layer, while also taking into account the limited size of scratchpad regions and 
the DRAM latency.  
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