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Abstract

  In this project we calculated the conductance and density of states of a one 

dimensional electronic system in interaction with a Bloch type domain wall in 

magnetic materials. We approached the problem by a double exchange (s-d) 

Hamiltonian and making use of the transfer matrix method, we found by inversion 

the corresponding S matrix. From the elements of the S matrix it is then easy for us to

calculate the conductance and the density of states of the system. We dedicate the last

part of the report visualizing and commenting our results. This project is part of a 

bigger effort to understand how the electron-domain wall interaction can affect the 

spatial configuration of the domain walls.

Introduction

Domain walls

  Domain walls are specific areas of magnetic materials that connect its magnetic 

domains. The magnetic domains consist of atoms whose magnetic moments are 

aligned and make this specific area of the material magnetized. They exist in 

ferromagnetic materials when the temperature is below the Curie limit and they are 

responsible for their permanent magnetic properties. These areas interact with the 

magnetic moments of the conducting electrons in a constant way and do not appear to

have any special  effect. Interesting results occur however when we try to examine 

the interaction of the electrons with the domain walls of the material. The determinant

configuration of the spin wavefunction of the electrons plays a role in the way they 

travel through different types of domain walls. The study of this interaction gives us 

information about the thermodynamic and electronic properties of the material.

Figure 1: Magnetic domains in a magnetic material

  There are two main types of domain walls, the Bloch type and the Néel type. The 

Bloch type domain walls appear mostly in bulk materials and consist of a spin 
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rotation parallel to the wall plane. It’s length is defined by the value of √ J

D
 where J is

the exchange energy and D is the anisotropy constant. When the film thickness 

becomes smaller than the domain wall the Bloch wall induces surface charges by its 

stray field and the Néel wall becomes more favorable. This type of domain wall 

consists of a spin rotation parallel to the film plane and its width is mainly defined by 

the value of √ J

K d

 where Kd is the demagnetizing energy. Besides these two, there are 

also other types of domain walls such as the cross-tie wall which is a mixture of the 

Néel and Bloch domain walls. The following image gives us a visualization of what 

was discussed. This project is based on the study of the Bloch type domain walls.

                  

Figure 2: Visualization of the (a) Bloch domain walls and (b) Neel domain walls

The Hamiltonian of the regular ferromagnetic chain is:

H HA=−2 J S
2 ∑

n=−∞

+∞

u⃗ n u⃗n+1−D S
2 ∑

n=−∞

+∞

un , z

2

  The first term describes the exchange energy (assuming only the first neighbor 

interaction) while the second term is the anisotropy term.

For uniaxial anisotropy (the z axis is the easy axis) D>0. The energy of the chain is:

E=−2 J S
2 ∑

n=−∞

+∞

cos(θ n−θ n+1)+ DS
2 ∑

n=−∞

+∞

sin
2(θn)  (1)

where θ n is the angle between the n spin vector and the z axis.

   The energy of the domain wall is calculated by subtracting from (1) the energy of 

the energy of the chain without defects,
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ΔΕ

2 JS
2
= ∑

n=−∞

+∞

(1−cos(θ n−θn+1))+
D

2 J
∑

n=−∞

+∞

sin
2(θ n)

Minimizing the energy with respect to the spin angles gives us the spin configuration 

of the minimum energy state,

∂ ΔΕ

∂θ n

=0⇒ sin (θ̄ n− ¯θ n+1)+sin (θ̄n− ¯θn−1)+
D

2 J
sin (2 θ̄ n)=0  (2)

  The resulting angle configuration depends on the competition between J and D (in 

other words the D/J ratio). There are two cases: D>>J (narrower domain wall) and 

D<<J (broader domain wall).We choose the boundary conditions of the ferromagnetic

chain to be θ̄i=180
o
 and θ̄ f =0

o
. For the case where D>>J the spin angles are 

relatively small which allows us to linearize equation (2):

2(1+ D

2 J
) θ̄n= ¯θ n−1+ ¯θ n+1

Which gives us the following domain wall profile for n>0:

θ̄ n=θ 0e
−nψ

where

 cosh (ψ )=( D

2 J
)+1

  Close to the critical value D/J=4/3 (for D/J>4/3 it is easy to show that the domain 

wall has the length of a unit cell):

θ̄ 0=√5(3−e
ψ)/2

  For the case where J>>D we follow a similar procedure (we assume the spin angle 

as a continuous function of n). The result is the following:

tan ( θ̄

2
)=e

−n√ D

J
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Landauer-Buttiker formalism and the S matrix method

  The Landauer-Buttiker formalism is used in mesoscopic physics to describe the 

conductance of a crystal based on its scattering properties. A very effective way to 

study the scattering of a particle is using the S matrix method. The main idea behind 

the S matrix method is to calculate the outgoing (from the scatterer) part of the 

wavefunctions when we know the incoming part. Expanding these two wavefunctions

into an orthonormal basis:

Ψ
(in)=∑

a

Aa Ψ α

(in)
     Ψ

(out)=∑
b

Bb Ψ b

(in)

The S matrix helps us express the coefficients Bb when the coefficients Aa are known,

Bb=∑
a

S ba Aa

Here Sba are the elements of the S matrix.

[Ψ α←
Ψ b→]=[S 11 S 12

S 21 S 22
][Ψ a→

Ψ b←]
Some of the interesting properties of the S matrix is that it is unitary:

 S
†
S=S S

†=I

Also:

Ψ ( x , k )=Ψ
*(x ,−k )⇒ S

*(k )=S (−k)

  In order to study a scattering problem between electrons and a potential barrier we 

consider the electrons to be non interacting and come from electron reservoirs. In 

order to study the current of electrons from the sample to the reservoirs and vice 

versa we use the second quantization formalism. It can be proved that the current 

operator for the channel α is:

Î a=
e
ℏ∫∫ dEdE

'
e

i t (E−E
') /ℏ[ b̂a

†(E ) b̂a(E
')−âa

† (E) â a(E
')]

Where the â a

†(E) operator creates one electron in the incoming state with a 

wavefunction Ψ a

(in )(E)/√ℏ υα (Ε ) and the b̂a

†(E) operator which creates the state
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Ψ a

(out)(E )/√ℏ υα(Ε). What we are actually interested is the measurable current

I a=⟨ Î a⟩ which is calculated to be:

I a=
e
ℏ∫dE [ f a

(out)(E)− f a

(in)(E)] 

Here the functions f a

( in)
, f a

(out)
 are two distribution functions.

It is easy to show that f a

( in)
 is equal to the Fermi distribution for the incoming 

electrons in the reservoir α,

f a(E)= 1

1+e
(E−E

f
)/k

B
T

We can find f α

(out)(Ε) to be equal to:

f α

(out)(E)=∑
b=1

N

|S ab|
2 f b(E)

where N is the total number of reservoirs. This means that the current Iα  is equal to:

I a=
e
ℏ∫dE∑

b=1

N

|S ab|
2[ f b(E)− f α(E )]

If we apply a potential difference Vα the new value of the Fermi energy is

E f

' =E f +e V a

If |e V α|≪k T 0 we can use the following expansion for the Fermi function,

f α= f 0−e V α

∂ f 0

∂ E
+O(V α

2)

This means that the current in the channel α will be

I a=
e

2

ℏ ∫dE∑
b=1

N

|S ab|
2(−V α)

∂ f 0

∂ E

And thus the conductance will be
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Ga=
−e

2

ℏ ∫dE∑
b=1

N

|S ab|
2 ∂ f 0

∂ E
 (3)

Density of states and T-matrix

  We will now extract a theoretical formula which will make us able to evaluate the 

density of states (DOS) for a 1D system using the S matrix elements.

  We begin by expanding the Green function of the system in the set of orthonormal 

eigenstates of the Hamiltonian of the system:

G (r , r ' , z)=∑
n

φn(r)φn

* (r)

z−λn

       (4)

where λn is the eigenvalue of the eigenstate φn(r).

We can write the retarded and the advanced Green function in the following form:

G (r , r ' , Ε)=lim
ε→0

+

G (r , r ' , Ε±iε)    (5)

From equations (4) and (5) we get:

lim
ε→0+

∫dr G (r , r ' , Ε±iε)=lim
ε→0+

∫ dr∑
n

φn(r)φn

*(r)

E−λn±iε

lim
ε→0

+
∫dr G (r , r ' , Ε±iε)=lim

ε→0
+
∑

n

1

Ε−λn±iε

lim
ε→0

+
∫dr G (r , r ' , Ε±iε)=±iπ ∑

n

δ (Ε−λn)

Consequently:

ρ (Ε)=∑
n

δ(Ε−λn)=± 1

π
lim
ε→0

+

ℑ(∫dr ' G(r , r ' , Ε±iε ))

Considering the retarded Green function we get:

ρ (Ε)=−ℑ 1

π
∫ drG (r , r ' , E)
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Setting r=r '

ρ (Ε)=− 1

π
ℑ∫ drG (r , r , E)

ρ (Ε)=− 1

π
ℑTrG (E) (6)

This is the retarded Green function and ρ(Ε) is the local density of states.

Corresponding the fact that the Hamiltonian is given by:

H (r , p)=H 0(r , p)+V (r)

The retarded Green function follows a Dyson type equation,

G (r , r ' , E)=G0(r , r ' , E)+∫dr1∫dr2 G0(r , r 1 , E)T (r1 , r 2 , E)G0(r 2 , r ' , E ) (7)

Substituting (7) into (6) we get for the local density of states,

ρ (r , E )=− 1

π
ℑ(φn ,Ĝ0(E) T̂ (E )Ĝ0(E ) , φn)

where the operators in the inner product are the retarded free Green function and the 

transfer matrix. In order to find the total density of states we just have to integrate the

local density of states over the spatial coordinates, in our  case r.

D (E )=∫
0

∞

drρ(r , Ε )

D (E )=− 1

π
ℑTr [Ĝ0(E) T̂ (E )Ĝ0(E)]

It can be proved that the last equation can be written as

D (E )= 1

2 πi
∂

∂ E
Tr [ ln( Ŝ (E))]

Where  Ŝ (E ) is the S matrix  operator equal to

Ŝ (E )= Î−2 πiδ (Ε Î− Ĥ 0)T̂ (E)
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  The equation above for the total density of states gives us the contribution of the 

scattering potential to the shift of the total density of states. Now we need to evaluate 

the trace of the operator ln Ŝ . In order to do this we will need to define the operators

X̂ (E )=2πiδ (Ε Î − Ĥ 0) T̂ (E )

We will now need to evaluate the trace

 Tr ln Ŝ=Tr ln( Î − X̂ )

For this reason we will use the formula 

ln ( Î − Â)=−∑
n=1

∞

Â
n/n

ln ( Ŝ)=ln ( Î− X̂ )=−∑
n=1

∞

X̂
n/n

Using this transformation it is easy to get to the equation that we will use

D (E )= 1

2 πi

d

dE
Tr [ ln (S (E))]

D (E )= 1

2 πi
Tr [S † dS

dE
]

D (E )=
1

4 πi
Tr [ S

† dS

dE
−S

dS
†

dE
]

  This is the final equation that we will use in our model in order to calculate the total 

density of states. 

  In order to find the S matrix we calculated the T matrix. The transfer matrix is 

similar to the scattering matrix but instead of correlating the incoming and the 

outgoing parts of the wavefunctions we use the left and the right from the potential 

parts of the wavefunction

Ψ
(left)=∑

a

Aa Ψ α

(left)
   Ψ

(right)=∑
b

Bb Ψ b

(right)

Aa=∑
b

T ab Bb

 [Ψ α→
Ψ α←]=[Τ 11 Τ 12

Τ 21 Τ 22
][Ψ b→

Ψ b←]
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Methodology

  We model our system with an s-d Hamiltonian, a method where we consider the 

electrons of the d orbital to be localized and produce a magnetic field that affects the 

behavior of the s orbital electrons which are assumed to be free conduction electrons. 

Our Hamiltonian is:

  
−ℏ2

2 m
∂2

∂ x
2
Ψ +(V (x)−E)Ψ =0

where

 V (x)=h⃗(x) σ⃗     

For a random orientation of the magnetic field:

V (x)=[ h z hx−i h y

h x+i h y −h z
]=[hz h-

h+ −hz
]

We also approach the wavefunction to be in the following form:

ψ=[ Α↑

Α↓
]e

iqx
 

where the column vector represents the spin amplitudes of the electron. In the transfer

matrix method we separate the potential in slices and suggest that it is constant in 

each one of the slices. Thus the wavefunction in each slice is that of a plane wave 

with a corresponding spin amplitude. We replace this form of Ψ in the Schrodinger 

equation above and we get:
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ℏ2
q

2

2 m [Α↑

Α↓
]+[hz−E h-

h+ −h z−E ][Α↑

Α↓
]=0

We set

 
2 m

ℏ2
=1 

which simplifies our eigenvalue problem. This relation also defines the units that are 

used. We thus have to solve

 [hz−E+q
2

h-

h+ −h z−E+q
2][ Α↑

Α↓
]=0 

After the diagonalization we find the eigenvalues:

E1,2=q
2±h

2⇒q=±√E∓h
2
  

where h is the magnitude of the magnetic field.

The corresponding eigenvectors are:

Ψ +=[+cos(φ/2)
−sin (φ /2)] and Ψ -=[+sin (φ /2)

+cos(φ /2)]  
where we have set

 hz=h cos(φ) , h x=hsin (φ)

The one dimensional spatial form of the grid is:

x0−−−x1−−−x2−−−...−−−xN  

where the xi notation refers to the region xi<x<xi+1

Subsequently the wavefunction Ψi in the domain xi<x<xi+1 has the form:

Ψ i(x )=Ai[+cos(φ /2)
−sin(φ /2)]e

+i qi

+¿
x+Bi[+cos(φ/2)

−sin(φ /2)]e
−i qi

+¿
x+C i[+sin(φ /2)

+cos(φ/2)]e
+i qi

−¿
x+Di[+sin(φ/ 2)

+cos(φ /2)]e
−i qi

−¿
x

We will now follow the connection procedure for the wavefunctions in each potential 

slice:
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Ψ i (xi +1)=Ψ i+1( xi+1) and Ψ i ' ( xi+1)=Ψ i+1 ' (xi+1)

Setting

 Ψ i=[
Ai

Bi

C i

Di

] 
we can write:

ui( xi+1)Ψ i=ui+1( xi+1)Ψ i+1 

where

 

ui (x)=[
+cos (φ i/2 )exp(+ i qi

+
x) +cos(φi /2)exp (−i qi

+
x) +sin (φ i /2)exp (+i qi

-
x) +sin (φi /2)exp (−i qi

-
x)

+i qi
+
cos (φi /2)exp(+i qi

+
x) −i qi

+
cos (φi /2)exp(−i qi

+
x) + i qi

-
sin (φi /2)exp(+i qi

-
x) −i qi

-
sin (φi /2)exp(−i qi

-
x)

−sin (φ i/2)exp(+ i qi

+
x) −sin (φ i/ 2)exp (−i qi

+
x) +cos(φ i /2)exp (+i qi

-
x) +cos(φi /2)exp (−i qi

-
x)

−i qi

+
sin (φi /2)exp(+i qi

+
x) + i qi

+
sin (φ i/2)exp(+ i qi

+
x) + i qi

-
cos (φi /2)exp(+i qi

-
x) −i qi

-
cos (φi /2)exp(+i qi

-
x)
]

From u(x) the transfer matrix can be found in the following way:

ui( xi+1)Ψ i=ui+i ( xi+1)ψ i+1

ψ i=ui

−1( xi+1)ui +1(xi+1)Ψ i+1

T i+1=ui

−1(x i+1)ui+1( xi+1)
Ψ Ν−1=Τ Ν Ψ Ν

Consequently for N potential barriers the transfer matrix can be calculated as:

Ψ 0=Τ 1 Τ 2 Τ 3 ...Τ Ν Ψ Ν

Τ=Τ 1Τ 2 Τ 3 ...Τ Ν

  Based on the calculations above we developed a code that gives us the transfer 

matrix for a specific domain wall. Having calculated the transfer matrix we can find  

the S matrix which is a 4x4 matrix.

  The transfer matrix is correlating the amplitudes of the wavefunction in the region 

before and after the potential while the S matrix is correlating the amplitudes of the 

incoming with the outcoming waves. 
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[
A1

↑→
B1

↑←
C1

↓→
D1

↓←]=T [
AN

↑ →
BN

↑ ←
CN

↓ →
DN

↓ ←]
  Considering a particle entering the potential region from the right in a spin up state 

we have the following equations:

1=T 11 AN +T 13C N  

B1=T 21 AN +T 23 C N

0=T 31 AN +T 33C N

D1=T 41 AN +T 43 C N

This means that:

AN=S 21↑↑ ,C N =S 21↓↑ , B1=S 11↑↑ , D1=S 11↓↑

  We can repeat the same process setting C1=1, BN=1 and DN=1 in order to calculate 

the rest of the S matrix elements.

  After obtaining the S matrix elements it is easy for us to calculate the conductance 

and the density of states of the system using the formulas given in the introduction.

RESULTS

  This code was used to calculate the previous electronic and thermodynamic 

quantities of the system and the results are given in this section. The x axis in the 

following diagrams refer to the electron energy.

  First, we used this code to calculate the transmission and the reflection coefficients 

for a constant magnetic potential forming an angle with the z axis equal to zero. We 

consider the particle to be in the spin up state and moving towards the right.
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Figure 3:  Scattering matrix elements for an electron in the spin up state entering a magnetic potential that is parallel to

the z axis. The notation s(a,b,c,d) corresponds to an electron that enters the potential (h=0.4) at the point b and proceeds

to get out at the point a. The initial spin state is d and the final and c. Etc if a=b there is a reflection. Index 1 refers to the

spin up state and index 2 refers to the spin down state. The Ttotal+Rtotal  is the sum of all the probabilities and appears as a

check for our calculations.                                                                                

  The results are compatible with the known analytical results which get

r=
(k 2+q

2)sin(qa)e
−ika

(k
2+q

2)sin(qa)+2 iqkcos (qa)
 and t=

2 iqk e
−ika

(k
2+q

2)sin (qa)+2 iqkcos(qa)

where k2=E and q2=E-V0.

  Now let’s see what happens when the magnetic field is not parallel to the z axis but 

forms an angle φ. The results appear to be rather complicated. We can explain them 

theoretically however if we consider the following operations. Supposing that the 

domain wall is on the zy plane, if we have a magnetic field that forms an angle φ with

the z axis then we can calculate the new S matrix as

 S '=R
−1(φ)S R(φ) 

where S is the scattering matrix that corresponds to the case where φ=0 and

R(θ )=[ cos(φ) sin (φ)
−sin (φ) cos(φ)]
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Figure 4: Electron in a spin up state enters a magnetic field whose direction forms and angle φ with the z axis. The

value of the potential barrier is h=0.4.

   We can observe that if the magnetic field does not form an angle with the z axis 

then the spin state of the electron after the scattering does not change. Additionally 

we can see that for high energies there is no reflection which is a result that agrees 

with our intuition. However we can also see some surprising results. For φ=π/4 there 

is an energy value 1<E0<1.25 where the refection probability is zero and there is an 

equal probability for the electron to transmit through the potential with spin up or 

spin down. The same thing and for the same energy value happens also in the case 

where φ=3π/4. In the case where φ=π/2 and for the same energy value the electron 

passes through the potential barrier as if it does not exist. This behavior has to do 

with coherence phenomena and the specific value of E where this happens depends 

on both the magnitude of the potential barrier and also its width.

  Now let’s use the code to graph the transmission and reflection behavior of one of 

the aforementioned domain walls:

Figure 5: Transmission and reflection probabilities for an electron that enters in a spin up state the potential that is

created by the domain wall that corresponds to the case where J>>D. We used  h=0.4  and δ=0.1.

  Now this is the first original result that occurred from our work and cannot be 

predicted analytically like the cases of the constant magnetic field that we showed 

before. In this case the electrons seem to keep their spin configuration almost intact 

since the transmission and reflection probabilities for the spin down state is almost 

zero for most of the energy values. We can see that there is a slight probability for the

electron to transmit through the potential barrier and change its spin state. It is also 
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notable that there is zero probability for the electron to reflect from the potential 

barrier and change its spin.

  It also as interesting to see how the transmission and reflection probabilities are 

configured for the other type of domain wall.

Figure 6: The transmission and reflection probabilities of an electron entering a magnetic potential in a spin up state

that is created by the domain wall for the case D~J. We used h=0.4 and δ=1.0.

  It is surprising to notice that although the direction of the magnetic field changes the

electron has zero probability to change its spin state, either for transmission or for 

reflection.

  Let’s see now some more practical results. In the following pages we have 

visualized the behavior of some fundamental thermodynamic and electronic 

quantities of the magnetic material (conductance and density of states) in order to 

examine their behavior for different energy states of the electrons . In each occasion 

we study the behavior of these quantities for different values of the width of the 

domain wall δ=D/J (keeping in mind the approximation for the angular configuration 

of the domain wall is still valid), the chemical potential μ of the solid and beta 

β=1/kT.

For the domain wall J>>D:

  Let’s start our investigation with the behavior of the conductance. The following 

diagram shows the variation of G for different values of β=1/kT. It is important to 

note that the conductance that appears in the following diagrams refers to the 

conductance per energy. The total conductance occurs when we integrate over all the 

energies.
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Figure 7: The conductance per energy of our model for the domain wall  J>>D. The value of the other parameters are:

δ=0.1, μ=0.5 and h=0.4 where δ refers to the width of the domain wall and is equal to δ=D/J, μ the chemical potential

and h the value of the potential barrier.

  We can observe that the conductance line in our model becomes sharper as the 

temperature decreases and approaches a type of δ function as E→ μ which is obvious 

since at zero temperature only the electrons at the Fermi energy contribute to the 

conductance. 

  The next graph (Figure 8) shows how the conductance behaves for different values 

of the chemical potential. For a smaller value of μ  the conductance has a lower 

maximum value and as the chemical potential increases the maximum value of the 

conductance also increases. This is obvious since for larger values of the chemical 

potential the conducting electrons have a much larger probability to transmit through 

the potential barrier. After a certain point the transmission probability becomes 

almost saturated. 
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Figure 8: Conductance per energy for different values of μ. Also δ=0.1, β=10, h=0.4.

Figure 9: Conductance per energy for different widths of the domain wall. Also μ=0.5, β=10 and h=0.4.

    The first new data come when we try to examine the relationship between the 

conductance and the width of the domain wall (Figure 9). The surprising information 

we can extract is that the width does not affect at all the conductance for E>μ and 

there is a very small dependence for E<μ.

  It is also very interesting to see how the density of states is configured in this model 

(Figure 10). In the following graph we have plotted the density of states with respect 

to the electron energy for different values of the width of the domain wall. We can 

observe, similarly with the case of the conductance, that the width of the domain wall

does not affect the system in an important way. However we can see that there is a 

slight deviation of the density of states curve when we alter the width for energy 

values that are smaller than the chemical potential.
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Figure 10: The density of states graph for each energy level and for different widths of the domain wall. Again μ=0.5,

β=10 and h=0.4.

For the domain wall D~J:

Figure 11: Conductance per energy for different temperatures. Also μ=0.5, δ=1.0 and h=0.4.

  The diagram above features, as in the previous case, the dependence of the 

conductance from the electron energy for different temperatures. We can notice once 

again the expected behavior where the curve tends to a δ type function as the 

temperature decreases meaning that only the electrons in the Fermi level contribute to

the conductance. However, to compare it with the previous structure of the domain 

wall, we can see that the curves are completely localized around the value of the 

chemical potential of the crystal even though all of the other parameters are the same.

This means that the scattering matrix elements in eq. 3 are do not depend on the 

energy and only the partial derivative of the Fermi function determines the position of

the peak of the line, which is at the value of the chemical potential.
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Figure 12: Conductance per energy for different values of the chemical potential. Also δ=1, β=10, h=0.4.

  We continue our investigation with the dependence of the conductance from the 

chemical potential (figure 12). Some very interesting results occur from it as we can 

see that the maximum value of the conductance remains the same as the chemical 

potential increases (we study the case where the chemical potential μ is greater that 

the potential barrier h=0.4). This means that the conductance gets saturated much 

faster than the case of  the previous domain wall. Also the curves are localized around

the value of μ (same as the previous figure) and we can see that the first curve is 

sharper that the other ones.

  It also notable that the conductance shows no dependence on the width of the 

domain wall.

  Now for the last case we plotted the density of states of the system for this specific 

form of the domain wall. It is again invariant under the domain wall width alterations 

and seems to have a very different structure for the one that corresponds to the 

previous domain wall.

Figure 13: The density of states for the different energies. It is invariant from the width of the domain wall.

DISCUSSION

  Our method was based on a double exchange (s-d) Hamiltonian approach along with

the transfer matrix method in order to investigate the interaction between the electron 

and the domain walls. The primary goal was to analyze the conductance and the 

density of states of the system considering the transmission of the electrons through 

the domain walls as a scattering problem. Looking back to the graphical results of our

model we can see that we get some very interesting output. The study of the electron-

domain wall interaction is a very promising subject of study with many significant 
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applications. This project is part of a bigger effort to understand the dynamics and the

final configuration of the domain walls when they interact with a fermionic gas. 
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